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In the last decades technology is increasingly moving towards micro- and nano-
scale, developing smaller devices. In addition, vacuum systems and aerosol flows
play a critical role in the semiconductor and microelectromechanical systems (MEMS)
industry, as well as in some of the most significant large scale scientific and technological
achievements, such as particle accelerators and fusion reactors. Consequently, the
theoretical and computational investigation of gaseous transport phenomena in rarefied
conditions is increasingly attracting considerable attention. These phenomena are
far from local equilibrium and the classical Navier-Stokes-Fourier equations are not
applicable, since the gas does not behave as a continuum medium. In this case, the
molecular nature of gases must be taken into consideration and kinetic modeling, as
described by the Boltzmann equation (BE), is required.

In the present work, sophisticated deterministic and stochastic kinetic modeling
software tools are developed on the basis of the well-established Discrete Velocity
Method (DVM) and the Direct Simulation Monte Carlo (DSMC) method, respectively.
These software tools are validated in several benchmarks and implemented to tackle
a number of diverse subjects related to gaseous transport phenomena under rarefied
conditions.

As already mentioned, the basis of kinetic theory is the Boltzmann equation.
However, its computational solution is associated with a formidable computational
effort and thus, it is usually circumvented by solving suitable kinetic models that replace
the exact Boltzmann collision operator with simplified expressions. Here, the linearized
Boltzmann equation for the hard-sphere intermolecular potential is numerically solved
for the first time at the Laboratory of Transport Phenomena and Process Equipment.
The computational solution of the Boltzmann equation is validated by computing
the heat conductivity and dynamic viscosity for a hard-sphere gas, as well as by
solving the planar fully-developed Poiseuille and thermal creep rarefied gas flows. In
all benchmark cases an excellent agreement has been observed with results presented
in the literature. Then, the linearized Boltzmann equation is implemented to simulate
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the planar fully-developed rarefied gas flow due to a harmonically oscillating pressure
gradient in the whole range of gas rarefaction and oscillation frequency. In this type of
flows, kinetic models have been widely used and thus, the solution of the Boltzmann
equation is considered necessary to validate them. The Poiseuille coefficient, which is
related to the mass flow rate and the macroscopic velocity distribution are provided.
The Boltzmann equation results are in very good agreement with the ones provided by
the Bhatnagar, Gross and Krook (BGK) model justifying the use of kinetic models
for simulating pressure-driven oscillatory rarefied gas flows. In addition, the obtained
results properly recover the analytical slip solution and the steady-state solution in the
corresponding flow regimes. The Poiseuille coefficient and velocity distribution are said
to be in phase with the pressure gradient for low oscillation frequencies. However, as
the oscillation frequency is increased the macroscopic quantities always lag the pressure
gradient and decrease in amplitude. The Poiseuille coefficient shows a non-monotonic
trend with respect to the gas rarefaction and a local maximum may be observed for
some intermediate value of the gas rarefaction parameter depending on the oscillation
frequency. At very high frequencies, a plug-flow mode in the channel center and a
velocity overshoot near the two plates is observed based on the Boltzmann equation.
This behavior has been well-established in the viscous regime and has been recently
also observed in rarefied conditions based on the BGK model.

Gas flows coupled with gas injection and suction through permeable surfaces are
considered as fundamental problems in the viscous regime and have been extensively
investigated due to their important role in many technological applications, such
as filtration systems, membrane gas permeators, detritiation systems and biological
applications. However, these flows have not been studied under rarefied conditions
and thus, there is both theoretical and technological interest for their investigation.
In the present work, the fully-developed pressure and temperature driven rarefied gas
flow between two parallel permeable plates with gas injection and suction through the
bottom and top plate, respectively, is investigated. In addition, the fully-developed
rarefied gas flow over a permeable plate with downward suction is studied. In the former
flow configuration, the Shakhov (S) kinetic model equation and the Boltzmann equation
are implemented, while for the latter one the S kinetic model is employed. In the case
of the permeable channel flow, the full-range acceleration scheme is implemented for
the S model, which is far superior to the non accelerated one in terms of computational
effort for large values of the rarefaction parameter. Furthermore, the Poiseuille,
mechanocaloric, thermal creep and reduced heat flux coefficients, which are related to
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the mass and heat flow rates due to the pressure and temperature gradients are provided.
In addition, the macroscopic velocity, heat flux and shear stress distributions are
presented. Moreover, the Onsager-Casimir reciprocity relation for the mechanocaloric
and thermal creep coefficients is proven theoretically for an arbitrary injection velocity
and is used to validate the numerical accuracy of the obtained results. The Boltzmann
and S equation results for the kinetic coefficients show a great agreement, justifying the
use of kinetic models for the simulation of rarefied gas flows coupled with gas injection
or suction through permeable surfaces. In addition, the kinetic results properly recover
the analytical solutions provided in the free-molecular and slip regimes. Regarding
the behavior of the kinetic coefficients, the Poiseuille coefficient is monotonically
decreased when the injection velocity is increased and tends to a constant value at the
hydrodynamic regime. Moreover, as the injection velocity is increased, the well-known
Knudsen minimum vanishes. The rest of the kinetic coefficients, are also decreased as the
injection velocity is increased and for high injection velocity values the mechanocaloric
and thermal creep coefficients change sign. This peculiar behavior is also confirmed by
the asymptotic solution in the free-molecular regime. In the case of the flow over a
permeable plate, the boundary layer thickness, as well as, the macroscopic velocity, shear
stress and heat flux distributions are presented. In addition, the analytical solutions in
the slip and hydrodynamic regimes are also provided for comparison purposes. The
boundary layer thickness is inversely proportional to the suction velocity as predicted
by the analytical solutions in the slip and hydrodynamic regimes. Furthermore, an
excellent agreement between the kinetic, slip and hydrodynamic results is observed
outside of the boundary layer, while inside the boundary layer only the kinetic results
are considered accurate.

Some of the most significant scientific and technological achievements depend on the
smooth operation of vast vacuum systems. At the Laboratory of Transport Phenomena
and Process Equipment, the ARIADNE code has been developed by S. Misdanitis by
integrating a kinetic database containing the mass flow rates through tubes computed
via the BGK and Ellipsoidal-Statistical (ES) kinetic models in a typical gas network
solver. In the present work, the ARIADNE code for simulating steady-state rarefied
gas networks in the whole range of the Knudsen number, is advanced and is then
implemented in a time-dependent hybrid algorithm to simulate the transient response of
gas distribution systems. The developed codes are validated based on a gas expansion
apparatus developed by Physikalische-Technische Bundesanstalt and a benchmark
network operating in the free-molecular regime. The obtained results are in excellent
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agreement in the first benchmark with results reported in the literature and in the
second benchmark with the well-established Test Particle Monte Carlo (TPMC) code
Molflow+. In addition, the ARIADNE code is used to demonstrate the implementation
of the Monte Carlo (MC) uncertainty propagation analysis method to vacuum systems.
The aforementioned second benchmark network is assumed to operate under steady-
state conditions and the uncertainty of the pumped throughput with respect to the pipe
radius, pipe length, vessel pressure and pump pumping speed uncertainties is computed
in the whole range of gas rarefaction. The capabilities of the aforementioned developed
gas network codes are then demonstrated by simulating the ITER primary pumping
system during the burn and dwell phases under steady-state and time-dependent
conditions, respectively. In the burn phase, several operating scenarios are investigated
and both qualitative and quantitative results, including the gas flow paths through
the divertor, as well as, the pumped and backflow throughputs, are presented. The
pumped throughput depends almost linearly on the number of operating cryopumps,
while both the pumped and backflow throughputs are increased as the average torus
pressure is increased. Regarding the envisaged cyclic pumping/regeneration mode,
the total pumped throughput is almost equal in all possible pump setups and the
individual pump throughputs are well balanced. In the dwell phase, several operating
scenarios are investigated and the temporal evolution of the torus pressure is presented.
In addition, an analytical solution for the case of constant torus effective pumping
speed is provided. A parametric study of the torus pressure at the end of the dwell
phase shows that it is independent of the initial torus pressure and linearly depends on
the initial outgassing rate. This behavior is also validated based on the aforementioned
analytical solution. Moreover, the torus pressure at the end of the dwell phase is
almost linearly dependent on the number of operating pumps. Furthermore, the torus
pressure at the end of the dwell phase is below the required pressure in a wide range of
the torus temperature and initial outgassing, for the highest outgassing decay index
value. However, the required pressure is only marginally achieved when all six available
cryopumps are utilized for the lowest outgassing decay index value.

Aerosol flows under rarefied conditions have attracted considerable attention in
the last decades due to their importance in several applications in the semiconductor
and MEMS industry, as well as due to their tentative importance in fusion technology.
Here, the general 3D DSMC solver PROGRESS, which has been developed by Dr.
S. Pantazis at the Laboratory of Transport Phenomena and Process Equipment,
is appropriately modified in order to simulate the transport of solid particles in a
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rarefied gas. In addition, several advancements, including the implementation of the
Variable Soft Sphere (VSS) intermolecular potential, are made. The capabilities of
the developed code are demonstrated and validated based on three benchmark cases,
including thermophoresis, as well as translational and rotational Brownian motion.
The thermophoresis benchmark considers a rigid spherical particle suspended in a
rarefied gas between two parallel plates kept at slightly different temperatures. The
heat flux between the two plates and the thermophoretic force experienced by the solid
particle due to the imposed temperature gradient are presented in terms of the gas
rarefaction from the free-molecular up to the slip regime. In addition, approximate
closed form expressions for the heat flux and the thermophoretic force found in the
literature are presented and a new simple expression for the thermophoretic parameter,
which tends to the correct analytical values in the free-molecular and viscous regimes,
is formulated. An excellent agreement is observed between the obtained results and
the ones reported in the literature, while the presented approximate expressions can
provide the heat flux and thermophoretic force with an accuracy of about 10%. In the
translational and rotational Brownian motion benchmarks the random translational
movement or rotation, respectively, of a spherical particle suspended in a free-molecular
gas is studied. The translational displacement and velocity distributions, as well as the
rotational ones are presented. In addition, the translational and rotational diffusion
coefficients derived from the aforementioned displacement distributions are presented
with respect to the spherical particle radius. In all cases, the obtained results are found
to be in excellent agreement with the analytical ones.

In the present work, certain advancements in kinetic modeling are made and
sophisticated software tools are developed to model and simulate several diverse
gaseous transport phenomena in rarefied conditions. It is hoped, that this effort will
prove to be useful, at some extend, to the scientific rarefied gas community and support
the design and optimization of applications, devices and systems in vacuum engineering
and fusion technology.
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ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΑΕΡΙΩΝ ΣΕ ΑΡΑΙΟΠΟΙΗΜΕΝΕΣ ΣΥΝΘΗΚΕΣ

ΜΕΣΩ ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΩΝ ΚΑΙ ΣΤΟΧΑΣΤΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΩΝ

ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΚΕΝΟΥ ΚΑΙ ΣΥΝΤΗΞΗΣ

Νίκος Βασιλειάδης

Πανεπιστήμιο Θεσσαλίας, Απρίλιος 2021

Επιβλέπων: Καθηγητής Δ. Βαλουγεώργης

Τις τελευταίες δεκαετίες η τεχνολογία μεταβαίνει όλο και περισσότερο στην μίκρο-

και νάνο-κλίμακα, δημιουργώντας συνεχώς μικρότερες διατάξεις και συσκευές. Επιπλέον,

τα συστήματα κενού και οι ροές αεροζόλ παίζουν κρίσιμο ρόλο στην βιομηχανία ημια-

γωγών και μικροηλεκτρομηχανικών συστημάτων (MEMS) αλλά και σε κάποια από τα
πιο σημαντικά επιστημονικά και τεχνολογικά επιτεύγματα μεγάλης κλίμακας, όπως οι

επιταχυντές σωματιδίων και οι αντιδραστήρες πυρηνικής σύντηξης. Συνεπώς, η θεω-

ρητική και υπολογιστική μελέτη φαινομένων μεταφοράς αραιοποιημένων αερίων αποκτά

όλο και περισσότερη προσοχή. Τα συγκεκριμένα φαινόμενα βρίσκονται εκτός τοπικής

θερμοδυναμικής ισορροπίας και οι κλασσικές εξισώσεις Navier-Stokes-Fourier δεν είναι
πλέον εφαρμόσιμες, καθώς το αέριο δεν συμπεριφέρεται ως συνεχές μέσο. Σε αυτήν την

περίπτωση, η μοριακή φύση των αερίων πρέπει να ληφθεί υπόψη και η χρήση κινητικής

θεωρίας, όπως αυτή περιγράφεται από την εξίσωση Boltzmann (BE), είναι αναγκαία.
Στην παρούσα εργασία, αναπτύσσονται εξελιγμένα εργαλεία λογισμικού κινητικής

μοντελοποίησης βασισμένα στην ντετερμινιστική μέθοδο διακριτών ταχυτήτων (DVM)
καθώς και στην στοχαστική μέθοδο απευθείας μοντελοποίησηςMonte Carlo (DSMC). Τα
ανεπτυγμένα εργαλεία λογισμικού πιστοποιούνται και χρησιμοποιούνται για την μελέτη

διαφόρων φαινομένων μεταφοράς αερίων υπό αραιοποιημένες συνθήκες.

΄Οπως προαναφέρθηκε, η εξίσωση Boltzmann καθιστά την βάση της κινητικής θεωρίας
των αερίων. Ωστόσο, η υπολογιστική της λύση συνδέεται με ένα αυξημένο υπολογιστικό

κόστος και συνήθως παρακάμπτεται μέσω της επίλυσης κατάλληλων κινητικών μοντέλων

που αντικαθιστούν τον ακριβή όρο ενδομοριακών συγκρούσεων της εξίσωσης Boltzmann
με απλουστευμένες εκφράσεις. Στα πλαίσια της διατριβής, η γραμμικοποιημένη εξίσωση

Boltzmann με ενδομοριακό δυναμικό σκληρών σφαιρών επιλύεται για πρώτη φορά στο
Εργαστήριο Φυσικών και Χημικών Διεργασιών. Η σωστή υπολογιστική επίλυση της

εξίσωσης Boltzmann επιβεβαιώνεται βάσει του υπολογισμού της θερμικής αγωγιμότητας
και του δυναμικού ιξώδους για ένα αέριο σκληρών σφαιρών, καθώς και βάσει της επίλυ-

σης της πλήρους ανεπτυγμένης ροής μεταξύ παράλληλων πλακών λόγω βαθμίδων πίεσης

και θερμοκρασίας. Σε όλα τα εξεταζόμενα προβλήματα τα εξαγόμενα αποτελέσματα είναι
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σε πλήρη συμφωνία με την βιβλιογραφία. Στην συνέχεια, η εξίσωση Boltzmann χρησι-
μοποιείται για την μοντελοποίηση της πλήρους ανεπτυγμένης ροής μεταξύ παράλληλων

πλακών λόγω αρμονικά ταλαντωτικής βαθμίδας πίεσης. Σε ροές τέτοιου τύπου, έχουν

χρησιμοποιηθεί εκτενώς κινητικά μοντέλα, καθιστώντας την επίλυση της εξίσωσης Boltz-
mann αναγκαία για την πιστοποίηση τους. Παρουσιάζονται η αδιάστατη μαζική παροχή
καθώς και η κατανομή της μακροσκοπικής ταχύτητας του αερίου. Τα αποτελέσματα της

εξίσωσης Boltzmann είναι σε πολύ καλή συμφωνία με τα αποτελέσματα του κινητικού
μοντέλου των Bhatnagar, Gross και Krook (BGK), δικαιολογώντας την χρήση κινητικών
μοντέλων σε ταλαντωτικές ροές αερίων. Επιπλέον, τα εξαγόμενα αποτελέσματα επιβε-

βαιώνονται από τα αναλυτικά αποτελέσματα στην περιοχή ολίσθησης και στην περιοχή

σταθερής ροής. Για χαμηλές συχνότητες ταλάντωσης ο συντελεστής Poiseuille και η
μακροσκοπική ταχύτητα βρίσκονται σε φάση με την βαθμίδα πίεσης. Ωστόσο, καθώς

η συχνότητα ταλάντωσης αυξάνεται η διαφορά φάσης των μακροσκοπικών ποσοτήτων

αυξάνεται, ενώ το πλάτος τους μειώνεται. Ο συντελεστής Poiseuille εμφανίζει μια μη
μονοτονική συμπεριφορά σε σχέση με την αραιοποίηση του αερίου και ανάλογα την συ-

χνότητα ταλάντωσης είναι πιθανόν να εμφανίσει ένα τοπικό μέγιστο για κάποια ενδιάμεση

τιμή της παραμέτρου αραιοποίησης. Σε πολύ υψηλές συχνότητες ταλάντωσης, η εξίσωση

Boltzmann δείχνει ότι η ροή στο κέντρο του καναλιού είναι ανιξώδης ενώ η ροή κοντά
στα τοιχώματα χαρακτηρίζεται από υψηλή ταχύτητα. Η συγκεκριμένη συμπεριφορά είναι

ευρέως γνωστή στην υδροδυναμική περιοχή ενώ έχει παρατηρηθεί πρόσφατα σε αραιο-

ποιημένες συνθήκες βάσει του μοντέλου BGK .
Οι ροές αερίων οι οποίες περιλαμβάνουν την έγχυση ή αναρρόφηση αερίου μέσω πε-

ρατών επιφανειών θεωρούνται ως βασικά προβλήματα στην υδροδυναμική περιοχή και

έχουν μελετηθεί εκτενώς λόγω της χρησιμότητας τους σε διάφορες τεχνολογικές εφαρ-

μογές όπως συστήματα φίλτρων, διαπερατές μεμβράνες αερίου, συστήματα απαγωγής

τριτίου και βιολογικές εφαρμογές. Ωστόσο, οι συγκεκριμένες ροές δεν έχουν ερευνη-

θεί υπό αραιοποιημένες συνθήκες και άρα η μελέτη τους έχει θεωρητικό και πρακτικό

ενδιαφέρον. Στην παρούσα εργασία μελετάται η πλήρως ανεπτυγμένη ροή μεταξύ δύο

παράλληλων διαπερατών πλακών λόγω βαθμίδων πίεσης και θερμοκρασίας, με έγχυση

και αναρρόφηση αερίου από την κάτω και πάνω πλακά, αντίστοιχα. Επίσης, μελετάται

η πλήρως ανεπτυγμένη ροή πάνω από μία διαπερατή πλάκα που αναρροφά αέριο. Στην

πρώτη ροή χρησιμοποιούνται το κινητικό μοντέλο Shakhov (S) καθώς και η εξίσωση
Boltzmann ενώ στην δεύτερη ροή γίνεται χρήση μόνο του κινητικού μοντέλου S. Στην
ροή μέσω διαπερατού καναλιού εφαρμόζεται το αριθμητικό σχήμα επιτάχυνσης για το

κινητικό μοντέλο S το οποίο είναι αρκετά γρηγορότερο από το σχήμα χωρίς επιτάχυνση
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για μεγάλες τιμές της παραμέτρου αραιοποίησης. Στην εν λόγω ροή, παρουσιάζονται οι

αδιάστατες ολικές μαζικές παροχές και θερμορροές λόγω βαθμίδας πίεσης και θερμοκρα-

σίας. Επίσης, παρουσιάζονται οι κατανομές της μακροσκοπικής ταχύτητας, θερμορροής

και διατμητικής τάσης. Επιπλέον, η σχέση Onsager-Casimir για την ισότητα της μαζικής
παροχής λόγω βαθμίδας θερμοκρασίας και της θερμορροής λόγω βαθμίδας πίεσης απο-

δεικνύεται θεωρητικά για οποιαδήποτε τιμή της ταχύτητας έγχυσης και χρησιμοποιείται

για την επιβεβαίωση των αριθμητικών αποτελεσμάτων. Τα αποτελέσματα της εξίσωσης

Boltzmann και του κινητικού μοντέλου S για τις αδιάστατες παροχές βρίσκονται σε πολύ
καλή συμφωνία, δικαιολογώντας την χρήση κινητικών μοντέλων σε ροές αερίων που πε-

ριλαμβάνουν έγχυση ή αναρρόφηση μέσω διαπερατών επιφανειών. Επίσης, τα παραπάνω

αποτελέσματα επιβεβαιώνονται από τις αναλυτικές λύσεις στην ελεύθερη μοριακή περιοχή

και στην περιοχή ολίσθησης. Η μαζική παροχή λόγω βαθμίδας πίεσης μειώνεται μονοτο-

νικά καθώς η ταχύτητα έγχυσης αυξάνεται και τείνει να γίνει σταθερή στο υδροδυναμικό

όριο. Επιπλέον, το γνωστό ελάχιστο που παρατηρείται στην μαζική παροχή (ελάχιστο

Knudsen) εξαφανίζεται καθώς η ταχύτητα έγχυσης αυξάνεται. Η μαζική παροχή λόγω
βαθμίδας θερμοκρασίας καθώς και οι θερμορροές λόγω βαθμίδας πίεσης ή θερμοκρασίας

μειώνονται καθώς η ταχύτητα έγχυσης αυξάνεται. Για αρκετά μεγάλες τιμές της ταχύτη-

τας έγχυσης η μαζική παροχή και η θερμορροή λόγω βαθμίδας θερμοκρασίας και πίεσης,

αντίστοιχα, αλλάζουν κατεύθυνση. Η συγκεκριμένη συμπεριφορά επιβεβαιώνεται από την

ασυμπτωτική λύση στην ελεύθερη μοριακή περιοχή. Στην ροή πάνω από διαπερατή πλάκα,

παρουσιάζονται το πάχος του οριακού στρώματος καθώς και οι κατανομές της μακροσκο-

πικής ταχύτητας, θερμορροής και διατμητικής τάσης. Επίσης, παρουσιάζονται συγκριτικά

οι αναλυτικές λύσεις στην περιοχή ολίσθησης και στην υδροδυναμική περιοχή. Το πάχος

του οριακού στρώματος είναι αντιστρόφως ανάλογο της ταχύτητας αναρρόφησης, όπως

προβλέπεται από τις αναλυτικές λύσεις. Επιπλέον, εκτός του οριακού στρώματος υπάρχει

άριστη συμφωνία μεταξύ των κινητικών και αναλυτικών αποτελεσμάτων, ενώ εντός του

οριακού στρώματος μόνο τα κινητικά αποτελέσματα θεωρούνται ακριβή.

΄Οπως αναφέρθηκε κάποια από τα πιο σημαντικά επιστημονικά και τεχνολογικά επι-

τεύγματα βασίζονται στην ομαλή λειτουργία τεράστιων συστημάτων κενού. Στο Εργα-

στήριο Φυσικών και Χημικών Διεργασιών, ο κώδικας ARIADNE έχει αναπτυχθεί από
τον Σ. Μισδανίτη κάνοντας χρήση μιας κινητικής βάσης δεδομένων, η οποία περιέχει

τις μαζικές παροχές δια μέσω αγωγών υπολογισμένες βάσει των κινητικών μοντέλων

BGK και Ellipsoidal-Statistical (ES), σε έναν τυπικό επιλύτη δικτύων αερίου. Στην εν
λόγω εργασία, ο κώδικας ARIADNE για την μοντελοποίηση δικτύων αερίου σταθερών
συνθηκών σε όλο το εύρος αραιοποίησης, εξελίσσεται περαιτέρω και χρησιμοποιείται σε
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έναν υβριδικό κώδικα για την μοντελοποίηση δικτύων αερίου τα οποία λειτουργούν υπό

χρονομεταβαλλόμενες συνθήκες. Οι ανεπτυγμένοι κώδικες πιστοποιούνται με βάση την

διάταξη διαστολής αερίου σε κενό που έχει κατασκευαστεί στη Physikalische-Technische
Bundesanstalt και με βάση ένα δίκτυο αερίου το οποίο λειτουργεί στην ελεύθερη μοριακή
περιοχή. Τα εξαγόμενα αποτελέσματα με βάση τους ανεπτυγμένους κώδικες βρίσκονται

σε άριστη συμφωνία με την βιβλιογραφία στο πρώτο δίκτυο και με τον κώδικα Test Particle
Monte Carlo (TPMC) Molflow+ στο δεύτερο δίκτυο. Επιπλέον, ο κώδικας ARIADNE
χρησιμοποιείται για την εφαρμογή της μεθόδου ανάλυσης αβεβαιοτήτων Monte Carlo
(MC) σε συστήματα κενού. Το προαναφερθέν δεύτερο δίκτυο θεωρείται ότι λειτουργεί
υπό σταθερές συνθήκες και υπολογίζεται η αβεβαιότητα της αντλούμενης παροχής σε

σχέση με την αβεβαιότητα της ακτίνας των σωλήνων, του μήκους των σωλήνων, της

πίεσης των δοχείων και της ταχύτητας άντλησης της αντλίας σε ολόκληρο το εύρος α-

ραιοποίησης. Στη συνέχεια, οι δυνατότητες των προαναφερθέντων κωδίκων προβάλλονται

προσομοιώνοντας το βασικό σύστημα άντλησης του αντιδραστήρα σύντηξης ITER κατά
τις φάσεις καύσης και εκκένωσης, υπό χρονικά σταθερές και μεταβαλλόμενες συνθήκες,

αντίστοιχα. Για την φάση εκκένωσης μελετώνται διαφορετικά σενάρια λειτουργίας και

παρουσιάζονται ποιοτικά και ποσοτικά αποτελέσματα για την ροή του αερίου δια μέσου

του συστήματος άντλησης, για την αντλούμενη μαζική παροχή αλλά και για την μαζική

παροχή που επιστρέφει στον τόρο. Η αντλούμενη μαζική παροχή εξαρτάται σχεδόν γραμ-

μικά από τον αριθμό αντλιών που βρίσκονται σε λειτουργία, ενώ η αντλούμενη παροχή

και η παροχή που επιστρέφει στον τόρο αυξάνονται καθώς αυξάνεται η μέση πίεση του

τόρου. ΄Οσο αφορά τον κυκλικό τρόπο λειτουργίας των αντλιών που έχει προταθεί, η

ολική αντλούμενη μαζική παροχή είναι σχεδόν ίση σε όλα τα πιθανά σενάρια λειτουργίας

και ισομοιρασμένη στις αντλίες που βρίσκονται σε λειτουργία. Για την φάση εκκένωσης

μελετώνται επίσης διάφορα σενάρια λειτουργίας και παρουσιάζεται η χρονική εξέλιξη της

πίεσης του τόρου. Επιπλέον, παρουσιάζεται η αναλυτική λύση για την χρονική εξέλιξη

της πίεσης του τόρου στην περίπτωση που η ταχύτητα άντλησης του τόρου είναι στα-

θερή. Η παραμετρική ανάλυση της τελικής πίεσης του τόρου μετά το πέρας της φάσης

εκκένωσης δείχνει ότι η τελική πίεση είναι ανεξάρτητη της αρχικής πίεσης του τόρου και

εξαρτάται γραμμικά από τον αρχικό ρυθμό εκρόφησης. Τα συγκεκριμένα αποτελέσματα

επιβεβαιώνονται από την προαναφερθείσα αναλυτική λύση. Επίσης, η τελική πίεση του

τόρου εξαρτάται σχεδόν γραμμικά από τον αριθμό αντλιών που λειτουργούν. Επιπλέον,

η τελική πίεση του τόρου βρίσκεται κάτω από την επιθυμητή σε ένα μεγάλο εύρος της

θερμοκρασίας και του αρχικού ρυθμού εκρόφησης του τόρου για την μεγαλύτερη τιμή

του συντελεστή απόσβεσης της εκρόφησης. Αντίθετα, όταν ο συντελεστής απόσβεσης
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παίρνει την μικρότερη τιμή του, η επιθυμητή τελική πίεση μπορεί να επιτευχθεί οριακά

μόνο στην περίπτωση που λειτουργούν και οι έξι διαθέσιμες κρυογενικές αντλίες.

Οι ροές αεροζόλ υπό αραιοποιημένες συνθήκες έχουν αποκτήσει σημαντική προσοχή

τις τελευταίες δεκαετίες λόγω της σημαντικότητας τους σε μία πληθώρα εφαρμογών στην

βιομηχανία ημιαγωγών και MEMS, καθώς και λόγω της πιθανής εφαρμογής τους στην
τεχνολογία πυρηνικής σύντηξης. Στην παρούσα εργασία ο γενικός τριδιάστατος κώδι-

κας DSMC PROGRESS, που έχει αναπτυχθεί από τον Δρ. Σ. Πανταζή στο εργαστήριο
Φυσικών και Χημικών Διεργασιών τροποποιείται κατάλληλα για την προσομοίωση της

μεταφοράς στερεών σωματιδίων δια μέσου ενός αραιοποιημένου αερίου. Επιπλέον, πραγ-

ματοποιούνται αρκετές προσθήκες στον κώδικα, συμπεριλαμβανομένης της εφαρμογής

του ενδομοριακού δυναμικού μεταβλητά μαλακών σφαιρών (VSS). Οι δυνατότητες του
ανεπτυγμένου κώδικα αποδεικνύονται και επιβεβαιώνονται επιλύοντας τρία προβλήματα α-

ναφοράς, που συμπεριλαμβάνουν το πρόβλημα θερμοφόρησης, καθώς και τα προβλήματα

μεταφορικής και περιστροφικής κίνησης Brown. Στο πρόβλημα θερμοφόρησης εξετάζεται
ένα στερεό σφαιρικό σωματίδιο το οποίο αιωρείται σε ένα αραιοποιημένο αέριο μεταξύ δύο

παράλληλων πλακών μικρής θερμοκρασιακής διαφοράς. Η θερμορροή μεταξύ των πλα-

κών καθώς και η θερμοφορητική δύναμη που επιδρά στο σωματίδιο λόγω της βαθμίδας

θερμοκρασίας παρουσιάζονται σε σχέση με την αραιοποίηση του αερίου από την ελεύθε-

ρη μοριακή περιοχή ως την περιοχή ολίσθησης. Επίσης, παρουσιάζονται προσεγγιστικές

εκφράσεις για την θερμορροή και την θερμοφορητική δύναμη που υπάρχουν στην βιβλιο-

γραφία αλλά και προτείνεται μια νέα απλή έκφραση για τον θερμοφορητικό συντελεστή, η

οποία τείνει στα σωστά όρια στην ελεύθερη μοριακή και στην υδροδυναμική περιοχή. Τα

αποτελέσματα του ανεπτυγμένου κώδικα είναι σε άριστη συμφωνία με την βιβλιογραφία,

ενώ οι προαναφερθείσες εκφράσεις μπορούν να προσεγγίσουν την θερμορροή και την

δύναμη με μια ακρίβεια της τάξης του 10%. Στο πρόβλημα μεταφορικής και περιστροφι-

κής κίνησης Brown, μελετάται η τυχαία κίνηση ή περιστροφή, αντίστοιχα ενός στερεού
σφαιρικού σωματιδίου στην ελεύθερη μοριακή περιοχή. Παρουσιάζονται, οι κατανομές

μεταφορικής μετατόπισης και ταχύτητας καθώς και οι αντίστοιχες περιστροφικές. Επι-

πλέον, παρουσιάζεται ο μεταφορικός και περιστροφικός συντελεστής διάχυσης σε σχέση

με την ακτίνα του σωματιδίου, οι οποίοι υπολογίζονται από τις προαναφερθείσες κατα-

νομές μετατόπισης. Σε όλες τις περιπτώσεις τα παρουσιαζόμενα αποτελέσματα είναι σε

άριστη συμφωνία με τα αναλυτικά.

Στην παρούσα εργασία, γίνονται ορισμένες καινοτομίες στην κινητική μοντελοποίηση,

και αναπτύσσονται εξελιγμένα εργαλεία λογισμικού για την μοντελοποίηση και προσο-

μοίωση διαφορετικών φαινομένων μεταφοράς αερίων υπό αραιοποιημένες συνθήκες. Η
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συγκεκριμένη προσπάθεια, δύναται να φανεί χρήσιμη στην επιστημονική κοινότητα δυνα-

μικής αραιοποιημένων αερίων, καθώς και να υποβοηθήσει την σχεδίαση και βελτιστοπο-

ίηση εφαρμογών, συσκευών και συστημάτων στην τεχνολογία κενού και σύντηξης.
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Chapter 1

Introduction

1.1 General concepts

Over the years the investigation of rarefied gas flows has attracted significant
attention in the scientific community due to their importance in several industrial
processes and technological applications. Typical examples of rarefied gas flows include
high altitude flows, such as the reentry of orbiting vehicles and satellite propulsion
[1, 2]. In addition, gas rarefaction plays a significant role in vacuum systems where
the pressure may range from rough vacuum down to ultra-high vacuum. These
systems are found in several technological fields and applications, including electrical
engineering and semiconductor technologies, medicine and medical engineering, physical
and chemical vapor deposition processes, drying and degassing processes, vacuum
metallurgy and food packaging [3]. In addition, rarefied gas flows play an integral
part in the calibration process of industrial pressure gauges, and secondary pressure
standards in the intermediate pressure range, which is usually performed by force-
balanced pressure gauges [4, 5]. Moreover, vacuum pumping is a critical aspect of many
of the aforementioned applications, and huge effort has been made to model various
vacuum pumps [6–8]. Furthermore, the design and optimization of some of the largest
vacuum gas pumping systems is critical for the smooth operation of fusion reactor and
particle accelerator facilities [9–11]. Rarefied gas flows through permeable media have
recently attracted significant attention due to their tentative importance in filtration
systems [12], membrane gas permeators [13, 14], detritiation systems [15, 16] and
biological applications [17, 18]. Furthermore, aerosol flows in rarefied gases are found
in clean room technology, semiconductor wafer and microelectromechanical systems
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(MEMS) protection [19–21], as well as in fusion reactor facilities for reactor plasma
and tritiated dust control [22–25].

In the aforementioned applications gaseous transport phenomena occur at low
pressures, where intermolecular collisions rarely occur, or in miniaturized systems,
where the characteristic flow lengths are very small. In such systems, the gas mean
free path i.e. the average distance travelled by the gas molecules between collisions
is comparable to a characteristic length of the flow and the gas is said to be far from
local equilibrium. In addition, non-equilibrium gas transport phenomena also occur in
flows characterized by steep gradients of macroscopic quantities, such as, in Knudsen
layers and shock waves. Under these conditions, the continuum medium assumption
fails, the Navier-Stokes-Fourier equations collapse and the molecular nature of the gas
must be taken into consideration. Consequently, the implementation of kinetic theory,
as described by the Boltzmann equation, is required.

The solution of the exact Boltzmann equation is a formidable task even with
today’s computational power and parallelization techniques. Thus, both deterministic
and stochastic methods have been proposed to circumvent the solution of the exact
Boltzmann equation. In the deterministic approach, suitable kinetic models that
replace the complex Boltzmann collision operator with simplified expressions have been
proposed [26–28]. The Discrete Velocity Method (DVM) [29], is widely used to solve
these kinetic models, applying discretization procedures in the physical, molecular
velocity and time spaces. In the stochastic approach the Direct Simulation Monte
Carlo (DSMC) method has been proposed [30]. In the DSMC method, the motion
and collision of gas particles are decoupled over each discrete time step and simulator
particles, that represent a large number of real gas molecules, are implemented to
emulate the physics of the Boltzmann equation.

The present dissertation is focused on the development of sophisticated deterministic
and stochastic kinetic modeling software tools, as well as, on their implementation
to simulate several diverse subjects related to gaseous transport phenomena under
rarefied conditions.

1.2 Dissertation structure and contents

The present dissertation tackles a number of diverse topics related to non-equillibrium
gas transport phenomena. These topics include the computational solution of novel rar-
efied gas flow configurations, as well as, the development and implementation of novel
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and advanced kinetic codes. Following Chapters 1 and 2, where a brief introduction in
the field of rarefied gas dynamics and a review of the relative literature are presented,
respectively, the investigated topics are covered in Chapters 3-7, while in Chapter 8 the
dissertation is concluded. In Chapters 3-7, where each of the investigated topics are
presented, there is some repetition, mainly related to the formulation of each problem,
which is considered to be necessary for completeness and clarity. The detailed structure
of the dissertation is as follows:

In Chapter 2, a review of the relative theoretical background is presented. First the
flow regimes with respect to the rarefaction parameter are presented. The Boltzmann
equation, kinetic models and boundary conditions, as well as the implemented numerical
methods are reviewed. Next, a brief review of rarefied flows through capillaries and gas
distribution systems is provided. Then, the relative literature on aerosol flows under
rarefied conditions is surveyed.

In Chapter 3, the linearized Boltzmann equation based on the hard-sphere inter-
molecular potential is computationally solved. The integration of the exact linearized
Boltzmann collision operator is validated based on the computation of the heat con-
ductivity and viscosity coefficients. The solution of the exact Boltzmann equation is
validated based on the planar fully-developed Poiseuille and thermal creep rarefied
gas flow. Then, the linearized Boltzmann equation is implemented to simulate the
oscillatory planar fully-developed Poiseuille rarefied gas flow. The BGK kinetic model
is also implemented and is compared to the Boltzmann equation.

In Chapter 4, novel rarefied gas flow configurations with gas injection and suction
through permeable surfaces, are investigated. The fully-developed Poiseuille and
thermal creep flow between two parallel permeable plates with gas injection and suction
at the bottom and top plate, respectively, is investigated based on the S kinetic model
and the Boltzmann equation. In addition, the fully-developed flow over a permeable
plate with downward suction is investigated based on the S model.

In Chapter 5, the developed codes for simulating steady-state and time-dependent
gas distribution systems of arbitrary size are presented. A brief overview of the
geometrical and operational data in a gas network is provided. The developed steady-
state gas network code ARIADNE and the hybrid time-dependent gas network code
are described in detail. Then, the hybrid time-dependent code, which implements
the ARIADNE code in each time step is validated based on two benchmark gas
networks. Next, the MC uncertainty propagation analysis method is implemented in a
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gas distribution network operating under steady-state conditions to obtain the pumped
throughput uncertainty with respect to the uncertainty of the input quantities.

In Chapter 6, the developed network codes are implemented to simulate the
rarefied neutral gas flow in the ITER primary pumping system during the burn and
dwell phases. The simulation of the ITER primary pumping system is based on a gas
network model, which consists of thousands of piping elements that approximates the
actual gas flow path though the divertor. The most important quantities from the
engineering point of view, namely the pumped and backflow throughputs in the burn
phase, as well as, the final torus pressure in the dwell phase are presented.

In Chapter 7, the developed 3D aerosol code, which is based on the DSMC
method, is presented. First, the developed code structure is described in detail and
then, the code is validated via three benchmark cases. The first benchmark focuses
on the thermophoretic force exerted on a solid particle suspended in a rarefied gas
between two parallel infinite plates kept at unequal temperatures. The two remaining
benchmarks focus on the translational and rotational Brownian motion of a solid
particle suspended in a rarefied gas in the free-molecular regime.

In Chapter 8, the dissertation is concluded by providing a brief overview of
Chapters 3-7 along with the main findings and achievements. In addition, tentative
extensions of the present work in the future are proposed.

1.3 Novelty and scientific contributions

As mentioned in Section 1.2 the present dissertation includes the computational
solution of novel rarefied gas flow configurations, as well as, the development and
implementation of advanced kinetic codes. The most significant findings and novelties
of the present Ph.D. thesis may be outlined as follows:

• Computational solution of the linearized Boltzmann equation based on the
hard-sphere molecules for the planar fully-developed rarefied gas flow due to a
harmonically oscillating pressure gradient.

• Novel investigation of the fully-developed Poiseuille and thermal creep rarefied
gas flow between parallel permeable plates with gas injection and suction from
the bottom and top plate in the whole range of gas rarefaction based on the
linearized Boltzmann equation and the S kinetic model.
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• Proof of the Onsager-Casimir reciprocity relation for the mechanocaloric effect
and thermal creep coefficients in the fully-developed Poiseuille and thermal creep
rarefied gas flow through a permeable channel for arbitrary values of the gas
injection/suction velocity.

• Derivation of analytical and asymptotic solutions in the free-molecular regime
for the fully-developed Poiseuille and thermal creep rarefied gas flow through a
permeable channel.

• Novel investigation of the fully-developed rarefied gas flow over a permeable plate
with downward suction based on the S kinetic model.

