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Abstract

The rise of the edge/fog/cloud computing model has increased the programming com

plexity of the designed applications. Trying to deploy such applications in the new distributed

and heterogeneous system landscape, latency, scalability, heterogeneity and security issues

have arisen. In this Thesis, we examine a structured dataflow approach that simplifies appli

cation development and offers great flexibility concerning the deployment of the application

across the edge/fog/cloud system. We implemented a fully functional system that is respon

sible for the deployment of modular applications in a heterogeneous cluster spanning the

edge/fog/cloud system. We provide deployment monitoring, scaling and migration function

alities offering flexibility and transparency. We use realworld application examples to illus

trate our approach as well as to evaluate the performance tradeoffs for various deployment

scenarios on a real distributed cluster.
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Abstract

Η άνοδος του edge/fog/cloud computing έχει αυξήσει την πολυπλοκότητα προγραμμα

τισμού των εφαρμογών. Προσπαθώντας να αναπτύξουμε τέτοιες εφαρμογές στο νέο τοπίο

των κατανεμημένων και ετερογενών συστημάτων, έχουν επέλθει ζητήματα καθυστέρησης,

επεκτασιμότητας, ετερογένειας καθώς και ασφάλειας. Σε αυτή τη διπλωματική εργασία, διε

ρευνάμε μια προσέγγιση δομημένης ροής δεδομένων, η οποία απλοποιεί την ανάπτυξη εφαρ

μογών και προσφέρει μεγάλη ευελιξία όσον αφορά στην ανάπτυξη των εφαρμογών στο σύ

στημα edge/fog/cloud. Υλοποιήσαμε ένα πλήρως λειτουργικό σύστημα, το οποίο είναι υπεύ

θυνο για την ανάπτυξη (deployment) αρθωτών εφαρμογών σε ένα ετερογενές σύμπλεγμα

που εκτείνεται στο σύστημα edge/fog/cloud. Παρέχουμε λειτουργίες παρακολούθησης της

ανάπτυξης, κλιμάκωσης και μετανάστευσης προσφέροντας ευελιξία και διαφάνεια. Χρησι

μοποιήσαμε παραδείγματα εφαρμογών του πραγματικού κόσμου για να επεξηγήσουμε την

προσέγγισή μας καθώς και για να αξιολογήσουμε τις συνέπειες στην απόδοση για διάφορα

σενάρια ανάπτυξης σε μια πραγματική, κατανεμημένη συστάδα υπολογιστικών συστημάτων.
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Chapter 1

Introduction

1.1 Motivation

Cloud computing is undeniably one of the most discussed technologies nowadays. Cloud

computing is the delivery of computing services including servers, storage, databases, net

working, software, and analytics over the Internet to offer faster innovation, flexible resources

and economies of scale. It consists of the latest generation of fast and efficient computing

hardware, designed to offer effective and reliable solutions. Furthermore, the cloud is flex

ible and it allows scaling up or down on demand, giving businesses the potential for more

costeffective solutions. The explosive growth and increasing computing power of IoT de

vices have resulted in unprecedented volumes of data. In addition, data volumes will continue

to grow as 5G networks increase the number of connected mobile devices. Sending all that

devicegenerated data to a centralized data center or the cloud causes bandwidth, latency and

scalability issues. Therefore, it may not be possible to support control/feedback loops with

tight realtime constraints. Last but not least, security issues have arisen because sending all

this private/sensitive data to the cloud makes them vulnerable to attacks.

However, writing applications that span this edgefogcloud system is not a trivial task.

To take advantage of all existing layers, the application should be divided into different parts

called components. Each component should be designed to run on a specific target host and

the interfaces through which the components are interconnected should be designed and pro

grammed accurately. Finally, each component must be installed on a target host and instanti

ated properly, for the application to start in the desired way. This process should be repeated

from scratch in the case of a different deployment. Also, heterogeneity issues arise especially

1



2 Chapter 1. Introduction

if the design of a component requires the absolute knowledge of the target host’s hardware.

Figure 1.1: EdgeFogCloud architecture [1]

1.2 Contribution

This Thesis introduces a more flexible way to design and deploy such an application,

by adopting a combination of componentbased and datafloworiented programming. The

application is described by a graph that consists of nodes, each one representing a compo

nent, and from unidirectional links used for data exchange between the components. We have

simplified the graph representation process by enabling the developer to describe the compo

nents and their interconnections using a specially formatted configuration file. Furthermore,

we have designed and implemented a cluster registration service for the dynamic control

of a fleet consisting of heterogeneous devices positioned on the cloudfogedge system as

well as a system responsible for deploying the componentbased application based on user

deployment preferences and requirements. We provide support for placement preferences,

hardware and sensor requirements, link affinities, and other useful features for the desired

deployment. At deployment time, the components are instantiated on the target hosts, along

with automatically generated connector logic that takes care of component binding and com
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munication over the network. We provide a network API that takes care of the connections’

establishment, termination, and control as well as the data transfer between the components,

eliminating the complexity of each component’s interface programming process. Last but

not least, we provide scaling and migration functionalities for improving performance and

reducing the communication latency between components.

1.3 Thesis Structure

The rest of the thesis is structured as follows:

• Chapter 2 provides background information presenting the main tools used in this

Thesis.

• Chapter 3 provides a brief description of the key components of the designed system

as well as the functionalities implemented.

• Chapter 4 provides an extensive analysis of the implementation process of each com

ponent of the system of as well as an extended description of the core system’s func

tionalities.

• Chapter 5 shows the results of our performance experiments.

• Chapter 6 gives an overview of related work.

• Chapter 7 provides a conclusion of this Thesis.



Chapter 2

Background

2.1 Docker

Docker [3] is an open platform for developing, shipping, and running applications. It

provides the ability to package and run an application in an isolated environment called a

container. In the following subsections, we will analyze the basic concepts of the Docker

architecture.

2.1.1 Docker Container

A Docker container [4] is a standard unit of software that packages up code and all its

dependencies so the application runs quickly and reliably from one computing environment

to another. A Docker container image is a lightweight, standalone, executable package of

software that includes everything needed to run an application: code, runtime, system tools,

system libraries and settings. Container images become containers when they run on Docker

Engine.

We can compare Docker containers with virtual machines (VMs), in order to identify

their differences. As shown in Figure 2.1, unlike Virtual Machines, each container accesses

the kernel of the host operating system. Therefore, multiple containers can run on the same

machine and share the OS kernel with other containers, each running as isolated processes in

userspace. On the other hand, each VM includes a full copy of an operating system, called

guest OS, which requires more space and longer boot time than a container.

5



6 Chapter 2. Background

Figure 2.1: Containers VS Virtual Machines

2.1.2 Docker Architecture

As shown in Figure 2.2, Docker uses a clientserver architecture consisting of the follow

ing components:

• Docker daemon: The Docker daemon listens for Docker API requests and manages

Docker objects such as images, containers, networks, and volumes. It is responsible

for building, running, and distributing Docker containers.

• Docker client: The Docker client is the primary way that Docker users interact with

Docker daemon. Using theDocker command line, we can send commands to theDocker

daemon which carries them out. The Docker client and daemon can run on the same

system, or we can connect a Docker client to a remote Docker daemon.

