

e
P
15 80k 1

[0

3, *\/
& .
S

/,

Tk i WD FTEPEAL EAAAART

T L DODOPIE NS SE
BTA a0OMES TTH MIOIATPICH
BIBAIOOHNM

NAKEMTITHMIO TTEPEAT EAAMLAT
TMHMA [TARPODOPIKHE ME

EDAPMOIEL ETH BIOIATPIKH
pBu.. 520\

g

Hucp/vim:.. %D.ICIZQ\A—....

Contents

CONTENTS ..ot e et es s s et st en e eeer e
ADSTIACT .ttt ettt et s st s e et et en e een e erenen
INtFOAUCTION i wsusiis ssvnsssmsianisemsmsisinssssionnsensasnensussensrvassasaessosnrossassonssesenssssraages
Magnetic Resonance Imaging BaSiCS.......ccoveeioueieiicieieeiie e,

The Spin ECNO SEQUENCE.......cocueee ettt st et e

Gradient Echo Sequence

Imaging: Slice selection

Imaging: Frequency ENCOdiNG.....cccueireireiniieiieice et
IMaging: Phase €NCOdING....c..ouviivie ittt e e
ML EENOTS cvs v s s i ssmmesssnonsnbansiesi oxsnsnasssosssssmssasssiamsahsastunrnsssisassshins smsusnins tonsiness
The: raW ataset: s s s
Summary of image processing Methods..........cccooveivieiiniieieneiee e

Segmentation with gray scale images.

Segmentation with true color images

The L¥a*D COlOr SPACE...ciiiiiiiee ettt s s e e
Segmenting the heart Areal ... i s sessisesstinnsssmsobsss episns sissssnissssegisass
Identifying the heart sStruCtUres.........cooce vt

Contour UNAersampPliNg ... o et e e

Data storage and coordinate system

Results

The initial grayscale algorithm results.........c.ccooeecvnvnvnniniesnninsencinnneens
The L*a*b Color SPACe @lgOTITIIM . uiscmusicssmiinsismusisssampossoisnssiassasssinsmastnsisse
Visualizing theidata.........cnsmnsmissmimmmsmsinss s mos st
Hardware & EXECULION TIMES....c.ui et ettt s s sass e
CONCIUSIONS. ...ovveeceeriee et e es e s e ea et sae s sa s e s snene

FUTUTE WOTK ettt ettt eeeeeeae e eae et ete s aessaesasaeeae e eas e e eneaenaesensen sanaensne

39

43

43

43

LI AT OIS iii5iemaernciosnsessusnmoassmusiansns senase sassanesassamsennsssasss snsnsssonsamsnssssasesssasssssd 44
HArAWaAre. ..ottt sttt et ee e es e e 44
Partiali Data CoOrRUPLION:: . ussmismsssmassismssimmsnsisiiisisiassomiissisasoonssasasnsani bl
APPENAIX. ettt ettt sttt sns e es e s sre s e snn s v e enn 4D
Matlab’s deMO COUE....c.coimiiiiiecie ettt e e 45
Creating the ColOr MATKEES. e ssstisamsesmsmmsisasesssismesssssissaissssvmmisinivosiilb 1
Scanning contour images for the inner points of a contour..................... 48
Save coordinates read from binary images.......cccceoceeveneereeinesise e 49
Segmentation with gray-scale images.......cccccovvveveeevecievesvceiveerieienienenn. 51
Detecting the Neart Area. .. . s aniisssms i isissassssssassssusm sisionsassansionsssiasI &
Segmentation with true color iMages.........cceoeeeeeeeereneneeinecenenniine e 57
Undersampling — code version without parameters.......cceveeveevrvnnen. 59
Undersampling — code version with parametersccccvevceviverennenn61

Torso UNAerSampPling....coceueirine e ettt st e e DD

Abstract

MRI simulations require a realistic and accurate human body model that adds to the
validity and accuracy of the simulation results. To build such a model it is necessary to start
with the creation of an anatomical map. This map was created using image segmentation on
images — transverse raw slices —=from an in vitro human body (Virtual Human Project). The
information contained in the images was extracted using Matlab and reconstructed in space
to form the anatomical map. The result was suitable to be used for the design of the motion
models in the MRI simulator.

Introduction

Magnetic Resonance Imaging is a diagnostic tool used in radiology to monitor the
human body by means of strong magnetic fields and by taking advantage of the large
number of hydrogen atoms in the body. MRI has the advantage of not exposing the patient
to ionizing radiation. MRI simulators aid in research, education and training of individuals in
a controlled environment without the need of an expensive MRI scanner. A simulation
though may differ significantly from reality and may result in misleading results. The use of a
realistic model of the human body, which includes anatomical structures as well as biological
and MRI parameters, can make the MRI simulation more realistic and accurate. In the past,
human body models have been used in projects in the field of Imaging and more specifically
in MRI. For example, a human body model has been used for addressing issues of
electromagnetic interactions between the surroundings and the human body [1]. However,
to date, human body models have not been used in MRI simulators for educational or
training.

The specific aim of this project was to create a model of the human body and to
visualize in three dimensions this model’s output for the torso and heart. This Bachelor’s
Thesis project describes the development of this realistic human body model based on raw
data acquired from a cadaver. This model is intended for use in a Magnetic Resonance
Imaging simulator and is based on the dataset of the Visible Human Project. The text that
follows will describe how spatial information necessary to form this model was extracted
from the raw data by means of image processing. The model development methodology is
based on identifying tissue borders within neighboring pixels for segmenting different
tissues. Each three-dimensional voxel was created so as to be utilized in a compatible MRI
simulation. In this manner, a magnetization vector with its characteristic parameters (T;, T,)
could be assigned to each voxel by the simulator. We hypothesized that segmentation of the
Visual Human Project dataset with Matlab could produce a model of the female body that
was compatible with an MRI simulator, that is, it would allow for assigning magnetic
resonance parameters to at least the heart.