• Implementation of a robust loop and pseudoloop extraction algorithm to a steady-
state kinetic modeling code for simulating gas distribution systems of arbitrary
size in the whole range of the Knudsen number.

• Advancement of the aforementioned steady-state code to simulate gas distribution
systems with an arbitrary number of pumps.

• Development of a time-dependent kinetic modeling code for simulating the
transient response of gas distribution systems of arbitrary size in the whole range
of the Knudsen number.

• Demonstration of the MC uncertainty propagation analysis method for a gas
distribution system operating under steady-state conditions in the whole range
of the Knudsen number.

• Implementation of the developed gas network codes to model, simulate and
provide useful insight for the ITER primary pumping system during the burn
and dwell phases.

• Development of an advanced 3D aerosol code, based on the stochastic DSMC
method, capable of simulating the transport of solid spherical particles through
a rarefied gas in complex geometries.

• Validation of the developed 3D aerosol code on the basis of thermophoresis
between two parallel plates, as well as, translational and rotational Brownian
motion.
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Chapter 2

Literature review

2.1 The Knudsen number and flow regimes

Rarefied or non-equilibrium gas flows are mainly characterized by the Knudsen
number introduced by Knudsen [31], defined as

Kn = λ

L
, (2.1)

where λ is the mean free path, which is defined as the mean distance travelled by a
gas particle between successive collisions, while L is a characteristic length of the flow
or a length scale of a macroscopic quantity φ given by L = φ/ (∂φ/∂x). The mean
free path for a monoatomic hard-sphere gas is written as [32]

λ = 1√
2πd2n

, (2.2)

where d is the molecular diameter and n is the gas number density. The Knudsen
number may also be written with respect to the Mach number Ma and Reynolds
number Re as

Kn =
√
πγ

2
Ma

Re
, (2.3)

with γ denoting the specific heat ratio of the gas. Instead of the Knudsen number, the
gas rarefaction parameter, which is inversely proportional to the equivalent mean free
path [33], is frequently used in the literature to characterize the level of gas rarefaction:

δ = PL

µv0
∼ 1
Kn

(2.4)
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The quantity µ denotes the gas dynamic viscosity at temperature T and v0 =
√

2RgT is
the most probable molecular speed, with Rg = kB/m denoting the specific gas constant
(kB is the Boltzmann constant and m is the molecular mass).

The following flow regimes may be identified in terms of the Knudsen number or
the gas rarefaction [34]:

1. Kn ≤ 10−3 (δ ≥ 103): The gas is in the hydrodynamic or viscous regime. The
gas may be considered as continuum medium and typical CFD modeling may be
implemented.

2. 10−3 < Kn ≤ 10−1 (10 ≤ δ < 103): The gas is in slip regime. The gas may
still be considered as continuum medium in the bulk of the flow and typical
CFD modeling along with the appropriate velocity slip and temperature jump
boundary conditions may be implemented.

3. 10−1 < Kn ≤ 10 (0.1 ≤ δ < 10): The gas is in the transition regime. The typical
CFD approaches fail and the molecular nature of the gas must be taken into
account. The use of kinetic theory, as described by the Boltzmann equation, is
required.

4. Kn > 10 (δ < 0.1): The gas is in the free-molecular regime. Intermolecular
collisions are very rare and kinetic theory, omitting intermolecular interaction,
may be implemented.

It is worthwhile to mention that, the aforementioned flow regime limits are indicative
and only provide an estimation of the actual gas rarefaction. It is also noted that, in
contrast to CFD modeling, kinetic theory is valid in the whole range of the Knudsen
number, such as that the Navier-Stokes, Burnett and super Burnett equations may be
derived from the Boltzmann equation. However, due to the higher computational cost,
kinetic modeling is usually implemented in the free-molecular, transition and early slip
regimes, while in the late slip and hydrodynamic regimes typical CFD modeling is
preferred.

2.2 Boltzmann equation, kinetic models and bound-
ary conditions

In 1859 Maxwell [35] introduced the idea that all gas molecules move at different
speeds and introduced the statistical approach to gaseous mediums. Then, in 1860 [36]
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he also introduced the concept of the distribution function f (t, r, ξ), which is defined
as the probability that a gas molecule is around position r with a molecular velocity
around ξ at time t. Maxwell then proceeded to derive the distribution function that
describes a gas in equilibrium and his findings were corrected by Boltzmann a few years
later. The Maxwell-Boltzmann distribution (usually called Maxwell or Maxwellian
distribution) is a Gaussian distribution with respect to the local gas macroscopic
quantities

fM (t, r, ξ) = n (t, r)
[

m

2πkBT (t, r)

]3/2

exp
{

−m[ξ − u (t, r)]2

2kBT (t, r)

}
, (2.5)

where n, T and u are the local gas number density, temperature and macroscopic ve-
locity vector, respectively. In 1870 Boltzmann derived the integro-differential transport
equation for the distribution function [37], which bears his name and is written as

∂f

∂t
+ ξ · ∂f

∂r
+ F · ∂f

∂ξ
= Q (f, f ′) , (2.6)

where F is the acceleration associated with an externally imposed force field and Q is
the collision operator given by

Q (f, f ′) =
∫∫∫

(f ′f ′
1 − f f1)gbdbdεdξ1, (2.7)

where, g = |ξ − ξ1| is the relative collision velocity, b is the impact parameter and ε

is the azimuthal angle. The left hand side of the Boltzmann equation describes the
streaming motion of the gas molecules along a trajectory, while the right hand side
describes the effect of intermolecular collisions taking gas molecules in or out of the
streaming trajectory. Inside the collision operator, the first term in the parenthesis
is known as the gain term and corresponds to the molecules that obtain a molecular
velocity around ξ due to a collision. On the other hand, the second term is known
as the loss term and corresponds to the molecules that initially have a molecular
velocity around ξ and are scattered to a different molecular velocity after a collision.
The derivation of the Boltzmann equation includes two important assumptions [38].
The first is that only binary intermolecular collisions are considered, limiting the
implementation of the Boltzmann equation to dilute gases. The second assumption
is that of molecular chaos or as called by Boltzmann “Stosszahlansatz”, which states
that the distribution function f is uncorrelated to the distribution function f1 and
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allows a two-particle distribution to be substituted by the product of two one-particle
distributions.

Another significant advancement made by Boltzmann is the introduction of the
H-Theorem, which states that the H-function defined as

H =
∫
f log fdξ, (2.8)

is a non-increasing function of time dH/dt ≤ 0 [32]. It is noted that, the Maxwellian
distribution fM corresponds to the special equilibrium case dH/dt = 0. The H-
Theorem is related to the second law of thermodynamics stating the irreversibility of
macroscopic processes and the increase of entropy due to intermolecular collisions.

The solution of the Boltzmann equation leads to the distribution function, which
provides the position and molecular velocity of the gas molecules with respect to time.
The macroscopic quantities are obtained as moments of the distribution function:

• Number density
n (t, r) =

∫
fdξ (2.9)

• Velocity vector
u (t, r) = 1

n

∫
ξfdξ (2.10)

• Pressure
P (t, r) = m

3

∫
(ξ − u) 2fdξ (2.11)

• Stress Tensor
Pij (t, r) = m

∫
(ξi − ui) (ξi − ui) fdξ (2.12)

• Temperature
T (t, r) = m

3kBn

∫
(ξ − u) 2 fdξ (2.13)

• Heat flux vector
q (t, r) = m

2

∫
(ξ − u) 2 (ξ − u) fdξ (2.14)

The combination of Eqs. (2.11) and (2.13) yields the ideal gas law

P = nkBT. (2.15)

In order to deal with the significant computational effort required for the solution
of the Boltzmann equation several kinetic collision models, that replace the Boltzmann
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five-fold integral collision operator with simplified expressions, have been proposed.
In general, a collision model should satisfy the collision invariants, namely the mass,
momentum and energy invariants, while it should also satisfy the H-Theorem and
provide the correct values for the transport coefficients.

The first kinetic model for monoatomic gases is the one proposed by Bhatnagar,
Gross and Krook (BGK) [26], that has also been independently proposed by Welander
[39]. The BGK model replaces the Boltzmann collision integral with the simple
expression

QBGK = v
(
fM − f

)
, (2.16)

where v = P/µ is the collision frequency, which is assumed to be independent of the
molecular velocity. The BGK model assumes that a particle relaxes to the Maxwellian
distribution after a single collision. In addition, it satisfies the collision invariants and
the H-Theorem. However, its major drawback is that it cannot provide the correct
values for the gas viscosity and thermal conductivity simultaneously (it provides a
Prandlt number Pr = 1 instead of the correct one, which is Pr = 2/3). Consequently,
it is well-known that it cannot accurately tackle flow configurations where mass and
heat transfer phenomena are coupled. Despite these pitfalls, the BGK model has been
widely used in the literature due to its simplicity providing accurate results in the
whole range of the Knudsen number [40].

The kinetic model proposed by Shakhov (S) [27] is a generalization of the BGK
model and replaces the Boltzmann collision term with the simplified expression:

QS = v

{
fM

[
1 + 2m

5n(kBT )2 (1 − Pr) q · (ξ − u)
(
m(ξ − u)2

2kBT
− 5

2

)]
− f

}
(2.17)

The S model satisfies the collision invariants and provides the correct value for the
transport coefficients. However, it has been only proven to satisfy the H-Theorem in
its linearized form. Although, the H-Theorem has not been proven for the S model it
is generally regarded as a reliable model and has been widely used in the literature
providing accurate results in the whole range of the Knudsen number for various flow
configurations [40].

Another widely used kinetic model is the Ellipsoidal-Statistical (ES) model proposed
by Holway [28], which replaces the Boltzmann collision integral with

QES = v Pr

fM

 n

π3/2

√
|A| exp

−
3∑

i,j=1
(ξi − ui) (ξj − uj)Aij

− f

 , (2.18)
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where,

Aij =
[2kBTδK,ij

mPr − 2 (1 − Pr)Pij

nmPr

]−1

, (2.19)

with δK,ij denoting the Kronecker delta. The ES model satisfies the collision invariants
and the H-Theorem and also provides the correct values for the transport coefficients.
However, it involves a higher computational cost compared to the BGK and S model
equations.

In the present dissertation, monoatomic gas flows are considered, implementing the
Boltzmann equation, as well as the BGK, S and ES kinetic model equations. In the
literature, in addition to monoatomic kinetic models several kinetic models have been
suggested for polyatomic gases [28, 41, 42] and gas mixtures [43–45].

The Boltzmann equation, as well as suitable kinetic model equations must be
accompanied by the correct boundary conditions. In kinetic theory the boundary
conditions are defined by the gas-surface interaction law through the scattering kernel
R (ξ′, ξ). The scattering kernel represents the probability that a gas molecule with
incident velocity ξ′ is scattered from boundary with outgoing velocity ξ. The most ex-
tensively used gas-surface interaction law is the diffuse-specular reflection law proposed
by Maxwell [36]. In the case of purely diffuse reflection the gas molecules are assumed
to be fully accommodated and the outgoing velocity ξ is independent of the incident
velocity ξ′. The reflected molecules follow a Maxwellian distribution, characterized by
the boundary temperature Tw and the scattering kernel is written as

Rd (ξ′, ξ) = ξ · n

2π(RgTw)2 exp
[
− ξ2

2RgTw

]
, (2.20)

where n denotes the unit vector normal to the boundary facing towards the flow
domain. In the case of purely specular reflection the outgoing velocity ξ depends
on the incident velocity ξ′. More, specifically, the velocity component normal to the
wall is reversed, while the two tangential components remain the same. The specular
scattering kernel is written as

Rs (ξ′, ξ) = δD [ξ′ − ξ + 2 (ξ · n) n] , (2.21)

where δD denotes the Dirac function. The Maxwell diffuse-specular scattering kernel is
obtained by combining the diffuse and specular reflection kernels as

R (ξ′, ξ) = aRd (ξ′, ξ) + (1 − a)Rs (ξ′, ξ) , (2.22)
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where a is the accommodation coefficient and denotes the fraction of molecules that
are reflected diffusively, while the quantity (1 − a) denotes the fraction of molecules
that are reflected specularly.

In the present work, the Maxwell diffuse-specular boundary conditions are consid-
ered. However, more advanced gas-surface interaction laws have been proposed in the
literature. More specifically, the kernel proposed by Epstein [46] is a generalization
of the diffuse-specular Maxwell scattering kernel, taking into account the dependence
of the accommodation coefficient on the incident molecular velocity. The Cercignani-
Lampis scattering kernel [47] and its extensions introduced by Lord [48, 49], sufficiently
differ from the Maxwell and Epstein kernels and take into account both normal and
tangential accommodation. These more advanced scattering kernels may be applied
in specific flow configurations, where a more detailed description of the gas-surface
interaction is required.

2.3 Numerical methods

The most extensively used methodologies for the numerical solution of the Boltz-
mann equation and aforementioned kinetic models are the Discrete Velocity Method
(DVM) [29] and the Direct Simulation Monte Carlo (DSMC) method [30]. In the present
work, both methods are implemented to tackle novel rarefied gas flows and are inte-
grated into sophisticated codes that may model and simulate several non-equilibrium
gaseous transport phenomena.

The DVM is a deterministic method that has been widely used by the scientific
community of rarefied gas dynamics to numerically solve the exact Boltzmann equation,
as well as kinetic model equations. In DVM the continuum molecular velocity spectrum
is replaced by a set of discrete molecular velocities. This discretization leads to a
set of ordinary or partial differential equations, with each equation corresponding
to a specific discrete molecular velocity. This set of differential equations is usually
tackled by implementing a second order finite difference scheme, leading to a system of
algebraic equations, which is then solved in an iterative manner, by implementing the
so-called marching schemes. The detailed formulation and implementation of the DVM
for several prototype rarefied gas flows is provided in [33]. In the present dissertation,
the DVM is implemented for the computational solution of the linearized Boltzmann
equation, as well as the BGK and S model equations in Chapters 3 and 4.
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A well-established drawback of the aforementioned iterative scheme is the slow
convergence rate at the slip and hydrodynamic regimes [50, 51]. In order to overcome
this pitfall, synthetic acceleration schemes, which couple the kinetic equation with
a system of moment equations, have been developed [50]. These moment equations
are constructed using full-range orthogonal polynomials and are solved coupled with
the kinetic equations for the interior spatial nodes. Full-range synthetic acceleration
schemes have been implemented mainly in linearized fully-developed flows. In Chapter
4, the full-range synthetic acceleration scheme is implemented in the S model for
the solution of the pressure and temperature driven fully-developed rarefied gas flow
between parallel permeable plates with uniform injection/suction in the whole range of
the Knudsen number.

The DSMC method has been proposed by Bird [30] as a stochastic or probabilistic
approach for solving the Boltzmann equation. In DSMC a large number of simulator
particles is used to simulate the behavior of the real gas particles and emulate the physics
of the Boltzmann equation. The essential DSMC approximation is the decoupling of
the molecular motion and the intermolecular collisions over a small time step. The
free motion of simulator particles is performed in a deterministic manner, while the
intermolecular collisions are performed in a stochastic one. The simulator particles are
indexed in the cells or subcells, that discretize the flow domain so that intermolecular
collisions only occur between close neighbours. The macroscopic quantities of interest
are taken as averages of the simulator particle properties in each cell. In [52] it has
been proven that the DSMC method tends to the solution of the Boltzmann equation
as the number of simulator particles approaches infinity. In Chapter 7, a 3D aerosol
code is developed, by appropriately modifying the DSMC method in order to simulate
the transport of solid particles through a rarefied gas.

2.4 Pressure driven rarefied gas flow through capil-
laries

The pressure driven rarefied gas flow through a capillary has attracted considerable
attention over the years due to its significant role in vacuum systems and equipment,
which are widely implemented in several technological applications and industrial
processes. In addition, certain pressure driven capillary rarefied gas flows are frequently
used as benchmark problems for new numerical methods due to their simplicity [40].
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The first investigation of rarefied gas flow through a capillary is attributed to
Knudsen, who in 1909, studied the free-molecular gas flow through capillaries of infinite
length and arbitrary cross-section [53], as well as the free-molecular flow through an
orifice [31]. One year later, Smoluchowski corrected Knudsen’s findings for non-circular
capillaries and provided a solution for a long rectangular duct [54]. The next significant
contribution was made by Clausing who derived and solved via suitable approximations
the integral equation for the free-molecular gas transport through a circular capillary
of finite length [55]. The accurate evaluation of the Clausing integral equation was
provided much later by DeMarcus and Hopper [56], implementing several improved
numerical techniques. Clausing’s integral equation is not easily extended to capillaries
of arbitrary cross-section and thus, Monte Carlo techniques have been developed in
order to tackle such flows [57, 58]. A more detailed survey of the free-molecular flow
through a capillary is presented in [59].

As computers evolved, the simulation of pressure driven flows through capillaries
was extended from the free-molecular to the transition and slip regimes. Some of the
earliest works considered the fully-developed pressure driven rarefied gas flow between
parallel plates. More specifically, this flow was tackled by the infinite capillary theory,
via the BGK and S model equations [60–62], as well as via the Boltzmann equation
[63–67]. In addition, the infinite capillary theory has been implemented in capillaries
of circular [68–72], rectangular [50, 73, 74], ellipsoidal [75], triangular [72, 76, 77] and
trapezoidal [72] cross-sections. The range of infinite capillary theory was later extended
from very long capillaries to capillaries of moderate length by considering the effects
of the tube inlet and outlet and introducing the appropriate end effect corrections
[78, 79]. The investigation of the pressure driven rarefied gas flow through capillaries
was then extended to short capillaries, distinguishing between the low and high speed
flow case due to small and large pressure difference, respectively. The most significant
works concerning the small pressure difference case, include the low speed flow through
orifices and short tubes [80, 81]. Regarding the large pressure difference case, the works
investigating the high speed flow through orifices [82–86] and short tubes [87–89] are
distinguished.

2.5 Vacuum systems

The main purpose of the investigation of pressure driven rarefied gas flows through
capillaries is the implementation of the obtained findings to simulate complex vacuum
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systems. However, the literature on vacuum system simulation techniques is rather
scarce. The so-called electric-hydraulic analogy is frequently used in the free-molecular
and viscous limits [59, 90]. In this classical approach, the gas network is replaced
by an equivalent electric circuit, where current and voltage correspond to gas flow
rate and pressure respectively. Then, the steady-state or the transient response of
the equivalent electric circuit may be simulated by typical integrated circuit codes.
However, this methodology is valid only when the whole gas pipe network operates
either in the free-molecular or viscous regimes. Another more general approach has been
elaborated in the ITERVAC code, developed at the Institute of Technical Physics in the
Karlsruhe Institute of Technology [91, 92]. Interpolating between available solutions in
the free-molecular and viscous regimes reliable semi-empirical expressions to compute
the conductance through various pipe elements have been derived and implemented in
ITERVAC in order to model gas pumping systems operating under various vacuum
conditions. However, ITERVAC is subject to steady-state conditions, as well as to
certain theoretical simplifications. Recently, an approach for simulating nanofluidic
networks of long and narrow channels via a hybrid molecular-continuum method is
presented in [93], based on the multiscale method proposed in [94, 95]. Computational
savings are primarily achieved by exploiting length scale separation. Hybrid approaches
are promising and must be investigated in multiscale physics problems. Of course, the
applicability of these approaches in large vacuum systems is yet to be determined.

At the Laboratory of Transport Phenomena and Process Equipment at the Uni-
versity of Thessaly (UTH), an in-house code has been developed by S. Misdanitis for
simulating steady-state gas distribution systems in the whole range of the Knudsen
number [96, 97]. This is achieved by integrating a dense kinetic database providing
the flow rates through pipe elements of various geometries subject to any pressure
difference into a typical gas network solver. The flow rates are computed via kinetic
modeling and are considered as very accurate since they are solely based on theoretical
principles.

In Chapter 5, several advancements made in the UTH steady-state network code,
including the ability to simulate gas pumps with arbitrary characteristic curves is
described. In addition, the development of a time-dependent gas network code, which
implements the steady-state network code in each time step is described in Chapter 5.
The effectiveness of the developed network codes is demonstrated in Chapter 6, where
the ITER primary pumping system is simulated during the burn and dwell phases.
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2.6 Aerosol flows under rarefied conditions

Over the years aerosol flows have attracted considerable attention in the hydrody-
namic regime due to their significant role in a variety of industrial processes, including
pneumatic transport, fluidized beds and pollution control [98]. Moreover, in the last
decades the interest in simulating aerosol flows under rarefied conditions has been
renewed due to their importance in aerosol thermal precipitators, gas cleaning, clean
room technologies, semiconductor wafer and MEMS protection from particle contami-
nant deposition [19–21], as well as in fusion reactor plasma control and tritiated dust
safety [22–25].

In the literature, several works regarding the forces exerted on a solid particle
suspended in a rarefied gas are found. These works mostly consider the drag and
thermophoretic force exerted on a spherical solid particle moving through a gas having
a constant temperature gradient. Some of the earliest works investigated the drag
and thermophoretic force on a spherical particle either in the free-molecular or slip
regime [99–102]. The investigation of drag and thermophoresis was later extended in
the whole range of the Knudsen number by implementing the Boltzmann equation
for hard-sphere molecules and suitable kinetic models [103–106], as well as the DSMC
method [19–21]. Moreover, the effect of the gas-surface interaction law on the drag
and thermophoretic force has been recently investigated in [107, 108].

However, literature on simulating the transport of solid particles through a rarefied
gas is rather limited. One approach has been presented in [19], where the DSMC
method is implemented and the computation of momentum and heat transfer from
the incident gas molecules to the solid particle is performed via two Green’s functions.
This approach is computationally very efficient, as it only introduces few additional
computations to the typical DSMC method. However, it is limited to a single particle
that is very small compared to the flow length scales. In [109] a more general approach
based on the DSMC method for simulating the transport of a solid particle of arbitrary
geometry through a rarefied gas has been suggested. In the proposed approach, a
two-way coupling between the gas and the solid particle transport is implemented.
More specifically, both the solid particle transport and the surrounding gas flow are
governed by the solid-gas collisions. This method is computationally more expensive,
however it is applicable to any solid particle size and also accurately captures the
gas-solid interaction.
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In Chapter 7, the latter approach is coupled with an in-house 3D DSMC code,
developed by Dr. S. Pantazis at the Laboratory of Transport Phenomena and Process
Equipement, in order to simulate the transport of a solid spherical particle through a
rarefied gas.
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The linearized Boltzmann equation

3.1 Introduction

In order to accurately simulate rarefied gas flows in the whole range of gas rarefaction
the Boltzmann equation [32, 110, 111] must be implemented. However, even with
today’s computational power the direct numerical solution of the Boltzmann equation
is a formidable task. More specifically, the most computationally demanding task
is the computation of the Boltzmann equation collision kernel, which describes the
variation of the distribution function due to the gas particle collisions. To circumvent
this pitfall, kinetic models [26–28] that replace the exact Boltzmann collision operator
with simplified expressions have been widely used to tackle a variety of rarefied gas
flows. However, since all proposed kinetic models are approximations of the Boltzmann
equation they introduce some approximation error. It is evident that, the solution
of the Boltzmann equation for some fundamental problems is necessary in order to
validate the proposed models and their ability to accurately capture the behavior of
the Boltzmann equation. In this work, the linearized Boltzmann equation is tackled
for the first time in the Laboratory of Transport Phenomena and Process Equipment.
The hard-sphere intermolecular potential is used in all cases, since it simplifies the
expression of the collision operator and significantly reduces the involved computational
cost [111].

In Section 3.3, the transport coefficients, namely the heat conductivity and viscosity
are computed as a benchmark problem. These coefficients have been already computed
with great accuracy in the literature in many works [112–115] for the hard-sphere
potential. In addition, it is mentioned here that a great advancement in the computation
of the transport coefficients has been made in [116], where the Boltzmann collision
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integral has been computed for an arbitrary intermolecular potential. The computation
of the heat conductivity and viscosity is considered as an important benchmark for the
numerical solution of the linearized Boltzmann equation and more specifically, for the
validation of the numerical integration performed for the linearized collision operator.

Next, in Section 3.4 the linearized Boltzmann equation is implemented for the
simulation of the planar fully-developed Poiseuille and thermal creep rarefied gas flows.
These two classical problems are excellent benchmarks and frequently used to validate
novel kinetic models and numerical methods [67]. The main results of these problems
are the kinetic coefficients, namely the Poiseuille, mechanocaloric, thermal creep and
reduced heat flux coefficients. These coefficients have been computed in many works
based on the hard–sphere Boltzmann equation [63–66], as well as, based on kinetic
models [60–62]. Moreover, a significant addition to the previous works has been the
computation of the kinetic coefficients for the planar Poiseuille and thermal creep
problems based on the linearized Boltzmann equation by implementing the (6-12)
Lennard-Jones intermolecular potential [67]. In order to validate the numerical solution
of the linearized Boltzmann equation the kinetic coefficients are computed in a wide
range of the rarefaction parameter δ and compared with corresponding linearized BE,
BGK and S model results reported in the literature [67].

The BGK kinetic model has been successfully implemented to simulate a variety
of oscillatory pressure driven rarefied gas flows [117, 118]. However, although the
linearized Boltzmann equation has been used and compared to the BGK model in
rarefied gas flows driven by oscillating walls [119], it has never been applied to rarefied
gas flows driven by an oscillating pressure gradient. In Section 3.5, the linearized
Boltzmann equation is implemented for the investigation of the oscillatory planar
fully-developed Poiseuille rarefied gas flow. The Poiseuille coefficient amplitude and
phase angle are provided in a wide range of the two parameters characterizing the flow,
namely the rarefaction parameter δ and the oscillation parameter θ. The obtained
results are compared with the analytical solution in the slip regime, as well as, with the
steady-state results provided in Section 3.4 for large values of θ. Moreover, they are
compared to corresponding results obtained via the BGK model in order to validate
its accuracy in this type of flows. In addition, the amplitude and phase angle, as well
as, as the temporal evolution of the macroscopic velocity are provided for indicative
values of the gas rarefaction and oscillation frequency.
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3.2 Linearization of the Boltzmann equation

In linear kinetic theory, the gas is weakly disturbed from the equilibrium state
described by the global Maxwellian distribution function

fM
0 (ξ) = n0

π3/2v3
0

exp
−

(
ξ

v0

)2
 , (3.1)

where n0 is the equilibrium number density, ξ is the molecular velocity vector and
v0 =

√
2RgT0 is the most probable molecular speed, with Rg = kB/m denoting the

specific gas constant (kB is the Boltzmann constant and m is the molecular mass) and
T0 being the equilibrium temperature. The non-equilibrium distribution function is
then linearized with respect to the global Maxwellian as

f
(
t̃, r̃, ξ

)
= fM

0 (ξ)
(
1 + h

(
t̃, r̃, ξ

)
X
)
, X ≪ 1, (3.2)

where t̃ is the independent time variable, r̃ is the spatial velocity vector and X is a
small linearization parameter. The linearized Boltzmann equation is then obtained by
substituting Eq. (3.2) in the full Boltzmann equation

∂h
(
t̃, r̃, ξ

)
∂t̃

+ ξ ·
∂h
(
t̃, r̃, ξ

)
∂r̃

= L̃′ (h) . (3.3)

The quantity L̃′ (h) denotes the linearized Boltzmann collision operator, which for a
finite total collision cross-section is written as

L̃′ (h) =
∫
fM

0 (ξ)K̃ ′ (ξ, ξ1)h
(
t̃, r̃, ξ1

)
dξ1 − K̃ ′

0 (ξ)h
(
t̃, r̃, ξ

)
, (3.4)

where

K̃ ′ (ξ, ξ1) = g̃

2π∫
0

π∫
0

exp
[
−
(
g̃

v0
cot (χ/2)

)2
+ 2 |ξ × ξ1|

v2
0

cot (χ/2) cos ε
]
×

[
σ̃

(
g̃

sin (χ/2) , χ
)

+ σ̃

(
g̃

sin (χ/2) , π − χ

)]
sinχ

sin4 (χ/2)dχdε− g̃σ̃t

(3.5)

and
K̃ ′

0 (ξ) = σ̃t

∫
g̃fM

0 (ξ1) dξ1. (3.6)
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In this notation, K̃ ′
0 (ξ) is the collision frequency, g̃ = |ξ − ξ1| is the binary collision

relative velocity, χ is the scattering angle and ε is the azimuthal angle. The quan-
tity d2σ̃ (g̃, χ) denotes the differential collision cross-section which depends on the
intermolecular potential, while σ̃t denotes the total collision cross-section given by

σ̃t = 2π
2π∫
0

σ̃ (g, χ) sinχdχ. (3.7)

Specifically, for a monoatomic gas and the hard-sphere intermolecular potential, which
is implemented throughout this chapter, the differential cross-section and the total
collision cross-section are analytically given by

σ̃ = d2

4 , σ̃t = πd2, (3.8)

where d is the molecular diameter. In addition, the kernel K̃ ′ (ξ) can be integrated
analytically to yield the simple closed form expression

K̃ ′ (ξ) = πd2g̃

2
(
v0

g̃

)2

exp
( |ξ × ξ1|

v0g̃

)2
− 1

 . (3.9)

It is noted that, for g̃ = 0 (i.e. ξ = ξ1) the linearized Boltzmann collision operator
is singular. To overcome this, the collision invariants Ψ = (1, ξ, ξ2) may be used as
described in [116] to rewrite the collision operator as

L̃′ (h) =
∫
fM

0 (ξ)K̃ ′ (ξ, ξ1)
[
h
(
t̃, r̃, ξ1

)
− Ψ (ξ1)

Ψ (ξ) h
(
t̃, r̃, ξ

)]
dξ1. (3.10)

Since the expression inside the brackets is zero when ξ = ξ1, the corresponding
computations can be omitted.

At this point it is convenient to introduce the dimensionless quantities

t = t̃
v0

H
, r = r̃

H
, c = ξ

v0
, g = g̃

v0
, σ = σ̃

d2 , σt = σ̃t

d2 , (3.11)

where H is taken to be some reference length of the investigated flow. The dimensionless
linearized Boltzmann equation becomes

∂h (t, r, c)
∂t

+ c · ∂h (t, r, c)
∂r

= n0Hd
2L′ (h) , (3.12)
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with the linearized Boltzmann collision operator written as

L′ (h) = 1
π3/2

∫
K ′ (c, c1)

[
h (t, r, c1) − Ψ (c1)

Ψ (c) h (t, r, c)
]
e−c2

1dc1, (3.13)

where

K ′ (c, c1) = πg

 2
g2 exp

( |c × c1|
g

)2
− 1

 . (3.14)

The formulation of the linearized Boltzmann equation is now properly defined by
the Eqs. (3.12)-(3.14). It is reminded here that, the term containing the collision
frequency K ′

0 (c), which in the present notation is given by

K ′
0 (c) = 1√

π

∫
ge−c2

1dc1, (3.15)

has been used to rewrite L′ (h).

3.3 Test Case I: Transport coefficients

3.3.1 Governing equations and numerical scheme

In this section, the methodology for computing the transport coefficients, namely
the heat conductivity and viscosity, based on the linearized Boltzmann equation is
described. The heat conductivity κ̃ and viscosity µ̃, according to [32, 110, 120], are
calculated as

κ̃ = kBv0

π3/2d2

∫
A (c) c2

x

(
c2 − 5

2

)
e−c2

dc, (3.16)

µ̃ = mv0

π3/2d2

∫
B (c) c2

xc
2
ye

−c2
dc, (3.17)

where the functions A (c) and B (c) satisfy the integral equations

L′ (A (c) cx) + cx

(
c2 − 5

2

)
= 0, (3.18)

L′ (B (c) cxcy) + 2cxcy = 0. (3.19)

However, since cx is one of the collision invariants, the function A (c) is not completely
defined by Eq. (3.18). Assuming that the gas is at rest the additional constraint
becomes ∫

A (c) c2
xe

−c2
dc = 0. (3.20)
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At this stage, the required computational effort for the solution of Eqs. (3.18)-
(3.20) can be reduced, as described in [121], by introducing cylindrical coordinates,
eliminating one of the molecular velocity components

cx = cx, cy = cr cos θ, cz = cr sin θ. (3.21)

Substituting Eq. (3.21) in Eq. (3.18) yields

L1 (A (cx, cr) cx) + cx

(
c2 − 5

2

)
= 0. (3.22)

Then, substituting Eq. (3.21) and Ψ = 1 (mass conservation) the linearized collision
operator from Eq. (3.13) is written as

L1 (h) = 1
π3/2

+∞∫
−∞

+∞∫
0

K1 (cx, cr, c1,x, c1,r) ×

[h (c1,x, c1,r) − h (cx, cr)] c1,re
−(c2

1,x+c2
1,r)dc1,rdc1,x,

(3.23)

where

K1 (cx, cr, c1,x, c1,r) = 2
π∫

0

K (cx, cr, c1,x, c1,r, β) dβ, (3.24)

with K (cx, cr, c1,x, c1,r, β) given by Eq. (3.14) and β = θ1 − θ. In addition, the
constraint (3.20) may be readily deduced:

+∞∫
−∞

+∞∫
0

A (cx, cr) c2
xdcrdcx = 0 (3.25)

Operating in the same manner on Eq. (3.19), it is reduced to:

L2 (B (cx, cr) cx) + 2cxcr = 0 (3.26)

Substituting Eq. (3.21) and Ψ = cy (momentum conservation in y direction) the
linearized collision operator from Eq. (3.13) is written as

L2 (h) = 1
π3/2

+∞∫
−∞

+∞∫
0

K2 (cx, cr, c1,x, c1,r)×

[h (c1,x, c1,r) − h (cx, cr)] c2
1,re

−(c2
1,x+c2

1,r)dc1,rdc1,x,

(3.27)
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where

K2 (cx, cr, c1,x, c1,r) = 2
π∫

0

K (cx, cr, c1,x, c1,r, β) cos βdβ. (3.28)

Next, it is convenient to present the heat conductivity and viscosity in dimensionless
form:

κ = κ̃d2

kBv0
= 2π

+∞∫
−∞

+∞∫
0

A (cx, cr) crc
2
x

(
c2

x + c2
r − 5

2

)
e−(c2

x+c2
r)dcrdcx (3.29)

µ = µ̃d2

mv0
= π

+∞∫
−∞

+∞∫
0

B (cx, cr) c3
rc

2
xe

−(c2
x+c2

r)dcrdcx (3.30)

The deterministic numerical solution of Eqs. (3.22) and (3.26) is based on the
discrete velocity method. The continuum molecular velocity cx ∈ (−∞,∞) is split
into the negative part cx ∈ (−∞, 0] and the positive part cx ∈ [0,∞) . The positive
part of cx is replaced by Ncx/2 discrete velocities, which are taken to be the roots of
the half-range Hermite polynomials of degree Ncx/2 [122]. The negative part is also
replaced by Ncx/2 discrete velocities, which are taken to be symmetrical to the positive
part with respect to the origin. In total, Ncx discrete molecular velocities are used for
the discretization of cx and each discrete velocity has its own weight Wcx. In a similar
manner, the continuum molecular velocity cr ∈ (0,∞] , is replaced by Ncr discrete
velocities, which are taken to be the roots of the half-range Hermite polynomials of
degree Ncr having their own weights Wcr. In addition, the angle β ∈ [0, π] is replaced
by Nβ discrete angles with weights Wβ, The discrete angles are taken to be the roots
of the Legendre polynomials of degree Nβ and are transformed from [−1, 1] to [0, π].

The discretized set of equations for the heat conductivity become

∑
k

∑
m

L1,ijkm (Akmcxk − Aijcxi) + cxi

[
c2

xi + c2
rj − 5

2

]
= 0, (3.31)

L1,ijkm = 1
π3/2K1,ijkmcrme

−(c2
xk+c2

rm)WcxkWcrm, (3.32)

K1,ijkm = 2
∑

b

KijkmbWβb, (3.33)
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where the kernel Kijkmb is given in Eq. (3.14). The discretized form of the additional
constraint (3.25) is written as

∑
i

∑
j

Aijc
2
xiWcxiWcrj = 0. (3.34)

Then, Eq. (3.31) along with the additional constraint (3.34) form a linear system of
algebraic equations of rank Ncx ×Ncr, which is numerically solved by implementing
the LU decomposition method with partial pivoting [123]. The dimensionless heat
conductivity is then simply calculated as

κ = 2√
π

∑
i

∑
j

Aijc
2
xicrj

(
c2

xi + c2
rj − 5

2

)
e−(c2

xi+c2
rj)WcxiWcrj. (3.35)

The discretized equations for the viscosity are written as

∑
k

∑
m

L2,ijkm (Bkmcxk −Bijcxi) + 2cxicrj = 0, (3.36)

L2,ijkm = 1
π3/2K2,ijkmc

2
rme

−(c2
xk+c2

rm)WcxkWcrm, (3.37)

K2,ijkm = 2
∑

b

Kijkmb cos βbWβb. (3.38)

The linear system of algebraic equations, which is formed by Eq. (3.36) has also rank
Ncx × Ncr and is solved in the same manner. Then, the dimensionless viscosity is
calculated as

µ = 1√
π

∑
i

∑
j

Bijc
2
xic

3
rje

−(c2
xi+c2

rj)WcxiWcrj. (3.39)

3.3.2 Heat conductivity and viscosity

For the hard-sphere potential, the dimensionless heat conductivity and viscosity
have been obtained by various methods [112–115] and their reported values are

κ = 0.479305, µ = 0.126668. (3.40)

In the present work, for the computation of the transport coefficients various grids
have been investigated. In all investigated cases, the relation Ncx = 2Ncr holds, as it
has been found to provide the best results for the transport coefficients. In addition,
a total of 100 total discrete angles (Nβ = 100) are required to accurately compute
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the kernels K1 and K2. The optimal grid has been found to be Ncx = 2Ncr = 100.
The computed values for the dimensionless heat conductivity and viscosity with the
aforementioned grid have been found to be

κ = 0.479307, µ = 0.126668. (3.41)

It is evident that, the exact Boltzmann collision operator is computed with great
accuracy, providing the heat conductivity and viscosity in excellent agreement with
the ones found in the literature. The heat conductivity and viscosity, are equal to the
ones reported in the literature, up to five and six significant digits, respectively.

3.4 Test Case II: Planar Poiseuille and thermal
creep fully-developed flow

3.4.1 Governing equations and numerical scheme

Consider a monoatomic gas confined between two parallel infinite plates located at
ỹ = ±H/2. The gas is driven by a small pressure gradient XP and a small temperature
gradient XT along the longitudinal x̃ direction

Xa = H

a

da

dx̃
, a = P, T, (3.42)

where P and T are the local pressure and temperature, respectively. Since Xa ≪ 1 the
gas flow may be treated as isothermal and fully-developed [33].

The flow is fully characterized by the rarefaction parameter

δ = P0H

µ̃v0
, (3.43)

where P0 is the equilibrium pressure, µ̃ is the gas viscosity at the equilibrium tem-
perature T0 and v0 =

√
2RgT0 is the most probable molecular speed (Rg = kB/m is

the specific gas constant, with kB denoting the Boltzmann constant and m the gas
molecular mass).

At this point, it is convenient to introduce the dimensionless physical and velocity
space variables

x = x̃

H
, y = ỹ

H
, c = ξ

v0
. (3.44)
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The total dimensionless macroscopic quantities of interest in the longitudinal direction,
namely the velocity and heat flux can be written as a linear superposition of the
pressure and temperature driven flow due to the smallness of the driving gradients as
follows:

ux (y) = ũx (ỹ)
v0

= ux,P (y)XP + ux,T (y)XT (3.45)

qx (y) = q̃x (ỹ)
v0P0

= qx,P (y)XP + qx,T (y)XT (3.46)

Here, ũx and q̃x are the total velocity and heat flux, respectively. The specific dimen-
sionless macroscopic quantities for the pressure and temperature driven problems in
Eqs. (3.45)-(3.46) are given by

ux,a (y) = ũx,a (ỹ)
v0Xa

, qx,a (y) = q̃x,a (ỹ)
v0P0Xa

, a = P, T. (3.47)

In addition, the mass and heat flow rates can be computed by introducing the dimen-
sionless kinetic coefficients [67]

GP = −2
1/2∫

−1/2

ux,Pdy, GT = 2
1/2∫

−1/2

ux,Tdy,

QP = 2
1/2∫

−1/2

qx,Pdy, QT = −2
1/2∫

−1/2

qx,Tdy.

