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Abstract

As processor power continues to exceed memory speed, paired with developers’s con­

cern for memory characteristics and hierarchy, tools to analyze memory access behavior will

become increasingly important for optimizing data­intensive program execution.Memory ac­

cess patterns, or how a system or a program reads and writes to memory, vary in their amount

of locality of reference and have a significant impact on performance. Identifying access pat­

terns, and then using that information to structure I/O operations and pick appropriate data

structures to make the code cache­friendly, can considerably speed up the program’s execu­

tion.

The goal of this thesis is to create and construct a tool for evaluating and displaying

application memory activity and access patterns. The tool we provide offers a comprehensive

visual representation of memory access behavior, while visualizing inter access distance, total

memory accesses and memory accesses while the program is being executed. This type of

visualization makes it simple for the developer to see why performance issues arise and aids

in the restructuring of data and code.

xi





Περίληψη

Καθώς η ισχύς του επεξεργαστή συνεχίζει να υπερβαίνει την ταχύτητα της μνήμης, σε

συνδυασμό με την ανησυχία των προγραμματιστών για τα χαρακτηριστικά και την ιεραρ­

χία της μνήμης, τα εργαλεία για την ανάλυση της συμπεριφοράς πρόσβασης στη μνήμη θα

γίνουν ολοένα και πιο σημαντικά για τη βελτιστοποίηση της εκτέλεσης προγραμμάτων με­

γάλου όγκου δεδομένων. Τα μοτίβα πρόσβασης στη μνήμη, δηλαδή ο τρόπος με τον οποίο

ένα σύστημα ή ένα πρόγραμμα διαβάζει και γράφει στη μνήμη, ποικίλλει ως προς το μέγε­

θος της περιοχής αναφοράς και έχει σημαντικό αντίκτυπο στην απόδοση. Ο προσδιορισμός

των μοτίβων πρόσβασης και, στη συνέχεια, η χρήση αυτών των πληροφοριών για τη δομή

των λειτουργιών I/O και την επιλογή κατάλληλων δομών δεδομένων για να γίνει ο κώδικας

φιλικός προς την μνήμη, μπορεί να επιταχύνει σημαντικά την εκτέλεση του προγράμματος.

Ο στόχος αυτής της διατριβής είναι να δημιουργήσει και να κατασκευάσει ένα εργαλείο

για την αξιολόγηση και την οπτικοποίηση της δραστηριότητας μνήμης εφαρμογών και των

προτύπων πρόσβασης στη μνήμη. Το εργαλείο που παρέχουμε προσφέρει μια ολοκληρω­

μένη οπτική αναπαράσταση της συμπεριφοράς πρόσβασης στη μνήμη, ενώ απεικονίζει την

απόσταση μεταξύ διαδοχικών προσβάσεων στην ίδια διεύθυνση μνήμης, τις συνολικές προ­

σβάσεις στη μνήμη και τις προσβάσεις στη μνήμη κατά την εκτέλεση του προγράμματος

ανά διεύθυνση. Αυτός ο τύπος οπτικοποίησης διευκολύνει τον προγραμματιστή να δει γιατί

προκύπτουν ζητήματα απόδοσης και βοηθά στην αναδιάρθρωση δεδομένων και κώδικα.
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Chapter 1

Introduction

1.1 Problem Description

In embedded and high­performance computer systems, memory is a key performance

barrier. The falling cost of memory and storage, as well as its rising capacity, has resulted in

a significant increase in the amount of data processed by programs. Even in data­intensive

applications, this fast expansion in main memory has effectively phased out disk I/O, causing

memory speed to become the primary focus of optimization. Any type of data processing,

gathering, analysis, and even virtualization service are now all competitors for memory use.

Despite the fact that real­world applications contain numerous memory references to a

diverse set of data structures, a significant portion of all memory accesses in the application

is generated by a fewmemory instructions with observable, well­known access patterns. This

opens the door to memory customization, which can be tailored to the needs of these access

patterns. One good way to solve this memory problem is to recognize memory access patterns

[3].
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2 Chapter 1. Introduction

Figure 1.1: Increasing gap between processor and memory. [1]

The purpose of this Thesis is the implementation of a tool that recognizes and visualizes

the memory access patterns. This tool will be helpful for programmers to handle the memory

more efficient. The tool uses Gleipnir, a Valgrints tool that generates memory traces. Also, it

creates three different kinds of graphs.