The organization of this thesis is as follows: basic MRI physics are introduced in
order to help the reader better grasp this project’s concepts and goals. Then, there is a
detailed description of the methods that were applied for image processing and data
management. Last, the results are presented along with conclusions, limitations and future
work.

References:

[1] Vogel, M.H. and Kleihorst, R.P. Large-Scale Simulations Including a Human-Body Model
for MRI [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4264083]

http://ieeexplore.ieee.org/xpl/articleDetails

Magnetic Resonance Imaging Basics (4]

Magnetic resonance imaging is a diagnostic tomographic technique which acquires
quality images of the human body by means of static and varying magnetic fields. MRI is
based on the fact that the human body consists of about 75% water. Since water consists of
one atom of oxygen and two atoms of hydrogen, there is an abundance of hydrogen atoms
in the human body. The nucleus of the hydrogen atom is a positively charged proton and has
a spin associated with it, thus resembling a small spinning magnet: a magnetic dipole (Figure
1). When examining more carefully the alignment of a spin with the static magnetic field,
one observes that the alignment is not perfect and that the spins is at an angle with respect
to the axis of By.Therefore, the spin precesses about the static magnetic field. Precessional
motion can be best described by the spinning top motion.

Figure 1: The “spin”

Without the presence of a magnetic field the spins are randomly oriented in the
human body (Figure 2 — adapted from [2] and [18]).

Figure 2: The hydrogen atoms of the human body are randomly oriented inside the body in the absence of an
external magnetic field

During an MRI examination the patient is placed lying on his back, on a moving bed
(Figure 3 —adapted from [2]) which is inserted inside a large superconducting solenoid,
which generates the external magnetic field By with a strength that usually ranges from 1.5
to 7 Tesla. The strength of B, depends on the part of the human body we want to image; for
example, when the region of interest is the head then a 3 T scanner is preferred. It should be
noted that the cost of the MRI scanner is directly proportional of the static field strength.
When the patient is subjected to the static external magnetic field, the hydrogen spins align
with the direction of the external field in a parallel or anti-parallel manner (Figure 3 —
adapted from [2]).This alignment results in a coordinated summation of the magnetic
dipoles into a net magnetization vector, M, (Figure 4 — adapted from [2]), which can yield an
image if properly manipulated. In order to describe magnetic resonance, a Cartesian
coordinate system is introduced with its longitudinal z-axis aligned with the field B, (Figure 3
—adapted from [3]).

AV
)
< z
MRI
X

B0 . ;

o~ g N / '

k Rt o

N —
—

Figure 3: Patient positioning in MRI scanner coordinate system

A~ ey _ / I
~—" N ———— "&,/\ e SESRERRS il

Figure 4: The hydrogen spins align with the static magnetic field B,.

Inside the static magnetic field, the spins are precessing with a frequency that is calculated
via the Larmor equation:

f=vuBo

where f is the frequency, yy is for the gyromagnetic ratio of hydrogen (measured in Hz/T),
By is the static magnetic field.

The spins not only precess about the static magnetic field B, but also precess about
any secondary magnetic field that is applied. Such secondary field is used to excite the
nuclear spins in order to form the MRI signal. A rotating B; magnetic field of a
radiofrequency (RF) is applied for a brief time period on the xy-plane so as to rotate
(“nutate”) the magnetization vector My away from the z-axis and onto the xy-plane. This RF
pulse is called a 90° pulse because it tilts the M vector 90 degrees from its original position.
To accomplish this nutation, the B, field rotates at the same frequency as the spins precess.
When the magnetization vector reaches the xy-plane the RF pulse is removed and Mg
rotates about By onto the xy-plane, thus generating the MRI signal. The spins now rotate
being affected at the same time by both fields. If we could visualize their movement in space
we would see the magnetization My as a spiral that descends from the z axis extending its
diameter, until it reaches the x-y level (Figure 1 — adapted from [3]). This point of view
represents the Laboratory Frame of Reference.

Figure 5: M, descent as seen from the Laboratory Frame of Reference

If the observer could somehow sit himself on the B; vector and watch the process
from that point of view then he would see the B; vector being still as he rotates with it and
the magnetization vector would be seen descending until it becomes parallel to the y axis
(Figure 6A-6B).This is the Rotating Frame of Reference point of view.

 J

L S
e

B1

A B

Figure 6: Magnetization descent in the Rotating Frame of Reference

If we want to see how the magnetization vector M rotates about the B1 magnetic
field then we use the “left hand rule”. The left hand rule dictates that we place our left hand
in such a way that our thumb is parallel to the B, field and points in the same direction as B;.
The remainder of the fingers will point in the direction in which M will be directed (Figure 8).

