
UNIVERSITY OF THESSALY

DOCTORAL THESIS

Design space exploration in near-data
co-processors for general-purpose

acceleration, in high-performance and
low-power processing environments

Author:
Athanasios TZIOUVARAS

Supervisors:
Prof. George STAMOULIS

Prof. Nestor EVMORFOPOULOS
Prof. Athanasios
LOUKOPOULOS

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Electronics Lab
Department of Electrical and Computer Engineering

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

http://www.uth.gr
http://vedalab.inf.uth.gr/
http://vedalab.inf.uth.gr/
http://vedalab.inf.uth.gr/
http://vedalab.inf.uth.gr/
http://vedalab.inf.uth.gr/
http://vedalab.inf.uth.gr
https://www.e-ce.uth.gr

ii

May 10, 2021

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

iii

Declaration of Authorship
I, Athanasios TZIOUVARAS, declare that this thesis titled, “Design space exploration in near-
data co-processors for general-purpose acceleration, in high-performance and low-power
processing environments” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

v

“Fooling around with alternating current (AC) is just a waste of time. Nobody will use it,
ever.”

Thomas Edison

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

vii

UNIVERSITY OF THESSALY

Abstract
Department of Electrical and Computer Engineering

Doctor of Philosophy

Design space exploration in near-data co-processors for general-purpose acceleration,
in high-performance and low-power processing environments

by Athanasios TZIOUVARAS

Modern computer architectures face a performance scaling wall as the throughput and power
consumption bottleneck has shifted from the core pipeline towards the DRAM latency and
data transfer operations. This phenomenon can be partially attributed to the stop of Dennard’s
scaling and to the continuous shrinking size of transistors. As a result, the power density of
the integrated circuits has increased to a point where most of the cores in a multi-core ar-
chitecture are forced to operate in near-threshold voltage levels. In order to address such
an issue, researchers tend to deviate from the standard Von Neuman architectures towards
new computing models. In the last decade there is a resurgence of the NDP paradigm, under
which the instructions are executed on the DRAM die instead of the core pipeline. Therefore,
the amount of CPU-DRAM transactions is significantly decreased and thus, it positively af-
fects the power dissipation and the achievable throughput of the system. Under this premise,
in this dissertation we explore the NDP paradigm for high performance and for low-power
computing. Regarding the high performance computing, we propose a novel approach that
considers general purpose loop execution. Our design employs an instruction scheduling
methodology which issues each individual instruction on a custom integrated circuit acting
as loop accelerator that is located on the logic layer of an HMC DRAM. There, instructions
are iteratively executed in parallel in a software pipelining fashion, while intermediate results
are forwarded through an on-chip interconnection network. Regarding the low-power com-
puting, we develop a novel timing analysis methodology that is based on the premises of STA,
specifically for low-power, low-end pipelines. The proposed timing methodology considers
the excitation of the timing paths for each instruction supported by the ISA, and calculates
the worst-case slack for each individual instruction. As a result, we obtain timing information
on an instruction level and we proceed in exploiting such knowledge to adaptively scale the
clock frequency according to instruction types that execute in the pipeline at any given time.
In the sequel, we employ the aforementioned BTWC methodology to co-design a pipeline
from the ground up to support a clock scaling mechanism with cycle-to-cycle granularity.
We focus on the general purpose code execution and we implement our design on the logic
layer of an HMC DRAM in order to enable near-data execution. We opt to evaluate both
the high performance and the low power architectures on post-layout simulations in order to
strengthen the validity of our designs. Results indicate a significant performance increase
in terms of throughput over the baseline processors while the power consumption levels are
critically reduced.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

HTTP://WWW.UTH.GR
https://www.e-ce.uth.gr

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

ix

Greek Abstract

Εξερεύνηση σχεδιαστικού χώρου των συν-επεξεργαστών κοντά στην κύρια μνήμη για

επιτάχυνση κώδικα γενικού σκοπού, σε περιβάλλοντα υψηλών επιδόσεων και χαμηλής

κατανάλωσης ισχύος

Οι σύγχρονες αρχιτεκτονικές υπολογιστών είναι αντιμέτωπες με ένα σοβαρό πρόβλημα

που αφορά την κλιμάκωση της απόδοσης τους, καθώς η συμφόρηση της πληροφορίας έχει

μετατοπιστεί από τον πυρήνα του επεξεργαστή στην μονάδα της κύριας μνήμης και στις

λειτουργίες μεταφοράς δεδομένων. Το φαινόμενο αυτό μπορεί μερικώς να αποδοθεί στο

τέλος της ισχύος του νόμου του Dennard και στην διαρκή μείωση του μεγέθους των

τρανσίστορς. Ως αποτέλεσμα, η πυκνότητα ισχύος των ολοκληρωμένων κυκλωμάτων

έχει αυξηθεί τόσο, ώστε η λειτουργία των πολύ-πυρηνικών επεξεργαστών να επιτελείται

σε τάσεις που βρίσκονται κοντά στην τάση κατωφλίου. Για να ξεπεράσουν το πρόβλημα

αυτό, οι ερευνητές τείνουν να αποκλίνουν από τις κλασικές αρχιτεκτονικές προσεγγίσεις

τύπου Von Neuman και να στρέφουν την προσοχή τους σε νέα μοντέλα επεξεργασίας.

Την τελευταία δεκαετία έχει παρατηρηθεί μία αναζωπύρωση του ενδιαφέροντος για το

παράδειγμα εκτέλεσης εντολών κοντά στην κύρια μνήμη (NDP) , κατά το οποίο οι εν-

τολές εκτελούνται στο κύκλωμα της κύριας μνήμης αντί του κεντρικού επεξεργαστή.

΄Ετσι, ο αριθμός των λειτουργιών της μεταφοράς δεδομένων μεταξύ της κύριας μνήμης

και του επεξεργαστή μειώνεται σημαντικά, κάτι το οποίο επιδρά θετικά στην κατανάλ-

ωση ισχύος και την επιτεύξιμη απόδοση του συστήματος. Κινούμενοι προς αυτήν την

υπόθεση, στην διατριβή αυτή εξερευνούμε το NDP παράδειγμα για επεξεργαστές υψη-

λής απόδοσης αλλά και για επεξεργαστές χαμηλούς ισχύος. ΄Οσον αφορά του επεξερ-

γαστές υψηλής απόδοσης, προτείνουμε μία προσέγγιση στην οποία λαμβάνουμε υπ’ όψη

μας την εκτέλεση βρόγχων γενικού σκοπού. Η αρχιτεκτονική την οποία προτείνουμε

κάνει χρήση μίας μεθοδολογίας χρονοδρομολόγησης εντολών, κατά την οποία η κάθε εν-

τολή του βρόγχου εκδίδεται σε ένα ειδικά προσαρμοσμένο ολοκληρωμένο κύκλωμα που

έχει τον ρόλο του επιταχυντή της εκτέλεσης του βρόγχου. Το κύκλωμα αυτό τοπο-

θετείται στο λογικό επίπεδο μίας κύριας μνήμης υβριδικού κύβου (HMC). Στο επίπεδο

αυτό οι εντολές εκτελούνται επαναληπτικά και παράλληλα, με έναν τρόπο που θυμίζει

αυτόν της επικάλυψης λογισμικού, ενώ τα ενδιάμεσα παραγόμενα αποτελέσματα παρο-

χετεύονται δια μέσου ενός δικτύου διασύνδεσης που βρίσκεται πάνω στο ολοκληρωμένο

κύκλωμα. ΄Οσον αφορά τις αρχιτεκτονικές χαμηλής κατανάλωσης ισχύος, αναπτύσσουμε

μία καινοτόμο μεθοδολογία ανάλυσης χρονισμού, η οποία βασίζεται στις αρχές του STA
και προσανατολίζεται συγκεκριμένα προς συστήματα χαμηλών προδιαγραφών και χαμη-

λής κατανάλωσης ενέργειας. Η μεθοδολογία αυτή λαμβάνει υπ’ όψη της την διέγερση

των διαδρομών χρονισμού της κάθε εντολής που υποστηρίζεται από το σετ εντολών

του επεξεργαστή (ISA) και υπολογίζει την καθυστέρηση της χειρότερης περίπτωσης

για την κάθε εντολή ξεχωριστά. Ως αποτέλεσμα, αντλούμε πληροφορίες για την χρονική

καθυστέρηση σε επίπεδο εντολής και εκμεταλλευόμαστε την πληροφορία αυτή ώστε να

κλιμακώνουμε την συχνότητα του ρολογιού δυναμικά, ανάλογα με τον τύπο εντολής

που εκτελείται στο κύκλωμα σε κάθε χρονική στιγμή. Στην συνέχεια χρησιμοποιούμε

την μεθοδολογία που περιγράψαμε για να συν-σχεδιάσουμε μία αρχιτεκτονική, με γνώ-

μονα την δυναμική μεταβολή της συχνότητας του ρολογιού του επεξεργαστή η οποία

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

x

εκτείνεται στον βαθμό λεπτομέρειας του κύκλου μηχανής. Επικεντρωνόμαστε ξανά στην

εκτέλεση κώδικα γενικού σκοπού και υλοποιούμε συνδυαστικά τη αρχιτεκτονική στο

λογικό επίπεδο μίας μνήμης τύπου HMC ώστε να καταστήσουμε ικανό το σύστημα μας

για εκτέλεση εντολών δίπλα στην μνήμη τυχαίας προσπέλασης. Επιλέγουμε να αξιολογή-

σουμε τις αρχιτεκτονικές που υλοποιήσαμε (της υψηλής απόδοσης αλλά και της χαμηλής

κατανάλωσης ισχύος) σε επίπεδο υλοποίησης ολοκληρωμένου κυκλώματος σύμφωνα με

τα πρότυπα της βιομηχανίας ώστε να ενισχύσουμε την εγκυρότητας της μεθοδολογίας

μας. Τα αποτελέσματα τα οποία παίρνουμε υποδεικνύουνε μία μεγάλη αύξηση της από-

δοσης του συστήματος όσον αφορά την επιτάχυνση της λειτουργίας του σε σύγκριση με

την αρχική αρχιτεκτονική, ενώ η κατανάλωση ισχύος πέφτει σε πολύ χαμηλά επίπεδα.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

xi

Acknowledgements
I would like to express my sincere gratitude to Prof. George Dimitriu for his continuous
support of my Ph.D study and related research, for his motivation and for his intelligent
recommendations. His advices, counseling and analytical suggestions constitute for me not
only a source of inspiration, but also play a major role on the concepts incorporated within
this work. He also assisted me meticulously with the writing process of this dissertation and
I think that the realization of this work would be very difficult if not impossible, if it weren’t
for his help.

I would also like to thank Prof. George Stamoulis for his thoughtful guidance through this
period of time. He managed to impart remarkable knowledge and to elaborate on concepts
which are more than important for the research process. He has made several scientific
remarks and contributions to this thesis for which I am grateful. He also provided substantial
supervision during the research and oversaw the writing process.

Besides Prof. George Dimitriu and Prof. George Stamoulis, I would like to thank the rest
of my thesis committee: Prof. Nestor Evmorfopoulos, and Prof. Athanasios Loukopoulos,
for their insightful comments, encouragement, but also for their remarks which motivated me
to broaden my research subject and to explore different perspectives. My sincere thanks also
goes to the other committee members for accepting the invitation.

Finally, I thank everyone who assisted, supported and encouraged me during this process
of exploration, experimentation and hard work.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

xiii

Contents

Declaration of Authorship iii

Abstract vii

Greek Abstract ix

Acknowledgements xi

1 Introduction 1
1.1 Introduction . 1
1.2 Contributions . 2
1.3 Outline . 3

2 Near data processing for high performance architectures 5
2.1 Introduction . 5
2.2 Related work . 5
2.3 Background . 7

2.3.1 Hybrid memory cube organization 7
2.3.2 CGRA architecture . 8

2.4 NDP for general purpose applications . 8
2.4.1 CGRA microarchitecture for general purpose instruction execution . . 9
2.4.2 Loop pipelining for the CGRA microarchitecture 11
2.4.3 Instruction issue for the CGRA . 11
2.4.4 Loop execution on the CGRA . 13

2.5 Implementation . 15
2.5.1 System architecture . 15
2.5.2 NDP design space exploration and layout 16

2.6 Experimental evaluation . 20
2.6.1 Normalized speedup . 20
2.6.2 Energy reduction . 23
2.6.3 Power and area efficiency . 24
2.6.4 Speedup improvement per Watt . 26
2.6.5 Comparison with related works . 26

3 Timing analysis for low power pipelines 29
3.1 Introduction . 29
3.2 Related word . 30
3.3 Background . 32

3.3.1 Static and dynamic timing analysis 32
3.4 Timing analysis in processor datapaths . 32

3.4.1 The instruction path exhaustive timing analysis concept 32
3.4.2 Dynamic opcode value changes compensation 33

3.5 Clock scaling of RISC-V using IPE-STA . 35

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

xiv

3.5.1 Adaptive clock scaling in pipelined Processors 35
3.5.2 Scaling clock by opcodes . 36
3.5.3 Dynamic Clock Scaling Mechanism 38

3.6 Implementation . 40
3.6.1 RISC-V processor parameters . 40
3.6.2 CAD toolflow and simulation . 41
3.6.3 Clock tree synthesis . 42

3.7 Experimental evaluation . 43
3.7.1 Normalized speedup . 43
3.7.2 Normalized power consumption . 44
3.7.3 Overhead of the IPE-STA methodology 45
3.7.4 PVT tolerance considerations . 46

4 Near data processing for low power architectures 49
4.1 Introduction . 49
4.2 NDP System Architecture . 49

4.2.1 Host system architecture . 49
4.2.2 PIM core architecture . 50

4.3 BTWC-NDP co-design methodology . 53
4.3.1 Application of IPE-STA to the PIM core 53
4.3.2 PIM core microarchitecture with adaptive clock scaling 54

4.4 Implementation . 56
4.4.1 Design space exploration and parameter considerations 56
4.4.2 CAD toolflow and simulation . 57
4.4.3 Adaptive clock scaling with multiple clocks 57
4.4.4 Area and power budget . 58

4.5 Experimental evaluation . 58
4.5.1 Workload characterization . 58
4.5.2 Normalized speedup . 59
4.5.3 Normalized energy reduction . 61
4.5.4 Energy efficiency . 61
4.5.5 Area efficiency . 62

5 Conclusions and Future Directions 65
5.1 Conclusions . 65
5.2 Future Directions . 66

A Relevant Publications 67
Relevant Publications . 67

Bibliography 69

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

xv

List of Figures

2.1 Architecture diagram of HMC DRAM. 8
2.2 The proposed CGRA grid architecture deployed on the logic layer of the

HMC DRAM. 9
2.3 PE microarchitecture. 11
2.4 The loop pipelining optimization. 12
2.5 The outcome of the instruction issue process after which each operation is

issued on a PE. 14
2.6 Instruction execution instance on CGRA microarchitecture. 15
2.7 System architecture for general purpose NDP. 16
2.8 The speedup improvement of the proposed NDP implementations for each

kernel normalized to the host processor execution time. 21
2.9 Host processor-HMC data transfer reduction and its contribution to the nor-

malized speedup of each NDP implementation. 22
2.10 Normalized energy reduction of the NDP methodology. 23
2.11 Energy consumption breakdown of NDP implementations. 24
2.12 Normalized power efficiency of the NDP implementations. 25
2.13 Normalized area efficiency of the NDP implementations. 26
2.14 Speedup per Watt of each NDP implementation. 27

3.1 An instruction execution instance of the Rocket core implementation display-
ing the minimum operational clock period during each stage. 38

3.2 The clock control unit integrated in the rocket core. 39
3.3 Unstable clock behavior due to subsequent clock selections. 39
3.4 The clock instability compensation technique. 40
3.5 The configuration parameters of both processor implementations. 41
3.6 The CAD toolflow for the IPE-STA methodology. 42
3.7 Normalized throughput improvement and critical instruction appearance rate

of the proposed design methodology compared to the corresponding baseline
processors. 43

3.8 Normalized power consumption increase of the proposed methodology com-
pared to the baseline processors. 45

4.1 The host system architecture composed by the BOOM core and the PIM pre-
processing pipeline. 50

4.2 The PIM core architecture . 51
4.3 An instruction execution instance of the PIM core depicting the minimum

operational clock period during each stage. 55
4.4 The CCU implemented on the PIM core in the HMC logic layer. 55
4.5 Toolflow of the IPE-STA methodology for the PIM core 57
4.6 Normalized speedup of each PIM core implementation over the baseline

RISC-V pipeline. 59
4.7 Impact of different design techniques on each PIM core speedup factor 60

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

xvi

4.8 Normalized energy reduction of each PIM core implementation over the
baseline RISC-V pipeline. 61

4.9 Energy efficiency of the PIM core and RISC-V core pipeline implementations 62
4.10 Area efficiency of the PIM core and RISC-V core pipeline implementations . 63

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

xvii

List of Tables

2.1 Key parameters of the host processor die and of the HMC implementations. . 17
2.2 PE and CE post-layout requirements in terms of area, power and latency. . . . 18
2.3 Implementation parameters of 5 different NDP designs. 18
2.4 Workload characterization. 20
2.5 Comparison of the proposed NDP architectures with the current state of the art. 27

3.1 Analysis of the instruction classes of the RISC-V Rocket core architecture. . 37
3.2 The clock periods for critical instructions along with the typical clock period

for the Rocket core implementation. 37
3.3 Throughput improvement comparison between Application-adaptive guard-

banding and IPE-STA. 44
3.4 Throughput improvement comparison between Blueshift OpenSPARC, Ra-

zor and IPE-STA methodology. 44
3.5 The power and area overhead of the clock control and instruction snooping

circuits in comparison to RiscV . 45
3.6 Area overhead comparison between IPE-STA methodology and the state of

the art. 46
3.7 Time requirements of DTA, STA and IPE-STA to complete the timing anal-

ysis of RiscV pipeline. 46

4.1 Instruction class IPE-STA analysis of PIM core architecture for different sup-
ply voltages . 54

4.2 NDP design parameters . 56
4.3 Area and power requirements of the RISC-V and PIM core implementations . 58
4.4 Workload characterization . 59

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

xix

List of Abbreviations

BTWC Better Than Worst Case
TS Timing Speculation
PVT Process Voltage Temperature
ISA Instruction Set Architecture
STA Static Timing Analysis
DTA Dynamic Timing Analysis
IPE-STA Instruction Path Exhaustive STA
DRAM Dynamic Random Access Memory
PIM Process In Memory
NDP Near Data Processing
TSV Trough Silicon Via
HMC Hybrid Memory Cube
CGRA Coarse-grained Reconfigurable Array
PE Processing Element
CE Control Element
OoO Out of Order
SSD Solide State Drive
ILP Instruction Level Parallelism
LP Loop Pipelining
RaW Read After Write
RF Register File
MMU Memory Management Unit
VC Vault Controller
SoC System-on-Chip
IPC Instruction Per Clock
HPC High Performance Computing

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

xxi

Dedicated to everyone who assisted me in translating this research
conception into an engineering realization.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

1

Chapter 1

Introduction

1.1 Introduction

Traditional processors employ the standard Von Neumann architecture which separates the
core pipeline from the main memory, while the communication between such entities is han-
dled through an off-chip bus interface. This approach has been adopted by both the academia
and industry and it has evolved into a well established paradigm that drives the contemporary
design methodologies of integrated circuits. Furthermore, the continuous shrinking of tran-
sistor size seems to confirm Moore’s law which indicates that the number of transistors in a
dense integrated circuit will double about every two years. Moore’s Law, coupled with Den-
nard scaling [1] has led to a stable increase in the processor core count and to proportional
performance scaling over the last 20 years. Consequently, the resulting computer architec-
ture paradigm focuses on multi-core or many-core systems, on pipeline optimizations and on
parallelism exploitation to drive the evolution of the market processors.

As Dennard’s scaling stops mainly due to supply voltage limits and leakage power drain,
power densities rapidly increase on the chip and benefits of multi-core scaling begin to abate
well before we hit the physical manufacturing limits. Therefore the industry races down the
multi-core path and the dark silicon phenomenon [2] emerges. Under the dark silicon effect,
the cores in a multi-core processor cannot be functional at the same time due to the lack of
energy efficiency and thus, the performance scaling of the CPUs begins to decelerate. As
the essential question of "how much more performance can be extracted from the multi-core
path in the near future" [2] is formulated, latest research concludes that large performance
workload variations are to be expected in present-day computer architectures [3] [4]. Such
inherent variations may lead to unpredictable and sub-optimal performance in tightly coupled
applications.

Nowadays computer architecture research suggests that the Von Neuman model begins to
realize its upper limit in terms of power and throughput, while the performance bottleneck is
shifting away from the core pipeline to the DRAM [5]. More specifically, the long DRAM la-
tency and the costly data transfer between the CPU and the DRAM severely affect the energy
consumption and throughput of computing systems. In order to alleviate such a scaling wall,
researchers have proposed the adoption of the NDP paradigm in which the computations are
moved near the DRAM silicon die. NDP promises to decrease the CPU-DRAM transactions
and thus, to minimize the energy consumption of the system while also maintaining a very
high throughput compared to the core pipeline.

In this work, we explore the premises and prospects of the NDP computing paradigm
in both HPC and low power computing domains. To this end, we propose a novel high
performance NDP design for general purpose applications that executes instructions on the
logic layer of a 3D-stacked DRAM. Under this premise, we deploy a network of functional
units within a mesh interconnection network in conjunction with an instruction scheduling
methodology which is tailored to minimize the dark silicon phenomenon. To achieve this,
we focus our efforts on a high functional unit utilization rate and low power constraints,

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

2 Chapter 1. Introduction

both of which diminish the dark silicon effect. The proposed design methodology issues one
instruction on each functional unit and propagates the intermediate results through the mesh
interconnection network. In this sense, loop execution resembles the software-pipelining
paradigm, as each loop instruction executes iteratively in a dedicated functional unit near
the DRAM. As a result we manage to obtain a theoretical throughput of one loop iteration
per clock cycle while avoiding the costly CPU-DRAM data transactions. We evaluate our
methodology by conducting a detailed design space exploration in a post-layout simulation
environment using the standard industry CAD toolflow. Results indicate a speedup of 42x
and an energy reduction of 22.4x over a high performance OoO CPU.

Considering the NDP for low power computer architectures we shift our focus on low-end
small pipelines which are designed for reduced energy consumption. In order to efficiently
implement a low-power NDP system we develop a novel timing methodology specifically
targeting low-end pipelines and we explore a co-design approach between the proposed tech-
nique and the NDP paradigm. The rationale behind the low-end pipeline consideration is
supported by the fact that in the Internet of Things era, the low-end processor domination
of the embedded market is expected to be further reaffirmed. Then, a question will arise, on
whether it is possible to enhance performance of such processors without the cost of high-end
architectures. To this end, this part of our work focuses on frequency scaling and the study
of related techniques which can boost processor performance with a low cost. Frequency
scaling has been recently used in conjunction with the BTWC processor design paradigm.
Traditional designs operate under worst-case timing constraints which avert incurring exe-
cution errors. However, such constraints impose heavy performance penalties. The BTWC
designs are allowed to operate above their critical levels, but expensive error-correction hard-
ware must then be incorporated, to fix any possible errors. Under this premise, we propose
a BTWC methodology which enables the processor pipeline to operate at higher clock fre-
quencies compared to the worst-case design approach. We employ a novel timing analysis
technique, which calculates the timing requirements of individual processor instructions stat-
ically, while also considering the dynamic instruction flow in the processor pipeline. There-
fore, using an appropriate circuit that we designed within this work, we are able to selectively
increase clock frequency, according to the timing needs of the instructions currently occu-
pying the processor pipeline. In this way, the error-free instruction execution is preserved
without requiring any error-correction hardware. In the sequel we apply the proposed timing
methodology on a low-end, low-power architecture that is implemented on the logic layer of
an HMC DRAM. We design the system pipeline from the ground up to support the frequency
scaling mechanism and we make the necessary modifications on the host system to facilitate
a pre-processing pipeline that minimizes the power overhead of the NDP processing. Results
demonstrate an average speedup factor of 23x with 12x reduction in energy consumption
compared to the baseline implementation. We also show that the proposed methodology pro-
duces at least 9x times more energy efficient and 24.5x times more area efficient designs and
we conclude that it significantly enhances the overall performance of the low-power NDP
implementations.

1.2 Contributions

The main contributions of this work to the current state of the art are considered as follows:

• We expand applicability of the NDP paradigm by designing and implementing an HPC
NDP system for general purpose loop execution. In particular, we design the control
and the processing elements as well as a forwarding unit that speedups the execution of
general purpose loop bodies. We employ such a general purpose approach to allow any

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

1.3. Outline 3

type of application to exploit the NDP technology, instead of focusing on an application
specific methodology as most of previous works do.

• We provide an NDP instruction issue methodology which issues each loop body in-
struction on a single functional unit. In this way each functional unit executes one in-
struction iteratively until the loop execution completes and thus, the NDP throughput
is maximized. We also make sure that the whole loop can be mapped on the functional
units by optimizing the efficiency of the issue process.

• We propose a novel timing analysis methodology implemented on the circuit level
which considers instruction opcodes for performance increase. Previous consideration
of opcodes for performance increase has been compiler-only consideration or through
the DTA technique.