1.2 Organization of Thesis

This Thesis is separated in five parts:

• In the first part, Chapter 1, we present the problem and give information about the

thesis structure and content. Also, we make reference to related work.

• In the second part, Chapter 2, we give information about the background. Memory

locality and memory access patterns are being analyzed here. We also give information

about Gleipnir tool and the python library Plotly.

• In the third part, Chapter 3, we analyze every step of the implementation of our tool.

We begin with memory tracing, pre­proccessing of the data and finally, visualization.

We also present the user interface we created and give details about it’s functionality.

• In the fourth part, Chapter 4, we demonstrate examples of our tool usage and we eval­

uate the results.

• In the fifth part, Chapter 5, we make a conclusion of the Thesis and express thoughts

for future work.
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1.3 Related Work

Valgrind is a framework for creating dynamic analysis tools. Valgrind’s tools can auto­

matically discover a wide range of memory management and threading problems, as well as

profile your programs in great detail. Valgrind may also be used to create new tools.

Valgrind is a GNU­licensed open­source DBI framework that is being developed and

maintained by many people across the world. Datagrind, mmtrace, memhist, and memview

are examples of notable tools developed around this framework that specialize on memory

access profiling, comparable to Gleipnir. They are all created by independent developers

with the purpose of collecting a program’s memory trail and giving some basic statistics for

accesses.

An attempt, similar to the one we will analyze in this thesis, was made in the thesis of

Christos Ntogkas [4]. In his thesis, he used trace files created using Gleipnir and Cachegrind.

In his Thesis, he presents three types of visualizations. The metrics he presents in the visual­

izations are:

• reuse distance

• average reuse distance

• reuse distances standard deviation





Chapter 2

Background

2.1 Locality of reference

Locality of reference, often known as the principal of locality, is one of the most essential

aspects of memory access patterns. It refers to a processor’s tendency to repeatedly access

the same set of memory locations over time. There are two fundamental kinds of locality of

reference, temporal locality and spatial locality [5].

Temporal locality refers to a program’s tendency to reuse data elements many times

throughout a short period of time during execution. Loops, for example, repeatedly fetch

the same instructions. Calling and returning from functions, for instance, causes stack mem­

ory to be accessed frequently. This is the underlying idea of caching, and it provides a clear

path to a suitable data­management heuristic. The only actual constraint to utilizing this type

of locality is cache storage capacity [6].

Spacial locality refers to the fact that if a certain data element is accessed at a given

moment, it’s likely that nearby memory locations will be referenced soon after. Arrays of

data that are accessed sequentially are an excellent illustration of this sort of locality.

These two types of locality are represented in the Figure 2.1. This example is a good ex­

ample of locality.

5



6 Chapter 2. Background

Figure 2.1: Example of good locality. [2]

2.2 Memory Access Pattern

The major performance barrier nowadays, thanks to improvements in circuit design and

new lithography technologies, is memory operations, particularly secondary memory, often

known as the ”Von Neumann bottleneck” [7]. Although ’random access’ is commonly used

to characterize computer memory, software traversal will nonetheless reveal patterns that

might be exploited for efficiency. While the structure and functioning of different software

may appear to be identical, the memory access patterns can vary greatly. The number of

memory access patterns is practically limitless. However, there are a few memory access

patterns that occur frequently.

• Sequential

Sequential access pattern is the simplest one and refers to reads and writes on increment

or decremented straightforward addresses.
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Figure 2.2: Sequential Memory Access Pattern

• Strided

Strided access pattern with stride K indicates accessing every Kth memory element. If

stride equal to 1 strided access pattern is equivalent to sequential access pattern [4].

Figure 2.3: Strided Memory Access Pattern

• Linear

A linear access pattern is similar to ”strided,” in which a memory address can be calcu­

lated using a linear combination of indexes. In systems that allow to compute kernels,

a linear access pattern for writes (with any access pattern for non­overlapping reads)

may guarantee that an algorithm may be parallelized [8].

• Random

Cache and memory performance are harmed by random memory access patterns. Ran­

domness is not characterized in this context as fully arbitrary addressing, but rather

accesses that are not consecutive, do not access the same data or data that has been

recently accessed, and do not follow a consistent pattern that may be recognized and

exploited by the hardware prefetcher.

• Scatter



8 Chapter 2. Background

Figure 2.4: Random Memory Access Pattern

The scatter access pattern refers to accesses that occurs in a sequential order when read­

ing, but at random when writing. However, because there is no guarantee that writes

to memory are not independent, parallelization may be a difficult task.