(3.48)

In this notation the kinetic coefficients GP , GT , QP and QT are taken to be positive.
The quantities GP and GT represent the dimensionless flow rate in the pressure and
temperature driven cases respectively, while QP and QT represent the corresponding
dimensionless heat flow rates. In the literature GP is the Poiseuille coefficient, GT

is the thermal creep coefficient, QP is the mechanocaloric coefficient and QT is the
reduced heat flux coefficient. In [124–127] it has been shown, that the cross coefficients
GT and QP obey the Onsager-Casimir reciprocity relation GT = QP , which has been
utilized here to validate the accuracy of the presented results.

The gas is weakly disturbed from its equilibrium state and the unknown distribution
function can be linearized as

f = fM
0 [1 +XP (hP + hR,P ) +XT (hT + hR,T )] , (3.49)
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where hP and hT are the unknown so-called perturbed distribution functions, while
hR,P and hR,T are the reference perturbations given by

hR,P = x, hR,T = x
(
c2 − 5

2

)
. (3.50)

The steady-state linearized Boltzmann equation for the aforementioned configuration
is written in dimensionless form as

cy
∂ha (y, c)

∂y
= 2µδL′

a (ha) + s′
a (c) , (3.51)

where s′
a (c) denotes the source term for the pressure and temperature driven flow

s′
P (c) = −cx, s′

T (c) = −cx

(
c2 − 5

2

)
. (3.52)

The linearized collision operator L′
a (ha) reads

L′
a (ha) = 1

π3/2

∫
K ′ (c, c1)

[
ha (y, c1) − c1,y

cy

ha (y, c)
]
e−c2

1dc1, (3.53)

where Ψ = cy (momentum conservation in the y direction) has been used and the kernel
K ′ (c, c1) is given by Eq. (3.14). At the two infinite plates, purely diffuse gas-surface
interaction is assumed

ha (−1/2, cx, cy > 0, cz) = 0, ha (1/2, cx, cy < 0, cz) = 0. (3.54)

The macroscopic quantities of interest, namely the velocity and heat flux are given as
the moments of the perturbed distribution function

ux,a (y) = 1
π3/2

∫
cxha (y, c) e−c2

dc, (3.55)

qx,a (y) = 1
π3/2

∫
cx

(
c2 − 5

2

)
ha (y, c) e−c2

dc. (3.56)

At this stage, in order to reduce the required computational effort for the solution of
Eq. (3.51) the number of molecular velocity components may be reduced, as described
in [63], by introducing cylindrical coordinates

cx = cr sin θ, cy = cy, cz = cr cos θ. (3.57)
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Then, the perturbed distribution function can be written as

ha (y, cx, cy, cz) = ψa (y, cy, cr) cos θ. (3.58)

Substituting Eqs. (3.57) and (3.58) in the linearized Boltzmann equation (3.51), it
yields

cy
∂ψa

∂y
= 2µδLa (ψa) + sa (cy, cr) , sP = −cr, sT = −cr

(
c2

y + c2
r − 5

2

)
, (3.59)

where the linearized collision operator becomes

Lα (ψα) = 1
π3/2

+∞∫
−∞

+∞∫
0

K̂ (cy, cr, c1,y, c1,r) ×

[
ψα (y, c1,y, c1,r) − c1,y

cy

ψα (y, cy, cr)
]
c1,re

−(c2
1,y+c2

1,r)dc1,rdc1,y,

(3.60)

while
K̂ (cy, cr, c1,y, c1,r) = 2

∫ π

0
K (cy, cr, c1,y, c1,r, β) cos βdβ. (3.61)

The kernel K (cy, cr, c1,y, c1,r, β) is given by Eq. (3.14). The corresponding boundary
conditions are readily deduced:

ψa (−1/2, cy > 0, cr) = 0, ψa (1/2, cy < 0, cr) = 0 (3.62)

Performing the corresponding mathematical manipulations on Eq. (3.55) and (3.56)
the velocity and heat flux are written as

ux,a (y) = 1√
π

+∞∫
−∞

+∞∫
0

c2
rψa(y, cy, cr)e−(c2

y+c2
r)dcrdcy, (3.63)

qx,a (y) = 1√
π

+∞∫
−∞

+∞∫
0

c2
r

(
c2

y + c2
r − 5

2

)
ψa(y, cy, cr)e−(c2

y+c2
r)dcrdcy. (3.64)

The formulation of the linearized Boltzmann equation (3.59) with the corresponding
boundary conditions (3.62) is now complete. The numerical solution is based on the
discrete velocity method and is the same for the pressure and temperature driven
configurations. Thus, the subscript a = P, T is omitted for the discretized equations.
The discretization of the velocity space has been thoroughly addressed in Section 3.3.1.
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The discretization of the physical space is based on a second order central difference
scheme, where the flow domain y ∈ [−1/2, 1/2] is divided into Ny evenly distributed
segments.

Based on the above discretization Eq. (3.59) is written as

cyk

ψ
(n)
l+1,km − ψ

(n)
l,km

∆y
+ µδK0,km

(
ψ

(n)
l+1,km + ψ

(n)
l,km

)

= µδ
Ncx∑
i=1

Ncy∑
j=1

Lijkm

[
ψ

(n−1)
l+1,ij + ψ

(n−1)
l,ij − crj

crm

(
ψ

(n−1)
l+1,km + ψ

(n−1)
l,km

)]
+ µδK0,km

(
ψ

(n−1)
l+1,km + ψ

(n−1)
l,km

)
+ skm,

(3.65)

where ψ
(n)
l,km = ψ (yl, cxk, crm) is the reduced distribution in the nth iteration. The

discretized collision kernel reads

Lijkm = 1
π3/2Kijkmcrje

−(c2
yi+c2

rj)WcyiWcrj, Kijkm = 2
Nb∑
b=1

Kijkmb cos βbWβb. (3.66)

It is reminded here that, K0 denotes the collision frequency given by Eq. (3.15). The
macroscopic velocity and heat flux are obtained from Eqs. (3.63) and (3.64):

u
(n)
x,l = 1√

π

Ncy∑
k=1

Ncr∑
m=1

c2
rmψ

(n)
l,kme

−(c2
yk+c2

rm)WcrmWcyk (3.67)

q
(n)
x,l = 1√

π

Ncy∑
k=1

Ncr∑
m=1

c2
rm

(
c2

yk + c2
rm − 5

2

)
ψ

(n)
l,kme

−(c2
yk+c2

rm)WcrmWcyk (3.68)

The kinetic coefficients G and Q are then computed by Eq. (3.48) using Simpson rule.
The iterative scheme is concluded when the following criteria are fulfilled

1
2
(∣∣∣u(n)

x,l − u
(n−1)
x,l

∣∣∣+ ∣∣∣q(n)
x,l − q

(n−1)
x,l

∣∣∣) < ε, l = 1, 2, ..., Ny + 1, (3.69)

where ε is the tolerance parameter. It is noted here that, as the iterative scheme
converges the two terms containing K0 cancel each other out. However, they are
essential for the stability of the numerical scheme [67].
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3.4.2 Kinetic coefficients

The planar fully-developed Poiseuille and thermal creep flow is simulated in a wide
range of the gas rarefaction parameter. The computed kinetic coefficients are presented
and compared with corresponding results in the literature based on the linearized
hard-sphere Boltzmann equation, as well as, on the BGK and S kinetic models [67].
The presented results have been obtained with a set of Ncy = 2Ncr = 160 discrete
velocities and Ny = 500 segments.

In Table 3.1 the Poiseuille coefficient GP is presented in tabulated form with respect
to the rarefaction parameter δ. As it is seen, the Poiseuille coefficient is decreased
as the rarefaction coefficient is increased up to δ ∼ 1 and then it is increased. The
minimum at δ ∼ 1 is well-known in the literature as the Knudsen minimum or Knudsen
paradox. An excellent agreement is observed between the present BE results and the
BE results reported in [67]. The highest absolute relative deviation between the two
works is 0.2%. In addition, the BGK and S kinetic models, which provide similar results
for GP [40], are in great agreement with the BE results, with the highest deviation
below 5%.

The thermal creep GT and mechanocaloric coefficients QP are provided in Table
3.2. The Onsager-Casimir relation GT = QP is satisfied to at least six significant
digits validating the accuracy of the obtained results. The thermal creep coefficient
is monotonically decreased as the rarefaction parameter is increased. The BE results
of the present work and these of [67] are again in excellent agreement, with a highest
deviation of 1%. The BGK model, which cannot provide the correct Prandtl number,
significantly underestimates GT and shows a highest deviation of 26% with the BE
results. The corresponding deviations for the S model drop below 10%.

In Table 3.3 the reduced heat flux coefficient QT is presented with respect to the
rarefaction parameter. It is also, monotonically decreased as the rarefaction parameter
is increased. An excellent agreement between the present results and the ones in [67]
is also observed here, with a highest deviation of 0.3%. Similar to GT , the BGK model
is unable to accurately capture QT and significantly underestimates it. The highest
deviation between the BGK and BE results is up to 33%, while the corresponding
deviations for the S model are significantly lower reaching up to 5.5%.
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3.5 Oscillatory planar Poiseuille fully-developed
flow

3.5.1 Governing equations and numerical scheme

Consider a monoatomic gas confined between two infinite parallel plates located
at ỹ = ±H/2. The gas is disturbed by a small oscillatory pressure gradient along the
longitudinal x̃ direction

dP
(
t̃, x̃

)
dx̃

= dP (x̃)
dx̃

cos
(
ωt̃
)

= R
[
dP (x̃)
dx̃

e−iωt̃

]
, (3.70)

where ω is the oscillation frequency, t̃ is the time variable, R denotes the real part of a
complex quantity and i =

√
−1 is the imaginary unit. The amplitude dP (x̃) /dx̃ of

the oscillating pressure gradient is assumed to be small and thus, the gas flow may be
treated as isothermal and fully-developed [117, 118, 128].

The two parameters characterizing the flow are the rarefaction parameter and the
oscillation parameter [129]. The gas rarefaction parameter is given by

δ = P0H

µ̃v0
, (3.71)

while the oscillation parameter is written as

θ = P0

µ̃ω
, (3.72)

where the quantity P0/µ̃ approximates the collision frequency. Thus, small values
of θ correspond to high oscillation of the pressure gradient, while large values of θ
correspond to low oscillation of the pressure gradient. At this point it is useful to point
out the distinct flow regimes. The flow is in the slip and hydrodynamic regime when
δ ≫ 1 and θ ≫ 1, i.e. the channel height and the collision frequency are much larger
than the equivalent mean free path and the oscillation frequency, respectively [129].
The flow is said to be in the free-molecular regime for δ ≪ 1 and in the high-speed
oscillation regime for θ ≪ 1.
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Next, it is convenient to introduce the dimensionless time, spatial and molecular
velocity variables

t = t̃ω, r = r̃

H
, c = ξ

v0
, (3.73)

as well as, the dimensionless local pressure gradient amplitude

XP = H

P

dP

dx̃
≪ 1. (3.74)

The most important macroscopic quantity of interest is the velocity, which may be
written in complex notation as

ux (y) = ũx (y)
v0XP

= ux,Re (y) + ux,Im (y) i = ux,A (y) exp [iux,P (y)] . (3.75)

The subscripts Re and Im correspond to the real and imaginary parts, while the
subscripts A and P correspond to the amplitude and phase angle, respectively. Then,
the time-dependent form of the macroscopic velocity is readily calculated

ux (t, y) =
ũx

(
t̃, ỹ
)

v0XP

= ux,A (y) cos [t− ux,P (y)] . (3.76)

In addition, the Poiseuille coefficient, which is also of major practical importance, is
written in complex notation

G (δ, θ) = GRe (δ, θ) + iGIm (δ, θ) = GA (δ, θ) exp [iGP (δ, θ)] (3.77)

and is computed by

G (δ, θ) = −2
1/2∫

−1/2

ux (y) dy. (3.78)

Due to the smallness of the pressure gradient amplitude the unknown distribution
function can be linearized as

f = fM
0 [1 +XP (h+ hR)] , hR = xR

(
e−it

)
, (3.79)

where h is the unknown perturbed distribution function, while hR is the reference
perturbation. Substituting Eq. (3.79) into (3.12) yields the dimensionless linearized
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Boltzmann equation for the investigated flow configuration

δ

θ

∂h (t, y, c)
∂t

+ cy
∂h (t, y, c)

∂y
= 2µδL′ (h) − cxR

(
e−it

)
, (3.80)

where the linearized collision operator has already been given in detail in Section 3.4.
The computational effort required to solve the time-dependent form of the linearized

Boltzmann equation can be significantly reduced by introducing the complex perturbed
distribution function h (y, c)

h (t, y, c) = R
[
h (y, c) e−it

]
. (3.81)

Then Eq. (3.80) is rewritten in complex notation as

cy
∂h (y, c)
∂y

− i
δ

θ
h (y, c) = 2µδL′ (h) − cx. (3.82)

The macroscopic velocity is given in terms of the complex distribution h (y, c)

ux (y) = 1
π3/2

∫
cxh (y, c) e−c2

dc. (3.83)

Similar to Section 3.4 cylindrical coordinates may be introduced in order to reduce the
computation effort required for the solution of Eq. (3.82)

cx = cr sin θ, cy = cy, cz = cr cos θ. (3.84)

The complex perturbed distribution function is written as

h (y, cx, cy, cz) = ψ (y, cy, cr) cos θ. (3.85)

Substituting Eqs. (3.84) and (3.85) in Eq. (3.82), yields

cy
∂ψ

∂y
+ i

δ

θ
ψ = 2µδL (ψ) − cr, (3.86)

where the linearized collision operator is given by Eq. (3.60). At the two infinite plates,
purely diffuse gas-surface interaction is assumed and the corresponding boundary
conditions are readily deduced

ψ (−1/2, cy > 0, cr) = 0, ψ (1/2, cy < 0, cr) = 0. (3.87)
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Performing the corresponding mathematical manipulations on the macroscopic velocity,
yields

ux (y) = 1√
π

+∞∫
−∞

+∞∫
0

c2
rψ(y, cy, cr)e−(c2

y+c2
r)dcrdcy. (3.88)

The formulation of the linearized Boltzmann equation (3.86) with the corresponding
boundary conditions (3.87) is now complete. The numerical solution is based on the
discrete velocity method and the discretization of the physical and molecular velocity
space have been thoroughly addressed in Sections 3.3 and 3.4, respectively.

The discretized form of (3.86) is written as

cyk

ψ
(n)
l+1,km − ψ

(n)
l,km

∆y
+ µδK0,km

(
ψ

(n)
l+1,km + ψ

(n)
l,km

)
+ i

δ

2θ
(
ψ

(n)
l+1,km + ψ

(n)
l,km

)

= µδ
Ncx∑
i=1

Ncy∑
j=1

Lijkm

[
ψ

(n−1)
l+1,ij + ψ

(n−1)
l,ij − crj

crm

(
ψ

(n−1)
l+1,km + ψ

(n−1)
l,km

)]
+µδK0,km

(
ψ

(n−1)
l+1,km + ψ

(n−1)
l,km

)
− crm,

(3.89)

where ψ(n)
l,km = ψ (yl, cxk, crm) is the reduced complex distribution in the nth iteration.

The discretized collision kernel is given by Eq. (3.66). The macroscopic velocity is
obtained from Eq. (3.88):

u
(n)
x,l = 1√

π

Ncy∑
k=1

Ncr∑
m=1

c2
rmψ

(n)
l,kme

−(c2
yk+c2

rm)WcrmWcyk (3.90)

The Poiseuille coefficient G (δ, θ) is calculated by Eq. (3.78) using Simpson rule. The
iterative map is concluded when the following criteria for the macroscopic quantities is
fulfilled ∣∣∣u(n)

x,l − u
(n−1)
x,l

∣∣∣ < ε, l = 1, 2, ..., Ny + 1. (3.91)

3.5.2 Complex Poiseuille coefficient and macroscopic velocity

The oscillatory fully-developed Poiseuille flow between two infinite parallel plates
is simulated in a wide range of the gas rarefaction and oscillation parameters based
on the linearized hard-sphere Boltzmann equation. The computed amplitude and
phase angle for the Poiseuille coefficient, as well as, results for the macroscopic velocity
distribution are provided. The presented results have been obtained with a set of
Ncy = 2Ncr = 160 discrete velocities and Ny = 2000 segments in the physical space.
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The increased number of Ny = 2000 segments used here, compared to the Ny = 500
segments used for the steady-state Poiseuille flow, is required for the numerical accuracy
of the presented results. More specifically, a sawtooth-like behavior appears in regions
where the macroscopic quantities exhibit steep gradients, when a coarser physical
space grid is used. In addition, in order to validate the accuracy of the BGK model
equation in this type of flows [117, 118] the corresponding BGK results for the Poiseuille
coefficient are provided and compared to the BE ones. The formulation of the BGK
model for the investigated flow configuration has been given in [118] and is omitted
here.

In Tables 3.4 and 3.5 the Poiseuille coefficient amplitude GA (δ, θ) and G(BGK)
A (δ, θ)

based on the BE and the BGK model are provided in a wide range of the rarefaction
parameter δ ∈ [10−2, 102] and the oscillation parameter θ = [0.1, 1, 10, 50, 102]. In
addition, in Table 3.4, G(s)

A (δ, θ) is provided based on the slip regime analytical solution
(A.11) for δ ≥ 1 and θ = [50, 102]. Furthermore, the steady-state Poiseuille coefficient
that has been reported for δ ≤ 10 in Table 3.1, is also provided in the last column of
Table 3.4 for comparison purposes. A very good agreement can be observed between
GA (δ, θ) and G

(s)
A (δ, θ) for δ ≥ 10. More importantly, it can be confirmed that the

agreement between the BE and the slip results is improved as both δ and θ are
increased. However, even for θ = [50, 102] the deviations between the two approaches
become significant as δ is decreased. This comparison, demonstrates the ability of
the BE to recover the analytical slip solution at high values of both δ and θ, as well
as, the range of validity of the slip results. Next, GA (δ, θ) for θ = 102, is compared
to the corresponding steady-state Poiseuille coefficient. The agreement is excellent
for small and intermediate values of the rarefaction parameter (δ ≤ 5), however, it
quickly deteriorates as δ is further increased. Thus it is evident that, in order to
properly recover the steady-state solution θ ≫ δ must be fulfilled, in addition to θ ≫ 1.
Furthermore, comparing the Poiseuille coefficient amplitude based on the BE and BGK
model an excellent agreement is observed. More specifically, the two approaches are in
excellent agreement for small values of θ and start to slightly deviate as θ is increased
i.e. as the steady-state is approached. The largest relative deviations (<5%) are found
at θ = 100 and are similar to the ones reported for the steady-state Poiseuille flow in
Section 3.4.

Continuing the discussion in Table 3.4, the behavior of GA (δ, θ) is analyzed in the
whole range of δ and θ. The dependency of GA (δ, θ) with respect to θ is simple, since
it can be easily confirmed that for a specific δ, GA (δ, θ) is monotonically increased as θ
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is increased. However, the behavior of GA (δ, θ) with respect to δ is more complex. For
small values of the oscillation parameter (θ ≤ 1), the Poiseuille coefficient amplitude
is monotonically decreased as δ is increased. At larger values of θ, as δ is increased
GA (δ, θ) is decreased until δ ∼ 1, where it exhibits a local minimum. Then, as δ is
further increased GA (δ, θ) tends to a maximum at some δ (depending on θ) and it is
then again decreased. It is noted that, the above behavior described for the Poiseuille
coefficient amplitude is in agreement with the one reported in [117, 118, 130].

In Tables 3.6 and 3.7 the Poiseuille coefficient phase angle GP (δ, θ) and G(BGK)
P (δ, θ)

based on the BE and BGK model respectively, are provided in a wide range of the rar-
efaction parameter δ ∈ [10−2, 102] and the oscillation parameter θ = [0.1, 1, 10, 50, 102].
In addition, in the two last columns of Table 3.6, G(s)

P (δ, θ) obtained from the analytical
solution (A.11) is provided for δ ≥ 1 and θ = [50, 102]. The presented phase angles,
vary between zero and π/2, which correspond to the no phase and maximum phase
difference between the flow rate and the pressure gradient. The comparison between
the kinetic and slip regimes phase angle results is great and in accordance with the
remarks previously made for the amplitudes. Furthermore, the comparison between
the BE and BGK model phase angle results is also in agreement with the remarks
made for the amplitudes. The largest relative deviations between the two approaches
reach 23% for θ = 102 and δ = 10−2. It is noted that, even though these discrepancies
are quite large, they are found in regions where the phase angle is close to zero and
thus, they are not considered to be of significant importance.

Next, the dependency of the Poiseuille coefficient phase angle on δ and θ is discussed.
As expected, for any given δ the phase angle GP (δ, θ) is increased as θ is decreased i.e.
the phase difference between the flow rate and the pressure gradient is increased as
the oscillation frequency is increased. In addition, for a specific θ, the phase angle is
very close to zero at the free-molecular limit and is increased as δ is increased, tending
to the maximum phase angle difference of π/2 at the viscous limit. It is noted that
similar to the Poiseuille coefficient amplitude, the above remarks for the phase angle
are in accordance with the ones made in [117, 118, 130].

Moving on, the velocity distribution amplitude ux,A (y) and phase angle ux,P (y) are
plotted in Fig. 3.1 for indicative values of the rarefaction parameter δ = [0.1, 1, 10] and
the oscillation parameter θ = [0.1, 1, 10]. It is observed that, for some combinations
of δ and θ (δ = 0.1 and θ ≥ 0.1, δ = 1 and θ ≥ 1, δ = 10 and θ ≥ 10) the velocity
amplitude has the typical steady-state Poiseuille velocity profile, where the velocity
maximum appears in the channel center. The corresponding phase angles show the
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same trend in the opposite direction with a minimum forming in the channel center.
However, for a given δ as the oscillation parameter is decreased (δ = 1 and θ < 1,
δ = 10 and θ < 10), the bulk of the velocity at the channel center tends to become flat,
while it exhibits a maximum in the region close to the two plates. The corresponding
phase angles in these cases are also flat in the channel center and rapidly change close
to the plates. At a specific δ the thickness of this region is reduced as θ is decreased
and the velocity amplitude and phase gradients become steeper. In the aforementioned
cases, the flow consists of the inviscid piston flow in the channel center dominated by
inertia forces and the frictional Stokes wall layer dominated by viscous forces. This
flow description, including the velocity overshoot inside the Stokes layer, is known as
the “Richardson effect” and has been observed in the viscous limit [128, 131, 132], as
well as, under rarefied conditions [117, 118, 130].

The time evolution of the velocity distribution ux (t, y) at specific timeframes over
an oscillation period t ∈ [0, 2π) for δ = 10 and θ = [0.1, 1, 10, 102] is plotted in Fig 3.2.
For θ = 0.1, the two layer flow, with the bulk of the velocity oscillating in a plug-flow
and the velocity overshoot close to the plates can be clearly seen. In addition, it is
observed that, the position of the velocity extrema is not constant but it is shifting
with time. The described effects are reduced as the oscillation parameter is increased
and at θ = 102 they completely vanish. More specifically, at θ = 102 the velocity profile
is the typical one (velocity extrema in the channel center) and only slightly lags the
pressure gradient.

3.6 Concluding remarks

The exact Boltzmann collision operator is computed and the Boltzmann equation
is solved based on the hard-sphere intermolecular potential. First, the computation
of the Boltzmann collision operator has been benchmarked by calculating the heat
conductivity and viscosity. The obtained results have been found to be equal to the
ones found in the literature to at least 5 significant digits. Then, the solution of the BE
is validated by simulating the planar Poiseuille and thermal creep flows. The kinetic
coefficients, namely the Poiseuille, mechanocaloric, thermal creep and reduced heat flux
coefficients are obtained and compared with the ones found in the literature providing
an excellent agreement. In addition, a comparison between the BE and the BGK and
S kinetic models is presented to give an idea of the expected discrepancies for the
most-widely used kinetic models.
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Then, having established confidence in the accuracy of the numerical solution of the
BE, the methodology is implemented for simulating the oscillatory planar Poiseuille
flow. The Poiseuille coefficient amplitude and phase angle are presented in a wide
range of the rarefaction parameter δ and the oscillation parameter θ. The obtained
results reproduce the analytical slip solution for large values of both δ and θ. In
addition, they tend to the steady-state results for large values of θ, as long as, δ ≪ θ.
Moreover, they are compared to corresponding results obtained via the BGK model
providing an excellent agreement. Based on the above comparison it is confirmed that,
the simulation of pressure driven oscillatory flows via the BGK model is reliable. The
Poiseuille coefficient amplitude and phase angle behavior with respect δ and θ has been
found to be in accordance with the one described in the literature. In addition, the
amplitude and phase angle, as well as, as the temporal evolution of the macroscopic
velocity are provided for indicative values of δ and θ. The velocity overshoot near the
two plates, that has been well-established in the viscous regime and more recently
under rarefied conditions based on the BGK model, also appears in the BE results.
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Table 3.1 Poiseuille coefficient GP with respect to δ.

δ LBE LBE [67] BGK [67] S [67]
0.01 2.911 2.905 3.049 3.051
0.02 2.586 2.589 2.711 2.714
0.05 2.200 2.200 2.302 2.307
0.1 1.950 1.950 2.032 2.039
0.2 1.746 1.746 1.808 1.817
0.5 1.561 1.561 1.601 1.614
1 1.507 1.507 1.538 1.553
2 1.564 1.564 1.594 1.610
5 1.954 1.954 1.988 2.002
10 2.730 2.730 2.760 2.772

Table 3.2 Thermal creep and mechanocaloric coefficients GT = QP with respect to δ.

δ LBE LBE [67] BGK [67] S [67]
0.01 1.320 1.307 1.236 1.247
0.02 1.152 1.155 1.061 1.078
0.05 0.944 0.944 0.845 0.872
0.1 0.800 0.800 0.695 0.733
0.2 0.666 0.666 0.558 0.607
0.5 0.504 0.504 0.398 0.463
1 0.389 0.389 0.295 0.365
2 0.281 0.281 0.206 0.274
5 0.158 0.158 0.114 0.164
10 0.090 0.090 0.066 0.098

Table 3.3 Reduced heat flux coefficient QT with respect to δ

.

δ LBE LBE [67] BGK [67] S [67]
0.01 6.385 6.366 6.673 6.733
0.02 5.598 5.603 5.808 5.900
0.05 4.609 4.608 4.679 4.830
0.1 3.904 3.904 3.845 4.054
0.2 3.235 3.235 3.041 3.311
0.5 2.392 2.392 2.060 2.391
1 1.783 1.783 1.418 1.753
2 1.221 1.221 0.900 1.189
5 0.632 0.632 0.435 0.616
10 0.347 0.347 0.233 0.341
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Table 3.4 Poiseuille coefficient amplitude GA (δ, θ) based on the BE in terms of the
rarefaction parameter δ and oscillation parameter θ.

δ
GA (δ, θ) G

(s)
A (δ, θ) Gss (δ)

θ = 0.1 θ = 1 θ = 10 θ = 50 θ = 100 θ = 50 θ = 100 θ → ∞
0.01 1.872 2.797 2.910 2.911 2.911 - - 2.911
0.02 1.530 2.467 2.585 2.586 2.586 - - 2.586
0.05 1.089 2.066 2.198 2.200 2.200 - - 2.200
0.1 7.693(-1) 1.789 1.948 1.950 1.950 - - 1.950
0.2 4.801(-1) 1.529 1.743 1.746 1.746 - - 1.746
0.5 2.038(-1) 1.165 1.554 1.561 1.561 - - 1.561
1 9.995(-2) 8.295(-1) 1.489 1.506 1.507 1.154 1.154 1.507
2 5.000(-2) 4.865(-1) 1.494 1.561 1.563 1.319 1.320 1.564
5 2.000(-2) 1.978(-1) 1.388 1.916 1.944 1.789 1.813 1.954
10 1.000(-2) 9.926(-2) 8.895(-1) 2.357 2.620 2.299 2.550 2.730
20 5.000(-3) 4.980(-2) 4.659(-1) 1.989 3.117 1.976 3.093 -
50 2.000(-3) 1.997(-2) 1.940(-1) 9.050(-1) 1.726 9.031(-1) 1.723 -
100 1.000(-3) 9.991(-3) 9.846(-2) 4.747(-1) 9.241(-1) 4.744(-1) 9.231(-1) -

Table 3.5 Poiseuille coefficient amplitude GA (δ, θ) based on the BGK model in terms
of the rarefaction parameter δ and oscillation parameter θ.

δ
G

(BGK)
A (δ, θ)

θ = 0.1 θ = 1 θ = 10 θ = 50 θ = 100
0.01 1.872 2.878 3.047 3.050 3.050
0.02 1.527 2.536 2.709 2.711 2.711
0.05 1.086 2.115 2.300 2.302 2.302
0.1 7.682(-1) 1.822 2.030 2.033 2.033
0.2 4.796(-1) 1.546 1.804 1.808 1.808
0.5 2.038(-1) 1.168 1.594 1.602 1.602
1 9.995(-2) 8.288(-1) 1.519 1.538 1.538
2 5.000(-2) 4.845(-1) 1.521 1.592 1.594
5 2.000(-2) 1.978(-1) 1.397 1.951 1.981
10 1.000(-2) 9.925(-2) 8.889(-1) 2.380 2.654
20 5.000(-3) 4.980(-2) 4.660(-1) 1.991 3.127
50 2.000(-3) 1.996(-2) 1.940(-1) 9.058(-1) 1.728
100 1.000(-3) 9.992(-3) 9.849(-2) 4.747(-1) 9.247(-1)
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Table 3.6 Poiseuille coefficient phase angle GP (δ, θ) based on the BE in terms of the
rarefaction parameter δ and oscillation parameter θ.

δ
GP (δ, θ) G

(s)
P (δ, θ)

θ = 0.1 θ = 1 θ = 10 θ = 50 θ = 100 θ = 50 θ = 100
0.01 4.514(-1) 1.396(-1) 1.580(-2) 3.165(-3) 1.583(-3) - -
0.02 5.525(-1) 1.665(-1) 1.884(-2) 3.773(-3) 1.887(-3) - -
0.05 7.490(-1) 2.228(-1) 2.522(-2) 5.051(-3) 2.526(-3) - -
0.1 9.542(-1) 2.935(-1) 3.344(-2) 6.700(-3) 3.350(-3) - -
0.2 1.195 4.075(-1) 4.750(-2) 9.519(-3) 4.760(-3) - -
0.5 1.454 6.701(-1) 8.600(-2) 1.726(-2) 8.632(-3) - -
1 1.515 9.645(-1) 1.515(-1) 3.055(-2) 1.528(-2) 2.317(-2) 1.159(-2)
2 1.543 1.259 2.985(-1) 6.147(-2) 3.077(-2) 5.345(-2) 2.674(-2)
5 1.560 1.463 7.793(-1) 1.954(-1) 9.863(-2) 1.874(-1) 9.456(-2)
10 1.565 1.517 1.221 5.246(-1) 2.822(-1) 5.190(-1) 2.787(-1)
20 1.568 1.544 1.417 1.079 7.650(-1) 1.078 7.637(-1)
50 1.570 1.560 1.512 1.418 1.339 1.419 1.339
100 1.571 1.565 1.542 1.498 1.464 1.498 1.464

Table 3.7 Poiseuille coefficient phase angle GP (δ, θ) based on the BGK model in terms
of the rarefaction parameter δ and oscillation parameter θ.

δ
G

(BGK)
P (δ, θ)

θ = 0.1 θ = 1 θ = 10 θ = 50 θ = 100
0.01 4.563(-1) 1.623(-1) 1.948(-2) 3.906(-3) 1.953(-3)
0.02 5.573(-1) 1.909(-1) 2.281(-2) 4.572(-3) 2.286(-3)
0.05 7.512(-1) 2.484(-1) 2.956(-2) 5.925(-3) 2.963(-3)
0.1 9.550(-1) 3.183(-1) 3.797(-2) 7.611(-3) 3.806(-3)
0.2 1.196 4.295(-1) 5.203(-2) 1.043(-2) 5.217(-3)
0.5 1.454 6.852(-1) 9.029(-2) 1.813(-2) 9.067(-3)
1 1.516 9.749(-1) 1.561(-1) 3.149(-2) 1.575(-2)
2 1.543 1.263 3.056(-1) 6.303(-2) 3.155(-2)
5 1.560 1.463 7.906(-1) 2.000(-1) 1.010(-1)
10 1.565 1.517 1.224 5.319(-1) 2.868(-1)
20 1.568 1.545 1.416 1.085 7.690(-1)
50 1.570 1.559 1.506 1.425 1.345
100 1.571 1.567 1.555 1.485 1.477
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Figure 3.1 Velocity amplitude ux,A (left) and phase angle ux,P (right) for δ = [0.1, 1, 10]
and θ = [0.1, 1, 10].
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Chapter 3 Figures

Figure 3.2 Time evolution of velocity distribution ux (t, y) at specific timeframes over
one period of oscillation t ∈ [0, 2π) for δ = 10 and θ = [0.1, 1, 10, 102]; blue lines refer
to t < π, while red lines refer to t ≥ π.
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Chapter 4

Injection/suction rarefied flows

4.1 Introduction

Injection/suction flows, such as the planar fully-developed Poiseuille flow with
uniform injection/suction, as well as, the fully-developed flow over a permeable plate
with downward suction, are considered as fundamental flows in fluid mechanics [131,
133]. Pioneering research work related to these flow configurations includes small and
large Reynolds number flow between uniformly permeable parallel plates [134–138],
pipes [139] and annuli [140]. More recently, the boundary and pressure driven oscillatory
flows in a channel with arbitrary wall injection [141, 142] the uniform flow over a
downward suction plate [143], the viscous/inertia flow through a channel with wavy
permeable walls [144] and the heat transfer in the laminar viscous channel flow with
one porous wall [145], have been investigated. Overall, injection/suction flows have
attracted considerable attention in the viscous regime due to their theoretical interest,
as well as due to their tentative importance in a variety of technological applications,
including filtration systems [12], membrane gas permeators [13, 14], detritiation systems
[15, 16] and biological applications [17, 18].

However, to the best of the author’s knowledge, the planar fully-developed Poiseuille
and thermal creep flows with injection/suction, as well as, the asymptotic suction flow
under rarefied conditions have not been investigated. In the hydrodynamic regime fully-
developed injection/suction flows are characterized by the injection/suction velocity
magnitude. The same applies in the slip, transition and free-molecular regimes for
the asymptotic suction flow. However, for the planar Poiseuille and thermal creep
flows coupled with injection/suction the level of gas rarefaction is also required to fully

47

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 09:16:19 EEST - 18.216.209.182



Chapter 4

characterize the flow. Since this type of rarefied gas flows has not been studied so far,
obviously, there is both theoretical and technological interest for their investigation.

In this chapter, kinetic modeling is implemented for the first time in order to simulate
injection/suction flows. Thus, the exact Boltzmann equation is also implemented, in
order to quantify the discrepancies introduced by the kinetic model equations for the
investigated flow configurations.

In Section 4.2, the fully-developed Poiseuille and thermal creep rarefied gas flow
between two infinite parallel permeable plates with uniform injection and suction from
the bottom and top plate, respectively, is investigated [146]. The driving gradients are
assumed to be small and a linearization procedure required for injection/suction flows
is proposed and successfully implemented. The flow is investigated by numerically
solving both the linearized S model and BE. The full-range acceleration scheme is
implemented for the S kinetic model and its efficiency is investigated. Computational
results for the macroscopic quantities of interest are presented in a wide range of the
gas rarefaction parameter and the injection velocity magnitude. The so-called kinetic
coefficients, namely the Poiseuille, mechanocaloric, thermal creep and reduced heat flux
coefficients are provided and compared with analytical solutions in the free-molecular
and slip regimes. In addition, the macroscopic velocity, heat flux and shear stress
distributions are presented for indicative values of the involved parameters.

In Section 4.3, the fully-developed flow over a permeable plate with downward
suction, which is also known in the literature as the asymptotic suction flow is investi-
gated. The same linearization procedure described in Section 4.2 is also followed here.
The flow is investigated by numerically solving the linearized S model. Computational
results based on the S model for the boundary layer thickness with respect to the
suction velocity are provided and compared to the analytical results in the slip and
hydrodynamic regimes. In addition, kinetic, as well as analytical slip and hydrody-
namic results for the macroscopic velocity, heat flux and shear stress distributions are
provided.

48

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 09:16:19 EEST - 18.216.209.182



Section 4.2

4.2 Planar pressure and temperature driven fully-
developed flow with uniform injection/suction

4.2.1 Flow configuration

Consider a monoatomic single gas confined between two parallel uniformly permeable
plates located at ỹ ∈ [−H/2, H/2]. The gas is flowing driven by an externally imposed
small pressure and temperature gradient in the longitudinal x̃ direction

Xa = H

a

da

dx̃
≪ 1, a = P, T, (4.1)

where P and T are the local pressure and temperature. In addition to the longitudinal
flow, the bottom and top permeable plates inject and remove gas in the ỹ direction
respectively with the same constant velocity Ũw, generating a cross-flow. Since Xa ≪ 1
and the cross stream velocity is constant, the gas flow may be treated as isothermal
and fully-developed [33, 131].

The flow is fully characterized by two parameters, namely, the gas rarefaction
parameter δ and the dimensionless injection velocity Uw. The gas rarefaction parameter
is given by

δ = P0H

µ̃v0
, (4.2)

where P0 is the equilibrium pressure, µ̃ is the gas viscosity at the equilibrium tem-
perature T0 and v0 =

√
2RgT0 is the most probable molecular speed (Rg = kB/m is

the specific gas constant, with kB denoting the Boltzmann constant and m the gas
molecular mass). The dimensionless injection velocity is defined as

Uw = Ũw

v0
. (4.3)

Next, it is convenient to introduce the dimensionless spatial variables

x = x̃

H
, y = ỹ

H
. (4.4)

The total dimensionless macroscopic quantities of interest in the longitudinal direction,
namely the velocity, shear stress and heat flux can be written as a linear superposition
of the Poiseuille and thermal creep flow due to the smallness of the driving gradients
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as follows [33]:

ux (y) = ũx (ỹ)
v0

= ux,P (y)XP + ux,T (y)XT (4.5)

Πxy (y) = Pxy (ỹ)
P0

= Πxy,P (y)XP +Πxy,T (y)XT (4.6)

qx (y) = q̃x (ỹ)
v0P0

= qx,P (y)XP + qx,T (y)XT (4.7)

Here, ũx, Pxy and q̃x are the total dimensional velocity, shear stress and heat flux,
respectively. The specific dimensionless macroscopic quantities for the pressure and
temperature driven problems in Eqs. (4.5)-(4.7) are given by

ux,a (y) = ũx,a (ỹ)
v0Xa

, Πxy,a (y) = Pxy,a (ỹ)
P0Xa

, qx,a (y) = q̃x,a (ỹ)
v0P0Xa

, a = P, T. (4.8)

In addition, the overall quantities of the mass and heat flow rates can be computed by
introducing the dimensionless kinetic coefficients [67]

GP = −2
1/2∫

−1/2

ux,Pdy, GT = 2
1/2∫

−1/2

ux,Tdy,

QP = 2
1/2∫

−1/2

qx,Pdy, QT = −2
1/2∫

−1/2

qx,Tdy.