• Our BTWC methodology accurately identifies the timing requirements of any incom-
ing instructions. Since we are a priory aware of such constraints we do not deploy any
error detection or error correction mechanisms and thus, the hardware implementation
costs are significantly reduced.

• We co-design and implement an NDP architecture for low-end processors from the
ground up, capable of facilitating the aforementioned methodology. We design the
NDP architecture considering the processor low-power and low-area requirements,
while also providing hardware support for the proposed timing analysis.

• We explore an NDP architecture-oriented approach to the BTWC design paradigm.
Our work studies the NDP pipeline architecture to extract timing information based on
the ISA of the processor. We consider this approach to have greater applicability, as it
can be used on any processor without requiring to adjust or change the premise of our
technique.

1.3 Outline

The following chapters of this dissertation are organized as follows. In chapter 2, we present
our methodology for the HPC NDP architecture and we provide a detailed design space
exploration in order to verify and evaluate the proposed technique. In chapter 3, we introduce
the concept of timing analysis for low-end pipelines and we elaborate on the timing analysis
approach we employ. In chapter 4 we discuss our co-design perspective between the NDP and
the proposed timing analysis technique, and we provide the evaluation of the implemented
architectures. Finally, chapter 5 concludes our work.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

5

Chapter 2

Near data processing for high
performance architectures

2.1 Introduction

Modern processor throughput encounters a scaling wall as the performance bottleneck has
shifted from the core pipeline to the DRAM data transfer operations. To address such is-
sue, researchers proposed the adoption of the NDP paradigm, in which the computations are
moved near the DRAM silicon die. Nowadays there is a growing trend towards NDP re-
search that focuses on application specific accelerators, while the general purpose paradigm
has received relatively little attention so far. In this chapter we propose an NDP methodology
for general purpose applications that targets high performance architectures with complex
pipelines and complicated forms of control. Our design is optimized for loop acceleration
under the general purpose computing paradigm, in order to cover a wide range of application
types. In this sense, we do not employ NDP for application specific execution as previous
works do, instead we focus on moving general purpose loop computations to the DRAM
from the host system. The proposed architecture consists of a mix of PEs capable of execut-
ing simple arithmetic operations, CE that evaluate control statements and a mesh intercon-
nection network that handles the communication between the deployed PEs. Typical CGRAs
employ dynamic switching mechanisms that manage the flow of information within the mesh
interconnection and thus, enabling the forwarding process between individual PEs. Our de-
sign diverges from the standard CGRA approach, as we opt for a scheduling methodology
that issues each loop instruction on a single PE, by employing the loop pipelining optimiza-
tion. Under this premise, the forwarding processes is not dynamically managed, instead it
is statically configured to activate the forwarding streams that resolve the instruction data
dependencies as they eventuate after the scheduling process completes. As a result, our de-
sign leverages the CGRA dataflow execution, but also utilizes a loop acceleration technique
to further improve throughput and reduce the energy consumption. In order to verify our
methodology we utilize a post-layout netlist of RISC-V OoO BOOM core and a post-layout
implementation of a HMC DRAM architecture. Post-layout simulations on the NDP design
demonstrate an average speedup factor of 42x, while the energy consumption is reduced by
a factor of 22.4x over the host CPU execution.

2.2 Related work

Modern computer architectures are bound by energy constraints that impose heavy penalties
on the system’s throughput scaling capabilities. Such constraints derive not only from the
high energy requirements of temporary storage circuits such as register files and cache mem-
ories, but also from the energy cost of data transfer operations to the DRAM, as previous
work in [6] demonstrates. In order to alleviate such limitations, researchers have proposed

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

6 Chapter 2. Near data processing for high performance architectures

to execute the computations closer to the data, i.e. to the DRAM. The concept of NDP has
been explored in the past, as previous work in [7] shows, but due to technology limitations
the applicability of such an approach was limited. Nowadays a resurgence in NDP research
is observed mainly due to the appearance of TSV interconnections and 3D stacked memo-
ries, which are key enablers for the NDP concept, as mentioned in [7]. Despite the fact that
previous work in [8] suggests that the adoption of NDP model can be accomplished with-
out requiring 3D stacked memories, most of the ongoing research focuses on TSV and 3D
RAM technologies to deliver near data computations.The NDP promises to alleviate the per-
formance bottleneck imposed by the DRAM bus in modern processors as a previous survey
in [9] elaborates and also to increase the performance-to-power ratio of modern process-
ing systems [10]. In [9] researchers argue the existence of a performance wall due to the
slow RAM - CPU communication and mention that such a wall leads to performance scaling
problems. Although NDP seems a promising solution to the aforementioned scaling prob-
lem, there are some challenges that should be addressed, in order for this paradigm to be
adopted in the industry. Such challenges include the optimization of NDP architectures, the
memory coherence maintenance and the perseverance of the sequential programming model,
as previous works in [7] [9] elaborate.

Under this premise, researchers mainly focus on a certain application type to perform
NDP optimizations as previous work in [11] demonstrates. In that work authors deploy a
near data graph processing accelerator achieving high throughput and reducing the power
consumption, while also maintaining memory coherence by defining non-cachable mem-
ory spaces. Another work in [12] focuses on bitwise operation execution in memory, while
in [13] authors propose an NDP framework for IoT applications. Big data applications are
also suitable for NDP due to the increased memory bandwidth requirements they exhibit [14].
Authors in [15] use a HMC architecture to map computing kernels inside the memory net-
work, leveraging in-network computing in data-flow style. CGRAs have also been proposed
for the processing elements in NDP systems as in [16]. In that work researchers deploy
a network of functional units in a mesh like structure for NDP applications while the pro-
posed solution does not require any micro-architectural changes to the host processor. In
other related work [17] authors incorporate heterogeneous reconfigurable logic arrays, which
behave like CGRAs in order to improve throughput and reduce the power consumption of
target applications. CGRA capabilities are also explored in [18] along with different TSV
interconnection networks in order to find the optimal CGRA-TSV combination that leads to
the higher speedup improvement. A common target application of CGRAs and NDP is the
training and inference of deep neural networks as previous works in [19] and [20] demon-
strate. In [19] authors deploy RISC-V cores in a mesh-like structure on the logic layer of
an HMC, to provide a scalable architecture for deep neural network training and inference
operations. Similarly, in [20] authors explore neural network optimizations to reduce the data
transfer rates between the NDP cores and a non-volatile memory system, while also exploit-
ing the parallel execution capabilities of an on-chip processing network to reduce training
time. Non-volatile memory structures are considered ideal for hosting NDP processing due
to their ability to behave both as storage and as processing units. Previous work in [21]
proposes a query acceleration methodology that also reduces the energy consumption per
operation on a non-volatile memory. Another work in [22] explores the application of the
NDP framework for database operations in SSDs by employing data flow programming fea-
tures and code reuse optimizations, while in [23] authors employ a near-memory hash table
to speed up search operations in databases for big data.

Memory consistency and coherence is a major challenge for NDP systems. While some
works declare certain memory spaces as non-cachable, like [11] mentioned above, others
propose ways of maintaining memory coherence. In particular, in [24] authors combine a
speculative cache coherence and a compressed signature technique, in order to reduce the

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

2.3. Background 7

overhead of DRAM coherence maintenance with the host system. On the other hand, how-
ever, researchers in [25] argue that non-restricted memory regions can often lead to a sig-
nificant amount of coherence traffic, and thus, a good practice would be to avoid cachable
memory blocks.

The concept of programming transparency is explored in [26], where researchers build
a GPU framework for NDP that automatically selects the computations to be offloaded to
NDP cores, while mapping the instructions on the available processing elements. In this
way, programmers are not involved in the offloading procedure and the sequential program-
ming model is maintained. Similarly, in [27] authors exclude the programmer from making
decisions on near data execution, instead an automatic mechanism migrates the computations
to NDP units, according to the observed levels of data locality. Also in [28] an NDP solution
is proposed for heterogeneous systems that provides application transparency, while utilizing
the processing power of the SSD devices for NDP operations.

To the best of our knowledge, there is no such a work proposed so far. Previous works
in [11] [12] [13] [14] [19] [20] [21] [22] and [23] authors propose NDP frameworks for
specific application types, and thus their designs take into account the requirements of the
corresponding applications, while our work focuses on general purpose loop acceleration.
In [10] [15] [26] [27] [28] [29] and [30] authors propose NDP architectures for general
purpose applications but their approach does not include CGRAs, instead they rely on pro-
cessor pipelines and task-specific accelerators to increase the system performance. In [31]
researchers focus on diverse kernel workloads, but their CGRA network design is based on
the profiling results of the executing kernels. On the contrary, our work does not require any
profiling operation prior to code execution due to the fact that the CGRA is designed for loop
acceleration and thus, it can support any issued loop without additional effort. Further, au-
thors in [8] [16] [17] and [18] utilize CGRAs in conjunction with the NDP paradigm but their
focus shifts to different aspects of the NDP execution paradigm. Under this premise, previ-
ous works lack the application mapping approach or the loop acceleration focus we employ
as they do not utilize the CGRA network to execute instructions in an iterative way, i.e. to is-
sue an instruction per processing element. To this end, they rely on run-time reconfiguration
techniques [17], memory data buffer exploitation [8] and exploration of TSV interconnection
microarchitectures [16] [18] to enable the NDP processing and to increase the throughput of
the system.

2.3 Background

2.3.1 Hybrid memory cube organization

HMC architectures are widely adopted by NDP paradigms as previous work in [32] shows,
mainly due to the 3D-stacked DRAM layers they employ. An HMC DRAM consists of multi-
ple DRAM layers and achieves much greater internal bandwidth than conventional DRAMs,
due to the TSVs, which are vertical links that connect the multiple layers of a DRAM stack
together. Figure 2.1 depicts the architecture of a HMC DRAM as described according to the
HMC specification in [33]. HMC is organized in vertically structured memory vaults which
consist of partitions. Each partition contains a number of banks which store the DRAM data.
The lower DRAM layer is reserved for implementing logic and facilitates vault controllers
that manage the data transfer process between the corresponding vaults. Vault controllers
also internally handle the refresh operations of each vault, removing this responsibility from
the host memory controller. In order to support high BW within its vaults, HMC utilizes
TSVs that connect vertically the vault layers and redirect data to the vault controllers. In
this work we employ the NDP paradigm and thus, we also adopt the aforementioned HMC
hierarchy.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

8 Chapter 2. Near data processing for high performance architectures

Vault controller

STD cell STD cell STD cell

STD cell STD cell STD cell

STD cell

STD cell

Vault controller

Logic layer

STD cell

STD cell

STD cell

STD cell

Vault controller

I/O I/O I/O I/O I/O I/O

Crossbar network

N
D

P
 a

cc
e

le
ra

to
r Partition

Logic layer VaultTSV

D
R

A
M

 l
a
y

e
rs

Partitions

Host processor / HMC

DRAM layers

FIGURE 2.1: Architecture diagram of HMC DRAM.

2.3.2 CGRA architecture

CGRAs are frequently employed as hardware accelerators due to the increased performance
to area ratio they achieve [34]. A typical CGRA grid consists of a number of PEs arranged
in a 2D array structure. The processing elements are designed to execute basic arithmetic
or logical operations while their communication is managed by an interconnection network.
Previous work in CGRAs usually focuses on targeted applications such as Givens Rotation
acceleration [35], convolution neural network applications [36], deep neural networks [19]
and wireless telecommunication receiver algorithms [37]. Such designs are proven to be
very efficient in terms of performance to area ratio, but their operation is restricted within
specific application types. In contrast, CGRA related work that treats them as general purpose
architectures often focuses on the instruction mapping procedure of the accelerator [38]. As
a result, CGRA architectures tend to exploit local data reuse [39], utilize a local register file
of the PEs [40] and organize the instruction mapping process in an efficient way [41].

Despite the fact that such works deal with the routing and resource mapping problems
of a CGRA network they employ complex scheduling algorithms which are not suitable to
the NDP paradigm due to the restricted area and power requirements of NDP designs. Also
when general purpose code execution is considered, the data forwarding and pipeline stalling
tasks should be taken into consideration as general purpose applications usually display a
great amount of data dependencies. Additionally general purpose code requires a lot of
control statements which should be taken into account in order for the CGRA design to
be efficient. We consider such requirements critical for designing the CGRA architecture
and thus we incorporate them in the design process. Under this premise we design a novel
CGRA architecture from the ground up capable of supporting near data general purpose loop
execution. To this end, we opt for a static-scheduling static-dataflow (SSD) execution [42]
in which each loop instruction is statically scheduled on a corresponding processing element
while the execution process leverages the dataflow parallelism of the corresponding loop. We
discuss the micro architecture details of such an architecture in the following section.

2.4 NDP for general purpose applications

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

2.4. NDP for general purpose applications 9

PE PE PE PE

PE

PE

PE

PE

PE PE

PE PE

Input data
Vault

controller

Issue unit

Forwarding
unit

S

S S S S

S S S S

S S S

SSS S

HMC Logic layer

CE CE CE CE

Host processor bus

HMC access

FIGURE 2.2: The proposed CGRA grid architecture deployed on the logic
layer of the HMC DRAM.

2.4.1 CGRA microarchitecture for general purpose instruction execution

The proposed CGRA microarchitecture focuses on adopting the general purpose execution
paradigm, while also leveraging the dataflow parallelism offered by the CGRAs. Figure 2.2
depicts the architecture of a 4 × 4 CGRA grid implemented on the logic layer of the HMC
DRAM. The array consists of multiple PEs and CE organized in a mesh-like structure, and
of an on-chip interconnection network capable of handling the communication among the
PEs. Each PE is capable of executing arithmetic or logical operations and utilizes inputs
either from the HMC DRAM or from the outputs of other PEs. Each CE is responsible
for evaluating control statements that change the execution flow of the instruction sequence.
The flow of data between the HMC and the CGRA is controlled by the vault controllers,
which execute memory requests heading to the HMC DRAM. In order to manage the data
transfer within the CGRA grid, we utilize switches that are designed to redirect data paths to
designated PEs and CEs.

We will now discuss the microarchitecture of the units deployed on the CGRA grid. Since
this work focuses on loop acceleration for general purpose execution, instructions scheduled
on the CGRA units are assumed to be loop instructions. More specifically, the instructions
scheduled constitute the pipelined body of a loop and are not changed until all loop iterations
are finished. Our detailed model for loop pipelining and acceleration is presented later on.

Issue unit: The issue unit is responsible for the instruction issue process to the PE-CE
grid. In order to avoid the power and area costs of a complex instruction issue circuit, we
perform the scheduling process on the host processor as part of a pre-processing stage. The
outcome of this process is transferred to the NDP architecture and specifically to the issue
unit, which propagates the instruction operation codes and inputs to the corresponding PEs.

In the proposed NDP methodology, each PE is assigned multiple instructions but it may
execute only one at any given time. In this sense the amount of the instructions that can be
executed simultaneously is bound by the total amount of PEs-CEs. We take such a constraint
into consideration when designing the issue unit, in order to maximize the amount of issued
instructions along the CGRA, while also maximizing exploitation of ILP in instruction exe-
cution. Under this premise, we design the unit to schedule instructions, taking into account
the control statements that disrupt the sequential code execution, such as if-else branches
and nested loop iterations. Such statements always prohibit certain instructions from being
executed, after the evaluation of the branch conditions takes place. For example a control

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

10 Chapter 2. Near data processing for high performance architectures

statement enables the execution of the instructions in the i f body or in the else body, but
does not allow the execution of both i f and else body sequences simultaneously. The same
rule applies to the nested loop iterations as well. In order to exploit ILP in such cases, we
design the issue unit to issue mutually exclusive instructions on the same PEs. Under this
premise, a PE may execute an instruction that belongs to an i f body, but also the same PE
may execute an instruction that belongs to the side of the else body as well. Which instruc-
tion is actually executed depends on the evaluation of the branch condition. In this way, we
not only allow more parallel instructions to be issued on the grid, but we also decrease the
area requirements for our design, as we are able to issue more instructions in the same PE-CE
die area.

Forwarding unit: The forwarding unit manages the forwarding and stalling processes
by generating the necessary signals that propagate to the corresponding switches and PEs-
CEs. After the issue process is complete, the data hazards between the PEs-CEs are known
when the loop instructions are assigned to the corresponding PEs-CEs. Thus, the forwarding
unit forwards the corresponding data to the appropriate CEs-PEs in order to eliminate data
hazards. To accomplish this task, it generates control signals that propagate to the switching
elements which act as multiplexors for the incoming data. As instructions and thus data de-
pendencies do not change over consequent loop iterations, this process needs to be conducted
at the beginning of the loop execution in order to open the corresponding data forwarding
paths. Such data paths may change during the run time only when control statement eval-
uation results in a redirection of the instruction execution sequence flow. In this case the
forwarding unit propagates the corresponding control signals in order to forward the required
data to the dependent CEs-PEs. As a result, any unnecessary switching signals are omitted
and dynamic power consumption is reduced. The forwarding unit also generates stall signals
that freeze the instruction execution on specific PEs-CEs when necessary.

Processing element: The microarchitecture of a PE is depicted in Figure 2.3. Each PE
is composed of an ALU or FPU unit capable of executing arithmetic or logical operations
and two multiplexors that control the unit’s input operands. Such inputs may originate from
the DRAM, from other PE outputs or from the output of the same PE, depending on the data
dependencies of the executing loop. To resolve such dependencies we utilize the forwarding
unit which selects the appropriate inputs for each PE as described above. Each PE is assigned
multiple instructions, but it may execute one operation per clock cycle. We modify the PEs
so that the output of such an operation is temporarily stored to a fifo queue before propagated
to the PE network. In the case of a stall the forwarding unit evokes the write privileges of
the ALU/FPU output to the queue and thus, no new entries are stored. Each PE also contains
a small operation buffer (OP buffer) for storing the assigned instructions for execution. As
described above, each PE is assigned a number of instructions which cannot be executed
simultaneously, for example different branches of an if-else statement. Such instructions are
propagated through the issue unit to the PE network and are stored in the OP buffer of the
corresponding PEs. In the sequel, the CEs control which operation the PEs will execute for
each clock cycle via a multiplexor, depending on the evaluation of the branch condition.

Control element: We design the CEs dedicated to the execution of branch related in-
structions. We opt to implement dedicated units for executing comparison operations due to
the high amount of control statements that are usually present within general purpose bina-
ries. As a result, we consider the execution of such instructions in the PEs as inefficient due
to the larger amount of power and area requirements of the PEs. To this end, each CE is a
small unit capable of comparing two inputs and producing an output that reflects their relative
value status. The microarchitecture of CEs is similar to the PEs as depicted in figure 3.3 with
two distinct differences. First of all the ALU/FPU is replaced by a small comparator circuit
which performs a comparison operation according to the assigned opcode, i.e. "greater than",

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

2.4. NDP for general purpose applications 11

Issue
unit

ALU/FPU

Fifo
queue

Forwarding
unit

Input data

PE

OP buffer

Mux

S

Interconnection
network

CE

FIGURE 2.3: PE microarchitecture.

"less then" ,"equal" etc. Further, the fifo queue of each CE is smaller than the correspond-
ing fifo queues of the PEs as the outputs of the CEs are not 32-bit or 64-bit wide. Also the
comparison results which are stored in the fifo queue are forwarded to PEs, where they act
as control signals for the multiplexors, in order to choose which instruction to execute from
the OP buffer. As a result, the CE size and power consumption is significantly lower that the
PE’s and thus, we are able to incorporate more of them in the CGRA implementation.

2.4.2 Loop pipelining for the CGRA microarchitecture

LP of software pipelining is a loop optimization technique that improves the performance
of loop execution by overlapping consequent loop iterations and thus, hiding the underlying
latency of each iteration. This form of pipelining is widely used as a compiler optimization
technique. Previous work in [43] demonstrates that such a technique can also be efficiently
mapped on CGRAs resulting in an drastic decrease in loop execution time and power con-
sumption [44]. Previous work in [43] demonstrates that LP can also be efficiently mapped on
CGRAs resulting in an drastic decrease in loop execution time and power consumption [45].
LP achieves such results by transforming the loop body in a way that hazards caused by the
data dependencies between participating instructions, RaW are reduced. Loop data depen-
dencies come into two forms, intra-loop and inter-loop. Intra-loop are data dependencies that
appear within the same loop iteration, while inter-loop dependencies span from one iteration
to another. Figure 2.4 depicts an example of software pipelining transformation for a simple
loop that contains intra-loop RaW data dependencies. In this example the loop consists of
four instructions: a memory operation instruction (mem) with 2 cc latency, an addition opera-
tion instruction (add) with 1cc latency, a multiplication operation instruction (mull) with 2cc
latency and a subtraction operation instruction (sub) with 1cc latency. We use the variable
x to denote the dependencies of each instruction within the iteration x. To this end, the add
instruction depends on the execution of mem, the mull on the add and the sub on the mull
and add as they process the same data space. In order to alleviate such dependencies, LP
constructs a loop steady state so that it contains instructions from future iterations and may
iterate with a reduced number of internal data hazards. The loop steady state is accompanied
by a prologue which manages the setup process and an epilogue that waits for the remaining
instructions to finish.

2.4.3 Instruction issue for the CGRA

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

12 Chapter 2. Near data processing for high performance architectures

add (x)

mull (1)

mem (x)

mem (1)

mem (2)

mem (3)

mem (4)

add (3)mem (5)

add (x+3)

mull (x)

sub (x)mem (x+5)

add (1)

add (2)

mull (2)

mull (x+2)

sub (x)

add (max-1)

add (max)

mull (max-2)

mull (max-1)

mull (max)

sub (max-4)

sub (max-3)

sub (max-2)

Loop data
dependencies:

Iter. 1:

Iter. 2:

Iter. 3:

Iter. 4:

Iter. 5:

Iter. max-2:

Iter. max-1:

Iter. max:

sub (max-1)

sub (max)

Iter. max-3:

Iter. max-4:

RaW RaW RaW

prologue

epilogue

steady state

RaW

FIGURE 2.4: The loop pipelining optimization.

Algorithm 1 The proposed instruction issue technique for the CGRA.
perform LP
while not converged do

if Instr. No. < Issue slots then
unroll the loop

else if Instr. No. > Issue slots then
roll back the loop

else if Instr. No. == Issue slots OR tries > threshold then
converge

end if
end while
Generate control dependency graph
Form mutually exclusive execution groups
Generate data dependency graph
for mutually exclusive groups do

get mutually exclusive instructions
map them in PEs OP buffers

end for
for rest of non-control instructions do

get data depended instructions
issue them in neighboring PEs

end for
for control instructions do

get data depended control instructions
issue them in neighboring CEs

end for

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

2.4. NDP for general purpose applications 13

Although the idea of the LP is not new, the mapping of LP to hardware accelerators
is not a trivial process, as previous work in [46] demonstrate. In this work we focus on
improving the throughput and the area efficiency of the CGRA grid and thus, we opt for an
instruction issue methodology that takes advantage of the LP optimization and the PE-CE
network presented in Section 2.4.1. We employ LP as it does not only reduce the RaW data
hazards of the loop body, but it also generates a self contained loop steady state which may be
efficiently scheduled. The proposed CGRA architecture consists of a grid of processing and
control elements, with each PE containing an OP buffer. In this sense, each PE is assigned a
number of instructions equal to the OP buffer size, provided that operations can be executed
in a mutually exclusive way. Thus, each PE may execute only one instruction at any given
time, but it may have been issued more. The total number of instruction issue slots equals to
number of PEs × OP buffer size.

Algorithm 1 depicts the heuristic method we employ for mapping loop instructions onto
the CGRA grid. We first perform LP optimization in order to minimize the data hazards
from RaW dependencies, which are very common in general purpose loops. In the sequel,
we analyze the number of instructions located in the steady state. If their number is less than
the total number of free issue slots, we perform a loop unrolling operation. Loop unrolling
is a loop optimization technique, in which the steady state of the loop is increased in size by
adding instructions from future loop iterations. In contrast with LP, loop unrolling replicates
the loop body and modifies the replicated instructions in order to refer to future iterations.
In this way we increase the number of instructions that can be issued to the PEs while also
reducing the execution time as we simultaneously execute instructions from future iterations.
On the contrary if the amount of the steady state instructions is larger than the free issue slots,
the loop cannot be issued and thus we reduce the steady state’s size by rolling back the loop to
a previous valid state. We repeat this process until the heuristic converges either by equalizing
the steady state size with the number of issue slots or by reaching a preset repetition limit. In
the sequel we generate the control dependency graph for the steady state of the loop. Such
graph classifies the participating instructions into groups that can be executed in a mutually
exclusive way. We issue instructions from the same groups, i.e. operations that are not
executed in a mutually exclusive way to different CEs-PEs while instructions from different
groups are issued on the same PEs provided that the corresponding OP buffers are not full.

The issue process also takes into consideration the data dependencies of the scheduled
instructions. To this end, we generate the data dependency graph of the steady state instruc-
tions which provides information on the RaW dependencies of each operation. We prioritize
the issue of instructions with data dependencies on neighboring CEs-PEs in order to reduce
the data routing delays. If some instructions cannot be mapped to neighboring CEs-PEs due
to the OP buffers being full, we map them as close as possible with the depended operation.
After the PE scheduling completes the control statements of the loop are issued on the CEs .
The scheduling procedure of the control instructions follows the greedy method for simplic-
ity reasons. To this end, each control statement is issued on a single CE while taking into
account the data dependencies between the data and control instructions in the same way as
described above.