• Docker registry: A Docker registry stores Docker images. Docker Hub is a public

registry that anyone can use, and Docker is configured to look for images on Docker

Hub by default. We can also create our own private registries. When we use the docker

pull or docker run commands, the required images are pulled from our configured

registry.When we use the docker push command, the image is pushed to the configured

registry.
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Figure 2.2: Docker Architecture [2]

2.1.3 Docker buildx

Docker Buildx [5] is a CLI plugin that extends the standard Docker commands with the

full support of the features provided by Moby Buildkit builder toolkit [6]. It provides the

same user experience as Docker build, with many new features, like creating multiplatform

images. To obtain this, Buildx uses the QEMU emulation support in the kernel. We can use

buildx in order to create Docker images for heterogeneous systems (systems that contain

devices of different architectures). For a multiplatform build, we can set the –platform flag

to specify the target platform for the build output, (for example, linux/amd64, linux/arm64,

or darwin/amd64). Moreover, we can specify multiple platforms together. In this case, the

builder builds a manifest list that contains images for all specified architectures. When we

use this image in Docker run or docker service, Docker picks the correct image based on the

node’s platform.



Chapter 3

Application Model & System

Architecture

3.1 Application Model

3.1.1 Application as a graph

A componentbased application is described by a graph that consists of nodes, each one

representing a component, and from unidirectional links used for application and control data

exchange. During deployment, multiple instances of the same component can be created. For

reasons of simplicity, during design time we refer to components, and during deployment

time we refer to running instances. Moreover, links between the components of the graph as

well as deployment preferences and requirements should be described inside a configuration

file given as input to the system.

3.1.2 Network API

At deployment time, the graph is instantiated on the target hosts, along with automatically

generated connector logic that takes care of intercomponent binding and communication

over the network. We provide a network API that takes care of the connections establish

ment, termination, and control, as well as the data transfer between the running instances.

Through function calls, networking information is provided to the application layer helping

it distinguish the instances from/to which it can receive/send data respectively.

9
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Figure 3.1: System Architecture

3.2 Basic components of the system

As shown in Figure 3.1, the system consists of the following components:

• Cluster: It is a set of devices of varying architectures. We provide all the registration

logic which is necessary for the management of the cluster. The Docker engine and the

python version 3.9 must be installed on each device. In addition, an agent responsible

for the communication with the system supervisor is running on each device host.

• Docker image registry:Aprivate registry is always available to store and serveDocker

images. Each device of the cluster has access to this registry.

• System Supervisor: This is a python script in which the logic of the system is applied.

It is responsible for the placement, scaling and migration of the components the appli

cation described by the user consists of. It needs to be fed with the appropriate input

data through which the user defines the application and sets the deployment specifica

tions.
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3.3 System Functionality

In this section, we present the core functionalities of our system by providing illustrative

examples.

3.3.1 Deployment

For the system to run properly, the user must feed the system supervisor with a directory

consisting of the code and the dependencies of each component, along with a configuration

file containing the graph representation as well as deployment preferences and requirements.

The system supervisor will analyze the configuration file and after being informed about the

available devices by polling the cluster registry, it will apply a placement algorithm in order

to create the appropriate instances based on the requirements provided by the user.

For a better understanding of the deployment process, we provide an example. At first,

we assume that the user describes the graph shown in Figure 3.2. This graph consists of three

components named F1, F2, and F3. The user marks the components F2 and F3 as singular

which means that only one instance of these components will be created. Instead, the F1

component can be scaled based on the available compatible devices of the cluster. Last but

not least, the user sets placement preferences for each component as shown in Figure 3.2.

The placement preferences as well as the singularity of each component are defined in the

configuration file. In this example, for reasons of simplicity, we present them as a part of the

graph.

Figure 3.2: Graph representation

Suppose that we have the cluster presented in diagram 3.1 consisting of three devices run

ning on the end, the edge, and the cloud respectively. The actual deployment of the described

componentbased application is shown in Figure 3.3. We can observe the input given to the

system supervisor as well as the running instances on each device. We can also notice that

the userdefined placement preferences have been met.
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Figure 3.3: Deployment

3.3.2 Scaling

Once all instances are up and running, the system is able to detect the changes in the num

ber of available devices running on the cluster and adapt the deployment.We provide dynamic

deployment support, enabling the users to indicate if they want the nonsingular instances of

the graph to scale depending on the available devices. Specifically, users can declare the scal

ing factor located in the configuration file either with the ”as_many_as_possible” expression

or with a positive integer. The former means that the system will try to scale the non singular

components as long as there are compatible devices in the cluster. It is important to mention

that at most one instance of each component can be running on a single device.

Having the deployment we described in Figure 3.3 and assuming that the user has set the

scaling factor to ”as_many_as_possible”, we add a new device into the cluster (device D)

as shown in Figure 3.4. The system will identify this insertion and after checking the device

compatibility, it will create a new instance of the component F1 to the new device. Thus, the

new deployment is shown in Figure 3.5.
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Figure 3.4: Insertion of a new device into the cluster

Figure 3.5: Scaled deployment
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3.3.3 Migration

We provide a migration service that allows instances to be migrated to a different com

patible device. This is done simply by typing a command to the system command prompt. If

the destination device is incompatible or if the specific instance can not be migrated at this

moment, the system will return an error message.

For further understanding, we provide a migration example. Suppose that we have the

deployment presented in Figure 3.6. Assuming that device C meets all the requirements to

support an instance of the F2 component, we ask to migrate the running F2 instance from

device B to device C. The resulting deployment is shown in Figure 3.7.

3.3.4 Device exit

We have implemented an exit functionality giving each device the ability to exit the clus

ter normally. If there are running instances on the exiting device, the system guarantees the

proper migration of each instance to another compatible device. If at least one of the running

instances cannot be migrated, the device that requested to leave remains in the cluster until a

compatible device is found.

Having the deployment we described in Figure 3.3 and assuming that the user has set the

scaling factor to ”2”, we add a new device (device D) into the cluster as shown in Figure 3.8.

The system will notice this insertion, but will not perform any action because the scaling

criterion has already been reached. Afterwards, device B in which F1 and F2 instances are

running sends an exit request to the cluster registry. The system will try to migrate both

instances to the new device. Considering that the added device is compatible with both the

components F1 and F2, the new deployment is shown in Figure 3.9.

3.3.5 Monitoring

We have designed and implemented a monitoring service through which the user can

observe and/or modify the deployment as well as control each device that belongs to the

cluster. Through the system command prompt, the user can interact with the system supervi

sor in order to monitor or modify the actual deployment. In addition, we provide command

line support on each device so that the user can control the status of the respective device.
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Figure 3.6: Deployment before migration

Figure 3.7: Deployment after migration
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Figure 3.8: Device B requests to exit the cluster

Figure 3.9: Scaled deployment
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Implementation

4.1 Input data

Before proceeding with the communication logic and the explicit analysis of the deploy

ment process, we specify the format of the input data that the user feeds the system supervisor.