2.3 Gleipnir Tool

Valgrind is a dynamic binary instrumentation (DBI) framework [9]. It is made for cre­

ating powerful Dynamic Binary Analysis (DBA) tools. Memory debugging, memory leak

detection, and profiling are all possible with it. Valgrind lies between the program’s execu­

tion layer and the operating system. When the user executes the program, the Valgrind core

passes it to a suite of tools chosen by the user before executing the instructions.

We use Gleipnir [10], a plug­in for Valgrind, to acquire the memory traces. Trace created

by Gleipnir, consists load, store, and modify instructions tracked down to source level vari­

ables for stack and global data recognizable by debug information parsing. The other types

of instructions are considered as unidentified kinds.

Gleipnir adopts the dynamic instrumentation approach, which, although adding consider­

able runtime overhead and slowing execution by tens or hundreds of times, but it gives more

information and flexibility than the alternatives. So we came to the conclusion that Gleipnir

was the right choice for our tool.

2.4 Plotly

Plotly is an interactive, open­source, Python plotting library [11]. It supports over 40

different chart types for statistical, financial, geographic, scientific, and 3­dimensional ap­

plications. Plotly allows Python programmers to generate stunning interactive web­based

visualizations that may be viewed in Jupyter notebooks, saved as independent HTML files,
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or delivered as part of pure Python­built web apps using Dash. The reason why we choose

Plotly is that it is really simple library to use, but in the same time it offers the option of every

visualization you may need to create.

2.5 Visualization Metrics

• Inter Access Distance

For this visualization, we need to introduce the terms inter access distance and standard

deviation. Measuring inter access distance between two data visits, means counting the

number of distinct data accesses between them. The standard deviation is a measure­

ment of a collection of values’ variance or dispersion [12].

This type of visualization is useful to understand the way that each address is being

accessed.

• Total Accesses per Address

For this type of visualization, we counted every access that occurred for each address.

This information is crucial to determine which addresses are most often used. Having

this information, developers can use variables in such a way that the code can be more

efficient.

• Accesses during Execution

Visualizing the accesses during the execution of the program, gives us the opportunity

to observe when the most accesses occur. Also, memory locality is noticeable in this

kind of graph.





Chapter 3

Implementation

In terms of optimization, memory performance has taken center stage. As a result, more

tools for profiling and evaluating applications are being developed. These tools frequently

use the approach of observing the code of an application as it is being executed and col­

lecting information about its inner procedures. There are three ways to do this for memory

behavior: first, inserting code capable of collecting the required information at compile time,

known as static instrumentation, second, inserting code after the compilation that examines

the instructions and collects the required data, known as dynamic instrumentation, and third,

simulating the memory hierarchy [4].

Figure 3.1 presents the creation stages of our visualization tool. These stages are going

to be analyzed in this chapter.

11
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Figure 3.1: Stages of Implementation

3.1 Memory trace

Gleipnir, a plug­in built for the famous binary instrumentation tool Valgrind, was used

to obtain the memory traces. Valgrind is a dynamic binary instrumentation (DBI) framework

with a distinct design space. It’s made for creating heavyweight.Dynamic Binary Analysis

(DBA) tools. Memory debugging, memory leak detection, and profiling are all possible with

it. [13].
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Figure 3.2: Source Code and Gleipnir Trace

Figure 3.2 presents the source code of a simple program and the trace we collect from

Gleipnir tool. From each line of the trace file, we observe the following data:

OperationType Address MemorySize ThreadId Scope Function

• OperationType: This element determines the type of access. L(Load), S(Store),M(Modify),

X(Special Operation, such as entry of a function).

• Address: This element specifies the address to which it is accessed.

• MemorySize: This element specifies the memory size that being accessed.

• ThreadId: This element specifies the ID of the thread that is responsible for the access.
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• Scope: This element specifies the position. G(Global), H(Heap), S(Stack).

• Function: This element specifies the name of the function that is responsible for the

access.

One of the disadvantages of Gleipnir is that it produces very large files relative to the size

of the running program. For example, the multiplication of two 150x150 matrix, which is a

small example of source code, will produce a trace of 1.5 GB.

3.2 Pre­Proccessing

Gleipnir, as previously indicated, generates huge trace files. Because we don’t have lim­

itless memory, we will need to figure out a technique to decrease the trace file’s size. The

next step is to create the program stack, in order to define the decedents of each function. The

final step is to organize the data into appropriate structures for each type of visualization.