B1

J

Figure 8: The left hand rule

The signal obtained after the magnetization M is on the x-y level is called Free
Induction Decay (FID) because from the moment it is created it starts to diminish until it is
completely dissolved. This happens because spins interact with each other gaining different
rotational speeds. The decay caused exclusively by these interactions is represented by the
T, relaxation time of the tissue. There are other causes for the signal to decay though. The
magnetic field By is by default not completely homogenous due to design imperfections and

its homogeneity is additionally affected when the patient body is inserted. The signal decay
that includes spin to spin interactions as well as the inhomogeneity of the field is described

* *
by the T, constant relaxation time. The T, and T, times both depend on the body tissue,

the myocardium for instance has a T;of about 20 ms and a T, of about 50 ms. So, if My is the
original magnetization, the magnetization on the x-y level M, at a given time moment t is
calculated by the formula:

Mxy(t) = Mg e‘t/TZ*

Where My is the magnetization of the initial latitude (magnetization M at its
maximum)

The decay due to spin-spin interactions only is calculated likewise using the T,

constant:
Mxy(t) = IVIO *e-t/TZ

Where Mg is the magnetization of the initial latitude (magnetization M at its

maximum)

After the signal starts to decay the magnetization (vector M) starts to grow along the
direction of the z axis. This happens as the spins transfer the energy they have received back
to the lattice. This is “spin — lattice” relaxation. The magnetization reformation M, along the
z axis at a given time t is calculated by the formula:

M,(t)=M, *(1-eTy)

Where Mz(t) is the magnetization formed ay time t and My is the maximum value of
the magnetization (i.e. as it was when initially formed) and T; is the time constant of the

tissue

The Spin Echo sequence

The spin-echo sequence is used to calculate the T, value since the FID decay includes
more than spin-spin interactions. The magnetization is parallel to the y axis due to the 90x
pulse that was applied (Figure 7A). After a specific time period TE/2 the spins have dephased
due to the field heterogeneities and the magnetization has partially disappeared (Figure 7B).
At this point a 180°x pulse is applied and tilts the spins towards —y axis (Figure 7C). After
waiting for another TE/2, the spins have rephrased reforming the magnetization parallel to —
y axis this time (Figure 7D). The dephasing that occurs now to the newly formed
magnetization on the —y is free of field heterogeneities so the T, time constant can be

calculated.
p 4 Z
M M
N o
= 3
-y y 'Y v
180x RF
X X
A B
Z 4
M
a il
<)
& y ¥ y
X X
C D

Figure 7: The spin echo sequence

The Gradient Echo Imaging Sequence

A gradient is a spatial change in a magnetic field, which is applied in addition to the
initial static By field, thus affecting the total at any given position. This has as a result spins at
different distances from the center of the magnet to have different precessional speeds
according to the Larmor equation. For example, by applying a G, gradient, spins precess at
different frequencies as we move along the y axis. Based on the known strength of the
gradient we apply, if we know the precessional frequency of a spin it is possible to calculate
its position on the y-axis and vice versa. The precessional frequency of a spin while applying
a gradient along the y-axis is calculated in the Laboratory Frame of Reference by the Larmor
equation:

f=yu Bo + Gy y
where y is the distance from the center of the magnet (isocenter) on the y axis
In general, gradients can be applied in all three axes. So, the Larmor equation becomes:
f=yy(Bo+Gyx+Gyy+G,z)

where G, G, C, are the gradients along each axis respectively and x, y, z are the
spins distances from the isocenter.

In practice all three gradients are applied in order to obtain an image.

Imaging: Slice Selection

By applying a G, gradient (Figure 9 A-B) we change the rotational speeds of the spins
along the z-axis. This means that we can select a distance at the z axis where the frequency
the spins precess to will be equal to the frequency of the B, radiofrequency pulse (Figure
9C). Therefore, only the magnetization of the spins that belong to a plane perpendicular to
the z-axis at that specific distance on z will be tilted to the xy-plane thus generating a signal
(Figure 9D). This is how the “slice” selection is performed.

z
Bs Bo
Magnetization (M)
G: -/ vectors
A lu
y
RF i
X
A B
2z z
. Gz
x-y plane of matching I S
precessional and RF
frequencies™ = u’M t
prt
Y
signal
RF acquisition
" X
C D

Figure 9: The “slice” selection process: different colors in M represent the different precessional frequencies
along the z-axis due to Gz

Imaging: Frequency Encoding

The G, gradient is the frequency encoding gradient. The application of the G,
gradient results in a frequency differentiation of the spins’ precessional frequencies along
the x axis (Figure 10A). This means that at a specific distance on the x axis the spins have the
same precessional frequency. Since the precessional frequency does not change as a
function of the y coordinate, the spins form rows of specific frequencies perpendicular to
the x-axis (Figure 10B). The result is having different precessional frequencies in each row
while moving along the x-axis. The precessional frequency and the x distance are linearly
related as seen by the Larmor equation. Once the signal containing these different
frequencies is acquired, these frequencies can be distinguished by means of the Fourier
transform. These frequencies can be then translated to location along the x-axis based on
the Larmor equation.

Magnetization
vectors

A B

Figure 10.2: Precessional frequency differentiation along the x axis — frequency encoding

Imaging: Phase encoding

To find the position of the spins along the y axis a phase encoding gradient is used. A
G, gradient is applied along the y axis right after the RF pulse has ended and right before the
signal acquisition starts. During the application of this G, gradient pulse the spins along the y
axis have different precessional speeds (Figure 11B) which depend on their distance from
the isocenter. As a result, at the end of the G, gradient pulse every spin has the same
precessional frequency but a different phase (Figure 11C) depending on its distance from the
isocenter. For every location along the y-axis these different spin phases are summed. The
Fourier transform cannot extract the original phases from their sum alone and therefore it is
not possible to extract y position information from a single experiment such as this. To solve
this problem, the experiment is repeated several times with linearly increasing Gy gradient
strength. For each experiment, at every y location the phase will be linearly dependent on
the Gy gradient strength used for that particular experiment. Moreover, across experiments,
at every y location there is a linear dependence of phase to experiment index number. In
other words, across experiments there is a different “frequency” for every y location. The
Fourier transform can be applied along the “experiment direction” to distinguish these
frequencies form one another and provide y position information.

