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xii Abstract

Diploma Thesis

Super-Resolution with Deep Learning Techniques for Medical Images

Konstantinos Milas

Abstract

Single Image Super-Resolution is an important low-level computer vision process to enhance

and denoise images and videos.This thesis is about how Deep Learning and more signifi-

cantly Convolutional Neural Networks and Generative Adversarial Networks dominated the

field of SISR.Firstly,the low resolution images are produced from bicubic interpolation of

high resolution images so only bicubic degradation is learned by the SISR model.Secondly,

state of the art techniques implemented like Enhanced Deep Residual Networks for Single

Image Super-Resolution (EDSR) Residual Channel Attention Networks (RCAN) and En-

hanced Super-Resolution Generative Adversarial Networks (ESRGAN).Lastly, experiments

are conducted in famous Image Super-Resolution and Medical image datasets showing that

EDSR and RCAN can have better PSNR and SSIM scores but ESRGAN outperfomrs all in

perceptual quality.

Keywords:
Single Image Super-Resolution

Convolutional Neural Networks

Generative Adversarial Networks

Medical Image Analysis



Περίληψη xiii

Διπλωματική Εργασία

Υπερ-ανάλυση με τεχνικές βαθιάς μάθησης για την ανάλυση ιατρικών

εικόνων

Κωνσταντίνος Μήλας

Περίληψη

Η Υπερανάλυση εικόνας είναι μια σημαντική διαδικασία υπολογιστικής όρασης χαμηλού

επιπέδου για τη βελτίωση των εικόνων και των βίντεο. Αυτή η διατριβή έχει να κάνει με το

πώς οι μέθοδοι ΒαθιάςΜάθησης και πιο σημαντικά τα ΣυνελικτικάΝευρωνικά Δίκτυα και τα

Παραγωγικά αντιπαραθετικά Δίκτυα κυριάρχησαν στο πεδίο της υπερανάλυσης. Πρώτον, οι

εικόνες χαμηλής ανάλυσης είναι που παράγονται από δικυβική παρεμβολή εικόνων υψηλής

ανάλυσης, έτσι μόνο η δικυβική υποβάθμιση μαθαίνεται από το μοντέλο SISR. Δεύτερον,

οι τεχνικές αιχμής που εφαρμόζονται όπως τα Enhanced Deep Residual Networks for Single

Image Super-Resolution (EDSR), Residual Channel Attention Networks (RCAN) και το En-

hanced Super-Resolution Generative Adversarial Networks (ESRGAN). Τέλος, διεξάγονται

πειράματα σε διάσημα σύνολα δεδομένων και ιατρικές εικόνες που δείχνουν ότι τα EDSR

και RCAN μπορούν να έχουν καλύτερες βαθμολογίες PSNR και SSIM, αλλά το ESRGAN

υπερτερεί όλων σε αντιληπτική ποιότητα.

Λέξεις-κλειδιά:
Yπερ-ανάλυση εικόνας

Συνελικτικά Νευρωνικά Δίκτυα

Παραγωγικά αντιπαραθετικά Δίκτυα

Επεξεργασία Ιατρικών εικόνων
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Chapter 1

Εισαγωγή

1.1 Introduction

Image Super-Resolution is very helpful technique for modern digital images.Nowadays,

many applications need high quality images from a civilian with a smartphone camera to a

medical doctor that need to take a careful look to an Magnetic resonance imaging (MRI).

Spatial Resolution can enhance image quality and is crucial for applications that detail mat-

ters like satelite imagery and medical imaging. Image Super-Resolution tries to solve the

problem of upscaling spatial resolution of an image and create more pixels and sufficient

detail to an image. This problem can have multiple images as input or only one low resolu-

tion image, for most image enhancement tasks is difficult to have multiple image of the same

scene and time is crucial so Single Image Super-Resolution is a more interesting problem. A

low resolution image can have a infinite number of high resolution image pairs so the Im-

age Super-Resolution model tries to find the most probable HR image.This probability can be

learned using Convolutional Neural Networks (CNNs) and Generative Adversarial Networks

(GANs) to reconstruct more perceptually pleasing details.

1.1.1 Main contributions

Our main contributions are:

• CNN-based architectures are implemented for SISR.

• Trained with different loss fuctions.

• GANs models are used to enhance perceptual quality.