2.4.4 Loop execution on the CGRA

By employing the aforementioned methodology we manage to efficiently map the loop in-
structions on the CGRA network. Figure 2.5 depicts the outcome of the issue process after its
application on the instruction sequence used in figure 2.4. The number notated by i1 refers
to the mem operation instruction, the i2 to the add, the i3 to the mull and the i4 to the sub
instruction. Data dependent instructions are issued on neighboring PEs and the forwarding

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

14 Chapter 2. Near data processing for high performance architectures

unit generates the appropriate control signals, to conduct the data forwarding on the corre-
sponding PEs. Following the data dependencies established in figure 2.4, PE-1 propagates its
outputs to PE-2, PE-2 to PE-3 and PE-4, while PE-3 forwards the produced data to PE-4. The
rest of the PEs are marked with gray color, since they are not assigned any instructions in this
scenario. Under this premise, after the loop execution begins each PE iteratively executes
one instruction that belongs in the loop body and thus, the CGRA produces the outputs of
one loop iteration per clock cycle when the pipeline is filled.

Figure 2.6 depicts a run time instance of this loop after being issued on the CGRA grid.
The data dependency constraints would normally dictate that instruction i4 should wait for
both i2 and i3 to finish their execution so that the required inputs for i4 become available. As a
result, i2 would not execute at the clock cycles 4 and 5 due to the fact that the produced output
of the clock cycle 3 would be overwritten. Stalling i2 for 2cc creates a 2 cycle latency bubble
that is propagated throughout the instruction sequence, resulting in throughput decrease and
PE under-utilization. This problem is solved as we employ fifo queues capable of storing
the outputs of each PE hence, enabling the PEs to continue executing instructions while
previously generated outputs are not discarded. As a result, instruction i2 is never stalled,
instead it continues its iterative execution, while its outputs are stored in the PE’s fifo. In the
sequel, instruction i4 is forwarded the corresponding results from the i2 and i3 fifo queue and
thus, eliminating the need to stall the pipeline. We mark the forwarding process with blue
arrows that depict the flow of data from the fifo queues to the inputs of the corresponding PEs.
The aforementioned technique requires the CGRA pipeline to be full and the intermediate
results to be stored in the fifo queues of the PEs. In this sense, after a certain amount of clock
cycles, each PE will be able to execute one instruction per clock cycle achieving a theoretical
maximum of 1 IPC per PE. Considering that the whole loop body is mapped on the CGRA
array with each PE executing one instruction per clock cycle, we are able to execute one loop
iteration per clock cycle, after the pipeline is filled.

Such a theoretical throughput estimation is affected by the depth of data dependencies of
the loop body and the size of the PE fifo queues. Generally we avoid pipeline stalling when
the RaW dependencies appear within a number of instructions equal or less to the amount
of fifo slots available. For this reason the LP optimization is employed as discussed in the
previous section. as it reduces hazards from the data dependencies in the loop steady state
and thus, ensuring that the pipeline stalls are minimized. In order to make sure that any loop
can be scheduled on the CGRA, we also equip the forwarding unit with a stalling mechanism

PE

i1

Input data
Vault

controller

Issue unit

Forwarding
unit

HMC Logic layer

CE CE CE CE

HMC access

PE 1 PE 2 PE 3 PE 4

S S SS

i2 i3 PE

SSS

PE 2 PE 3

PE i4 PE
PE 4

S SSS

S

FIGURE 2.5: The outcome of the instruction issue process after which each
operation is issued on a PE.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

2.5. Implementation 15

that is enabled when necessary. Nonetheless, we manage to greatly reduce the frequency of
such a situation, when using the proposed instruction issue methodology.

2.5 Implementation

2.5.1 System architecture

Figure 2.7 depicts the system architecture we propose for a general purpose NDP method-
ology. A host system is implemented consisting of a RISC-V CPU core with regular cache
hierarchy, RF and a MMU. The host processor die also employs a bus capable of exchanging
data with the HMC DRAM. We implement the HMC on a separate die and we design its logic
layer to facilitate the NDP accelerator as described in section 2.4. We deploy a SoC mesh
network to transfer data between the PE-CE network and the VCs which are responsible for
the memory address translation and memory access operations. Each die operates indepen-
dently from the other, while the communication between them is managed via the MMU and
the processor bus.

In order to automate the NDP offloading procedure, we extend the RISC-V instruction
set to facilitate the jalNdp (jump and link ndp) assembly instruction. This new instruction
functions similarly to a jal instruction which is used for function calling. The key difference
from jal is that jalNdp initiates the NDP preprocess operation and thus, offloads the instruc-
tions located in the function body to the NDP core. For code outside the function invoked
through the jalNdp instruction, the HMC supports regular memory load/store operations.

In Figure 2.7 we also present a binary execution instance of the H264 encoding protocol.
More specifically, the host processor executes the first part of the encoder, namely the part
under the host processor execution label and above the jalNdp instruction. In the sequel, as
the jalNdp instruction is executed, the NDP preprocess operation is conducted on the host
system and accumulates the workload to be dispatched to the NDP core. Such a workload

EX

EX

EX

 (i1) – PE 1

Clock cycles

time

EX EX EX EX EX

EX

EX

EX

EX

EX

EX

EX

EX

EX

EX

Stall

Stall

Stall

Stall

Stall

Stall

Stall

Stall

Stall

1 2 3 4 5 6 7

Stall

(i2) – PE 2

(i3) – PE 3

(i4) – PE 4

Loop data
dependencies:

i1 i2 i3 i4

RaW RaW RaW

RaW

FIGURE 2.6: Instruction execution instance on CGRA microarchitecture.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

16 Chapter 2. Near data processing for high performance architectures

is composed of decoded instructions with their corresponding operands and data dependen-
cies. Thus the instruction decoding and register fetching stages are executed on the host
system. The pre-process operation also generates the data dependency graph and performs
the scheduling technique as discussed in section 2.4.3. The resulting outputs include the in-
structions issued to the PE-CE network and the control signals required for NDP instruction
execution. Such data is then transferred to the HMC via the processor bus and the GP I/O
links that connect the host processor and HMC dies. On the DRAM side the loop is executed
as described in section 2.4.4. In this scenario, the VCs access the memory banks according
to the PE-CE load/store requests in order to fetch the required data and deliver them to the
CGRA network via the SoC mesh. The switching elements of the SoC interconnect select
the VC outputs that fit to each PE-CE memory request and forward the necessary data to the
corresponding units. After the loop execution finishes, any outputs needed by the host code
are transmitted back to the host system.

In order to maintain the sequential programming model, we stall the host processor
pipeline until the NDP execution completes and the results are transferred back to the host
die. In this way we enforce that any data dependencies between the executing loop and the
rest of the instructions remain unbroken and the loop is executed in-order with the rest of
the code. For memory coherence maintenance we consider certain parts of the DRAM un-
cachable and thus, no information is exchanged between the host cache and the HMC during
the NDP execution.

2.5.2 NDP design space exploration and layout

Table 2.1 depicts the host system and HMC design parameters. For the host system we
implement a multi-core system that consists of four identical Berkeley Out-of-Order Machine

OoO pipeline

RF L1 - Cache

L2 - Cache

MMU

Issue unit

SoC mesh network

Fowarding
unit

VC #1 ...VC #2 VC #3 VC #N

HMC bank HMC bank HMC bank HMC bank

PE-CE network

HMC bank

HMC bank

HMC bank

HMC bank

HMC bank

HMC bank

HMC bank

HMC bank

HMC logic layer

HMC partitions
HMC die

RISC-V Boom core

Host processor die

DRAM Bus

M
e

m
o

ry
 v

au
lt

s

GP I/O

Host processor execution

JalNdp

Data transfer to HMC

Near data execution

FIGURE 2.7: System architecture for general purpose NDP.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

2.5. Implementation 17

TABLE 2.1: Key parameters of the host processor die and of the HMC im-
plementations.

Host processor
Core RiscV Boom OoO, 1 GHz, 64 bit

Amount of Cores 4
Pipeline 10 stages, 4 issue width
L1 cache 32 KB, 8-way, 4 cycle latency
L2 cache 512 KB, 8-way, 12 cycle latency

Branch prediction gshare, 9-bit history, 512 entries
TLB size 512 entries

HMC 8 GB
Memory vaults 32
Memory banks 512

Bus Width 128 bits
tCK = 1.2 ns, tRAS = 24 ns,

Timing tRCD = 11 ns, tCAS = 5.5 ns,
tWR = 9 ns, tRP = 11 ns

Serial links 480 GBps, 8-cycle latency
BW per vault 16 GB/s

HMC 16 GB
Memory vaults 64
Memory banks 1024

Bus Width 128 bits
tCK = 2.5 ns, tRAS = 30 ns,

Timing tRCD = 15 ns, tCAS = 7.5 ns,
tWR = 10 ns, tRP = 15 ns

Serial links 480 GBps, 10-cycle latency
BW per vault 16 GB/s

(BOOM) [47] cores, which utilizes the RISC-V ISA. BOOM is an open source OoO core
that facilitates an 10 stage execution pipeline and offers parameterized synthesis options.
We tune such parameters to 32KB L1 and 512 KB L2 cache sizes, gshare branch prediction
mechanism and 512 TLB entry size in order to resemble modern process designs. For the
HMC implementation we use the openHMC netlist which is a configurable open source HMC
architecture [48] developed by the Heidelberg University. We tune the HMC parameters
to align its specifications according to the industry standards set by Hybrid Memory Cube
Consortium (HMCC) in [33]. Specifically we opt for 8 GB memory size with 32 memory
vaults each containing 16 memory banks, resulting in a total of 512 memory banks. We also
use a 128-bit memory bus width and GP I/O serial links that transfer data to the host system
capable of transmitting 480 GBps within an 8-cycle latency. The maximum bandwidth per
vault is 16 GB per second for HMC implementations. We also develop a 16 GB version of the
same HMC in order to evaluate our methodology with additional memory implementations.

The physical implementation of the HMC and the host system is carried out by following
the CAD toolchain for application specific integrated circuits (ASICs) according to industry
standards. To this end, we use verilog HDL to develop the HMC and host system descriptions
while the synopsys design compiler is employed for the synthesis operation, gate level and
retiming optimizations. In the sequel, we employ the synopsys IC Compiler for place and
route, clock tree synthesis and placement operations. For synthesis and physical realization

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

18 Chapter 2. Near data processing for high performance architectures

TABLE 2.2: PE and CE post-layout requirements in terms of area, power
and latency.

Functional unit Area in um2 Power consumption Latency

ALU 32/64 bit PE 8335/15471 14/28 mW 1 cc
Mull 32/64 bit PE 15141/28421 23/36 mW 2 cc
Div 32/64 bit PE 18933/34357 65/124 mW 7 cc

FP ALU 32/64 bit PE 6453/11731 28/44 mW 3 cc
FP Mull 32/64 bit PE 6773/13334 33/57 mW 3 cc
FP Div 32/64 bit PE 23858/44836 88/150 mW 8 cc

CE 32/64 bit 2378/4212 3.5/5 mW 1 cc
Issue unit 12556 9 mW 5 cc

Forwarding unit 15436 31 mW –
Switch 15 1 uW –

TABLE 2.3: Implementation parameters of 5 different NDP designs.

NDP implementation parameters NDP-1 NDP-2 NDP-3 NDP-4 NDP-5
HMC size 8 GB 8 GB 16 GB 16 GB 16 GB

Fifo queue size 5 slots 5 slots 10 slots 10 slots 15 slots
Operand width 32 bits 64 bits 32 bits 64 bits 64 bits

ALU PEs 50 25 44 22 21
Mull PEs 28 13 22 12 11
Div PEs 2 2 2 2 2

FP ALU PEs 50 25 43 20 18
FP Mull PEs 28 13 22 12 11
FP Div PEs 2 2 2 2 2

CE 40 40 40 40 35
Number of PEs/CEs 200(20x10) 120(20x6) 175(17x10) 110 (11x10) 100 (10x10)

Interconnection network power 660 mW 720 mW 700 mW 880 mW 1 W
Total power 4.9 W 4.7 W 4.5 W 4.4 W 4.4 W
Total area 1.59 mm2 1.6 mm2 1.36 mm2 1.48 mm2 1.42 mm2

we use the 15nm FreePDK library [49] and the post-layout netlist is generated by the IC com-
piler. In order to verify that our design meets the timing requirements and no timing errors
occur we perform static timing analysis with the synopsys primetime tool on the post-layout
netlists. Finally the functionality evaluation of the NDP design is conducted by performing
gate level simulations on the back-annotated post-layout netlists using the Modelsim tool.

Table 2.2 depicts the post-layout requirements of each PE and CE type for 32 bit and
64 bit implementations in terms of area, power and latency. We present both the integer
and floating point (FP) PE versions which are used to compose the PE-CE network. To this
end, we implement ALU PE types that are responsible for arithmetic, logical and shift opera-
tions, multiplication (Mull) PEs, division (Div) PEs and CEs that evaluate control statements.
Table 2.2 also depicts the requirements for the issue unit, forwarding unit and switching ele-
ments which are described in Section 2.4. In order to implement the PE-CE network, we also
consider the area and the power budget available for the logic layer of the HMC. Previous
work in [17] sets the maximum area on the logic layer in the 3D stack at 68 mm2 and calcu-
lates the available power budget at 5W. The functional units are implemented with pipelined
execution capabilities, to lower the computation latency and to enable the production of an
output per clock cycle (cc).

We conduct a design space exploration of the proposed NDP methodology by imple-
menting five different CGRA designs that are depicted in Table 2.3. Each CGRA imple-
mentation consists of a number of PEs, CEs, switching elements, HMC organization and an

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

2.5. Implementation 19

interconnection network, as described in Section 2.4. NDP-1 employs 32 bit PEs, an HMC
organization of 8 GB and PE fifo queues with 5 slots available for temporary output storage.
NDP-2 uses the same configuration options with NDP-1 except for the bit width of the PEs
which is tuned to 64 bit. All NDP-3, NDP-4 and NDP-5 utilize 16 GB of HMC DRAM and
employ 10 or more PE fifo queue slots. Specifically NDP-3 uses 32 bit PEs with 10 fifo slots
available, NDP-4 64 bit PEs with 10 fifo slots and NDP-5 64 bit PEs with 15 fifo slots. The
total area and power consumption results of each design also include the requirements of the
PE interconnection network and fifo queues, which vary in size according to the number of
the CEs and PEs in each design. The core clock frequency is set to 800 MHz in order to
balance power requirements and performance goals.

We select the number of PEs-CEs of each CGRA design properly, in order to satisfy the
power and area budget as discussed above. The 64 bit designs require significantly more
power due to the increase of the functional unit size and thus, a lower number of PEs is
selected for such implementations. The number of fifo queue slots also affects the total
power consumption, effectively reducing the number of PEs-CEs per design. On the contrary,
the memory size of the HMC does not affect the power budget of the logic layer and no
adjustments on the PE number are required. By implementing 5 different CGRA designs,
we focus on evaluating how the throughput and power efficiency of the NDP methodology is
affected by the following parameters:

• Memory size: Larger memory organizations tend to display higher latency as depicted
in Table 2.1 and thus, data memory load/store operations are completed in longer time
intervals.

• Fifo queue size of each PE: Larger fifo queues result in more efficient forwarding
process and fewer pipeline stalls, but require more power to operate. In this sense, the
increase of the fifo size trades pipeline stall time with fewer processing elements.

• Instruction width: Smaller instruction widths such as 32bit result in smaller PE size
and increase the number of PEs-CEs on the CGRA design. On the contrary, the 64 bit
instruction width is widely used in modern microprocessors and thus, we explore its
efficiency on the NDP implementations.

We also design and implement two different types of HMC cores to use them for base-
line comparison: a simple in-order core and an OoO core in the logic layer of the HMC
in order to properly evaluate our methodology in comparison with other NDP systems. The
simple in-order core (HMC-DLX) is a 5-stage pipeline implementation of the RISC-V rocket
core [105]. It utilizes the RISC-V 64-bit instruction set and facilitates an in-order pipeline
with a clock frequency of 800 MHz. It consists of 16 KB L1 instruction and data caches,
no L2 cache and the 8GB HMC as described above which is used as the DRAM of the sys-
tem. The HMC-DLX supports branch prediction and speculative execution using the g-share
branch predictor algorithm and a BTB size of 256 entries. For the OoO core (HMC-OoO)
we employ a simplified version of the host processor and we utilize the RISC-V BOOM ar-
chitecture. More specific, the HMC-OoO is a 7-stage pipeline that consists of 8 KB L1 data
and instruction cache, of a g-share branch predictor with 256 BTB entries and no L2 cache.
It utilizes 64-bit instructions and the clock frequency is set to 800 MHz. We should highlight
that the HMC-DLX and the HMC-OoO are not used as host systems; instead we implement
such designs on the logic layer of the HMC in order to provide a baseline comparison for our
NDP methodology.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

20 Chapter 2. Near data processing for high performance architectures

2.6 Experimental evaluation

In this section we discuss the experimentation process by which we evaluate our NDP method-
ology. For this purpose we have opted to use 12 kernels from 8 benchmark suites [50] [51]
[52] [53] [54] [55] [56] [57], which are derived from various scientific fields in order to
cover a wide range of applications. Table 2.4 depicts the workload characterization of such
benchmarks. We profile the binary code of each kernel to obtain the amount of RaW depen-
dencies and the total DRAM memory access requests. We present such characterizations in
a qualitative way in the corresponding Table 2.4 rows by using the small(S), medium (M),
large(L) and huge(H) annotations. Due to the large benchmark size, the proposed scheduling
methodology is not always able to schedule the kernel binary by mapping one instruction in
one PE as discussed in Section 2.4. To this end, we apply loop fission transformations as
in [58] during the reprocessing stage that split the kernels into groups of smaller loops which
can be scheduled according to our technique. The loop fission is automatically performed
in the host processor and we include its execution time overhead to the total amount of time
a kernel needs to execute. A qualitative depiction of such an overhead is also presented in
Table 2.4. We run the aforementioned workloads in all NDP implementations separately and
in the host and baseline systems only, in order to compare our findings.

2.6.1 Normalized speedup

Figure 2.8 depicts the speedup of each NDP implementation normalized to the execution time
of the host system. To this end we firstly run each kernel on the host processor with no NDP
processing taking place. For this purpose we utilize all the available 4 RISC-V BOOM cores
by constructing kernel threads which run in parallel in each BOOM core. In the sequel we
deploy the proposed NDP implementations along with the host system and we run the kernels
again as our methodology dictates. Then we run the same benchmarks on the HMC-DLX and
HMC-OoO NDP implementations while employing the same software optimizations (i.e. LP
and loop unrolling) we used for the NDP execution. Finally we compare the speedup we
obtain for each NDP design over the host-only execution process. Below we discuss the
results we obtain after the evaluation process is completed.

Speedup over host only execution: First of all due the the nature of NDP we observe
high speedup values as the instruction execution takes place on the DRAM die and thus,
the large data movement overhead between the host system and the DRAM is significantly

TABLE 2.4: Workload characterization.

Workload Kernel RaW Mem Fission
bwaves (Explosion modeling) [50] K1 H H M

cactuBSSN (Physics: relativity) [50] K2 L H L
leela (Monte Carlo tree search) [50] K3 M H L

x264 (video encoding) [50] K4 S H M
K-means (machine learning) [51] K5 S S S

Anisotropic diffusion (image processing) [51] K6 M L M
Feature tracking (computer vision) [52] K7 S S L

Ocean movements (Wave movement) [53] K8 H H S
Linear Regression (ML) [54] K9 M H S

Convolutional Neural Network(ML) [55] K10 M H S
Deep Neural Network (ML) [56] K11 L H M

Shortest Path (graph processing) [57] K12 L M S

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

2.6. Experimental evaluation 21

K1 K2 K3 K4 K5 K6 K7 K8 K9
K10

K11
K12

Average
0

4

8

12

16

20

24

28

32

36

40

44

48

52

S
p
e
e
d
u
p
 o

v
e
r

h
o
s
t
o
n
ly

 e
x
e
c
u
ti
o
n

NDP-1
NDP-2
NDP-3
NDP-4
NDP-5
HMC-DLX
HMC-OoO

FIGURE 2.8: The speedup improvement of the proposed NDP implementa-
tions for each kernel normalized to the host processor execution time.

reduced. Secondly we have designed the CGRAs to optimize general purpose loop execu-
tion, hence the execution of the kernel loops is significantly accelerated. The speedup values
we obtain for each kernel and NDP implementation depend on various NDP microarchi-
tecture parameters. More specific, 16 GB DRAM designs (NDP-3, NDP-4, NDP-5) come
with higher DRAM latency than the corresponding 8GB designs (NDP-1, NDP-2). This
phenomenon hinders the execution performance when executing kernels with heavy mem-
ory I/O requirements such as K1,K2 and K3 while kernels with lower I/O requirements such
as K5 are less affected. Further the amount of PEs on each design plays a major role on
the speedup factor. Designs with 64-bit implementations (NDP-2, NDP-4, NDP-5) tend to
have lower amounts of PEs due the increased energy dissipation they display. As a result
the throughput of 64-bit implementations is hindered as opposed to the throughput of 32-bit
designs. The size of the PE fifo queues is also a contributor to the observed speedup. Designs
with larger fifos (NDP-4, NDP-5) tend to perform better when they execute kernels with a
high amount of RaW dependencies such as K8 and K1. Despite the fact that each NDP design
is best suitable for executing kernels with certain workload characteristics, results indicate a
33x to 42x improvement in execution times for NDP implementations. The standard devia-
tion for each kernel speedup is attributed to the combinations of kernel DRAM requirements,
size and RaW dependencies that result in a differentiation in execution times. For example
K2 displays only a 25x speedup with NDP-2 while K-5 achieves a 44x speedup with NDP-
1. Also designs with larger fifo queues such as NDP-3, NDP-4 and NDP-5 tend to perform
better even with lower amounts of PEs or with higher memory latency due to the efficient
CGRA utilization. For example NDP-4 employs 90 PEs less than NPD-1 and utilizes an
HMC configuration with higher latency per operation, but manages to meet the performance
of NDP-1 as it utilizes 5 more fifo slots per PE. We conclude that the NDP-5 design achieves
42.4x average speedup factor which is the highest among the other implementations while
the NDP-2 achieves 33.6x speedup improvement and thus, being the least performing NDP
implementation.

Speedup over the HMC baseline execution: We also compare the performance of the

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

22 Chapter 2. Near data processing for high performance architectures

1.6

1.7

1.8

1.9

2

D
R

A
M

 d
a

ta
 t

ra
n

s
fe

r
re

d
u

c
ti
o

n

NDP-1 NDP-2 NDP-3 NDP-4 NDP-5 Average
0

5

10

15

20

25

30

35

40

45

50

55
S

p
e

e
d

u
p

 o
v
e

r
h

o
s
t

o
n

ly
 e

x
e

c
u

ti
o

n
Speedup due to data transfer reduction
Speedup due to CGRA loop acceleration
Host processor-HMC data tranfer reduction

FIGURE 2.9: Host processor-HMC data transfer reduction and its contribu-
tion to the normalized speedup of each NDP implementation.

proposed NDP designs with the HMC-DLX and HMC-OoO baseline implementations. The
HMC-DLX achieves an average speedup of 2.7x while the HMC-OoO achieves 4.3x speedup
over the host-only kernel execution. We expect such a result due to the fact that the host
system consists of 4 OoO high-performance cores and thus, the simple HMC-DLX design
cannot outperform it by a large margin, despite being deployed near the DRAM. Similarly
the HMC-OoO is a less complex and efficient pipeline when compared to the host system,
but its performance is adequate to achieve an average speedup of 4.3x when it is deployed
on the HMC logic layer. Considering the comparison with the NDP designs (NDP-1, NDP-
2, NDP-3, NDP-4 and NDP-5), the proposed NDP architectures outperform the baseline
HMC-DLX by an average factor of 14x while the performance increase over the HMC-OoO
implementation is 8.8x on average. More specifically, the NDP-5 implementation achieves
the best performance over the baseline designs by achieving a speedup factor of 15.7 and 9.88
over the HMC-DLX and HMC-OoO correspondingly. On the contrary, the NDP-2 design
depicts the least performance improvement, by achieving 12.2x and 7.82x over the HMC-
DLX and HMC-OoO correspondingly.

In Figure 2.9 we depict the contribution of the HMC-host processor data transfer reduc-
tion to the overall normalized speedup levels achieved by each NDP implementation. By
exploring the impact of the HMC-host processor communication overhead to the speedup
improvement we obtain information on the efficiency of the proposed CGRA loop acceler-
ation. We observe that NDP implementations with high amount of PEs such as NDP-1 and
NDP-3 reduce the data traffic between the RISC-V BOOM and HMC dies by 90% as the
kernels can be efficiently issued on the CGRA. On the other hand NDP implementations
with lower amount of PEs require more data transfer operation between the host and DRAM
die due to the loop fission procedure which continuously dispatches loops for execution on
the HMC logic layer. Further the speedup improvement is also depending on the CGRA mi-
croarchitecure parameters such as the PE fifo size and thus, the NDP-5 outperforms the rest
of the implementations. Nonetheless, the DRAM data transfer reduction contributes to the
overall speedup up to an average 46%, while the rest 54% is attributed to the design of the

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

2.6. Experimental evaluation 23

CGRA that is implemented on the HMC logic layer.

