UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

VISUALIZATION OF THE MEMORY ACCESS
PATTERN OF APPLICATIONS

Diploma Thesis

Kleio Gkoutzomitrou

Supervisor: Christos D. Antonopoulos

Volos 2021

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

VISUALIZATION OF THE MEMORY ACCESS
PATTERN OF APPLICATIONS

Diploma Thesis

Kleio Gkoutzomitrou

Supervisor: Christos D. Antonopoulos

Volos 2021

111

I[TANEIIIZTHMIO OEXXAAIAX
I[TOAYTEXNIKH 2XOAH
TMHMA HAEKTPOAOT'QN MHXANIKOQN KAI MHXANIKOQN YITOAOI'TETOQN

OIITIKOITOIHXH MOTIBQN ITPOXITIEAAXHX
E®PAPMOI'QN XTHN MNHMH

Awmiouoatikn Epyoacia

Kieio I'kovtlopnqtpov

Emprénov: Xpnotoc Aviovomovrog

Bohog 2021

Approved by the Examination Committee:

Supervisor Christos D. Antonopoulos
Assistant Professor, Department of Electrical and Computer En-

gineering, University of Thessaly

Member Panagiota Tsompanopoulou
Associate Professor, Department of Electrical and Computer En-

gineering, University of Thessaly

Member Aspasia Daskalopoulou
Assistant Professor, Department of Electrical and Computer En-

gineering, University of Thessaly

Date of approval: 16-7-2021

vil

Acknowledgements

I would like to thank my supervisor Christos D. Antonopoulos for his help and guidance
throughout this work. I would also like to thank my family for their constant support through-
out these five years of study. Last but not least, I want to thank my friends for being always

by my side.

X

DISCLAIMER ON ACADEMIC ETHICS
AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work /
contributions of third parties for which the permission of the authors / beneficiaries is re-
quired and are not a product of partial or complete plagiarism, while the sources used are
limited to the bibliographic references only and meet the rules of scientific citing. The points
where I have used ideas, text, files and / or sources of other authors are clearly mentioned
in the text with the appropriate citation and the relevant complete reference is included in
the bibliographic references section. I fully, individually and personally undertake all legal
and administrative consequences that may arise in the event that it is proven, in the course of

time, that this thesis or part of it does not belong to me because it is a product of plagiarismy.

The declarant

Kleio Gkoutzomitrou

16-7-2021

Abstract

As processor power continues to exceed memory speed, paired with developers’s con-
cern for memory characteristics and hierarchy, tools to analyze memory access behavior will
become increasingly important for optimizing data-intensive program execution. Memory ac-
cess patterns, or how a system or a program reads and writes to memory, vary in their amount
of locality of reference and have a significant impact on performance. Identifying access pat-
terns, and then using that information to structure I/O operations and pick appropriate data
structures to make the code cache-friendly, can considerably speed up the program’s execu-
tion.

The goal of this thesis is to create and construct a tool for evaluating and displaying
application memory activity and access patterns. The tool we provide offers a comprehensive
visual representation of memory access behavior, while visualizing inter access distance, total
memory accesses and memory accesses while the program is being executed. This type of
visualization makes it simple for the developer to see why performance issues arise and aids

in the restructuring of data and code.

xi

Iepiinyn

KaBa¢ 1 1oybg tov emeepyaotn cuveyilel va vrepPaivel Tnv ToydTNTO TG WWNUNG, G
GLVOLOGUO LE TNV OVNOLYIO TOV TPOYPUUUATICTOV Y10, TO YOUPAUKTNPIOTIKE KoL TNV 1EpOp-
xiol TG LVAUNG, T EPYAAEiD YO0 TV AVAAVGT) TNG CLUTEPIPOPAS TPOGPaong ot Hviun Oa
Yivouv oloéva Kot Lo CTHLOVTIKA Y10 TN PEATIGTOMOINGT TNG EKTEAEGTC TPOYPUUUATOV LLE-
yYarov dykov dedopévav. Ta potifa tpdoPacng oty pviun, onAadn o TpOTOG e TOV 0moio
éva cvotnua 1 Eva Tpoypappo StaBalel Kot YpAPEL oTN UV, TOIKIAAEL ™G TPOG TO HEYE-
00¢ TG TEPLOYNG AVOPOPAS KOl EXEL GNUAVTIKO OVTIKTLUTO 6TV 0tddoon. O Tposdlopiopog
TV HoTiBoOV TPOSPUcNS KO, OTN GUVEXELD, 1) XPNOT] AVTAV TOV TANPOPOPLOV Yo TN doUn
TV Agttovpylov I/0 kot v emAoy] KATAAANA®V dOUDV OEOOUEVMV Y10 VO YIVEL O KOOTKOG
(QUAIKOG TTPOG TNV UVALT, UWTOPEL VoL EMLTAYHVEL CTUOVTIKO TNV EKTELEGT] TOV TPOYPAUUATOC.

O o10%0¢ avTg ™S draTpPPMg eivart va SNUOVPYNCEL KO VO KATAGKEVAGEL £VOL EPYAAELD
YL TV a&oAOYN O KoL TV OTTIKOTTOINGoT TS SpacTnpldTnTag LVAUNG EPUPHOYADV KOl TOV
mpotu®V TPodSPacng ot uvnun. To epyaieio mov mapEYovE TPOCPEPEL oL OLOKAP®-
HEVT OTTTIKY OVOTTOPAGTOCT] TG CUUTEPLPOPAS TPOGPUCN G OTN UVIUN, EVOD amelKovilel TNV
amOoTOoT LETAED 01000 KOV TPosPdcemv oty idta d1evBuver PvUNG, TIG CLVOMKES TPO-
ofdoglg o LVNUN Kot TIC TPOGPAGELS GTN UV KOTA TNV EKTEAECT] TOL TPOYPELLOTOG
avd d1evBvven. AVTOg 0 TOTOG OTTTIKOTOINONG OIEVKOAVVEL TOV TPOYPOUUOTIOTH VO, OEL YTl

npokvITTOVY {nTNpate anddoons Kot fondd oty avadidpBpwon ded0UEVOV KoL KOOTKO.

xiil

Table of contents

A cknowledgements

[Table of contents

ist of tables

[Abbreviations

1 Introduction

.1 Problem Description

[1.2 Organization of Thesi§

.3 Related Workl

2 Background
R.1 Locality of referencgd
2.2 Memory Access Pattern
2.3 Gleipnir Tool
.............
R.5 Visualization Metric§
B Implementation

B.1 Memorytracd

ix

xi

xiii

XV

xvii

Xix

xxi

O o0 0 N W»n W

XV

XVi Table of contents
B.2 Pre-Proccessing e 14
B.2.1 Cleaningupthetracefilel 14

B.2.2 Creationofthestacky 15

B.2.3 Organization of thedataj 18

B.3 Visualizationl 19
B.3.1 UserInterfaced. 19

B.3.2 PlotSelectiony 21

4 Evaluation 23
“.1 Plots with descendants and withouf 23
“.2 Comparison between two types of matrix multiplication 27
B2.1 Inter Access Distanceo i 27