Magnetization

A B c

Figure 11: When the Gy gradient pulse stops the magnetization vectors have the same rotational speed but different phases

References:

[2] http://hippie.nu/~unicorn/tut/xhtml/ “Figure 2.1 Proportions of the human body”

[3] http://www.mathematische-basteleien.de/spiral.htm “Conical Helix”

[4] Class Notes in Introduction to Biomedical Engineering, course offered by the Department
of Computer Science and Biomedical Informatics, 2010

[18] http://primatologie.revues.org/508 “Figure 1”

http://hippie.nu/~unicorn/tut/xhtml/
http://www.mathematische-basteleien.de/spiral.htm
http://primatologie.revues.org/508

Methods

The raw dataset

The dataset used to create this model was provided by the Visible Human Project
(VHP) of the United States National Library of Medicine [17]. The Visible Human Project data
was generated from male and female cadavers and includes MR, CT and true color high
resolution axial anatomical images of the human body. The true color axial images of the
female cadaver were used for the model described herein. These images consisted of slices
taken at 0.33 mm intervals with a pixel size 0.33 x 0.33mm (i.e. with isotropic voxel). The
imaging matrix was 2048x1216 pixels with a color depth of 24 bits (8-bit per color) per pixel
and the images covering the entire torso. Each cell in the matrix contained the color
intensity of Red, Green and Blue (RGB) corresponding to a spatial pixel location (i.e. the
images were supplied in “pixel coordinates”). A total of 1941 images were included in this
dataset; however, not all images were used for the purposes of this thesis. Due to the high
density of the dataset, only every third image was used to generate the model described
below. This decimation of the dataset was dictated by the limited computing power of the
laptop computer used for data processing. Using the entire dataset would have resulted in
prohibitively long processing times. To account for the loss of slices along the superior-
inferior direction, the axial spacing used for data processing was 0.99mm.

Summary of image processing methods

In order to accommodate the needs of the MRI simulation platform, images of the
VHP had to be segmented so that, when used by the simulator, individual human organs
could be assigned specific magnetic resonance properties, such as proton density, T1, T2,
etc. Binary data were generated from the VPH dataset so that the contours delineating the
heart and the torso were identified so as to form the 3D objects. These “contour
coordinates” were generated by scanning the high resolution VHP images with custom built
software in Matlab version R2010a (Mathworks, Natick, Massachusetts, U.S.A.). The
conversion took into account the VHP pixel size and the axial slice spatial intervals. The
contour coordinates were finally reconstructed to display the 3D human organ. The figure
below displays in brief the sequence of the actions just described (Figure 12)

Tissue Segmentation

A

Binary Images

A

Pixel Coordinates

A

Spatial Coordinates

A

3D Reconstruction

Figure 12: Data processing steps

Segmentation with gray scale images

Gray scale edge detection was first evaluated for detecting the torso boundaries.
While gray scale edge detection was not the method utilized for the final product code of
this thesis, it is included here for the sake of completeness. In summary, this type of edge
detection was based on signal intensity variations that occur throughout the image after the
initial dataset has been reduced to 256 shades of gray. The steps used for this type of
processing are shown in Figure 13.

Original Image

A

Gray-level Image

A

Binary Gradient Image

A 4

Dilated Image

A

Filled Holes Image

A 4

Cleared Border Image

A 4

Contour Image

Figure 13: Gray scale image processing

For gray scale segmentation, the boundaries of the torso were initially detected using the
image’s intensity gradient i.e. using the changes in signal intensity. As mentioned above, first
the original 24-bit color image (Figure 14A) was converted to 8-bit grayscale (Figure 14B).
This was done using Matlab’s “rgb2gray” function [5]. “rgb2gray” converts RGB values to
grayscale by using the three components R G B to create a sum. Each component adds to the
sum multiplied by a weight value. The weight values are 0.2989 for the R-component 0.5870
for the G component and 0.1140 for the B component. Next, gradient detection was
implemented by means of the “edge” Matlab function. An example of a gradient binary
image is shown in Figure 14C. The 1’s in this image represent the abrupt gradients detected.
The “edge” function takes as input the grayscale image and the type of mask we intend to
use (for instance sobel, prewitt, roberts) and returns as output a binary image with the
edges as pixels with value 1 and the rest with the value 0. In order to later group pixels
together and segment the torso, the binary gradient image was dilated. This dilation
consisted of assigning to the neighbors of non-zero pixels the value 1. This was done by
Matlab’s “imdilate” [6] routine which takes as input the binary or gray-level image and a
structure element [7] and its output is the dilated image. The structure element is an
element that defines the neighborhood of the pixels that are affected during the dilation (for
example a disk, a line, or a square). This resulted in a binary image where the white parts are
“dilated” as seen in Figure 14D. As a result, the pixels corresponding to the edge of the torso
became more connected so that the outer contour could be extracted later on. In
segmenting the torso, the next step was to “fill” the gaps and “holes” of the torso gradient
image. This was done by using Matlab’s “imfill” [8] routine (with parameter “holes”) which
automatically fills the holes of an image, where a hole in this case is defined in the Matlab
documentation as “a set of background pixels that cannot be reached by filling in the
background from the edge of the image”. The result of this step is shown in Figure 14E: the
torso area and the two arms appear now as a solid white object surrounded by a black
background, which contains some “salt and pepper” noise.