2.6.2 Energy reduction

Figure 2.10 depicts the reduction of the energy consumption for each kernel execution, nor-
malized to the host only execution. We collect such results by averaging every implementa-
tion’s normalized energy reduction for each kernel.

Energy reduction over host only execution: We observe an average of 22.4x reduction
in energy consumption when executing the aforementioned benchmarks on the NDP designs.
NDP achieves significantly faster execution times when compared to the host processor and
also reduces the traffic between the DRAM and processor die. As a result the energy re-
quirements of each benchmark are significantly reduced when employing the proposed NDP
methodology. Results vary among the executing kernels due to the wide range of require-
ments of the corresponding workloads. For example K2 achieves 13.5x while K5 achieves
30x reduction in energy consumption due to the fact that the K2 kernel takes longer to exe-
cute while also having higher DRAM access energy overheads. The average energy reduction
levels are 22.4x compared to the host-only execution, which demonstrates the efficiency of
the proposed NDP framework.

Energy reduction over the HMC baseline execution: We also run the aforementioned
benchmarks using the HMC-DLX and HMC-OoO implementations so that to compare the
proposed NDP methodology with the baseline designs. We observe that the HMC-DLX
architecture achieves an average 2.3x reduction in energy consumption over the host system,
while the HMC-OoO manages to reduce the energy requirements of each kernel by 4.3x
on average. As a result, the proposed NDP implementations perform 5.4x to 10.5x better
when compared with the HMC-DLX and 3.66x to 6.2x when compared with the HMC-OoO
baseline. On average, our NDP designs achieve 9.5x greater reduction in energy consumption
over the HMC-DLX and 5.15x over the HMC-OoO baseline.

Figure 2.11 depicts the breakdown of energy consumption of each NDP implementation.
The results are obtained by averaging the energy reduction of each kernel for the correspond-
ing NDP design.

K1 K2 K3 K4 K5 K6 K7 K8 K9
K10

K11
K12

Average
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

E
n
e
rg

y
 r

e
d
u
c
ti
o
n
 o

v
e
r

h
o
s
t
o
n
ly

 e
x
e
c
u
ti
o
n

PE network
Preprocess+I/O
DRAM
On chip routing
HMC-DLX
HMC-OoO

FIGURE 2.10: Normalized energy reduction of the NDP methodology.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

24 Chapter 2. Near data processing for high performance architectures

NDP-1 NDP-2 NDP-3 NDP-4 NDP-5 Average
0

5

10

15

20

25

30

35

40

45

E
n
e
rg

y
 r

e
d
u
c
ti
o
n
 o

v
e
r

h
o
s
t
o
n
ly

 e
x
e
c
u
ti
o
n

PE-CE network
Preprocess+I/O
DRAM
On chip routing
HMC-DLX
HMC-OoO

FIGURE 2.11: Energy consumption breakdown of NDP implementations.

Energy reduction over host only execution: We observe that the NDP-5 implementa-
tion achieves 33.2x energy reduction normalized to host system which is the highest among
NDP designs. On the other hand NDP-2 achieves 22.4x reduction and thus, being the least
performing implementation in terms of energy saving. A significant energy overhead of
the designs derives from the on-chip routing costs. The SoC mesh interconnection net-
work which connects the PEs-CEs of the CGRA is responsible for data forwarding and con-
sumes 25% (NDP-5) to 41% (NDP-1) of the total energy. Apart from the routing costs, the
PE-CE network energy consumption is also significant and increases from 31%(NDP-1) to
38%(NDP-5) as the amount of fifo slots increases too. The preprocess+I/O energy is at-
tributed to the preprocessing that takes place on the host system which includes the loop
pipelining, unrolling, fission and scheduling processes. Such an overhead is small but not
trivial and contributes around 14% to the NDP energy consumption. Finally the DRAM en-
ergy costs come from the amount of memory access requests and the size of the DRAM.
Larger DRAMs such as NDP-5 (16 GB) require more energy per operation when compared
with smaller DRAM sizes as the one in NDP-1. In conclusion the energy consumption of
each NDP implementation is mainly affected by the interconnection network complexity and
the amount if fifo slots on each PE. On the other hand the DRAM data transfer energy cost
becomes major in 16 GB DRAM implementations while the preprocessing costs remain in
relative low levels on each NDP design.

Energy reduction over the HMC baseline execution: We present the average energy
reduction achieved by the HMC-DLX and HMC-OoO baseline implementations (i.e. 2.3x
and 4.3x respectively) over the host only kernel execution. We depict such values in order to
obtain a clear picture of the performance in terms of energy savings of the proposed NDP im-
plementations. Our findings are explained above, when discussing the figure 3.8, while figure
2.1 depicts the average energy reduction of the HMC-DLX and HMC-OoO correspondingly.

2.6.3 Power and area efficiency

Figure 2.12 depicts the power efficiency of the proposed NDP and HMC baseline implemen-
tations normalized to the power efficiency of the host processor. We collect such metrics

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

2.6. Experimental evaluation 25

NDP-1 NDP-2 NDP-3 NDP-4 NDP-5 Average
0

5

10

15

20

25

30

35

40

45

50
P

o
w

e
r

e
ff

ic
ie

n
c
y
 o

v
e

r
h

o
s
t

o
n

ly
 e

x
e

c
u

ti
o

n

NDP implementations
HMC-DLX
HMC-OoO

FIGURE 2.12: Normalized power efficiency of the NDP implementations.

by studying the achieved throughput per Watt of the NDP, the HMC baseline and RISCV-V
implementations.

Power efficiency over host implementation: Results indicate that NDP implementa-
tions are 34x to 47x more power efficient when compared to the host processor. The NDP-5
implementation shows the best power efficiency due to the high speedup ratios it achieves.
Such a power efficiency improvement is attributed to the NDP architectures which focus on
accelerating general purpose loops, while the host processor under-performs as it is designed
to operate under a wider spectrum of applications.

Power efficiency over the HMC baseline implementations: The HMC-DLX baseline
implementation achieves an average 4.8x better power efficiency when compared to the host
processor, while the HMC-OoO baseline achieves a 6x increase respectively. As a result, the
proposed NDP designs depict an average 8.4x and 6.7x improved power efficiency compared
with the baseline HMC-DLX and HMC-OoO implementation correspondingly.

Figure 2.13 depicts the area efficiency of the proposed NDP implementations normalized
to the area efficiency of the multi-core host processor. Similarly to figure 2.2 we measure
the area efficiency as the throughput achieved over the die area of the integrated circuit. We
then normalize such measurement to the corresponding area efficiency of the host processor
in order to compare our findings.

Area efficiency over the host implementation: Results indicate that the proposed NDP
designs are 129x to 179x more area efficient when compared to the host system. Such an
improvement is expected due to the small die area of the NDP implementations and the high
speedup rates they achieve. We also observe that the NDP-5 is 26% more area efficient when
compared to the NDP-1 despite the fact that the speedup improvement of the NDP-5 is 26%
compared to NDP-1. Such a difference is attributed to the die area difference of such designs
as the NDP-5 is 13% smaller than the NDP-1 implementation, and thus its area efficiency is
significantly higher.

Area efficiency over the HMC baseline implementations: The HMC-DLX implemen-
tation is 14x times more area efficient compared to the host system, while the HMC-OoO
achieves a 18x better area efficiency over the host processor. Further, the proposed NDP im-
plementations (i.e. the NDP-1, NDP-2, NDP-3, NDP-4 and NDP-5) manage to outperform

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

26 Chapter 2. Near data processing for high performance architectures

NDP-1 NDP-2 NDP-3 NDP-4 NDP-5 Average
0

15

30

45

60

75

90

105

120

135

150

165

180

195
A

re
a

 e
ff

ic
ie

n
c
y
 o

v
e

r
h

o
s
t

o
n

ly
 e

x
e

c
u

ti
o

n NDP implementations
HMC-DLX
HMC-OoO

FIGURE 2.13: Normalized area efficiency of the NDP implementations.

the corresponding baseline designs (HMC-DLX and HMC-OoO) by a factor of 10.7x and
8.3x respectively.

2.6.4 Speedup improvement per Watt

Figure 2.14 depicts the speedup improvement of each NDP and baseline implementation for
each unit of watt consumed. In this sense, we measures the efficiency of the proposed designs
to trade power consumption for speedup improvement.

Speedup improvement per Watt: We observe that the highest ratio is achieved by NDP-
5 implementation which improved the speedup by 9.4x per unit of watt consumed. On the
other hand, NDP-2 utilizes a unit of watt to increase the speedup by 7x and thus, is evaluated
as the least performing design. The average speedup increase per watt is 8.3x which we
consider very efficient in terms of trade off benefits.

Speedup improvement per Watt for the HMC baseline implementations: The HMC-
DLX baseline pipeline utilizes 1 unit of watt to increase the speedup of the design by a factor
of 0.87x, while the HMC-OoO achieves 1.17x speedup over the host system per unit of watt
consumed. Thus the proposed NDP methodology outperforms the HMC-DLX baseline by
a factor of 9.4x and the HMC-OoO by a factor of 7.1x in terms of speedup per unit of watt
consumed.

2.6.5 Comparison with related works

Table 2.5 depicts the normalized speedup and energy reduction levels achieved by the cur-
rent state-of-the-art works in the NDP literature. In order to compare our work against the
other NDP architectures we utilize the mean benchmark results provided by the authors of
the corresponding previous works and we compare them with the mean results obtained by
our research. We opt to focus on the speedup and reduction in energy consumption measure-
ments, as we believe that they are indicative of the performance of a system. To this end,
for each work we use the speedup and energy reduction over the baseline implementations

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

2.6. Experimental evaluation 27

NDP-1 NDP-2 NDP-3 NDP-4 NDP-5 Average
0

1

2

3

4

5

6

7

8

9

10
S

p
e

e
d

u
p

 /
 W

a
tt

 o
v
e

r
th

e
 h

o
s
t

s
y
s
te

m

NDP implementations
HMC-DLX
HMC-OoO

FIGURE 2.14: Speedup per Watt of each NDP implementation.

and not over the host only execution. As a result, we obtain results that correspond to the
performance of the NDP designs when compared to other existing NDP implementations.

This comparison demonstrates that the NDP architecture proposed in this work is one
of the best performing designs according to the current state of the art. More specifically,
previous works in [8] [15] [16] [17] [18] [22] [24] [27] and [31] perform an order of magni-
tude lower in speedup improvement than the NDP framework proposed in this work. On the
contrary, previous work in [11] is closer in terms of speedup with the proposed NDP archi-
tecture, but our design manages to outperform it by a factor of 2x in the best case scenario
(NDP-5). Considering the energy consumption, we observe that the proposed NDP architec-
ture achieves better energy reduction ratios when compared with the existing literature, even
in the worst performing design (NDP-2).

TABLE 2.5: Comparison of the proposed NDP architectures with the current
state of the art.

Normalized speedup Normalized energy reduction
NDP architecture over NDP baseline over NDP baseline Evaluation

[8] General purpose 3.5x 4x Spice simulation
[11] Graph Processing 14x 5x In-house software simulator

[15] Reduction operations 7x 3.5x Software simulator
[16] General purpose 2.2x 5x Gem5 simulator

[17] Memory intensive 2.2x - ASIC/FPGA
[18] General purpose 3.8x 3.4x Spice simulation

[22] Big data 6.1x 5x Device, integrated circuit
[24] PIM cache coherence 2x 2.7x Software simulator

[27] Graph Processing 1.5x 2x In-house software simulator
[31] General purpose 3.4x 2x Software simulator

NDP-1 General purpose 14x - 8.7x 11x - 5.9x ASIC/gate level
NDP-2 General purpose 12.2x - 7.8x 9.5x - 5.14x ASIC/gate level
NDP-3 General purpose 14.6x - 9.1x 11.5x - 6.2x ASIC/gate level
NDP-4 General purpose 14.2x - 8.8x 10.7x - 5.8x ASIC/gate level
NDP-5 General purpose 15.7x - 9.8x 14x - 7.6x ASIC/gate level

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

29

Chapter 3

Timing analysis for low power
pipelines

3.1 Introduction

Traditional microprocessor design ensures an error free instruction execution on general pur-
pose processors. According to the established model, the designer designates the clock fre-
quency and the voltage values of the processor, so that no timing violation of the critical path
occurs. Thus, the design revolves around the timing analysis of the worst-case scenario, and
the critical path acts as a strict timing threshold, constraining the processor performance.

In contrast to the traditional model, the BTWC paradigm attempts to relax any critical
path restrictions through TS, by scaling up and down the processor voltage or clock fre-
quency, allowing timing errors to occur. The resulting errors can then be resolved by an
integrated rollback error correction mechanism. Such a paradigm presents many design op-
portunities for performance enhancement and power reduction.

This work is loosely based on the BTWC design paradigm, primarily focusing on the
performance increase of the processor pipeline for low-cost, low power processors. In this
chapter, we present the IPE-STA, a methodology that improves performance by executing
instructions in varying clock frequencies, according to the opcode of the executing instruc-
tions. A proposed timing analysis methodology detects instruction opcodes that may run at
high speed, as well as instruction opcodes that must run at low speed. The instruction pipeline
is then fed with multiple clock signals, multiplexed in a way that when a critical instruction
is decoded, a slower clock is selected for the cycle that exhibits the maximum timing delay,
reverting to the previous clock in the following cycle. Thus, the typical clock selected can be
faster than the one designated via traditional timing analysis.

Such an approach diverges from classic BTWC design techniques, in that we utilize the
knowledge about each individual instruction timing requirements, obtained from our timing
analysis methodology. With that knowledge, our model foresees any upcoming timing errors
and corrects them a priori. In this way, we eliminate any execution error probability, thus
no error recovery mechanism is deployed, as each instruction is certain to meet its timing
requirements. Since performance penalty induced by error correction is non-trivial, our more
deterministic error detection mechanism avoids the performance implications of traditional
BTWC techniques. Furthermore, the developed methodology is architecture independent
making it applicable to any given single-issue in-order-execute design, without requiring
intrusive changes to its microarchitecture.

The above technique has been implemented and tested on two different post-layout RISC-
V Verilog processor implementations, using the SPEC 2017 CPU benchmark suite. The
same tests have been applied on the implementations without clock-scaling, and the results
obtained show a clear improvement in processor performance, between 12% and 76%, and an
average 3.7-fold improvement in performance-to-power ratio, despite the expected increase
in power consumption due to high frequency operation.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

30 Chapter 3. Timing analysis for low power pipelines

3.2 Related word

Following decades of standard worst-case processor design methodologies, a considerable
amount of research has being conducted in BTWC designs in the last few years. The BTWC
paradigm treats the critical path more flexibly than traditional designs [59]. In particular,
TS aggressively violates critical path restrictions, allowing and then correcting any resulting
errors. Such a technique enables researchers to tamper with energy-performance trade-offs
and promises to efficiently increase the performance or lower the power consumption of a
circuit [60].

The suggestion to apply TS on processor design has led to the development of Razor
[61] [62]. Razor’s pipeline employs TS in order to improve the performance-to-power ratio,
while also utilizing “shadow latch” circuits, to detect and correct the errors incurred by the
alteration of the voltage power. This correction mechanism operates in real time and ensures
the error free instruction execution. Another research work focuses on the dynamic frequency
scaling of a superscalar processor, supported by error recovery mechanisms to compensate
for resulting timing errors [63]. In that work, researchers deploy both local and global error
correction mechanisms, which ensure a correct instruction execution when the processor is
overclocked at higher frequencies.

BTWC design methodologies have also proven able to address the ever increasing process
variation effects or the uncertainty caused by the environment and the fabrication process of
the integrated circuits [64]. As a result, a significant amount of research compensates for PVT
variations, while exploring possible TS benefits [65]. In such cases, probabilistic methods
can be deployed to model the PVT fluctuations [66], while guardbanding has been proposed
in one work to safeguard the circuit against timing violations [67]. Another work shows that
process variation effects result in pipeline imbalances as long as timing delay is concerned
[68]. In order to overcome this problem, a framework has been developed to tighten the
timing of the circuit using a time stealing technique equalizing the timing requirements of
each pipeline stage. A third work exhibits that the mitigation of PVT effects may be achieved
by a properly developed framework [69]. In that work, the researchers manage to model
the PVT effects and create a framework that enables error-power and error-frequency trade-
offs. Finally, another work demonstrates novel techniques which may be used to design
PVT resilient microprocessors [70]. Such techniques include the monitoring of critical paths
by sequential circuits that detect timing errors, or the monitoring of each pipeline stage for
worst-case delays. In both cases, the designers also propose error recovery mechanisms and
exhibit a significant performance increase by utilizing clock frequency scaling.

Previous work has also shown that through a careful application of timing optimiza-
tions designers may obtain significant energy-performance trade-offs at a higher architecture
level [71]. A marginal cost analysis demonstrates the potential of circuit voltage scaling on
architectural level, highlighting the optimal operational point of a target processor. Further-
more, the design process of a microprocessor could also be aligned to facilitate TS friendly
microarchitecture adjustments. Specifically the optimization of the most frequently exercised
critical paths may result in clock frequency scaling and lower power dissipation on existing
TS architectures [72]. Along the same lines, the slack redistribution of the most frequently
occurring timing paths of a processor may lead to architectures with lower power consump-
tion and minimum error rate [73]. Another work in [74] proposes a TS cache design which
manages to lower the energy consumption of the system while maintaining high cache hit
ratios within various cache organizations.

Apart from the architectural point of view, TS techniques have also been proposed on
circuit level design. Specifically the proposed DynaTune methodology monitors the dynamic
behavior curve of a circuit and performs gate level optimizations to reduce propagation delay
[75]. An error detection technique has also been proposed which utilizes multi-level logic

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

3.2. Related word 31

speculation in time domain to make decisions on whether the timing of the circuit should be
relaxed or not [76]. Some research also indicates that logic synthesis optimization may result
in lower error rates in TS circuits, by using a path delay balancing technique [77]. The goal
is to classify high fan-in logic gates together and to optimize their timing balance using a
proposed logic synthesis methodology.

BTWC design research is not only focused on architecture or circuit design, but on com-
piling methods as well. It has been suggested that BTWC logic requires a TS aware compi-
lation method, capable of exploiting the error resilience of the target processor. As a result
binary recompilation has been proposed, with respect to the timing speculative processor
ISA, to further reduce the error rate of the executable file [78]. Another approach to the prob-
lem suggests a convenient ISA design in conjunction with proper compiler optimizations to
boost performance by lowering the amount of error rate, while increasing the processor clock
frequency [79]. The usage of a critical path profiler has also been explored, resulting in the
design of a profile compiler comparing the delays of all instruction paths, while also using a
form of value prediction to speed up execution [80].

As the TS paradigm revolves around scaling the clock frequency in real time, research
is also focused on clock adaptation techniques. Specifically, previous work in [81] manages
to adapt the clock frequency of a POWER 7 processor core by adjusting the voltage values
in firmware level. Combined with a critical path monitoring mechanism, researchers achieve
voltage scaling when the critical path is not excited while using the available timing margin
as a guardband mechanism. Another work utilizes a unary coding scheme to enable the PLL
to quickly adapt to the required clock changes in real time [82]. This approach can be applied
on a single core clock to enable its dynamic frequency change without imposing significant
delays. A research that also underlines the importance of a robust real time clock adaptation
scheme is [83]. In this work, researchers manage to deploy a clock adaptation scheme which
can reduce the clock frequency in an AMD 28nm microprocessor core improving the power
efficiency of the system. This approach utilizes a phase generator which can modify the
clock’s phase in order to stretch its period. Similarly, in [84] authors employ a dynamic clock
adjustment technique on a simple processor pipeline to adjust the clock frequency according
to the application type that is being executed on the processor pipeline.

TS designs are often prone to exhibit metastable behavior, resulting in non-deterministic
timing phenomena which should be taken into account when designing a TS processor [85]
[62]. This issue usually appears when the input data arrives close to a rising clock edge,
resulting in the possibility of undetected errors. In the course of minimizing the metastable
behavior of timing speculative circuits, design methods have been proposed, utilizing a time
borrowing technique alongside of a careful examination of the data path timing, which sim-
plifies the issue of metastability by moving such behavior to the circuit error path only
[86]. Despite the progress being made on this issue, a more recent work claims that cir-
cuit metastable behavior in TS designs is not yet efficiently addressed [85]. In this regard the
mean time between failures of such designs discourages any possible industrial applications.

Another thought provoking aspect in BTWC techniques is the error recovery mechanism
and the performance penalty it imposes on the design [87]. Due to that penalty signifi-
cant effort has been made on the improvement of the deployed prediction mechanisms [88].
While some designs employ statistical methods to successfully detect specific instruction
sequences which have pre-analyzed timing requirements [67], others tend to focus on mon-
itoring the critical path excitation by individual instructions [89] [90]. Another approach
revolves around the identification of timing critical instructions during runtime, using that
knowledge to improve the energy-efficiency ratio of the processor [91]. Finally a study on
the CMOS recovery mechanism reveals the impact of the technology on such techniques, as
researchers develop a hardware model sufficient to simulate timing speculation designs [92].
The same research also underlines the importance of a fine-grained error recovery mechanism

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

32 Chapter 3. Timing analysis for low power pipelines

in BTWC designs. Although the penalty imposed by the execution or by the unsuccessful
prediction of a critical instruction is relatively low, results indicate that the performance loss
due to error recovery is non-trivial. Moreover, in some extreme cases the design’s perfor-
mance deteriorates to the point that the TS design displays lower throughput than the baseline
processor [67].

From all the above reviewed work we have concentrated our interest on the issues of error
recovery in the TS design paradigm, as well as on the issues of metastability observed in that
paradigm. Our motivation has been to study such issues and come out with a novel technique
that exploits TS in a way that any possible speculation errors are detected dynamically and
recovered before they appear, thus avoiding the costly error recovery mechanisms, and at
the same time eliminating metastability phenomena altogether. In the following sections of
this chapter we introduce our opcode-based timing analysis and clock scaling technique for
error-free timing speculation in pipelined microprocessors.

3.3 Background

3.3.1 Static and dynamic timing analysis

Timing analysis is a technique traditionally used in order to analyze timing behavior of a
digital circuit and establish the optimal clock cycle for that circuit.

Standard STA is performed either at flop to flop or at input to output basis. It calculates
the worst-case delay of the analyzed circuit and reports whether setup or hold violations
occur under certain design constraints. It can also be used to highlight the critical path of the
circuit, which plays an important role on the timing requirements of the design. However,
STA is overly pessimistic, since it considers worst-case delay for each path of the design.
Such an analysis turns out to be quite inefficient for the BTWC model, as not all paths have
their worst-time delay at the same time.

On the other hand, DTA may be used in order to acquire very accurate timing informa-
tion about a circuit design. It utilizes a set of input vectors as triggers and proceeds to circuit
excitation with the selected input values. An exhaustive DTA will display all actually pos-
sible timing paths of a given circuit, at a very high time cost though. It eliminates the path
pessimism induced by STA as it analyzes the timing requirements of every possible input of
the circuit. Although DTA would be more appropriate for BTWC design timing analysis, its
time cost renders its usage impossible on large designs, as it trades accuracy for completion
time.

3.4 Timing analysis in processor datapaths

3.4.1 The instruction path exhaustive timing analysis concept

In this work we propose the instruction path exhaustive static timing analysis (IPE-STA)
technique inspired by the BTWC design approach. More specifically, we develop a timing
analysis model, which extracts circuit information that enables us to exploit the timing dif-
ferences of the processor timing paths. In order to obtain such information, we analyze each
individual instruction the processor supports, with respect to its unique timing requirements.
To analyze each instruction independently, we isolate from the integrated circuit all the pos-
sible paths an instruction may take, while declaring the rest of the paths as false. We repeat
this process until we exhaust all the available instructions. Afterwards we perform STA on
each separate path group that corresponds to each individual instruction. The results we ob-
tain refer to the worst-case timing requirements of each instruction, instead of referring to
the worst-case delay of the processor.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

3.4. Timing analysis in processor datapaths 33

In order to present our technique, we refer to a standard timing analysis tool, with which
we conduct timing analysis on the post-layout netlist of a pipelined processor. Our technique
is architecture agnostic and thus, it can be applied to any existing processor architectures
provided that we have access to their corresponding ISA. Algorithm 2 depicts our initial
approach to the problem. First we pick an instruction supported by the processor. We then
consult the ISA to identify its opcode, while ignoring any register or data fields facilitated
within the instruction word. For that opcode we commence a timing analysis operation,
in which the designer may set any of the circuit inputs to constants, and let the tool being
utilized perform a flop to flop timing analysis given the fact that some of the circuit inputs
are set to a fixed value. Such functions (i.e. "case_analysis") are supported by the current
state of the art timing analysis tools such as the synopsys PrimeTime and thus, we consider
such an operation standardized. In our case these values represent the current instruction
opcode field. The tool propagates any generated signals through the processor pipeline to
analyze the timing of each pipeline stage separately while performing STA. As a result we
obtain a timing report that displays the timing requirements of each pipeline stage for the
fixed instruction opcode, thus for the designated instruction. That report gives the worst-case
scenario of the analyzed instruction with respect to timing. In the sequel, we keep record of
the slowest pipeline stage timing, before moving on to the next instruction. Finally we pick
another instruction and reiterate this process, until all the available instructions are exhausted.