B2.2 Total ACCESSES . « . v v v v e e e 29

23 Timeline of ACCESSES . . . + v v v v v e e 31

5 Conclusion 33
5.1 Summary and Conclusions 33
52 Future Work 34

B sraphy 35

List of figures

[1.1 Increasing gap between processor and memory. [1] 2
2.1 Example of good locality. [2] 6
R.2 Sequential Memory Access Pattern 7
2.3 Strided Memory Access Pattern| 7
2.4 Random Memory Access Pattern| 8
B.1 Stages of Implementation 12
B.2 Source Code and Gleipnir Trace v v v v i i 13
B.3 Part of the Gleipnir trace, last lines| 15
B.4 Line of the trace that shows enter in functionl| 16
B.5 C pseudocode for a simple example| 16
B.6 Example of stack creation) 17
B.7 Part of data structure for inter access distance) 18
B.8 Data before sorting and deleting unnecessary information| 19
B.9 Graphic User Interface (GUD) i .. 20
#.1 Inter access distance for main and its descendants) 24
#.2 Total accesses for main and its descendants) 24
#.3 Accesses timeline for main and its descendants] 25
4.4 Inter access distance formain| 25
4.5 Totalaccesses formain).o 26
4.6 Accesses timeline formain) L L. 26
“.7 Inter access distance for 150x150 matrix multiplication] 27
“.8 Inter access distance for 150x150 blocked matrix multiplication] 28
.9 Zoom in inter access distance for 150x150 matrix multiplication| 28

xvil

Xviii List of figures

“.10 Zoom in inter access distance for 150x150 blocked matrix multiplication] . 29
“.11 Total accesses for 150x150 matrix multiplication 30
#.12 Total accesses for 150x150 blocked matrix multiplication) 30
#.13 Timeline of accesses for 150x510 matrix multiplication). 31

¥.14 Timeline of accesses for 150x510 blocked matrix multiplication) 31

List of tables

XiX

Abbreviations

GUI Graphical User Interface

CPU Central Processing Unit

DBI Dynamic Binary Instrumentation
DBA Dynamic Binary Analysis

XX1

Chapter 1

Introduction

1.1 Problem Description

In embedded and high-performance computer systems, memory is a key performance
barrier. The falling cost of memory and storage, as well as its rising capacity, has resulted in
a significant increase in the amount of data processed by programs. Even in data-intensive
applications, this fast expansion in main memory has effectively phased out disk I/O, causing
memory speed to become the primary focus of optimization. Any type of data processing,

gathering, analysis, and even virtualization service are now all competitors for memory use.

Despite the fact that real-world applications contain numerous memory references to a
diverse set of data structures, a significant portion of all memory accesses in the application
is generated by a few memory instructions with observable, well-known access patterns. This
opens the door to memory customization, which can be tailored to the needs of these access

patterns. One good way to solve this memory problem is to recognize memory access patterns

3].

Chapter 1. Introduction

Figure 1.1: Increasing gap between processor and memory. [|1]

The purpose of this Thesis is the implementation of a tool that recognizes and visualizes

the memory access patterns. This tool will be helpful for programmers to handle the memory

more efficient. The tool uses Gleipnir, a Valgrints tool that generates memory traces. Also, it

creates three different kinds of graphs.

1.2

Organization of Thesis

This Thesis is separated in five parts:

In the first part, Chapter 1, we present the problem and give information about the

thesis structure and content. Also, we make reference to related work.

In the second part, Chapter 2, we give information about the background. Memory
locality and memory access patterns are being analyzed here. We also give information

about Gleipnir tool and the python library Plotly.

In the third part, Chapter 3, we analyze every step of the implementation of our tool.
We begin with memory tracing, pre-proccessing of the data and finally, visualization.

We also present the user interface we created and give details about it’s functionality.

In the fourth part, Chapter 4, we demonstrate examples of our tool usage and we eval-

uate the results.

In the fifth part, Chapter 5, we make a conclusion of the Thesis and express thoughts

for future work.

1.3 Related Work 3

1.3 Related Work

Valgrind is a framework for creating dynamic analysis tools. Valgrind’s tools can auto-
matically discover a wide range of memory management and threading problems, as well as
profile your programs in great detail. Valgrind may also be used to create new tools.

Valgrind is a GNU-licensed open-source DBI framework that is being developed and
maintained by many people across the world. Datagrind, mmtrace, memhist, and memview
are examples of notable tools developed around this framework that specialize on memory
access profiling, comparable to Gleipnir. They are all created by independent developers
with the purpose of collecting a program’s memory trail and giving some basic statistics for
accesses.

An attempt, similar to the one we will analyze in this thesis, was made in the thesis of
Christos Ntogkas [4]. In his thesis, he used trace files created using Gleipnir and Cachegrind.
In his Thesis, he presents three types of visualizations. The metrics he presents in the visual-

izations are:

* reuse distance
* average reuse distance

* reuse distances standard deviation

Chapter 2

Background

2.1 Locality of reference

Locality of reference, often known as the principal of locality, is one of the most essential
aspects of memory access patterns. It refers to a processor’s tendency to repeatedly access
the same set of memory locations over time. There are two fundamental kinds of locality of
reference, temporal locality and spatial locality [3].

Temporal locality refers to a program’s tendency to reuse data elements many times
throughout a short period of time during execution. Loops, for example, repeatedly fetch
the same instructions. Calling and returning from functions, for instance, causes stack mem-
ory to be accessed frequently. This is the underlying idea of caching, and it provides a clear
path to a suitable data-management heuristic. The only actual constraint to utilizing this type
of locality is cache storage capacity [6].

Spacial locality refers to the fact that if a certain data element is accessed at a given
moment, it’s likely that nearby memory locations will be referenced soon after. Arrays of
data that are accessed sequentially are an excellent illustration of this sort of locality.

These two types of locality are represented in the Figure R.1|. This example is a good ex-

ample of locality.

6 Chapter 2. Background

=]
Spatial Locality *
Temporal Locality
i
g
s 80000
=
=
Jl““
75000 T T T T T T T ' T T]
151000 152000 1532000 154000 155000 156000 157000 152000 152000 160000 161000
Cycle

Figure 2.1: Example of good locality. [2]

2.2 Memory Access Pattern

The major performance barrier nowadays, thanks to improvements in circuit design and
new lithography technologies, is memory operations, particularly secondary memory, often
known as the ”Von Neumann bottleneck™ [[7]. Although ’random access’ is commonly used
to characterize computer memory, software traversal will nonetheless reveal patterns that
might be exploited for efficiency. While the structure and functioning of different software
may appear to be identical, the memory access patterns can vary greatly. The number of
memory access patterns is practically limitless. However, there are a few memory access

patterns that occur frequently.

* Sequential

Sequential access pattern is the simplest one and refers to reads and writes on increment

or decremented straightforward addresses.

2.2 Memory Access Pattern 7

'Y YA YA YA YA

Figure 2.2: Sequential Memory Access Pattern

 Strided

Strided access pattern with stride K indicates accessing every Kth memory element. If

stride equal to 1 strided access pattern is equivalent to sequential access pattern [4].