Prior to identifying the outer contour of the torso and arms, the background noise needed to
be cleaned because the binary image background contained non-zero values as a result of
signal intensity gradients in the gel that the cadaver was immersed. The image dilation
process described earlier exacerbated the situation by increasing the number of non-zero
pixels in the background. Removing these background pixels was performed using the
“imclearborder”[9] routine. “imclearborder” as described in Matlab’s documentation
“suppresses structures that are lighter than their surroundings and that are connected to
the image border” [9]. Objects that consisted of a number of pixels less than a predefined
value were erased. This was implemented by means of the “bwareaopen” [10] function in
Matlab, where the user defines the minimum amount of pixels that the objects should have.
The resulting image was clear from small objects. The result of this step is shown in Figure
14F where the torso and arms appear as a solid white object over a black background. In this
type of binary image the contour of the torso and arms can be more easily obtained as
requested for previous steps “by applying an edge detection routine the so called “edge”
[11], which now in contrary to its former application only detects a single object resulting in
a continuous single-lined contour (Figure 14G).

G

Figure 14: The steps of the initial image processing sequence

A casual viewer of these contours may conclude that this type of gray scale image
processing works well. However, a more careful examination of the results indicates that

there are problems with this segmentation method since the torso was not completely
separated from the blue background i.e. from the surrounding gel (Figure 15).

Figure 15: Blue objects being detected as part of the contour of the torso were considered significant errors
that pointed to methodological improvements

Segmentation with true color images

To improve the segmentation a new methodology was developed based on a Matlab
demo code [12] that discriminates an images different colors using the L*a*b color space for
classification.

The L*a*b color space

The images that contain the VHP dataset are true-color png images. This allowed for
alternative image processing which takes advantage of the different colors so as to detect
the different tissues. The colors were classified using the L¥a*b color space model (Figure
16). According to the L*a*b color space every color was represented by three components.
The L-component stands for luminosity with O representing the darker value (black) and as

the values increase the brighter the objects become i.e. approaching white. The a-
component indicates where the color is located between the green (negative a values) and
the red (positive a values). The b-component indicates the color’s position between the blue
(negative b values) and the yellow (positive b values).

Figure 16: The L*a*b color space coordinates

The use of this color model simplifies the segmentation procedure and fewer steps
are needed (Figure 17).

Original Image

A

L*a*b color classification

Image

A

Gray-level Image

A 4

Cleared Objects Binary
Image

I

Filled Holes Image

A 4

Contour Image

Figure 17: The final algorithm for the detection of the torso

The original Matlab code [12] classifies the image colors in six different classes using
predefined areas of the image for sampling in order to create a center for each color class
using the coordinates of the L*a*b color space. Following this classification, it calculates for
each pixel the distances from each class using the k-nearest neighbors method. The code

was modified to detect only three colors i.e. there were three class centers. The coordinates
of the class centers in the L*a*b color space were created just once by manually defining the
sampling areas for the colors and then using part of the original Matlab code to create the
L*a*b coordinates for the colors of the areas used for sampling. One center was created for
the torso for a sampling area that included all the colors of the torso area (fat — yellow,
muscle/flesh — red, blood — darker red). One center was created for a sampling area that
included the blue gel exclusively. Last, a third center was created using a sampling area with
just the black background (outside the blue gel). By applying this methodology three images
were obtained, each of them displaying the areas just described. The image of interest was
the one that resulted from the center created for the torso area (Figure.18.A) and it could be
used to define the torso area. Using this image a binary image was created with the torso
area being 1’s. The torso’s edge was then detected by applying the same steps for removing
the unnecessary objects as described for the gray images in the previous section. In brief,
the image was transformed to gray-level (Figure 18B) and by applying Matlab’s routines [9]
[10] mentioned previously, the objects near the border were removed. Objects with a
number of pixels less than a certain value were also removed (Figure 18C). Black “gaps”
resulted inside the torso because the pixels values of some areas inside the torso (lungs for
example) were close to those of pixels in the black background. These black “gaps” of the
inner torso area were “filled” (Figure 19D) using “imfill” [9] so that the torso created one
continuous area in the resulting binary picture. At this point the contour could be extracted
using edge detection (Matlab’s “edge”[11] routine) as done in the gray-scale image
segmentation (Figure 19E).

Repeating this algorithm for the entire set of images yielded the 3D contour area of the
entire torso.

O w@> "skonos

Figure 19: Color classification using the L*a*b color space

Segmenting the heart

The L*a*b color space technique was used for segmenting of the heart as well. This
time though there was no blue gel involved and the discrimination considered different
colors due to different tissues. As a result different sampling areas for the formation of the
class centers in L¥*a*b spatial coordinates were used. The procedure steps were similar to
those of the torso detection algorithm with the exception of engaging a manual frame
selection this time (Figure 18).

Original Image

A

Selected Frame

A 4

L*a*b color classification
Image

A

Gray-level Image

1

Cleared Objects Binary

Image

\ 4

Filled Holes Image

A 4

Contour Image

Figure 18: The heart area was segmented using the same method as the one used for the torso

Identifying the heart structures

The segmentation of the heart included the identification of cardiac structures.
Those were the Superior Vena Cava, Pulmonary Trunk, Right Pulmonary Artery, Aorta, Left
Atrium, Right Atrium, Left Atrium and Left Ventricle areas (Figure 19). Another tissue of the
heart was included in the heart components tissues, not visible in the figure below, was the
intraventricular septum, which is not easily detected by observing the “slices” and therefore
its segmentation was not as accurate.