It becomes clear that the timing analysis methodology we propose is a hybrid between
STA and DTA. It performs STA for each instruction of the processor ISA, but it further
analyzes all possible instructions, giving a DTA flavor to the result. However, it is not a full
DTA, since it only varies the opcode field of the instruction word, thus not considering input
values neither for any other field of the instruction word nor for any other part of the circuit.
In particular, the implementation of the architecture we work on supports 180 instructions,
which means that we only need 180 analyses in our method, instead of 264 which would
be needed for a full DTA on the variations of the instruction word alone, or many more if
we were to consider other circuit inputs as well. On the other hand, our approach is not as
pessimistic as classic STA, and with only little higher complexity it can produce designs that
exhibit significantly better performance than designs produced by STA. Our second approach
presented next can produce even more efficient designs.

3.4.2 Dynamic opcode value changes compensation

Using the proposed technique we manage to analyze the timing requirements of each proces-
sor instruction individually. To this end, we are iteratively affixing certain circuit inputs at

Algorithm 2 The proposed timing analysis methodology which studies each instruction as
an individual entity.

Start
instruction_number == supported_instructions[ISA]
while instruction_number > 0 do

instruction = next_instruction
opcode = instruction[opcode]
stage_delays = STA[netlsit,opcode]
worst_case[instruction_number] = max[stage_delays]
instruction_number –

end while
End

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

34 Chapter 3. Timing analysis for low power pipelines

constant voltage values. Specifically, we are bounding the opcode field bits to static binary
values in order to analyze each instruction behavior.

In real time digital circuits though, inputs change in a dynamic way as new values are
stored into the pipeline registers at the rising edge of the clock signal, immediately before
they are needed and used. As a result, new instructions are fetched for execution on each
clock cycle and thus, inputs representing the opcode bits of each instruction are not con-
strained to fixed voltage values; instead they dynamically change, resulting in an unpre-
dictable transient timing behavior in every pipeline stage after the fetch stage. Such behavior
appears at the decode stage due to the opcode bits per se, as well as at all subsequent stages
due to the control bits produced by the opcode bits and is propagated to such stages. For this
reason, the discrepancy between our initial concept and a real time system behavior in timing
deviations should be addressed.

In order to compensate for the dynamic voltage change in the processor pipeline inputs,
we employ a modification of the aforementioned timing analysis methodology. Since our
focus is now around the timing variance created by the dynamic behavior of the instruction
opcode field, we consider the opcode as a bit sequence whose length is defined by the ISA.
Consequently we have to take into account every possible value transition which leads to the
currently analyzed bit sequence. Normally the amount of all possible combinations grows
exponentially with the length of the sequence. We consider this approach unsuitable for our
needs as its high time cost makes it impossible for practical application. Furthermore, we aim
at the development of a methodology, which can be employed to analyze any ISA, without
depending on the instruction opcode length of the design.

The solution we propose to resolve this is based on the observation that in processor
architectures not all possible bit transitions lead to valid bit sequences of the opcode field.
More specifically, as the instructions succeed one another during the instruction fetch stage,
the number of valid opcode bit combinations is constrained by the number of the instructions
supported by the ISA. So instead of analyzing the timing delay of each possible opcode bit
sequence transition, we focus on the analysis of each possible instruction succession.

Algorithm 3 depicts the proposed solution, which relies on the initial concept as described
earlier, augmented with the dynamic value change compensation approach we discussed.
In this solution, we analyze each instruction’s timing requirements individually as before,
but instead of using fixed voltage values to describe the currently examined instruction, we
analyze each possible opcode transition that could lead to the opcode bits of the current
instruction. Such transitions represent any rising and falling voltage values that could result
in that particular bit sequence. The timing analysis of such cases is studied individually,
while the timing analysis tool propagates all generated signals through the processor pipeline.
We still use the STA operation, as it can be expanded to include rising and falling voltage
change. When we complete the timing analysis of an instruction, we save the worst-case
delay. Afterwards we proceed with the analysis of the next instruction, until all supported
instructions are exhausted.

The method we proposed in this section uses STA to find the worst-case delay path of
each individual instruction. But in order to achieve an accurate timing result we utilize an
exhaustive iterative analysis resembling more now that of a DTA method. However, even
if we restrict value variations within the instruction opcode, with an opcode field of x bits,
a standard DTA approach would require 2x iterative timing analyses to effectively analyze
the timing of the opcode length, as each possible x-bit combination may lead to the required
sequence. Instead, using our methodology, the number of iterations needed for each opcode
analysis is only equal to the total number of supported ISA instructions.

The proposed timing analysis technique lies somewhere between STA and DTA, closer to
STA with respect to complexity, but closer to DTA with respect to output quality. We call this
technique Instruction Path Exhaustive Static Timing Analysis (IPE-STA). In the following

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

3.5. Clock scaling of RISC-V using IPE-STA 35

Algorithm 3 The timing analysis methodology which compensates for the dynamic voltage
change of the opcode field.

Start
instruction_number == supported_instructions[ISA]
while instruction_number > 0 do

instruction = next_instruction
for all possible opcode transitions do

opcode = instruction[opcode]
stage_delays = STA[opcode_transition,netlsit,opcode]
worst_case[instruction_number] = max[stage_delays]

end for
instruction_number –

end while
End

section we discuss the application of IPE-STA to adaptively scale the clock frequency of the
core pipeline of a processor.

3.5 Clock scaling of RISC-V using IPE-STA

3.5.1 Adaptive clock scaling in pipelined Processors

Adaptive clock scaling is often used for power control in modern processor architectures.
Processor cores can be slowed down when not in full use, in an attempt to reduce power
consumption and avoid overheating. In some cases, cores can be sped up for a limited time,
in order to boost performance for cycle-hungry applications. On the other hand, low-cost
processors that are preferred for embedded and low-performance systems can also use clock
scaling in order to increase performance, especially if this is achieved in a fairly cheap man-
ner.

Another way to effectively scale up the clock frequency is to deepen the processor pipeline.
In this way each stage’s latency is reduced and the system may operate lower clock peri-
ods. Previous works in [93] and [94] demonstrate that deepening the processor pipeline
results in an increase in circuit area and power consumption due to the implementation of
additional pipeline registers, Furthermore, deep pipelined processors require more compli-
cated forwarding, control and stalling mechanisms thus, further impairing the design’s area
and power requirements. Finally authors in [93] and [94] conclude that the increase of the
pipeline stage amount does not necessarily result in performance increase as the costs of
wrong branch predictions and pipeline flushing become greater.

Our work focuses on low-cost processors which present significantly low area and power
requirements as stated in [95] and [96]. Under this premise we do not opt in deepening the
pipeline width or enhancing the complexity of the system, instead we focus on increasing the
processor throughput while preserving the system microarchitecture as it is. In this section
we will present how IPE-STA can be employed for such a purpose.

Clock scaling is often used for power control in modern high-performance processor
architectures. Processor cores can be slowed down when not in full use, in an attempt to
reduce power consumption and avoid overheating. In some cases, cores can be sped up for
a limited time, in order to boost performance for cycle-hungry applications. On the other
hand, low-cost processors that are preferred for embedded and low-performance systems can
also use clock scaling in order to increase performance, especially if this is achieved in a

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

36 Chapter 3. Timing analysis for low power pipelines

fairly cheap manner. In this section we will present how IPE-STA can be employed for such
a purpose.

3.5.2 Scaling clock by opcodes

IPE-STA can be used to acquire timing information for each instruction separately and thus,
we aim to use such information for adaptive clock scaling based on the instruction opcode.
In order to validate our clock-scaling technique, we use a simple 64-bit six-stage pipelined
processor architecture. More specific we opt for a a single-issue in-order-execute RISC-V
Rocket core implementation [105].

We will refer to this implementation as baseline processor. In order to tighten the tim-
ing of the processor’s functional units we also deploy a second implementation that utilizes
pipelined functional units. As a result time consuming operations require more clock cycle
to complete but they display lower latency. We will refer to this implementation as pipelined
execution implementation. We classify the obtained results into 11 instruction classes as
shown in table 3.1. Each instruction class contains a group of individual instructions with
similar timing requirements. We also pinpoint the slowest pipeline stage in terms of delay,
for every class. Finally, we assign a worst-case delay value to each class, which is the highest
instruction delay in the corresponding group. The classes go as follows:

• The Logical instruction class which includes logical operations such as and, ori and
xor.

• The Shift instruction class which includes shift operations such as shift left logical or
shift arithmetic.

• The Comparison instruction class which includes bit comparison operations.

• The Jump instruction class which includes jump operations such as jump and link,
jump register or jump.

• The Multiplication instruction class which includes integer multiplication opera-
tions.

• The Division instruction class which includes any integer division operations.

• The Other arithmetic instruction class which includes all other integer arithmetic
operations except for multiplication and division, such as addition or subtraction.

• The Memory access instruction class which includes any memory access operation
such as load word or store byte.

• The FP Multiplication instruction class which includes floating point multiplication
operations.

• The FP Division instruction class which includes floating point division operations.

• The Other FP arithmetic instruction class which includes all other floating point
arithmetic operations except for FP multiplication and division, such as FP addition or
subtraction.

After studying the aforementioned instruction classes we observe the following:

• Each pipeline stage presents unique timing requirements depending on the instruction
being executed.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

3.5. Clock scaling of RISC-V using IPE-STA 37

TABLE 3.1: Analysis of the instruction classes of the RISC-V Rocket core
architecture.

Instruction class Slowest pipeline Baseline worst Pipelined execution
stage (critical stage) case delay worst case delay

Logical Execute stage 1.2 ns 1.2 ns
Shift Execute stage 1.5 ns 1.5 ns

Comparison Execute stage 1.5 ns 1.5 ns
Jump Execute stage 1.1 ns 1.1 ns

Multiplication Execute stage 2.9 ns 1.5 ns
Division Execute stage 3.3 ns 1.1 ns

Other arithmetic Execute stage 1.9 ns 1 ns
Memory access Memory stage 3.9 ns 1.3 ns

FP Division Execute stage 3.7 ns 1.3 ns
FP multiplication Execute stage 3.2 ns 1.1 ns

Other FP arithmetic Execute stage 3.0 ns 1 ns

• Some pipeline stages may produce error free results while utilizing higher clock fre-
quencies than the others.

• The error free instruction execution is preserved if we satisfy the timing requirements
of each individual pipeline stage for the executing instruction.

We deduce that we can dynamically adapt the clock period of the processor during the run
time in order to achieve higher throughput, while also guarantying the error free instruction
execution. To this end, we isolate the critical instructions, i.e. the instructions that constrain
the clock frequency and we display the results we obtained for each implementation in table
3.2. We track down all critical instruction classes for our architecture and we assign a mini-
mum operational clock period to each one of them. Due to the prior timing analysis, we are
guaranteed that each critical instruction will execute without errors at the designated clock
period. We also consider a typical clock period for each design which is suitable for the error
free execution of non-critical instructions.

Our design focuses on letting the pipeline operate at high clock frequencies when criti-
cal instructions are absent. When a critical instruction is detected, we downscale the clock
frequency, as soon as the critical instruction enters the pipeline stage which would otherwise
cause a timing error. We refer to such stage as critical stage. Figure 3.1 shows an execution
instance of a small instruction sequence on the Rocket core Baseline implementation. We
track the minimum clock period with respect to the pipeline stages involved and we mark

TABLE 3.2: The clock periods for critical instructions along with the typical
clock period for the Rocket core implementation.

Processor Critical instruction Critical instruction Typical clock
implementation classes operational clock period

period
RISC-V Rocket core Multiplication, Division,

baseline implementation Memory access,FP Division, 4 ns 2 ns
FP multiplication

RISC-V Rocket core Shift, Comparison,
pipelined execution Multiplication 1.5ns 1.3ns

implementation

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

38 Chapter 3. Timing analysis for low power pipelines

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add r2,r3,r4

muli r5,r6,6

sw r2,0(r5)

add r6,r1,r6

jump exit

Min clock period 2 ns 2 ns 2 ns 2 ns 4 ns 4 ns 2 ns 2 ns 2 ns

Clock cycles 1 2 3 4 5 6 7 8 9

time

FIGURE 3.1: An instruction execution instance of the Rocket core imple-
mentation displaying the minimum operational clock period during each

stage.

the critical stages that contribute to frequency downscaling. Under this premise, the criti-
cal stage is the slowest pipeline stage in which the clock frequency needs to be adjusted so
that no timing errors to occur.In this example, the pipeline under examination may operate
at higher clock frequencies during the 1st to 4th and 7th to 9th clock cycle, while the clock
frequency must be lower at the 5th and 6th cycle.

3.5.3 Dynamic Clock Scaling Mechanism

We will now present in detail the circuit we designed to carry out the dynamic changes in
the clock frequency. The circuit utilizes the information extracted from the timing analysis
proposed in section 3.5.2, to decide whether the clock frequency should be changed or not.
As the decision making will be occurring in real time, our design needs to employ reliability
and speed. Figure 3.2 displays the designed clock control unit, which is responsible for
the aforementioned task, deployed on the Rocket core implementation. It consists of an
instruction snooping module and a clock selection module. In order to make the design
nonintrusive for the processor architecture, we attach the two-module circuit at the side of
the fetch and the decode stages of the processor pipeline. Note that the added circuit area
shown is not in scale with the pipeline.

Instruction snooping module: To be able to change the clock frequency dynamically,
we need information about the class of the instructions that are headed for execution. To this
end, we implement an instruction snooping circuit that receives a copy of the instruction word
coming out of the instruction cache. This circuit monitors the instructions fetched and tracks
down their progress in the pipeline. Moreover, it utilizes lookup tables which contain both the
critical instruction opcodes and the critical pipeline stage for each corresponding instruction
as calculated in Section 3.5.2. Using this information, the circuit produces a logical output
on whether the clock frequency must be changed, driving with that output the clock selection
module.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

3.5. Clock scaling of RISC-V using IPE-STA 39

MEMID EX WBIFI-cache

Reg

Lookup table

Frequency
selector

Pipeline progress
track

Fast PLL

Slow PLL

M
u

xClk

fc

fc/2

Phase
selector

Clock control unit

MUL

Clock selection

Instruction snooping

Pipeline

FIGURE 3.2: The clock control unit integrated in the rocket core.

Pipeline clock

High frequency PLL

Low frequency PLL

Frequency selection

unstable behavior

Select low frequenc y PLL

Select hig h frequency PLL

Pipeline clock

High frequency PLL

Low frequency PLL

Frequency selection

unstable behavior

Select low frequenc y PLL

Select hig h frequency PLL

FIGURE 3.3: Unstable clock behavior due to subsequent clock selections.

Clock selection module: This module propagates the appropriate clock pulse selected
by the frequency selector mechanism of the instruction snooping module. The clock selec-
tion module inputs are the frequency selection signal generated by the instruction snooping
module and two PLL signals, one of high and one of low frequency. The frequency selection
signal determines which pulse will be selected for the pipeline clock, when the instruction
arrives at the critical stage. If frequency is indeed switched to low, the module must revert to
the high frequency in the following cycle. The selection circuit is a simple multiplexor with
insignificant contribution to the total delay of the module.

In the implementation of the second module, we observed that reverting to the original
frequency may result in an unstable pipeline clock behavior, as shown in Figure 3.3. Such
a phenomenon exists due to the frequency difference between the clocks and may prove
catastrophic for the instruction execution. We address this problem in the way shown in
Figure 3.4, by generating another low frequency pulse signal with a 180 degrees phase shift
of the original. We also design a phase selector circuit which is responsible for selecting the
appropriate phase when necessary. The phase selector is signaled by the frequency selector
when a frequency scaling event is about to happen. It then designates the selected PLL phase
so that no unstable behavior is exhibited. The complexity of the phase selection mechanism
depends on the number of PLLs required.

In the case of the implemented Baseline RISC-V pipeline, where one period is an integer

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

40 Chapter 3. Timing analysis for low power pipelines

Pipeline clock

High frequency PLL
 0° phase shift

Low frequency PLL
 0° phase shift

Frequency selection

Low frequency PLL
 180° phase shift

Select H igh frequenc y PLL

Select low frequenc y PLL

Phase selection Select 0° phase

Select 180° pha se

FIGURE 3.4: The clock instability compensation technique.

multiple of the other (2ns and 4ns), the generation of one additional shifted PLL resolves the
problem. In other processor implementations though, additional PLLs may be needed, each
with a specific phase shift, in order to enable the phase selector to compensate for all possible
unstable behaviors of the pipeline clock. We adopt this approach as we acknowledge the need
for a robust real time clock scaling mechanism. In contrast with [82] and [83] which manage
to change the clock frequency for up to 7.5% of the core clock speed, we require much higher
adaptation values. For that reason we do not change the clock frequency directly, instead
we pre-generate the number of PLLs required and we proceed in selecting the appropriate
candidate each time.

In general, when we have two clocks with a period ratio m : n, m and n being mutually
primes, we need m PLLs for the phase shifts of the first and n PLLs for the phase shifts of
the second clock, giving a total of m + n PLLs. Such a solution to the possible instability
problem serves as the most efficient in terms of performance. As we saw earlier, clock
frequencies used are the highest possible, with longer clock periods just enough to cover
the critical pipeline stage delay. But this choice may result in a large number of PLLs.
A cheaper solution would be to always use a slow clock period that is a multiple of the
typical period. In this way we would not need that many PLLs, sacrificing performance
for simpler implementation. In some cases, like the one examined above, it occurs that the
optimal performance solution coincides with the cheapest solution, but this is definitely not
the general case though.

3.6 Implementation

3.6.1 RISC-V processor parameters

The parameters of the baseline processor architecture are displayed in figure 3.5. The pro-
cessor supports in-order instruction issue and execute with 64-bit instruction length. The
instructions have an opcode field length of 7 bits. The clock period of the processor im-
plementation is defined by the slowest pipeline stage as described in section 3.5.2. It also
employs a BTB of 512 entries using the g-share prediction mechanism. We have incorpo-
rated an L1 cache system to the processor; in particular a 4-way associative 16KB i-cache
and a 4-way set associative 16KB d-cache with LRU replacement policy. The access time
of the data cache is 4 and 7 clock cycles for the baseline and the pipelined execution imple-
mentations correspondingly, while the access time for the instruction cache is 1 clock cycle.
Finally, the amount of PLLs required for the implementation of the IPE-STA methodology is
4 for the baseline and 18 for the pipelined execution RiscV implementations.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

3.6. Implementation 41

FIGURE 3.5: The configuration parameters of both processor implementa-
tions.

3.6.2 CAD toolflow and simulation

The experimental methodology used for timing analysis and design layout is described in fig-
ure 3.6. After rigorous consideration of many open-source simple processor cores that have
been used in architecture-oriented research in the last decade, we have opted for the RISC-
V Rocket Core processor implemented in Verilog for our experiments. We created the new
version of the processor mentioned in section 3.5, which includes our clock control design,
we then compiled and tested the circuit using a number of benchmarks, and produced a final
evaluation of our ideas. In the rest of this section we describe all steps in detail. For the
front-end design flow we used the Synopsys Design Compiler in conjunction with the Nan-
Gate 45nm Open Cell Library, whereas for the back-end place and route process we used the
Synopys IC Compiler. In the sequel, we employed the Synopsys PrimeTime tool to apply the
IPE-STA methodology on the generated post-placement netlist, also using the created spef
files that contain the wire parasitic information. In the sequel, we designed the clock control
unit as described in section 3.5.3 and integrated it to the RISC-V Verilog source code. We
then followed the same sign-off flow in order to acquire a post-layout netlist, this time with
the clock control module embedded in the design. Using the Synopsys PrimeTime, we gen-
erated the sdf file, which describes the cell and interconnection timing delays of the circuit.
We subsequently performed a post-layout simulation using Mentor Graphics Modelsim with
the sdf file to back annotate the design. In order to analyze the performance and power con-
sumption of the system, we selected the SPEC CPU2017 benchmark suite and we utilized the
RISC-V toolchain to compile each benchmark to generate the required binaries in accordance
with the RISC-V architecture. We ran the experiments using the back-annotated netlist and
we generated a saif file for each benchmark. Saif files contain information about the cell’s

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

42 Chapter 3. Timing analysis for low power pipelines

RISC-V

Synthesis
Place and

route

Design Compiler IC compiler

Verilog netlist • Path isolation
• STA of individual instructions

PrimeTime

Spef files

Post placement
netlist

RC extraction

Clock control
circuit

NanGate 45nm
library

Design

RISC-V

Synthesis

Design Compiler

Place and
route

Spef
annotation

PrimeTime
IC compiler

Delay-based
classification

Sdf file

Spef files

Post placement
netlist

Post layout
gate-level
simulation

Modelsim

Back annotation

Benchmarks

Power analysis

Power compilerSaif files

Power results

Performance results

NanGate 45nm
library

Back annotation

FIGURE 3.6: The CAD toolflow for the IPE-STA methodology.

switching activity and were used to back-annotate the design to generate power reports via
Synopsys Power Compiler.

3.6.3 Clock tree synthesis

In order for the IPE-STA technique to function properly, a large number of clocks is required
and thus, the synthesis and layout processes should be properly conducted to support such
functionality. This necessity is derived by the fact that the processor clock is dynamically
selected according to the information obtained by the clock control unit and any clock selec-
tion decision should be enforced within a very limited amount of time. In order to account
for such a delay we design the clock selection unit to generate the outputs that control the
clock selection process within the available timing margins. In this sense, we implement a
low complexity and low latency control circuit capable of generating outputs with low delay,
before the imminent clock pulse. As a result each decision on the dynamic clock frequency
change is made within the timing margin available in order to properly distribute the clock
pulse throughout the clock network in time. Further, end we opt to synthesize a single clock
tree that reaches to every register of the design, as we consider the propagation of all the avail-
able PLLs very costly. In this way we avoid the expensive area, routing and energy costs of
multiple PLL distribution, but we impose timing skew in the global clock tree network. Also
local, cell level clock gating for heavily gated clock networks such as ours, comes with vari-
ous challenges, as a previous works in [97] and [98] suggest, that are not within the scope of
this work. Under this premise, our design utilizes 11 PLLs that are multiplexed into a global
clock tree network which propagates the clock pulse to the RISC-V core pipeline. Previous
works in [67] [99] and [100] have proven that multiplexing different PLLs is possible through
a fast adaptive clocking circuit; while the PLLs are running at independent frequencies. In
this scenario we identify two potential problems that may cause catastrophic consequences
for the RISC-V pipeline timing, if left unresolved: The clock skew and clock jitter phenom-
ena. Considering the clock skew of each PLL, we implement the clock control unit at the

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

3.7. Experimental evaluation 43

base of the synthesized clock tree and thus, the globally synthesized clock tree drives the
PLL by the clock control unit. As a result, we ensure that every PLL presents the same skew
as we utilize one clock network for clock propagation in each RISC-V implementation. In
order to account for the clock jitter phenomenon, we design the RISC-V implementations to
be able to operate under a clock uncertainty of 10% by relaxing the timing requirements of
the execute stage by the corresponding amount of time. As a result, our design may operate
normally with out errors under a clock jitter of 10%. Generally, the synthesis and layout op-
erations for designs with many PLLs are strenuous processes that require a lot of fine tuning
and testing. That being said, a detailed synthesis and implementation discussion of clock tree
networks are outside of the scope of this work.

3.7 Experimental evaluation

3.7.1 Normalized speedup

We have run the Spec2017 CPU benchmarks on the baseline processor implementation, on
the pipelined execution implementation and on their corresponding BTWC versions. We
present the normalized instruction throughput improvements we obtained according to our
experiments in Figure 3.7 where results indicate an average performance increase in instruc-
tion throughput of 1.6 and 1.3 correspondingly. In the same figure we also present the appear-
ance rate of critical instructions for each processor implementation. Further result analysis
discloses the following information:

Firstly, designs with relaxed timing constrains benefit more from the IPE-STA method-
ology when compared with designs that display tighter timing requirements. This behavior
is expected as the IPE-STA methodology exploits timing differences between individual pro-
cessor operations. As a result, the more relaxed the system timing, the higher performance
increase is achieved. Secondly, frequent appearance of critical instructions throttles the sys-
tem’s performance as the design is forced to operate under the worst-case clock period. As a
result benchmarks that display low critical instruction appearance rates, also display higher
throughput increase. In order to further assess the effectiveness of IPE-STA methodology we

FIGURE 3.7: Normalized throughput improvement and critical instruction
appearance rate of the proposed design methodology compared to the corre-

sponding baseline processors.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

44 Chapter 3. Timing analysis for low power pipelines

compare the obtained throughput results with other state of the art timing speculation tech-
niques. Tables 3.3 and 3.4 below demonstrate the outcomes of such comparison. Table 3.3
depicts the normalized throughput improvement of the application-adaptive guardbanding
technique proposed by A. Rahimi et. Al. in [67]. We compare the IPE-STA methodol-
ogy of both RiscV implementations with the best and worst performance-wise design cor-
ners explored by [67]. The application-adaptive guardbanding technique outperforms our
methodology when it comes to the best-case design corners, but IPE-STA proves to be more
efferent in terms of performance in worst-case design corners. Table 3.4 below displays the
IPE-STA results in conjunction with Blueshift optimization as described by B. Greskamp et.
Al in [72]. In this work the proposed TS methodology is applied on both Razor [61] and
OpenSPARC T1 processors displaying significant performance improvements. According to
Table 3.4 IPE-STA design approach achieves better throughput improvements if compared
with Razor or OpenSPARC T1 processor when the baseline RiscV is considered. In contrast,
the pipelined execution RiscV design is slightly behind the Razor processor in terms of per-
formance, while it still surpasses the OpenSPARC T1 with the Blueshift design paradigm.
IPE-STA comparison with state of the art TS methodologies highlights the competitive edge
of our methodology as its performance is measured on average the same level if not above,
compared to other TS approaches.