1



2 Chapter 1. Εισαγωγή

• Test and evaluate our models in different ISR benchmarks and also in medical images.

1.2 Thesis Structure

In chapter 2 introduces the Super-Resolution problem and explains different interpola-

tion,upsampling techniques.Also, presents three different metrics to evaluate SR images with

GT images.

In chapter 3 CNNs and GANs are explained different training procedures and loss functions

are suggested.

In chapter 4 different state of the art techniques are proposed as a solution to the problem.

In chapter 5 results and evaluation metrics are showed for different digital images and in dif-

ferent scales.



Chapter 2

Super Resolution and Resampling

2.1 Super Resolution

Super-Resolution is the operation of recostructing a high resolution image from either

a sequence of low (noisy) resolution images or only from one image alone.There are two

most commonly used techniques Multi-Frame Super-Resolution (MFSR) and Single Image

Super-Resolution(SISR).

• Multi-Frame Super-Resolution : This method uses multiple images of the same object

or texture that have a slightly different position, different time taken or different image

degradation to generate the higher resolution image pair.The advantages of MFSR are

that there is a lot of information to process and from every image can generate different

high frequencies.The main disadvantage is the computational complexity and that is

not applicable for real-time tasks.

3



4 Chapter 2. Super Resolution and Resampling

Figure 2.1: MFSR model

Figure 2.2: RAMS model

• Single Image Super-Resolution : This method uses only one low resolution image to

generate the high resolution pair.The pipeline goes with downsampling the HR image

with a interpolation technique like bicubic and then try to approximate the HR from

the LR image using a model like CNN.The advantages of SISR is that is computa-

tional efficiently and can generate great results.The disadvantages is that it is difficult

to generate high resolution images from different degradations in low resolution.
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Figure 2.3: SISR pipeline

Figure 2.4: SRCNN model

2.2 Interpolation Methods

Interpolation is the method to estimate new data values of known data values that are

based to a different discrete set.These methods are applicable either for upsampling or down-

sampling of an image.The problem with those methods are that although they are extremely

fast they don’t pay attention to generate high frequencies and to eliminate noisy low frequen-

cies, so in downsampling a deblurring method is used like a Gaussian smoothing.The big

advantage of these methods that make them computationally efficient is that all can be cal-

culated as a matrix multiplication or as a convolutional operation.



6 Chapter 2. Super Resolution and Resampling

Figure 2.5: Interpolation Methods

2.2.1 Nearest-Neighbour

Nearest neighbour interpolation is the simplest approach to interpolation. Rather than cal-

culate an average value by some weighting criteria or generate an intermediate value based

on complicated rules, this method simply determines the “nearest” neighbouring pixel, and

assumes the intensity value of it.The major drawback of this algorithm is that generate a poor

quality and the image content isn’t smooth.A formula for this algorithm is shown below:

A = Distance[(x, y)(i, j)]

B = Distance[(x, y)(i+ 1, j)]

C = Distance[(x, y)(i, j + 1)]

D = Distance[(x, y)(i+ 1, j + 1)]

nearest_neighbour_pixelDmin
= min{Apixel, Bpixel, Cpixel, Dpixel}

So the point with the minimum value will be selected as the pixel value to the interpolated

image.

2.2.2 Bilinear

In mathematics, bilinear interpolation is a method for interpolating functions of two vari-

ables (e.g., x and y) using repeated linear interpolation. It is usually applied to functions
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sampled on a 2D rectilinear grid.

Bilinear interpolation is performed using linear interpolation first in one direction, and then

again in the other direction. Although each step is linear in the sampled values and in the

position, the interpolation as a whole is not linear but rather quadratic in the sample location.

Bilinear interpolation is one of the basic resampling techniques in computer vision and image

processing. The algorithm is working by taking a weighted average of the nearest 4 pixels

p1,p2,p3,p4.The weights are determined from the distances of the four points in the x and y

direction.

f(x, y2) =
x2 − x

x2 − x1

· p1 + x− x1

x2 − x1

· p2

f(x, y1) =
x2 − x

x2 − x1

· p3 + x− x1

x2 − x1

· p4

f(x, y) = y−y1
y2−y1

· f(x, y2) + y2−y
y2−y1

· f(x, y1)
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Figure 2.6: 2D Bilinear Interpolation

2.2.3 Bicubic

In mathematics, bicubic interpolation is an extension of cubic interpolation (not to be

confused with cubic spline interpolation, a method of applying cubic interpolation to a data

set) for interpolating data points on a two-dimensional regular grid. The interpolated surface is

smoother than corresponding surfaces obtained by bilinear interpolation or nearest-neighbor

interpolation. Bicubic interpolation can be accomplished using either Lagrange polynomials,

cubic splines, or cubic convolution algorithm.