Left Atrium

Left Ventricle

Aorta _____,_-——-——— < & y
Right Atrium aese—e———— e Pulmonary Trunk

Right Ventﬂ(ﬁseib\u)

-~

Image 19: The heart structures

There were three class centers formed like before, coming from three sampling areas
including a region for fat, a region for flesh (lighter red colored tissues) and a region for the
magenta objects (like the inner area of lungs and vessels — darker red colored areas). The
execution of this code generated three images (Figures 20A-C) were the colors were
classified thus helping identifying the structure of interest.

w @ o °®SAuo svaon

C

Figure 20: The classified colors

By observing these three images one can see that the colors were not classified completely
and exclusively i.e. every picture contained a range of colors instead of just one. This was
because the sampling areas that were created happened to contain pixels within a range of
values. So, the corresponding L *a*b coordinates represented a range of values. In practice
same color values exist in areas of different tissues. The resulting pictures were useful
though in detecting the different tissues of the heart. For example the left atrium appeared
in the first picture (Figure 20A) as a brown-purple colored area surrounded by a black area.
This meant that it could be detected by forming a binary image using its non-zero valued
pixels. In addition, it could also be detected using the third picture (Figure 20C) to form a
binary image by selecting the zero-valued (i.e. the black pixels) this time. The procedure that
was followed included some manual intervention in order to specify a frame that contained
the region of interest exclusively. For example, in order to detect the left atrium in the
picture in Figure 20A using the third picture, a binary image was created from the zero-
valued pixels of the Figure 20C. To achieve that a frame was set to include only the region of
interest and erase the rest (Figure 21A). The frame selection was manual and Matlab’s
“getpts”[13] routine was used to achieve that. “getpts” allows mouse clicking on images for
manual point selection. In the binary image that was created, the lower left edge of the
frame (Figure 21B) included a disconnected small unnecessary area that needed to be
removed. The binary image was at that point dilated and the holes were filled so that
potentially unconnected objects became one entire continuous area (Figure 21C). Objects
with an amount of pixels less than a predefined value were removed, using the Matlab
functions [9] as before so that the unnecessary area was removed (Figure 21D). The
application of an edge detection [11] algorithm produced the contour of the left atrium
(Figure 21E).

Figure 21: Segmenting the heart structures

This procedure was used for all other heart structures as well. Once the contours of some of
the heart structures had been identified then these could also be used to help in identifying
the remaining ones. For instance, in identifying the aorta, the pulmonary artery had already
been identified; a fact that made it easier to find the borders of the aorta on the side of the
pulmonary artery. This was done by excluding from the aorta the pixels belonging to the
pulmonary artery. This logic was applied when a tissue neighboring to the region of interest
had already been identified.

Contour undersampling

Each of the resulting contours consisted of a large number of points that changed
while moving from slice to slice (i.e. image to image) in the inferior-superior direction. This
makes sense since the diameter of the organ, e.g. the heart, may change along that axis. As
expected, a contour originating from the base of the heart will consist of more points than a
contour originating from the apex of the heart. The MRI simulator demanded that for
purposes of visualization and potential modeling of motion that consecutive contours
contained the same small number of points. To achieve this, the existing contours
underwent an undersampling process so that in the end the contour of every slice contained
a fixed number of points. The algorithm developed to achieve this is described below.

First, the contour image that was produced by the segmentation procedure was read in
Matlab (Figure 22). Then, the contour’s center of mass was located (Figure 23) by means of
the function “regionprops” [14] routine with the parameter “centroid” set. “regionprops”
calculates a set of properties that include shape or pixel value measurements regarding
objects of the image. The specific parameter defines that the function should calculate the
center of mass of the images object. Once the center had been located, a line of pixels
(referred to as “main line” herein) was expanded from the center of mass towards the
contour of the image (Figure 24). The main line of pixels was expanded until a certain
predefined length of pixels. For every pixel that was added to the main line, a scan was
executed from the pixel located 7 pixels back on the x and 7 pixels back on the y axis up to
the pixel located 7 pixels forward on the x axis and 7 pixels forward on the y axis. If the pixel
of the main line had coordinates (x0,y0) the scan included a square area whose diagonal
corners were the points (x0-7,y0-7) i.e. the starting point, (x0+7,y0+7) i.e. the ending point.
Whenever a contour pixel was found inside this scanning area, its distance from the pixel of
the main line was calculated. If the current distance was less than an already calculated one
from a previous iteration, then its value replaced the previously stored distance value and
correspondingly the coordinates of the current contour pixel replaced the stored
coordinates of the previous contour pixel. So, when the scan was completed for one of the
pixels of the main line, its distance from the closest contour pixel had been calculated and if
it was less than the correspondingly calculated distance for the pervious pixel of the main
line, the new distance value replaced the previous one and the coordinates of the new main
line pixel replaced those of the previous one. The distance was given an initialization value in
case this was the first iteration and there was no previous value to be replaced. So, when all
the scans were executed for all the pixels of the main line, the saved pixel coordinates were
those of the expanding main line pixel closer to the contour, if an actual pixel of the contour
was not matched. The same procedure was repeated for pixel lines that expanded from the
center for different angles until a full 360 degrees rotation was complete. The rotational
angle for the heart components was set at 10 degrees, meaning that starting from O degrees
a main line was expanded from the center of mass of the the contour towards the contour
itself every 10 degrees detecting one point of the contour. This way, 36 points were
detected in total for each contour. The same procedure was applied for the undersampling
of the hearts neighboring vessels such as the pulmonary artery, except that the rotational
angle was set at 30 degrees thus resulting in a total of 12 points per contour. In order to
rotate the expanding main line of pixels the computation and application of these angles