3.7.2 Normalized power consumption

Due to clock frequency scaling, our design often tends to operate at higher frequencies. As
higher frequencies are more power hungry, we expect a higher power usage compared to
the baseline processor. To verify that assumption, we measure the power consumption of
the BTWC design and we compare it to its relevant baseline processors in Figure 3.8. Re-
sults show that the power consumption increase is higher for the benchmarks that present
more opportunities for aggressive frequency scaling. Specifically, an increase of 4% to 36%
in power consumption is observed, depending on each benchmark’s capacity for frequency
scaling. Nevertheless, by dividing the performance improvement over the power increase for

TABLE 3.3: Throughput improvement comparison between Application-
adaptive guardbanding and IPE-STA.

Adaptive Guardbanding IPE-STA Baseline
Benchmark Best/Worst design /IPE-STA Pipelined

corner [68]
djikstra 1.87 / 1.36 1.61 / 1.28
patricia 1.89 / 1.38 1.8 / 1.26
susan 1.81 / 1.58 1.4 / 1.25

blowfish 1.84 / 1.35 1.6 / 1.25
Average 1.88 / 1.25 1.6 / 1.26

TABLE 3.4: Throughput improvement comparison between Blueshift
OpenSPARC, Razor and IPE-STA methodology.

Benchmark Blueshift OpenSPARC [72] Blueshift Razor [61] IPE-STA Baseline
/IPE-STA Pipelined

b2zip 1.18 1.37 1.8 / 1.28
gcc 1.25 1.39 1.42 / 1.29
mcf 1.04 1.05 1.7 / 1.25

Average 1.15 1.27 1.64 / 1.273

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

3.7. Experimental evaluation 45

FIGURE 3.8: Normalized power consumption increase of the proposed
methodology compared to the baseline processors.

each benchmark, we get an average of 3.7 improvement rate for the performance-to-power
ratio, which is a quite significant overall improvement that we observe with our technique.

3.7.3 Overhead of the IPE-STA methodology

In order to properly evaluate the overhead of the IPE-STA methodology we measure both
the IPE-STA design costs in terms of area and power complexity and the IPE-STA analysis
cost in terms of time requirements. Regarding the design costs of the IPE-STA, we quantify
the overhead in power and area of the post-layout implementation of the clock control circuit
and instruction snooping modules. Such modules are the essential components of the IPE-
STA design and are used as described in section 3.5. Table 3.5 lists the power and area
requirements of the aforementioned modules, along with the power and area requirements of
the baseline processors. We observe that the power overhead of the control unit is less than
2% of the total average power consumption of the baseline pipelines, while the area overhead
almost 0.001%. Further, Table 3.6 depicts the area overhead comparison between the state
of the art methodologies and the IPE-STA approach which is proposed in this work. We
observe that the IPE-STA methodology achieves the least area overhead compared with the
rest and thus, we conclude that the IPE-STA is well suited for low-end, low power pipelined
processors.

Regarding the time requirements of the IPE-STA, we measure the amount of iterations
and the amount of time required for the IPE-STA analysis to complete. The results we obtain
are depicted in Table 3.7 in comparison with the standard STA and DTA methodologies. We

TABLE 3.5: The power and area overhead of the clock control and instruc-
tion snooping circuits in comparison to RiscV .

Implementation Average power Area
RiscV Baseline 65.67mW 0.24mm2

RiscV Pipelined execution 149.04mW 0.55mm2

Clock control and instruction snooping 98.21uW 321um2

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

46 Chapter 3. Timing analysis for low power pipelines

TABLE 3.6: Area overhead comparison between IPE-STA methodology and
the state of the art.

Benchmark Area overhead
iRazor [62] 13.6%

Application-adaptive guardbanding [68] 0.022%
TS Cache [74] 1.8%

Active management [82] 0.12%
DynOR [84] 5 − 13%

Optimal In Situ Monitoring [89] 3.15%
Razor-Lite [110] 4.42%

Bubble Razor [111] 21%
IPE-STA (this work) 0.001%

define the iteration count as the amount of times the corresponding timing methodology in
invoked in order to sufficiently cover the timing paths of the pipeline under examination. To
this end, the DTA methodology examines every possible bit-transition and thus, it requires
2instruction_length iterations (264 for the 64-bit RiscV Rocket core implementations). On the
other hand, the STA methodology examines the worst case scenario only, for each instruction
path and thus, the required timing iterations are analogous to the complexity of the design.
The IPE-STA methodology resides in between the DTA and STA approaches as the amount
of the required iterations is depended on the bit length of the opcode field of the ISA, as
discussed in section 3. As a result, the IPE-STA requires 27 iterations in order to properly
analyze the timing paths of the RiscV Rocket core pipeline, as the opcode field of the rocket
core ISA is 7 bits. In order to evaluate the time requirements of each methodology, we run
the DTA, STA and IPE-STA approaches on the same RiscV rocket core pipeline using an
Intel i7 coffee lake processor with 6 cores and 16 GB of DDR4 DRAM. Results indicate
that the STA analysis finishes in a 20 second period of time while the IPE-STA methodology
requires 5 minutes. In contrast, the DTA requires over 100 hours to finish and thus, it is
considered time costly for timing analysis in processor pipelines. We conclude that the IPE-
STA methodology manages to efficiently manage the trade-offs between STA and DTA as
it provides detailed timing reports for each ISA-supported instruction while also requiring a
reasonable time to finish.

3.7.4 PVT tolerance considerations

In order to evaluate our design we utilize a single design corner that operates in 0°and 0.72
V. We select the aforementioned corner as the 0.72 V is considered low power pipeline op-
eration and thus, it stays within the scope of this work. We also set a clock uncertainty of
10% to compensate for the process variation effect which may induce clock jitter and clock
uncertainty to the integrated circuit. Evaluating the proposed methodology with a full range

TABLE 3.7: Time requirements of DTA, STA and IPE-STA to complete the
timing analysis of RiscV pipeline.

Implementation Iterations Iterations Time
Theoretical (RiscV) (RiscV)

DTA 2instruction_length 264 Over 100 hours
STA Supported instructions 215 20 seconds

IPE-STA (this work) 2opcode_length 27 5 minutes

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

3.7. Experimental evaluation 47

of dynamic variations as well as static process parameters variations is possible but the IPE-
STA analysis should be conducted independently for each individual design corner. A higher
voltage than 0.72 volts would result in shorter delay instruction paths, while lower operating
temperatures would lead to higher delays in the low-voltage region of 0.72 volts as previous
work in [101] demonstrates. To this end, the IPE-STA analysis should be conducted for each
design corner in order to extract the exact timing information for the corresponding oper-
ating Voltage and Temperature values. On the other hand, the process variation effect can
be emulated by setting clock jitter and clock delay values, similarly to our approach. The
methodology of the IPE-STA does not require any modifications in order to function prop-
erly within different PVT effects and thus, it can produce accurate timing results given the
exact operating condition of the integrated circuit.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

49

Chapter 4

Near data processing for low power
architectures

4.1 Introduction

In this chapter we discuss the application of the IPE-STA methodology, as described in chap-
ter 3, on the domain of low-power NDP computer architectures. To this end, we employ a
BTWC-NDP co-design approach to develop a low-power, low-end pipeline from the ground
up to facilitate the IPE-STA methodology. We employ such an approach considering the
architectural requirements of low-power pipelines in terms of area, energy consumption and
logic complexity. To this end, we implement a low-end pipeline on the logic layer of an HMC
DRAM and we conduct a design space exploration in order to evaluate the applicability of the
IPE-STA methodology to NDP designs. We should note that in this work we also consider
the power and area constrains of the logic layer of the HMC as defined by HMC consor-
tium [33]. In order to evaluate our methodology we opt for the same baseline processor as
the one used in chapter 2 and thus, we are able to draw solid conclusions on the efficiency
of the proposed co-design approach when compared with the high performance computing
designs.

4.2 NDP System Architecture

The proposed BTWC-NDP co-design is consisted of a host system and of an HMC DRAM.
For the host system we implement a RISC-V BOOM processor core which facilitates the
core pipeline of the host system processor; whereas the HMC DRAM provides both DRAM
functionalities for the host system and also facilitates the PIM core responsible for the NDP.
The PIM core is where the processing-in-memory takes place and thus, it also facilitates the
co-design approach we propose in this work.

4.2.1 Host system architecture

The host system architecture is depicted in Figure 4.1. We employ a high performance RISC-
V BOOM [47] out of order (OoO) core that supports 4-wide instruction issue width.

The RISC-V BOOM architecture is a synthesizable and parameterizable open-source
RISC-V 9-stage pipeline that includes the following stages: Instruction fetch (IF), branch
prediction (BP),instruction decode (DEC), reorder buffer update, instruction dispatch, in-
struction issue, register file read, execute pipeline and memory access.

We extend the RISC-V ISA in order to include the necessary functionalities to support the
NDP processing paradigm. To this end we implement jump-and-link-PIM (JalPim), which
is an instruction that behaves as the original jump-and-link (Jal) instruction and thus, it trig-
gers a function call. A key difference between Jal and JalPim is that the former initiates a
function call that executes on the RISC-V core pipeline while the latter triggers a function

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

50 Chapter 4. Near data processing for low power architectures

I-cache MEMID EX WBIF

D-cache

RISC-V core pipeline

PD PT

PIM pre-processing pipeline

HMC DRAM

Logic layer

P
r
o

c
e

s
s
o

r
 b

u
s

FIGURE 4.1: The host system architecture composed by the BOOM core
and the PIM pre-processing pipeline.

call that executes on the PIM core. When the JalPim is evoked, the ID stage of the BOOM
core pipeline propagates a stall signal to the rest of the RISC-V pipeline to disable further
instruction execution. Then, the PIM pre-processing pipeline is enabled, which is responsible
for pre-processing the instructions of the JalPim function before dispatching them to the PIM
core. We design the PIM pre-processing pipeline to include the following stages:

PIM-Decode (PD): The PD decodes the instructions of the JalPim function and generates
the necessary ALU/FPU signals for the instruction execution on the PIM core. We perform
the PIM instruction decoding process on the core pipeline instead of the PIM core in order
to reduce the power consumption and the area requirements of the PIM core as the area and
power budget is limited on the HMC logic layer [17] [33].

PIM-Transfer (PT): The PT stage transfers the decoded instructions to the PIM core for
execution. The PIM core is located at the logic layer of the DRAM and thus, the PT utilizes
the processor bus to transmit the corresponding instructions to the PIM core. In order to
speed up the instruction transfer operation, the processor bus is dedicated to the PT transfer
once the PT stage commences and thus, no other DRAM access operations are allowed.

We employ the PIM pre-processing pipeline and the JalPIM instruction to maintain in-
teroperability between the RISC-V BOOM core pipeline and the PIM core. In this sense,
the PIM pre-processing pipeline acts as an abstraction layer that hides the underlying com-
plexity of the PIM core from the user. Also, the PIM core supports the RISC-V ISA without
any additional extensions and users are capable of using the RISC-V instructions for NDP
processing without requiring any further ISA extension.

4.2.2 PIM core architecture

Figure 4.2 depicts the architecture of the PIM core which is implemented on the logic layer of
the HMC DRAM and is responsible for executing the instructions of the JalPIM function call.
Under this premise, we deploy a simple, low power RISC-V superscalar pipeline capable of
fulfilling the power and area requirements imposed by the HMC consortium [33]. We opt for
a lightweight RISC-V pipeline design, to stay in the low power domain, to ensure that our
design is well within the power and the area budget of the logic layer of the HMC and also to
achieve interoperability with the host system. In order to balance the power to performance
trade offs we employ data forwarding functionalities and a 2 issue-width depth while we

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

4.2. NDP System Architecture 51

PEXPIF PIDPIB

HMC logic layer

HMC DRAM layers

PWB

PRF

LSB

PIM-PC

PCU

ATR

PSB PMEM

FIGURE 4.2: The PIM core architecture

omit complex performance optimizations such as speculative execution, branch prediction or
larger pipeline depth. Below we discuss the details of the pipeline stages of the PIM core.

PIM Instruction Buffer (PIB): PIB is a simple buffer that stores the instructions which
are headed for execution at the PIM core. Such instructions are already decoded by the PD
stage of the PIM pre-processing pipeline of the host system and they are dispatched to the
PIM core via the PT stage thought the processor bus, as described above. We opt for a simple
PIB design to avoid complex structures such as an I-cache, that require more power and area
to operate.

PIM Instruction fetch (PIF): The PIM instruction fetch stage utilizes a PIM program
counter (PIM-PC) to fetch the next two instructions from the PIB. The instructions are then
headed to the PID stage. The PIF is also charged with updating the PIM-PC value accord-
ingly, to refer to the next two instructions for the following clock cycle fetch operation.

PIM Register file (PRF): The PIM core employs a register file module of 32 registers.
Although the PRF increases the power consumption on the PIM core, we consider such
module integral to the PIM architecture for preserving the interoperability with the RISC-V
core pipeline. To this end, registers used by the RISC-V workloads are mapped on the PRF
without requiring any further modifications. Also the PIM core does not employ any D-cache
hierarchy due to the cache large power and area requirements that impose a problem to the
limited area and power budget of the HMC logic layer and thus, instruction outputs would be
otherwise stored to the DRAM if the PRF is not employed. In this sense, PRF also decreases
the data traffic to the DRAM by storing the results of the executing instructions.

PIM Instruction Dispatch (PID): The PID stage reads the required registers from the
PRF, performs sign extension and dispatches the decoded instructions fetched by the PIF
stage to the PEX or PMEM stages along with their corresponding operands.

PIM Execute (PEX): The PEX stage is responsible for the instruction execution accord-
ing to the operands received by the PID stage. PEX supports the logical, shift, branch and
arithmetic operations of the RISC-V ISA.

PIM Memory access (PMEM): PMEM is a two-stage operation, coordinating the HMC
DRAM access, i.e. the load and store operations. To this end, PMEM utilizes a load/store
buffer (LSB) that temporarily queues the DRAM read and write requests. Such requests
are stored to the buffer until they are handled by the HMC DRAM. In the sequel the buffer
dispatches the DRAM requests to the address translation (ATR) stage which translates the

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

52 Chapter 4. Near data processing for low power architectures

Algorithm 4 PCU adaption mechanism.

while always do
Check the amount of pending DRAM requests
if Pending percentage < HML Threshold then

Enter Regular mode
else if Pending percentage >= HML Threshold then

Enter HML mode
Save the pipeline state to the PSB
Check the PIB for instructions without dependencies
if no instructions remain then

Load the pipeline state from the PSB
Stall the pipeline

end if
end if

end while

request addresses to physical memory address. The resulting requests are sent to the HMC
vault controllers which access the HMC DRAM layers and handle the read/write operations.
In order to avoid complex cache coherence mechanisms, we consider the DRAM regions
accessed by the PIM core uncachable as suggested in [11] and [25].

PIM Write back (PWB): The PWB stage writes back the PEX or PMEM results to the
corresponding registers in the PRF.

PIM Control unit (PCU): The PCU coordinates the PIM pipeline by selecting the op-
erating mode under which the PIM core functions. We design the PIM core to be able to
function in two operating modes: regular and high memory load (HML). Previous work
in [102] [103] demonstrate that the HMC DRAM read/write delay increases as the percent-
age of pending read/write requests increases too. To this end a read/write request may take
from some ns up to several µs [103] depending on the amount of pending DRAM opera-
tions. The purpose of the HML mode is to hide the underlying delay of the HMC DRAM
by enabling the pipeline to utilize the idle clock cycles during which the PIM core awaits the
DRAM responses.

Algorithm 4 depicts how the PCU adapts to the amount of pending DRAM requests by
choosing the PIM core operating mode. Under this premise, the PCU checks the percentage
of pending HMC DRAM requests at every clock cycle. If this value is less than a pre-defined
threshold, then the PIM core enters the regular operating mode. In regular mode the PIM
core executes the instructions stored at the PIB while the PCU is responsible for identifying
the dependencies between the instructions fetched by the PIF circuit and the instructions that
execute in the PEX and PMEM stages of the PIM pipeline. The PCU resolves the instruction
dependencies by either forwarding or by pipeline stalling mechanisms. On the contrary, if
the percentage of pending DRAM requests surpasses the threshold, the PCU enters the HML
operating mode. In HML the PCU saves the state of the PIM pipeline, i.e. the PIM-PC
value and the outputs of each pipeline register, to the PIM state buffer (PSB). The PSB size
requirements are trivial due to the small size of the PIM pipeline and thus, the PSB does not
impose significant area or power overheads on our design. In the sequel the PCU searches the
PIB for any instructions that can be executed without requiring any inputs from the pending
DRAM requests or from the instructions that are saved to the PSB. The PIF changes the
PIM-PC value accordingly and proceeds into fetching the aforementioned instructions, if
any. Thus the PIM pipeline may continue the instruction execution process until the DRAM
requests are handled. If the data independent instructions of the PSB are exhausted and the
instruction execution cannot proceed, the PCU restores the PIM pipeline to its initial state by

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

4.3. BTWC-NDP co-design methodology 53

loading the corresponding data from the PSB and then stalls instruction execution until the
HMC pending operations complete and thus, lowers the power consumption of the pipeline.

4.3 BTWC-NDP co-design methodology

4.3.1 Application of IPE-STA to the PIM core

Since the IPE-STA methodology which is described in chapter 3 can provide timing infor-
mation for each pipeline instruction separately, we use such information for a clock scaling
methodology based on the instruction opcode. To this end, we apply the IPE-STA methodol-
ogy to the post-layout implementation of the PIM core architecture described in Section 4.2.
We opt to tighten the timing of the PIM core’s functional units by also deploying a modified
PIM core that utilizes pipelined functional units. As a result, time consuming operations
require more clock cycles to complete, but they display lower latency per pipeline stage. In
order to evaluate our design in different supply voltage options, we also implement three
different power supply configurations for the PIM core, i.e. 0.72V, 0.81V and 0.99V. More
details on the implementation decisions are discussed in the next section.

The obtained results by the application of IPE-STA has led to the classification of instruc-
tions into 11 classes, similarly with the chapter 3:

• The Logical instruction class which includes logical operations such as and, ori and
xor.

• The Shift instruction class which includes shift operations such as shift left logical or
shift arithmetic.

• The Comparison instruction class which includes bit comparison operations.

• The Jump instruction class which includes jump operations such as jump register or
jump.

• The Multiplication instruction class which includes integer multiplication opera-
tions.

• The Division instruction class which includes any integer division operations.

• The Other arithmetic instruction class which includes all other integer arithmetic
operations except for multiplication and division, such as addition or subtraction.

• The Memory access instruction class which includes any memory access operation
such as load word or store byte.

• The FP Multiplication instruction class which includes floating point multiplication
operations.

• The FP Division instruction class which includes floating point division operations.

• The Other FP arithmetic instruction class which includes all other floating point
arithmetic operations except for FP multiplication and division, such as FP addition or
subtraction.

Each PIM core instruction class contains a group of individual instructions that exhibit
similar timing requirements. Table 4.1 shows the timing results of the analysis on all vari-
ations of functional unit implementation and supply voltage. In particular, we track down
the slowest pipeline stage of each class in both non-pipelined execution (NPE) and pipelined

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

54 Chapter 4. Near data processing for low power architectures

execution (PE) PIM core designs. Finally, we assign a “worst-case delay” value to each class,
which is the highest instruction delay in the corresponding group.

By studying the classified instruction classes we observe that pipeline stage presents
unique timing requirements depending on the instruction being executed. We should also
note that the slowest pipeline stage is the execute stage as previous work in [67] also high-
lights. Further, some pipeline stages may produce error free execution results while utilizing
higher clock frequencies than the others. Such a free instruction execution is guaranteed if
we satisfy the timing requirements of each individual pipeline stage for the corresponding
executing instruction.

By using the aforementioned information we can dynamically increase the clock fre-
quency of the PIM core at run time in order to achieve higher throughput, while maintaining
the error free instruction execution. To this end,we track down all instruction classes of the
PIM core and we assign a minimum operational clock period to each one of them according
to their timing requirements. In this sense, our approach treats the instruction execution se-
quence as consecutive opcode alterations and thus, we adapt the clock frequency to meet the
timing requirements of each executing instruction. When an instruction with large path delay
is met, we scale down the clock frequency, as soon as the instruction reaches the pipeline
stage which would otherwise cause a timing error. Figure 4.3 shows an execution instance of
five instructions on the PIM core 0.99V NPE implementation. We track the maximum delay
of each clock cycle with regard to the pipeline stages involved, and we mark the pipeline
stages that contribute to frequency down-scaling. In this instance, the pipeline under ex-
amination may function at lower clock periods during certain clock cycles according to the
worst-case delay of each active pipeline stage. In this sense, the operational clock period is
1.1 ns for the 3rd cycle, 2.7ns for the 4rth and 1.5ns for the 5th. We mark with black color
the PIM core stages with the highest stage delays and thus, force the clock to adapt to their
timing requirements in order to ensure error-free instruction execution.

4.3.2 PIM core microarchitecture with adaptive clock scaling

In order for the PIM core to support the adaptive clock scaling mechanism that is driven by
the IPE-STA technique, we design a clock control unit (CCU) that carries out the dynamic
changes in the clock frequency. This unit utilizes the information extracted from the IPE-
STA, to decide whether the clock frequency should be adapted or not. Figure 4.4 depicts the
CCU, which is responsible for the aforementioned task, deployed on the HMC logic layer. It
consists of an instruction class snooping module, a decision logic circuit, a lookup table and
a number of PLLs.

TABLE 4.1: Instruction class IPE-STA analysis of PIM core architecture for
different supply voltages

Instruction class Slowest pipeline stage 0.72V NPE - PE 0.81V NPE - PE 0.99V NPE - PE
Logical PEX 1.6 ns - 0.8 ns 1.4 ns - 0.7 ns 1 ns - 0.5 ns

Shift PEX 1.8 ns - 0.9 ns 1.5 ns - 0.8 ns 1.2 ns - 0.6 ns
Comparison PEX 1.5 ns - 0.8 ns 1.3 ns - 0.7 ns 1.1 ns - 0.6 ns

Jump PEX 1.2 ns - 0.6 ns 1 ns - 0.5 ns 0.8 ns - 0.4 ns
Multiplication PEX 3.8 ns - 1.9 ns 3.2 ns - 1.6 ns 2.7 ns - 1.4 ns

Division PEX 5 ns - 2.5 ns 4.2 ns - 2.1 ns 3.3 ns - 1.7 ns
Other arithmetic PEX 1.8 ns - 0.9 ns 1.5 ns - 0.8 ns 1.1 ns - 0.6 ns
Memory access ATR 2.2 ns - 1.1 ns 1.9 ns - 1 ns 1.5 ns - 0.8 ns

FP Division PEX 4.7 ns - 2.4 ns 3.7 ns - 1.3 ns 3 ns - 1.5 ns
FP multiplication PEX 3.7 ns - 1.9 ns 3.2 ns - 1.6 ns 2.2 ns - 1.1 ns

Other FP arithmetic PEX 2.5 ns - 1.3 ns 2 ns - 1 ns 1.3 ns - 0.7 ns

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

4.3. BTWC-NDP co-design methodology 55

PIF PID PEX PWB

PIF PID PEX

PIF PID PEX PWB

PIF PID PWB

PIF PID PEX PWB

add

mul

sw

add

jump exit

Min clock period 1.1 ns 2.7 ns 1.5 ns

Clock cycles 1 2 3 4 5 6

time

LSB ATR PWB

PEX

FIGURE 4.3: An instruction execution instance of the PIM core depicting
the minimum operational clock period during each stage.

PEXPIF PIDPIB

HMC logic layer

PWB

LSB

ATR

PMEM

Lookup table

Decision
logic

Instruction
class snooping

PLL #2

PLL #1 M
ux

PLL #N
CLK

Clock control unit

FIGURE 4.4: The CCU implemented on the PIM core in the HMC logic
layer.

Instruction class snooping: The instruction class snooping circuit monitors the PIM
core pipeline and tracks down each pipeline stage separately. In order to boost the circuit’s
ability to identify the executing instruction classes, we also modify the PD stage of the PIM
pre-processing pipeline of the host system. More specific, we enable the PD stage to not
only decode the fetched instructions but also to classify them into the instruction classes
mentioned in Section 4.3. There are 11 existing instruction classes, and thus 4 additional
bits are required for each decoded instruction in order to represent its class. The information
about the class that each instruction belongs to, is forwarded through the PT stage of the
PIM pre-processing pipeline to the PIM core. There, such information is stored along with
the instruction operands at the PIB and is forwarded on each pipeline register during the
instruction execution process. Under this premise, the instruction class snooping circuit may
quickly identify the instruction class that currently exists within each PIM core pipeline stage.

Decision logic: The decision logic circuit utilizes the information about the identified

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

56 Chapter 4. Near data processing for low power architectures

instruction classes provided by the snooping module and designates the clock period of the
PIM core for the next clock cycle. In order to facilitate such functionality, the decision logic
uses lookup tables that withhold the timing requirements of each instruction class according
to the IPE-STA analysis we proposed in chapter 3. The decision logic utilizes such infor-
mation and generates a control signal to a multiplexer that selects the appropriate PLL for
the current clock cycle. Each PLL is running at independent frequencies, and a multiplexer
quickly switches between them in a single cycle, resulting in ultra-fast frequency changes as
in [67].