In image processing, bicubic interpolation is often chosen over bilinear or nearest-neighbor

interpolation in image resampling, when speed is not an issue. In contrast to bilinear interpo-

lation, which only takes 4 pixels (2×2) into account, bicubic interpolation considers 16 pixels

(4×4). Images resampled with bicubic interpolation are smoother and have fewer interpola-

tion artifacts.Also,16 coefficient it is needed to calculate in order to fit the new points in the

interpolated space and takes into account except from distance and orientation of every pixel

so thats why 16 pixels are needed to compute the gradients.
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f(x, y) =
3∑

i=1

3∑
i=1

aijx
iyj

The aij coefficients can be calculated by the 16 equations where px is the derivative in the x

direction py is the derivative in the y direction and pxy are the partial derivatives.

f(0, 0) = a00

f(0, 1) = a00 + a01 + a02 + a03

f(1, 0) = a00 + a10 + a20 + a30

f(1, 1) =
3∑

i=1

3∑
i=1

aij

fx(0, 0) = a10

fx(0, 1) = a10 + a11 + a12 + a13

fx(1, 0) = a00 + a10 + 2a20 + 3a30
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fx(1, 1) =
3∑

i=1

3∑
i=1

aiji

fy(0, 0) = a01

fy(0, 1) = a01 + 2a02 + 3a03

fy(1, 0) = a01 + a11 + 2a21 + 3a31

fy(1, 1) =
3∑

i=1

3∑
i=1

aijj

fxy(0, 0) = a01

fxy(0, 1) = a11 + 2a12 + 3a13

fxy(1, 0) = a11 + 2a21 + 3a31

fxy(1, 1) =
3∑

i=1

3∑
i=1

aijij

Those equation can be transformed in a linear equation system Aa = x and calculate the

inverse matrix A−1x = a
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2.2.4 Interpolation Methods Comparison

The difference between the three methods is obvious nearest neighbour creates the most

noisy example , bilinear and bicubic create smoother but also noisy data points. However,

bicubic has the most texture between the three.

Figure 2.7: Nearest Neighbour Figure 2.8: Bilinear

Figure 2.9: Bicubic Figure 2.10: Ground Truth

2.3 Learnable Upsample Modules

To learn how to upsample an image without using heuristic methods like interpolation it

is common to use the convolutional layer and with different tricks to generate feature maps

of scale S in this chapter will represent two popular methods in SR upsampling :

• Transposed or Backwards Convolutions

• Efficient Sub-pixel Convolution

2.3.1 Transposed Convolution-Backward Convolution

Transposed and backward convolution[1] are another type of convolutional layers for up-

sampling and can be implemented as one module.As an operation are a convolution but we

need to insert zeros between values to upscale the input in order to simulate fractional-strided

convolution and to define the padding and the stride as in regular convolution.A picture is
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presented for a better understanding.

Figure 2.11: Transposed Convolution

2.3.2 Efficient Sub-Pixel Convolution

Efficient sub-pixel convolution [2] is a more computational efficient upsample module

than backward convolution because those operations do convolution in a high resolution im-

age and zeros are added, so unnecessary operations are done to pixels that will not be acti-

vated.Efficient sub-pixel convolution also uses a convolutional layers to create feature maps

of R2 depth and then rearrange those feature maps to one feature map to a high resolution

space where R is the upsample factor.A visualization is presented for better understanding.

Figure 2.12: Efficient sub-pixel Convolution
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2.4 Image Quality Assessment (IQA)

Image Quality Assessment are different methods that quantify image quality using hu-

man experience and how perceive images and colors.

2.4.1 Peak Signal-to-Noise Ratio (PSNR)

PSNR is a simple method to evaluate the quality of a noisy image with the ground truth

image.This method uses mean squared error to be computed where I is the original image

and I’ is the noisy image.