was necessary. That was achieved by using the “cos” [15] and “sin” [16] functions of Matlab.
These functions return the cosine and sine values. Whenever the main line was expanded
one pixel inside the loop, the added pixel’s x coordinate was multiplied by cos(a) and its y
coordinate by sin(a), where a was the current angle. As mentioned above, the angle a
changed with a step of 10 or 30 degrees per loop depending on the component until a 360
scan of the contour was performed. This way, the pixel line could be expanded towards
various angles. The initial design of this algorithm included expanding the main pixel lines
until a contour pixel was met. The coordinates of the pixels belonging to the expanding line
did not always coincide with those of a contour pixel, because they did not always form a
continuous line (due to the use of angles), meaning that although the expanding line of
pixels crossed the contour, there were not always coordinates of a pixel saved. This posed a
problem (Figure 25). The scanning around the expanding main line of pixels solved this
problem. In a case of non coincidence of the coordinates, the pixel of the main line with the
smallest distance from the contour was considered as a contour pixel met and its
coordinates were saved. So, it was ensured that every line that will cross the contour will
trace and save the coordinates of a pixel.

The aforementioned undersampling came with a slight accuracy loss since a pixel neighbor
to the contour pixel may have replaced the actual contour pixel. In case the expanding line
of pixels did not find a match to the contour, the pixel with the closest distance to the
contour was considered the contour pixel instead of the actual contour pixel itself. The
maximum distance of a neighbor pixel which was chosen as a contour pixel instead of an
actual contour pixel can be calculated. Assuming the pixel of the expanding main line had
coordinates (xo,Yo) and the scan finds a contour pixel located at the most distanced point
possible i.e. either the (xo+7,yo+7) or the point (xo-7,yo-7) it makes no difference, their
distance (d) is d= \/(xo +7 —%0)2+(yo + 7 — yo)? = V49 + 49 = 9.89 pixel. Knowing that
the pixel size is 0.33 mm we can calculate the spatial distance in mm which is 9.89 x
0.33=3.2637mm. That is the maximum diversion that may occur from this process according
to the worse scenario where the most distant pixel has been chosen as a contour pixel. Note
that the undersampling process aims in improving the result visually (and potentially
enabling the formation of areas which can be modeled for motion),the loss of accuracy takes
place exclusively in the visualization process and does not affect the saved data. This

accuracy loss is visually undetectable.

Figure 22: The contour picture of the right atrium (input)

Figure 23: The contour center is detected

Figure 24: The pixel lines cross the contour while expanding

Figure 25: Zooming in to the procedure, yellow pixels: the expanding main line, magenta pixels: the pixels
considered as contour pixels met, white pixels: contour pixels.

Data storage and coordinate system

When all of the contours had been successfully created the data were stored in an
array with three columns where the first column stored the pixel’s x coordinate the second
column the pixel’s y coordinate and the third column the pixel’s z coordinate which changes
along the inferior-superior direction i.e. along the slice direction. As the images were read in
one after another the z coordinate was reduced, so that the pixels of the current contour
were placed below those of the previously read image. This array was then saved as a .mat
file. At that point the coordinates in pixel values had been saved, since these coordinates
resulted straight from scanning the images. In order to transition to spatial coordinates, the
data acquisition parameters, as described in the official webpage of the Visible Human
Project, were considered. The pixel dimensions were 0.33x0.33 mm so by multiplying the
first two columns (x and y coordinates) of the array with 0.33 these were automatically
converted to spatial coordinates in mm. The VHP images had been obtained every 0.33 mm
but as mentioned earlier the images used to form the model were not read one after
another but for every image used the two following images were skipped instead. That
meant that the distance along the z axis was 0.99mm between slices. By multiplying the
third column of the array (z coordinates) by 0.99 the transformation into spatial coordinates
was completed. The x,y,z spatial coordinate values were also divided by 1000 in order to
convert from mm to meters.

References:

[5] rgb2gray: http://www.mathworks.com/help/images/ref/rgb2gray.html

[6] imdilate: http://www.mathworks.com/help/images/ref/imdilate.html

[7] imfill: http://www.mathworks.com/help/images/ref/imdilate.html

[9] bwareaopen: http://www.mathworks.com/help/images/ref/bwareaopen.html|

[10] imclearborder :
http://www.mathworks.com/help/images/ref/imclearborder.html

[11] edge: http://www.mathworks.com/help/images/ref/edge.html

[12] lab color space: http://www.mathworks.com/help/imag/examples/color-based-
segmentation-of-fabric-using-the-l-a-b-color-space.html

[13] getpts: http://www.mathworks.com/help/images/ref/getpts.html

[14] regionprops: http://www.mathworks.com/help/images/ref/regionprops.htmi

http://www.mathworks.com/help/images/ref/rgb2grav.html
http://www.mathworks.com/help/images/ref/imdilate.html
http://www.mathworks.com/help/images/ref/imdilate.html
http://www.mathworks.com/help/images/ref/bwareaopen.html
http://www.mathworks.com/help/images/ref/imclearborder.html
http://www.mathworks.com/help/images/ref/edge.html
http://www.mathworks.com/help/imaq/examples/color-based-segmentation-of-fabric-using-the-l-a-b-color-space.html
http://www.mathworks.com/help/imaq/examples/color-based-segmentation-of-fabric-using-the-l-a-b-color-space.html
http://www.mathworks.com/help/images/ref/getpts.html
http://www.mathworks.com/help/images/ref/regionprops.html

[15] cos: http://www.mathworks.com/help/matlab/ref/cos.html

[16] sin: http://www.mathworks.com/help/matlab/ref/sin.html

[17] VHP NLM dataset: http://www.nlm.nih.gov/research
/visible/visible _human.html

http://www.mathworks.com/help/matlab/ref/cos.html
http://www.mathworks.com/help/matlab/ref/sin.html
http://www.nlm.nih.gov/research

Results

The initial gray scale algorithm

As mentioned in Methods, the gray scale image segmentation approach method was
not preferred due to poor results (Figurel5). By overlaying the initial image to the binary
image resulting from the segmentation one can observe quite a few cases when blue objects
remained attached to the torso and thus erroneously considered to be part of the torso.