4.1.1 Source code and dependencies

The format of the directory provided to the system is presented in Figure 4.1. The code of

each component and all its dependencies must be placed in a separate directory that has the

name of the component included. In addition, the user should provide a Dockerfile for each

component for the Docker images to be built.

4.1.2 Configuration File

The configuration file is a text document in which the representation of the graph is ex

pressed using a description of the links between the components. Also, the developer can

provide placement preferences, hardware and sensor requirements, link affinities, and other

useful features for the desired deployment. The file is divided into parts, each one repre

senting a component. An indicative configuration file is presented in Figure 4.2. As we can

observe, for a specific component, the user can provide the following parameters:

• Source files directory: It is a relative path in which the code of this component as well

as its dependencies are placed.

17
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Figure 4.1: Input Files Directory

• Placement requirements

– Singularity: If a component is marked as singular, only one instance of this com

ponent will be created in the cluster. In other words, only one container in a spe

cific device will be generated. Instead, if a component is marked as nonsingular,

there will be one or more instances of this component in the cluster. This depends

on the node availability and the deployment preferences the user has specified.

– Position: The user can provide placement preferences for each component. The

possible options are: edge or fog or end or cloud or combinations of them sep

arated with ”/” (for example edge/fog). The device in which an instance of this

component will be placed must meet this criterion.

• Hardware requirements

– Processor: The user can provide processor preferences for each component. The

possible options are: aarch64 or x86_64 for ARM and x86 processors respec

tively or combinations of them separated with ”/” (for example aarch64/x86_64).

The device in which an instance of this component will be placed must fill this

criterion.
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– Cpu_cores:The user can provide the preferred number of cpu cores for the device

in which an instance of this component will be placed.

– Ram: The user can set the amount of RAM memory (in Gigabytes) required for

the device in which an instance of this component will be placed.

– Sensors: The user can provide a list of sensors required to be attached to the

device in which an instance of this component will be placed. The possible op

tions are: camera or gpu or combinations of them separated with ”/” (for example

camera/gpu).

• Links: Each link is represented via an expression of the following form:

source_component → destination_component, affinity, reliability (4.1)

The affinity of each connection helps the placement algorithm position the instances.

Greater affinity means higher priority for the specific link. The user can fill the affinity

field with a positive integer in the range [0,10]. During migration, the reliability of data

exchanged between two instances is based on the reliability flag of each link connecting

them. If the user requests a reliable link, the system provides mechanisms to ensure

that all the data have reached their destination securely and orderly. Instead, if the

user specifies an unreliable link, there is no guarantee that the data will be transferred

reliably. Thus, since we have described the specifications and the singularity of nodes

as well as the connections between them, a graph consisting of weighted unidirectional

links is instantiated. The user can describe any type of graph by setting the links and

the singularity requirements.

In addition to the configuration settings per component, some general settings need to be

defined at the beginning of the configuration file. These settings concern the deployment’s

scalability and are presented below:

• Components: It is a list consisting of the names of all the components separated by a

comma.

• Scale: This parameter specifies the desired number of instances that should be gen

erated per nonsingular component. It is important to mention that all nonsingular

components will be equally scaled so that they have the same number of running
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instances during deployment. The user can fill this field either with the expression

”as_many_as_possible” or with a positive integer. The former means that the system

will try to scale the nonsingular components as long as there are compatible devices

in the cluster.

Figure 4.2: Configuration File
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4.2 Networking

For the deployed instances to communicate, there is a need for a networking module.

For this reason, we provide a network API that takes care of the connections establishment,

termination, and control as well as the data transfer between the running instances.

4.2.1 Flowid assignment

Examining a graph before scaling is applied, we define that all traffic exchanged between

the instances of the graph belongs to a specific stream. If we scale the graph, in each scaling

step, an additional stream (with scaling of the corresponding nonsingular components), will

be generated. To distinguish streams, we have assigned a flowid to each of them. The same

flowid is assigned to all nonsingular instances belonging to the same stream. In addition,

the singular instances contain all the assigned flowids. Therefore, any nonsingular instance

can send/receive data only to/from the stream to which it belongs, using the assigned flowid.

Instead, the singular instances can send/receive data to/from all flowids.

Figure 4.3: Flowids in a graph

For further understanding, we provide an example. Suppose a graph consisting of the

instances shown in Figure 4.3. As we can observe, all instances belong to the same stream.

Therefore, flowid ”1” is assigned to each of them. If we scale the deployment, an instance

for each nonsingular component will be generated. Thus, a new stream will be created and

the flowid ”2” will be assigned to each of the new instances.
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4.2.2 Network Library API

The interaction between the application and the network library can be achieved using

the API summarized in Table 4.1 and described extensively below.

Table 4.1: Network Library Functions

Function Name Arguments

init_system_settings None

get_dst_components None

get_dst_flows None

get_src_components None

get_src_flows None

send <data, destination_component_list[], destination_flow_list[]>

receive <source_component, source_flow_id, number_of_messages, blocking_mode>

can_move <status>

• init_system_settings ()

This is the first function that should be called when an instance is starting. It is respon

sible for the networking API modules establishment.

• get_dst_components ()

Returns a list containing the names of the destination components to which an instance

can send data. It can be called from both nonsingular and singular components.

• get_dst_flows ()

Returns a list containing the ids of the destination flows to which an instance can send

data. It can be called only from singular components.

• get_src_components ()

Returns a list containing the names of the source components from which an instance

can receive data. It can be called from both nonsingular and singular components.

• get_src_flows ()

Returns a list containing the ids of the source flows from which an instance can receive

data. It can be called only from singular components.
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• send (data, destination_component_list[], destination_flow_list[])

When there are data to be transmitted, the send function should be called from the

application layer. There are three arguments to be specified. The first is a byte ar

ray indicating the transferred payload, the second is a list containing the destination

components in which the data should be delivered and the third is a list containing

the destination flows in which the data should be delivered. The following cases are

observed:

– If all arguments are specified, the network library will transmit the data at each

<destination_component, destination_flow> pair.

– If destination_flows_list is not defined, the network library will flood the data to

all instances whose name is included in the destination_components_list, regard

less of their flowid.

– If destination_component_list is not defined, the network library will flood the

data to all instances whose flowid is included in the destination_flow_list re

gardless of their component name.

• receive (src_component, src_flow_id, how_much_messages, blocking_mode)

When the application layer wants to receive data, the receive function should be called.

There are four arguments to be specified. The first argument defines the component

name from which the current instance will receive data. The second argument defines

the flowid from which the current instance will receive data. The third argument is

a positive integer indicating the number of messages the application layer wants to

receive and the fourth argument declares if the receiving process should be blocking

or not. If blocking mode has been set to true, the receive call will be blocked until all

the required messages become available. The following cases are observed:

– If all arguments are specified, the network library will receive the data from the

<source_component, source_flow> pair consisting of the first two arguments.

– If src_flow_id is not defined, the network library will receive the data from the

library’s buffer by matching only the component name ignoring the flowid.

– If src_component is not defined, the network library will receive the data from

the library’s buffer by matching only the flowid ignoring the component name.
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• can_move (status)

For the migration functionality to operate properly, the user should set the move status

to ”true” using the function above. If the status is marked as ”false”, the instance can

not be moved until the status changes again to ”true”.