(4.9)

The aforementioned kinetic coefficients GP , GT , QP and QT have been described in
Chapter 3 for the classical Poiseuille and thermal creep flows without injection/suction.
It has been noted, that in the classical Poiseuille and thermal creep problems, the cross
effects GT and QP obey the Onsager-Casimir relation GT = QP [124–127] It turns
out that the reciprocity relation GT = QP is also valid in the present fully-developed
Poiseuille and thermal creep flows through a channel with permeable walls and its
proof is provided in detail in Appendix B. The reciprocity relation is used to validate
the accuracy of the computed results.
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4.2.2 Analytical solution in the slip and hydrodynamic regimes

At the viscous and slip regimes the fully-developed Poiseuille flow between parallel
infinite plates with injection/suction is defined by the x-momentum equation [131]

ρ̃Ũw
dũ

(j)
P

dỹ
= −dP

dx̃
+ µ̃

d2ũ
(j)
P

dỹ2 , (4.10)

where the superscript j = h, s corresponds to the hydrodynamic and slip regimes,
respectively. For the thermal creep flow the corresponding equation becomes

ρ̃Ũw
dũ

(j)
T

dỹ
= µ̃

d2ũ
(j)
T

dỹ2 . (4.11)

Introducing the dimensionless quantities defined in Eqs. (4.1)-(4.4) and (4.8) the
governing Eqs. (4.10) and (4.11) can be rewritten in dimensionless form following the
present notation as

2δUw
du

(j)
P

dy
= −δ + d2u

(j)
P

dy2 , (4.12)

2δUw
du

(j)
T

dy
= d2u

(j)
T

dy2 . (4.13)

At the hydrodynamic regime (j = h), the Poiseuille and thermal creep equations
(4.12) and (4.13) are subject to the no-slip boundary conditions at the bottom and top
plate, written as

u(h)
a (±1/2) = 0, a = P, T. (4.14)

For the Poiseuille driven flow, Eq. (4.12), subject to boundary conditions (4.14) is
analytically solved to obtain the velocity and shear stress distributions, as well as the
Poiseuille coefficient [131]:

u
(h)
P (y) = 1

4Uw

(
2y − 1 + eδUw − e2δUwy

sinh (δUw)

)
(4.15)

Π
(h)
xy,P (y) = 1

2

[
e2δUwy

sinh (δUw) − 1
δUw

]
(4.16)

G
(h)
P = δUw coth (δUw) − 1

2δU2
w

(4.17)
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It is noted that, performing a series expansion with respect to Uw = 0, Eqs. (4.15)-
(4.17) reduce to the hydrodynamic expressions derived for the classical Poiseuille flow
without injection/suction [33].

Next, for the thermal creep flow, the trivial solution u
(h)
T = 0 satisfies the ho-

mogenous governing equation (4.13) and the accompanying homogeneous boundary
conditions (4.14). Thus, similar to the classical thermal creep flow without injec-
tion/suction, thermal creep effects vanish for all values of the injection velocity at the
hydrodynamic limit.

At the slip regime (j = s), Eq. (4.12) is subject to the viscous slip boundary
conditions

u
(s)
P (±1/2) = ∓σP

δ

du
(s)
P

dy

∣∣∣∣∣∣
±1/2

, (4.18)

while Eq. (4.13) is subject to the thermal slip boundary conditions

u
(s)
T (±1/2) = σT

2δ . (4.19)

The viscous slip coefficient σP and the thermal slip coefficient σT are known and are
computed by solving the corresponding half-space flow problems [33].

For the pressure driven flow, Eq. (4.12) along with the boundary conditions (4.18)
may be solved analytically to yield the velocity and shear stress distributions, as well
as, the Poiseuille coefficient

u
(s)
P (y) = A cosh (δUw) +B sinh (δUw) − (δ + 2σP ) [cosh (2δUwy) + sinh (2δUwy)]

4δUw [2UwσP cosh (δUw) + sinh (δUw)] ,

(4.20)

Π
(s)
xy,P (y) = − 1

2δUw

+ e2δUwy (δ + 2σP )
2δ [2UwσP cosh (δUw) + sinh (δUw)] , (4.21)

G
(s)
P = (δ + 2σP ) [2σP − δ (4U2

wσ
2
P − 1)] cosh (δUw)

2Uwδ2 [2UwσP cosh (δUw) + sinh (δUw)] − 1
2δU2

w

− σP

δ2U2
w

+ 2σ2
P

δ
+σP , (4.22)

where A = δ + 2σP + 4δUwσPy and B = 2 [δy + UwσP (δ + 2σP )]. For Uw = 0 the
analytical slip solution reduces to the classical Poiseuille flow slip solution without
injection/suction.

Some limiting cases can be derived for validating the kinetic solution at the slip
regime. As δ → ∞ the Poiseuille coefficient tends to

lim
δ→∞

G
(s)
P = 1

2Uw

. (4.23)
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Furthermore, as δ → ∞ and for Uw > 0 the velocity and shear stress profiles in the
whole flow domain, excluding the suction plate, can be written as

lim
δ→∞

u
(s)
P (y < 1/2) = 1 + 2y

4Uw

, lim
δ→∞

Π
(s)
xy,P (y < 1/2) = 0. (4.24)

Exactly at the bottom and top plate they become

lim
δ→∞

u
(s)
P (−1/2) = 0, lim

δ→∞
Π

(s)
xy,P (−1/2) = 0, (4.25)

lim
δ→∞

u
(s)
P (1/2) = σP

1 + 2UwσP

, lim
δ→∞

Π
(s)
xy,P (1/2) = 1

1 + 2UwσP

. (4.26)

It is worthwhile to note that, as δ → ∞ in the case without injection/suction (Uw = 0)
the limiting bottom and top plate velocity and shear stress become u(s)

P (∓1/2) = σP /2
and Π

(s)
xy,P (∓1/2) = ∓1/2, respectively [33]. However, from Eqs. (4.25) and (4.26) it

can be clearly seen that, as Uw → 0 the limiting bottom and top plate velocity tends
to u(s)

P (−1/2) = 0 and u
(s)
P (1/2) = σP , while the limiting bottom and top plate shear

stress tends to Π(s)
xy,P (−1/2) = 0 and Π(s)

xy,P (1/2) = 1. This behavior also holds for the
kinetic results and will be further addressed in Section 4.2.8.

Next, Eq. (4.13) along with the boundary conditions (4.19) may be solved analyti-
cally for the thermal creep flow to yield the velocity and shear stress distributions, as
well as, the thermal creep and reduced heat flux coefficients

u
(s)
T (y) = σT

2δ , Π
(s)
xy,T (y) = 0, G

(s)
T = σT

δ
, Q

(s)
T = 15

4δ . (4.27)

It can be validated that, the slip solution for the thermal creep flow with and without
injection/suction are identical. Thus, as the flow enters the slip regime the effect of
the imposed cross-flow is expected to vanish.

4.2.3 Formulation of the linearized Shakhov model

For arbitrary values of δ and Uw, the Poiseuille (a = P ) and thermal creep (a = T )
flows may be modeled at the mesoscale level by the steady-state Shakhov model, which
for the investigated setup is given by [33]

ξ
∂fa

∂ỹ
= P

µ̃

[
fM

a

{
1 + 2m

15na(kBTa)2 q̃a · (ξ − ũa)
[
m(ξ − ũa)2

2kBTa

− 5
2

]}
− fa

]
, (4.28)
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where f = f (ỹ, ξ) is the unknown distribution function, which depends on the ỹ

space variable and the molecular velocity vector ξ = (ξx, ξy, ξz). The quantity P/µ̃
approximates the collision frequency and

fM
a = n

(
m

2πkBTa

)3/2
exp

[
−m(ξ − ũa)2

2kBTa

]
(4.29)

denotes the local Maxwellian distribution. Since both flow setups are assumed to
be isothermal and fully-developed, the temperature T and the number density n are
constant along ỹ and may only vary in the x̃ direction. The velocity, shear stress and
heat flux introduced in Eq. (4.8), are defined as the first, second and third moments of
the unknown distribution function

ũa (ỹ) = 1
n

∫
ξfa (ỹ, ξ) dξ, (4.30)

Πxy,a (ỹ) = m
∫
ζxζyfa (ỹ, ξ) dξ, (4.31)

q̃a (ỹ) = m

2

∫
ζ2ζfa (ỹ, ξ) dξ, (4.32)

where ζ = ξ − ũa denotes the peculiar molecular velocity vector. Next, focusing on
the boundary conditions the particles incident at the two plates are assumed to be
absorbed and are then reemitted following the outgoing distribution

f+
a

(
±H

2 , ξ
)

= nw,a

(
m

2πkBTw,a

)3/2

exp
−

m
(
ξ − Ũw

)
2kBTw,a

 , ξy ≶ 0, (4.33)

where the density nw,a is part of the solution and is defined by the penetration condition
ũy,a (±H/2) = Ũw at the two plates, while Tw,a is the plate temperature. The boundary
conditions (4.33) satisfy that the macroscopic velocity ỹ-component is equal to Ũw.

The unknown distribution function can be linearized due to the smallness of the
driving gradients as

f = fM
0 [1 +XP (hP + hR,P ) +XT (hT + hR,T )] , (4.34)

where fM
0 is the global Maxwellian defined as

fM
0 = n0

π3/2v3
0
e−(c−Uw)2

, (4.35)
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with c = ξ/v0 being the dimensionless molecular velocity vector and Uw = (0, Uw, 0)
denoting the injection velocity in vector form. The quantities hP and hT are the
unknown perturbed distribution functions, while hR,P and hR,T are the reference
perturbations given by

hR,P = x, hR,T = x
[
(c − Uw)2 − 5

2

]
. (4.36)

It is noted that, the present linearization differs from the typical linearization procedure
of fully developed flows without injection/suction where the global Maxwellian is defined
as fM

0 = n0e
−c2
/(
π3/2v3

0

)
. If the typical linearization is implemented in this type of

flows, the resulting flow in the longitudinal direction is completely decoupled from
the cross-flow generated by the injection and suction at the two plates. In addition,
it is worthwhile to mention that as a result of the implemented linearization, the
reference perturbation hR,T , given in Eq. (4.36), differs from the typical one, which is
hR,T = x (c2 − 5/2).

Substituting Eqs. (4.34)-(4.36) into Eq. (4.28) and introducing the dimensionless
quantities, yields the linearized S kinetic model equation

cy
∂ha

∂y
+ δha = 2δux,acx + 4

15δqx,acx

[
(c − Uw)2 − 5

2

]
+ s′

a, (4.37)

where s′
a is the source term corresponding to the pressure and temperature driven flow,

given by
s′

P = −cx, s′
T = −cx

[
(c − Uw)2 − 5

2

]
. (4.38)

The linearization and non-dimensionalization is also applied to the velocity and shear
stress, as well as to the heat flux given in Eqs. (4.30)-(4.32) to obtain

ux,a (y) = 1
π3/2

∫
cxha (y, c) e−(c−Uw)2

dc, (4.39)

Πxy,a (y) = 2
π3/2

∫
cx (cy − Uw)ha (y, c) e−(c−Uw)2

dc, (4.40)

qx,a (y) = 1
π3/2

∫
cx

[
(c − Uw)2 − 5

2

]
ha (y, c) e−(c−Uw)2

dc. (4.41)

Finally, the linearized boundary conditions become

h+
a (±1/2, c) = 0, cy ≶ 0. (4.42)

55

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 09:16:19 EEST - 18.216.209.182



Chapter 4

At this stage the x and z molecular velocity components may be eliminated, in
order to significantly reduce the required computational cost, by applying the so-called
projection procedure and introducing the following reduced perturbed distribution
functions:

Ya (y, cy) = 1
π

+∞∫
−∞

+∞∫
−∞

cxha (y, c) e−(c2
x+c2

z)dcxdcz (4.43)

Fa (y, cy) = 1
π

+∞∫
−∞

+∞∫
−∞

cx

(
c2

x + c2
z − 2

)
ha (y, c) e−(c2

x+c2
z)dcxdcz (4.44)

Equation (4.37) is multiplied by (1/π) cxe
−(c2

x+c2
z) and (1/π) cx

(
c2

x + c2
y − 2

)
e−(c2

x+c2
z)

successively and the resulting equations are integrated over cx and cz to yield

cy
∂Ya

∂y
+ δYa = δux,a + 2

15δqx,a

[
(cy − Uw)2 − 1

2

]
+ sY,a, (4.45)

cy
∂Fa

∂y
+ δFa = 4

15δqx,a + sF,a, (4.46)

where the reduced source terms sY,a and sF,a are given by

sY,P = −1
2 , sY,T = −1

2

[
(cy − Uw)2 − 1

2

]
, sF,P = 0, sF,T = −1. (4.47)

Operating in a similar manner on Eqs. (4.39)-(4.41), the macroscopic velocity, shear
stress and heat flux are written as

ux,a = 1√
π

+∞∫
−∞

Ya (y, cy) e−(cy−Uw)2
dcy, (4.48)

Πxy,a = 2√
π

+∞∫
−∞

(cy − Uw)Ya (y, cy) e−(cy−Uw)2
dcy, (4.49)

qx,a = 1√
π

+∞∫
−∞

{[
(cy − Uw)2 − 1

2

]
Ya (y, cy) + Fa (y, cy)

}
e−(cy−Uw)2

dcy. (4.50)

The corresponding boundary conditions may be readily deduced:

Ya (±1/2, cy) = 0, cy ≶ 0, Fa (±1/2, cy) = 0, cy ≶ 0 (4.51)
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4.2.4 Synthetic acceleration scheme for the linearized Shakhov
model

The discrete velocity method (DVM) that has been thoroughly described and
successfully used in Chapter 3 for the solution of the linearized Boltzmann equation
may also be implemented here. In this method the continuum molecular velocity
space is replaced by a set of discrete velocities and a typical finite difference or control
volume scheme is used for the physical space. The macroscopic quantities of interest
are computed via numerical integration as moments of the distribution function. In
the case of kinetic models, the resulting system of discretized equations is solved in an
iterative manner between the kinetic equation and the macroscopic quantities. However,
it is well-established that the described iterative scheme suffers from slow convergence
at the slip and hydrodynamic regime [50, 51].

In the present work, the solution of the linearized S model is required in the whole
range of the rarefaction parameter. Thus, in order to circumvent the aforementioned
convergence pitfall, the full-range moment synthetic acceleration scheme described in
[50] is implemented. Synthetic acceleration schemes couple the kinetic equation with
a system of moment equations. These moment equations are derived by operating
on the kinetic equation in a systematic manner that will be thoroughly addressed
below. The high order moments needed to close the system of moment equations are
computed by numerically integrating the distribution function. The updated values of
the accelerated macroscopic quantities are obtained by solving the moment equations
and not by directly integrating the distribution function. This advanced iteration
scheme shows rapid convergence especially as the rarefaction parameter is increased.

First the discretization used in this work is discussed and then the synthetic
acceleration scheme is constructed. The continuum molecular velocity variable cy is
replaced by a set of Ncy discrete velocities with their own weights Wcy. The positive
part of cy is replaced by Ncy/2 discrete velocities, which are taken to be the roots of
the half-range Hermite polynomials of degree Ncy/2. The negative part is also replaced
by Ncy/2 discrete velocities, which are taken to be symmetrical to the positive part
with respect to the origin. The discretization of the physical space is based on a second
order central difference scheme, where the flow domain y ∈ [−1/2, 1/2] is divided into
Ny evenly distributed segments.
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In order to construct the full-range acceleration scheme, the following moments of
the reduced distribution functions Ya and Fa are used:

Mm,a (y) = 1√
π

+∞∫
−∞

Hm (cy)Ya (y, cy) e−(cy−Uw)2
dcy (4.52)

Nm,a (y) = 1√
π

+∞∫
−∞

Hm (cy)Fa (y, cy) e−(cy−Uw)2
dcy (4.53)

The quantity Hm (cy) denotes the full-range Hermite polynomial of order m, satisfying
the orthogonality condition

+∞∫
−∞

Hm (x)Hn (x) e−x2
dx =

√
π2mm!δK,mn, (4.54)

where δK,mn denotes the Kronecker delta. The first five full-range Hermite polynomials
are

H0 = 1, H1 = 2x, H2 = 4x2 − 2, H3 = 8x3 − 12x, H4 = 16x4 − 48x2 + 12. (4.55)

Then, the macroscopic velocity and heat flux are obtained from Eqs. (4.48) and (4.50)
in terms of the introduced full-range moments:

ux,a = M0,a (4.56)

qx,a = 1
4M2,a − UwM1,a + U2

wM0,a +N0,a (4.57)

It is noted here that, the shear stress is not accelerated since it does not contribute to the
S model collision part and thus, it is directly computed from the reduced distribution
functions via Eq. (4.49). Next, the integral operator 1√

π

+∞∫
−∞

(·)cn
ye

−(cy−Uw)2
dcy is applied

on Eq. (4.45) for n = 0, 1, 2, 3 and on Eq. (4.46) for n = 0, 1. After, some mathematical
manipulations the following set of second order ordinary differential equations is derived:

d2M1,a

dy2 = 0 (4.58)

1
2
d2M0,a

dy2 − δUw
dM0,a

dy
= −1

4
d2M2,a

dy2 − δga,0 (4.59)
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3
4
d2M2,a

dy2 − δUw

20
dM2,a

dy
− 7δ2

30 M2,a = − 1
16
d2M4,a

dy2 − δU2
w

5
dM1,a

dy
+ δ2Uw

15 M1,a

−3
4
d2M0,a

dy2 + δUw

(
6U2

w

5 + 3
2

)
dM0,a

dy
− 16δ2U2

w

15 M0,a

+δUw

5
dN0,a

dy
− δ2

15N0,a − δga,1

(4.60)

1
2
d2N0,a

dy2 − 4δUw

15
dN0,a

dy
− 11δ2

15 N0,a = −1
4
d2N2,a

d2y
+ δUw

15
dM2,a

dy
− δ2

15M2,a

−4δU2
w

15
dM1,a

dy
+ 4δ2Uw

15 M1,a + 4δU3
w

15
dM0,a

dy
− 4δ2U2

w

15 M0,a − δga,2

(4.61)

The quantities ga,0, ga,1 and ga,2 read as

gP,0 = 1
2 , gP,1 = 1

4
(
1 + 2U2

w

)
, gP,2 = 0,

gT,0 = 1
8 , gT,1 = 1

16
(
5 + 2U2

w

)
, gT,2 = 1.

(4.62)

By discretizing Eqs. (4.58)-(4.61) a tridiagonal linear system of algebraic equations
is obtained for each one of them, which can be solved by applying the Thomas
algorithm. However, since Eqs. (4.59)-(4.61) are coupled, they are iteratively solved
until convergence.

The iterative map for the full-range synthetic acceleration scheme is constructed as
follows: An initial guess is made for the velocity and heat flux distributions and Eqs.
(4.45) and (4.46) are solved for the reduced distribution functions Ya and Fa, respectively.
The reduced distribution functions are then used to provide the boundary conditions
and the higher order moments in the right hand side of the ordinary differential
equations (4.58)-(4.61). Next, the aforementioned set of equations is solved for the
moments M0,a, M1,a, M2,a, N0,a and the accelerated macroscopic velocity and heat
flux are computed via Eqs. (4.56) and (4.57). respectively. The updated macroscopic
quantities are substituted back into Eqs. (4.45) and (4.46) to continue the iterative
procedure, which converges when the following criteria are fulfilled

1
2
(∣∣∣u(k)

x,a,i − u
(k−1)
x,a,i

∣∣∣+ ∣∣∣q(k)
x,a,i − q

(k−1)
x,a,i

∣∣∣) < ε, i = 1, 2, ..., Ny + 1. (4.63)

Here k is the iteration index, i is the physical node index and ε is the tolerance
parameter. In addition, when the iterative scheme is completed the shear stress
distribution is computed via Eq. (4.49) and the Simpson rule is used to compute the
kinetic coefficients Ga and Qa.
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4.2.5 Formulation of the linearized Boltzmann equation

Following the same linearization described in Section 4.2.3 the steady-state linearized
Boltzmann equation for the fully-developed Poiseuille and thermal creep flow in a
channel with uniform injection/suction through its permeable walls becomes

cy
∂ha (y, c)

∂y
= 2µδL′

a (ha) + s′
a (c) , (4.64)

where s′
a (c) denotes the source term for the Poiseuille and thermal creep flow

s′
P (c) = −cx, s′

T (c) = −cx

[
(c − Uw)2 − 5

2

]
. (4.65)

It is reminded here that, µ = µ̃d2/mv0 (d is the molecular diameter) denotes the
dimensionless gas viscosity, which for a hard-sphere gas has been computed in Chapter
3. The linearized collision operator L′

a (ha) reads as

L′
a (ha) = 1

π3/2

∫
K ′ (c, c1)

[
ha (y, c1) − c1,y

cy

ha (y, c)
]
e−c2

1dc1, (4.66)

with
K ′ (c, c1) = πg

{
2
g2 exp

[
|(c− Uw) × (c1 − Uw)|

g

]
− 1

}
, (4.67)

where Ψ = cy (momentum conservation in the y direction) has been used.
At this stage, in order to reduce the required computational effort for the solution

of Eq. (4.64) the number of molecular space velocity components may be reduced, as
described in [63], by introducing cylindrical coordinates

cx = cr sin θ, cy = cy, cz = cr cos θ. (4.68)

Then, the perturbed distribution function can be written as

ha (y, cx, cy, cz) = ψa (y, cy, cr) cos θ. (4.69)

Substituting Eqs. (4.68) and (4.69) in the linearized Boltzmann equation (4.64), yields

cy
∂ψa

∂y
= 2µδLa (ψa) + sa, sP = −cr, sT = −cr

[
(cy − Uw)2 + c2

r − 5
2

]
, (4.70)
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where the linearized collision operator becomes

Lα (ψα) = 1
π3/2

+∞∫
−∞

+∞∫
0

K̂ (cy, cr, c1,y, c1,r) ×

[
ψα (y, c1,y, c1,r) − c1,y

cy

ψα (y, cy, cr)
]
c1,re

−(c2
1,y+c2

1,r)dc1,rdc1,y,

(4.71)

with

K̂ (cy, cr, c1,y, c1,r) = 2
π∫

0

K (cy, cr, c1,y, c1,r, β) cos βdβ. (4.72)

The kernel K (cy, cr, c1,y, c1,r, β) is given by Eq. (4.67). The corresponding boundary
conditions are readily deduced

ψa (±1/2, cy, cr) = 0, cy ≶ 0. (4.73)

Performing the corresponding mathematical manipulations on Eqs. (4.39)-(4.41) the
velocity, shear stress and heat flux are written as follows:

ux,a = 1√
π

+∞∫
−∞

+∞∫
0

c2
rψa(y, cy, cr)e−[(cy−Uw)2+c2

r]dcrdcy (4.74)

Πxy,a = 2√
π

+∞∫
−∞

+∞∫
0

c2
r (cy − Uw)ψa(y, cy, cr)e−[(cy−Uw)2+c2

y]dcrdcy (4.75)

qx,a = 1√
π

+∞∫
−∞

+∞∫
0

c2
r

{[
(cy − Uw)2 + c2

r

]
− 5

2

}
ψa(y, cy, cr)e−[(cy−Uw)2+c2

r]dcrdcy (4.76)

The formulation of the Boltzmann equation is now properly defined by Eq. (4.70)
with the corresponding boundary conditions (4.73). The solution of the Boltzmann
equation is based on the discrete velocity method that has been described in detail
in Chapter 3. The iterative scheme implemented to solve the discretized equations is
concluded when the criteria (4.63) are fulfilled.

4.2.6 Analytical solution in the free-molecular regime

At the free-molecular regime analytical expressions can be obtained for the macro-
scopic quantities and the kinetic coefficients by decomposing the perturbed distribution
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function into two parts as

ha (y, c) = ha,0 (y, c) + ha,1 (y, c) . (4.77)

Equation (4.77) is substituted in Eq. (4.37) to obtain the two following equations:

cy
∂ha,0

∂y
+ δha,0 = s′

a (4.78)

cy
∂ha,1

∂y
+ δha,1 = 2δux,acx + 4

15δqx,acx

[
(c − Uw)2 − 5

2

]
(4.79)

As the rarefaction parameter tends to zero, the first term in the decomposition becomes
the dominant one, while the second term vanishes. Then, Eq. (4.78) can be solved
analytically using the boundary condition (4.42) to derive

ha,0 (y, c) = s′
a

δ

[
1 − e

− δ(y+1/2)
cy

]
, cy > 0, (4.80)

ha,0 (y, c) = s′
a

δ

[
1 − e

− δ(y−1/2)
cy

]
, cy < 0. (4.81)

Next, the velocity and heat flux can be obtained analytically by substituting Eqs.
(4.80)-(4.81) into Eqs. (4.39) and (4.41):

ux,P = − 1
2δ

(
1 − 1√

π
I0

)
(4.82)

ux,T = qx,P = 1
2
√
πδ

(
I2 − 1

2I0

)
(4.83)

qx,T = − 1
2δ

[
5
2 − 1√

π

(
I4 − I2 + 9

4I0

)]
(4.84)

Here, the functions In = I+
n + I−

n , n = 0, 2, 4, ... are used, where I+
n and I−

n are defined
as

I+
n =

+∞∫
0

(cy − Uw)ne
− δ(y+1/2)

cy
−(cy−Uw)2

dcy, (4.85)

I−
n =

0∫
−∞

(cy − Uw)ne
− δ(y−1/2)

cy
−(cy−Uw)2

dcy. (4.86)
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By substituting Eqs. (4.82)-(4.84) to the kinetic coefficient definitions (4.9) the analyt-
ical expressions for the kinetic coefficients are deduced in the free-molecular regime:

GP = 1
δ

(
1 − Uwerf (Uw)

δ
− e−U2

w

√
πδ

− 1√
π
Î0

)
(4.87)

GT = QP = 1√
πδ

(
e−U2

w

2δ + Î2 − 1
2 Î0

)
(4.88)

QT = 1
δ

[
5
2 − 5Uwerf (Uw)

2δ − (13 + 2U2
w) e−U2

w

4
√
πδ

− 1√
π

(
Î4 − Î2 + 9

4 Î0

)]
(4.89)

where the functions În = Î−
n − Î+

n , n = 0, 2, 4, ... are used, with Î+
n and Î−

n defined as

Î+
n = 1

δ

+∞∫
0

cy(cy − Uw)ne
−(cy−Uw)2− δ

cy dcy, (4.90)

Î−
n = 1

δ

0∫
−∞

cy(cy − Uw)ne
−(cy−Uw)2+ δ

cy dcy. (4.91)

Furthermore, it is important to derive the asymptotic behavior of the kinetic coefficients
as δ → 0. Expanding Î+

n and Î−
n with respect to Uw and keeping only terms proportional

to ln δ the asymptotic behavior of the kinetic coefficients becomes:

GP = − ln δ√
π
e−U2

w (4.92)

GT = QP = − ln δ
2
√
π

(
1 − 2U2

w

)
e−U2

w (4.93)

QT = − ln δ√
π

(
U4

w − U2
w + 9

4

)
e−U2

w (4.94)

4.2.7 Computational efficiency of the acceleration scheme

The fully-developed Poiseuille and thermal creep flows between infinite parallel
permeable plates with injection/suction are simulated via both the S model and BE in
a wide range of the gas rarefaction parameter and injection velocity. The full-range
synthetic acceleration scheme is implemented for the S model in order to reduce the
computational cost and also to obtain results for large values of δ. In this section, the

63

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 09:16:19 EEST - 18.216.209.182



Chapter 4

computational effort of the full-range acceleration (FRA) scheme for rarefied gas flows
coupled with injection and suction is compared to the non-accelerated (NA) scheme.

In Tables 4.1 and 4.2 the number of iterations and the computational time in
seconds for the pressure driven case with the NA and FRA schemes are presented for
δ ∈ [10−3, 102] and Uw = [0, 0.1, 0.3, 0.5]. The presented results have been obtained
for Ncy = 160 discrete velocities and Ny = 2 × 104 discrete segments, while the
corresponding simulations have been performed on an Intel i5-3570 processor. The
number of iterations required for the convergence of the NA scheme is significantly
increased as δ is increased and as Uw is decreased. On the other hand, the required
iterations for the FRA scheme are slightly increased as δ is increased, while for δ ≥ 10
they remain almost constant. In addition, the required iterations for the FRA scheme
are only slightly increased for intermediate values of Uw. In addition, the required
computational time per iteration for the FRA scheme is only slightly increased compared
to the NA one. Thus, the remarks made for the number of iterations also apply to
the computational time. It is evident that, the FRA scheme is far superior for δ ≥ 10,
since both the number of iterations and computational time required, are at least one
order of magnitude smaller compared to the NA scheme.

In Tables 4.3 and 4.4 the number of iterations and the computational time in
seconds for the temperature driven case with the NA and FRA schemes are presented
for δ ∈ [10−3, 102] and Uw = [0, 0.1, 0.3, 0.5]. The required number of iterations and
computational time for both the NA and FRA schemes for δ ≥ 1 is reduced in the
temperature driven case compared to the pressure driven one. Furthermore, the remarks
made above with regard to the required computational cost for the pressure driven
case also apply here. Thus, the FRA scheme is also superior to the NA scheme in the
case of the thermal creep flow.

4.2.8 Kinetic coefficients

In this section, the kinetic coefficients are provided based on the S model and the
BE for the pressure and temperature driven flows. In addition, a comparison between
the kinetic and the analytical results in the slip and free-molecular regimes is provided
for all coefficients. However, since the solution of the BE requires significantly higher
computational effort than the linearized S model, most of the presented results have
been obtained by the S model, while the BE results are mostly used for benchmarking
purposes. It is reminded here that, the results for the Poiseuille and thermal creep
flows without injection/suction (Uw = 0) are not novel and have been obtained in
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various previous works [60–66]. However, they are included here for completeness and
comparison purposes. The presented results have been obtained by the linearized S
model based on Ncy = 160 discrete velocities and Ny = 2 × 104, 2 × 105 and 2 × 106

segments for δ ≤ 102, 102 < δ ≤ 103 and 103 < δ ≤ 104, respectively. The results
obtained by the BE are limited to δ ≤ 10 and are based on a set of Ncy = 2Ncr = 160
discrete velocities and Ny = 5 × 103 segments.

In Fig. 4.1, the Poiseuille coefficient GP , computed via the S model and the BE is
presented in terms of δ ∈ [10−3, 102] for Uw = [0, 0.1, 0.3, 0.5]. As the injection velocity
is increased (cross-flow becomes more significant), GP is monotonically decreased
(bulk flow rate is reduced). For Uw = 0 the classical Poiseuille flow results without
injection/suction are recovered. In this case, as it is well-known, when the flow is in
the slip and hydrodynamic regimes (δ > 10), GP is proportional to δ. However, for
Uw > 0 as δ is increased, GP tends to the constant limit 1/ (2Uw) (Eq. (4.23)). It
is noted that, this behavior holds for all Uw > 0. Thus, even for negligible values
of the injection velocity, the Poiseuille coefficient will tend to a constant value at
adequately high values of the gas rarefaction parameter. Furthermore, as Uw increases,
the well-known Knudsen minimum becomes gradually shallower. Finally, for Uw = 0.5
the Knudsen minimum vanishes and the Poiseuille coefficient tends monotonically to
the viscous limit value as δ is increased. In the cases where the Knudsen minimum
can be observed (Uw ≤ 0.3), it appears at δ ∼ 1, similar to the classical Poiseuille
flow without injection/suction. As expected from the asymptotic behavior (Eq. (4.92))
in the free-molecular limit (δ < 0.1) it can be observed that the Poiseuille coefficient
is proportional to ln δ in the whole range of the injection velocity. Furthermore, for
δ = 10−3 the S model and BE results deviate from the analytical ones (Eq. (4.87))
by less than 0.5% and 4% respectively. Comparing the linearized S model with the
corresponding BE results, an excellent agreement is observed. The relative deviations
are of the same order in the whole spectrum of Uw with the highest one reaching 4.8%.

In Table 4.5, the Poiseuille coefficient GP obtained by the linearized S model is
provided in the slip and hydrodynamic regimes δ ∈ [10, 104] for Uw = [0, 0.1, 0.3, 0.5].
In addition, the Poiseuille coefficient G(s)

P calculated by the analytical slip solution
(4.22) is presented. Comparing GP with the corresponding G(s)

P , very good agreement
can be observed for all injection velocities and the comparison between the kinetic and
slip results improves as δ is increased. This comparison demonstrates the efficiency of
the kinetic results to capture the analytical slip results for the Poiseuille coefficient, as
well as, the range of validity of the slip solution depending on the required accuracy.
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In Fig. 4.2, the reduced heat flux coefficient QT , computed via the linearized S
model and BE is provided in terms of δ ∈ [10−3, 102] for Uw = [0, 0.1, 0.3, 0.5]. It is
observed that QT follows the same trend with respect to the rarefaction parameter
for all values of the injection velocity. As δ is increased the heat flux is decreased
monotonically and asymptotically tends to zero at the viscous regime. In addition, as
δ is increased the effect of the injection velocity is drastically decreased. Furthermore,
as Uw is increased, the reduced heat flux is monotonically decreased. Hence, it is
noted that as the injection/suction cross flow becomes more significant heat transfer
phenomena are hindered. The reduced heat flux coefficient is also proportional to
ln δ in the free-molecular limit (δ < 0.1) in the whole spectrum of injection velocity
and for δ = 10−3 the linearized S model and BE results deviate less than 0.7% and
5.6% from the analytical ones (Eq. (4.89)), respectively. As shown in Fig. 4.2, the
corresponding linearized S model and BE results for the reduced heat flux coefficient
QT are in excellent agreement. The relative deviation between the two approaches is of
the same order for all investigated injection velocity values with the highest deviation
reaching up to 6.4%.

In Table 4.6 the reduced heat flux coefficient QT obtained by the S model is
tabulated in the slip and hydrodynamic regimes δ ∈ [10, 104] for Uw = [0, 0.1, 0.3, 0.5].
In addition, Q(s)

T calculated by the analytical slip solution (4.27) is provided. As
discussed in Section 4.2.2, the analytical slip solution is independent from the injection
velocity. More specifically, the analytical solution for the thermal creep flow with
injection/suction (Uw > 0) reduces to the analytical solution without injection/suction
(Uw = 0). In Table 4.6, the same behavior is observed for the kinetic results. As δ is
increased the kinetic results do not depend on the injection velocity and tend to the
results obtained for Uw = 0. In this latter case a great agreement between QT and Q(s)

T

is observed. Moreover, the agreement between the kinetic and slip results is further
improved as the rarefaction parameter is increased. This comparison demonstrates the
accuracy of the kinetic results in the slip and hydrodynamic regimes for the temperature
driven flow, as well as, the range of validity of the analytical slip solution.

Next, the so-called cross effects for the Poiseuille and thermal creep flows, namely
the mechanocaloric QP and thermal creep GT coefficients, are investigated. In Appendix
B it has been proven that the Onsager-Casimir reciprocity relation GT = QP holds for
arbitrary values of the injection velocity. The results presented for the thermal creep
coefficient GT are equal to the corresponding results for the mechanocaloric coefficient
QP to at least six significant digits.
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In Fig. 4.3, the thermal creep coefficient GT computed by the linearized S model
and the BE is presented with respect to δ ∈ [10−3, 102] for Uw = [0, 0.1, 0.3, 0.5, 0.7, 0.8].
It is noted here that, additional results for Uw > 0.5 have been included to showcase the
peculiar behavior observed for GT , although the flow may not be isothermal for such
high values of the injection velocity. More specifically, the thermal creep coefficient
GT is positive (gas flows from cold to hot regions) for Uw ≤ 0.7 in the whole range
of δ, while for Uw > 0.7 it becomes negative (gas flows from hot to cold regions) for
small values of δ and becomes positive again as δ is increased. In both cases, GT tends
to zero at the slip and hydrodynamic regimes. This behavior is also validated from
the asymptotic behavior of the thermal creep coefficient. It is readily seen that Eq.
(4.93) provides a positive GT for Uw <

√
1/2 and a negative one for Uw >

√
1/2. As

the injection velocity is further increased the thermal creep coefficient is not decreased
indefinitely, on the contrary it is decreased to a minimum and then it is increased again,
tending to zero as Uw → ∞. This behavior is to be expected, since as Uw → ∞ flow
phenomena in the longitudinal direction are expected to vanish. In addition, in the
free-molecular regime and for δ = 10−3 the linearized S model and BE results deviate
from analytical ones (Eq. (4.88)) by less than 0.8% and 13% respectively. The relative
deviation between the linearized S model and BE results is increased with Uw and in
this case the discrepancies are more significant with a highest relative deviation of
about 20% for Uw ≤ 0.5.

In Table 4.7, the thermal creep coefficient GT obtained by the S model is presented
in the slip and hydrodynamic regimes δ ∈ [10, 104] for Uw = [0, 0.1, 0.3, 0.5]. In addition,
G

(s)
T calculated by the analytical slip solution in Eq. (4.27) is provided. As already

pointed out the analytical slip solution is independent from the injection velocity
and reduces to the classical thermal creep solution without injection/suction. By
comparing GT and G

(s)
T , a good agreement can be observed for Uw = 0 and in this

case, the agreement is improved as the rarefaction parameter is increased. However, as
the injection velocity is increased the agreement between the kinetic and analytical
slip results deteriorates. More specifically, as the rarefaction parameter is increased
the kinetic and analytical slip results are inversely proportional to δ and the relative
deviation between the two approaches tends to a constant value. This comparison
demonstrates the accuracy of the kinetic results and the inefficiency of the analytical
slip solution to accurately capture the cross effects GT and QP .
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4.2.9 Macroscopic distributions

In this section, the velocity, heat flux and shear stress distributions, computed
by the S model are provided for the planar Poiseuille and thermal creep flows with
injection/suction. In Fig. 4.4, the velocity distribution ux,P (y) is plotted in terms
of y for δ = [10−2, 0.1, 1, 10] and Uw = [0, 0.1, 0.3, 0.5]. In the case of Uw = 0, the
velocity distribution takes the typical parabolic profile (symmetric about y = 0.), which
becomes more acute as the rarefaction parameter is increased. As the injection velocity
increases the parabolic profile changes and the velocity maximum shifts from the center
of the flow domain towards the suction plate at y = 1/2. It is noted that, as δ increases
the velocity maximum moves closer to the suction plate. In addition, for Uw > 0 and
as δ increases the velocity profile tends to become linear near the injection plate and
in the bulk of the flow (y < 1/2), while it suddenly drops close to the suction plate. It
is noted that, the same behavior can be observed in the analytical slip solution from
the velocity distribution limiting solutions (Eqs. (4.24) and (4.26)).

The heat flux distribution qx,P (y) is plotted in Fig. 4.5 with respect to y for
δ = [10−2, 0.1, 1, 10] and Uw = [0, 0.1, 0.3, 0.5]. For Uw = 0 the heat flux profile is
parabolic and as δ increases the heat flux distribution becomes flatter. For Uw ≤ 0.3, in
the free-molecular and early transition regimes (δ ≤ 1) the heat flux profile is slightly
altered and the minimum heat flux shifts towards the suction plate. As Uw is further
increased the heat flux profile changes considerably and tends to become linear at
the bulk of the flow with a shallow minimum inside the viscous layer close to the
suction plate. In the late transition and slip regimes (δ > 1) the heat flux distribution
is drastically changed. More specifically, the profile curvature is significantly changed
and a deep minimum is formed towards the suction plate. As Uw is increased the heat
flux minimum becomes more acute and moves closer to the plate. Also, for δ ≥ 0.1
when the injection velocity is increased the heat flux changes sign and becomes positive
near the injection plate.

The shear stress distribution Πxy,P (y) is presented in Fig. 4.6 in terms of y for
δ = [10−2, 0.1, 1, 10] and Uw = [0, 0.1, 0.3, 0.5]. For Uw = 0 the well-known shear
stress profile, varying linearly between the limiting values of −1/2 and 1/2 at the
bottom and top plate is recovered. For Uw > 0 and small values of the rarefaction
parameter (δ ≤ 0.1) the shear stress is monotonically decreased as the injection velocity
is increased, while as the gas rarefaction parameter is further increased (δ ≥ 1) the
shear stress is not monotonically decreased in the whole flow domain. More specifically,
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for Uw > 0 and δ ≥ 1, the shear stress gradually tends to zero near the injection plate
and in the bulk of the flow, while it rises rapidly towards the suction plate. This trend
can also be verified from the analytical slip solutions for the shear stress distribution
(Eqs. (4.24) and (4.26)).