N N NN

Stride =2

N NN

Stride =3

N TN

Stride =4

Figure 2.3: Strided Memory Access Pattern

e Linear

A linear access pattern is similar to ”strided,” in which a memory address can be calcu-
lated using a linear combination of indexes. In systems that allow to compute kernels,
a linear access pattern for writes (with any access pattern for non-overlapping reads)

may guarantee that an algorithm may be parallelized [§].

* Random

Cache and memory performance are harmed by random memory access patterns. Ran-
domness is not characterized in this context as fully arbitrary addressing, but rather
accesses that are not consecutive, do not access the same data or data that has been
recently accessed, and do not follow a consistent pattern that may be recognized and

exploited by the hardware prefetcher.

» Scatter

8 Chapter 2. Background

7 7SS N 7SN
s

Figure 2.4: Random Memory Access Pattern

The scatter access pattern refers to accesses that occurs in a sequential order when read-
ing, but at random when writing. However, because there is no guarantee that writes

to memory are not independent, parallelization may be a difficult task.

2.3 Gleipnir Tool

Valgrind is a dynamic binary instrumentation (DBI) framework [9]. It is made for cre-
ating powerful Dynamic Binary Analysis (DBA) tools. Memory debugging, memory leak
detection, and profiling are all possible with it. Valgrind lies between the program’s execu-
tion layer and the operating system. When the user executes the program, the Valgrind core
passes it to a suite of tools chosen by the user before executing the instructions.

We use Gleipnir []10], a plug-in for Valgrind, to acquire the memory traces. Trace created
by Gleipnir, consists load, store, and modify instructions tracked down to source level vari-
ables for stack and global data recognizable by debug information parsing. The other types
of instructions are considered as unidentified kinds.

Gleipnir adopts the dynamic instrumentation approach, which, although adding consider-
able runtime overhead and slowing execution by tens or hundreds of times, but it gives more
information and flexibility than the alternatives. So we came to the conclusion that Gleipnir

was the right choice for our tool.

2.4 Plotly

Plotly is an interactive, open-source, Python plotting library [L1]. It supports over 40
different chart types for statistical, financial, geographic, scientific, and 3-dimensional ap-
plications. Plotly allows Python programmers to generate stunning interactive web-based

visualizations that may be viewed in Jupyter notebooks, saved as independent HTML files,

2.5 Visualization Metrics 9

or delivered as part of pure Python-built web apps using Dash. The reason why we choose
Plotly is that it is really simple library to use, but in the same time it offers the option of every

visualization you may need to create.

2.5 Visualization Metrics

* Inter Access Distance

For this visualization, we need to introduce the terms inter access distance and standard
deviation. Measuring inter access distance between two data visits, means counting the
number of distinct data accesses between them. The standard deviation is a measure-

ment of a collection of values’ variance or dispersion [[12].

This type of visualization is useful to understand the way that each address is being

accessed.

* Total Accesses per Address

For this type of visualization, we counted every access that occurred for each address.
This information is crucial to determine which addresses are most often used. Having
this information, developers can use variables in such a way that the code can be more

efficient.

* Accesses during Execution

Visualizing the accesses during the execution of the program, gives us the opportunity
to observe when the most accesses occur. Also, memory locality is noticeable in this

kind of graph.

Chapter 3

Implementation

In terms of optimization, memory performance has taken center stage. As a result, more
tools for profiling and evaluating applications are being developed. These tools frequently
use the approach of observing the code of an application as it is being executed and col-
lecting information about its inner procedures. There are three ways to do this for memory
behavior: first, inserting code capable of collecting the required information at compile time,
known as static instrumentation, second, inserting code after the compilation that examines
the instructions and collects the required data, known as dynamic instrumentation, and third,

simulating the memory hierarchy [4].

Figure presents the creation stages of our visualization tool. These stages are going

to be analyzed in this chapter.

11

12 Chapter 3. Implementation

Binary

| —

Memory Trace

Visualization

Figure 3.1: Stages of Implementation

3.1 Memory trace

Gleipnir, a plug-in built for the famous binary instrumentation tool Valgrind, was used
to obtain the memory traces. Valgrind is a dynamic binary instrumentation (DBI) framework
with a distinct design space. It’s made for creating heavyweight.Dynamic Binary Analysis
(DBA) tools. Memory debugging, memory leak detection, and profiling are all possible with

it. [13].

3.1 Memory trace 13

START 0:16238 at 0
THREAD_CREATE ©:1
1ffefffc2e 8 1 S NONE::main
1ffefffc2® 8 1 S NONE::main
000601090 4 1 G NOMNE::main
1ffefffclc 4 1 S NONE::main
1ffefffcl8 4 1 S NONE::main
1ffefffcl8 4 1 S NONE::mailn
0006681090 4 1 G NONE::main
1ffefffci® 4 1 S NONE::main
1ffefffc3® 4 1 S NONE::main
1ffefffcl8 4 1 S NONE::main
1ffefffcl8 4 1 S NONE::main
0006081090 4 1 G NONE::main
1ffefffcl8 4 1 S NONE::main
1ffefffc34 4 1 S NONE::main
1ffefffcl8 4 1 S NONE::main
1ffefffci8 4 1 S NONE::main
FN_ENTRY 0004007b8 NONE::function
1ffefffco8 8 1 S NONE::main
1ffefffco® 8 1 S NONE::function
1ffefffbe8 8 1 S NONE::function

S

S

=

#include <stdio.h=>
#include <stdlib.h=
#include "/home/kgkoutzom/valgrind/gleipnir/gleipnir.h"

w R

un o

wstruct typeA{
double varl;
int myArray[10];
8 b
o

-~

10 struct typeA glStrc;
L; struct typeA glStrcArray[10];

L§ int glScalar;
int glArray[10];

wvoid function(struct typeA strcParam[]){
17 int i;

¥
w0 oo

w for(i=0; i<2; i++){
glStrcArray[i].varl = glScalar;
glStrcArray[i] .myArray[@] = glArray[@];

[N ey

iffefffbfc 4 1 NONE: : function
1ffefffbfc 4 1
000601090 4 1 G NONE::function

NONE: : function
strcParam[i] .varl = glArray[i];

24 + 1ffefffbfc 4 1 S NONE::function
25 return; 000601040 8 1 G NONMNE::function
26} 000601280 4 1 G NONE::function
27 1ffefffbfc 4 1 S NONE::function
~ g . . . 0006010a8 4 1 G NONE::function
jé "1nEng%Ré¥?ld]{ 1ffefffbfc 4 1 S NONE::function
- Ifferffbfc 4 1 5 NONE:: function
- 1ffe c ::function
31 struct typeA TeStrArray[5]; 000601280 4 1 G NONE::function
o . X 1ffefffccé 8 1 S NONE::function
33 int 1; 1ffefffbfc 4 1 S NONE::function
34 int TeArray[10]; 1ffefffbfc 4 1 S NONE::function
35 000601090 4 1 G NOME::function
36 glScalar = 400; 1ffefffbfc 4 1 S NONE::function
37 TeScalar = 153; 0006010d0 8 1 G NONE::function
38 000601280 4 1 G NONE::function
30 for(i=0; i<2; i++) 1ffefffbfc 4 1 S NONE::function

0006010d8 4 1 G NONE::function
iffefffbfc 4 1 S NONE::function
1ffefffbe8 8 1 S NONE::function
1ffefffbfc 4 1 S NONE::function
6006081284 4 1 G NONE::function
1ffefffcfe 8 1 S NONE::function
1ffefffbfc 4 1 5 NONE::function
1ffefffbfc 4 1 S NONE::function

40 TeArray[i] = glScalar;
41 function(TeStrArray);

43 GL STOP;

;§ return 0;

l_3ml_l_l_l_ml_l_ml_l_l_zml_I_F_I_Lﬁl_I_Lﬂl_l_l_mmmmxr_zml_l_l_zml_l_l_mmml_mxx.