4.4 Implementation

4.4.1 Design space exploration and parameter considerations

Table 4.2 depicts the design parameters for the RISC-V BOOM core pipeline, the PIM core
and the HMC implementations. For the PIM core we employ a superscalar architecture with
an issue width of 2 and we implement both integer and floating point arithmetic. More specif-
ically, we deploy 2 ALUs, 2 multiplication and 1 divider circuits for both integer and floating
point operations, resulting in a total of 10 functional units. We also implement 6 PIM designs
that operate in various supply voltages (0.72V, 0.81V and 0.99V) and facilitate pipelined
(PE) and non-pipelined (NPE) functional units, as described in the previous section. We use
the following notation for referencing the PIM designs: PIM-1 (0.72V NPE), PIM-2 (0.72V
PE), PIM-3 (0.81V NPE), PIM-4 (0.81V PE), PIM-5 (0.99V NPE) and PIM-6 (0.99V PE).
We set the PCU HML threshold, to 53% due to the fact that beyond this limit the HMC
DRAM latency dramatically increases [102].In order to maximize the RISC-V BOOM core
pipeline performance,we set its clock frequency to 800 MHz. On the other hand, the PIM
cores operate under an adaptive clock frequency of range 200MHz - 1.5GHz, depending on

TABLE 4.2: NDP design parameters

RISC-V Rocket pipeline PIM core
ISA RISC-V ISA RISC-V

Pipeline width 4 Pipeline width 2
Pipeline depth 5 Pipeline depth 6(MEM), 4 (OTHER)

Instruction width 64-bits Instruction width 64-bits
I-cache 4-way, 8 KB HML threshold 53%
D-cache 4-way, 8 KB PIB size 512

Branch prediction g-share LSB size 128
BTB size 256 entries PSB size 10
TLB size 512 entries PRF size 20
Clocks 1 Clocks 11

Clock frequency 200 MHz Clock frequency 200 MHz-1.5GHz
Supply voltage 0.72V Supply voltage 0.72V, 0.81V, 0.99V

HMC DRAM
Organization 2 GB, 4 layers

Bus Width 128 bits
DRAM timing tCK=1.5ns, tRAS=12ns

tRCD=8ns tCAS=4ns
Serial links 160 GBps,6-cycle latency

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

4.4. Implementation 57

the executing instruction timing requirements and the supply voltage of the PIM implemen-
tation. In this sense, the RISC-V BOOM host system utilizes one clock to operate, while the
PIM cores require an amount of clocks equal to the amount of the instruction classes, i.e. 11.

4.4.2 CAD toolflow and simulation

The design toolflow used for the IPE-STA application on the PIM core is described in Figure
4.5. We use Verilog HDL to design the PIM core, the Synopsys Design Compiler with
NanGate 15nm Open Cell Library [104] for the PIM core logic synthesis and the Synopys
IC Compiler for place and route. In the sequel we apply the IPE-STA technique on the post-
layout netlist of the PIM core, as described in section and 4.3. For that reason we evoke
the case_analysis option of the Synopsys PrimeTime tool under which we can set circuit
inputs at fixed voltage values and then perform STA, given the affixed inputs. After the IPE-
STA completes, we utilize the resulting instruction classes to design the CCU as described
in Section 4.3. We then integrate the CCU into the PIM CORE design and we place the PIM
core pipeline on the logic layer of the HMC DRAM. Then we repeat the sign-off process to
obtain the post-layout version of the NDP design and we use the back annotated netlist to
evaluate our methodology. The evaluation is conducted by performing gate-level simulations
using the back annotated netlist with the ModelSim tool.

4.4.3 Adaptive clock scaling with multiple clocks

In order for the IPE-STA technique to function properly, a large number of clocks is required
and thus the synthesis and layout processes should be properly conducted to support such
functionality. Previous works in [67] [99] and [100] have proven that multiplexing different
PLLs is possible through a fast adaptive clocking circuit; while the PLLs are running at in-
dependent frequencies. Under this premise, our design utilizes 11 PLLs that are multiplexed
into a global clock tree network which propagates the clock pulse to the PIM core pipeline.
In this scenario we identify two potential problems that may cause catastrophic consequences
for the PIM pipeline timing, if left unresolved: The clock skew and clock jitter phenomena.

PIM core

Place and
route

Design Compiler IC compiler

netlist

Spef files

PIM Post layout
netlist

RC extraction

NanGate 15nm
library

DE-STA

PrimeTime

Clock control
unit

PIM core

Instruction
classes

NanGate 15nm
library

Synthesis
Place and

route

Spef
annotation

Sdf file

Spef files

PIM Post layout
netlist

Design CompilerIC compiler
PrimeTime

Post layout
gate-level
simulation

Back annotation

Benchmarks

PIM Core Sign-off

IPE-STA

PIM Core Sign-off

Evaluation

RISC-V post
layout netlist

Synthesis

HMC DRAM

FIGURE 4.5: Toolflow of the IPE-STA methodology for the PIM core

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

58 Chapter 4. Near data processing for low power architectures

Considering the clock skew of each PLL, we implement the clock control unit at the base of
the synthesized clock tree and thus, the globally synthesized clock tree drives the PLL by the
clock control unit. As a result, we ensure that every PLL presents the same skew as we utilize
one clock network for clock propagation in each PIM implementation. In order to account for
the clock jitter phenomenon, we design the PIM implementations to be able to operate under
a clock uncertainty of 10% by relaxing the timing requirements of the execute stage by the
corresponding amount of time. As a result, our design may operate normally with out errors
under a clock jitter of 10%. Generally, the synthesis and layout operations for designs with
many PLLs are strenuous processes that require a lot of fine tuning and testing. That being
said, a detailed synthesis and implementation discussion of clock tree networks are outside
of the scope of this work.

4.4.4 Area and power budget

NDP design constrains emerge from the limited area and power budget of the HMC logic
layer. Table 4.3 depicts the area and power requirements of the RISC-V BOOM pipeline
and PIM core implementations. More specifically,our design utilizes a 1 mm2 RISC-V
BOOM core pipeline and a 0.004 mm2 RISC-V pre-processing pipeline as a host proces-
sor with a combined power consumption of 0.2mW. We should note that the RISC-V PIM
pre-processing pipeline imposes less than a 0.3% area and 1% power overhead to the RISC-V
BOOM core pipeline. For the PIM core area and power limitations, the HMC memory con-
sortium [33] specifies that the maximum power consumption of the HMC logic is 5W while
the maximum area budget is 7mm2 and thus, our design operates well within the required
budget. Further, the CCU of the PIM implementations imposes less that 1% power and 0.1%
area overhead to the PIM cores. We should note that the small PIM core size is attributed to
the lack of instruction and data caches and to the lack of completed OoO mechanisms. Table
4.3 also depicts the operating clock frequencies of each PIM core implementation which are
designated by the IPE-STA analysis and by the supply voltage of each design.

4.5 Experimental evaluation

4.5.1 Workload characterization

We evaluate our design using several benchmarks suitable for a wide range of applications.
Table 4.4 depicts the benchmarks used for the evaluation process. Under this premise, we use
the specCPU 2017 suite [50], the Google’s Inception V3 deep neural network training [106],
machine learning and I/O benchmarks [107] [108] and big data benchmarks [109]. We run

TABLE 4.3: Area and power requirements of the RISC-V and PIM core
implementations

Implementation Area Power Clock (MHz)
RISC-V BOOM core pipeline 1 mm2 0.2 W 1000

RISC-V pre-processing 0.0004 mm2 10 uW 1000
CCU 51 µm2 12 uW -

PIM-1 0.03 mm2 2 mW - 8 mW 200 MHz - 750 MHz
PIM-2 0.04 mm2 4 mW - 11 mW 400 MHz - 750 MHz
PIM-3 0.03 mm2 2.5 mW - 12 mW 240 MHz - 900 MHz
PIM-4 0.04 mm2 5.5 mW - 14 mW 470 MHz - 1 GHz
PIM-5 0.03 mm2 3 mW - 18 mW 300 MHz - 1.2 GHz
PIM-6 0.04 mm2 7 mW - 23 mW 660 MHz - 1.5 GHz

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

4.5. Experimental evaluation 59

TABLE 4.4: Workload characterization

Benchmark Kernel Type PIM execution
Leela [50] K1 AI: Monte Carlo tree search 75%
x264 [50] K2 Video compression 80%

xz [50] K3 General data compression 72%
Inception v3 [106] K4 DNN training 78%
XML Parsing [107] K5 Parser 73%

Azure Table Lookup [107] K6 I/O 75%
K-means [108] K7 Machine learning 76%
PageRank [108] K8 Web search engine 74%

FFT [109] K9 Signal processing 77%
Connected Component [109] K10 Graph processing 73%

each benchmark kernel on both RISC-V BOOM core pipeline and PIM implementations on
order to compare our findings. We also note the percentage of the total instructions which
is executed at the PIM cores. Due to the fact that we are unable to map every benchmark
instruction at the PIM pipelines, we employ the near data execution paradigm on large loops
with a high iteration count. To this end, we dispatch the loops that compose the benchmark
binaries to the PIM cores in a serialized fashion and we collect the results back to the BOOM
core pipeline after the loop execution completes.

4.5.2 Normalized speedup

Figure 4.6 depicts the normalized speedup of each kernel execution on the PIM core imple-
mentations over the RISC-V core execution only. In order to properly measure each kernel
execution time, we also include the PIM pre-processing pipeline time cost for each PIM im-
plementation. We observe that the kernel speedup factors depend on the characteristics of
each workload and on the corresponding PIM core implementation parameters. In this sense,

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Average
4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

S
p
e
e
d
u
p

PIM-1
PIM-2
PIM-3
PIM-4
PIM-5
PIM-6

FIGURE 4.6: Normalized speedup of each PIM core implementation over
the baseline RISC-V pipeline.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

60 Chapter 4. Near data processing for low power architectures

the NDP execution seems to benefit more the kernels with large memory overheads such as
K2,K4,K7 and K10. This behavior is expected due to the fact that PIM execution does not re-
quire intensive host processor-DRAM communication and thus, the processor bus bottleneck
is eliminated. For memory intensive workloads, NDP execution achieves 21x - 30x speedup,
depending on the requirements of each kernel. Also the kernel performance is affected by its
instruction types, as the adaptive clocking mechanism identifies the instruction classes and
scales the clock frequency correspondingly. To this end, PIM designs with greater deviation
in path slack such as PIM-1, PIM-3 and PIM-5 match the speedup values of the pipelined
designs as the CCU compensates for such variations in timing paths. Further, PIM cores with
higher voltage supply such as PIM-5 and PIM-6 outperform the rest of the implementations
as they provide more opportunities for aggressive clock adaptation. The average speedup
factors for each PIM implementation range from 20.8x to 26x and demonstrate the efficiency
of the PIM designs in terms of performance.

Figure 4.7 depicts the impact of each design technique to the overall speedup of each
PIM implementation. To this end, we execute each kernel under different PIM core config-
urations and then, we average the benchmark speedup factors of each PIM implementation.
We observe that the near data execution process contributes 57% to the overall speedup while
the adaptive clock scaling technique, which is enabled by the IPE-STA technique, contributes
30% on average. Further, the PIM pre-processing pipeline manages to improve the workload
execution time by 13%. We should note though, that the purpose of PIM pre-processing is
not to speedup execution time; instead it contributes to lowering the complexity and power
consumption by eliminating the need of complex hardware structures on the PIM cores. We
deduce that designs with relaxed timing constrains such as PIM-1, PIM-3 and PIM-5 ben-
efit more from the IPE-STA methodology when compared with designs that display tighter
timing requirements such as PIM-2, PIM-4 and PIM-6. This behavior is expected as the
IPE-STA exploits the timing differences between individual PIM operations. As a result, the
more relaxed the system timing, the better performance increase is observed.

PIM-1 PIM-2 PIM-3 PIM-4 PIM-5 PIM-6 Average
0

5

10

15

20

25

30

S
p
e
e
d
u
p

Near-data execution
Adaptive clock scaling
PIM pre-processing

FIGURE 4.7: Impact of different design techniques on each PIM core
speedup factor

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

4.5. Experimental evaluation 61

4.5.3 Normalized energy reduction

Figure 4.8 depicts the normalized energy reduction of each kernel execution on the PIM
core implementations over the RISC-V BOOM core execution only. We observe that PIM
core execution manages to reduce the energy consumption of the system for 9x to 15.3x
on average. Such a high reduction in energy costs derives from both NDP and IPE-STA
application on PIM-cores. As the kernel execution is conducted on the HMC logical layer,
the large energy overhead of data transmission between the host system and the DRAM is
eliminated. Also, the energy consumption is affected by the power consumption of the PIM
cores and by the benchmark execution time. To this end, the IPE-STA manages to overclock
the PIM cores and thus, reducing the execution time of each benchmark while also increasing
the power consumption. As the benchmark execution is accelerated by an average factor of
23x and the power consumption is increased by a factor of 3x-8x, the benefits of accelerated
execution outweigh the power costs and thus, the energy consumption is significantly reduced
despite the increase in power. Moreover the energy reduction of each core implementation
differs due to the supply voltage variations, clock scaling opportunities and architectural
parameters. More specifically, PIM cores with lower supply voltage such as PIM-1 and PIM-
2 tend to reduce the energy consumption by a larger factor, when compared to PIM cores with
higher supply voltage such as PIM-5 and PIM-6. Further, designs with pipelined execution
units such as PIM-2, PIM-3 and PIM-6 tend to consume more energy than the NPE PIM
cores due to the power overhead of the additional pipeline registers. Finally, high frequency
operating PIM cores such as PIM-5 and PIM-6 depict larger speedup factors and thus, reduce
the amount of time required for kernel execution, but they also consume significantly more
energy when compared to PIM cores with relatively slower clocks, such as PIM-1, PIM-2,
PIM-3 and PIM-4.

4.5.4 Energy efficiency

Figure 4.9 depicts the energy efficiency in terms of Gops/Watt for the PIM core and RISC-V
implementations. We observe that the PIM implementations achieve an average 202 Gops/W

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Average
2

4

6

8

10

12

14

16

18

E
n
e
rg

y
 r

e
d
u
c
ti
o
n

PIM-1
PIM-2
PIM-3
PIM-4
PIM-5
PIM-6

FIGURE 4.8: Normalized energy reduction of each PIM core implementa-
tion over the baseline RISC-V pipeline.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

62 Chapter 4. Near data processing for low power architectures

PIM-1
PIM-2

PIM-3
PIM-4

PIM-5
PIM-6

RISC-V co
re

PIM Average
0

20

40

60

80

100

120

140

160

180

200

220

240

260
E

n
e
rg

y
 e

ff
ic

ie
n
c
y
 (

G
o
p
s
/W

a
tt
)

Near-data execution
Adaptive clock scaling

FIGURE 4.9: Energy efficiency of the PIM core and RISC-V core pipeline
implementations

and are 10x-14x times more energy efficient, compared to the RISC-V core pipeline. Also
the energy efficiency of PIM designs drops as the supply voltage increases, but even high
voltage implementations such as PIM-6 manage to maintain a 160 Gops/W energy efficiency,
which we consider very high. Further, PE PIM designs tend to be less energy efficient when
compared to the corresponding NPE implementations as the extra pipeline registers tighten
the circuit timing and thus, the IPE-STA technique has less opportunities for aggressively
increasing their performance. The average contribution of the IPE-STA technique to the
overall energy efficiency of the NDP designs is measured at 33% and varies according to the
timing opportunities for each PIM implementation. As a result, designs with larger timing
margins tend to benefit more from the adaptive clock scaling technique, while designs with
tighter timing depict lower but noticeable energy efficiency improvement.

4.5.5 Area efficiency

Figure 4.10 depicts the area efficiency in terms of Gops/mm2 for the PIM core and RISC-V
implementations correspondingly. The PIM cores manage to outperform the RISC-V BOOM
pipeline by 24.5x times, achieving an average area efficiency of 54 Gops/mm2. Such an
area efficiency escalates as the voltage supply increases, due to the fact that higher supply
voltages do not pose additional area requirements; instead they only contribute to the overall
execution speedup. As a result, the IPE-STA manages to aggressive over-scale the clock
frequency while the design area requirements remain the same. Further, NPE PIM cores such
as PIM-1, PIM-3 and PIM-5 are more area efficient compared to the corresponding PE PIM
implementations. Such behavior is attributed to the fact that while the PE implementations
require more area to operate, their performance increase due to the pipelined execution does
not compensate for such area requirements. Further, the IPE-STA methodology contributes
44% in the total area efficiency of the NDP designs, while the rest 56% comes from the NDP
execution paradigm. We deduce that both adaptive clock scaling mechanism and the NDP
are critical to the overall performance of the PIM cores.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

4.5. Experimental evaluation 63

PIM-1
PIM-2

PIM-3
PIM-4

PIM-5
PIM-6

RISC-V co
re

PIM Average
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75

A
re

a
 e

ff
ic

ie
n
c
y
 (

G
o
p
s
/m

m
2
)

Near-data execution
Adaptive clock scaling

FIGURE 4.10: Area efficiency of the PIM core and RISC-V core pipeline
implementations

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

65

Chapter 5

Conclusions and Future Directions

5.1 Conclusions

In this dissertation we explored the NDP paradigm under the premise of general purpose code
execution. To this end, we employed the NDP model for HPC and for low-end, low-power
computer architectures. Our work considers the architectural characteristics of each domain
separately and we develop an approach tailored for the requirements of each case. In this
sense, we propose and evaluate the following design methodologies:

• An NDP methodology for general purpose applications within the HPC domain.
Therefore, we design a CGRA from the ground up to accelerate instruction loop execu-
tion by leveraging the dataflow paradigm, while addressing the data dependencies that
hamper the achievable throughput. Our design utilizes a number of PEs and CEs that
are deployed on the logic layer of an HMC DRAM die. In order to minimize pipeline
stalls, each PE is assigned a fifo queue capable of storing its temporary outputs before
they are forwarded to the next PE. The CGRA instruction issue process is conducted af-
ter applying the LP optimization, to reduce hazards from intra-loop data dependencies.
This process issues a number of mutually exclusive instructions on a single PE-CE and
thus, each processing element is charged with executing one instruction at any given
clock cycle. As a result, the CEs-PEs iteratively execute a single instruction with each
execution belonging to a subsequent loop iteration. The NDP methodology is evalu-
ated on post-layout simulations using benchmark kernels that cover a wide range of
applications. Results indicate a 42.4x speedup improvement and 22.4x reduction in
energy consumption normalized to the host processor execution. Further comparison
with related NDP methodologies highlights the effectiveness of the proposed method-
ology, as it can be classified among the state-of-the-art NDP techniques in terms of
both speedup and energy reduction.

• The IPE-STA methodology, which shifts the focus from a general critical path anal-
ysis to the less constrained analysis of paths that are actually followed by individual
instructions. To this end, we design and implement a circuit capable of identifying the
timing requirements of any incoming instruction and selecting the appropriate pipeline
clock out of a number of deployed PLLs. Thus we are able to scale up the clock fre-
quency beyond its worst-case operational limit. We evaluate our methodology using a
RiscV processor architecture which presents differences in pipeline stage timing. Re-
sults demonstrate an average performance increase of 1.62x, as well as a 3 to 4-fold
improvement in performance-to-power ratio, compared to the baseline processor.

• An BTWC-NDP co-design approach for low-power, low-end pipelines through the
IPE-STA methodology. The proposed concept includes an NDP system architecture
approach combined with a novel timing analysis technique which is inspired by the
BTWC paradigm, called IPE-STA. We employ the HMC DRAM which is a 3D stacked

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

66 Chapter 5. Conclusions and Future Directions

DRAM that enables NDP by facilitating logic cells in its lower DRAM layer. To this
end, we design and implement six different PIM core pipelines based on the RISC-V
BOOM processor by taking into account the HMC requirements while respecting the
low power design constrains. In the sequel, we proceed to analyzing each PIM core
timing requirements by employing the IPE-STA technique. IPE-STA allows us to ob-
tain timing information about each instruction’s worst case delay, instead of analyzing
the worst case delay of the circuit critical path. We use such information to design and
implement a clock control unit capable of identifying the timing requirements of any
incoming PIM instruction and select the appropriate clock frequency so that no timing
violations occur. This adaptive clock scaling mechanism is implemented on the PIM
core designs and is supported by a PIM pre-processing pipeline which is deployed on
the host system architecture. We evaluate our methodology in post-layout simulations
of the implemented PIM cores by utilizing general purpose workloads from a great va-
riety of application fields. Results indicate a significant speedup rate of 23x on average,
and a average energy reduction factor of 12x over the RISC-V BOOM execution. The
proposed PIM core implementations also demonstrate a 12x better energy and 24.5x
better area efficiency compared to the RISC-V host system.

5.2 Future Directions

In the future, we plan to extend the research presented in this dissertation towards the follow-
ing directions:

• Develop a BTWC methodology for HPC applications. We plan on further devel-
oping the proposed BTWC methodology in order to include the HPC paradigm. To
this end, we will extend the IPE-STA methodology to be fully applicable on more
tightened-timing designs while also lowering the amount of clocks required for the
IPE-STA to work.

• Further improve the proposed CGRA implementation for general purpose loop
execution. We plan on expanding our design to include several micro-architecture
configurations that will contribute on a significant performance increase. Moreover,
we will develop a more sophisticated instruction scheduling methodology that will
efficiently utilize the CGRA topology. We will also conduct a detailed design space
exploration on cache utilization on the logic layer of the HMC so that to reduce the
total amount of DRAM access and scale down the energy consumption of the system.

• Consider exploiting the bank-level parallelism of the HMC memory, instead of
relying in serialized memory access. The HMC can greatly benefit from the bank-level
parallelism instead of the regular spatial data-level parallelism of the standard memory
modules. As a result, the design that is implemented on the logic layer of the HMC
will take into account potential data movements between the HMC banks in order to
maximize the amount of parallelized HMC access operations.

• Design and implement an IPE-STA extention for OoO cores. In this work we focus
our efforts on creating a timing analysis approach for low-end, low-power computer
architectures. Although such an approach contributes to great performance improve-
ments on the pipelines that is applied to, a question arises on how the IPE-STA can be
used for high performance OoO cores. To this end, we plan on expanding the current
state of the IPE-STA to integrate the HPC premise and to make it interoperable with
more complex designs.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

67

Appendix A

Relevant Publications

Conference publications:

• A. Tziouvaras, G. Dimitriou, M. Dossis and G. Stamoulis, "Instruction-Based Timing
Analysis in Pipelined Processors," 2019 4th South-East Europe Design Automation,
Computer Engineering, Computer Networks and Social Media Conference (SEEDA-
CECNSM), Piraeus, Greece, 2019, pp. 1-6.

• A. Tziouvaras, G. Dimitriou, M. Dossis and G. Stamoulis, "Instruction-Flow-Based
Timing Analysis in Pipelined Processors," 2019 Panhellenic Conference on Electronics
& Telecommunications (PACET), Volos, Greece, 2019, pp. 1-6.

• A. Tziouvaras, G. Dimitriou, M. Dossis and G. Stamoulis, "Adaptive Operation-Based
ALU and FPU Clocking," 2020 9th International Conference on Modern Circuits and
Systems Technologies (MOCAST), Bremen, Germany, 2020, pp. 1-4.

• A. Tziouvaras, G. Dimitriou,F. Foukalas and G. Stamoulis, "Low power general pur-
pose loop acceleration for NDP applications," in PCI 2020

Journal publications:

• A. Tziouvaras, G. Dimitriou, M. Dossis, G. Stamoulis "Frequency Scaling for High
Performance of Low-End Pipelined Processors", Advances in Science, Technology
and Engineering Systems Journal, vol. 6, no. 2, pp. 763-775 (2021).

• A. Tziouvaras, G. Dimitriou, F. Foukalas and G, Stamoulis, "A near-data processing
architecture for accelerating loop execution in memory intensive workloads," in ACM
Transactions on Computer Systems (TOCS) (Under review)

• A. Tziouvaras, G. Dimitriou and G, Stamoulis, "Low power near-data code execution
leveraging opcode-based timing analysis," in ACM Transactions on Computer Systems
(TOCS) (Under review)

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

69

Bibliography

[1] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. Design of ion-implanted
mosfet’s with very small physical dimensions. IEEE Journal of Solid-State Circuits, 9, October 1974.

[2] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam and D. Burger, "Dark silicon and the end of
multicore scaling," 2011 38th Annual International Symposium on Computer Architecture (ISCA), San
Jose, CA, USA, 2011, pp. 365-376.

[3] A.Marathe, Y. Zhang, G. Blanks, N. Kumbhare, G. Abdulla, and B. Rountree. "An empirical survey of
performance and energy efficiency variation on Intel processors," in Proceedings of the 5th International
Workshop on Energy Efficient Supercomputing (E2SC’17). Association for Computing Machinery, New
York, NY, USA, Article 9, 1–8. Nov. 2017.

[4] B.Acun, P. Miller, and L.t V. Kale. "Variation Among Processors Under Turbo Boost in HPC Systems," in
Proceedings of the International Conference on Supercomputing (ICS ’16). Association for Computing
Machinery, New York, NY, USA, Article 6, 1–12, June 2016.