In Fig. 4.7, the velocities ux,P (∓1/2) at the injection and suction plates are plotted
with respect to δ ∈ [10−3, 104] for Uw = [0, 10−2, 0.1, 0.3, 0.5]. It can be seen that as Uw

is increased, the velocity ux,P (−1/2) at the injection plate is monotonically decreased
in the whole range of the rarefaction parameter, while the velocity ux,P (1/2) at the
suction plate does not follow any particular trend. Furthermore, for high values of
δ the velocity ux,P (−1/2) tends to zero for all Uw > 0, while the velocity ux,P (1/2)
tends to different limiting values depending on Uw. One remark that can be made is
that for very small values of Uw (i.e. Uw = 10−2) at adequately high values of δ the
velocity at the two boundaries does not tend to the same limit for Uw = 0. A similar
observation has already been made in Section 4.2.2 for the analytical slip velocity (Eqs.
(4.25) and (4.26)). In the case of Uw = 0, the analytical slip velocity at the bottom and
top plate u(s)

P (∓1/2) tends to the same value of σP /2 for high values of δ, while it is
clearly seen from the limiting slip solutions that, for Uw very close to zero, u(s)

P (−1/2)
and u

(s)
P (1/2) tend to zero and σP , respectively. All these observations are confirmed

by the kinetic solution at high values of the gas rarefaction parameter.
The shear stresses Πxy,P (∓1/2) at the injection and suction plates are plotted

in Fig. 4.8 in terms of δ ∈ [10−3, 104] for Uw = [0, 10−2, 0.1, 0.3, 0.5]. No monotonic
trend can be observed for the shear stress at the two boundaries in the whole range
of the rarefaction parameter. However, as δ is increased the shear stress Πxy,P (−1/2)
at the injection plate always tends to zero, while the shear stress Πxy,P (1/2) at the
suction plate tends to different limiting values based on the injection velocity. Similar
to the velocity at the boundaries, it is also seen here that, for Uw very close to zero
(i.e. Uw = 10−2) the shear stress at the boundaries does not tend to the corresponding
values for Uw = 0, which is also consistent to the behavior of the limiting cases for
the analytical shear stress in the slip solution (Eqs. (4.25) and (4.26)). As pointed
out in Section 4.2.2, for very small values of Uw the analytical shear stress at the
injection plate Π(s)

xy,P (−1/2) tends to zero, instead of the typical value of −1/2 and at
the suction plate Π(s)

xy,P (1/2) tends to one, instead of the typical value of 1/2. Again
these findings are in agreement with the kinetic results.

Moving on to the thermal creep flow, the velocity distribution ux,T (y) is plotted in
Fig. 4.9 versus y for δ = [10−2, 0.1, 1, 10] and Uw = [0, 0.1, 0.3, 0.5]. For Uw = 0, the
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velocity distribution has a parabolic profile that becomes more acute as δ is increased.
As Uw is increased, in the free-molecular and early transition regimes (δ ≤ 1), the
macroscopic velocity is decreased near the injection plate and the bulk of the flow, while
the velocity maximum moves from the flow center towards the suction plate. For high
values of the injection velocity (Uw > 0.3) the macroscopic velocity is monotonically
increased moving from the injection towards the suction plate for small values of the
rarefaction parameter (i.e. for δ = 10−2), while as the rarefaction parameter is increased
a velocity maximum can be observed inside the flow domain. In the late transition
and slip regimes (δ > 1), the velocity profile is significantly altered. More specifically,
the velocity profile curvature changes and a velocity maximum, that becomes more
acute as Uw is increased, is formed towards the suction plate.

In Fig. 4.10, the heat flux distribution qx,T (y) is presented in terms of y for
δ = [10−2, 0.1, 1, 10] and Uw = [0, 0.1, 0.3, 0.5]. In the case without injection/suction
(Uw = 0), the heat flux distribution is parabolic. As Uw is increased, the heat flux is
increased close to the injection plate and the minimum shifts close to the suction plate.
As the gas rarefaction parameter is increased the injection velocity has a weaker effect
on the heat flux distribution. This is also confirmed by the analytical slip solution (Eq.
(4.27)) for the reduced heat flux, which is independent of the injection/suction velocity
as already pointed out in Section 4.2.2.

In Fig. 4.11, the shear stress distribution Πxy,T (y) is plotted with respect to y for
δ = [10−2, 0.1, 1, 10] and Uw = [0, 0.1, 0.3, 0.5]. In the case without injection/suction
(Uw = 0), the shear stress is zero in the whole flow domain. However, as the injection
velocity is increased viscous forces start to appear. It can be observed that, in the free-
molecular regime (δ ≤ 10−2) the shear stress is negative in the whole flow domain for
small and medium values of the injection velocity (Uw ≤ 0.3). As both the rarefaction
parameter and injection velocity are increased, the shear stress becomes positive close
to the injection plate, while it either remains negative or also becomes positive close to
the suction plate depending on the specific values of δ and Uw. In the late transition
and slip regimes (δ ≥ 10), the shear stress profile is considerably changed. More
specifically, the profile curvature is changed with a minimum appearing close to the
suction plate.
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4.3 Asymptotic suction flow

4.3.1 Flow configuration

Consider a monoatomic gas stream with velocity Ũ∞ flowing over an infinite
permeable plate located at ỹ = 0. The bulk of the flow moves in the longitudinal x̃
direction, while the permeable plate produces a uniform downward suction with a
constant suction velocity Ũw. The flow may be fully characterized by the dimensionless
suction velocity defined as

Uw = Ũw

v0
. (4.95)

Here, v0 =
√

2RgT0 is the most probable velocity, where T0 is the equilibrium
temperature and Rg = kB/m is the specific gas constant, with kB denoting the
Boltzmann constant and m the gas molecular mass. The free stream velocity Ũ∞ is
assumed to be small compared the most probable velocity

XU = Ũ∞

v0
≪ 1 (4.96)

and since the cross-flow stream velocity is constant, the gas flow may be treated as
isothermal and fully-developed [33, 131, 133].

It is convenient to introduce the dimensionless spatial variables

x = x̃

l0
, y = ỹ

l0
, (4.97)

where l0 = µ̃v0/P0 is the equivalent free path, with µ̃ denoting the gas viscosity and
P0 the equilibrium pressure. Moreover, the dimensionless macroscopic quantities of
interest, namely the velocity, shear stress and heat flux are introduced

ux (y) = ũx (ỹ)
v0XU

, Πxy (y) = Pxy (ỹ)
P0XU

, qx (y) = q̃x (ỹ)
v0P0XU

. (4.98)

The main quantity of interest for the investigated flow is the boundary layer thickness,
which is defined by ũx

(
δ̃L

)
= 0.99Ũ∞ and is written in dimensionless form as

δL = δ̃L

l0
. (4.99)
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It is also useful to define the Knudsen number by taking the boundary layer thickness
as the reference length of the flow

Kn =
√
π

2δL

. (4.100)

4.3.2 Analytical solution in the slip and hydrodynamic regimes

At the hydrodynamic and slip regimes the asymptotic suction flow is governed by
the x-momentum equation [131, 133]

− ρ̃Ũw
dũ(j)

x

dỹ
= µ̃

d2ũ(j)
x

dỹ2 , (4.101)

where ρ̃ is the gas density and the superscript j = h, s denotes the hydrodynamic and
slip regimes respectively. It is noted that, in the present notation Ũw is assumed positive
or negative when suction or injection occurs at the plate, respectively. Introducing the
dimensionless quantities defined in Eqs. (4.95)-(4.98) the x-momentum Eq. (4.101)
may be given in dimensionless form

− 2Uw
du(j)

x

dy
= d2u(j)

x

dy2 . (4.102)

In the hydrodynamic regime (j = h), Eq. (4.102) subject to the no-slip boundary
condition at the permeable plate and the free stream boundary condition far away
from the plate

u(h)
x (0) = 0, lim

y→∞
u(h)

x (y) = 1, (4.103)

may be solved analytically for Uw > 0 to obtain the velocity and shear stress distribu-
tions:

u(h)
x (y) = 1 − e−2Uwy (4.104)

Π(h)
xy (y) = −2Uwe

−2Uwy (4.105)

It is evident from Eq. (4.104) that, Uw must be positive (wall suction), otherwise
u(h)

x would be unbounded far away from the permeable plate [131]. In addition, the
boundary layer thickness can be obtained by setting u(h)

x = 0.99:

δ
(h)

L = 2.30259
Uw

(4.106)
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In the slip regime (j = s), the slip boundary condition is applied at the permeable
plate and the free stream boundary condition far away from the plate

u(s)
x (0) = σP

du(s)
x

dy

∣∣∣∣∣
0
, lim

y→∞
u(s)

x (y) = 1, (4.107)

where the viscous slip coefficient σP is known and computed by solving the corresponding
half-space flow problem [33]. Then, Eq. (4.102) subject to the boundary conditions
(4.107) may be solved to provide the velocity and shear stress:

u(s)
x (y) = 1 − e−2Uwy

1 + 2UwσP

(4.108)

Π(s)
xy (y) = − 2Uwe

−2Uwy

1 + 2UwσP

(4.109)

Furthermore, the boundary layer thickness in the slip regime may be obtained:

δ
(s)
L = δ

(h)
L − ln (1 + 2UwσP )

2Uw

(4.110)

It is noted here that, since Uw > 0, the boundary layer thickness in the slip regime will
always be smaller compared to the hydrodynamic one.

4.3.3 Formulation of the linearized Shakhov model

The Shakhov model equation for the aforementioned flow setup is written as

ξ
∂f

∂ỹ
= P

µ̃

[
fM

{
1 + 2m

15n(kBT )2 q̃ · (ξ − ũ)
[
m(ξ − ũ)2

2kBT
− 5

2

]}
− f

]
, (4.111)

where f = f (ỹ, ξ) is the unknown distribution function, depending on the ỹ space
variable and the molecular velocity vector ξ = (ξx, ξy, ξz). The quantity fM denotes
the local Maxwellian distribution defined as

fM = n
(

m

2πkBT

)3/2
exp

[
−m(ξ − ũ)2

2kBT

]
(4.112)

and P/µ̃ approximates the collision frequency. The macroscopic quantities of interest,
namely the velocity, shear stress and heat flux are defined as the first, second and third
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moments of the unknown distribution function as

ũ (ỹ) = 1
n

∫
ξf (ỹ, ξ) dξ, (4.113)

Πxy (ỹ) = m
∫
ζxζyf (ỹ, ξ) dξ, (4.114)

q̃ (ỹ) = m

2

∫
ζ2ζf (ỹ, ξ) dξ, (4.115)

where ζ = ξ−ũ denotes the peculiar molecular velocity vector. The boundary condition
on the suction plate is given by

f+ (0, ξ) = nw

(
m

2πkBTw

)3/2
exp

−
m
(
ξ − Ũw

)
2kBTw

 , ξy > 0, (4.116)

where the density nw is part of the solution and is defined by the penetration condition
ũy (0) = −Ũw, while Tw is the plate temperature. The quantity Ũw =

(
0,−Ũw, 0

)
denotes the suction velocity in vector form. Far away from the suction plate the
boundary condition is given by

lim
ỹ→∞

f+ (ỹ, ξ) = n∞

(
m

2πkBT∞

)3/2
exp

−
m
(
ξ − Ũ∞

)
2kBT∞

 , ξy < 0, (4.117)

where n∞, T∞ and Ũ∞ =
(
Ũ∞, 0, 0

)
denote the free stream number density, tempera-

ture and velocity vector, respectively.
The unknown distribution function can be linearized due to the smallness of the

driving free stream velocity
f = fM

0 [1 +XUh] , (4.118)

where fM
0 denotes the global Maxwellian

fM
0 = n0

π3/2v3
0
e−(c−Uw)2

, (4.119)

with c = ξ/v0 being the dimensionless molecular velocity vector and Uw = (0,−Uw, 0)
denoting the dimensionless suction velocity in vector form. Substituting Eqs. (4.118)
and (4.119) in Eq. (4.111) and introducing the dimensionless quantities in Eqs. (4.95)-
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(4.98), yields the linearized S kinetic model equation

cy
∂h

∂y
+ h = 2uxcx + 4

15qxcx

[
(c − Uw)2 − 5

2

]
. (4.120)

In the same manner the dimensionless velocity, shear stress and heat flux are obtained:

ux (y) = 1
π3/2

∫
cxhe

−(c−Uw)2
dc (4.121)

Πxy (y) = 2
π3/2

∫
cx (cy + Uw)he−(c−Uw)2

dc (4.122)

qx (y) = 1
π3/2

∫
cx

[
(c − Uw)2 − 5

2

]
he−(c−Uw)2

dc (4.123)

Finally, the linearized boundary conditions at the permeable plate and far away from
the plate become

h+ (0, c) = 0, cy > 0, (4.124)

lim
y→∞

h+ (y, c) = 0, cy < 0. (4.125)

At this stage by introducing the following reduced perturbed distribution functions

Y (y, cy) = 1
π

+∞∫
−∞

+∞∫
−∞

cxh (y, c) e−(c2
x+c2

z)dcxdcz, (4.126)

F (y, cy) = 1
π

+∞∫
−∞

+∞∫
−∞

cx

(
c2

x + c2
z − 2

)
h (y, c) e−(c2

x+c2
z)dcxdcz, (4.127)

the x and z molecular velocity components can be eliminated, in order to signifi-
cantly reduce the required computational cost. Equation (4.120) is multiplied by
(1/π) cxe

−(c2
x+c2

z) and (1/π) cx

(
c2

x + c2
y − 2

)
e−(c2

x+c2
z) successively and the resulting

equations are integrated over cx and cz to yield

cy
∂Y

∂y
+ Y = ux + 2

15qx

[
(cy + Uw)2 − 1

2

]
, (4.128)

cy
∂F

∂y
+ F = 4

15qx.(4.129)
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Operating in a similar manner on Eqs. (4.121)-(4.123), the macroscopic velocity, shear
stress and heat flux become

ux (y) = 1√
π

+∞∫
−∞

Y (y, cy) e−(cy+Uw)2
dcy, (4.130)

Πxy (y) = 2√
π

+∞∫
−∞

(cy + Uw)Y (y, cy) e−(cy+Uw)2
dcy, (4.131)

qx (y) = 1√
π

+∞∫
−∞

{[
(cy + Uw)2 − 1

2

]
Y (y, cy) + F (y, cy)

}
e−(cy+Uw)2

dcy. (4.132)

The corresponding boundary conditions may be readily deduced

Y (0, cy > 0) = 0, lim
y→∞

Y (y, cy < 0) = 1,

F (0, cy > 0) = 0, lim
y→∞

F (y, cy < 0) = 0.
(4.133)

At this point, the formulation of the S model is properly defined by Eqs. (4.128)-
(4.129), with the associated Eqs. (4.130)-(4.132) and the corresponding boundary
conditions (4.133). The deterministic numerical solution is based on the discrete
velocity method. The continuum molecular velocity variable cy is replaced by a set of
Ncy discrete velocities with their own weights Wcy. The positive part of cy is replaced
by Ncy/2 discrete velocities, which are taken to be the roots of the half-range Hermite
polynomials of degree Ncy/2. The negative part is also replaced by Ncy/2 discrete
velocities, which are taken to be symmetrical to the positive part with respect to the
origin. The discretization of the physical space is based on a second order central
difference scheme, where the flow domain y ∈ [−1/2, 1/2] is divided into Ny evenly
distributed segments. An iterative scheme is implemented to solve the discretized
equations. The iteration map is concluded when the following criteria are fulfilled

1
2
(∣∣∣u(k)

x,a,i − u
(k−1)
x,a,i

∣∣∣+ ∣∣∣q(k)
x,a,i − q

(k−1)
x,a,i

∣∣∣) < ε, i = 1, 2, ..., Ny + 1. (4.134)

Here k is the iteration index, i is the physical node index and ε is the tolerance
parameter. The computational effort for the proposed scheme is increased as the
suction velocity Uw is decreased. This is due to the fact that, as Uw is decreased a
larger flow domain (i.e. high number of physical space segments) is required in order
to satisfy the free steam boundary condition.
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4.3.4 Boundary layer thickness and macroscopic distributions

The asymptotic suction flow is simulated via the linearized S kinetic model. The
boundary layer thickness, along with the macroscopic quantities are provided in a wide
range of the suction velocity. In addition, the corresponding results calculated via the
analytical solutions provided in Section 4.3.2 for the slip and hydrodynamic regimes are
also presented. The S model results have been obtained based on Ncy = 160 discrete
velocities. In the physical space Ny = 105 and Ny = 104 segments have been used for
Uw < 0.1 and Uw ≥ 0.1, respectively

In Table 4.8 the boundary layer thickness is provided based on the kinetic, slip
and hydrodynamic approaches with respect to the suction velocity Uw. It is evident
that, the boundary layer thickness is increased as the suction velocity Uw is decreased.
This can be rationalized by considering that, the viscous layer ends when the suction
velocity is balanced by the viscous diffusion velocity, which is inversely proportional to
the boundary layer thickness [133]. A great agreement is observed between the kinetic
and slip solution (4.110) for Uw ≤ 0.1 (Kn < 0.1), while a good agreement between
the kinetic and hydrodynamic solution (4.106) can only be observed for Uw ≤ 2 × 10−2

(Kn < 10−2). As expected, the agreement deteriorates in both cases as the suction
velocity is increased i.e. as the boundary layer thickness is decreased. In addition,
in the whole investigated suction velocity spectrum the slip solution underestimates,
while the hydrodynamic solution overestimates the boundary layer thickness.

Next, the macroscopic quantities of interest, such as the velocity, shear stress and
heat flux are provided. In Fig. 4.12, the macroscopic velocity computed via the S model,
as well as, via the analytical slip and hydrodynamic velocity analytical expressions
(4.104) and (4.108) are plotted with respect to the dimensionless spatial variable y for
Uw = [10−2, 0.1, 0.3, 0.5]. As expected, the macroscopic velocity tends to one far away
from the suction plate and is monotonically decreased when approaching the suction
plate. In addition, it is seen that, the velocity slip at the plate is increased as the
suction velocity is increased. An excellent agreement between the kinetic, slip and
hydrodynamic approaches can be observed for Uw = 10−2, which deteriorates as the
suction velocity is increased.

In Fig. 4.13, the shear stress distribution computed based on the S model, as well
as, from the analytical slip and hydrodynamic velocity expressions (4.105) and (4.109)
is presented in terms of y for Uw = [10−2, 0.1, 0.3, 0.5]. As expected, the macroscopic
shear stress is zero (macroscopic velocity is constant) outside of the boundary layer,
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while inside the boundary layer viscous forces start to appear, becoming more significant
closer to the suction plate. It is noted that, the shear stress acting on the plate is
increased as the suction velocity is increased. The excellent agreement between the
three approaches can also be observed for the shear stress in the case of Uw = 10−2.

The heat flux distribution computed based on the S model is presented in terms of
y for Uw = [10−2, 0.1, 0.3, 0.5] in Fig. 4.14. As expected, outside of the boundary layer
the heat flux tends to zero, since, the flow is isothermal and the macroscopic velocity is
constant. However, inside the boundary layer heat transfer phenomena start to appear.
For small values of the suction velocity (Uw < 0.1) the heat flux at the plate is positive,
while as the suction velocity is increased it becomes negative. In addition, moving
away from the plate the heat flux distribution is initially decreased to a minimum and
then it is increased tending to zero far away from the plate. It is also noted that, the
heat flux minimum is inside the boundary layer and moves closer to the suction plate
as the suction velocity is increased. These remarks hold even for Uw = 10−2, although
they are not clearly seen in Fig 4.14.

4.4 Concluding remarks

Overall, injection/suction flows have attracted considerable attention in the viscous
regime due to their theoretical interest, as well as, due to their tentative importance in
various technological applications. Here, fundamental injection/suction flow configu-
rations, namely the planar fully-developed Poiseuille and thermal creep flow coupled
with uniform injection/suction and the asymptotic suction flow are investigated in the
whole range of rarefaction via deterministic kinetic modeling based on the S model
and the BE.

In Section 4.2, the fully-developed Poiseuille and thermal creep rarefied gas flow
between parallel permeable plates, with uniform gas injection and suction from the
bottom and top plate, respectively, is investigated based on the linearized S model
and BE. Both flows are characterized by the gas rarefaction parameter and injection
velocity magnitude. First, the analytical slip and hydrodynamic solutions are provided
and then, the linearization procedure required to tackle these flows is introduced and
implemented to the S model and BE. In addition, a synthetic acceleration scheme
is constructed for the solution of the S kinetic model. Furthermore, the analytical
solution in the free-molecular regime is provided. The full-range acceleration scheme
is found to be far superior to the non-accelerated scheme for large values of the
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rarefaction parameter, while for small values of the rarefaction parameter they are
similar in terms of computational effort. The analytical free-molecular and slip results
for the kinetic coefficients are properly recovered by the kinetic solution at small and
large values of the gas rarefaction parameter, respectively. The Poiseuille coefficient
monotonically decreases when the injection velocity increases and tends to a constant
value at dense atmospheres. Also, as the injection velocity increases, the well-known
Knudsen minimum becomes gradually shallower and finally vanishes. The reduced
heat flux, mechanocaloric and thermal creep coefficients are also decreased value as
the injection velocity is increased. It has been found that, for adequately large values
of the injection velocity the mechanocaloric and thermal creep coefficients change sign.
Furthermore, the Onsager-Casimir reciprocity relation for the mechanocaloric and
thermal creep coefficients has been proven and implemented to validate the accuracy of
the presented results. Comparing the S model to the BE a great agreement has been
observed for the Poiseuille and reduced heat flux coefficient and an adequate agreement
for the mechanocaloric and thermal creep coefficients. In both flow setups, as the
injection velocity is increased the velocity and heat flux distributions are significantly
affected. The profiles are becoming non-symmetric and the velocity maximum and
heat flux minimum are shifted from the flow domain center towards the suction
plate. Furthermore, as the injection velocity is increased the shear stress distribution
significantly deviates from the typical linear profile in the Poiseuille flow and the
constant zero profile in the thermal creep flow.

In Section 4.3, the fully-developed rarefied gas flow over a permeable plate with
uniform suction is investigated in a wide range of the suction velocity based on the S
kinetic model. First, the analytical solutions in the slip and hydrodynamic regimes
are provided and then, the S model is formulated based on the linearization procedure
described in Section 4.2. The boundary layer thickness, as well as, the macroscopic
velocity, shear stress and heat flux are provided based on the kinetic and viscous
approaches. The boundary layer thickness is found to be inversely proportional to the
suction velocity, as expected. The velocity and shear stress are one and zero outside of
the boundary layer, respectively and are decreased close to the suction plate. On the
other hand, a more complex behavior is obtained for the heat flux, which moving away
from the suction plate is initially decreased to a minimum inside the boundary layer
and then it is increased tending to zero far away from the suction plate.

79

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 09:16:19 EEST - 18.216.209.182



Chapter 4

Table 4.1 Number of iterations for the Poiseuille flow through a permeable channel
with the NA and FRA schemes.

δ
NA FRA

Uw = 0 Uw = 0.1 Uw = 0.3 Uw = 0.5 Uw = 0 Uw = 0.1 Uw = 0.3 Uw = 0.5
0.001 5 5 5 5 5 5 5 5
0.01 7 7 7 7 7 7 7 7
0.1 12 12 12 11 12 12 12 11
1 38 38 34 29 28 28 27 25
10 494 427 212 114 32 33 32 31
100 28304 3369 740 387 32 33 33 31

Table 4.2 Computational time [s] for the Poiseuille flow through a permeable channel
with the NA and FRA schemes.

δ
NA FRA

Uw = 0 Uw = 0.1 Uw = 0.3 Uw = 0.5 Uw = 0 Uw = 0.1 Uw = 0.3 Uw = 0.5
0.001 8.01(-1) 8.50(-1) 8.53(-1) 8.70(-1) 9.54(-1) 9.06(-1) 9.57(-1) 9.56(-1)
0.01 1.13 1.15 1.18 1.21 1.23 1.24 1.29 1.34
0.1 1.92 1.97 2.08 1.92 2.19 2.25 2.29 2.11
1 7.94 6.30 5.85 5.02 5.31 5.53 5.31 4.90
10 8.73(1) 7.01(1) 3.75(1) 2.03(1) 6.35 6.58 6.32 6.10
100 4.83(3) 5.61(2) 1.31(2) 6.83(1) 7.64 6.63 6.80 6.52

Table 4.3 Number of iterations for the thermal creep flow through a permeable channel
with the NA and FRA schemes.

δ
NA FRA

Uw = 0 Uw = 0.1 Uw = 0.3 Uw = 0.5 Uw = 0 Uw = 0.1 Uw = 0.3 Uw = 0.5
0.001 5 5 5 5 5 5 5 5
0.01 7 7 7 6 7 7 7 6
0.1 12 12 11 10 12 12 11 11
1 36 35 31 26 26 26 25 23
10 389 339 171 91 27 28 27 25
100 12469 2371 632 342 23 24 23 22
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Table 4.4 Computational time [s] for the thermal creep flow through a permeable
channel with the NA and FRA schemes.

δ
NA FRA

Uw = 0 Uw = 0.1 Uw = 0.3 Uw = 0.5 Uw = 0 Uw = 0.1 Uw = 0.3 Uw = 0.5
0.001 8.29(-1) 8.36(-1) 8.30(-1) 8.91(-1) 9.68(-1) 9.52(-1) 9.58(-1) 9.85(-1)
0.01 1.13 1.17 1.28 1.01 1.39 1.30 1.33 1.11
0.1 1.98 1.96 1.96 1.71 2.36 2.32 2.11 2.10
1 5.86 5.75 5.49 4.46 5.06 5.08 4.87 4.48
10 6.35(1) 5.66(1) 2.94(1) 1.56(1) 5.23 5.45 5.25 4.85
100 2.03(3) 3.89(2) 1.10(2) 5.83(1) 4.42 4.85 4.57 4.26

Table 4.5 Kinetic and slip Poiseuille coefficients GP and G(s)
P respectively, in terms of δ

and Uw in the slip and hydrodynamic regimes.

δ
GP G

(s)
P

Uw = 0 Uw = 0.1 Uw = 0.3 Uw = 0.5 Uw = 0 Uw = 0.1 Uw = 0.3 Uw = 0.5
10 2.780 2.506 1.569 1.044 2.685 2.453 1.594 1.084
20 4.405 3.378 1.630 1.027 4.351 3.370 1.646 1.047
50 9.375 4.336 1.656 1.012 9.351 4.339 1.663 1.020
102 1.770(1) 4.676 1.662 1.006 1.768(1) 4.678 1.665 1.010
103 1.677(2) 4.968 1.666 1.001 1.677(2) 4.969 1.667 1.001
104 1.668(3) 4.997 1.667 1.000 1.668(3) 4.997 1.667 1.000

Table 4.6 Kinetic and slip reduced heat flux coefficients QT and Q
(s)
T respectively, in

terms of δ and Uw in the slip and hydrodynamic regimes.

δ
QT

Q
(s)
T )

Uw = 0 Uw = 0.1 Uw = 0.3 Uw = 0.5
10 3.406(-1) 3.400(-1) 3.360(-1) 3.305(-1) 3.750(-1)
20 1.789(-1) 1.787(-1) 1.777(-1) 1.763(-1) 1.875(-1)
50 7.362(-2) 7.359(-2) 7.343(-2) 7.321(-2) 7.500(-2)
102 3.716(-2) 3.715(-2) 3.711(-2) 3.705(-2) 3.750(-2)
103 3.747(-3) 3.746(-3) 3.746(-3) 3.746(-3) 3.750(-3)
104 3.750(-4) 3.750(-4) 3.750(-4) 3.750(-4) 3.750(-4)
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Table 4.7 Kinetic and slip thermal creep coefficients GT and G(s)
T respectively, in terms

of δ and Uw in the slip and hydrodynamic regimes.

δ
GT = QP

G
(s)
T = Q

(s)
PUw = 0 Uw = 0.1 Uw = 0.3 Uw = 0.5

10 9.815(-2) 8.873(-2) 5.256(-2) 2.779(-2) 1.175(-1)
20 5.385(-2) 4.586(-2) 2.591(-2) 1.421(-2) 5.875(-2)
50 2.271(-2) 1.800(-2) 1.022(-2) 5.758(-3) 2.350(-2)
102 1.155(-2) 8.906(-3) 5.087(-3) 2.891(-3) 1.175(-2)
103 1.173(-3) 8.823(-4) 5.065(-4) 2.903(-4) 1.175(-3)
104 1.175(-4) 8.814(-5) 5.063(-5) 2.904(-5) 1.175(-4)

Table 4.8 Asymptotic suction flow: Boundary layer thickness δL based on the kinetic,
slip and hydrodynamic approaches in terms of the suction velocity Uw.

Uw δL δ
(s)
L δ

(h)
L

0.01 2.293(2) 2.293(2) 2.303(2)
0.02 1.141(2) 1.141(2) 1.151(2)
0.05 4.508(1) 4.508(1) 4.605(1)
0.1 2.221(1) 2.210(1) 2.303(1)
0.2 1.095(1) 1.066(1) 1.151(1)
0.3 7.182 6.881 7.675
0.4 5.239 5.012 5.756
0.5 4.014 3.903 4.605
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Figure 4.1 Poiseuille coefficient GP in terms of the rarefaction parameter δ and injection
velocity Uw; comparison between S and BE results.

Figure 4.2 Heat flux coefficient QT in terms of the rarefaction parameter δ and injection
velocity Uw; comparison between S and BE results.
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Figure 4.3 Thermal creep GT and mechanocaloric QP coefficients (GT = QP ) in terms
of the rarefaction parameter δ and injection velocity Uw; comparison between S and
BE results.
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Figure 4.4 Velocity ux,P (y) for δ = [10−2, 0.1, 1, 10] and Uw = [0, 0.1, 0.3, 0.5].
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Figure 4.5 Heat flux qx,P (y) for δ = [10−2, 0.1, 1, 10] and Uw = [0, 0.1, 0.3, 0.5].
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Figure 4.6 Shear stress Πxy,P (y) for δ = [10−2, 0.1, 1, 10] and Uw = [0, 0.1, 0.3, 0.5].
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Figure 4.7 Velocities ux,P (∓1/2) at the injection (left) and suction (right) plates in
terms of gas rarefaction parameter δ for Uw = [0, 10−2, 0.1, 0.3, 0.5].

Figure 4.8 Shear stresses Πxy,P (∓1/2) at the injection (left) and suction (right) plates
in terms of gas rarefaction parameter δ for Uw = [0, 10−2, 0.1, 0.3, 0.5].
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Figure 4.9 Velocity ux,T (y) for δ = [10−2, 0.1, 1, 10] and Uw = [0, 0.1, 0.3, 0.5].
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Figure 4.10 Heat flux qx,T (y) for δ = [10−2, 0.1, 1, 10] and Uw = [0, 0.1, 0.3, 0.5].
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Figure 4.11 Shear stress Πxy,T (y) for δ = [10−2, 0.1, 1, 10] and Uw = [0, 0.1, 0.3, 0.5].
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Figure 4.12 Asymptotic suction flow: Velocity ux (y) based on the S model and analytical
expressions in the slip and hydrodynamic regimes for Uw = [10−2, 0.1, 0.3, 0.5].
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Figure 4.13 Asymptotic suction flow: Shear stress Πxy (y) based on the S model and
analytical expressions in the slip and hydrodynamic regimes for Uw = [10−2, 0.1, 0.3, 0.5].
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Figure 4.14 Asymptotic suction flow: Heat flux qx (y) based on the S model for
Uw = [10−2, 0.1, 0.3, 0.5].
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Chapter 5

Simulation of gas distribution
systems

5.1 Introduction

Large gas pumping systems operating in a wide range of the Knudsen number play
a significant role in particle accelerators [9] and fusion reactors [10, 11]. In addition,
vacuum gas distribution systems may be found in many industrial processes and
technological fields including semiconductor technologies, material deposition, vacuum
metallurgy, food packaging and metrology [3–5]. Since these systems operate from very
low pressures (∼ 10−10 Pa) up to atmospheric pressure, the gas flow may be from the
free-molecular regime up to the transition or even the slip and viscous flow regimes. To
accurately simulate gas flows in the whole range of gas rarefaction, mesoscale kinetic
modeling, as described by the Boltzmann equation is required [33]. However, in gas
distribution networks with hundreds or thousands of piping elements, as the ones
in large fusion reactors (e.g. in ITER), applying directly stochastic or deterministic
kinetic modeling is a formidable or even prohibitive task.

To circumvent this pitfall, at the University of Thessaly (UTH) in-house codes have
been developed for simulating gas pumping distribution systems of arbitrary size and
complexity in the whole range of rarefaction (free-molecular, transition and viscous
regimes) under steady-state [96, 97, 147] and time-dependent conditions [148]. This
is achieved by integrating a dense kinetic database providing the flow rates through
pipe elements of various geometries subject to any pressure difference into a typical gas
network solver. The aforementioned flow rates have been computed via kinetic modeling
and are considered very accurate since they are based on theoretical principles.
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In the first part of this chapter an overview of the in-house developed codes for
simulating gas networks is provided. More specifically in Section 5.2 the kinetic pressure
drop relations implemented in the present work are briefly reviewed and indicative
results for the dimensionless flowrates are provided. Then, in Section 5.3 the input
data, namely the geometrical and operational data required for the simulations of a gas
network are introduced. In Section 5.4 the UTH steady-state code is briefly reviewed
and in Section 5.5 the advancements made in the upgraded UTH steady-state code
ARIADNE, such as the ability to simulate multiple pumps with an arbitrary pressure
- pumping speed characteristic curve, are described. In Section 5.6 the proposed
hybrid time-dependent algorithm, which takes advantage of the time scale separation
commonly found in gas distribution systems and implements ARIADNE in each time
step, is reviewed.

In the second part of this chapter the developed time-dependent algorithm is
validated and an uncertainty analysis method is implemented in a steady-state network.
More specifically, in Section 5.7 two benchmarks are performed. The first one is related
to gas expansion into vacuum and the second one to a distribution system with two
vacuum vessels and one pump. The temporal evolution of the network pressures are
compared in the former case with DSMC results available in the literature [149, 150]
and in the latter case with results obtained by the Test particle Monte Carlo (TPMC)
code Molflow+ [151]. In Section 5.8, the implementation of the Monte Carlo (MC)
[152] uncertainty analysis method to gas distribution systems is demonstrated for the
second benchmark network of Section 5.7. The network is assumed to be operating
under steady-state conditions and the uncertainty of the pumped throughput with
respect to the pipe radius, pipe length, vessel pressure and pump pumping speed
uncertainties is computed.

5.2 Flow rates through tubes based on kinetic the-
ory

The proposed methodology for simulating gas distribution systems operating under
rarefied conditions includes the computed dimensionless flow rates through single pipe
elements of arbitrary length, radius and pressure difference via kinetic theory, which
are stored in a database for the needs of the network algorithm. An overview of the
pursued approaches in reproducing the flow rates from the free-molecular to the viscous
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regime is presented. The rarefied gas flow through tubes of arbitrary length over radius
ratio and pressure difference is a fundamental problem in rarefied gas dynamics and
has been (and still is) the subject of many theoretical, computational and experimental
investigations.

Consider the pressure driven flow of a rarefied gas through a tube of length L and
radius R with the tube inlet and outlet pressures maintained at P1 and P2, respectively
(P1 > P2). In general, the flow is fully characterized by three dimensionless parameters,
namely (a) the dimensionless length L/R, (b) the pressure ratio P2/P1 and c) the
reference rarefaction parameter δ which is defined as

δ = P0R

µ̃v0
. (5.1)

Here, P0 is the equilibrium pressure, µ̃ is the gas viscosity at the equilibrium temperature
T0 and v0 =

√
2RgT0 is the most probable molecular speed (Rg = kB/m is the specific

gas constant, with kB denoting the Boltzmann constant and m the gas molecular
mass).

The case of a tube much longer than its radius (L/R ≫ 1) driven by a small
pressure gradient is the most widely considered. It is tackled by the infinite capillary
theory, where the flow is considered as fully-developed, the pressure varies only in the
flow direction and end effects are neglected. Once the Poiseuille coefficient G (δ), also
known as the reduced flow rate, which is a function only of δ at each cross-section, is
known, the tube mass flow rate is obtained by [40]

ṀF D = G∗πR
3

v0

P1 − P2

L
, (5.2)

where
G∗ = 1

δ1 − δ2

∫ δ2

δ1
G (δ) dδ, (5.3)

is computed by integrating G (δ) between the inlet and outlet rarefaction parameters
δ1 and δ2, corresponding to the inlet and outlet pressures P1 and P2, respectively.
The reduced flow rate G (δ) may be calculated from the following expression, which
interpolates the numerical data based on the linearized BGK kinetic model within
0.2% uncertainty in the whole range of the rarefaction parameter [153]:

G (δ) = 1.505 + 0.0524δ0.75 ln δ
1 + 0.738δ0.78 +

(
δ

4 + 1.018
)

δ

1.073 + δ
(5.4)
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In order to extend the range of applicability of the infinite capillary theory, which is
computationally very efficient, from very long channels to channels of moderate length,
the end effect correction concept may be introduced. Following the end effect theory
the overall reduced flow rate G∗, given by Eq. (5.3), is revised according to [79]

G∗
EE = 1

(δ1 − δ2) (1 +∆L1/L+∆L2/L)

∫ δ2

δ1
G (δ) dδ, (5.5)

where ∆L1/L and ∆L2/L are the additional lengths at the inlet and outlet of the
channel correcting the real length of the channel by taking into account the end
effects. The corrective lengths are provided in Table 5.1. As pointed out in [154],
the consideration of the end effect correction will always improve the accuracy of the
simulations and therefore, it is always applied in the network algorithm. The values of
G∗

EE, according to Eq. (5.5) are introduced into Eq. (5.2) to deduce by taking into
consideration the end effects the corrected values of the mass flow rate ṀEE.

The great advantage of the infinite capillary and end effect theories is that the
dimensionless solutions solely depend on the gas rarefaction parameter (they do not
depend on L/R and P2/P1). However, they are both based on linear kinetic theory
and are valid when the Mach number of the flow is sufficiently small [155].

In the case of L/R ≤ 10 and P2/P1 ≥ 0.9, i.e., the pressure difference is small, the
flow is linear even in short tubes and the solution is obtained by solving the linearized
BGK equation in the whole flow field (not just in a cross-section as before) [80]. The
mass flow rate is obtained by

ṀLIN = WLIN

√
πR2 (P1 − P2)

v0
, (5.6)

where the dimensionless flow rate WLIN is computed in terms of L/R and the reference
rarefaction parameter δ (WLIN is independent of P2/P1). Indicative results for WLIN

are given in Table 5.2.
Otherwise, in the case of L/R ≤ 10 and P2/P1 < 0.9, the flow is considered as

nonlinear and it is tackled based on the DSMC method [89, 156] and nonlinear kinetic
model equations [81, 86, 157–159] solved via the discrete velocity method. The mass
flow rate in this case is obtained by

ṀNL = WNL

√
πR2P1

v0
, (5.7)
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where WNL is the dimensionless nonlinear flow rate and depends on all three parameters
(δ, L/R and P2/P1). The pressure difference between the inlet and the outlet of the
tube is given by

P1 − P2 = v0√
πR2

ṀNL

WNL

(
1 − P2

P1

)
. (5.8)

This case is the most computationally demanding one and extensive computations
have been performed to prepare an adequate data base in a wide range of the involved
parameters. Indicative results of WNL are reported in Table 5.3 based on the ES kinetic
model.

5.3 Definition of gas distribution system compo-
nents and algorithm input data

In general, a gas distribution system may be modeled by a pipe network represented
by an undirected graph [160]. The graph vertices and edges correspond to the gas
network n nodes and the p piping elements acting as the connections between two
nodes, respectively. A variety of node types may be used to represent the different
components of a gas pipe network. More specifically, pipe junctions and pipe end caps
are represented by the inner nodes ni, vessels by the vessel nodes nv, pumps by the
pump nodes np, while constant pressure regions are represented by the so-called fixed
pressure nodes nf . The total number of nodes is n = ni + nf + nv + np. Furthermore,
closed paths formed by connecting adjacent nodes and open paths formed by connecting
two non-inner nodes (fixed pressure, vessel and pump nodes) are named loops and
pseudoloops, respectively. Both of them are involved in the formulation of the equations
modeling the network. The number of loops and pseudoloops, in a well-defined network,
are given by l = p− n+ 1 and lp = (nf + nv + np) − 1 respectively.