4.3 Application Layer Representation

In this section, we present two examples that define the structure of the application layer

of a real instance. Furthermore, we explicitly analyze the use of the network API functions

we described above. In the following examples, we use the deployment shown in Figure 4.4.

This application consists of three components, named F1, F2, and F3. The component F2 is

marked as singular and the components F1 and F3 are marked as nonsingular. As we can

observe, there are two streams to which flowids 1 and 2 have been assigned respectively.

Figure 4.4: Actual Deployment

4.3.1 Transmit to the same flowid

In this example, each F1 instance transmits a message to the singular F2 instance. The

F2 instance expects a message from each source flow in a circular manner and forwards

the received message to the F3 instance that belongs to the same stream as the F1 instance

that sent the data. The applicationlevel code of the F2 instance is presented in Algorithm 1.

Network API function calls are made in the following order:

• The init_system_settings function is called first for the networking API modules to

be established.
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• get_dst_components(): This function returns a list containing the names of the desti

nation components to which the F2 instance can send data. In this case, it will return

the list: [”F3”].

• get_dst_flows(): This function returns a list containing the ids of the destination flows

to which the F2 instance can send data. In this case, it will return the list: [1,2].

• get_src_components(): This function returns a list containing the names of the source

components from which the F2 instance can receive data. In this case, it will return the

list: [”F1”].

• get_src_flows(): This function returns a list containing the ids of the destination flows

from which the F2 instance can receive data. In this case, it will return the list: [1,2].

• receive(src_components[0],scr_flows[i],1,1):

Inside the for loop, the F2 instance calls the receive function for each source flow in

order to receive one message from each F1 instance. We can notice that the blocking

mode is enabled.

• send(data,dst_components,[src_flows[i]]):

Finally, the F2 instance calls the send function immediately after the receive function

call in order to forward the data received in this iteration to the F3 instance which

belongs to the same stream as the F1 instance from which the data was received.

4.3.2 Aggregation

As in the previous example, each F1 instance transmits a message to the singular F2

instance. The F2 instance receives amessage from all its source flows and then broadcasts it to

all the F3 instances. The applicationlevel code of the F2 instance is presented in Algorithm 2.

Network API function calls are identical to those presented in the previous example except

for the send function. Specifically, after receiving a message from all the source flows, the F2

instance calls the send function in order to broadcast the received data to all the F3 instances.

We can observe that the send function is called outside the for loop and it has the following

form: send(rcvmsg,[”F3”],[1,2]).
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Algorithm 1 Transmit to the same flow id scenario
init_system_settings()

while True do

dst_components=get_dst_components()

dst_flows=get_dst_flows()

src_components=get_src_components()

src_flows=get_src_flows()

for i in range(0,len(src_flows)) do

data_list=receive(src_components[0],src_flows[i],1,1)

rcvmsg=data_list[0]

send(rcvmsg,dst_components,[src_flows[i]])

end for

end while

Algorithm 2 Aggregation scenario
init_system_settings()

while True do

dst_components=get_dst_components()

dst_flows=get_dst_flows()

src_components=get_src_components()

src_flows=get_src_flows()

for i in range(0,len(src_flows)) do

data_list=receive(src_components[0],src_flows[i],1,1)

rcvmsg=data_list[0]

end for

send(rcvmsg,dst_components,dst_flows)

end while
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4.4 System Functionalities

In this section, we analyze the deployment process and explicitly describe the core system

functionalities.

4.4.1 Deployment process

• Configuration parsing and Docker images’ build

At first, the system supervisor analyzes the configuration file in order to adapt the de

ployment based on the user’s preferences and requirements. The necessary data struc

tures for the application components are created and a Docker image is built for each

component. Specifically, as mentioned in the Background Chapter [ 2.1.3 ], we use the

Docker buildx plugin to build multiarchitecture Docker images. The system determines

the platforms for which the image of a component will be built based on the platform

parameter defined for this component in the configuration file. For each image that has

been built, the system pushes it into the private Docker registry.

• Discovery of the cluster’s devices

The system polls the cluster registry to find out the active devices. Afterwards, it sends

a discovery request to each device to be informed of its status. The agent running on

each device is responsible for responding to this discovery message by providing the

values of the following parameters:

– processor type

– total RAM

– available RAM

– position

– attached sensors

The position and the attached sensors’ information are stored in a file located in the

same directory as the agent’s executable in each device. Thus, the system computes

the compatible devices for each component by comparing the preferences and require

ments defined in the configuration file with the information returned from the agent of

each device after the discovery process.
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• Meet the desired state

The system is now ready to calculate the number of instances that should be created for

every nonsingular component. It is important to mention that all nonsingular compo

nents will have the same number of running instances during the deployment. In addi

tion, the system tries to meet the scale factor parameter specified in the configuration

file. If the scale factor is a positive integer, the system tries to reach but not exceed this

factor. On the other hand, if the scale factor is set to ”as_many_as_possible”, the non

singular component with the least number of compatible devices is a bottleneck to all

other components concerning the number of instances that will be created. Assuming

that the compatible devices table includes the number of compatible devices per non

singular component, we apply Algorithm 3. If the ”total_instances_per_component”

variable is zero, the system will generate an error message stating that this application

cannot be deployed.

Algorithm 3 Calculation of the total number of instances for each non singular component
if scale_factor == ”as_many_as_possible” then

total_instances_per_component = min(compatible_devices_table)

else

total_instances_per_component = min(min(compatible_devices_table),scale_factor)

end if

• Placement algorithm

During the placement, the system horizontally generates the graph, applying an it

erative algorithm which creates application components’ instances, starting from the

leftmost component and ending to the rightmost component. This process is repeated

until the ”total_instances_per_component” variable calculated in the previous step is

reached. Algorithm 4 summarizes the placement process. As we can observe, the link

table is scanned in descending order of affinity. Thus, instances concerning components

connected with a higher affinity link will be placed first. In addition, the algorithm op

timally places the neighboring instances using a series of priority lists aiming at zero

communication latency between them. On the device side, the agent is responsible for

receiving and executing system commands. In this case, the agent pulls the specified

Docker image from the private Docker registry and creates a Docker container.
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Algorithm 4 Placement Algorithm
Sort the link table in descending order of affinity

while True do

for each link Fx → Fy of the sorted link table do

if Fx not checked and there is an instance to be created for component Fx then

devices_listA = compatible_devices(Fx)− devices_with_running(Fx)

devices_listB = devices_listA ∩ compatible_devices(Fy)

devices_listC = devices_listB ∩ devices_with_running(Fy)

create_new_instance_with_priority(devices_listC , devices_listB, devices_listA)

end if

if Fy not checked and there is an instance to be created for component Fy then

devices_listA = compatible_devices(Fy)− devices_with_running(Fy)

devices_listB = devices_listA ∩ compatible_devices(Fx)

devices_listC = devices_listB ∩ devices_with_running(Fx)

create_new_instance_with_priority(devices_listC , devices_listB, devices_listA)

end if

end for

if no instance was created in the last iteration then

break

end if

end while

• Inform each running instance about its source and destination components and

flows

After applying the placement algorithm, the system determines the source and desti

nation components and flows for each generated instance. Once each instance boots,

the ”init_system_settings” function will be called first. Through this function, each in

stance sends a message to the system to let it know that all the networking API modules

are initialized and ready to receive system messages. When all the instances announce

their presence, the system informs each one about its source and destination compo

nents and flows by sending a ”NETWORK_INFORMATION” message. Once each

instance network library receives this message, the ”init_system_settings” function re

turns and the instance is ready to start transmitting and receiving data.
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• Cluster monitoring and scaling

When the deployment process is completed, the system enters a monitoring mode in

specting the cluster at short intervals. If a new device is inserted into the cluster, the

deployment is scaled based on the scaling preference defined in the configuration file

and the compatibility of the new device. In addition, we provide command line support

by enabling the user to inspect the cluster by typing ”status” into the system command

prompt.