MSE =
1

m · n

m−1∑
i=0

n−1∑
j=0

[I(i, j)− I ′(i, j)]2

PSNR three differnet formulas :

PSNR = 10 · log10
MAX2

I

MSE

PSNR = 20 · log10
MAXI√
MSE

PSNR = 20 · log10 MAXI − 10 · log10 MSE

PSNR as a metric suits very well optimization techniques that are used in CNNs because

it is proven to reduce MSE value.

If I and I ′ are the same images with same pixel and shape that means MSE=0 and PSNR

will be infinite.
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2.4.2 Structural Similarity index (SSIM)

SSIM[3] is a perception-basedmodel that considers image degradation as perceived change

in structural information, while also incorporating important perceptual phenomena, includ-

ing both luminance masking and contrast masking terms. The difference with other tech-

niques such as MSE or PSNR is that these approaches estimate absolute errors. Structural

information is the idea that the pixels have strong inter-dependencies especially when they

are spatially close. These dependencies carry important information about the structure of

the objects in the visual scene. Luminance masking is a phenomenon whereby image distor-

tions (in this context) tend to be less visible in bright regions, while contrast masking is a

phenomenon whereby distortions become less visible where there is significant activity or

”texture” in the image.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

• Where µx is the average of x and µy is the average of y.

• Where σx is the variance of x , σy is the variance of y.

• Where σxy is the covariance of x and y.

• Where c1 = (k1L)
2 , c2 = (k2L)

2 two variables to stabilize the division with weak

denominator.

• Where k1 = 0.01 and k2 = 0.03 by default.

The SSIM formula is based on three comparison measurements between the samples of x

and y : luminance l, contrast c and structure s. The individual comparison functions are:

•

l(x, y) =
(2µxµy + c1)

(µ2
x + µ2

y + c1)

•

c(x, y) =
(2σxσy + c2)

(σ2
x + σ2

y + c2)



2.4.2 Structural Similarity index (SSIM) 15

•

s(x, y) =
(σxy + c3)

(σxσy + c3)

•

c3 =
c2
2

•

SSIM(x, y) = l(x, y)α · c(x, y)β · s(x, y)γ





Chapter 3

Super Resolution and Deep Learning

3.1 Deep Learning

The deep learning era started by Alexnet [4] winning the ImageNet LSVRC-2012 [5]

classification contest by a large margin. Alexnet was the first CNN model that won Imagenet

which is a very large dataset and have different visual tasks like classification and localiza-

tion. Some components that helped this CNN to succeed in the early 2010s was the use of

GPU device for faster training ,the use of ReLU as activation function for better convergence

ability of gradient descent based optimization algorithms and different techniques to reduce

overfitting like Dropout and image augmentation.

3.1.1 CNN

CNNs are a special class of neural network developed for image application.Yann Le-

Cun and his collaborators was the first ones to develop a dataset (MNIST[6]) and a system

that can be used in production for handwritten digit recognition that in its core was a CNN

named LeNet-5 [7]. LeNet architecture introduced some building blocks of modern CNN ar-

chitectures like Convolution Layers,Pooling Layers and Fully connected layers.Convolution

is very important in visual tasks that can extract features in an image by incorporating this

ability with different convolutional filters at every layer of a neural network a feature detector

is created with great potential to learn recognize a lot of complex features that are present in

natural images.

In a high-level vision task like classification and object detection the first layers of the

CNN learn abstract features like edges and corners in the middle layers learn more meaning-

17
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ful features like colors and textures and at the end learn to recognize and seperate different

objects.Pooling layer or convolution with bigger stride that downsample the features space

help the network when it goes deeper to have a global view of the image space and that helps

the network to find complex features.In ISR this operation is not useful because spatial in-

formation is very important for those tasks in order to keep the same structure and try to

reconstruct a HR space.So most of the times the architectures first upsample the images to

HR space or upsample in the last layers of the network.

The first architectures like SRCNN [8] at first upsample the image with bicubic inter-

polation and then forward pass to generate an SR near the HR space, but this solution is

computational inefficient and the network does not learn to upsample. So faster methods like

FSRCNN [9] use learnable upsample methods like transposed convolution.ESPCN [2] intro-

duced a more efficient upsample module with learnable parameters with the use of sub-pixel

convolution.From there most deep learning methods for SR use this type of upsampling be-

cause of the speed and the training time and not necessarily for being a better reconstruction

operation. Also VDSR introduced a very deep architecture with 20 layers and residual learn-

ing.Lastly, in the paper [10] where SRResNet and SRGAN were introduced two important

methods were used residual blocks [11] and GAN framework where we will explain in depth

in the next section.