A schematic representation of a sample network for demonstration and clarity
purposes is shown in Fig. 5.1. It consists of n = 9 nodes and p = 10 pipes. The
total number of nodes includes ni = 6 inner nodes (circles), nf = 1 fixed pressure
node (square), nv = 1 vessel node (pentagon) and np = 1 pump node (triangle). Also,
there is a set of l = 2 independent loops and lp = 2 pseudoloops denoted by l1, l2 and
pl1, pl2, respectively.

To complete the description of the network configuration, additional geometrical
data are required. It is very important to properly specify the node (i = 1, ..., n)
and pipe (j = 1, ..., p) indexing, the type of each node and the connectivity matrix
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defining the connections between the nodes of the network. Also, the length Lj and
the hydraulic radius Rh,j for each piping element j = 1, ..., p, as well as the volume V
of the vessel at each vessel node are specified.

Next, the operational input data of the gas distribution system are provided. They
commonly include the molar mass and the viscosity of the pumped gas species, as
well as the network temperature T . In addition, the operational input data include
the pressure values Pi for the fixed pressure nodes, the initial pressure Pi (t0) at some
initial time t0 and the outgassing or gas injection data Qin,i (t) for the vessel nodes,
the flow demand Wi at the inner nodes and the characteristic pumping speed - inlet
pressure curve S∗

i (Pi) for the pump nodes. In the sample network of Fig. 5.1 some
of the required operational data are shown for demonstration purposes. At the fixed
pressure node 1 the pressure is P1, at the inner node 3 the gas flow demand is W3 , at
the vessel node 4 the initial pressure is P4 (t0) and the outgassing data are given by
some Qin,4 (t) and at the pump node 9 the characteristic curve is S∗

9 (P9).
All aforementioned geometrical and operational data must be provided in order

to advance in the steady-state or time-dependent simulation of the gas distribution
network. It is noted that unless otherwise stated, all piping elements are considered as
circular tubes and the hydraulic radius concept is applied in the case of non-circular
piping elements. Furthermore, in the case of no flow demand or outgassing the
corresponding quantities are set equal to zero.

5.4 The UTH steady-state network code

In this section, the algorithm of the UTH steady-state network code that has been
described in detail in [96, 97, 147] is briefly reviewed mainly for completeness and
clarity purposes. The flowchart of this code is shown in Fig. 5.2. It is seen that, initially
the input data described in Section 5.3 are defined and then the loops and pseudoloops
of the network are determined. The solution of the pipe network is obtained in an
iterative manner making an initial assumption for the pressure at all inner nodes. In
each iteration, the following linear algebraic system, consisting of the mass conservation
equations at the inner nodes

∑
j

(
±Ṁij

)
−Wi = 0, i = 1, ..., ni (5.9)
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and the energy conservation equations along the loops

∑
j

[
±∆Pkj

(
Ṁkj

)]
= 0, k = 1, ..., l (5.10)

and pseudoloops ∑
j

[
±∆Pmj

(
Ṁmj

)]
= ∆Pm, m = 1, ..., lp (5.11)

is solved for the unknown pipe mass flow rates. In this notation, the summation index
j refers, in Eq. (5.9) to the pipes that are connected to node i, while in Eqs. (5.10)
and (5.11) it refers to the pipes included in loop k and pseudoloop m, respectively. In
Eq. (5.9), the unknown quantities Ṁij are the mass flow rates at node i from pipe j.
The plus or minus sign correspond to gas flow into or out of node i, respectively. The
quantity Wi denotes the mass flow demand at the node i and is taken to be positive
or negative when gas is exiting or entering the system, respectively. In Eqs. (5.10)
and (5.11), the quantities ∆Pkj and ∆Pmj denote the pressure difference between the
inlet and outlet nodes of pipe j and depend on the respective flow rates Ṁkj and Ṁmj ,
respectively. The plus or minus sign is used if the definition of pipe j is in the same or
opposite direction as the definition of loop or the pseudoloop. In Eq. (5.11), ∆Pm is
the pressure difference between the first and the last pseudoloop nodes. Depending
on the specific geometrical and operational data for each pipe element, the pressure
differences in the energy balance equations (5.10) and (5.11) are substituted by the
kinetic theory pressure drop expressions provided in Section 5.2.

Once the linear system is solved and the mass flow rates of all piping elements are
computed, all inner node pressures are updated based on the kinetic pressure drop
relations and are compared to the previous ones. The iterative procedure is continued
until the relative pressure difference between two successive iterations at all inner nodes
is smaller than a specified value.

In addition to the node pressures and the pipe mass flow rates the network solution
also provides the pipe throughput [Pam3/s]

Qj = ṀjRgTr, j = 1, ..., p (5.12)

and the node pumping speed [m3/s]

Si = Qi

Pi

= ṀiRgTr

Pi

, i = 1, ..., n, (5.13)
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where Tr is some reference temperature, commonly taken to be 273.15 K. The quantity
Qi = ṀiRgTr denotes the total gas throughput that passes through node i and is
calculated as the sum of all the pipe throughputs that are connected to node i. Both
the pipe throughput and node pumping speed are of major practical importance in
vacuum gas dynamics.

5.5 The UTH upgraded steady-state network code
ARIADNE

In this section, certain code advancements, which have been performed in the present
work and are integrated in the steady-state code, are presented. The acronym given to
the upgraded steady-state algorithm is “ARIADNE”, which stands for Algorithm for
Rarefied gas flow in Arbitrary Distribution Networks. The acronyn of the upgraded
steady-state network code has been proposed and adapted by S. Misdanitis.

The flowchart of the upgraded steady-state network code ARIADNE is shown
in Fig. 5.3. In the present work, the main advancement refers to the simulation of
pipe networks with an arbitrary number pumps. In this case, an additional iterative
procedure is required, in order to meet the pumping speed restrictions, i.e. to satisfy
the pumping speed - inlet pressure S∗

i (Pi) at each pump node. Following an initial
assumption for the pump pressures, the network solver, as described in Section 5.4, is
applied to compute the pipe mass flow rates and the node pressures of the network,
including the pumping speeds at the pump nodes. The pumping speed differences
between the obtained solution Si,0 (Pi,0) and the given pumping speed curve S∗

i (Pi),
defined as ∆Si,0 = [S∗

i (Pi,0) − Si,0 (Pi,0)] /S∗
i (Pi,0), is computed and stored for all

pumps i = 1, ..., np.
Next, all pump pressures are set to the initial pressure assumption except for a

specific pump pressure Pj , which is changed by a small amount εj . The network is solved
again and the pumping speed differences ∆Si,j = [S∗

i (Pi,j) − Si,j (Pi,j)] /S∗
i (Pi,j) are

computed and stored for all pump nodes i = 1, ..., np. This computation is performed for
all pumps j = 1, ..., np and when it is completed, the Jacobian Ji,j = (∆Si,j −∆Si,0) /εi,
i, j = 1, ..., np is constructed.

Then, the linear system of equations Ji,j ×∆Pi = −∆Si,0 is solved and all pump
pressures are updated as Pi = Pi +∆Pi. The procedure is repeated until the network
solution fulfills the convergence criterion imposed on ∆Si,0. The applied methodology
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is Newton’s iterative method, where the partial derivatives are numerically computed
and its convergence close to the solution is superlinear.

It is important to note that in the aforementioned iterative method, the main
computational effort is due to the initial network solution to compute ∆Si,0. The
subsequent solutions of the network for each pump j = 1, ..., np in order to compute
∆Si,j converge much faster than the initial one (generally in one or two iterations).
This is achieved by taking the inner node pressures of the previous network solution as
the initial assumption for the inner node pressures for the current network solution.
Thus, the involved computational effort is not dramatically increased by increasing the
number of pumps in the network.

In addition to the above, a robust and computationally efficient algorithm for ex-
tracting the loops and pseudoloops has been implemented. The implemented algorithm
utilizes the well-known depth-first-search algorithm (DFS) [161], which is a traversing
procedure which starts at an arbitrary node and explores the graph as far as possible
before backtracking. Furthermore, the involved kinetic data bases, needed in the
implementation of the steady-state network code, have been accordingly enriched with
more dense flow rate results in terms of the operating conditions and geometrical data.
Also, efficient interpolating algorithms have been integrated in the code to improve
its accuracy. The steady-state code has been restructured based on object-oriented
programming to facilitate its accessibility, adaptation and implementation in various
technological applications.

All these advancements significantly increase the robustness and the efficiency of
the steady-state network code. It is noted that, the hybrid time-dependent simulation
of gas distribution systems, described in the next section, involves the solution of a
steady-state network configuration in each time step.

5.6 Hybrid methodology for time-dependent gas
distribution systems

The direct simulation of time-dependent gas pumping scenarios can be computa-
tionally very expensive, even in comparatively small or moderate size vacuum systems.
Particularly, in large size vacuum systems, such as the ITER divertor pumping system,
the computational cost of a direct time-dependent approach is prohibitive. In cases
where a time scale separation is applicable the hybrid time-dependent approach pro-
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posed in [162], explicitly coupling a macro model for the vessels of the gas distribution
system with a micro model for the piping elements, may be implemented to significantly
reduce the required computational effort.

The characteristic time defining the flow inside the piping elements is defined as the
time needed to cross a characteristic length with the most probable molecular speed v0

of the conveying gas and is given by

tm = Rh/v0, (5.14)

while, the corresponding characteristic time inside a vessel of volume V is

tM = V
/(

υ0R
2
h

)
. (5.15)

Since in many cases, the macroscopic quantities in the vessels vary in a much slower
pace than those in the pipes it is readily seen that tM ≫ tm (e.g. the instantaneous
variation of the mass flow rate in the piping elements modifies the vessel pressure in a
quasi-steady manner). Therefore, it is reasonable to exploit the time scale separation
and investigate separately the network vessels and pipes by the corresponding micro
and macro models, which are explicitly coupled in sequence (not simultaneously). The
micro model consists of the upgraded UTH steady-state ARIADNE code described in
the previous section.

The macro model describing the temporal evolution of pressure Pi (t) in some
vacuum vessel i can be derived by considering the mass balance in the vessel and the
equation of state. It is easily deduced that

Vi
dPi (t)
dt

= Qin,i (t) + Ṁi (t)RgT, (5.16)

where the throughput Qin,i (t) is entering the vacuum vessel at some time t due to
either outgassing or direct gas injection inside the vacuum vessel and the mass flow
rate Ṁi (t) is entering (positive) or exiting (negative) the vacuum vessel through the
piping elements connected to the vessel. Equation (5.16) can also be written in terms
of the effective vacuum vessel pumping speed Seff,i (t) in the equivalent form

Vi
dPi (t)
dt

= Qin,i (t) − Pi (t)Seff,i (t) . (5.17)
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It is noted that, in the present notation Seff,i (t) is considered as positive when
gas is pumped out of the vessel i. The ordinary differential equation (5.16) or (5.17),
defining the macro model, subject to the corresponding initial condition Pi (t0), may
be numerically solved by typical integration schemes (e.g. Runge-Kutta methods) once
the macroscale time integration step ∆t is specified.

The coupling between the macro and micro models is rather simple and it is shown
in the flowchart of Fig. 5.4. At each macroscale time step the gas distribution system
is solved via ARIADNE, which includes a micro model computing the dimensionless
flow rates at each pipe of the network in the whole range of rarefaction. Thus, at some
time t, based on the current input conditions, the mass flow rates and the pressures
of the network are computed. The output data are written to respective output files.
The vessel node pressures are updated via Eq. (5.16) or (5.17) (macro model) and the
algorithm can move to the next time t+∆t. The evolution in time proceeds until a
specified final time tf or until an equilibrium state is reached.

5.7 Benchmarking of the time-dependent algorithm

In this section, the time-dependent algorithm implementing the ARIADNE code at
each time step is validated by solving two benchmark prototype problems.

The first prototype problem involves gas expansion into vacuum. More specifically,
the dynamic standard apparatus for the measurement of the response and relaxation
times of vacuum gauges developed at Physikalische-Technische Bundesanstalt (PTB)
is considered [149]. In Fig. 5.5, the schematic representation of the flow setup of
prototype problem 1 is provided. Two vessels, namely the upstream and downstream
vessels with volumes V1 = 3.1 L and V2 = 185 L, respectively, are interconnected via
a circular tube with length L = 0.492 mm and radius Rh = 0.50565 mm. The valve
between the two vessels is closed. The upstream vessel is filled with a monatomic gas up
to an initial pressure of P1 (t0 = 0) = 1000 Pa, while the downstream vessel is evacuated
via a turbomolecular pump. Next, the valve rapidly opens and time-dependent gas
expansion between the two vessels occurs. The turbomolecular pump keeps running
during the whole experiment in order to maintain high vacuum at the downstream
vessel (P2 ∼ 0 Pa). This flow setup has been considered in [150] and the temporal
evolution of the upstream pressure vessel P1 (t) for the monatomic gases of He, Ne,
Ar and Kr has been obtained both computationally and experimentally indicating
very good comparison between the corresponding results. The computational work in
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[150] is based on the same hybrid scheme implemented here. However, in [150] the
steady-state solution at each time step is obtained by the DSMC method.

In the ARIADNE code the above configuration is represented as a vessel node
(upstream vessel) connected with a fixed pressure node (downstream vessel) via a single
piping element. The input data include the temperature T = 295 K, the vessel volume
V1, the length L and radius Rh of the tube, the initial upstream pressure P1 (t0 = 0),
the fixed pressure P2 = 10−20 Pa and the time step ∆t = 10−4 s. In addition, the
required gas properties of He, Ne, Ar and Kr at T = 295 K are provided in Table 5.4.

In Fig. 5.6 the temporal evolution of the upstream vessel pressure P1 (t) computed
by the hybrid time-dependent algorithm is plotted for the four monatomic gases. The
experimental and computational results of [150] are also provided for comparison
purposes. An excellent agreement is observed for all investigated gases. It is noted
that, the agreement between the present computational results and experimental
results of [150] is improved compared to the agreement reported in [150]. This is
mainly contributed to the more dense kinetic database and interpolation algorithms
implemented in ARIADNE. Based on this comparison, the proper implementation of
the ARIADNE code in the hybrid time-dependent scheme is demonstrated.

The second prototype problem involves the transient response of a pipe network in
the free-molecular regime and its comparison with the well-established TPMC code
Molflow+ [151]. In Fig. 5.7, the schematic representation of the second prototype
problem network is provided. It consists of two vacuum vessels, with equal volumes
V1 = V2 = 8 L, one pump, with sticking coefficient 0.8, running at all times and
five piping elements. The nodes 1 and 2 are vessel nodes, the nodes 3, 4 and 5 are
inner nodes and node 6 is a pump node. A sample material inside the first vessel is
outgassing helium at a rate of Q1 (t) = 2.5 × 10−3e−2t Pam3/s, while in the second
vessel no outgassing occurs Q2 (t) = 0 Pam3/s. The pipe lengths and the radii are
provided in Fig. 5.7. On purpose, the pipe dimensionless lengths L/R are in a wide
range, varying from 7.87 up to 30.5, in order to have a more complete comparison.

In the TPMC time-dependent simulation the above network has been designed in
the open source software Salome [163] and has been imported into Molflow+, along
with all the required input data. The network has been simulated for 10 s by Molflow+
and the computed temporal pressure evolution at the six network nodes i = 1, ..., 6,
is shown in Fig. 5.8. In addition, from the Molflow+ simulation the pumping speed
at the pump node is found to be constant throughout the simulation and equal to
4.8 × 10−2 m3/s. This constant pumping speed value (instead of the sticking coefficient)
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has been imported as input data in the ARIADNE code, since the pumping speed -
inlet pressure curve must be defined for all pumps. Having properly defined all input
data, the present time-dependent algorithm is implemented. The deduced temporal
pressure evolution at the six nodes of the network, are also plotted in Fig. 5.8. In
all cases an excellent agreement between corresponding results is observed, with the
average relative deviation at each node ranging from 0.7% up to 4.4%. The smallest
deviation is observed at node 1 corresponding to the outgassing vessel, while the largest
one is observed at node 5 corresponding to the elbow before the pump.

From the qualitative point of view the reported transient response of the system is
well expected. At vessel node 1, the pressure P1, is initially increased, due to the initially
high outgassing up to some maximum value and then, as the outgassing is decreased,
the pressure is monotonically decreased due to the presence of the continuously running
pump. At the inner nodes 2-5 and the pump node 6 the pressure evolution follows a
similar trend, obtaining however smaller maximum values.

5.8 Uncertainty propagation in gas distribution sys-
tems

Uncertainties are very important in gas distribution systems, since they can signifi-
cantly affect their performance [3]. These uncertainties originate from various sources,
including the uncertainty of the measurement instruments, the changing environmental
conditions and the flaws in the vacuum system setup. The introduced uncertainties
reflect to the operation of the gas distribution system and deviations from the expected
performance may be observed. Thus, in many cases the investigation of the uncertainty
propagation through the gas distribution system is required.

One of the most versatile methods for uncertainty propagation is the Monte Carlo
(MC) method [152]. In the MC method, a large number of trials i = 1, 2, ..., Nt is
conducted. In each trial the values of the input quantities are sampled from their
respective distributions and the output quantities are computed. Then, the distribution
functions of the output quantities are constructed and the uncertainties are computed
from these distributions.

The input quantities xm are usually known with respect to their nominal value
xm,n and their uncertainty u (xm) as

xm = xm,n ± u (xm) , (5.18)
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while their distribution is not always known. In the case where the distributions of the
input quantities are not known, they are sampled from a uniform distribution between
xm ∈ [xm,n − u (xm) , xm,n + u (xm)].

The output quantities are presented in terms of the mean value and the associated
uncertainty as

yl = ȳl ± u (yl) , (5.19)

where the mean value is calculated as

ȳl = 1
Nt

Nt∑
i=1

yl,i, (5.20)

with yl,i denoting the output quantity l in the ith trial. The associated uncertainty is
given by

u (yl) = kσ (yl) , (5.21)

where σ (yl) denotes the standard deviation calculated as

σ (yl) =

√√√√ 1
Nt − 1

Nt∑
i=1

(yl,i − ȳl)2. (5.22)

The coefficient k in Eq. (5.21) is the coverage factor and when a large number of trials
are performed (Nt > 103) the values k = 2 and k = 3 are used for a 95% and 99%
coverage interval, respectively [164].

In this section, the implementation of the MC method is demonstrated for the
gas network shown in Fig 5.7. It is reminded that, this gas network has been used in
Section 5.7 to validate the developed hybrid time-dependent gas network algorithm.
Here, the network is assumed to operate under steady-state conditions and thus the
pressure at the two vessels is constant and has been taken to be P1 = [0.2, 2, 20, 200]
Pa and P2 = 0.2 Pa. The pressure range has been specifically chosen in order to
investigate the uncertainty propagation through the network from the free-molecular to
the slip regime. The pump is assumed to have a constant pumping speed of 4.8 × 10−2

m3/s, while the geometrical data remain the same and can be seen in Fig 5.7. The
investigated input quantities include the pipe radii, pipe lengths, vessel pressures and
pump pumping speed, while the pumped throughput is the output quantity of interest.
In each trial, one of the aforementioned input quantities is sampled from a uniform
distribution, while the remaining input quantities are set to their nominal values. The
ARIADNE code is implemented to simulate the resulting gas network and the pumped
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throughput is stored. For each one of the investigated input quantities a total of trials
Nt = 103 are performed and the pumped throughput uncertainty is obtained.

In Fig 5.9 the uncertainty of the pumped throughput with respect to the uncertainty
of the input quantities, namely the pipe radii, pipe lengths, vessel pressures and pump
pumping speed to the pumped throughput is presented for P1 = [0.2, 2, 20, 200] Pa. It
is clearly seen that, in the whole investigated pressure range the pumped throughput
uncertainty is linearly increased as the uncertainty of the input quantities is increased.
This linear trend has also been observed for the mass flow rate uncertainty due to the
pipe radius, pipe length and pressure uncertainty in the case of the pressure driven flow
through a single circular tube [165]. In addition, it is observed that, in all cases the
pumped throughput uncertainty is smaller than the input uncertainties. Moreover, the
pipe radius uncertainty is the most impactful one, followed by the pressure, pipe length
and pumping speed uncertainties. Furthermore, the pumped throughput uncertainty
due to the pipe radius, pipe length, pressure and pumping speed uncertainties is
monotonically increased as the gas rarefaction is decreased.

It is noted here that, the findings of the performed uncertainty analysis are not
general and only apply for the investigated network. Thus, in each gas network a
separate uncertainty propagation analysis is required in order to investigate the impact
of the input uncertainties to the uncertainty of the output quantities of interest.

5.9 Concluding remarks

The simulation of gas pumping systems operating in a wide range of the Knudsen
number has attracted considerable attention over the last years, due to their importance
in many technological applications, as well as, in particle accelerators and fusion reactors.
In many cases, the direct simulation of such systems via kinetic theory is prohibitive
due to the involved computational effort. To circumvent this, an in-house code has
been developed for simulating gas pumping distribution systems of arbitrary size and
complexity in the whole range of the Knudsen number, by integrating a kinetic database
in a typical gas network solver.

In this chapter the proposed methodologies, as well as their implementation in
the UTH upgraded steady-state gas network code ARIADNE have been thoroughly
described. In addition, a hybrid algorithm for simulating the transient response of gas
networks, implementing ARIADNE at each time step has been presented. Moreover, the
time-dependent code has been validated to some extend via two benchmark problems.
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The first one involved the dynamic standard apparatus for the measurement of the re-
sponse and relaxation times of vacuum gauges developed at PTB. The presented results
showed an excellent agreement with the corresponding experimental and computational
results provided in the literature. The second benchmark problem involved a gas
network operating in the free-molecular regime. The benchmark network is simulated
via both the proposed time-dependent algorithm and the well-established TPMC code
Molflow+. Also, here an excellent qualitative and quantitative agreement has been
observed between the two approaches. Furthermore, the implementation of the MC
uncertainty analysis method to gas distribution systems has been demonstrated for the
second benchmark network. The network was assumed to operate under steady-state
conditions and the uncertainty of the pumped throughput with respect to the pipe
radius, pipe length, vessel pressure and pump pumping speed uncertainties has been
presented. In general, the qualitative behavior of the throughput uncertainty has been
in agreement with the one observed for the mass flow rate uncertainty in the case of
the pressure driven flow through a single circular tube.

Having established confidence in the proposed methodologies, the capabilities of the
ARIADNE code and the time-dependent algorithm will be demonstrated in Chapter 6
by simulating the burn and dwell phases of the ITER primary exhaust system.
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Table 5.1 Length increment ∆L/R in terms of the rarefaction parameter δ.

δ 0.005 0.05 0.1 0.2 0.4 0.6 0.8
∆L/R 2.22 1.72 1.52 1.33 1.16 1.07 1.01
δ 1 2 4 6 8 10 ∞

∆L/R 0.964 0.841 0.735 0.704 0.688 0.682 0.680

Table 5.2 Dimensionless flow rate WLIN through a tube for indicative values of the
rarefaction parameter δ and dimensionless length L/R, based on the BGK model [80].

L/R δ
0 0.1 1 2 5 10

0 9.99(-1) 1.04 1.37 1.72 2.77 4.35
1 6.72(-1) 6.96(-1) 8.92(-1) 1.10 1.70 2.63
5 3.11(-1) 3.16(-1) 3.73(-1) 4.40(-1) 6.42(-1) 9.88(-1)
10 1.91(-1) 1.92(-1) 2.17(-1) 2.51(-1) 3.62(-1) 5.54(-1)
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Table 5.3 Dimensionless flow rate WNL through a tube for indicative values of the
rarefaction parameter δ, dimensionless length L/R and pressure ratio P2/P1 based on
the ES model [157].

L/R P2/P1
δ

0 0.01 0.1 1 2 5 10

0
0.1 9.00(-1) 9.03(-1) 9.23(-1) 1.07 1.18 1.35 1.45
0.5 5.00(-1) 5.02(-1) 5.18(-1) 6.53(-1) 7.78(-1) 1.04 1.22
0.9 1.00(-1) 1.00(-1) 1.05(-1) 1.40(-1) 1.76(-1) 2.80(-1) 4.32(-1)

1
0.1 6.05(-1) 6.06(-1) 6.19(-1) 7.13(-1) 7.88(-1) 9.31(-1) 1.06
0.5 3.36(-1) 3.37(-1) 3.45(-1) 4.28(-1) 5.05(-1) 6.92(-1) 8.88(-1)
0.9 6.72(-2) 6.75(-2) 7.00(-2) 9.08(-2) 1.12(-1) 1.70(-1) 2.64(-1)

5
0.1 2.79(-1) 2.80(-1) 2.83(-1) 3.12(-1) 3.41(-1) 4.23(-1) 5.37(-1)
0.5 1.55(-1) 1.56(-1) 1.58(-1) 1.82(-1) 2.07(-1) 2.80(-1) 3.98(-1)
0.9 3.10(-2) 3.11(-2) 3.18(-2) 3.78(-2) 4.44(-2) 6.41(-2) 9.76(-2)

10
0.1 1.71(-1) 1.72(-1) 1.73(-1) 1.85(-1) 2.00(-1) 2.49(-1) 3.28(-1)
0.5 9.54(-2) 9.55(-2) 9.63(-2) 1.06(-1) 1.19(-1) 1.60(-1) 2.29(-1)
0.9 1.90(-2) 1.91(-2) 1.93(-2) 2.19(-2) 2.53(-2) 3.59(-2) 5.43(-2)

Table 5.4 Gas properties of He, Ne, Ar and Kr at 295 K.

Gas He Ne Ar Kr
Molar mass [kg/kmol] 4.003 20.18 39.95 83.80

Viscosity µ̃ [µPas] 19.70 30.89 22.80 24.86
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Figure 5.1 Schematic representation of a sample network with indicative geometrical
and operational data.
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Figure 5.2 Flowchart of the UTH steady-state code.
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Figure 5.3 Flowchart of the UTH upgraded steady-state code ARIADNE.
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Figure 5.4 Flowchart of the hybrid time-dependent algorithm.
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Figure 5.5 Schematic of the gas expansion apparatus (prototype problem 1).

Figure 5.6 Temporal evolution of the upstream vessel pressure for He, Ne, Ar and Kr
in prototype problem 1; comparison between the present time-dependent algorithm
and [150].
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Figure 5.7 Schematic of the Molflow+ pipe network (prototype problem 2).

Figure 5.8 Temporal evolution of pressure Pi (t) at the six nodes i = 1, ..., 6 of prototype
problem 2; comparison between present time-dependent algorithm and Molflow+.
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,

,

Figure 5.9 Pumped throughput uncertainty in terms of the pipe radius, pipe length,
vessel pressure and pump pumping speed uncertainties for the network of Fig. 5.7 with
P1 = [0.2, 2, 20, 200] Pa, P2 = 0.2 Pa, S6 = 5 × 10−2 m3/s.
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Chapter 6

Simulation of the ITER primary
pumping system

6.1 Introduction

The International Thermonuclear Experimental Reactor (ITER) is the key facility
on the European roadmap to the realization of fusion electricity, as it is expected to
achieve most of the important milestones [166]. In addition, the successful operation
of ITER requires the largest, complex vacuum systems yet to be built [10]. One of
these vacuum systems is the primary pumping system, which is used for conditioning
the vacuum vessel, maintaining the required neutral particle pressure during the burn
phase and evacuating the vacuum vessel between the plasma pulses in a limited time
frame during the dwell phase.

In this framework, the ARIADNE code and time-dependent algorithm discussed in
Chapter 5 are implemented to simulate the ITER primary pumping system during the
burn and dwell phases.

In Section 6.2, the geometrical data of the ITER primary pumping system are
provided. Three distinct pipe network segments are constructed in order approximate
the actual gas flow through the different divertor parts. The first network segment
approximates the actual gas flow along one of the 54 divertor cassettes and consists
of 43 nodes and 43 pipes, while the second segment approximates each one of the
6 pumping ducts and consists of 7 nodes and 7 pipes. The third network segment
approximates the actual gas flow inside the 54 divertor gaps between adjacent cassettes
and consists of 15 nodes and 41 pipes. These three networks are interconnected to
construct the gas network model that approximates the actual gas flow through the
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whole ITER divertor and consists of 3174 nodes and 4578 pipes. This gas network
model is used in Sections 6.3 and 6.4 to simulate the burn and dwell phases of the
ITER primary pumping system.

In Section 6.3, the ARIADNE code is implemented to simulate the ITER burn phase
under steady-state conditions. Three pressure scenarios are investigated corresponding
to low, medium and high torus pressure during burn [167]. In addition, three pump
setups with 2, 4 and 6 pumps operating are investigated. Both qualitative and
quantitative results are provided. The former ones include the typical gas flow direction
in a cassette connected to a pump, as well as, in the open gaps between adjacent
cassettes. The latter ones include the computed throughputs towards the pumps and
the plasma for the different pressure scenarios and pump setups. Furthermore, the
cyclic pumping/regeneration mode with 4 pumps running and 2 pumps in regeneration
is considered by simulating the 4 unique possible pump setups [11].

In Section 6.4, the time-dependent algorithm is implemented to simulate the
transient response of the ITER primary pumping system during the dwell pump-down
of the ITER vacuum vessel. The required ITER outgassing data are extrapolated from
the Joint European Torus (JET) and three different temperatures and different pump
setups with 2, 4 and 6 pumps operating are investigated. First, assuming a constant
torus effective pumping speed an analytical solution is provided for the temporal
evolution of the torus pressure. In addition, steady-state torus effective pumping speed
results based on the ARIADNE code are presented for the dwell phase in order to
facilitate the discussion for the time-dependent problem. The temporal evolution of
the torus pressure based on the time-dependent algorithm and the analytical solution
is presented and interesting findings are reported. Furthermore, a parametric study of
the involved input parameters for the torus pressure after the end of the dwell phase is
provided.

6.2 Geometrical data of the ITER primary pumping
system

The latest design of the ITER divertor consists of 54 cassettes with a 20 mm gap
between adjacent cassettes, while the pumping load of the vacuum vessel is managed
by 6 cryopumps located at the direct lower ports 4, 6, 10, 12, 16 and 18 as shown in
Fig. 6.1. The most recent geometric configuration of the ITER divertor is visualized
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in the 2012 drawings, which provide detailed geometrical data of the divertor ring with
the 54 cassettes and interconnecting paths, as well as, of the pumping ducts and ports.
A recent modification to this configuration is the neutron shielding added to the lower
port ducts [168].

In Fig. 6.2 a view of the cross-section along a cassette connected to a pump and the
corresponding pipe network approximating the actual gas flow path along the cassette
cross-section, is shown. The regions of the dome, the inlet and outlet divertor arm gaps,
as well as, the inlet and the outlet slots are indicated. The channel flow configurations
of the upper and lower parts of the cassette are approximated by 25 and 16 channels of
various lengths and diameters, respectively. The upper part consists of nodes 1 to 26
and the lower part of nodes 27 to 43. They are interconnected with 2 pipes resulting
to a total of 43 channels and 43 nodes per cassette. The 6 nodes {1,10,14,18,26,43},
where the pressure must be specified are provided. Through these nodes the pipe
network representing the flow along a cassette is open to the torus. The 11 nodes
{6,9,13,17,21,28,31,33,35,38,40} connecting this cassette to its adjacent cassette in
the toroidal direction, defined as toroidal connection nodes, are also presented in Fig.
6.2. Six out of the 54 cassettes and more specifically cassettes 11, 17, 29, 35, 47 and
53, corresponding to the lower ports 4, 6, 10, 12, 16 and 18 are connected to the six
cryopumps. The pumping duct network consisting of 7 nodes (not numbered) and
7 pipes used to approximate the gas flow from a divertor cassette towards a direct
cryopump is also shown in Fig. 6.2.

In Fig. 6.3 the pipe network simulating the geometry of the actual gas flow path
between adjacent cassettes is shown. The 11 connection pipes between two cassettes (5
for the upper part and 6 for the lower part) originate from the corresponding toroidal
connection nodes, mentioned in the description of Fig. 6.2. These pipes create the
segment of the network representing the gas flow in the toroidal direction along the
divertor ring. In addition, the middle points of these 11 pipes are interconnected,
as demonstrated in Fig. 6.3, in order to produce the segment of the pipe network
representing the gas flow through the cassette gap between the lower and the upper part.
It consists from 19 pipes defined by the so-called 15 gap nodes including the 4 nodes
{45,48,53,56}, that are open to the torus and where the pressure must be specified.
Thus, the gap pipe network in Fig. 6.3 consists of 15 nodes and 2 × 11 + 19 = 41 pipes.

In total, the resulting pipe network approximating the gas flow through the ITER
divertor gas system, consists of 54×(43 + 15)+6×7 = 3174 nodes and 54×(43 + 41)+
6 × 7 = 4578 pipes.
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6.3 Steady-state simulation of the ITER burn phase

The UTH upgraded steady-state network code ARIADNE is implemented to
simulate the ITER burn phase for three pressure scenarios. The input parameters
are the ones described in [167]. They have been obtained from the B2-EIRENE code
modeling an ITER scenario where the plasma consists mainly from deuterium with the
ratio of the fusion over the input power to be equal to QDT = 10 and the power entering
the scrape-off layer equal to 100MW. These input parameters have been also used in
[169]. Following [167], three different burn phase pressure scenarios, corresponding to
the total pressures of 2.6 Pa, 4.1 Pa and 9.9 Pa are simulated. They are related to
low, medium and high dome pressure scenarios. Since only the dominant deuterium
gas fraction is considered the resulting partial pressures at the 10 fixed pressure nodes
are given in Table 6.1 and they are the same with the data of Table 1 in [167]. The
same pressure values are given to the fixed pressure nodes in all 54 cassettes and the
associated gaps between the cassettes. The operating temperature is 420 K and the
conveying gas is pure deuterium (D2) with molar mass 4.028 kg/kmol and viscosity
15.90 µPas. The limiting pumping speed of the cryopumps is considered to be constant
and equal to 55 m3/s at the reference temperature of 273.15 K.

In Fig. 6.4 the gas flow path in the cross-section along a cassette, as described in
Fig. 6.2, is shown. This flow pattern is qualitatively the same in all three pressure
scenarios investigated in the burn phase and applies to all 54 cassettes. The gas enters
from the vacuum vessel into each cassette via the outer slot (node 10). One part of the
gas remains in the upper part of the cassette and flows in opposite directions returning
finally back into the plasma from the fixed pressure nodes at the dome, the inner slot
and the inner and outer divertor arm gaps, defined by the nodes 14, 18, 26 and 1,
respectively. Another part of the gas reaches the lower part of the cassette and then
is separated with one fraction flowing towards the cryopump and the remaining one
returning to the plasma via the outer and inner divertor arm gap nodes 1 and 43,
respectively.

In Fig. 6.5 the gas flow path along the divertor ring and in the open gaps between
the cassettes, as described in Fig. 6.3, is shown. It is clearly seen that, gas is entering
the gap network from the high pressure gap nodes 48 and 53 and is returning back
to the plasma from the low pressure gap nodes 45 and 56 in the upper part. This
recirculation flow pattern is the same in all 54 cassettes. The gas which remains in
the gap network flows toward the inner or outer targets and then it is conveyed to the
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adjacent cassettes via the 11 toroidal connections. The direction of the gas flow in the
toroidal direction depends on the location of the toroidal connection (if it is in the
inner or outer part of the gap), as well as, on the cassette position with regard to the
operating pumps.

The flow back into the vacuum vessel observed in Figs. 6.4 and 6.5 is known
as backflow and has been also observed in previous studies [167, 169, 170]. As it
is discussed later depending upon the pressure scenario and the number of pumps
operating, only 3–8% of the gas throughput entering the divertor is pumped toward
the pumping ports, while the remaining amount is flowing back into the plasma. From
that amount, about 40% is returning from the dome fixed pressure node 14 and about
23% from the gap fixed pressure nodes 45 and 56, while the remaining gas escapes from
the rest of the fixed pressure nodes that face the vacuum vessel. These percentages are
approximately the same in all three pressure scenarios and pump setups. Concerning
the percentage break down of the throughput entering the divertor it is noted that,
about 3%, 7% and 12% is entering from the outer slot node 10 in the low, medium
and high pressure scenarios. The remaining 97%, 93% and 88% is entering from the
gap nodes 48 and 53 in the low, medium and high pressure scenarios, respectively.

In Fig. 6.6 the computed throughputs in the burn phase toward the pumps and
plasma are plotted in terms of the dome pressure with 2, 4 and 6 pumps operating. It
is noted that, these pumps are planned to operate in a cyclic pumping/regeneration
mode with 4 pumps running and 2 pumps in regeneration [11]. However, the case of 2
and 6 pumps operating is included here, for completeness purposes. In the case of 2
pumps they are assumed to be located at the lower ports 4 and 6, while in the case
of four pumps they located at the lower ports 4, 6, 10 and 12. As expected, as the
dome pressure is increased the throughput towards both the pumps and the plasma
is increased. Furthermore, with the 4 and 6 pumps setup the pumped throughput is
about 2 and 3 times higher than the corresponding one with the 2 pumps, respectively.
This behavior indicates that, in both the 4 and 6 pumps scenarios the flow is not
limited by the divertor and each cryopump added to the system, pumps about the same
amount of gas as the other ones. As mentioned in the previous paragraph, only a small
fraction of the gas entering the divertor is pumped out of the system. More specifically,
in the case of 2 pumps only 2.7% of the total inlet gas throughput is pumped out,
while in the case of 4 and 6 pumps, this percentage is increased to 5.3% and 7.8%,
respectively. In addition, the backflow to the plasma is decreased by about 2.2% and
4.4%, with respect to the 2 pump scenario, when 4 and 6 pumps are employed.
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Since the 6 cryopumps are planned to operate in a cyclic pumping/regeneration
mode with 4 pumps running and 2 pumps in regeneration, it is important to investigate
the pumped throughputs for each possible pump setup. From the latest pump placement
shown in Fig. 6.1 with 4 pumps operating 15 possible pump setups can be identified.
However, due to the symmetries present in the pump port locations these 15 setups
can be reduced to 4 unique ones.

In Table 6.2 the pumped throughputs for each pump, as well as, the total pumped
throughputs are presented for the 4 unique pump setups in the low and high pressure
burn phase scenarios. In all the investigated setups the total throughput is very close
to each other with the highest deviation between different setups reaching 2.4% and
1.8% in the low and high pressure scenarios, respectively. In addition, in each setup
the individual pump throughputs are well balanced. These remarks are in favor of the
cyclic pumping/regeneration mode, moving smoothly from one operating pump setup
to the next.

6.4 Transient simulation of the ITER dwell phase

In this section, the hybrid time-dependent algorithm is implemented to simulate
the transient response of the ITER dwell phase. During the dwell phase the ITER
vacuum vessel, having a volume of about 1400 m3, must be pumped down to the
threshold pressure of 5 × 10−4 Pa in order to start the next plasma shot [171]. The
main impediment to the torus evacuation is the outgassing of hydrogen isotopes and
helium implanted on the vacuum vessel walls during the plasma discharge.

It is evident that, the outgassing data of the ITER torus during the dwell phase
are of major importance for the time-dependent simulations and are obtained following
[171], where a realistic estimation of the ITER outgassing rate is given by considering
corresponding data from JET. The outgassing rate from the ITER-like beryllium wall
of JET follows an inverse power law, written as [172]

Qin (t) = K1t
−n, (6.1)

where K1 is the initial outgassing rate, t is the dwell phase elapsed time and n is the
decay index. Substituting Eq. (6.1) into Eq. (5.16) and (5.17) yields the macro model
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describing the temporal evolution of the ITER torus pressure P (t) as

V
dP (t)
dt

= K1t
−n + Ṁ (t)RgT = K1t

−n − P (t)Seff (t) , (6.2)

where V is the torus volume and Seff (t) the torus effective pumping speed. For
constant effective pumping speed at the torus, Eq. (6.2) may be solved analytically to
deduce the closed form expression

P (t) = 1
e

Seff
V

t

(
P (t0) e

Seff
V

t0 + K1

V

∫ t

t0
x−ne

Seff
V

x

dx

)
, (6.3)

where P (t0) is the initial torus pressure at time t0. The analytical solution (6.3),
subject to the assumption of constant pumping speed, will be implemented later in
this section for comparing and physically justifying some of the computational results.