¥
i
—

Figure 3.2: Source Code and Gleipnir Trace

Figure presents the source code of a simple program and the trace we collect from

Gleipnir tool. From each line of the trace file, we observe the following data:

OperationType Address MemorySize ThreadId Scope Function

» OperationType: This element determines the type of access. L(Load), S(Store), M(Modify),

X(Special Operation, such as entry of a function).

Address: This element specifies the address to which it is accessed.

* MemorySize: This element specifies the memory size that being accessed.

Threadld: This element specifies the ID of the thread that is responsible for the access.

14 Chapter 3. Implementation

» Scope: This element specifies the position. G(Global), H(Heap), S(Stack).

* Function: This element specifies the name of the function that is responsible for the

accCess.

One of the disadvantages of Gleipnir is that it produces very large files relative to the size
of the running program. For example, the multiplication of two 150x150 matrix, which is a

small example of source code, will produce a trace of 1.5 GB.

3.2 Pre-Proccessing

Gleipnir, as previously indicated, generates huge trace files. Because we don’t have lim-
itless memory, we will need to figure out a technique to decrease the trace file’s size. The
next step is to create the program stack, in order to define the decedents of each function. The

final step is to organize the data into appropriate structures for each type of visualization.

3.2.1 Cleaning up the trace file:

In order to reduce the size of the trace file, we removed some lines that were not useful for
our visualizations. The lines with operation type X were deleted, except for those in which
X indicated entry to a function. We also deleted the last lines of the trace file. These lines
indicate the end of the file and give some general information about the trace, which is not
required for our visualizations. Although this information is not useful for our visualizations,

they provide a general picture of the trace B.3.

3.2 Pre-Proccessing 15

X END 10414 at 34476

X STATS
total lines: 18065
flush_at: 18446744073709551615
total flushes: 1
malloc calls: 4
calloc calls: 0]
realloc calls: i]
free calls: i]
Instructions: 34476
Loads: 14545
Stores: 1243
Modifies: 2151

instruction soname:function

@04e7b6c® libc: itoa word

004e7e180 libc:vfprintf

B04e7e8f6 libc:vfprintf

804e86810 libc:printf

004e9e190 libc: I0 file doallocate
004ea9b70 1libc: I0 file stat

004ea9b80 1ibc: I0 file write@@GLIBC 2.2.5

0804eaalfod
f04eaa2dd
f04eaazd2
084eab740
084eabscs
004eac230
004eac510
004eacs70
004ecB230
004ecTTed
0847t283b6

libc: T0 file xsputn@@GLIBC 2.2.5
libc: I0 file xsputn@@GLIBC 2.2.5
libc: I0 file xsputn@@GLIBC 2.2.5
libc: I0 file overflow@@GLIBC 2.2.5
libc: I0 file overflow@@GLIBC 2.2.5
libc: overflow

libc: I0 setb

libc: 10 doallocbuf

libc:memset

libc:strchrnul

libc:write

004f283b9 1libc: write nocancel
pe4fa3a70 libc: memset avx?2

Figure 3.3: Part of the Gleipnir trace, last lines.

3.2.2 Creation of the stack:

The creation of a stack of program functions was the next critical step. The creation of the
stack was necessary because we need to know the call tree of the functions and the function
call tree that lead to the specific accesses. This feature is necessary to visualize accesses from

a function and its descendants.

First, we numbered each line of the trace so that it is easy to refer to the stack for each
access separately. For each line of the trace with a format like that Figure .4 shows, we store
functionl in a temporary variable. Because the trace we extracted from Gleipnir only gives

us the information that an entry is made to a function, we needed to extract the information

16 Chapter 3. Implementation

that an exit is made from a function. As a result, we examined the trace and determined when

a function exit happens, and so we created the functions stack.

X FN_ENTRY address libc::functionl

Figure 3.4: Line of the trace that shows enter in functionl

Figure B.3 presents a simple code example. Figure B.§ presents a piece of the trace and
the corresponding stack snapshot. We used this simple example to understand the stages of

stack creation, as we will explain later in this chapter.

void function2 () void functionl ()
array[0]=1; array[0]=1;
arrayl[l]=2; arrayl[l]=2;
4 i =1; function2 () ;

6 int main ()

function2 () ;
8 for 1 « 1 to 5
9 arr[i] =1 + 1;

10 functionl () ;

Figure 3.5: C pseudocode for a simple example.

3.2 Pre-Proccessing

17

X FN_ENTRY 8684807fb NONE::functioni 15 main

15 L 1ffefffdic 4 1 S NONE::main 16 main

16 L 1ffefffdic 4 1 S NONE::main 17 main

17 5 I;;E‘;;;d;‘l 415 NUNE::N&‘:LI'I 18 main

18 5§ 1ffe cf8 8 1 5 NONE::main . .

19 5 1ffefffcf® 8 1 S NONE::functioni 19 ma}n funCt}onl

20 L ©94041b68 8 1 M NONE::functioni M-@ mmap block.292¢ |20 main functionl

21 5 1ffefffce8 8 1 S NONE::functioni 21 main functionl

22 5 1ffefffce® 4 1 S NONE::functionil 22 main functionl

23 § 1ffefffced 4 1 S NONE::functionl 23 main functioni

24 5§ 1ffefffcd8 8 1 S NONE::functioni 24 main functionl

X FN_ENTRY 0604087b8 NONE::function2 25 main functionl function2
25 5 1ffefffcd® 8 1 S NONE::function2 26 main functionl function2
26 L 004041b68 8 1 M NONE::function2 M-0 mmap block.2920 27 main functionl function?
28 S 11;::911:1;:cc0 4158 MDNE:::unctionz 29 main functionl function?
29 5 1ffe cc4 4 1 S NONE::function2 . . .