4.4.2 Migration

We provide a migration service that allows instances to be migrated to a different com

patible device. The user should type a command into the system command prompt that has

the following form:

move<component name> from<source device> to<destination device>

The application layer of the instance that wants to be migrated must have set the move status

to ”True” using the ”can_move” function of the network API.

Figure 4.5: Deployment before migration

For a better understanding of the migration process, we analyze the steps through an

example. As shown in Figure 4.5, we examine a deployment consisting of three components

named Fx, Fy and Fz. We assume that all links of this deployment are defined as reliable

in the configuration file. The user decides to migrate the singular Fy instance. At first, the

system examines the validity of the command. If the destination device is incompatible or the

specific instance can not be migrated at this moment, the system returns an error message. If

the instance can be migrated to the new device, the following steps are applied:

• Create the new instance

The system creates a new instance of the same component on the new device. Once
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the new instance boots, the ”init_system_settings” function is called first. Through

this function, the new instance sends a message to the system to let it know that all

the networking API modules are initialized and ready to receive system messages. For

reasons of simplicity, we refer to the instance which wants to be migrated as the ”old

instance” and to the instance created in the destination device as the ”new instance”.

• Redirect the ingress connections of the old instance

The system sends a message to each instance that has established a connection to the

old instance over a reliable egress link (this corresponds to an ingress link for the old

instance), forcing it to terminate this connection after performing a reliability check.

Before each connection is redirected, a reliability check is applied in order to ensure

that all the data transmitted on each connection have reached their destination securely

and orderly. To perform the reliability test, each instance sends a ”FINAL” message

over each TCP connection pointing to the old instance. If an ack is received for each

”FINAL” message sent, the connections can be redirected. In the example shown, both

Fx instances redirect their connections pointing to the old Fy instance. When all the Fx

instances have completed this process, the system proceeds to the next step. If these

links are marked as unreliable, the reliability check is not performed and the connec

tions are redirected without any data protection. The status of the deployment until this

step is presented in Figure 4.6.

Figure 4.6: Migration deployment [Step 1]

• Move buffered data from the old instance to the new instance

If the ingress links of the old instance are marked as reliable, the data stored in the old

instance’s buffers should be migrated to the new instance. Thus, the system sends a
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”MOVE_BUFFERS” message to the old instance forcing it to establish a connection

with the new instance and transmit all the buffered data. It is important to mention that

during the buffers’ data move procedure, the new instance can receive data from the

Fx instances. If the ingress links of the old instance are marked as unreliable, this step

is skipped. The status of the deployment until this step is presented in Figure 4.7.

Figure 4.7: Migration deployment [Step 2]

• Terminate the egress connections of the old instance

If the old instance has established connections to other instances over reliable egress

links, the system sends a message to the old instance forcing it to terminate all of these

connections after performing a reliability check. This is done in order to ensure that

all data transmitted on each connection have reached their destination securely and

orderly. To perform the reliability test, the old instance sends a ”FINAL” message over

each egress TCP connection. If an ack is received for each ”FINAL” message sent,

the connections can be closed. In the example shown, the Fy instance terminates its

connections with both Fz instances. If the egress links are marked as unreliable, the

reliability check is not performed and the connections are terminated without any data

protection.

• Inform the new instance about its destination components and flows

Last, the system informs the new instance about its source and destination components

and flows by sending a ”NETWORK_INFORMATION” message. Once the new in

stance’s network library receives this message, the ”init_system_settings” function re

turns and the new instance is ready to start transmitting and receiving data. The status

of the deployment until this step is presented in Figure 4.8.
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Figure 4.8: Migration deployment [Step 3]

• Destroy the old instance

All the connections are functional and the old instance can be destroyed safely. The

deployment after the end of the migration procedure is shown in Figure 4.9.

Figure 4.9: Deployment after migration

4.4.3 Device exit

The agent running on each device provides commandline support through which the

user can monitor and manage the device. For a device to exit the cluster normally, the user

should type the command ”exit” to the device command prompt. The agent will update the

cluster registry on the device exit request. When the system identifies this request, if there

are running instances on the exiting device, the secured migration of each running instance

to another compatible device will be applied. If at least one of the running instances can

not be migrated, the device that requested to leave remains in the cluster until a compatible

device is found. Last but not least, for this functionality to work properly, the user should

have set the scaling factor of this deployment to a specific positive integer and not to the
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”as_many_as_possible” expression in order to prevent the deployment from scaling. If the

scaled factor is set to ”as_many_as_possible”, the system will generate an instance of each

nonsingular component on the newly inserted device. In this case, if the device that requested

to exit the cluster has at least one nonsingular instance, the migration will fail.
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Validation & Performance

We conducted several experiments in order to demonstrate the functionalities provided by

the system as well as to observe the performance of different deployments in a real edgefog

cloud cluster. In this chapter, we present the respective methodology, as well as validation

and evaluation results.

5.1 Placement Algorithm

In this section, we examine the placement algorithm’s validity. As we mentioned in the

implementation Chapter [ 4.4.1 ], the placement algorithm generates the graph by scanning

the link table in descending order of affinity. The purpose of the placement algorithm is to

place the instances optimally, trying to minimize the communication latency between the

instances connected with a highaffinity link.

5.1.1 Placement example with decreasing affinities

In this example, the application presented in figure 5.1 is deployed. The placement prefer

ences and hardware requirements of the components are summarized in Table 5.1. The cluster

consists of four devices whose characteristics are summarized in Table 5.2. In addition, the

compatible devices per component as calculated by the placement algorithm are presented in

the same table.

The results of the placement algorithm are presented in Table 5.3. Assuming that the

application’s scale factor is set to ”as_many_as_possible”, devices A and B are compatible

with both F1 and F2 components. Thus, two instances will be generated for each nonsingular

35



36 Chapter 5. Validation & Performance

Figure 5.1: Application for deployment

Table 5.1: Component requirements

Component Name Required sensors Preferred position

F1 camera end

F2 camera end/edge

F3  edge

F4 gpu cloud

Table 5.2: Cluster nodes and compatible devices per component

Cluster nodes Compatible Devices

Device Name Attached sensors Position

A camera end

B camera end

C camera edge

D camera, gpu cloud

Component Name Compatible Devices

F1 A, B

F2 A, B, C

F3 C

F4 D

Table 5.3: Placement results

Device Name Running Instances

A F1, F2

B F1, F2

C F3

D F4
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component. As we mentioned in Algorithm 4, the placement algorithm scans the link table

in descending order of affinity in each iteration. Therefore, the F1 → F2 link will always

be checked first. As a result, each pair of F1 and F2 instances will be placed on the same

device, leading to minimal communication delay between them. The singular F3 instance

will be placed on device C because it is the only one that meets the position requirements and

the singular F4 instance will be placed on device D because it is the only one that meets the

position and sensor requirements.