It is noted that Eqs. (6.1)-(6.3) hold for t > 0 and thus, following [171], the dwell
phase is assumed to start at t0 = 1 s, where by setting dP/dt = 0, according to
Eq. (6.2), yields Qin (t0) = K1 = P (t0)Seff (t0). Based on the experimental data
from six consecutive JET pulses #70530 - #70535 [173] and the JET torus effective
pumping speed of Seff,JET ∼ 200 m3/s, the initial outgassing rate of the vacuum vessel
is estimated between 1.2-1.5 Pam3/s. Thus, assuming the active vessel areas of JET
and ITER being 144 m2 [174] and 700 m2 respectively [171], the initial outgassing rate
of the ITER vessel is estimated between 5.8-7.2 Pam3/s. The decay index n has been
repeatedly reported in the literature to be 0.75±0.1 [172, 174, 175].

Three pumping scenarios are investigated with 2, 4 and 6 pumps operating. In the
first one the 2 pumps located at lower ports 4 and 6 are operating and the remaining 4
pumps are regenerating, while in the second one the 4 pumps located at lower ports
4, 6, 10 and 12 are running and the remaining 2 pumps are regenerating. As it was
discussed in Section 6.3 the chosen 2 and 4 pump setups correspond to the worst
case scenario i.e. the minimum torus effective pumping speed of all possible pump
setups. The limiting pumping speed of the cryopumps is considered to be 55 m3/s
at the reference temperature of 273.15 K. Since the ITER torus and divertor system
temperature may vary, the temperatures of 400, 600 and 800 K are considered. The
conveying gas is D2 (molar mass 4.028 kg/kmol, viscosity of 15.4, 20.3, 24.8 µPas at
400, 600 and 800K) as the main outgassing hydrogen isotope [174].

Before proceeding with the transient response of the ITER torus primary pumping
system, some steady-state results of the ITER torus effective pumping speed in terms
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of the torus pressure are provided. The pressure at the torus pressure nodes (red nodes
in Figs. 6.2 and 6.3), is specified, along with the other required input data to the
ARIADNE code, which is implemented to compute the torus effective pumping speed.

In Table 6.3, the torus effective pumping speed for torus node pressures equal to
[10−5, 10−4, 10−3, 10−2, 10−1, 1] Pa is tabulated based on the 2, 4 and 6 running pump
scenarios at temperatures 400, 600 and 800 K. It is observed that, when the torus
node pressure is less than or equal to ∼ 10−3 Pa, i.e., when the flow is in the free
molecular regime, the torus pumping speed is almost constant and thus, the pumped
throughput is linear with respect to pressure. On the contrary, when the torus node
pressure is higher than ∼ 10−3 Pa, i.e., when the flow is in the transition regime, the
torus pumping speed increases monotonically with the torus pressure. These remarks
are valid for all three pump setups. Furthermore, with 4 and 6 pumps operating the
torus effective pumping speed is about 2 and 3 times higher than the corresponding
one with the 2 pumps. As discussed in Section 6.3 this behavior indicates that, in both
the 4 and 6 pumps scenarios the flow is not limited by the divertor and each cryopump
added to the system, pumps about the same amount of gas as the other ones.

Moving to the transient response of the ITER dwell phase, in Fig. 6.7, the temporal
evolution of the ITER torus pressure during the 1400 s dwell phase, computed based
on the time-dependent algorithm is compared with the corresponding one, based on
the analytical solution (6.3) subject to the constant torus effective pumping speed
assumption. The comparison is made for the three pumping scenarios at T = 400K,
with initial torus pressure equal to 1 Pa, average initial outgassing rate K1 = 6.5
Pam3/s and n = 0.65 and 0.85, which are the lowest and highest decay index values
found in the literature. Furthermore, the constant pumping speed in Eq. (6.3) is taken
from Table 6.3 for torus pressure 10−5 Pa, and is equal to 39.16 m3/s, 77.22 m3/s and
114.2 m3/s for the 2, 4 and 6 running pumps, respectively. The specific values have
been chosen since, based on the results of Table 6.3, the assumption of the constant
pumping speed is justified in the low pressure regime.

As it is seen in Fig. 6.7, the results are in good qualitative agreement in the whole
dwell phase. However, for t ≤ 300 s, t ≤ 200 s and t ≤ 100 s in the cases of 2, 4 and
6 pumps respectively, there are significant quantitative deviations, with the present
time-dependent algorithm considered as the accurate prediction. These discrepancies
are justified, since for all above specified times the torus pressure is above 10−3 Pa
(i.e. the gas flow in the transition regime) and the torus effective pumping speed in
all three pumping scenarios is not constant as clearly seen in Table 6.3, which makes

128

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 09:16:19 EEST - 18.216.209.182



Section 6.4

the analytical solution of Eq. (6.3) invalid. On the contrary, for t > 300 s, t > 200 s
and t > 100 s in the cases of 2, 4 and 6 pumps respectively, with the torus pressure
below ∼ 10−3 Pa and the whole pumping system in the free-molecular regime the
two approaches show an excellent quantitative agreement. The observations with
regard to the validity of the two approaches are important for the following reasons: a)
The effectiveness of the present time-dependent algorithm in modeling the transient
response of large size pipe networks is validated; b) When the torus pressure at the
end of the 1400 s dwell phase is the only quantity of interest, it can be accurately
predicted directly from Eq. (6.3), based on the constant torus pumping speed in
the free-molecular regime computed by ARIADNE, without implementing the hybrid
time-dependent algorithm; c) The physical behavior of the torus pressure temporal
evolution including the final torus pressure at the end of the 1400 s dwell phase can be
qualitatively explained based on the simple form of Eq. (6.3).

The temporal evolution of the torus pressure during the dwell phase for initial
torus pressures equal to 1, 10−1 and 10−2 Pa is plotted in Fig. 6.8. The other data
are as before (three pumping scenarios, T = 400K, K1 = 6.5 Pam3/s, n = 0.65 and
0.85). Starting with the 2 pumps scenario, it is seen that the torus pressure evolution
depends on the initial torus pressure when t ≤ 300 s, while it becomes identical for all
initial pressure conditions when t > 300s. The observed behavior also holds with the 4
or 6 pumps scenarios, with the corresponding times, where the merging of the torus
pressure temporal evolution curves takes place, at approximately t = 200 s and t = 100
s, respectively. These remarks are valid for both investigated values of the decay index.
Thus, it may be concluded that in the range of the investigated parameters the torus
pressure after the 1400 s dwell phase is independent from the initial pressure conditions
of the torus. The above remark is easily justified by examining the right hand side of
the analytical solution (6.3), where the first term inside the parenthesis, related to the
initial pressure is constant, while the second term, related to outgassing, grows with
time. Therefore, at adequately large times the temporal pressure evolution will be
independent of the initial pressure conditions and will only depend on the outgassing
term.

Many of the required ITER dwell phase input data have been either extrapolated
from corresponding JET data or have been assumed. Thus, a parametric study is
performed in order to deduce some useful information on the importance of the involved
input data on the final torus pressure. In Fig. 6.9 the final torus pressure after the
1400 s dwell phase is presented in terms of the initial outgassing rates K1, for the decay
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indices n = 0.65 and 0.85, the system temperatures T = 400, 600 and 800 K with 2, 4
and 6 pumps operating.

It is readily seen that, in all cases the final torus pressure grows linearly with the
initial outgassing rate. This trend is justified by Eq. (6.3), where K1 multiplies the
integral term, which is the one, affecting the final torus pressure. Furthermore, the
final torus pressure with the 4 and 6 pumps is always reduced about 2 and 3 times
respectively, compared to the corresponding one with the 2 pumps scenario. It is
reminded here that, the torus effective pumping speed is increased by about 2 and
3 times when 4 and 6 cryopumps are employed. It is also seen that the final torus
pressure is reduced as the torus temperature is increased. More specifically, when
the torus temperature is increased from 400 K to 600 K the final torus pressure is
always decreased by about 22%, while when the torus temperature is doubled from
400 K to 800 K the torus pressure reduction is about 34%. In addition, for n = 0.85,
corresponding to the lowest outgassing scenario, after the 1400 s dwell pumping the
target torus pressure of 5 × 10−4 Pa can be always achieved in the cases of 4 and 6
operating pumps, while in the case of 2 operating pumps it can only be achieved in a
certain range of the investigated parameters. However, for n = 0.65, which corresponds
to the highest outgassing, the required threshold pressure is marginally achieved in the
expected range of initial outgassing rates (5.8-7.2 Pam3/s) only when all 6 cryopumps
are employed. Actually, even with the utilization of all 6 cryopumps, considering
the uncertainty of the initial outgassing rate estimation (extrapolated from JET), it
cannot be stated with absolute certainty, that the target pressure of 5 × 10−4 Pa can
be achieved when n = 0.65.

6.5 Concluding remarks

The capabilities of the UTH steady-state code ARIADNE and the proposed hybrid
time-dependent algorithm have been demonstrated by successfully simulating the burn
and dwell phases of the ITER primary pumping system.

The UTH steady-state code ARIADNE has been implemented to simulate the
ITER burn phase under steady conditions for several operating scenarios and both
qualitative and quantitative results have been provided. Regarding the qualitative
results, the gas flow direction through a cassette connected to a pump port, as well
as, inside a typical gap between adjacent cassettes has been provided. Regarding the
quantitative results for the pumped throughput and the backflow into the plasma, it
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has been found that they are both increased moving from the low, to the medium and
to the high pressure scenarios. In addition, the pumped throughput in the 4 and 6
pump scenarios is increased by about 2 and 3 times compared to the 2 pump scenario.
Moreover, concerning the cyclic pumping/regeneration mode it has been found that
the total throughput is very close for all unique pump setups and the individual pump
throughputs are well balanced.

The proposed time-dependent algorithm has been implemented to simulate the
ITER 1400 s dwell phase for various operating scenarios and several interesting findings
have been reported. Regarding the torus pressure at the end of the dwell phase, which
is of major importance, it has been found that it is independent of the initial torus
pressure conditions, it increases linearly with the initial outgassing rate and it decreases
as the network temperature increases. It is also seen that, the final torus pressure in the
4 and 6 pump scenario is reduced about 2 and 3 times compared to the corresponding
one in the 2 pump scenario. Concerning the specified target pressure of 5 × 10−4 Pa at
the end of the dwell phase, based on the present simulations subject to the introduced
operational and geometrical data, it is concluded that in the lowest outgassing scenario
it can be achieved in a wide range of the investigated parameters, while on the contrary
in the highest outgassing scenario it is marginally achieved only in the expected range
of initial outgassing rates when all 6 cryopumps are employed.
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Table 6.1 Partial pressure [Pa] of deuterium (D2) at the fixed pressure nodes for three
pressure scenarios during the burn phase [167].

Node number Corresponding location in [167] Low-p Mid-p High-p
1 E 8.2 × 10−4 1.0 × 10−3 8.1 × 10−4

10 D 3.65 7.20 15.0
14 C 1.85 3.10 7.82
18 B 10.4 12.5 23.6
26 A 6.7 × 10−5 2.6 × 10−4 8.8 × 10−4

43 A 6.7 × 10−5 2.6 × 10−4 8.8 × 10−4

45 Upper gap part, outer target 0.20 0.30 0.30
48 Lower gap part, inner target 8.30 18.5 33.7
53 Lower gap part, outer target 32.3 42.7 70.1
56 Upper gap part, inner target 0.08 0.20 0.60

Table 6.2 Pumped throughput [Pam3/s] in the low and high pressure burn phase
scenarios for the four unique pump setups; R denotes regeneration.

Pump port Low-p High-p
4 98.0 96.1 97.5 97.9 367.7 363.2 366.4 364.2
6 96.2 96.1 96.5 97.9 363.2 363.2 364.2 364.2
10 96.2 101.3 100.8 R 363.2 376.7 375.5 R
12 98.0 R R 101.2 367.7 R R 379.8
16 R R 102.5 101.2 R R 379.8 379.8
18 R 101.3 R R R 376.7 R R

Total 388.4 394.8 397.3 398.1 1461.9 1479.7 1486.0 1488.0

Table 6.3 Torus effective pumping speed (m3/s) of D2 with respect to the torus pressure
with two, four and six pumps operating at 400, 600 and 800 K.

Pumping scenario 2 pumps 4 pumps 6 pumps
Torus pressure [Pa] 400 K 600 K 800 K 400 K 600 K 800 K 400 K 600 K 800 K

10−5 39.16 50.20 59.63 77.22 98.94 117.5 114.2 146.3 173.6
10−4 39.17 50.21 59.64 77.25 98.95 117.5 114.3 146.3 173.6
10−3 39.28 50.30 59.71 77.46 99.12 117.6 114.5 146.5 173.8
10−2 40.33 51.18 60.48 79.47 100.8 119.1 117.2 148.7 175.7
10−1 48.61 58.58 67.16 95.01 114.8 131.7 138.4 167.7 192.8

1 79.10 96.07 107.0 152.6 184.0 204.6 225.3 267.7 295.9
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Figure 6.1 View of the cryopump positions [11].

Figure 6.2 Cross-section view of a cassette connected to a pump along with the pipe
network approximating the gas flow path.
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Figure 6.3 Cross-section view of a gap between adjacent cassettes along with the pipe
network approximating the gas flow path.

Figure 6.4 Direction of gas flow through the pipe network approximating a cassette
connected to a pump.
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Figure 6.5 Direction of gas flow through the pipe network approximating the gap
between adjacent cassettes.

,

Figure 6.6 Computed throughput towards the pumps (left) and the plasma (right) in
the low, medium and high pressure burn phase scenarios with respect to the dome
pressure with two, four and six pumps operating.
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,

Figure 6.7 Temporal evolution of the ITER torus pressure, based on the time-dependent
algorithm and analytical Eq. (6.3), with two, four and six pumps operating, initial
torus pressure 1 Pa, initial outgassing rate K1 = 6.5Pam3/s, temperature T = 400 K
and decay indices n = 0.65 (left) and n = 0.85 (right).

,

Figure 6.8 Temporal evolution of the ITER torus pressure for initial torus pressures
P (t0 = 1) = [10−2, 10−1, 1] Pa, with two, four and six pumps operating, initial out-
gassing rate K1 = 6.5 Pam3/s, temperature T = 400 K and decay indices n = 0.65
(left) and n = 0.85 (right).
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,

Figure 6.9 Torus pressure after the 1400 s dwell phase in terms of the initial outgassing
rate K1 with two, four and six pumps operating, temperature T = 400, 600 and 800 K
and decay indices n = 0.65 (left) and n = 0.85 (right).
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Aerosol flows via stochastic
modeling

7.1 Introduction

Recently the simulation of aerosol flows under rarefied conditions has attracted
considerable attention due to their significant role in the semiconductor and MEMS
manufacturing industry [19–21], as well as due to their tentative importance in fusion
reactor plasma and tritiated dust control [22–25].

At the Laboratory of Transport Phenomena and Process Equipment at the Univer-
sity of Thessaly the 3D DSMC code “PROGRESS”, which stands for Prediction of
Gas Rarefaction Effects through Stochastic Simulations, has been developed by Dr.
S. Pantazis, based on the DSMC method proposed by Bird [30]. In the present work,
PROGRESS has been appropriately modified in order to simulate the transport of a
single rigid spherical particle inside a rarefied gas.

In the first part of this chapter, an overview of the DSMC method proposed by
Bird [30] is described in order to facilitate the discussion for the developed aerosol
code. Next, the structure of the developed aerosol code is provided in detail. In the
developed code a two-way coupling is implemented [109]. The force and torque exerted
on the solid particle are computed based on the gas-solid particle collisions. The
gas-solid particle collision detection is perfomed in a deterministic manner, while the
gas particles are reflected from the solid particle surface stochastically. The computed
force and torque are then used to determine the translational and rotational motion of
the solid particle deterministically based on the Newton-Euler equations. The DSMC
aerosol code has been developed based on object-oriented programming in order to be
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easily accessible, adaptable and to facilitate the addition of new features in the future,
such as the transport of multiple solid particles. In addition, several advancements have
been made to the code, such as the implementation of the Variable Soft Sphere (VSS)
intemolecular potential, as well as, the implementation of the so-called subcell and
tetrahedron meshes. Furthermore, the developed code has been parallelized using the
MPI communication protocol in order to be able to tackle computationally intensive
simulations.

In the second part of this chapter, the developed DSMC code is validated based
on three benchmark cases. In the first benchmark case the thermophoresis of a solid
particle suspended in a rarefied gas between two infinite parallel plates kept at slightly
unequal temperatures is investigated via the proposed aerosol code. The purpose of
this benchmark is to validate the force computation, as well as the computation of the
gas macroscopic quantities. The obtained results for the heat flux between the plates
and the thermophoretic force exerted on the particle are benchmarked with the ones
reported in [20], where the typical DSMC method is used and a force Green’s function
is implemented for the computation of the thermophoretic force. In addition, the
computed results are compared with the approximate closed form expressions for the
heat flux and the thermophoretic force proposed in [20, 176]. In the second and third
benchmark cases the translational and rotational Brownian motion respectively, of a
solid particle suspended in a rarefied gas bath at rest is investigated. The purpose of
these two benchmarks is the validation of the force and torque computation, as well as
the translational and rotational movement of the rigid particle. The translational and
rotational diffusion coefficients are computed based on the translational and angular
position variance of the particle and they are compared with their theoretical values in
the free-molecular regime [100, 177]

7.2 The direct simulation Monte Carlo method

The DSMC method proposed by Bird [30] emulates the physics of the Boltzmann
equation by following the motion and collisions of a large number of simulator particles.
Each simulator particle represents a large number of real gas particles Fn and possesses
molecular information such as the position vector r, molecular velocity vector ξ,
molecular mass m and diameter d. The particle motion and collisions are decoupled
over a small time step ∆t. The free motion part is purely deterministic and the simulator
particle travels a distance proportional to its velocity, when no external forces act on
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the gas. In addition, during the movement of the gas simulator particles, boundary
conditions such as the reflection from a solid surface are applied in a stochastic manner,
where the reflected particle velocity is sampled from a scattering distribution. The
particle collisions are also simulated stochastically. The most widely employed collision
technique is the No Time Counter (NTC) scheme suggested by Bird [30]. In this
scheme, a number of particle pairs is chosen regardless of their position and molecular
velocity and a collision probability for the specific gas particle pair is calculated based
on the product of the collision cross-section and relative velocity. The collision between
the two particles occurs when a random number rf ∈ [0, 1] is smaller than the collision
probability. A variety of intermolecular potentials have been developed for DSMC
simulations, with the Hard Sphere (HS), Variable Hard Sphere (VHS) and Variable
Soft Sphere (VSS) being the most widely used ones [30, 178]. The flow domain is
usually discretized by either a structured or unstructured mesh of cells. The mesh
cells are used for the collision particle pair selection and for sampling the macroscopic
quantities, such as the density, velocity vector, temperature, stress tensor and heat flux
vector. Furthermore, the mesh cells may be split into subcells in order to improve the
particle collision computations. In this case, the subcells are employed for the collision
sampling, while the cells are employed for the macroscopic quantities sampling.

In general, a DSMC simulation starts from an initial time and ends after a prede-
termined number of time steps. The typical steps in each DSMC time step are: (1)
Move the particles over the time step ∆t; (2) Index the particles into the cells and
subcells; (3) Collide the particles in each cell or subcell; (4) Sample the macroscopic
quantities. These steps are also present in the developed DSMC aerosol code, with
some modifications required for the simulation of the solid particle.

7.3 Structure of the 3D DSMC aerosol code

The flowchart of the developed 3D DSMC aerosol code is provided in Fig. 7.1.
As it is seen, the first task is to provide the required simulation data as input to the
developed code. These data include a variety of information, such as the nominal
time step ∆t0, the total simulation time tf , the number of simulator particles, the
gas properties and intermolecular model, the solid particle properties, as well as the
boundary and initial conditions. Furthermore, the cell mesh discretizing the flow
domain, which is used to sample, average and output the macroscopic quantities, can
be designed in any suitable 3D CAD software and must be provided as a Universal
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Format file (UNV). In its current state, the developed code supports hexahedral and
tetrahedral cells.

In addition to the cell mesh, two more meshes are constructed in the proposed
algorithm as shown in Fig 7.1. The first is the subcell mesh, which is implemented for
the gas particle collisions and is created by splitting the initial mesh cells into subcells.
The method used here to create the subcells for each cell is to use the cell center and
faces. In Fig. 7.2 an example of the proposed subcell creation method is shown for a
hexahedron cell. It is evident that, in the case of a hexahedral cell six pyramid subcells
are created, while in the case of a tetrahedral cell four tetrahedral subcells are created.
The second mesh is the tetrahedral mesh, which is used in the gas and solid particle
initialization, as well as, in order to compute the cell and subcell volume occupied
by the solid particle. The tetrahedral mesh, as the name suggests, only consists of
tetrahedrons and is created by splitting the subcell mesh. In Fig. 7.3 an example of the
proposed tetrahedron mesh creation method is shown for a pyramid subcell. As it can
be seen, in the case of a pyramid subcell two tetrahedron cells are created by splitting
the quadrilateral face in two triangular ones, while in the case of a tetrahedron subcell
no further splitting is required. Each cell in the initial mesh contains the subcells and
each subcell contains the tetrahedron cells. Thus, computations performed for the
tetrahedron mesh are easily translated to the subcell and cell mesh.

After the creation of the subcell and tetrahedron mesh the spherical solid particle
with a predetermined radius Rs is initialized. The user may specify an initial center of
mass position and an initial translational velocity vs,0 and angular velocity ωs,0 in the
input files. Otherwise, the solid particle is assumed to be at rest (vs,0 = ωs,0 = 0) and
is generated in a random position inside the flow domain (confirming that it does not
intersect any of the flow domain boundaries).

Then, given the initial translational velocity any possible collision between the
solid particle and the flow domain boundaries within the nominal time step ∆t0 is
examined [179]. In the case where, a collision occurs in time ∆tcoll < ∆t0 the time step
∆t becomes ∆tcoll, otherwise the nominal time step ∆t0 is maintained. This time step
modification is performed to ensure that, in each iteration the solid particle performs
a single linear movement. This modification significantly reduces the computational
effort required for the gas-solid particle collision detection and most importantly it
facilitates the simulation of multiple solid particles in the future.

The gas solid particle is indexed by detecting which cells are partially or fully
occupied by the solid particle [179]. Furthermore, the volume occupied by the solid
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particle in each cell and subcell is computed analytically by computing the overlap
volume between the spherical solid particle and the tetrahedron mesh following [180].
However, the methodology proposed in [180] only considers a stationary sphere. Thus,
the suggested computations are performed for 10 time increments during the solid
particle motion and the average overlapping volumes are computed for all the mesh
cells and subcells.

Next, the gas particles are initialized at uniformly distributed random points
inside each cell and the molecular velocity vector ξ is sampled from the Maxwellian
distribution

f(ξ) = 1
π3/2v3

0
e

−
(

ξ
v0

)2

, (7.1)

where v0 =
√

2RgT0 is the most probable molecular velocity speed, T0 is the initial cell
temperature, while Rg = kB/m denotes the specific gas constant (kB is the Boltzmann
constant and m is the molecular mass). The number of particles initialized in each cell
is proportional to the cell free volume (i.e. the cell volume that is not occupied by the
solid particle) over the total mesh free volume. Next, the gas particles initialized in
each cell are sorted to the corresponding subcells.

The initialization phase is now complete and the DSMC code can move on to the
flow simulation. In each time step the following steps are identified: (1) Compute the
first solid particle collision; (2) Index the solid particle; (3) Move the gas particles;
(4) Index the gas particles; (5) Collide the gas particles; (6) Move the solid particle;
(7) Update the solid particle velocity; (8) Sample the gas macroscopic quantities and
solid particle properties; (9) Average the sampled quantities; (10) Output the averaged
quantities.

The first two steps, namely the computation of the first solid particle collision with
a boundary and the indexing of the solid particle, have been described above and
are omitted in the first time step since they have been already performed during the
initialization of the code.

Similar to the free streaming of the gas paticles in the typical DSMC method, in
the developed code the free motion of the gas particles is purely deterministic following
the Newton-Euler equation, which for a monoatomic gas where no external forces are
applied, reads

dr

dt
= ξ,

dξ

dt
= 0, (7.2)

where r and ξ denote the simulator gas particle position and velocity, respectively.
During the free motion step a gas particle may impinge on any of the cell faces or on
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the solid particle. In the former case, if the cell face is “inner” (not on the flow domain
boundary) the gas particle crosses to a new cell, which is registered to the memory,
and continues to move freely. Otherwise, in the case where the gas particle impinges
on a boundary face with incident velocity ξ′, diffuse-specular interaction is assumed
and the reflected velocity ξ is sampled from the scattering distribution

R
(w)
d (ξ′, ξ) = 2ξ · n

π(2RgTw)2 e
− ξ2

2RgTw , (7.3)

with probability a or it is computed by

ξ = ξ′ − 2 [ξ′ · n] n, (7.4)

with probability 1 − a. The quantity a denotes the accommodation coefficient of the
boundary face, which represents the fraction of particles that are reflected diffusively,
while 1 − a represents the fraction of the particles that are reflected specularly, Tw is
the boundary face temperature and n denotes the unit vector normal to the boundary
face towards the flow domain. In the case where the gas particle impinges on the solid
item with incident velocity ξ′, purely diffuse interaction is assumed and the reflected
velocity ξ is sampled from the scattering distribution

R
(s)
d (ξ′, ξ) = 2 (ξ − us) · n

π(2RgTs)2 e
− (ξ−us)2

2RgT , (7.5)

where us = vs +Rs (ωs × n) is the solid particle impact point velocity, with vs and
ωs denoting the translational and angular velocity, respectively, while Ts is the particle
temperature and n is the unit vector normal to the solid particle surface towards the
flow domain. The force and torque exerted on the solid particle are computed based
on the pre- and post-collision gas particle velocities that collide with the solid item as

F s = mFn

∆t

∑
i

(ξ′
i − ξi), (7.6)

τ s = mFnRs

∆t

∑
i

ni × (ξ′
i − ξi). (7.7)

Here, the index i refers to all the gas particles that impinge on the solid particle during
the time step ∆t.
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Next, after the completion of the free motion step the gas particles are indexed.
The typical indexing method is to search for all particles inside all the cells and subcells
of the mesh. However, as mentioned above in the developed code the current gas
particle cell is stored during the move step. Thus, the gas particle is only searched
in the subcells of its current cell. This indexing method has been found to be more
computationally efficient than the typical indexing method.

The NTC collision technique suggested by Bird [30] is implemented here. A slight
modification proposed in [181] is introduced in the calculation of the maximum number
of collision pairs Ncoll in each subcell, which is calculated as

Ncoll = 1
2
Nsc(Nsc − 1)Fn(σt |ξr|)max∆t

Vsc,f

. (7.8)

Here Nsc is the actual number of simulator gas particles in the subcell, (σt |ξr|)max is the
maximum value of the product of the collision cross-section σt and the relative velocity
magnitude |ξr| of the particles in the collision and is updated throughout the simulation.
The quantity Vsc,f denotes the subcell free volume (i.e. the subcell volume that is
not occupied by the solid particle). The collision cross-section and the post-collision
velocities of the gas particle pair depend on the intermolecular potential. Currently
in the developed code the HS, VHS and VSS potentials have been implemented. A
detailed description for the implementation of these intermolecular potentials is given
in [30].

At this stage the free motion and collision part for the gas particles is complete
and the code can move to the solid particle movement step. The free motion step of
the solid particle is also purely deterministic following the Newton-Euler equations,
which for a rigid spherical particle read as

drs

dt
= vs, (7.9)

ms
dvs

dt
= F s, Is

dωs

dt
= τ s, (7.10)

where rs denotes the center of mass position and Is = (2/5)msR
2
s is the solid particle

moment of inertia. It is noted that, since the solid paricle is spherical its orientation is
not required and thus, it is not computed in order to reduce the required computational
time.
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Next, the solid particle translational and rotational velocities are updated. Two
distinct cases are identified. In the first case, the solid particle does not collide with a
flow domain boundary and the translational and angular velocities are updated via Eq.
(7.10) based on the updated values of the force F s and torque τ s computed via Eq.
(7.6) and (7.7), respectively. In the second case, the solid particle at the end of the
free motion step impinges on a flow domain boundary, as shown in Fig 7.4 and the
translational and angular velocities must be updated based on the solid particle-wall
interaction model. In the present work, the hard-sphere model proposed by Crowe et
al. [182], is considered. In the suggested model the collision process is divided into two
periods, namely the compression period, where the material of the particle is deformed
and the recovery period, where the elastic deformation force is released. The fact that
the particle may slide along the surface for some or all the collision period is also
taken into account. The model distinguishes between three cases: (1) The particle
stops sliding during the compression period; (2) The particle stops sliding during the
recovery period; (3) The particle slides throughout the entire collision. A detailed
description of the impulse equations involved in order to determine the post-collision
velocities vs and ωs with respect to the pre-collision velocities v′

s and ω′
s is given in

[182]. It is noted that, although the impulse equations are different for the first two
cases, where the solid particle stops sliding in the compression period or the recovery
period, they produce the same expressions for the post-collision velocities:

vs,n = −εv′
s,n, ωs,n = ω′

s,n (7.11)

vs,t1 =
5v′

s,t1 − 2Rsω
′
t2

7 , ωs,t1 =
5v′

s,t2 + 2Rsω
′
t1

7Rs

(7.12)

vs,t2 =
5v′

s,t2 + 2Rsω
′
t1

7 , ωs,t2 =
5v′

s,t1 + 2Rsω
′
t2

7Rs

(7.13)

Here the quantity ε ∈ [0, 1] is the restitution coefficient, which is defined as the ratio
of the normal impulse during the recovery period over the normal impulse during the
compression period. The restitution coefficient is a property of the solid particle and
wall materials, with ε = 1 corresponding to a perfectly elastic collision, while ε = 0
corresponding to a perfectly inelastic one.

In the third case, where the solid particle continues to slide throughout the collision,
the impulse equations yield:

vs,n = −εv′
s,n, ωs,n = ω′

s,n (7.14)
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vs,t1 = v′
s,t1 + (1 + ε)et1µfv

′
s,n, ωs,t1 = ω′

s,t1 − 5
2Rs

(1 + ε) et2µfv
′
s,n (7.15)

vs,t2 = v′
s,t2 + (1 + ε)et2µfv

′
s,n, ωs,t2 = ω′

s,t2 + 5
2Rs

(1 + ε) et1µfv
′
s,n (7.16)

Here, µf denotes the Coulomb dynamic friction coefficient, while et1 and et2 are the
direction cosines of the pre-collision velocity with respect to the boundary plane given
by

et1 = −
v′

s,t1 +Rω′
s,t2√(

v′
s,t1 +Rω′

s,t2

)2
+
(
v′

s,t2 −Rω′
s,t1

)2
, (7.17)

et2 =
v′

s,t2 −Rω′
s,t1√(

v′
s,t1 +Rω′

s,t2

)2
+
(
v′

s,t2 −Rω′
s,t1

)2
. (7.18)

In order to determine whether the solid particle stops or continues sliding throughout
the collision the total normal impulse Jn computed as

Jn = −(1 + ε)msv
′
s,n, (7.19)

is compared to the total tangential impulse Jt, which is computed as

Jt = 2
7ms

√(
v′

s,t1 +Rω′
s,t2

)2
+
(
v′

s,t2 −Rω′
s,t1

)2
. (7.20)

It is easily deduced from Coulomb’s friction law that the solid particle will stop sliding
during the collision if the following criterion holds:

Jt ≤ Jnµf (7.21)

In this case, the solid particle post-collision velocities are computed based on Eqs.
(7.11)-(7.13), otherwise they are computed via Eqs. (7.14)-(7.16).

Similar to the typical DSMC method, in each iteration the sums of certain useful
quantities, such as the molecular velocity moments for all gas particles in each cell are
computed and stored. In the present work, the sums of the solid particle properties,
such as the center of mass position, the translational and rotational velocities, the force
and the torque, are also calculated and stored during the sample step.

After a predetermined number of time steps S the code output data, which consists
of the gas macroscopic quantities in each cell, as well as, the solid particle properties
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are exported to respective output files. The gas macroscopic quantities in each cell are
given as time averages of the sums computed in the sampling step:

• Number density

n = Fn

Vc,f

S∑
k=1

N (tk)∆tk
S∑

k=1
∆tk

(7.22)

• Velocity

ui = Fn

nVc,f

S∑
k=1

N(tk)∑
m=1

ξm,i(tk)∆tk
S∑

k=1
∆tk

, i = x, y, z (7.23)

• Temperature

T = Fnm

3nkBVc,f

S∑
k=1

N(tk)∑
m=1

[
ξ2

m,x (tk) + ξ2
m,y (tk) + ξ2

m,z (tk)
]
∆tk

S∑
k=1

∆tk

− m

3kB

(
u2

x + u2
y + u2

z

) (7.24)

• Stress

σij = Fnm

Vc,f

S∑
k=1

N(tk)∑
m=1

ξm,i (tk) ξm,j (tk)∆tk
S∑

k=1
∆tk

−mnuiuj, i, j = x, y, z (7.25)

• Heat flux

qi = Fnmg

2Vc,f

S∑
k=1

N(tk)∑
m=1

ξm,i (tk)
[
ξ2

m,x (tk) + ξ2
m,y (tk) + ξ2

m,z (tk)
]
∆tk

S∑
k=1

∆tk

− (uxσix + uyσiy + uzσiz) − mgn

2 ui

(
u2

x + u2
y + u2

z

)
−3

2nkBTui, i = x, y, z

(7.26)

In this notation, k denotes the time step index, Vc,f is the cell free volume and N (tk)
is the number of particles inside the cell at time step k. In the same manner, the
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solid particle properties are also given as time averages of the sums computed in the
sampling step

φs =

S∑
k=1

φs (tk)∆tk
S∑

k=1
∆tk

, (7.27)

where φs denotes any of the solid particle properties of interest, namely the center of
mass position vector rs, the translational velocity vs, rotational velocity ωs, the force
F s and the torque τ s. The aforementioned steps are repeated until the simulation is
complete i.e. when the predetermined time tf is reached.

The 3D DSMC aerosol code is based on object-oriented programming to facilitate
its accessibility, adaptation and enhancement in the future. In addition, the code has
been parallelized implementing the MPI communication protocol. In the implemented
parallelization each processor core runs an independent instance of the DSMC simulation
(trajectory). Communication between the different processor cores is only required to
ensemble average the macroscopic quantities of interest over all trajectories during the
averaging step. Thus, a satisfactory efficiency is maintained even with a high number
of processors.

7.4 Test Case I: Thermophoretic effect on a spheri-
cal particle

Consider a monoatomic rarefied gas, which is confined between two infinite parallel
plates of slightly unequal temperature located at ±H/2. The hot top plate is kept at a
constant temperature Th, while the cold bottom plate is kept at a constant temperature
Tc with (Th − Tc) /Tc ≪ 1. In addition, a rigid spherical particle with radius Rs ≪ H is
suspended in the gas. In this configuration the rigid particle experiences a force called
the thermophoretic force due to momentum being transferred to the solid particle by
the thermal motion of the surrounding gas molecules. The thermophoretic force is
pushing the solid particle away from the warmer top plate towards the colder bottom
plate. A schematic representation of the described flow configuration is presented in
Fig 7.5
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The level of gas rarefaction is indicated by the rarefaction parameter δH , which is
defined by taking the plate separation distance as the reference length:

δH = PH

µ̃v0
(7.28)

Here P is the gas pressure, µ̃ is the gas viscosity at temperature T0 = (Th + Tc) /2 and
v0 =

√
2RgT0 is the most probable molecular velocity speed. The secondary reference

length which is required to fully define the flow is the particle radius Rs [102]. The
corresponding rarefaction parameter is defined as

δRs = PRs

µ̃v0
. (7.29)

In the present work it is assumed that Rs ≪ H and thus δRs ≪ δH . Consequently,
when the gas is exhibiting noncontinuum behavior, the free-molecular limit is assumed
to apply on the particle length scale.

In the hydrodynamic regime (δH ≫ 1) the gas acts as a continuum and the heat
flux between the two plates is simply derived by Fourier’s law

q(h) = −κ̃dT
dz
, (7.30)

where κ̃ is the gas thermal conductivity. In the case of small temperature differences
the temperature dependence of the thermal conductivity can be neglected and Eq.
(7.30) is integrated analytically to obtain the heat flux between the two plates:

q(h) = −κ̃Th − Tc

H
(7.31)

In the hydrodynamic regime, a closed form expression has been derived for the ther-
mophoretic force in [183] written as

F
(h)
th =

( 32
15π

)(
πR2

s

v̄

)
q(h), (7.32)

where v̄ =
√

8kBT/ (πm) is the gas mean thermal speed.
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In the free-molecular regime the heat flux between the two plates for a monoatomic
gas has been derived by Bird [30] for an arbitrary temperature difference

q(fm) = −P
(

8kB

πm

)1/2 (
T

1/2
h − T 1/2

c

)
. (7.33)

An expression for the thermophoretic force exerted on the solid particle in the free-
molecular regime has been obtained in [19]

F
(fm)
th = −3

2πR
2
sP

T 1/2
h − T 1/2

c

T
1/2
h + T

1/2
c

 , (7.34)

which in the case of a small temperature difference can be written as [184]

F
(fm)
th =

(3
4

)(
πR2

s

v̄

)
q(fm). (7.35)

Comparison of Eqs. (7.32) and (7.35) showed that the thermophoretic force expressions
in both the free-molecular and hydrodynamic limits are identical within a numerical
constant [184]. More specifically, both expressions are proportional to the particle
cross-sectional area and the heat flux, while they are inversely proportional to the
mean thermal speed.

In the transition regime, the calculation of the heat flux between the two plates
requires the solution of the Boltzmann equation. In [176] a simple interpolation formula
has been suggested for the heat flux:

q = q(fm)

1 + q(fm)
/
q(h)

(7.36)

It can be easily seen that, the above expression tends to q(fm) and q(h) in the free-
molecular and hydrodynamic regimes, respectively. In addition, Eq. (7.36) has been
reported to agree well with the limited experimental data [185].

As mentioned above the thermophoretic force depends on the heat flux in the same
manner in both the hydrodynamic and free-molecular regime. This fact is used in
[19, 186], where the following closed form expression for the thermophoretic force in
the whole transition regime was proposed

Fth = ζth

(
πR2

s

v̄

)
q, (7.37)
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where ζth is the so-called thermophoresis parameter. The thermophoresis parameter
depends on the local molecular velocity distribution but in a very weak manner [19].
A simple approximation expression for the thermophoretic parameter, which tends to
the correct values in the free-molecular and hydrodynamic regimes is provided in the
present work

ζth = ζ
(fm)
th + δH

1 + δH

(
ζ

(h)
th − ζ

(fm)
th

)
, ζ

(fm)
th = 3

4 , ζ
(h)
th = 32

15π . (7.38)

Substituting Eqs. (7.36) and (7.38) in Eq. (7.37) the thermophoretic force can be
easily calculated in the whole range of gas rarefaction, from the hydrodynamic to the
free-molecular regime as

Fth =
[

3
4 + δH

1 + δH

( 32
15π − 3

4

)](
πR2

s

v̄

)
q(fm)

1 + q(fm)
/
q(h)

. (7.39)

The closed form expression (7.39) can approximate the thermophoretic force in the
whole range of gas rarefaction with an approximation error less than 10%.

The developed 3D DSMC aerosol code is implemented to compute the ther-
mophoretic force exerted on a rigid spherical particle suspended in a rarefied gas
between two infinite parallel plates of slightly unequal temperatures, as well as the
heat flux exchanged between the two plates. The flow configuration investigated here,
is the one reported in [20], where the 2D DSMC Icarus code is implemented and the
force Green’s function is used for the thermophoretic force computation. The heat flux
and thermophoretic force computed via the developed code are compared with the
ones reported in [20], as well as, with the results produced by the approximate closed
form expressions (7.36), (7.39).