38 S 1ffefffcbc 4 1 S NONE::function2 g;’ mgtﬂ HEEEEE HEEEEES
31 L 1ffefffcc8 8 1 S NONE::function2 . . .

32 L 004041b68 8 1 M NONE::function2 M-8 mmap block.29ze |32 Main functionl function2
33 L 1ffefffcdd 8 1 S NONE::function2 33 main functionl function2
34 L 1ffefffcd8 8 1 S NONE::function2 34 main functionl function2
35 L 1ffefffce8 8 1 S NONE::functioni 35 main functioni|

36 L 004041b68 8 1 M NONE::functionl M-0 mmap_block.2926 36 main functionl

37 L 1ffefffcf® 8 1 5 NOME::functionil 37 main functioni

38 L 1ffefffcf8 8 1 5 NONE::functionl 38 main functionil

39 M 1ffefffdlc 4 1 S NONE::main 39 main

40 L 1ffefffdic 4 1 S NONE::main 48 main

X FN_ENTRY 0604007fb NONE::function1 41 main

41 L 1ffefffdic 4 1 S NONE::main 42 main

42 L 1ffefffdlc 4 1 S NONE::mailn 43 main

43 5 1ffefffd38 4 1 S NONE::main N

44 5 1ffefffcf8 8 1 S NONE::main 44 main)

45 § 1ffefffcf® 8 1 S NONE::functioni 45 main functionl

46 L 004841b68 8 1 M NOME::function1l M-® mmap_block.2928 46 main functionil

47 5 1ffefffce8 8 1 5 NOME::functionil 47 main functionil

48 5 1ffefffced 4 1 S NONE::functionl 48 main functionil

Figure 3.6: Example of stack creation.

In the trace file, there are lines doing simple operations, like loads and stores, and also
lines with format like in Figure B.4. Lines with that format suggest the entry of a function.

We started with the stack containing only the main function and then locating the first
entry in the functionl. For the next 4 lines, our stack continues to consist of the main function.
On line 19 the first access is made by functionl, and so function1 enters the stack. Then, until
we meet the next entry, only functionl causes accesses and our stack consists of main and
functionl. After entry in function2, the stack for lines 25-34 consists of: main, functionl,
function2. We notice that function2 was the first function that caused access after its entry,
when it entered the stack directly.

At line 35, access is triggered by functionl. At that time our stack is: main, functionl,
function2. In order to be able to access functionl, means that function2 has exited. So our
stack now consists of main and functionl, up to line 38. Then main is the function that causes

access. Similarly, the stack now comprises just of the main, for lines 40 and up. Then we come

18 Chapter 3. Implementation

across an entry from functionl. However, functionl causes access four accesses later, on line

45, and enters the stack.

3.2.3 Organization of the data:

We have filtered out the irrelevant information and arranged the rest into helpful struc-
tures. We can now analyze these structures to get useful information about the access pattern
of the program. For each visualization, we need a different type of data structure. We will fo-
cus on the following type of visualization to give us with a thorough insight into the features

of the program’s memory access pattern, based on the study we intend to perform:

* Inter Access Distance

For this type of visualization, we used the average value of the inter access distance,
and we also calculated the standard deviation for each address. The data structure we

created for this visualization, is presented in Figure B.7 and is of the form:
Address AverageAccessDistance StandardDeviation

and consists of a line for every different memory address.

000602020 486.500000 91.500000
000602028 8.500000 3.500000
004041ad8 483.000000 88.000000
004041b50 483.000000 88.000000
0B4225d58 1.000060 0.8000080

Figure 3.7: Part of data structure for inter access distance.

To create this data structure, we used the Gleipnir trace, after we had numbered each
of its lines. Then, since we knew the stack in each access, we kept only the accesses
that interested us. Because every line of the trace was numbered, we knew when each
access was made (stagel). After that step, the trace file has the type shown it Figure 3.§
(stage2). We only need the first and the third column of each line, so we deleted other
information (stage3) and sorted the file according to the third column, which included
the memory addresses (stage4). After the shorting, the file contained the number that
shows the sequence that the accesses happened for every access, in consecutive lines.
Finally, we calculated the inter access distance and the standard deviation by reading

the file line by line, and calculating these values for each address (stage?).

3.3 Visualization 19

24 L 1ffefffceg 8 1 S libc:: memset avx2
25 L 1ffefffdie 4 1 S NONE::main
26 L 1ffefffdie 4 1 S NONE::main
27 L 1ffefffd28 8 1 S NONE::main
28 L 1ffefffd28 8 1 S NONE::main

Figure 3.8: Data before sorting and deleting unnecessary information.

* Total Accesses per Address For this type of visualization, we followed the same steps
as in inter access visualization, until the trace file became like in Figure B.8, stage2.
Then we counted every access that occurred for each address and created a data struc-

ture of the type:

Address NumberOfAccesses

* Timeline of accesses As we said before, we numbered each line of the trace file. These
numbers show the sequence that accesses happen. For this visualization, we followed

the same steps as in inter access visualization, until stage4.

3.3 Visualization

The most interesting information our tool provides are the graphs it creates. In this regard,
a new graphical user interface (GUI) was designed to make it easier for the user to manage
the findings.

Tkinter, an interface to the Tk GUI toolkit [14], is one of the most popular graphical
user interface (GUI) widget set for Python. Because of its widespread use, it is included in
the Python installation and requires no additional configuration. It is simple to use, supports

many windows and widgets, and makes importing and managing graphs an easy task [A4].

3.3.1 User Interface:

Now that we have collected all the need data for the graphs and have decided which tool
to use for the creation of the interface, it is time to present the GUI. Our purpose was to create

a user-friendly interface. Figure B.9 depicts a view of the completed graphical user interface.

20 Chapter 3. Implementation

L) Memory Access Patktern

First area e

Give gleipnir file name:

GET gleipnir file name! ‘

Show function names ‘

Give function name to get the Visualizations:

Second |

darea

_ Visualizations of the function you chosen and it's descentants:

Inter Access Distance ‘

Total Accesses

Thl rd Time of Accesses ‘
area

— Visualizations only of the function you chosen:

Inter Access Distance ‘

Total Accesses

Time of Accesses ‘

Exit

Figure 3.9: Graphic User Interface (GUI)

The interface is separated in three areas.

In the first area, the user can run Gleipnir or, if this procedure has already accomplished,
can insert the Gleipnir file name. This may be the most time-consuming part of using GUI,
as Gleipnir creates very large files. Also, in this area, pressing the button ”Show function
names”, a new window open, and it shows all the function names of the program. Thanks to
this feature, the user can choose if he wants to implement graphs for the accesses of a specific
function.

In the second and third area, there are three buttons in each. These buttons implement and

display the graphs for each of the 3 types of visualizations we have implemented. The reason

3.3 Visualization 21

why there are two areas with the same apparent buttons is because in the second area the user
chooses to implement visualization for the function he has inserted in the first area, and its
descendants, while in the third area the visualization concerns only the function the user has
inserted and not the function’s descendants.

Finally, at the bottom of the interface, there is an exit button to close the interface.

3.3.2 Plot Selection:

Plotly, which is a Python plotting library [|1 1], will be used to create the plots stated before.

For the inter access distance visualization, we used an error bar plot. This plot shows the
average inter access distance and the standard deviation. Error bars are graphical represen-
tations of the variability of data and they give a general idea of how precise a measurement
is. In our case, it indicates whether successive accesses to an address are the same distance
apart.

A line plot with markers, used for total accesses visualization. We used this type of plot
because want to observe the rate of change of accesses amount between addresses. A scatter
plot used to visualize accesses during execution of the program. Scatter plot used to show
relationships between accesses and time. A scatter plot shows not only the values of individual
memory accesses, but also the patterns of memory accesses.