Figure 3.1: SRCNN vs FSRCNN
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Figure 3.2: VDSR

3.1.2 GANs

Generative adversarial network [12] is a framework that makes two networks antagonise

each other in a min-max game.The one network is called Generator G and tries to create data

that is near the data distribution but different and trick the second network called Discrimi-

nator D. Discriminator tries to predict if the Generator gives real or fake examples and in that

way pushes the Generator to make better examples.

Figure 3.3: GAN framework

The framework tries to optimize the adversarial loss function :

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))]

Where x is a sample from pdata distribution and z is random noise.
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The first GAN used multi layer perceptron for D and G ,but DCGAN showed that convo-

lution and transposed convolution can be a very important building block for this framework.

DCGAN was able to have an exceptional performance in image synthesis and that shows

that GANs are able to generate images with details and with meaning and transform noise

to images.SRGAN took advantage of this framework by firstly using VGG[13] perceptual

loss.VGG loss is the distance between the feature space of VGG reconstructed from the G

and the GT from the data distribution.

LossV GG = MSE(IHR, G(ILR))

This is the adversarial loss is used and not the classic one , because gradients behave better.

lSRgen =
N∑

n=1

− logDθD(GθG(ILR))

Figure 3.4: SRGAN architecture
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Proposed Methods

4.1 EDSR

EDSR[14] is an an enhanced deep super-resolution network which won the NTIRE2017

Super-Resolution Challenge[15]. EDSR proposed an enhanced residual block which enables

a bigger and deeper architecture. Deeper architecture improvemetrics performance (PSNR/SSIM)

and is also possible with tricks that stabilize training procedure.

4.1.1 Residual Block

The model’s residual block is based on SRResNet which use a original ResNet block

with minor differences.EDSR try to optimize this block by removing unnecessary modules

and by testing they came into conclusion that the Batchnormalization layer is not necessary

for low-level vision tasks like SR.The model by removing batch normalization has a better

memory because it does not need extra computation for this layer and is possible to train a

bigger model. Also,by normalizing the features they lack of range flexibility and batch nor-

malization can create unpleasant artifacts and reduces generalization ability. It is shown that

by removing batch normalization EDSR can save 40% of memory usage during training.

21
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Figure 4.1: Comparison of residual blocks

4.1.2 Training

This model introduces some techniques that stabilize training procedure and is also used

by the other two models that will be presented.Data augmentation is used like random hori-

zontal flip and 90 rotation.They train with Adam optimizer with default settings, a learning

rate of 2 · 10−4 that is divided by 2 every 2 · 105 mini-batches.Lastly, L1 norm is used as a

loss function instead of MSE.Although MSE is popular because it can optimized PSNR , it

is shown by experiments that L1 has a faster convergence.

Figure 4.2: EDSR Single scale architecture
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4.2 RCAN

RCAN[16] accomplished to train a very deep CNN to do that used short and long skip

connections.Another important method of this architecture was channel attention that helps

the model to pay attention on more useful channels.

4.2.1 Channel Attention

LR images have a lot of low-frequency information and a little but valuable high fre-

quency information.To bring out this information a special mechanism is needed like CA

which uses global average pooling and two Convolutional layer are used to down-scale the

channels ,then up-scale them and at the end a sigmoid function is used as gating mecha-

nism.The output of the CA layer are used to rescale the input and that is done by multiplying

input with output.

Figure 4.3: Channel attention layer. ⊗ is the multiplication symbol.

Where HGP is the global average pooling layer,WD the weights of a convolutional layer

that down-scales features,WU the weights of a convolutional layer that upscales features and

f the gating function that is sigmoid.

4.2.2 Residual Channel Attention Block (RCAB)

The RCAB is the basic module of the architectures is more like a general case of a residual

block proposed from EDSR because it uses CA to enhance information of every channel and

residual connections to help construct a deeper network.
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Figure 4.4: RCAB

4.2.3 Residual in Residual (RIR)

RIR is the basic block of the architectures.RIR consists of stacked RCAB modules and a

short skip connection.Also the general architecture are RIR structures stacked the one after

the other , a long skip connection after the stacked RIR and the upsample module which is

like EDSR.All three techniques (CA,long skip connection,short skip connection) proposed

by the authors give a better performance to the network.