5.1.2 Placement example with increasing affinities

In this example, the application presented in Figure 5.2 is deployed. The placement and

sensor requirements of the components as well as the devices’ specifications are identical

to those of the previous example. The results of the placement algorithm are presented in

Table 5.4.

Figure 5.2: Application for deployment

Device Name Running Instances

A F1, F2

B F1

C F3,F2

D F4

Table 5.4: Placement results

In each iteration of the placement algorithm, the F3 → F4 link will be checked first

because this is the link with the greatest affinity. However, there is no common device for

these instances to be placed together. Therefore, F3 and F4 instances will be placed on devices

C and D respectively. The F2 → F3 link is the next to be checked. Thus, one of the generated

F2 instances will be placed on device C where the singular F3 instance has already been

placed. The F1 → F2 link is the last to be checked. As a result, a pair of F1 and F2 instances

will be placed on device A.
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5.1.3 Infeasible placements

If we change the position of node D from cloud to edge and try to deploy one of the

previous examples, the system will return a “Can not deploy this service” error message.

This is because the F4 component has zero compatible devices as shown in Table 5.5.

Cluster nodes Compatible Devices

Device Name Attached sensors Position

A camera end

B camera end

C camera edge

D camera, gpu edge

Component Name Compatible Devices

F1 A, B

F2 A, B, C

F3 C

F4 

Table 5.5: Cluster nodes and compatible devices per component

5.2 Deployment Performance

In this section, we conduct performance measurements in a variety of applications to

figure out the latency introduced by the system.

5.2.1 Minimum Round Trip Time

In this experiment, the application presented in Figure 5.3 is deployed. The graph consists

of two singular components, named G1 and G2. We measure the round trip time (RTT) until

a message sent by the G1 instance completes a cycle in the graph. We perform the measure

ments in the following clusters:

• A cluster consisting of one device where both instances are running.

• A cluster consisting of two devices, both connected via Ethernet interfaces to the local

area network. Each singular instance is running on a separate device.

Table 5.6 summarizes the results obtained. We can observe that, as expected the minimum

RTT occurs when both instances are placed on the same device.
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Figure 5.3: Application for deployment

Connection Elapsed RTT

Loopback Interface 0.044965 sec

Ethernet Interface 0.056756 sec

Table 5.6: Measured RTT results

5.2.2 Transmit to the same flowid

In this experiment, the application presented in Figure 5.4 is deployed. Table 5.9 sum

marizes the functionality of each component. We have previously examined the forwarding

method each singular component applies in Section 4.3.1. We measure the round trip time

(RTT) until a message sent by the G1 instance completes a cycle in the graph. Furthermore,

we examine the scaling functionality by inserting new devices into the cluster observing the

dynamic scaling of the deployment. Therefore, once the deployment process is complete, if a

device inserted into the cluster is compatible with both G1 and G3 components, an instance

for each of these components will be created.

Figure 5.4: Application for deployment

Scaling Step Elapsed RTT

1 0.085166 sec

2 0,117134 sec

3 0,127304 sec

Table 5.7: Measured RTT results

Component Functionality

G1
Transmits a message to the singular G2 instance and waits until receiving the same

message from the singular G4 instance.

G2
Expects a message from each source flow and forwards it to the G3 instance that

belongs to the same stream as the G1 instance that sent the data.

G3 Forwards each incoming message to the singular G4 instance.

G4
Expects a message from each source flow and forwards it to the G3 instance that

belongs to the same stream as the G3 instance that sent the data.

Table 5.9: Functionality per component
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Table 5.7 summarizes the results obtained from the measurements and is divided into the

three following scaling steps:

• The first scaling step is shown in Figure 5.5. The cluster consists of a single device in

which all instances are running. We can observe that the measured RTT is twice the

minimum RTT measured in the example 5.2.1. The cause of the additional delay is the

doubling of the number of links each message traverses until it completes a cycle in

the graph.

• The second scaling step is shown in Figure 5.6. We calculate the average RTT by gath

ering the metrics both G1 instances generate. We can observe that the RTT counted in

this experiment is twice the RTT measured in the second scenario of the example 5.2.1

where each singular instance was placed on a different device and both of the devices

were connected over Ethernet interfaces to the local area network. The cause of the

additional delay is again the doubling of the number of links each message traverses

until it completes a cycle in the graph.

• The third scaling step is shown in Figure 5.7. We calculate the average RTT gathering

the metrics all G1 instances generate. Henceforth, as we scale the cluster, a constantly

increasing additional delay will be introduced in the average RTT due to the forwarding

pattern we apply in both singular instances. Specifically, each singular instance serves

the incoming streams circularly. As we increase the incoming streams for each singular

instance, this round robin process will introduce more latency.

5.2.3 Aggregation scenario

The graph of the deployed application and the scaling process we apply in this example

are identical to those presented in the previous one except for the forwarding pattern applied

by the application’s singular components. The functionality of each component is presented

in Table 5.12. We have previously examined this forwarding method in Section 4.3.2. In this

experiment, we measure the round trip time (RTT) until a message sent by the G1 instance

completes a cycle in the graph. Table 5.10 summarizes the results obtained and is divided

into the three following scaling steps:
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Figure 5.5: Cluster scaling [Step 1]

Figure 5.6: Cluster scaling [Step 2]

Figure 5.7: Cluster scaling [Step 3]
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Figure 5.8: Application for deployment

Scaling Step Elapsed RTT

1 0.084638 sec

2 0,124790 sec

3 0,147473 sec

Table 5.10: Measured RTT results

Component Functionality

G1
Transmits a message to the singular G2 instance and waits until receiving the

same message from the singular G4 instance.

G2
Receives a message from all its source flows and then floods it to all the G3

instances.

G3 Forwards each incoming message to the singular G4 instance.

G4
Receives a message from all its source flows and then floods it to all the G1

instances.

Table 5.12: Functionality per component

• The first scaling step is shown in Figure 5.5. The cluster consists of a single device in

which all instances are running. We can observe that the counted RTT is equal to the

RTT measured in the previous example [ 5.2.2 ]. This is because if only one instance

of each component is running, the aggregation forwarding pattern is exactly the same

as the transmission to the same flowid one.

• The second scaling step is shown in Figure 5.6. We calculate the average RTT by gath

ering the metrics both F1 instances generate. We can observe that the RTT counted in

this experiment is larger than the RTT measured in the previous example by 0.01 sec

onds (∼= 6.53% increase). This additional delay is caused by the aggregation pattern

that we apply in both singular components. Specifically, in the aggregation method,

each singular instance collects data from all the incoming streams before it broadcasts

a message to the right. Instead, in the ”same flowid transmission” method, each sin

gular instance serves the incoming streams circularly having a performance advantage

especially when all the incoming streams send data at the same rate.
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• The third scaling step is shown in Figure 5.7. We calculate the average RTT gathering

the metrics all G1 instances generate. Henceforth, as we scale the cluster, a constantly

increasing additional delay will be introduced in the average RTT due to the aggre

gation forwarding pattern we apply in both singular instances. As we increase the in

coming streams for each singular instance, the aggregation pattern will introduce more

latency.