Our choices aimed to simple graphs, so that the user can easily extract information from
them.

The tool export the figures to HTML files.

Chapter 4

Evaluation

In this chapter, we demonstrate the capabilities of the tool we created. Matrix multipli-
cation of two 10x10 matrices is the source code utilized. The results are incredibly easy to
evaluate due to the table’s modest size. For programs that have many memory accesses our

tool provide the option of zoom in, to make the graph more clear.

4.1 Plots with descendants and without

In this example, we used the accesses made from function main. In Figure §.1], Figure
and Figure #.3 we observe the plots our tool creates for the main function, and its descendants.
In Figures, Figure #.4, Figure .5 and Figure §#.§ we observe the plots that were created only
for the accesses caused by main.

By observing these Figures, we can come to some conclusions:

1. The inter access distance and the standard deviation is the same for the most addresses
when we visualize accesses from a function and its descendants, than when we visualize
only the function’s accesses. This is logical, some data structures are used only from
one function. For this reason, addresses are less when we visualize inter access distance

only for accesses caused by one function.

2. Total accesses follow the same pattern in both of the two visualizations. In Figure
there are more fluctuations than in Figure #.9 because the total number of accesses is
bigger as well. In this example, function main never make access in some addresses

that its descendants make accesses.

23

Chapter 4. Evaluation

24

3. Accesses timeline of the program follow a random pattern until the 1000th access.

After that point, the pattern they follow is sequential for most of the accesses. This

observation applies to both visualizations in Figure §.3 and in Figure 4.6,

Inter Access Distance

1400

1200

1000

abe.dany

800
600
400
200

1ffefffdas
]v_m_ 1ffefffcfs
1ffefffcos

IW 1ffefffbda
L% 1ffefff748
1ffefff700

B Iffeffreos
TL 1ffefff650

ey = Jffefffel0
0051fh360
0051fb340
0051fh320
0051fh300
0051fbh2e0
0051fb2ce
0051fbh2ad
0051fbh280
0051fbh260
0051fh240
0051fbh220
ee51fb200
0051fbled
0051fbl1a0
ee51fb18e
0051fb160
0051fb140
0e51fb120
0051fb100
0051fbhoed
ee51fboce
0051fboae
0051fbhos8e
0051fbo6e
0051fbo4e

S —
e 0051fad68
__i——"—" @e51f66b0O
o 8 005176648

m 00514718
| 004fb6fa1
000400d05

000400cdd
'’ 000400Ch4

Addresses

Figure 4.1: Inter access distance for main and its descendants.

Total Accesses per Address Vizuallisation

—
L

1000

S$9SS3J3JY JO JaqunN

1ffefffdos
1ffefffcie
1ffefffbd3
1ffefff738
1ffefffedo
1ffefffe668
1ffefffel10
0051fb368
0051fb340
0051fb318
0051fb2f0o
0051fb2cs
0051fb2ae
0051fb278
0051fb250
0051fb228
0051fb200
0051fb1hs
0051fb190
0051fb168
0051fb140
0051fb118
ees51fbofe
0051fbocs
0051fboae
0051fbo78
0051Fbes50
0051fa730
0051f66b0
005176630
0051f4718
004fbefas
004041ads
000400d02
000400cf8
000400cee
00P400ce4d
000400cda
000400cd0o
000400cCc6
000400chc
000400370

Addresses

Figure 4.2: Total accesses for main and its descendants.

4.1 Plots with descendants and without 25

Time of Accesses

. e, . (A
1ffefffbfe = ' e boo ks

1ffefff7oo

-
1ffefff620 ‘/‘oonnnc’ '
0051fb340 13
0051fb2e8 o
0051fbh290 =
o 0051fb238 :‘:.
¥ oees1fbles e
@ ©051fb168
» 0051fb11e
S oeos1fbebs
< 0051fboe6o - ‘
0051f66T8 e Bew csciccisnt e wallfe
pe51f4718 ° =y ’-‘:* L s 00000008 ‘ u!‘ud \-"-0
000602020 e . L .
000400cf4 4
000400cde _;‘
000400cc8 e ¥ °
000400370 - e alalim st
1 2 5 10 2 5 100 2 5 1000 2 5 10k
Time of Access
Figure 4.3: Accesses timeline for main and its descendants.
Inter Access Distance
1400
1200
o 1000
o
«
“ 800
S
< 600
400
200
® PRS- ¢
[ololol o ool ool oo oNoMol ool o oolo oo o oo o oMo olo Moo oo oo R o oo RN o RO RN i
[clcolololololololioloolololololooooololojojoolololocloooololoNoloo ool o B]
oo oo oo ooaaaaooaaaaaao oo oo aaooooo oo oo oo o g —+h
RPRPRRPRPRRPRRPPARPREPRPPEPBRPRPRPEPEPRPREPBPRPRRPBRPRERPRRRRPRRPRBRERRERREPL, OO
H —h —h —h—h h h—h -h h —h -h—h -h —h —h —h =h -h —h v h —h
O o o oo oo o oo oo U0 oo o oo oo oo oo oo oo oo Uo o oo oo oo oo —h--h
000 00 @000 00 ORLKEEPREPEEREERERPEREREPEPNNNMNMNMNRNRPODNRPNDRNNDBLOLRNLGGWGWOWWOW=h—h
W s U O WO TAOADHOENWLAERUNWOL DO WEUDO®O LD HEOENW-RIDOO
e&mnebmnohmn@bmnehmnohmno&mnebmno&mnebmngg
Addresses

Figure 4.4: Inter access distance for main.

Chapter 4. Evaluation

26

Total Accesses per Address Vizuallisation

(o]
(=]
(o]
il

S$9SS22JY JO JaqunnN

1ffefffdie
1ffefffcfs
0051fbh35¢C
0051fb348
0051fb334
0051fb320
0051fb30c
0051fb2f8
0051fb2e4
0e51fb2de
0051fb2hc
0051fb2a8
00511h294
0051fb280
0051fb26¢C
0051fb258
0051fb244
0051fb230
0051fb21c
0051fh208
0051fb1f4
0051fble0
0e51fblac
0051fb198
0051fb184
0051fb170
0051fbi15c
0051fb148
0051fb134
0051fb120
0051fbiec
0051fbofs
0051fboe4
ee51fbede
0051fbohc
0051fboas
0051Th094
0051fbose
0051fbo6c
0051fbe58
0051Th044
0051fbo30

Addresses

Total accesses for main.

Figure 4.5

Time of Accesses

1ffefff620
0051fb368
0051fb33c
0051fb310
0051fb2e4d
0051fb2b8
0051fb28c
0051fb260
0051fb234
0051fb208
0051fblbc
0051fb190
0051fb164
0051fb138
0051fb10c
0051fb0e0
0051fbOba
0051fb088
0051fb05c
0051fb030

- o

RTTTTI

[
[}
[
[
[
1
©
©
<

1000 2

5

100

10

Time of Access

Accesses timeline for main.