Figure 4.5: RCAN architecture

4.3 ESRGAN

ESRGAN tries to optimize the perceptual quality of an SR image and not the PSNR

score.The model tries to enhance the performance of SRGAN[2] by optimizing the architec-

ture of Generator and Discriminator and change the loss function of GAN.
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4.3.1 Residual in Residual Dense Block (RRDB)

The building block of the model is RRDB which make use of residual connections,dense

connections aswas proposed byDenseNet and residual scaling using aβ parameter of 0.2.Also

the residual block of RRDB does not batch normalization as for the same reasons as EDSR

and RCAN and because is difficul for GAN framework to create high frequencies without

artifacts.There is a small network with 16 RRDB and a bigger one with 23 RRDB that has a

great performance when is optimized with L1 loss for PSNR and SSIM metrics.

Figure 4.6: Residual block and RRDB

4.3.2 Perceptual Loss

Perceptual loss to optimize the feature space of a pretrained deep network like VGG.The

SRGAN proposed a perceptual loss after activation layer.ESRGAN showed that using per-

ceptual loss of VGG before activation layer that boosts performance because after activation

more features become inactive and information is removed.

4.3.3 Relativistic GAN

SRGAN used a standard discriminator that tries to predict if the input image is real or

fake.ESRGAN changed this framework by predicting that a real image is more realistic than

a fake one.
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Figure 4.7: Comparison of features before and after activation

Figure 4.8: Standard vs Relativistic GAN
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Training Process and Results

5.1 Training

5.1.1 Dataset

The dataset that are used for training areDIV2K[17] and Flickr2k (also known asDF2K).The

LR images were obtained by using bicubic intertpolation fromMATLAB.Also for the retinal

images the MESSIDOR-2 dataset [18] is used with 1000 images for training and 100 images

for testing.

5.1.2 Augmentations

During training patches of the image are used and not the whole image because it is

not feasible from the computational complexity.Big patches are important the give larger

receptive field and boost the visual performance of the networks ,so 192x192 HR patches

are used for the PSNR-oriented models and 128x128 are used for the GAN-based models.All

the RGB channels of the images are used and augmented by randomly flipped vertical and

horizontal.

5.1.3 Settings

The ADAM optimizer are used with the default values β1 = 0.9β2 = 0.999ϵ = 10−8

and the mini-batch size is set to 16.The learning rate is initialized with 2 · 10−4 and is

halved every 200k iterations.RCAN and EDSR are trained for 300k iterations ,RRDBNet

27
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for 500k and ESRGAN for 400k iterations.Lastly,the models are implemented and trained

using Pytorch[19],Mixed Precision and an NVIDIA RTX 3070.

5.2 Results

5.2.1 PSNR and SSIM based Performance

The PSNR and SSIM are calculated by converting the RGB images to YCbCr and using

only the Y channel for evaluation.RCAN outperforms in most test sets except from the scale

4 where RRDBNet is a clear winner.All the scores in the tests are very close with the origi-

nal implementations.For the MESSIDOR-2 results first the models are trained in DF2K and

then are finetuned in the MESSIDOR2 train images for less than half the iterations used for

training.

Method Scale
Set5 Set14 BSDS100 BSDS200 Manga109 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR x2 37.95 0.9609 33.53 0.9173 32.16 0.9003 33.04 0.9149 38.44 0.9771 31.86 0.9262

RCAN x2 38.17 0.9618 33.86 0.9199 32.31 0.9022 33.24 0.9170 39.27 0.9789 32.65 0.9334

RRDBNet x2 37.89 0.9605 33.54 0.9168 32.17 0.8999 33.05 0.9145 38.57 0.9766 32.02 0.9278

EDSR x3 34.33 0.9270 30.26 0.8415 29.09 0.8065 29.72 0.8301 33.44 0.9438 28.01 0.8504

RCAN x3 34.66 0.9296 30.53 0.8470 29.25 0.8106 29.94 0.8350 34.22 0.9485 28.73 0.8652

EDSR x4 32.14 0.8949 28.54 0.7813 27.55 0.7372 28.04 0.7643 30.34 0.9065 25.97 0.7828

RCAN x4 32.55 0.9001 28.82 0.7878 27.76 0.7437 28.31 0.7725 31.09 0.9162 26.70 0.8050