5.2.4 Average Scaling Latency

In this experiment, we calculate the latency introduced from the scaling functionality.

Specifically, we deploy the graph presented in the two previous examples, this one shown

in Figure 5.4, and we measure the time interval from the moment the system is informed

about the insertion of a new device into the cluster until the nonsingular G1 and G3 in

stances are generated on the new device. It is important to mention that we have excluded

the components’ image fetching time from the counted average time. We examined the same

experiment with various types of devices inserted into the cluster each one with different

hardware specifications. Table 5.13 summarizes the obtained results.

Cloud Node Edge Node End Node

CPU Intel i78750H CortexA72 (ARM v8) CortexA53 (ARM v8)

RAM 8 GB 4 GB 1 GB

OS Ubuntu 20.04.2 Ubuntu 20.04.2 Ubuntu 20.04.2

Cores (threads) 6 (12) 4 (4) 4 (4)

Network Interface Ethernet 100 Mbps Ethernet 100 Mbps Ethernet 100 Mbps

Total Scaling Time 6.71 sec 7.65 sec 49.6 sec

Container Generation

Overhead

0.32 [x2] sec 1.05 [x2] sec 19.6 [x2] sec

Average Scaling Latency 5.5 sec 5.5 sec 5.5 sec

Table 5.13: Scaling time results

From what has been presented, we conclude that the scaling latency is about 5.5 seconds.

It is important to mention that we subtract the container generation overhead of both the

created instances in order to compute the average scaling latency. By improving the hardware

features of the inserted device, the total scaling time can be reduced.
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5.3 Migration Performance

In this section, we conduct several experiments to figure out the performance of the mi

gration functionality.

5.3.1 Average Migration Latency

In this experiment, we measure the latency introduced by the system for migrating an in

stance to a new compatible device. Specifically, we have a cluster that consists of two devices

as shown in Figure 5.10 and we deploy the application presented in Figure 5.9. It is vital to

mention that there is no real traffic between the instances, so the links’ reliability factor is not

considered. The scaling factor of the application is set to ”1”, therefore all the instances are

placed to the same device leaving the second device available to host the migrated instances,

as shown in Figure 5.11. We try to migrate the singular G2 instance by typing the command

”move G2 from A to B” into the system command prompt. We examined the same experi

ment with various types of devices inserted into the cluster, each one with different hardware

specifications. Table 5.14 summarizes the obtained results.

Cloud Node Edge Node End Node

CPU Intel i78750H CortexA72 (ARM v8) CortexA53 (ARM v8)

RAM 8 GB 4 GB 1 GB

OS Ubuntu 20.04.2 Ubuntu 20.04.2 Ubuntu 20.04.2

Cores (threads) 6 (12) 4 (4) 4 (4)

Network Interface Ethernet 100 Mbps Ethernet 100 Mbps Ethernet 100 Mbps

Total Migration Time 6.58 sec 7.22 sec 26.94 sec

Container Generation

Overhead

0.34 sec 0.98 sec 20.71 sec

Average Migration Latency 6.24 sec 6.24 sec 6.23 sec

Table 5.14: Migration time results

From what has been presented, we reach the conclusion that the migration latency is

about 6.24 seconds. It is important to note that we subtract the container generation overhead

of the migrated instance in order to compute the average migration latency. By improving the

hardware features of the inserted device, the total migration time can be reduced.
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Figure 5.9: Application for deployment

Figure 5.10: Migration [Step 1]

Figure 5.11: Migration [Step 2]

Figure 5.12: Migration [Step 3]
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5.3.2 Unreliable Migration Time

In this experiment, the deployed application is identical to that of the previous example

[ 5.3.1 ]. However, there is real traffic between the components, and all the instances are con

nected with links that have been marked as unreliable in the configuration file. We measure

the average time it takes for the singular G2 instance to be migrated to a new compatible

device. We examined the same experiment with numerous incoming and outcoming links

connected with the singular instance we try to migrate. The results are exactly the same as

those presented in Table 5.14. When a link is marked as unreliable and the system needs to

redirect or terminate this connection, there is no need for applying a reliability check to ensure

that all the data transmitted have reached their destination securely and orderly. Therefore,

there is no additional overhead introduced by the system.

5.3.3 Reliable Migration Time

In this experiment, the deployed application is identical to that of the previous example

[ 5.3.2 ]. However, all the instances are connected with links that have beenmarked as reliable

in the configuration file. We measure the average time it takes for the singular G2 instance

to be migrated to a new compatible device as well as the elapsed time until the buffer’s

movement process is completed. Figure 5.13 summarizes the obtained results.

Figure 5.13: Reliable migration time results
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We can observe that the total migration time increases linearly as we increase the data

stored in the buffers of the migrated instance by a step of 100 MBytes. Therefore, we can

conclude that the minimum reliable migration latency is about 7.45 seconds. If we increase

the number of ingress and egress links of the migrated instance, the migration latency will be

increased respectively.

5.4 Application

In this section, we deploy a realworld application whose purpose is to monitor a security

sensitive area by processing camera feeds in order to recognize movement and unwanted per

sons entering the area. The application presented in Figure 5.14 consists of three components,

named F1, F2 and F3. Table 5.16 summarizes the functionality of each component.

Component Functionality

F1

Reads consecutive video frames from an attached camera and sends each

frame to the F2 instance that belongs to the same stream without employing

any compression technique.

F2

Receives frames from the F1 instance that belongs to the same stream. For

each input frame, it applies a face detection algorithm in order to detect

individual faces and crops the respective frame areas. Each cropped face is

sent to the singular F3 instance. The face detection algorithm uses Haar

Feature based Cascade Classifiers [7] on the input frames. Also, we use the

OpenCV library [8] to fetch the frames from the attached camera.

F3

Matches each cropped image received from an F2 instance against the images

of different faces previously stored in a database using the Local Binary

Patterns Histograms face recognition algorithm [9]. If there is a similarity

greater than a threshold, it generates an alert message. These algorithms are

already implemented as part of the OpenCV library. In addition, we used the

MongoDB database [10] for storing the received images.

Table 5.16: Functionality per component
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Figure 5.14: Application for deployment

This application can be implemented using a lowcost local infrastructure, deploying the

F1 instances in the area of interest. This can be achieved by adapting the F1 component’s

placement preferences in the configuration file. The core image processing and face recog

nition functions can be performed on powerful machines in the cloud. While this approach

has the wellknown advantages of cloud computing, it also comes with important scalability

and responsiveness issues. First and foremost, the available network bandwidth of all end de

vices hosting an F1 instance may not be sufficient to push a high number of video frames to

the cloud. Secondly, the latency of the Internet and the relaxed quality of service guarantees

of cloud systems can lead to increased endtoend communication delays. As an alternative

approach, the core processing functions of the application can be implemented on the edge

or even on the end device itself, leading to better performance.