Figure 4.6

27

Inter Access Distance

tion
In this section, we compare the memory access patterns between matrix multiplication

300k
250k

4.2 Comparison between two types of matrix multiplica-

of 150x150 matrices and blocked matrix multiplication of 150x150 matrices, with block size

4.2 Comparison between two types of matrix multiplication

4.2.1 Inter Access Distance

equal to 10.

0052262c4
005224780
005223c3c
005222828
0052214e4
0052201a0
00521ed8c
00521da48
00521c704
00521b2f0
005219fac
005218c68
005217854
005216510
0052151cc
005213db8
005212a74
005211730
0052107dc
00520fb18
00520ee54
00520€190
00520d4cc
0P0520c808
00520bb44
0P0520ae80
00520a1bc
00520948
005208834
0P05207b70
PO5206€eac
0052061e8
005205524
005204860
P05203b9c
005202ed8
005202214
005201550
P0520088C
0051ffbcs
pe51fefo4
0051fe240
P051Ffd57c
0051fc8bs
0051Fbbf4
! 0O400Ch4

200k
150k
100k

50k

abe.uany

Addresses

Figure 4.7: Inter access distance for 150x150 matrix multiplication.

Chapter 4. Evaluation

28

Inter Access Distance

—

N NEW NEW NEW NHD
g 8

(o]
—

abeaany

005226858
005225c80
0052250a8
0052244d0
00522388
005222d20
005222148
005221570
005220998
00521fdce
00521f1e8
00521e610
00521da38
00521ce60
00521c288
00521b6h0o
00521aad8
00521900
005219328
005218750
005217h78
005216fa0
0052163c8
00521570
005214c18
005214040
005213468
005212890
005211ch8
0052110e0Q
005206048
005205500
005204928
005203d50
005203178
0052025a0
0052019c8
005200df0
005200218
0051ff640
0051feabs8
0051fde90
0051fd2b8
0051fc6e0
0051fbbho8
000400d24

Addresses

Figure 4.8: Inter access distance for 150x150 blocked matrix multiplication.

Figure §.7 and Figure .8 present the inter access distance for 150x150 matrix multipli-

cation, normal and blocked. As we can see, the number of the accesses is huge, and the error

bars are distinct. Figure #.9 and Figure shows a zoom in the Figure §.7 and Figure }.8.

Inter Access Distance

0051fb1de
0051fh1co
0051fh1bo
0051fbl1ae
0051fb190
0051fh180
0051fb170
0051fb1606
0051fb150
0051fb140
0051fb130
0051fbh120
0051fbh110
0051fb100
0e51fhefe
0051fhoed
0051fhodo
0051fhoce
0051fbebe
0051fhoa
0051fbho90e
0051fhe806
0051fbo70
0051fho60
0051fhe50
0051fhe406
0051fhe30
0051fa468
00516738
0051f66b0
00516690
00516648
0051f4f70
0051f4718
004fhefaf
004fh6T83
004e424b0o
0EE602028
000400d05
000400cee
000400cdd
000400ccd
000400ch4

Addresses

Figure 4.9: Zoom in inter access distance for 150x150 matrix multiplication.

4.2 Comparison between two types of matrix multiplication 29

Inter Access Distance

I'H

2e

[y
=

o

Peqitcen —F0F———————————— &

Average
" 5 i
084904100
984904700 s
840V TSOO
044V4TSO0 B
05994TS00 ol -
0B99JTSO0 —g
802941500 !
20724TS00 F===*i§
v£004TS00 ! —
25004TS00
0.094TS00
780041500
860041500
2BAQ4TSO0
220941500
¥POYITSO0
82004TS00
91094TS00
OTTq4TS00
vZTq4TS00
8£TqJTSO0
OVTQITSO0
09Tq4TSO0
v.TG4TS00
88Tq4TS00
26TU4TSO0
0qTqlTS00
POTQLTSOR
8pPTQJITS00
23TQ4TS00
002941500
$TZqITSO0
82CQ41S00 F ————+——
2£Z04TSO0
PSZqITSO0
792941500
812041500
28204TS00
QRZq4TSO0
892G4TS00
9PZUITSO0
04294TS00
vOEqITSO0
8TEq4TSO0

Addresses

Figure 4.10: Zoom in inter access distance for 150x150 blocked matrix multiplication.

Zooming in, figures show information about every memory address clearly. For example,
in Figure §.7, for some addresses the average inter access distance seems to be equal to zero,
but in Figure §.9 the actual value of the inter access distance is shown. These values are very
small compared to the rest, for this reason they can’t be shown in the plot.

Comparing Figure .7 with Figure §.§ we conclude in:

1. The pattern followed by the average distance of the successive memory accesses for

each address differs.

2. Average inter access distance is bigger for some addresses, while source code is blocked

matrix multiplication, and smaller for some others.

3. Also, standard deviation is bigger for most addresses, while source code is blocked
matrix multiplication. For the first addresses that appear in the plot (left side of the
plot), the average inter access distance and the standard deviation remain the same.
This is explained by the fact that these accesses are related to operations that take place

before the multiplication of matrices and are stable for both types of multiplication.

4.2.2 Total Accesses

In this type of visualization, we compare Figure with Figure §.12.

0Z2€qJTS00

Chapter 4. Evaluation

30

Total Accesses per Address Vizuallisation

MR

il

A

A

100

@OM~© 1N T M o @Or~© D T M

(o)
—

S9SS9023Y JO0 JaqunnN

005225dao
005224a70
005223740
005222340
005221010
00521fce0
00521e8e0
00521d5bo
00521c280
00521af50
005219b50
005218820
0052174f0
0052160T0
005214dcO
005213a90
005212760
005211360
0052105¢c0
005201910
00520ec60
00520dfbo
00520d300
00520c650
00520b9ab
0e520acte
00520a040
005209390
0052086€e0
005207a30
005206d80
0052060d0
005205420
005204770
005203aco
005202e10
005202160
0052014b0
005200800
0051ffb50
0051feead
pes1felifo
0051fd540
0051fc890
0051fbbeo
000400ch4

Addresses

Figure 4.11: Total accesses for 150x150 matrix multiplication.

Total Accesses per Address Vizuallisation

100

DEOM~0 1D T] DM~ =

o]
—

S9SS9290Y JO Jaqunn

0052264d4
005225910
005224d4c
005224188
0052235c4
005222a00
005221e3cC
005221278
0052206h4
ees521fafe
00521ef2c
00521e368
00521d7a4
00521ched®
00521colc
00521b458
00521a894
005219cdo
00521910c¢C
005218548
005217984
005216dco
0052161fc
005215638
005214a74
005213ebo
0052132ecC
005212728
005211h64
005206h70
005205fac
0052053e8
005204824
005203c60
00520309cC
0052024d8
005201914
005200450
00520018C
0051ff5c8
0051feans
0051fded®
0051fd27c
0051fc6h8
0051fbaf4
000400d24

Addresses

Figure 4.12: Total accesses for 150x150 blocked matrix multiplication.