3.2.1 Cleaning up the trace file:

In order to reduce the size of the trace file, we removed some lines that were not useful for

our visualizations. The lines with operation type X were deleted, except for those in which

X indicated entry to a function. We also deleted the last lines of the trace file. These lines

indicate the end of the file and give some general information about the trace, which is not

required for our visualizations. Although this information is not useful for our visualizations,

they provide a general picture of the trace 3.3.
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Figure 3.3: Part of the Gleipnir trace, last lines.

3.2.2 Creation of the stack:

The creation of a stack of program functions was the next critical step. The creation of the

stack was necessary because we need to know the call tree of the functions and the function

call tree that lead to the specific accesses. This feature is necessary to visualize accesses from

a function and its descendants.

First, we numbered each line of the trace so that it is easy to refer to the stack for each

access separately. For each line of the trace with a format like that Figure 3.4 shows, we store

function1 in a temporary variable. Because the trace we extracted from Gleipnir only gives

us the information that an entry is made to a function, we needed to extract the information
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that an exit is made from a function. As a result, we examined the trace and determined when

a function exit happens, and so we created the functions stack.

Figure 3.4: Line of the trace that shows enter in function1

Figure 3.5 presents a simple code example. Figure 3.6 presents a piece of the trace and

the corresponding stack snapshot. We used this simple example to understand the stages of

stack creation, as we will explain later in this chapter.

1 void function2() void function1()

2 array[0]=1; array[0]=1;

3 array[1]=2; array[1]=2;

4 i = 1; function2();

5

6 int main()

7 function2();

8 for i ← 1 to 5

9 arr[i] = i + 1;

10 function1();

Figure 3.5: C pseudocode for a simple example.
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Figure 3.6: Example of stack creation.

In the trace file, there are lines doing simple operations, like loads and stores, and also

lines with format like in Figure 3.4. Lines with that format suggest the entry of a function.

We started with the stack containing only the main function and then locating the first

entry in the function1. For the next 4 lines, our stack continues to consist of the main function.

On line 19 the first access is made by function1, and so function1 enters the stack. Then, until

we meet the next entry, only function1 causes accesses and our stack consists of main and

function1. After entry in function2, the stack for lines 25­34 consists of: main, function1,

function2. We notice that function2 was the first function that caused access after its entry,

when it entered the stack directly.

At line 35, access is triggered by function1. At that time our stack is: main, function1,

function2. In order to be able to access function1, means that function2 has exited. So our

stack now consists of main and function1, up to line 38. Then main is the function that causes

access. Similarly, the stack now comprises just of the main, for lines 40 and up. Then we come
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across an entry from function1. However, function1 causes access four accesses later, on line

45, and enters the stack.

3.2.3 Organization of the data:

We have filtered out the irrelevant information and arranged the rest into helpful struc­

tures. We can now analyze these structures to get useful information about the access pattern

of the program. For each visualization, we need a different type of data structure. We will fo­

cus on the following type of visualization to give us with a thorough insight into the features

of the program’s memory access pattern, based on the study we intend to perform:

• Inter Access Distance

For this type of visualization, we used the average value of the inter access distance,

and we also calculated the standard deviation for each address. The data structure we

created for this visualization, is presented in Figure 3.7 and is of the form:

Address AverageAccessDistance StandardDeviation

and consists of a line for every different memory address.

Figure 3.7: Part of data structure for inter access distance.

To create this data structure, we used the Gleipnir trace, after we had numbered each

of its lines. Then, since we knew the stack in each access, we kept only the accesses

that interested us. Because every line of the trace was numbered, we knew when each

access was made (stage1). After that step, the trace file has the type shown it Figure 3.8

(stage2). We only need the first and the third column of each line, so we deleted other

information (stage3) and sorted the file according to the third column, which included

the memory addresses (stage4). After the shorting, the file contained the number that

shows the sequence that the accesses happened for every access, in consecutive lines.

Finally, we calculated the inter access distance and the standard deviation by reading

the file line by line, and calculating these values for each address (stage5).
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Figure 3.8: Data before sorting and deleting unnecessary information.

• Total Accesses per Address For this type of visualization, we followed the same steps

as in inter access visualization, until the trace file became like in Figure 3.8, stage2.

Then we counted every access that occurred for each address and created a data struc­

ture of the type:

Address NumberOfAccesses

• Timeline of accessesAs we said before, we numbered each line of the trace file. These

numbers show the sequence that accesses happen. For this visualization, we followed

the same steps as in inter access visualization, until stage4.