In this experiment, we used two symmetrically opposite setups, in order to investigate the

effects of instances’ placement on a cluster of devices spanning the edge/fog/cloud system.

Table 5.17 summarizes the deployment scenarios. In all cases, the F1 instance is placed on an

end device, located in the area of interest. We used a video dataset as input, with a duration

of 22 seconds. The video contains a total of 216 frames, each one having an image resolution

of 500x900 pixels. It is important to mention that both the first and the last frames contain a

face. We measure the total time until the last face (equivalent to the last frame) is identified

from the F3 instance resulting in an alert generation.

Deployment Scenario End Device Edge Device

F1>F2,F3 F1 F2, F3

F1,F2>F3 F1, F2 F3

Table 5.17: Deployment Scenarios
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5.4.1 Bandwidth Measurements

First of all, we recorded the amount of data that would travel over each link of the graph.

Table 5.18 summarizes the results. We observe that the placement of application components

significantly affects the amount of data that travels over the Internet. Specifically, placing

an F2 instance on the end device (where an F1 instance is already running) rather than on a

remote edge machine, reduces the total amount of data sent over the Internet by 88%.

Application UDP/IP

F1>F2 291.6 MB 291.67 MB

F2>F3 31.32 MB 32.71 MB

Table 5.18: Transmitted Data

5.4.2 Slow uplink, fast edge machine

In the first set of experiments, we test both deployment scenarios using a setup where

the end device has powerful hardware characteristics but is connected via a low capacity

link to the edge device (∼= 24 Mbps). Table 5.19 presents the hardware specifications of

each device. It is important to mention that the rate at which F1 transmits frames towards F2

is artificially restricted from the TCP protocol’s congestion control algorithm. Figure 5.15

shows the obtained results.

Edge Device End Device

CPU Intel i78750H Intel i54200U

RAM 8 GB 4 GB

OS Ubuntu 20.04.2 Ubuntu 18.04.5

Cores (threads) 6 (12) 4 (8)

Table 5.19: Device Hardware Specifications

The whole bar shows the total execution time. The orange part shows the delay due to the

processing that is performed by the involved application components until the F3 instance re

ceives and processes the last framewhich is equivalent to the last detected face. The generated

alert for the motion detection includes the processing that is performed from the application
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components F2 and F3. The blue part shows the communication delay and it is relevant to

the link’s capacity.

We can observe that when the F2 instance is placed on the end device, where the F1 in

stance that belongs to the same stream is running (experiment F1,F2>F3), the total execution

time is drastically lessened. This is because the F2 instance reduces the number of data that

travel upstream towards F3 by 88% leading to performance improvement. Furthermore, when

the F2 instance is placed on the end device, the processing time of the face detection algo

rithm is minimized due to the improved hardware characteristics of the end device. Instead,

when the F2 instance is placed on the edge device (experiment F1>F2,F3), the F1 instance

transmits all the input frames via the limited capacity link to the F2 instance introducing

additional communication delay.

Figure 5.15: Slow uplink, fast edge machine

5.4.3 Fast uplink, slow edge machine

In the second set of experiments, we test both deployment scenarios using a setup where

the end device is much weaken than in the first set of experiments but is connected via a high

capacity link to the edge device (∼= 95Mbps). Table 5.20 presents the hardware specifications

of each device. It is important to mention that the rate at which F1 transmits frames towards

F2 is artificially restricted from the TCP protocol’s congestion control algorithm. Figure 5.16

shows the obtained results.
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Edge Device End Device

CPU Intel i78750H CortexA72 (ARM v8)

RAM 8 GB 4 GB

OS Ubuntu 20.04.2 Ubuntu 20.04.2

Cores (threads) 6 (12) 4 (4)

Table 5.20: Device Hardware Specifications

We can observe that when the F2 instance is placed on the end device, where the F1 in

stance that belongs to the same stream is running (experiment F1,F2>F3), the total execution

time is drastically reduced, as we mentioned in the previous example [ 5.4.2 ]. Furthermore,

when the F2 instance is placed on the end device, while the processing time of the face de

tection algorithm is increased due to the insufficient available hardware resources of the end

device, it is small to compete with the gain from reducing the amount of data transmitted

upstream towards F3. Instead, when the F2 instance is placed on the edge device (experiment

F1>F2,F3), the F1 instance transmits all the input frames to the F2 instance, leading to an

increased communication overhead despite the high capacity of the link between the end and

the edge device.

Figure 5.16: Fast uplink, slow edge machine
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5.4.4 Summary

The above results show that, even in a relatively simple application scenario, performance

only improves by placing the right part of the application at the edge. The hardware character

istics of the lowcost end devices as well as the communication links between the end and the

edge devices greatly affect the performance. Blindly placing some application components

at the edge can greatly degrade performance, even if the communication link to the edge is

very fast. On the other hand, if the link to the edge is slow and the computing infrastructure

of the end device is sufficiently powerful, there is potential for significant improvement.
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Related Work

Balena [11] is a complete set of tools for building, deploying and managing fleets of con

nected Linux devices. The core Balena platform, encompasses device, server, and clientside

software, all designed to get the code securely deployed to a fleet of devices. The user can

push code to the Balena build servers, where it will be packaged into containers and delivered

to the fleet. Therefore, Balena provides static deployment of multicontainer applications.

Specifically, at deployment time, Balena generates a replicate of the multicontainer appli

cation on each device of the fleet. However, each replicate runs in an isolated environment

without interacting with replicates operating on another device. In addition, there is no sup

port for singular containers as well as for custom deployments based on users’ requirements

and preferences. Moreover, scaling and migration functionalities are not supported.

Another way for developing applications that can be distributed flexibly is to compose

them out of microservices. Individual microservices could then be grouped into larger clus

ters and be deployed on remote hosts through a suitable container system like Docker and

a deployment system like Kubernetes [12] or Docker Swarm [13]. The microservices can

be connected via an overlay network. However, there is no support for custom deployments

based on users’ requirements and preferences.

Flogo [14] is a recent framework, allowing the developer to build an application flow

through a graphical interface. The main difference is that the application components are

written in the Go programming language. Also, Flogo does not provide deployment support

forcing the programmer to take care of the deployment of the components on the respective

machines.
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Conclusion

We designed a system that is responsible for the deployment of modular applications in a

heterogeneous cluster spanning the edge/fog/cloud. Moreover, we offer flexibility and trans

parency in the design process of such a componentbased application, applying a structured

dataflow approach. We have also presented experimental results using realistic testcases, il

lustrating the performance of each provided functionality including dynamic scaling, reliable

and unreliable migration and cluster monitoring. We examined the experiments using devices

with various hardware specifications placed in a heterogeneous cluster.

In the future, we wish to implement a failure detection mechanism in order to detect de

vice failures during runtime and adjust the deployment. Furthermore, an automatic migration

service could be implemented for the system to dynamically migrate the running instances

based on userspecified requirements such as throughput, latency, or quality of service. An

other direction is to investigate more thoroughly the deployment tradeoffs between a larger

variety of devices spanning the edge/fog/cloud system.
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