We observe that total accesses follow the same pattern in both figures (source code matrix

multiplication and blocked matrix multiplication). The first addresses shown on the plot have

fluctuations in the access numbers. Later, for some sequential addresses, the access pattern

4.2 Comparison between two types of matrix multiplication 31

is stable. And for the last addresses being accessed, accesses number, range between two
values. Furthermore, the number of accesses for the majority of memory addresses remains

the same for both source codes.

4.2.3 Timeline of Accesses

Timeline of Accesses

-

Addresses

000400370

Time of Access

Figure 4.13: Timeline of accesses for 150x510 matrix multiplication.

Timeline of Accesses

— i M
= i

Addresses

000400370
o 18] 1M 124

Time of Access

Figure 4.14: Timeline of accesses for 150x510 blocked matrix multiplication.

We can understand better the memory access pattern by observing Figure and Figure
i.14. These Figures provide us with information about the locality of the addresses the pro-
gram used. In blocked matrix multiplication, accesses to specific addresses occur between

shorter intervals. As we see, data locality is increased while source code is blocked matrix

32 Chapter 4. Evaluation

multiplication. Accesses in successive addresses occur in smaller time gap than with the other

source code.

Chapter 5

Conclusion

The growing speed gap between the CPU and main memory has created the need for
better usage of the memory [[15]. The ability to properly utilize the memory subsystem is
critical for memory performance acceleration. This Thesis, provides a tool that can detect

and visualize the memory access patterns, increasing application memory efficiency [[16].

5.1 Summary and Conclusions

In this Thesis, we designed a tool to extract memory accesses from trace files generated
using Gleipnir, a plug in built for Valgrind. After taking the memory trace, we implemented
several procedures to create the data structures we needed for the visualizations. First, we
decreased the size of the trace file by deleting lines with unnecessary information. After that
we created the functions stack, as analyzed in Chapter 3. Finally, we created a GUI for our

tool and we gave some examples of the tool’s functionality.

The tool’s functionality can easily be seemed by using it to visualize memory access pat-
terns for a source code. The graphs our tool creates, provide information about the memory
use. The graphs show which are the "hot” areas of the memory, how often a memory address
is being accessed, and which pattern the total memory accesses follow during the execu-
tion of the program. Having this information, developers can overcome, to some extent, the

”Memory Wall” [[17].

33

34 Chapter 5. Conclusion

5.2 Future Work

Because Gleipnir creates huge files, there is a need for optimizations in Gleipnir tool, to
create smaller data files. The functions that our tool provides, handle big amounts of data,
and utilize a large amount of memory similarly. Rewriting sections of the code in C will assist
decrease the tool’s memory footprint.

Furthermore, our tool allows developers to focus on a specified functions that cause memory
accesses. An interesting expansion of our tool, will be the option of visualizing graphs for
specific data structures, like arrays or variables. Other parts that can be optimized is the GUI,
by providing additional choices for different kinds of visualizations and a command-line

interface (CLI).

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Philip Machanick. Approaches to addressing the memory wall. Technical Report QLD
4072, School of IT and Electrical Engineering, University of Queensland Brisbane, Aus-
tralia, 2002.

Example of good locality. https://www.eetimes.com/optimizing-for-

instruction-caches-part-1/. Date of access: 08-07-2021.

Peter Grun, Nikil Dutt, and Alex Nicolau. Apex: Access pattern based memory archi-
tecture exploration. In Proceedings of the 14th International Symposium on Systems
Synthesis, ISSS °01, page 25-32, New York, NY, USA, 2001. Association for Comput-
ing Machinery.

Christos Ntogkas. Design and implementation of a tool for memory access pattern
visualization. Diploma Thesis, University of Thessaly Department of Electrical and

Computer Engineering, 2007.

Locality of reference. https://en.wikipedia.org/wiki/Locality of

reference. Huepounvia npoécPaocng: 06-7-2021.

Spencer W. Ng Bruce Jacob and David T. Wang. Memory Systems. Morgan Kaufmann,

San Francisco, 1 edition, 2008.

Matthew Naylor and Colin Runciman. Implementation and Application of Functional

Languages. Springer Berlin Heidelberg, Berlin, Heidelberg, 1 edition, 2008.

Linear memory access pattern. https://en.wikipedia.org/wiki/Memory

access pattern. Hugpounvia tpdcsfaong: 06-7-2021.

Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dy-
namic binary instrumentation. SIGPLAN Not., 42(6):89-100, June 2007.

35

https://www.eetimes.com/optimizing-for-instruction-caches-part-1/
https://www.eetimes.com/optimizing-for-instruction-caches-part-1/
https://en.wikipedia.org/wiki/Locality_of_reference
https://en.wikipedia.org/wiki/Locality_of_reference
https://en.wikipedia.org/wiki/Memory_access_pattern
https://en.wikipedia.org/wiki/Memory_access_pattern

36

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Tomislav Janjusic and Krishna Kavi. Gleipnir: A memory profiling and tracing tool.

SIGARCH Comput. Archit. News, 41(4):8—12, December 2013.

Plotly documentation. https://plotly.com/python/. Huepounvia npoécPa-
ong: 06-7-2021.

Standard deviation. https://en.wikipedia.org/wiki/Standard

deviation#cite note-StatNotes-1. Huepounvia npéocPacng: 09-07-2021.

Jeanne Ferrante. Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation. Association for Computing Machinery, New

York, NY, USA, 2007.

Shipman, john w. (2010-12-12), tkinder referance. http://alexandre.benoit.
83.free.fr/archives/1415/adumas/ISN/tkinter.pdf. Dateofaccess:
08-07-2021.

Margaret Martonosi, Anoop Gupta, and Thomas Anderson. Memspy: Analyzing mem-
ory system bottlenecks in programs. SIGMETRICS Perform. Eval. Rev., 20(1):1-12,
June 1992.

Byunghyun Jang, Dana Schaa, Perhaad Mistry, and David Kaeli. Exploiting memory
access patterns to improve memory performance in data-parallel architectures. [EEE

Transactions on Parallel and Distributed Systems, 22(1):105-118, 2011.

Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of the obvi-
ous. SIGARCH Comput. Archit. News, 23(1):20-24, March 1995.

https://plotly.com/python/
https://en.wikipedia.org/wiki/Standard_deviation#cite_note-StatNotes-1
https://en.wikipedia.org/wiki/Standard_deviation#cite_note-StatNotes-1
http://alexandre.benoit.83.free.fr/archives/1415/adumas/ISN/tkinter.pdf
http://alexandre.benoit.83.free.fr/archives/1415/adumas/ISN/tkinter.pdf

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Problem Description
	Organization of Thesis
	Related Work

	Background
	Locality of reference
	Memory Access Pattern
	Gleipnir Tool
	Plotly
	Visualization Metrics

	Implementation
	Memory trace
	Pre-Proccessing
	Cleaning up the trace file:
	Creation of the stack:
	Organization of the data:

	Visualization
	User Interface:
	Plot Selection:

	Evaluation
	Plots with descendants and without
	Comparison between two types of matrix multiplication
	Inter Access Distance
	Total Accesses
	Timeline of Accesses

	Conclusion
	Summary and Conclusions
	Future Work

	Bibliography