RRDBNet x4 32.59 0.9001 28.87 0.7888 27.78 0.7444 28.32 0.7731 31.26 0.9173 26.78 0.8073

Method Scale
MESSIDOR2

PSNR SSIM

EDSR x4 45.76 0.9723

RCAN x4 45.58 0.9725

RDDBNet x4 45.17 0.9712

5.2.2 Perceptual Performance x4 scale

As an example the x4 scale is used where the differences are more obvious.ESRGAN is

able to reconstruct complex information in a perceptual pleasing way and the problem of all

the other networks is that over-smooth those details and stop to look realistic.An example is
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the fur in the baboon photo.But not all the photos are easy to reconstruct small details like

the photo with the two men where critical facial information is missed.In the MESSIDOR2

tests most of the critical information is reconstructed with not serious error.One error that we

can catch is with the ESRGAN in the second photo where one region is more yellow than it

should.
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Figure 5.1: GT Manga109

Figure 5.2: ESRGAN Set5

Figure 5.3: RRDBNet Set5

Figure 5.4: EDSR Set5

Figure 5.5: RCAN Set5
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Figure 5.6: GT Set14

Figure 5.7: ESRGAN Set14

Figure 5.8: RRDBNet Set14

Figure 5.9: EDSR Set14

Figure 5.10: RCAN Set14
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Figure 5.11: GT BSDS100

Figure 5.12: ESRGAN BSDS100

Figure 5.13: RRDBNet BSDS100

Figure 5.14: EDSR BSDS100

Figure 5.15: RCAN BSDS100
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Figure 5.16: GT BSDS200

Figure 5.17: ESRGAN BSDS200

Figure 5.18: RRDBNet BSDS200

Figure 5.19: EDSR BSDS200

Figure 5.20: RCAN BSDS200
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Figure 5.21: GT Urban100

Figure 5.22: ESRGAN Urban100

Figure 5.23: RRDBNet Urban100

Figure 5.24: EDSR Urban100

Figure 5.25: RCAN Urban100
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Figure 5.26: GT Manga109

Figure 5.27: ESRGAN Manga109

Figure 5.28: RRDBNet Manga109

Figure 5.29: EDSR Manga109

Figure 5.30: RCAN Manga109
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Figure 5.31: GT MESSIDOR2_1

Figure 5.32: ESRGAN MESSIDOR2_1

Figure 5.33: RRDBNet MESSIDOR2_1

Figure 5.34: EDSR MESSIDOR2_1

Figure 5.35: RCAN MESSIDOR2_1
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Figure 5.36: GT MESSIDOR2_2

Figure 5.37: ESRGAN MESSIDOR2_2

Figure 5.38: RRDBNet MESSIDOR2_2

Figure 5.39: EDSR MESSIDOR2_2

Figure 5.40: RCAN MESSIDOR2_2
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Figure 5.41: GT MESSIDOR2_3

Figure 5.42: ESRGAN MESSIDOR2_3

Figure 5.43: RRDBNet MESSIDOR2_3

Figure 5.44: EDSR MESSIDOR2_3

Figure 5.45: RCAN MESSIDOR2_3



Chapter 6

Conclusion

We have three different deep learning SR method, the two[16][14] being PSNR oriented

and the other one [20] focuses on perceptual quality. We tested the ability to generate detailed

SR images in popular test datasets like Set5,Set14,Urban100,others and in medical images in

three different scales (x2,x3,x4).

6.1 Future work

Some future work could be using an unknown degradation model as most natural images

have and SwinIR[21] model showed that transformers like Swin[22] can have excellent result

for Image Restoration and Super Resolution models.
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Chapter A

Mathematics

A.1 Convolution

Although CNN the say that use convolution in reality they use cross corellation formula ⋆.

I ⋆ k =
N∑

i=−N

N∑
i=−N

I(x+ i, y + j)k(i, j)

Where I is the image and k is convolution kernel.

Figure A.1: Visualize convolution operation

45



46 Chapter A. Mathematics

A.2 Activation functions

Sigmoid function :

S(x) =
1

1 + e−x

Figure A.2: Sigmoid function

ReLU and PReLU function :

ReLU(x) =

0 if x < 0

x if x ≥ 0.

PReLU(x) =

a · x if x < 0

x if x ≥ 0.
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Figure A.3: ReLU and PReLU
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