3.3 Visualization

The most interesting information our tool provides are the graphs it creates. In this regard,

a new graphical user interface (GUI) was designed to make it easier for the user to manage

the findings.

Tkinter, an interface to the Tk GUI toolkit [14], is one of the most popular graphical

user interface (GUI) widget set for Python. Because of its widespread use, it is included in

the Python installation and requires no additional configuration. It is simple to use, supports

many windows and widgets, and makes importing and managing graphs an easy task [4].

3.3.1 User Interface:

Now that we have collected all the need data for the graphs and have decided which tool

to use for the creation of the interface, it is time to present the GUI. Our purpose was to create

a user­friendly interface. Figure 3.9 depicts a view of the completed graphical user interface.



20 Chapter 3. Implementation

Figure 3.9: Graphic User Interface (GUI)

The interface is separated in three areas.

In the first area, the user can run Gleipnir or, if this procedure has already accomplished,

can insert the Gleipnir file name. This may be the most time­consuming part of using GUI,

as Gleipnir creates very large files. Also, in this area, pressing the button ”Show function

names”, a new window open, and it shows all the function names of the program. Thanks to

this feature, the user can choose if he wants to implement graphs for the accesses of a specific

function.

In the second and third area, there are three buttons in each. These buttons implement and

display the graphs for each of the 3 types of visualizations we have implemented. The reason
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why there are two areas with the same apparent buttons is because in the second area the user

chooses to implement visualization for the function he has inserted in the first area, and its

descendants, while in the third area the visualization concerns only the function the user has

inserted and not the function’s descendants.

Finally, at the bottom of the interface, there is an exit button to close the interface.

3.3.2 Plot Selection:

Plotly, which is a Python plotting library [11], will be used to create the plots stated before.

For the inter access distance visualization, we used an error bar plot. This plot shows the

average inter access distance and the standard deviation. Error bars are graphical represen­

tations of the variability of data and they give a general idea of how precise a measurement

is. In our case, it indicates whether successive accesses to an address are the same distance

apart.

A line plot with markers, used for total accesses visualization. We used this type of plot

because want to observe the rate of change of accesses amount between addresses. A scatter

plot used to visualize accesses during execution of the program. Scatter plot used to show

relationships between accesses and time. A scatter plot shows not only the values of individual

memory accesses, but also the patterns of memory accesses.

Our choices aimed to simple graphs, so that the user can easily extract information from

them.

The tool export the figures to HTML files.





Chapter 4

Evaluation

In this chapter, we demonstrate the capabilities of the tool we created. Matrix multipli­

cation of two 10x10 matrices is the source code utilized. The results are incredibly easy to

evaluate due to the table’s modest size. For programs that have many memory accesses our

tool provide the option of zoom in, to make the graph more clear.

4.1 Plots with descendants and without

In this example, we used the accesses made from function main. In Figure 4.1, Figure 4.2

and Figure 4.3 we observe the plots our tool creates for themain function, and its descendants.

In Figures, Figure 4.4, Figure 4.5 and Figure 4.6 we observe the plots that were created only

for the accesses caused by main.

By observing these Figures, we can come to some conclusions:

1. The inter access distance and the standard deviation is the same for the most addresses

whenwe visualize accesses from a function and its descendants, thanwhenwe visualize

only the function’s accesses. This is logical, some data structures are used only from

one function. For this reason, addresses are less when we visualize inter access distance

only for accesses caused by one function.

2. Total accesses follow the same pattern in both of the two visualizations. In Figure 4.2

there are more fluctuations than in Figure 4.5 because the total number of accesses is

bigger as well. In this example, function main never make access in some addresses

that its descendants make accesses.

23
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3. Accesses timeline of the program follow a random pattern until the 1000th access.

After that point, the pattern they follow is sequential for most of the accesses. This

observation applies to both visualizations in Figure 4.3 and in Figure 4.6.

Figure 4.1: Inter access distance for main and its descendants.

Figure 4.2: Total accesses for main and its descendants.
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Figure 4.3: Accesses timeline for main and its descendants.

Figure 4.4: Inter access distance for main.



26 Chapter 4. Evaluation

Figure 4.5: Total accesses for main.

Figure 4.6: Accesses timeline for main.
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4.2 Comparison between two types of matrix multiplica­

tion

In this section, we compare the memory access patterns between matrix multiplication

of 150x150 matrices and blocked matrix multiplication of 150x150 matrices, with block size

equal to 10.