The plate separation is taken to be H = 10−2 m, the top plate is kept at Th = 283
K, while the bottom plate is kept at Tc = 263 K. Purely diffuse accommodation is
considered at the two plates, while the boundaries perpendicular to the plates are
considered to be purely specular due to symmetry. The solid particle has a radius
Rs = 5 × 10−6 and is fixed in the flow domain center. The particle is kept at Ts = 273
K and is not allowed to move either translationally or rotationally in order to have
a valid comparison with [20]. The investigated gas pressure ranged between 0.1 and
100 mTorr i.e. from the free-molecular up to the transition and slip regime. In total
800 cube cells are used with 200 cells in the z direction perpendicular to the plates
and 2 cells in the x and y directions. In each cell 100 gas simulator particles are
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initialized, resulting in a total of 8 × 104 simulator gas particles. Two monoatomic
gases are considered, namely Argon and Helium and the VSS model is implemented.
The required gas properties are shown in Table 7.1. The time step is taken as ∼ 1/3 of
the mean cell transversal time, which corresponds to ∆t = 5 × 10−8 s for Argon and
∆t = 1.5 × 10−8 s for Helium and the simulation ends after 8 × 104 time steps. The
presented results are based on simulations performed on 20 Intel Xeon 8160 (SkyLake)
nodes resulting to a total of 2400 independent trajectories.

In Table 7.2 the heat flux q [W/m2] based on the developed DSMC code, the 2D
DSMC Icarus code implemented in [20], as well as, based on the approximate expression
(7.36) are presented with respect to the pressure P = [0.1, 0.3, 1, 10, 30, 102] mTorr. As
expected, the heat flux is proportional to the gas pressure in the free-molecular regime.
As the gas pressure is increased the heat flux is also increased and tends to a constant
value at the hydrodynamic limit. An excellent agreement is observed between the
present heat flux results and the ones reported in [20] for both Ar and He with the
highest relative deviation reaching 1%. In addition, as reported in [20] the closed form
expression (7.36) successfully approximates the numerical heat flux results with the
highest relative deviation being below 10% in the transition regime.

In Table 7.3 the thermophoretic force exerted on the solid particle over the particle
cross-sectional area Fth/ (πR2

s) [N/m2] based on the developed DSMC code, the 2D
DSMC Icarus code and force Green’s function implemented in [20], as well as, based
on the closed form expression (7.39) are presented with respect to the gas pressure
P = [0.1, 0.3, 1, 10, 30, 102] mTorr. As already mentioned, the thermophoretic force is
proportional to the heat flux and thus, in the free-molecular regime it is found to be
proportional to the gas pressure. As the gas pressure is increased the thermophoretic
force exerted on the particle is also increased and tends to its limiting value in the
viscous regime. The presented results for the thermophoretic force show an excellent
agreement with the ones reported in [20] with the relative deviations being below
1% in the whole investigated pressure range for both Argon and Helium. Moreover,
the closed form expression (7.39) successfully predicts the thermophoretic force. The
highest relative deviation between the present results and Eq. (7.39) appears in the
transition regime and has been found to be below 10%.
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7.5 Test Case II: Translational Brownian motion of
a spherical particle

Consider a rigid spherical particle with radius Rs suspended in a monoatomic gas,
which is at rest occupying a volume V , having a constant temperature T . The particle
exhibits a random motion due to the gas particles impinging on its surface. The theory
of Brownian motion states that the translational velocity of the particle follows the
Maxwellian distribution [187]

f (vs) =
(

ms

2πkBT

)3/2
e

− msv2
s

2kBT . (7.40)

It is easily seen that, the translational velocity has expectation and variance equal to

< vs >= 0, < v2
s >= 3kBT

ms

. (7.41)

The translational Brownian motion of a rigid particle may be modeled by the phe-
nomenological stochastic Langevin equation [187, 188]

ms
d2rs (t)
dt2

= −γT
drs (t)
dt

+ F s (t) , (7.42)

where γT is the translational friction coefficient, which is assumed to be independent of
the particle velocity. The second right hand side term F s (t) is the random force exerted
on the particle, which is usually assumed to be a Gaussian process with infinitely small
correlation time [187, 188].

In the case where the observation time is much larger than the translational
correlation time t ≫ τT = ms/γT , the particle center of mass displacement ∆rs (t) =
rs (t) − rs (0), is given by the following distribution [189]

f (∆rs) = 1
(4πDT t)3/2 e

− ∆rs
2

4DT t , DT = kBT

γT

, (7.43)

where DT denotes the translational diffusion coefficient. From Eq. (7.43) it is easily
seen that, the particle displacement has expectation and variance equal to

< ∆rs >= 0, < ∆r2
s >= 6DT t. (7.44)
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The translational Brownian motion of a solid particle suspended in a gas bath is
characterized by the gas rarefaction parameter

δ = PRs

µ̃v0
, (7.45)

where P is the gas pressure, µ̃ is the gas viscosity at the temperature T and v0 =
√

2RgT

is the most probable molecular speed.
In the free-molecular regime, the friction coefficient for a purely diffuse rigid spherical

particle has been derived in [100]

γT = 8
3R

2
sρ

√
2πkBT

m

(
1 + π

8

)
, (7.46)

where ρ denotes the gas density. Substituting Eq. (7.46) in Eq. (7.43) the free-molecular
translational diffusion coefficient is obtained:

DT = 3
8

√
mkBT

2π
1(

1 + π
8

)
ρR2

s

(7.47)

The developed 3D DSMC code is implemented to simulate the translational Brown-
ian motion of a rigid spherical particle suspended in a rarefied gas in the free-molecular
regime. The developed code is validated by comparing the numerical results of the
translational diffusion coefficients with the analytical expressions given above. It is
noted that, in this particular case the fluctuations inherent in the DSMC method
determine the Brownian motion [109]. These fluctuations have the correct value and
thus yield the correct translational diffusion coefficient when the statistical weight of
the DSMC molecules is equal to Fn = 1.

The computational domain is a cube cell with edges L = 10−6 m and purely diffuse
accommodation is assumed at the domain boundary. The background gas is Argon
having a constant density ρ = 5.645 × 10−2 kg/m3 and temperature T = 300 K. Based
on the gas density and temperature and taking into account Fn = 1 a total of 8.47×105

gas particles are initialized inside the cell. Initially, the spherical particle is assumed to
be at rest (vs,0 = 0) at the cell center rs = 5 × 10−7 m and has a constant temperature
Ts = 300 K. The investigated particle radius is taken to be Rs ⩽ 10−7 m in order to
be in the free-molecular regime δ ⩽ 0.05. In addition, the rigid particle is not allowed
to rotate (ωs = 0) and can only move translationally inside the flow domain. The
numerical time step is taken to be ∆t = 5.66 × 10−12 s and the final simulation time is
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tf = 1.415 × 10−7 s. In order to determine the translational diffusion coefficient the
above simulation is performed on 25 Intel Xeon 8160 (SkyLake) nodes. A total of 15000
independent simulations are performed and the particle translational displacement
∆rs (tf ) and translational velocity vs (tf ) at the end of each simulation are sampled.
The translational diffusion coefficient is then derived from Eq. (7.44) based on the
computed displacement variance.

In Fig. 7.6 the particle translational velocity and displacement distributions based
on the developed DSMC aerosol code and on the analytical expressions (7.40) and
(7.43) for Rs = 10−7 m, ms = 2.09×10−22 kg and t = 1.415×10−7 s are presented. It is
seen that the displacement in the x, y and z directions follows a Gaussian distribution
with expectation equal to zero and variance equal to 2DT t. Similarly, the translational
velocity in each direction also follows a Gaussian distribution with expectation zero and
variance equal to kBms/T . In all cases, an excellent agreement between the computed
distributions and the analytical distributions (7.40) and (7.43) is observed.

In Fig. 7.7 the translational diffusion coefficient DT based on the developed DSMC
aerosol code and the analytical expression (7.47) is plotted with respect to the particle
radius Rs. As predicted by (7.47) the translational diffusion coefficient is inversely
proportional to the square of the particle radius. In addition, an excellent agreement
is observed between the computational and analytical results for the translational
diffusion coefficient DT with the highest relative deviation reaching 1.2%.

7.6 Test Case III: Rotational Brownian motion of
a spherical particle

Consider a rigid spherical particle suspended in a monoatomic gas, which is at rest
occupying a volume V , having temperature T . The particle is only allowed to rotate
around the x-axis and thus, it rotates randomly due to the gas particles impinging on
its surface. The theory of Brownian motion states that the rotational velocity of the
particle follows the Maxwellian distribution [190]

f (ωs,x) =
(

Is

2πkBT

)1/2
e

−
Isω2

s,x
2kBT . (7.48)
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It is easily seen that, the rotational velocity has expectation and variance equal to

< ωs,x >= 0, < ω2
s,x >= kBT

Is

. (7.49)

The model describing the rotational Brownian motion of a rigid particle around a fixed
axis is derived from the rotational analog of the Langevin equation [190]

Is
d2θs,x (t)
dt2

= −γR
dθs,x (t)
dt

+ τs,x (t) , dθs,x

dt
= ωs,x, (7.50)

where θs,x is the rotationa angle around the x-axis and γR is the rotational friction
coefficient, which is assumed to be independent of the particle angular velocity. The
second right hand side term τs,x (t) is the random torque exerted on the particle, which
is usually assumed to be a Gaussian process with infinitely small correlation time [190].

In the case where the observation time is much larger than the rotational correlation
time t ≫ τR = Is/γR, the particle angular displacement around the x-axis ∆θs,x (t) =
θs,x (t) − θs,x (0), is given by

f (∆θs,x) = 1
(4πDRt)1/2 e

− ∆θs,x
2

4DRt , DR = kBT

γR

(7.51)

where DR denotes the rotational diffusion coefficient. From Eq. (7.51) it is easily
deduced that, the angular displacement of the particle has expectation and variance
equal to

< ∆θs,x >= 0, < ∆θ2
s,x
>= 2DRt. (7.52)

The rotational Brownian motion of a solid particle suspended in a gas bath is
characterized by the gas rarefaction parameter

δ = PRs

µ̃v0
, (7.53)

where P is the gas pressure, µ̃ is the gas viscosity at the temperature T and v0 =
√

2RgT

is the most probable molecular speed.
In the free-molecular regime, the rotational friction coefficient for a purely diffuse

rigid spherical particle has been derived in [100, 177]

γR = 2π
3

√
8kBT

πm
ρR4

s, (7.54)
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where ρ denotes the gas density. Substituting Eq. (7.54) in Eq. (7.51) the rotational
diffusion coefficient in the free-molecular regime is obtained:

DR = 3
4π

√
πmkBT

2
1
ρR4

s

(7.55)

The developed 3D DSMC aerosol code is implemented to simulate the rotational
Brownian motion of a rigid spherical particle suspended in a rarefied gas in the free-
molecular regime and is validated by comparing the obtained numerical results for the
rotational diffusion coefficient with the analytical ones. Similar to the translational
Brownian motion the statistical weight of the DSMC molecules is also taken here to
be equal to Fn = 1 in order to obtain the correct value for the rotational diffusion
coefficient.

The computational domain is a cube cell with edges L = 10−6 m and purely diffuse
accommodation is assumed at the domain boundary. The background gas is Argon
having a constant density ρ = 5.645 × 10−2 kg/m3 and temperature T = 300 K. Based
on the gas density and temperature and taking into account Fn = 1 a total of 8.47×105

gas particles are generated inside the cell. Initially, the spherical particle is assumed to
be at rest (ωs,x,0 = 0) and has a constant temperature Ts = 300 K. The investigated
particle radius is taken to be Rs ⩽ 10−7 m in order to be in the free-molecular regime
δ ⩽ 0.05. In addition, the rigid particle center of mass is fixed at the cell center
rs = 5 × 10−7 m and is only allowed to rotate around the x-axis (vs = ωs,y = ωs,z = 0).
The numerical time step is taken to be ∆t = 5.66 × 10−12 s and the simulation ends
at tf = 1.415 × 10−7 s. In order to determine the rotational diffusion coefficient the
above simulation is performed on 25 Intel Xeon 8160 (SkyLake) nodes. A total of
15000 independent simulations are performed and the particle angular displacement
∆θs,x (tf ) and angular velocity ωs,x (tf ) at the end of each simulation are sampled. The
rotational diffusion coefficient is then derived from Eq. (7.52) based on the computed
angular displacement variance.

In Fig. 7.8 the particle angular velocity and displacement distributions based on
the developed DSMC aerosol code and the analytical expressions (7.48) and (7.51) for
Rs = 10−7 m, ms = 2.09×10−22 kg and t = 1.415×10−7 s are presented. It is seen that
the angular displacement follows a Gaussian distribution with mean zero and variance
2DRt. Similarly, the angular velocity follows a Gaussian distribution with mean zero
and variance kBIs/T . An excellent agreement between the computed distributions and
the analytical distributions (7.48) and (7.51) is observed in all cases.
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In Fig. 7.9 the rotational diffusion coefficient DR based on the developed DSMC
aerosol code and the analytical expression (7.55) is plotted with respect to the particle
radius Rs. As predicted by (7.55) the rotational diffusion coefficient is inversely propor-
tional to the fourth power of the particle radius Rs. Moreover, an excellent agreement
is observed between the computational and analytical results for the rotational diffusion
coefficient DR with the highest relative deviation reaching 0.8%.

7.7 Concluding remarks

A 3D DSMC aerosol code has been developed for simulating the transport of a solid
spherical particle through a rarefied gas. The presented aerosol code has been based
on the 3D DSMC code PROGRESS, which has been developed at the Laboratory of
Transport Phenomena and Process Equipment at University of Thessaly by Dr. S.
Pantazis. The structure of the aerosol code and the required modifications with respect
to the typical DSMC method have been described in detail.

The developed aerosol code has been validated for three benchmark cases. In
the first benchmark case the thermophoretic effect on a solid particle suspended in a
rarefied gas between two infinite parallel plates kept at slightly different temperatures
is investigated. The computed heat flux and thermophoretic force exerted on the
solid particle showed an excellent agreement with the ones reported in the literature
[20]. In addition, the approximate closed form expressions proposed for the heat flux
and the thermophoretic force [20, 176] provide a satisfactory comparison with the
DSMC results. These simple expressions can be used to provide the heat flux and
thermophoretic force in the whole range of rarefaction when 10% error is acceptable.
In the second and third benchmark cases the translational and rotational Brownian
motion of a solid particle suspended in a rarefied gas at rest is investigated in the
free-molecular regime. The velocity and displacement distributions of the particle have
been computed and a great agreement is provided with the distributions predicted by
Brownian theory. In addition, the translational and rotational diffusion coefficients
have been computed with respect to the particle radius and have shown an excellent
agreement with the theoretical values.

It is believed that the presented code has a lot of potential and of course it may be
further advanced to simulate multiple solid particles, as well as more complex processes
involving absorption, desorption, agglomeration and deposition.
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Table 7.1 Molecular properties at standard conditions: P = 1 atm, T = 273 K [30].

Gas ω a µ̃ [Pas] m [kg] d [m]
Argon 0.81 1.40 2.117(-5) 6.63(-26) 4.11(-10)
Helium 0.66 1.26 1.865(-5) 6.65(-27) 2.30(-10)

Table 7.2 Heat flux q [W/m2] between parallel plates with respect to the gas pressure;
comparison between the present DSMC aerosol code, Ref. [20] and Eq. (7.36).

P [mTorr]
Argon Helium

δH
Present Ref. Eq.

δH
Present Ref. Eq.

work [20] (7.36) work [20] (7.36)
0.1 1.87(-2) 1.82(-1) 1.83(-1) 1.85(-1) 6.71(-3) 5.79(-1) 5.84(-1) 5.85(-1)
0.3 5.60(-2) 5.35(-1) 5.40(-1) 5.48(-1) 2.01(-2) 1.73 1.73 1.75
1 1.87(-1) 1.68 1.69 1.76 6.71(-2) 5.60 5.66 5.75
3 5.60(-1) 4.43 4.45 4.77 2.01(-1) 1.58(1) 1.60(1) 1.66(1)
10 1.87 1.09(1) 1.09(1) 1.19(1) 6.71(-1) 4.56(1) 4.58(1) 4.89(1)
30 5.60 1.96(1) 1.96(1) 2.07(1) 2.01 1.01(2) 1.02(2) 1.10(2)
100 1.87(1) 2.74(1) 2.77(1) 2.80(1) 6.71 1.86(2) 1.87(2) 1.96(2)

Table 7.3 Thermophoretic force over the particle cross-sectional area Fth/ (πR2
s) [N/m2]

with respect to the gas pressure; comparison between the present DSMC aerosol code,
Ref. [20] and Eq. (7.39).

P [mTorr]
Argon Helium

δH
Present Ref. Eq.

δH
Present Ref. Eq.

work [20] (7.39) work [20] (7.39)
0.1 1.87(-2) 3.60(-4) 3.61(-4) 3.64(-4) 6.71(-3) 3.63(-4) 3.64(-4) 3.65(-4)
0.3 5.60(-2) 1.06(-3) 1.06(-3) 1.08(-3) 2.01(-2) 1.07(-3) 1.08(-3) 1.09(-3)
1 1.87(-1) 3.30(-3) 3.30(-3) 3.42(-3) 6.71(-2) 3.51(-3) 3.52(-3) 3.53(-3)
3 5.60(-1) 8.57(-3) 8.53(-3) 9.08(-3) 2.01(-1) 9.83(-3) 9.86(-3) 9.99(-3)
10 1.87 2.06(-2) 2.05(-3) 2.20(-2) 6.71(-1) 2.78(-2) 2.78(-2) 2.86(-2)
30 5.60 3.57(-2) 3.57(-2) 3.76(-2) 2.01 6.06(-2) 6.07(-2) 6.32(-2)
100 1.87(1) 4.91(-2) 4.89(-2) 5.04(-2)) 6.71 1.07(-1) 1.08(-1) 1.12(-1)
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Chapter 7 Figures

Figure 7.1 Flowchart of the developed 3D DSMC aerosol code.
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Figure 7.2 Schematic example of a hexahedron cell split into six pyramid subcells.

Figure 7.3 Schematic example of a pyramid subcell split into 2 tetrahedrons.
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Figure 7.4 Schematic representation of a solid particle collision with a boundary.

Figure 7.5 Schematic representation of the thermophoresis of a solid particle suspended
between two parallel plates.
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Figure 7.6 Particle translational velocity distribution (left) and translational displace-
ment distribution (right) for Rs = 10−7 m, ms = 2.09 × 10−22 kg and t = 1.415 × 10−7

s; comparison between developed DSMC aerosol code and analytical expressions (7.40)
and (7.43).
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Figure 7.7 Translational diffusion coefficient DT in terms of the particle radius Rs;
comparison between developed DSMC aerosol code and analytical expression (7.47).

Figure 7.8 Particle angular velocity distribution (left) and angular displacement dis-
tribution (right) for Rs = 10−7 m, ms = 2.09 × 10−22 kg and t = 1.415 × 10−7 s;
comparison between developed DSMC aerosol code and analytical expressions (7.48)
and (7.51).
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Figure 7.9 Rotational diffusion coefficient DR in terms of the particle radius Rs;
comparison between developed DSMC aerosol code and analytical expression (7.55).
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Concluding remarks

8.1 Summary and contributions

The present dissertation is focused on the computational solution of novel rarefied gas
flow configurations, as well as, the development and implementation of advanced kinetic
codes. The validity and effectiveness of the developed codes have been demonstrated by
solving several prototype problems, as well as complex rarefied gas flow configurations.
A brief review of the subjects investigated in Chapters 3-7 along with the main
contributions of the present work is provided.

In Chapter 3, the linearized Boltzmann equation for the hard-sphere intermolecular
potential has been computationally solved. This task is tackled for the first time at the
Laboratory of Transport Phenomena and Process Equipment. The integration of the
Boltzmann collision operator has been validated by computing the heat conductivity
and dynamic viscosity coefficients for a hard-sphere gas. In addition, the computational
solution of the linearized Boltzmann equation has been validated based on two prototype
rarefied gas flow configurations, namely the planar fully-developed Poiseuille and
thermal creep flows. In all cases, an excellent agreement has been observed between the
present work and the literature. Then, the Boltzmann equation has been implemented
to simulate the planar fully-developed rarefied gas flow due to a harmonically oscillating
pressure gradient in the whole range of gas rarefaction and arbitrary oscillation frequency.
In addition, the BGK numerical solution, as well as, analytical solutions in the slip and
hydrodynamic regimes have been provided for comparison purposes. The quantities
of interest, namely the complex Poiseuille coefficient and the macroscopic velocity
distribution have been presented in tabulated and graphical form. It has been observed
that, the Boltzmann equation results are in good agreement with the BGK ones in
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the whole range of investigated parameters justifying the use of kinetic models for
simulating pressure driven oscillatory rarefied gas flows. In addition, the analytical
slip solution and the steady-state solution are properly recovered. The Poiseuille
coefficient and velocity distribution have been found to be in phase with the pressure
gradient for low oscillation frequencies, while as the oscillation frequency is increased
the macroscopic quantities phase lag is increased and amplitude is decreased. For
the Poiseuille coefficient a non-monotonic behavior has been observed with respect
to the gas rarefaction parameter and a local maximum may be observed for some
intermediate value of the gas rarefaction depending on the oscillation parameter value.
Furthermore, at high frequencies, the plug-flow mode in the channel center and the
velocity overshoot near the two plates, that has been well-established in the viscous
regime and more recently under rarefied conditions based on the BGK model, has also
been observed based on the Boltzmann equation.

In Chapter 4, rarefied gas flows coupled with gas injection and suction through
permeable surfaces, have been investigated. These flows have been well-established
in the viscous regime, however they have not been investigated in rarefied conditions.
The fully-developed Poiseuille and thermal creep rarefied gas flow between parallel
permeable plates, with uniform gas injection and suction from the bottom and top plate,
respectively, has been investigated based on the linearized Shakhov (S) model and
Boltzmann equation, in the whole range of the gas rarefaction parameter and in a wide
range of the injection velocity. The full-range synthetic acceleration scheme has been
implemented for the S model and has been compared to the non accelerated scheme.
As expected, the accelerated scheme has been found to be far superior to the non
accelerated one for large values of the rarefaction parameter, while for small values of
the rarefaction parameter they are very similar in terms of the required computational
effort. The Poiseuille, mechanocaloric, thermal creep and reduced heat flux coefficients,
as well as the velocity, shear stress and heat flux distributions have been provided.
Excellent agreement has been observed between the Boltzmann and S model equations
justifying the use of kinetic models for the simulation of rarefied gas flows coupled with
injection and suction. In addition, the analytical solutions derived in the free-molecular
and slip regimes are properly recovered. The Poiseuille coefficient has been found to
monotonically decrease when the injection velocity is increased, tending to a constant
value at the viscous regime. In addition, as the injection velocity is increased, the well-
known Knudsen minimum for the Poiseuille coefficient becomes gradually shallower and
finally vanishes. It has been observed that, the reduced heat flux, mechanocaloric and
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thermal creep coefficients are also decreased as the injection velocity is increased and for
high injection velocity values the mechanocaloric and thermal creep coefficients change
sign. In addition, the Onsager-Casimir reciprocity relation for the mechanocaloric and
thermal creep coefficients has been proven theoretically for arbitrary injection velocity
and has been implemented to validate the accuracy of the obtained results. Both in
the pressure and temperature driven flow configurations the velocity and heat flux
distributions become non-symmetric and their extrema are shifted from the channel
center towards the suction plate as the injection velocity is increased. Furthermore, as
the injection velocity is increased the shear stress distribution significantly deviates
from the typical linear profile in the Poiseuille flow and the constant zero profile in the
thermal creep flow. The fully-developed rarefied gas flow over a permeable plate with
uniform downward suction has also been investigated based on the S kinetic model
equation in a wide range of the suction velocity. The boundary layer thickness, as well
as, the macroscopic velocity, shear stress and heat flux distributions have been provided
based on the kinetic, slip and hydrodynamic approaches. The boundary layer thickness
has been found to be inversely proportional to the suction velocity as predicted by the
analytical viscous solution. The kinetic, slip and hydrodynamic macroscopic quantities
are in excellent agreement outside of the Knudsen layer. However, inside the Knudsen
layer only the kinetic approach may be considered as valid.

In Chapter 5, the developed codes for simulating steady-state and time-dependent
arbitrary gas distribution systems under any vacuum conditions have been presented.
The structure of the developed steady-state gas network code ARIADNE and the
hybrid time-dependent gas network code, which implements the ARIADNE code in
each time step, have been described in detail. In addition, the hybrid time-dependent
code has been validated based on two benchmark gas networks. The first benchmark
problem involved the dynamic standard apparatus for the measurement of the response
and relaxation times of vacuum gauges developed by Physikalische-Technische Bunde-
sanstalt. The temporal evolution of the upstream vessel pressure has been presented
and has provided an excellent agreement with both experimental and numerical results
reported in the literature. The second benchmark problem involved a gas network
operating in the free-molecular regime. The temporal evolution of the gas network
vessels, pipe junctions and pump has been provided and has been found to be in excel-
lent agreement with results obtained via the well-established TPMC code Molflow+.
Furthermore, the ARIADNE code has been used to demonstrate the implementation
of the MC uncertainty propagation analysis method to gas distribution systems. The
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aforementioned second benchmark network was assumed to operate under steady-state
conditions and the uncertainty of the pumped throughput with respect to the pipe
radius, pipe length, vessel pressure and pump pumping speed uncertainties has been
presented in the whole range of gas rarefaction. In general, the qualitative behavior
of the throughput uncertainty has been in agreement with the one observed for the
mass flow rate uncertainty in the case of the pressure driven flow through a single
circular tube. However, these results cannot be generalized and a separate uncertainty
propagation analysis is required for each specific vacuum system.

In Chapter 6, the capabilities of the aforementioned developed gas network codes
have been demonstrated by simulating the ITER primary pumping system during the
burn and dwell phases. The steady-state code ARIADNE has been implemented to
simulate the ITER burn phase under steady conditions for several operating scenarios
and both qualitative and quantitative results, including the gas flow paths through the
divertor, as well as the backflow and pumped throughputs, have been provided. The
pumped and backflow throughputs have been found to increase moving from the low,
to the medium and to the high pressure burn phase scenarios. In addition, an almost
linear relation has been established between the pumped throughput and the number of
operating cryopumps. Concerning the burn phase cyclic pumping/regeneration mode
it has been found that the total pumped throughput is very close in all possible pump
setups and the individual pump throughputs are well balanced. The time-dependent
gas network code has been implemented to simulate the ITER dwell phase for various
operating scenarios and the temporal evolution of the torus pressure has been presented.
It has been established that, the torus pressure at the end of the dwell phase, which is
of major importance from the engineering point of view, is independent of the initial
torus pressure conditions, while it linearly depends on the initial outgassing rate. In
addition, it has been established that, the torus pressure at the end of the dwell phase
is inversely proportional to the number of operating pumps in an almost linear manner.
Moreover, it has been observed that the required target pressure after the end of the
dwell phase is achieved in a wide range of the investigated parameters for the lowest
outgassing case. On the contrary, for the highest outgassing case it is only marginally
achieved when all six available cryopumps are employed.

In Chapter 7, the developed stochastic 3D aerosol code is presented in detail and
validated. The presented code has been based on the well-established DSMC method
and in its present state is capable to simulate the transport of a single spherical solid
particle suspended in a rarefied gas. The capabilities of the developed code have been
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demonstrated and validated via three benchmark prototype flow configurations. In the
first benchmark, a solid particle suspended in a rarefied gas confined between two parallel
plates with slightly unequal temperatures has been considered. The heat flux between
the two plates, as well as the thermophoretic force exerted on the particle due to the
imposed temperature gradient have been provided. In addition, a simple approximate
expression for the thermophoretic parameter, which tends to the correct analytical
values in the free-molecular and viscous regimes has been proposed. The obtained
results have shown an excellent agreement with the ones reported in the literature,
as well as, with the closed form approximate expressions proposed in the literature
and in the present work. In the second and third benchmarks, the translational and
rotational Brownian motion of a spherical solid particle suspended in a rarefied gas in
the free-molecular regime have been considered, respectively. The translational velocity
and displacement distributions, as well as the rotational ones have been presented
and have been found to be in excellent agreement with the analytical free-molecular
solution. In addition, the translational and rotational diffusion coefficients have been
computed with respect to the particle radius and excellent agreement has been observed
with the analytical free-molecular expressions.

Overall, certain advancements in kinetic modeling have been made and advanced
software tools to model and simulate several diverse subjects related to gaseous transport
phenomena in rarefied conditions have been developed. It is hoped that, the present
work will prove to be useful, at some extend, to the scientific rarefied gas community
and also support the design and optimization of several applications, devices and
systems in gaseous microsystems, vacuum engineering and fusion technology.

8.2 Future work

The work of the present Ph.D. dissertation covers a broad range of gaseous transport
phenomena far from local equilibrium and may be further extended in several directions
outlined here.

The solution of the Boltzmann equation may be extended to more complex pressure
and temperature driven flow configurations, such as in circular tubes and rectangular
ducts. In addition, in these configurations the Cercignani-Lampis reflection law, which
describes the gas-surface interaction via two accommodation coefficients, may be
applied along with the Boltzmann equation in order to investigate more accurately
the impact of gas-surface interaction on the quantities of interest, such as the mass
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and heat flow rates. In addition, the solution of the Boltzmann equation may be
advanced to more realistic intermolecular potentials, such as the Lennard-Jones and
ab initio potentials. Moreover, the simulation of binary gas mixtures via the exact
Boltzmann equation may be of interest since recently high discrepancies have been
reported between the linearized Boltzmann equation and the McCormack model, which
is one of the most widely used kinetic models for gas mixtures.

The investigation of rarefied gas flows through channels with permeable walls may
be extended to simulate the planar force driven fully-developed flow between two infinite
parallel permeable plates via nonlinear kinetic modeling. This flow configuration is
particularly interesting since an arbitrary injection/suction velocity magnitude can be
investigated and may be used to validate the peculiar behavior of the mechanocaloric
and thermal creep coefficients in the linear case that has been examined in the present
work. In addition, nonlinear modeling of rarefied gas flows coupled with injection and
suction will allow the simulation of more complex flow configurations, such as circular
tubes and ducts where the cross-flow velocity is not constant.

Currently, the steady-state gas distribution system code ARIADNE and the hybrid
time-dependent code constitute fully integrated software tools, which in principal can
be applied for the simulation, design and optimization of any vacuum system. The
modeling and simulation of the exhaust system of operating fusion reactor facilities, such
as JET and comparison of the obtained numerical results with in-situ measurements
is of interest and will fully demonstrate the capabilities of the presented codes. The
developed codes may be further extended to tackle non-isothermal gas networks,
by taking into consideration the gas transport that occurs in the network due to
temperature gradients. Another possible code advancement is the addition of non-
constant cross-section piping elements in the code, such as bellows, which are very
common in many vacuum systems. The existing codes may be further advanced with
the implementation of optimization subroutines for optimal sensor placement and leak
detection. In addition, the developed gas network codes may be parallelized in order
to be able to tackle even larger gas distribution systems.

In its current state, the developed 3D DSMC aerosol code may be used to simulate
any flow configuration involving the transport of a single spherical solid particle
suspended in a rarefied gas. The investigation of the inverse Magnus effect that has
been observed under rarefied conditions for a rotating cylinder may also be investigated
with the presented code for a rotating sphere. In addition, the present aerosol code
may be implemented in complex thermophoretic trapping contraptions, where a solid
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particle levitates due to the imposed temperature fields. The developed code may be
further extended to simulate the transport of a solid particle suspended in polyatomic
gases and gas mixtures. In addition, the simulation of multiple solid particles that
interact with the background gas and with each other through gas-solid and solid-solid
collisions may be added in the future. Furthermore, more complex processes, such as
the absorption and desorption of gas from the solid particle surface, as well as, the
agglomeration and deposition of solid particles may be implemented.
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Appendix A

Analytical hydrodynamic and slip
solution for the oscillatory planar
Poiseuille flow

At the viscous and slip regimes (δ ≫ 1 and θ ≫ 1) the oscillatory planar fully-
developed Poiseuille flow is governed by the x-momentum equation [128]:

ρ̃
∂ũ(j)

(
t̃, ỹ
)

∂t̃
= −dP (x̃)

dx̃
e−iωt̃ + µ̃

∂2ũ(j)
(
t̃, ỹ
)

∂ỹ2 (A.1)

The quantities ρ̃ and µ̃ are the gas density and viscosity, ũ
(
t̃, ỹ
)

denotes the macroscopic
velocity, while the superscript j = h, s denotes the hydrodynamic and slip regimes,
respectively. Applying the complex notation in Eq. (3.75) for the velocity and the
dimensionless quantities defined in Eqs. (3.71)-(3.74), the x-momentum equation yields

∂2u(j) (y)
∂y2 + 2δ

2

θ
u(j) (y) i = −δ. (A.2)

In the hydrodynamic regime (j = h) the no-slip boundary conditions apply at the
two infinite plates

u(h)
(

±1
2

)
= 0. (A.3)
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Then, Eq. (A.2) subject to (A.3) can be solved analytically to provide the velocity and
shear stress distributions, as well as, the Poiseuille coefficient given by

u(h) (y) = i
θ

2δ

[
1 − cos (Ay)

cos (A/2)

]
, (A.4)

Πxy
(h) (y) = −i θA2δ2

sin (Ay)
cos (A/2) , (A.5)

G(h) (δ, θ) = i
θ

δ

[
2 tan (A/2)

A
− 1

]
, (A.6)

respectively, where A = (1 + i)δ
/√

θ. It can be easily verified that the above expressions
tend to the steady-state ones as the oscillation parameter θ → ∞:

u(h) (y) = δ

8
(
4y2 − 1

)
, Π(h)

xy (y) = y, G (δ, θ) = δ

6 (A.7)

In the slip regime Eq. (A.2) is subject to the slip boundary condition

u(s)
(

±1
2

)
= ∓ σP

δ

du(s)

dy

∣∣∣∣∣
± 1

2

, (A.8)

where σP is the viscous slip coefficient. Equation (A.2) subject to the boundary
conditions (A.8) is then solved analytically to obtain the velocity and shear stress
distributions and the Poiseuille coefficient:

u(s) (y) = i
θ

2δ

[
1 − cos (Ay)

cos (A/2) − σP

δ
A sin (A/2)

]
(A.9)

Πxy
(s) (y) = i

θA

2δ2

[
sin (Ay)

cos (A/2) − σP

δ
A sin (A/2)

]
(A.10)

G(s) (δ, θ) = i
θ

δ

[
2

cot (A/2) − σP

δ
A

− 1
]

(A.11)

It is readily deduced that, the above expressions tend to the steady-state ones as
θ → ∞:

u(h) (y) = δ

8
(
4y2 − 1

)
+ σP

2 , Π(h)
xy (y) = y, G (δ, θ) = δ

6 + σP (A.12)
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Onsager-Casimir reciprocity
relation for the thermal creep and
mechanocaloric coefficients for
arbitrary injection velocity

In order to derive the Onsager-Casimir reciprocity relations the formalism in
[33, 191] is followed. The linearized Boltzmann equation is given in the form

ξ · ∂h (r̃, ξ)
∂r̃

= L̂ (h) + g (r̃, ξ) , (B.1)

where r̃ is the spatial vector, h is the perturbation from the Maxwellian distribution,
L̂ is the linearized collision operator and g is the source function. On a solid surface
restricting the flow the boundary condition in the general form is written as

h+ = Âh− + hw + Âhw. (B.2)

Here, the plus and minus signs denote quantities arriving and departing from the solid
surface, respectively, hw is the perturbation from the surface Maxwellian and Â is the
scattering operator defined as

Âh = 1∣∣∣ξ+ · n
∣∣∣
∫ ∣∣∣ξ− · n

∣∣∣f̃M
0

(
ξ−
)
R0
(
ξ−, ξ+

)
dξ−, (B.3)
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where the quantity R0
(
ξ−, ξ+

)
is the linearized scattering kernel. It is noted here that,

the global Maxwellian is written as

f̃M
0 = n0

π3/2v3
0

exp
−

(
ξ − Ũw

v0

)2 , Ũw = (Uw,n, 0, 0) . (B.4)

In the case of a stationary permeable wall where the gas has a fixed macroscopic
velocity Ũw,n normal to the wall the linearized scattering kernel reads as

R0
(
ξ−, ξ+

)
=

2
∣∣∣ξ+ · n

∣∣∣ e−
(ξ+−Ũw)2

v2
0

πv4
0

e−
(

Ũw,n
v0

)2

+ Ũw,n

√
π

v0

[
1 + erf

(
Ũw,n

v0

)]
. (B.5)

Then, the useful scalar products

(φ, ψ) =
∫
φ (ξ) f̃M

0 (ξ)ψ (ξ) dξ, (B.6)

((φ, ψ)) =
∫

Ω
(φ, ψ) dΩ, (B.7)

(φ, ψ)B =
∫

|ξ·n|⩾0

|ξ · n|φ (ξ) f̃M
0 (ξ)ψ (ξ)dξ, (B.8)

with Ω denoting the gas domain, are introduced.
When a set of small parameters Xk is used for linearization the functions g, hw and

h may be written as

g =
N∑

k=1
gkXk, hw =

N∑
k=1

hw,kXk, h =
N∑

k=1
hkXk (B.9)

and the Boltzmann equation reads as

ξ · ∂hk

∂r̃
= L̂hk + gk, gk = −ξ · ∂hR,k

∂r̃
. (B.10)

The linearized Boltzmann collision operator is defined as

L̂h =
∫∫∫

f̃M
0 (ξ1) [h (ξ′

1) + h (ξ′) − h (ξ1) − h (ξ)]w (ξ′, ξ′
1; ξ, ξ1) dξ′ξ′

1dξ1, (B.11)
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Appendix B

where w (ξ′, ξ′
1; ξ, ξ1) is the probability density of a transition from pre-collision

velocities ξ, ξ1 to post-collision velocities ξ′, ξ′
1 in a binary collision. Introduce the

time-reverse operator T̂ , which in the case of a monatomic gas particle just changes
the sign of the molecular velocity. It can be shown that the operator T̂ L̂ is self-adjoint

(
T̂ L̂φ, ψ

)
=
(
T̂ L̂ψ, φ

)
(B.12)

and that the linearized scattering kernel satisfies the reciprocal relation

−
∣∣∣ξ− · n

∣∣∣ f̃M
0

(
ξ−
)
R0
(
ξ−, ξ+

)
=
∣∣∣ξ+ · n

∣∣∣ f̃M
0

(
ξ+
)
R0
(
−ξ+,−ξ−

)
. (B.13)

Then, using Eq. (B.13) it can be shown that the scattering operator Â satisfies:

(
T̂φ, Âψ

)
B

=
(
T̂ψ, Âφ

)
B

(B.14)

The kinetic coefficients and the time-reverse ones are introduced:

Λkn = ((gk, hk)) +
∫

Σw

(|ξ · n|hw,k, hn) dΣ+1
2

∫
Σg

(|ξ · n|hk, hn) dΣ (B.15)

Λt
kn =

((
T̂ gk, hk

))
+
∫

Σw

(
T̂ |ξ · n|hw,k, hn

)
dΣ+1

2

∫
Σg

(
T̂ |ξ · n|hk, hn

)
dΣ (B.16)

Here ΣW and Σg denote the solid and imaginary boundaries confining the gas. The
properties (B.12) and (B.14) are necessary and sufficient to prove the Onsager-Casimir
reciprocity relations in the form:

Λt
kn = Λt

nk (B.17)

In the planar Poiseuille and thermal creep flows with injection/suction, the surface
Maxwellian perturbations and the source functions are defined as

hw,P = 0, hw,T = 0, gP = −ξx

H
, gT = −ξx

H

m
(
ξ − Ũw

)2

2kBT0
− 5

2

 . (B.18)

In this particular case the kinetic coefficients can be written as

ΛP T = −Λt
P T = −n0v0

2 GT , ΛT P = −Λt
T P = −n0v0

2 QP . (B.19)

Thus, using Eqs. (B.17) and (B.19) it is readily seen that GT = QP .
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