[5] W. Shin et al., "DRAM-Latency Optimization Inspired by Relationship between Row-Access Time and
Refresh Timing," in IEEE Transactions on Computers, vol. 65, no. 10, pp. 3027-3040,Oct. 2016.

[6] S. Borkar, "Role of Interconnects in the Future of Computing," in Journal of Lightwave Technology, vol.
31, no. 24, pp. 3927-3933, Dec.15, 2013.

[7] R. Balasubramonian et al., "Near-Data Processing: Insights from a MICRO-46 Workshop," in IEEE
Micro, vol. 34, no. 4, pp. 36-42, July-Aug. 2014.

[8] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn and N. S. Kim, "Chameleon: Versatile and practical near-
DRAM acceleration architecture for large memory systems," 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Taipei, 2016, pp. 1-13.

[9] S. Patrick , B. Rainer and B. Mladen, "Data-Centric Computing Frontiers: A Survey On Processing-
In-Memory". in Proceedings of the Second International Symposium on Memory Systems, pp 295-308,
2016.

[10] Marko Scrbak, Mahzabeen Islam, Krishna M. Kavi, Mike Ignatowski, and Nuwan Jayasena. 2017. Ex-
ploring the Processing-in-Memory design space. J. Syst. Archit. 75, C (April 2017), 59–67.

[11] J. Ahn, S. Hong, S. Yoo, O. Mutlu and K. Choi, "A scalable processing-in-memory accelerator for parallel
graph processing," 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA), Portland, OR, 2015, pp. 105-117.

[12] V. Seshadri, et al., “Fast bulk bitwise AND and OR in DRAM,” IEEE Comput. Archit. Lett., vol. 14, no.
2, pp. 127–131, Jul–Dec. 2015.

[13] X. Yang,Y. Hou and H. He, “A Processing-in-Memory Architecture Programming Paradigm for Wireless
Internet-of-Things Applications.”,in Sensors, vol. 19, Jan. 2019.

[14] H. Zhang, G. Chen, B. C. Ooi, K. Tan and M. Zhang, "In-Memory Big Data Management and Processing:
A Survey," in IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 7, pp. 1920-1948, 1
July 2015.

[15] J. Huang et al., "Active-Routing: Compute on the Way for Near-Data Processing," 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA), Washington, DC, USA, 2019,
pp. 674-686.

[16] A. Farmahini-Farahani, J. H. Ahn, K. Morrow and N. S. Kim, "NDA: Near-DRAM acceleration archi-
tecture leveraging commodity DRAM devices and standard memory modules," 2015 IEEE 21st Inter-
national Symposium on High Performance Computer Architecture (HPCA), Burlingame, CA, 2015, pp.
283-295.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

70 BIBLIOGRAPHY

[17] M. Gao and C. Kozyrakis, “HRL: Efficient and Flexible Reconfigurable Logic for Near-Data Processing,”
in HPCA, 2016.

[18] H. Asghari-Moghaddam, A. Farmahini-Farahani, K. Morrow, J. H. Ahn, and N.S. Kim, “Near-DRAM
acceleration with single-ISA heterogeneous processing in standard memory modules,” IEEE Micro, vol.
36, 2016.

[19] F. Schuiki, M. Schaffner, F. K. Gürkaynak and L. Benini, "A Scalable Near-Memory Architecture for
Training Deep Neural Networks on Large In-Memory Datasets," in IEEE Transactions on Computers,
vol. 68, no. 4, pp. 484-497, 1 April 2019.

[20] S. Gupta, M. Imani, H. Kaur and T. S. Rosing, "NNPIM: A Processing In-Memory Architecture for
Neural Network Acceleration," in IEEE Transactions on Computers, vol. 68, no. 9, pp. 1325-1337, 1
Sept. 2019.

[21] M. Imani, S. Gupta, S. Sharma and T. S. Rosing, "NVQuery: Efficient Query Processing in Nonvolatile
Memory," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 4, pp. 628-639, April 2019.

[22] B. Gu et al., "Biscuit: A Framework for Near-Data Processing of Big Data Workloads," 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, 2016, pp. 153-165.

[23] S. Lloyd and M. Gokhale, “Near memory key/value lookup acceleration,” in ACM International Sympo-
sium on Memory Systems. ACM, 2017.

[24] A. Boroumand et al., "LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,"
in IEEE Computer Architecture Letters, vol. 16, no. 1, pp. 46-50, 1 Jan.-June 2017.

[25] G. Singh et al., "A Review of Near-Memory Computing Architectures: Opportunities and Challenges,"
2018 21st Euromicro Conference on Digital System Design (DSD), Prague, 2018, pp. 608-617.

[26] K. Hsieh, et al., “Transparent Offloading and Mapping (TOM): Enabling programmer-transparent near-
data processing in GPU systems,” in Proc. Int. Symp. Comput. Archit., 2016.

[27] J. Ahn, S. Yoo, O. Mutlu and K. Choi, "PIM-enabled instructions: A low-overhead, locality-aware
processing-in-memory architecture," 2015 ACM/IEEE 42nd Annual International Symposium on Com-
puter Architecture (ISCA), Portland, OR, 2015, pp. 336-348.

[28] N. S. Kim and P. Mehra, "[INVITED] Practical Near-Data Processing to Evolve Memory and Storage
Devices into Mainstream Heterogeneous Computing Systems," 2019 56th ACM/IEEE Design Automa-
tion Conference (DAC), Las Vegas, NV, USA, 2019, pp. 1-4.

[29] B. Akin, F. Franchetti, and J. C. Hoe, “Data Reorganization in Memory Using 3D-Stacked DRAM,” in
ISCA, 2015.

[30] F. Devaux, "The true Processing In Memory accelerator," 2019 IEEE Hot Chips 31 Symposium (HCS),
Cupertino, CA, USA, 2019, pp. 1-24.

[31] H. Lim and G. Park," Triple Engine Processor (TEP): A Heterogeneous Near-Memory Processor for
Diverse Kernel Operations," In ACM Trans. Archit. Code Optim. 14, 4, Article 49 (December 2017), 25
pages.

[32] S. Ghose, K. Hsieh, A. Boroumand, R. Ausavarungnirun and Onur Mutlu, "Enabling the Adoption
of Processing-in-Memory: Challenges, Mechanisms, Future Research Directions" in ArXiv, 2018,
abs/1802.00320.

[33] Hybrid Memory Cube Consortium (HMCC), “Hybrid memory cube specification 2.1.” 2016.
[Online]. Available: http://www.hybridmemorycube. org/files/SiteDownloads/HMC-30G-
VSR_HMCC_Specification_Rev2.1_20151105.pdf.

[34] M. Wijtvliet, L. Waeijen and H. Corporaal, "Coarse grained reconfigurable architectures in the past 25
years: Overview and classification," 2016 International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (SAMOS), Agios Konstantinos, 2016, pp. 235-244.

[35] Z. E. Rákossy, F. Merchant, A. Acosta-Aponte, S. K. Nandy and A. Chattopadhyay, "Efficient and scal-
able CGRA-based implementation of Column-wise Givens Rotation," 2014 IEEE 25th International Con-
ference on Application-Specific Systems, Architectures and Processors, Zurich, 2014, pp. 188-189.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

BIBLIOGRAPHY 71

[36] M. Tanomoto, S. Takamaeda-Yamazaki, J. Yao and Y. Nakashima, "A CGRA-Based Approach for Ac-
celerating Convolutional Neural Networks," 2015 IEEE 9th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip, Turin, 2015, pp. 73-80.

[37] X. Chen, A. Minwegen, S. B. Hussain, A. Chattopadhyay, G. Ascheid and R. Leupers, "Flexible, Efficient
Multimode MIMO Detection by Using Reconfigurable ASIP," in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 23, no. 10, pp. 2173-2186, Oct. 2015.

[38] S. Yin, D. Liu, L. Sun, L. Liu and S. Wei, "DFGNet: Mapping dataflow graph onto CGRA by a deep
learning approach," 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore,
MD, 2017, pp. 1-4.

[39] Y. Kim, J. Lee, A. Shrivastava, J. W. Yoon, D. Cho and Y. Paek, "High Throughput Data Mapping
for Coarse-Grained Reconfigurable Architectures," in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 30, no. 11, pp. 1599-1609, Nov. 2011.

[40] M. Hamzeh, A. Shrivastava and S. Vrudhula, "REGIMap: Register-aware application mapping on
Coarse-Grained Reconfigurable Architectures (CGRAs)," 2013 50th ACM/EDAC/IEEE Design Automa-
tion Conference (DAC), Austin, TX, 2013, pp. 1-10.

[41] Y. Kim, R. N. Mahapatra and K. Choi, "Design Space Exploration for Efficient Resource Utilization
in Coarse-Grained Reconfigurable Architecture," in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 18, no. 10, pp. 1471-1482, Oct. 2010.

[42] L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, and S. Wei,"A Survey of Coarse-Grained Reconfig-
urable Architecture and Design: Taxonomy, Challenges, and Applications," In ACM Comput. Surv. 52,
6, Article 118 (January 2020), 39 pages.

[43] S. Yin, D. Liu, L. Liu, S. Wei and Y. Guo, "Joint affine transformation and loop pipelining for map-
ping nested loop on CGRAs," 2015 Design, Automation Test in Europe Conference Exhibition (DATE),
Grenoble, 2015, pp. 115-120.

[44] B. Xu, S. Yin, L. Liu and S. Wei, "Low-power loop pipelining mapping onto CGRA utilizing variable
dual VDD," 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS),
College Station, TX, 2014, pp. 242-245.

[45] S. Yin, D. Liu, Y. Peng, L. Liu and S. Wei, "Improving Nested Loop Pipelining on Coarse-Grained
Reconfigurable Architectures," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 24, no. 2, pp. 507-520, Feb. 2016.

[46] M. Dossis and G. Dimitriou, "Resolving Loop Pipelining Issues in the CCC High-level Synthesis E-CAD
Framework," 2018 41st International Conference on Telecommunications and Signal Processing (TSP),
Athens, 2018, pp. 1-4.

[47] C. Celio, P. Chiu, B. Nikolic, D.A Patterson, K.Asanović, " BOOM v2: an open-source out-of-order
RISC-V core", Technical report in EECS Department, University of California, Berkeley, 2017.

[48] J. Schmidt and U. Bruning, "openHMC - a configurable open-source hybrid memory cube controller,"
2015 International Conference on ReConFigurable Computing and FPGAs (ReConFig), Mexico City,
2015, pp. 1-6.

[49] M. Martins, J. Maick Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech, and J. Michelsen, "Open
Cell Library in 15nm FreePDK Technology". In Proceedings of the 2015 Symposium on International
Symposium on Physical Design (ISPD ’15). ACM, New York, NY, USA, pp. 171–178, 2015.

[50] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC CPU2017: Next-Generation
Compute Benchmark. In Companion of the 2018 ACM/SPEC International Conference on Performance
Engineering (ICPE ’18). Association for Computing Machinery, New York, NY, USA, 41–42.

[51] S. Che et al., "Rodinia: A benchmark suite for heterogeneous computing," 2009 IEEE International
Symposium on Workload Characterization (IISWC), Austin, TX, 2009, pp. 44-54.

[52] S. K. Venkata et al., "SD-VBS: The San Diego Vision Benchmark Suite," 2009 IEEE International Sym-
posium on Workload Characterization (IISWC), Austin, TX, 2009, pp. 55-64.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

72 BIBLIOGRAPHY

[53] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh and A. Gupta, "The SPLASH-2 programs: characterization
and methodological considerations," Proceedings 22nd Annual International Symposium on Computer
Architecture, Santa Margherita Ligure, Italy, 1995, pp. 24-36.

[54] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” in OSDI-6, pp.
10–10, 2004.

[55] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior,
P. Tucker, K. Yang, and A. Y. Ng, “Large Scale Distributed Deep Networks,” in NIPS, pp. 1223–1231,
2012.

[56] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project Adam: Building an Efficient and
Scalable Deep Learning Training System,” in OSDI-11, pp. 571–582, 2014.

[57] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Power-Graph: Distributed Graph-parallel
Computation on Natural Graphs,” in OSDI-10, pp. 17–30, 2012.

[58] J.Lin, X.Tian and J Ng, "Mis-speculation-Driven Compiler Framework for Aggressive Loop Automatic
Parallelization," 2013 IEEE International Symposium on Parallel and Distributed Processing, Workshops
and Phd Forum, Cambridge, MA, 2013, pp. 1159-1168.

[59] T. Austin and V. Bertacco, “Deployment of better than worst-case design: solutions and needs,” in Pro-
ceedings of the International Conference on Computer Design, Oct. 2005.

[60] R. Ye, F. Yuan, J. Zhang, and Q. Xu, “On the premises and prospects of timing speculation,” in Proceed-
ings of the Design, Automation and Test in Europe Conference and Exhibition (DATE), March 2015.

[61] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and
T. Mudge, “Razor: a low-power pipeline based on circuit-level timing speculation,” in Proceedings of
the 36th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Dec. 2003.

[62] Y. Zhang, M. Khayatzadeh, K. Yang, M. Saligane, N. Pinckney, M. Alioto, D. Blaauw and D. Sylvester,
"iRazor: Current-Based Error Detection and Correction Scheme for PVT Variation in 40-nm ARM
Cortex-R4 Processor," in IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 619-631, Feb. 2018.

[63] V. Subramanian, M. Bezdek, N. D. Avirneni, and A. Somani, “Superscalar processor performance
enhancement through reliable dynamic clock frequency tuning,” in Proceedings of the 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), June 2007.

[64] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportunities and challenges for better than worst-
case design,” in Proceedings of the ASP-DAC, Jan. 2005.

[65] C. -C. Wang, K. -Y. Chao, S. Sampath and P. Suresh, "Anti-PVT-Variation Low-Power Time-to-Digital
Converter Design Using 90-nm CMOS Process," in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 28, no. 9, pp. 2069-2073, Sept. 2020.

[66] B. Poudel and A. Munir, "Design and Evaluation of a PVT Variation-Resistant TRNG Circuit," 2018
IEEE 36th International Conference on Computer Design (ICCD), Orlando, FL, USA, pp. 514-521,
2018.

[67] A. Rahimi, L. Benini, and R. K. Gupta, “Application-adaptive guardbanding to mitigate static and dy-
namic variability,” IEEE Transactions on Computers, vol. 63, pp. 2160–2173, Sept. 2014.

[68] A. Tiwari, S. R. Sarangi, and J. Torrellas, “Recycle: pipeline adaptation to tolerate process variation,” in
Proceedings of the 34th Annual International Symposium on Computer Architecture (ISCA), June 2007.

[69] S. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas, “Eval: Utilizing processors with variation-induced
timing errors,” in Proceedings of the 41st IEEE/ACM International Symposium on Microarchitecture,
Nov. 2008.

[70] K. A. Bowman, J. W. Tschanz, S.-L. L. Lu, P. A. Aseron, M. M. Khellah, A. Raychowdhury, B. M.
Geuskens, C. Tokunaga, C. B. Wilkerson, T. Karnik, and V. K. De, “A 45 nm resilient microprocessor
core for dynamic variation tolerance,” IEEE Journal of Solid-State Circuits, vol. 46, pp. 194–208, Jan.
2011.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

BIBLIOGRAPHY 73

[71] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz, “Energy-performance tradeoffs in pro-
cessor architecture and circuit design: A marginal cost analysis,” in Proceedings of the 37th Annual
International Symposium on Computer Architecture (ISCA), June 2010.

[72] B. Greskamp, L. Wan, U. R. Karpuzcu, J. J. Cook, J. Torrellas, D. Chen, and C. Zilles, “Blueshift:
Designing processors for timing speculation from the ground up,” in Proceedings of the 15th International
Symposium on High-Performance Computer Architecture (HPCA), March 2009.

[73] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Designing a processor from the ground up to allow
voltage/reliability tradeoffs,” in Proceedings of the 16th International Symposium on High-Performance
Computer Architecture (HPCA), April 2010.

[74] S. Shen et al., "TS Cache: A Fast Cache With Timing-Speculation Mechanism Under Low Supply Volt-
ages," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 1, pp. 252-262,
Jan. 2020.

[75] L. Wan and D. Chen, “Dynatune: circuit-level optimization for timing speculation considering dynamic
path behavior,” in Proceedings of the International Conference on Computer-Aided Design (ICCAD),
Dec. 2009.

[76] Y. Sun, Y. Liu, X. Wang, H. Xu, and H. Yang, “Design methodology of multistage time-domain logic
speculation circuits,” in Proceedings of the IEEE International Symposium of Circuits and Systems (IS-
CAS), May 2011.

[77] Y. Liu, R. Ye, F. Yuan, R. Kumar, and Q. Xu, “On logic synthesis for timing speculation,” in Proceedings
of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Nov. 2012.

[78] J. Sartori and R. Kumar, “A case for timing error resilience-aware compilation,” in Proceedings of the
7th Workshop on Silicon Errors in Logic - System Effects (SELSE), March 2011.

[79] G. Hoang, R. B. Findler, and R. Joseph, “Exploring circuit timing-aware languages and compilation,” in
Proceedings of the 16th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), March 2011.

[80] D. M. Tullsen and B. Calder, “Computing along the critical path,” tech. rep., University of California San
Diego (UCSD), Oct. 1998.

[81] C. R. Lefurgy, Alan J. Drake, Michael S. Floyd, Malcolm S. Allen-Ware, Bishop Brock, Jose A. Tierno
and John B. Carter, "Active management of timing guardband to save energy in POWER7," 2011 44th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Porto Alegre, 2011, pp.
1-11.

[82] T. Hashimoto. Yukihito Kawabe, Michiharu Kara, Yasushi Kakimura, Kunihiko Tajiri, Shinichiro Shi-
rota, Ryuichi Nishiyama, Hitoshi Sakurai, Hiroshi Okano, Yasumoto Tomita, Sugio Satoh and Hideo
Yamashita, "An adaptive clocking control circuit with 7.5% frequency gain for SPARC processors,"
2017 Symposium on VLSI Technology, Kyoto, 2017, pp. C112-C113.

[83] A. Grenat, S. Pant, R. Rachala and S. Naffziger, "Adaptive clocking system for improved power ef-
ficiency in a 28nm x86-64 microprocessor," 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 106-107.

[84] J. Constantin, A. Bonetti, A. Teman, C. Müller, L. Schmid and A. Burg, "DynOR: A 32-bit micropro-
cessor in 28 nm FD-SOI with cycle-by-cycle dynamic clock adjustment," ESSCIRC Conference 2016:
42nd European Solid-State Circuits Conference, Lausanne, Switzerland, pp. 261-264, 2016.

[85] S. Beer, M. Cannizzaro, J. Cortadella, R. Ginosar, and L. Lavagno, “Metastability in better-than-worst-
case designs,” in Proceedings of the 20th IEEE International Symposium on Asynchronous Circuits and
Systems, May 2014.

[86] K. A. Bowman, J. W. Tschanz, N. S. Kim, J. C. Lee, C. B. Wilkerson, S.-L. L. Lu, T. Karnik, and V. K.
De, “Energy-efficient and metastability-immune resilient circuits for dynamic variation tolerance,” IEEE
Journal of Solid-State Circuits, vol. 44, pp. 49–63, Jan. 2009.

[87] X. Wang and W. H. Robinson, "Error Estimation and Error Reduction With Input-Vector Profiling for
Timing Speculation in Digital Circuits," in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 2, pp. 385-389, Feb. 2019.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

74 BIBLIOGRAPHY

[88] Z. Li, T. Zhu, Z. Chen, J. Meng, X. Xiang and X. Yan, "Eliminating Timing Errors Through Collaborative
Design to Maximize the Throughput," in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 2, pp. 670-682, Feb. 2017.

[89] H. Ahmadi Balef, H. Fatemi, K. Goossens and J. Pineda De Gyvez, "Timing Speculation With Optimal
In Situ Monitoring Placement and Within-Cycle Error Prevention," in IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 5, pp. 1206-1217, May 2019.

[90] E. Tune, D. Liang, D. M. Tullsen, and B. Calder, “Dynamic prediction of critical path instructions,” in
Proceedings of the 7th International Symposium on High-Performance Computer Architecture (HPCA),
Jan 2001.

[91] J. Xin and R. Joseph, “Identifying and predicting timing-critical instructions to boost timing speculation,”
in Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
Dec. 2011.

[92] M. de Kruijf, S. Nomura, and K. Sankaralingam, “A unified model for timing speculation: Evaluating
the impact of technology scaling, cmos design style, and fault recovery mechanism,” in Proceedings of
the 40th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), June
2010.

[93] H. Y. Cheah, S. A. Fahmy and N. Kapre, "Analysis and optimization of a deeply pipelined FPGA soft
processor," 2014 International Conference on Field-Programmable Technology (FPT), Shanghai, 2014,
pp. 235-238.

[94] A. Hartstein and T. R. Puzak, "The optimum pipeline depth for a microprocessor," Proceedings 29th
Annual International Symposium on Computer Architecture, Anchorage, AK, USA, 2002, pp. 7-13.

[95] V. Agarwal, R. A. Patil and A. B. Patki, "Architectural Considerations for Next Generation IoT Proces-
sors," in IEEE Systems Journal, vol. 13, no. 3, pp. 2906-2917, Sept. 2019.

[96] M. Tariq Banday. 2018. A study of current trends in the design of processors for the internet of things. In
Proceedings of the 2nd International Conference on Future Networks and Distributed Systems (ICFNDS
’18). Association for Computing Machinery, New York, NY, USA, Article 21, 1–10.

[97] W.Liu, E. Salman, C. Sitik, and B. Taskin. 2015. Clock Skew Scheduling in the Presence of Heav-
ily Gated Clock Networks. In Proceedings of the 25th edition on Great Lakes Symposium on VLSI
(GLSVLSI ’15). Association for Computing Machinery, New York, NY, USA, 283–288.

[98] C.Chang, S.Huang, Y.Ho, J. Lin, H. Wang and Y. Lu, "Type-matching clock tree for zero skew clock
gating," 2008 45th ACM/IEEE Design Automation Conference, Anaheim, CA, 2008, pp. 714-719.

[99] J. Tschanz et al., "Adaptive Frequency and Biasing Techniques for Tolerance to Dynamic Temperature-
Voltage Variations and Aging," 2007 IEEE International Solid-State Circuits Conference. Digest of Tech-
nical Papers, San Francisco, CA, 2007, pp. 292-604.

[100] B. A. Floyd, "Sub-Integer Frequency Synthesis Using Phase-Rotating Frequency Dividers," in IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 7, pp. 1823-1833, Aug. 2008.

[101] R. Kumar and V. Kursun, “Reversed temperature-dependent propagation delay characteristics in nanome-
ter CMOS circuits,” IEEE Trans. Circuits Syst., vol. 53, no. 10, pp. 1078–1082, Oct. 2006.

[102] J. Schmidt, H. Fröning, and U. Brüning. Exploring Time and Energy for Complex Accesses to a Hybrid
Memory Cube. In Proceedings of the Second International Symposium on Memory Systems (MEMSYS
’16). Association for Computing Machinery, New York, NY, USA, 142–150, 2016.

[103] R. Hadidi et al., "Performance Implications of NoCs on 3D-Stacked Memories: Insights from the Hybrid
Memory Cube," 2018 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), Belfast, UK, 2018, pp. 99-108.

[104] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech, and J. Michelsen. 2015. Open
Cell Library in 15nm FreePDK Technology. In Proceedings of the 2015 Symposium on International
Symposium on Physical Design (ISPD ’15). Association for Computing Machinery, New York, NY,
USA, 171–178.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

BIBLIOGRAPHY 75

[105] K. Asanović, R. Avižienis, J. Bachrach, S. Beamer, D. Biancolin, C.Celio, H. Cook, P. Dabbelt, J. Hauser,
A. Izraelevitz, S. Karandikar, B. Keller, Do. Kim, J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar, H.
Mao, M. Moreto, A. Ou, D. Patterson, B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman,
“The Rocket Chip Generator,” Technical Report UCB/EECS-2016-17, EECS Department, University of
California, Berkeley, April 2016.

[106] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, "Rethinking the Inception Architecture for
Computer Vision," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las
Vegas, NV, 2016, pp. 2818-2826.

[107] A. Shukla, S. Chaturvedi and Y. Simmhan, "RIoTBench: A Real-time IoT Benchmark for Distributed
Stream Processing Platforms", In ArXiv :https://arxiv.org/abs/1701.08530, Jan. 2017.

[108] S. Huang, J. Huang, J. Dai, T. Xie and B. Huang, "The HiBench benchmark suite: Characterization of
the MapReduce-based data analysis," 2010 IEEE 26th International Conference on Data Engineering
Workshops (ICDEW 2010), Long Beach, CA, 2010, pp. 41-51.

[109] L. Wang et al., "BigDataBench: A big data benchmark suite from internet services," 2014 IEEE 20th
International Symposium on High Performance Computer Architecture (HPCA), Orlando, FL, 2014, pp.
488-499.

[110] I. Kwon, S. Kim, D. Fick, M. Kim, Y. Chen and D. Sylvester, "Razor-Lite: A Light-Weight Register for
Error Detection by Observing Virtual Supply Rails," in IEEE Journal of Solid-State Circuits, vol. 49, no.
9, pp. 2054-2066, Sept. 2014.

[111] M. Fojtik et al., "Bubble Razor: An architecture-independent approach to timing-error detection and
correction," 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2012,
pp. 488-490.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 22:53:49 EEST - 3.139.101.198