4.2.1 Inter Access Distance

Figure 4.7: Inter access distance for 150x150 matrix multiplication.
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Figure 4.8: Inter access distance for 150x150 blocked matrix multiplication.

Figure 4.7 and Figure 4.8 present the inter access distance for 150x150 matrix multipli­

cation, normal and blocked. As we can see, the number of the accesses is huge, and the error

bars are distinct. Figure 4.9 and Figure 4.10 shows a zoom in the Figure 4.7 and Figure 4.8.

Figure 4.9: Zoom in inter access distance for 150x150 matrix multiplication.
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Figure 4.10: Zoom in inter access distance for 150x150 blocked matrix multiplication.

Zooming in, figures show information about every memory address clearly. For example,

in Figure 4.7, for some addresses the average inter access distance seems to be equal to zero,

but in Figure 4.9 the actual value of the inter access distance is shown. These values are very

small compared to the rest, for this reason they can’t be shown in the plot.

Comparing Figure 4.7 with Figure 4.8 we conclude in:

1. The pattern followed by the average distance of the successive memory accesses for

each address differs.

2. Average inter access distance is bigger for some addresses, while source code is blocked

matrix multiplication, and smaller for some others.

3. Also, standard deviation is bigger for most addresses, while source code is blocked

matrix multiplication. For the first addresses that appear in the plot (left side of the

plot), the average inter access distance and the standard deviation remain the same.

This is explained by the fact that these accesses are related to operations that take place

before the multiplication of matrices and are stable for both types of multiplication.

4.2.2 Total Accesses

In this type of visualization, we compare Figure 4.11 with Figure 4.12.
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Figure 4.11: Total accesses for 150x150 matrix multiplication.

Figure 4.12: Total accesses for 150x150 blocked matrix multiplication.

We observe that total accesses follow the same pattern in both figures (source code matrix

multiplication and blocked matrix multiplication). The first addresses shown on the plot have

fluctuations in the access numbers. Later, for some sequential addresses, the access pattern
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is stable. And for the last addresses being accessed, accesses number, range between two

values. Furthermore, the number of accesses for the majority of memory addresses remains

the same for both source codes.

4.2.3 Timeline of Accesses

Figure 4.13: Timeline of accesses for 150x510 matrix multiplication.

Figure 4.14: Timeline of accesses for 150x510 blocked matrix multiplication.

We can understand better the memory access pattern by observing Figure 4.13 and Figure

4.14. These Figures provide us with information about the locality of the addresses the pro­

gram used. In blocked matrix multiplication, accesses to specific addresses occur between

shorter intervals. As we see, data locality is increased while source code is blocked matrix
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multiplication. Accesses in successive addresses occur in smaller time gap than with the other

source code.



Chapter 5

Conclusion

The growing speed gap between the CPU and main memory has created the need for

better usage of the memory [15]. The ability to properly utilize the memory subsystem is

critical for memory performance acceleration. This Thesis, provides a tool that can detect

and visualize the memory access patterns, increasing application memory efficiency [16].

5.1 Summary and Conclusions

In this Thesis, we designed a tool to extract memory accesses from trace files generated

using Gleipnir, a plug in built for Valgrind. After taking the memory trace, we implemented

several procedures to create the data structures we needed for the visualizations. First, we

decreased the size of the trace file by deleting lines with unnecessary information. After that

we created the functions stack, as analyzed in Chapter 3. Finally, we created a GUI for our

tool and we gave some examples of the tool’s functionality.

The tool’s functionality can easily be seemed by using it to visualize memory access pat­

terns for a source code. The graphs our tool creates, provide information about the memory

use. The graphs show which are the ”hot” areas of the memory, how often a memory address

is being accessed, and which pattern the total memory accesses follow during the execu­

tion of the program. Having this information, developers can overcome, to some extent, the

”Memory Wall” [17].

33
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5.2 Future Work

Because Gleipnir creates huge files, there is a need for optimizations in Gleipnir tool, to

create smaller data files. The functions that our tool provides, handle big amounts of data,

and utilize a large amount of memory similarly. Rewriting sections of the code in C will assist

decrease the tool’s memory footprint.

Furthermore, our tool allows developers to focus on a specified functions that cause memory

accesses. An interesting expansion of our tool, will be the option of visualizing graphs for

specific data structures, like arrays or variables. Other parts that can be optimized is the GUI,

by providing additional choices for different kinds of visualizations and a command­line

interface (CLI).
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