The L*a*b color space algorithm

To verify the results of the L*a*b color space algorithm, the overlay of the initial
image to that of the algorithm’s resulting binary image shows that the torso area is detected
without any additional objects attached to it in error (Figure 26)

Figure 26: The torso area contains no errors, the improvement is visible in comparison to the previous results
seen in Figure 15
Since the binary images of the L*a*b color space algorithm produced successful
detection of the boundaries of the torso area, an edge detection function was applied in
order to obtain the torso contour (Figure 27).

Figure 27: The corresponding contour of the torso area segmented using the L*a*b color space

Visualizing the data

To visualize the data gathered from the images in 3D we read the arrays with the
saved coordinates and plotted the points in space (Figure 28) one by one in order to create a
3D visualization.

B €

Figure 28: The torso reconstructed in 3D by plotting the data one point at a time as seen from different angles

The heart was visualized likewise (Figure 29)

-0.05

01
.0.05 -
) 0185
.U‘| -
~ 02

-0.15 -

o4 -
D2

02= 02
07250 25 Ura 0 |35 . nla 0]45 olgn yD . j; \0.45 ‘D 4 \U 35 \0.3 0.25

A B

Figure 29: The heart visualized in space by plotting one by one the points that compose it

The above 3D plots could not be manipulated easily since the hardware proved to be
inadequate for the volume of data. This was easily noticed when manually trying to rotate
the object in space and experiencing a very slow response. By plotting the data that occur
from the undersampling process, the visualization result was easier to rotate in real time
(Figure 30). The data after the undersampling were less dense, which improved the response
during the object rotation in space. In addition, the heart consisted of points that were
aligned along the z axis, which allowed for connecting them with each other thus creating
the effect of a surface. Some of the details may be lost in this type of visualization. The
images below show the spatial visualization of the data resulting from the undersampling
process. The 36 or 12 points were connected horizontally per slice and vertically per angle
location (angular step during undersampling).

HEART

HEART

Figure 30: The heart visualized by plotting and connecting in space the points that resulted from the
undersampling process (views correspond to those of figure 27)

Undersampling was also applied to the torso data by following the same technique to that of

the heart. The data are visualized in Figure 31. The points in space are connected per slice
and angle in this visualization as well.

03+

04

05

density 34 slices.
0—
L
01
02—
. m—"
4 1
23— {
» - $
04— < ; e
AT -
05— g D e
- e e e
— <7
L = e e
06—
[..
o T T T T T T 2
0 01 02 03 04 05 06 01
y

Figure 31: The torso formed by the points that remained after the undersampling process was applied, C
displays a less dense visualization of the torso containing the heart

Hardware & Execution Times

For the hardware used for this work (Intel Pentium dual core CPU T4300
tuned at 2.1 Ghz and 3Gb RAM), the detection of the contours required an execution time of
seconds to one minute (for the case where the user’s manual intervention was required) per
contour. The process of scanning the binary images in order to store the coordinates in
arrays took days due to the data volume, which consisted of 647 binary images each of them
containing hundreds of pixels whose coordinates were saved. Also, when trying to visualize
3D objects using the full dataset (without undersampling), the response times to just load
the datasets were prohibitively slow.

Conclusions

We have created an anatomical map using images of the human torso, coming from
an actual human body (cadaver). The information for constructing this map was extracted
from the Virtual Human Project images using image segmentation. This segmentation was
implemented using Matlab. The anatomical map can be used to form a model for the
simulation of MRI. The project required the careful study of anatomy too, in order to identify
the heart’s anatomical structures on the raw data images. The execution times were slow
when it came to manipulating (visualizing or storing) the resulting data and more advanced
hardware should help in the future.

Future Work

Future directions include expanding the model by including more areas, organs or
tissues. This would for the current anatomical map, regardless of the method or the
algorithm. The L*a*b classification algorithms used herein for the detection of the different
tissues of the heart can be used also for the detection of other tissues within the torso, such
as the lungs or the fat, by simply selecting different sampling areas thus resulting in different
class centers that correspond to different colors and tissues. Another topic suitable for
future work is the generation of the tissue motion models. The undersampling process
should be the first step towards the design of these models.

Limitations

Hardware

The computer hardware was inadequate for the task and prolonged data processing
times to several days. This could be improved by purchasing more advanced hardware so as
to reduce execution times. This should also allow for more reasonable data management
times during the data storing and visualization.

Partial data corruption

Due to data corruption in several of the original VHP images the algorithm could not
detect the torso contours for 14 images (the images are counted from 1262 to 1909 and the
corrupted images are from image 1489 to 1502). So, the last contour that was correctly
detected was copied and considered to be the contour of the torso for each of these
corrupted images. The total number of images whose contours form the torso in 3D was
647. So, the fact that 14 of the contours were corrupted does not affect the results much.

APPENDIX

Matlab programs

Matlab’s demo code: “Color based segmentation Using the L*a*b Color Space”

fabric = imread('fabric.png');

figure(l), imshow(fabric), title(':fsa

load regioncc i,uﬁw_v‘;

nColors = 6;

sample regions = false([size(fabric,1l) size(fabric,2) nColors]);
for count = l:nColors

sample_regions(:,:,count) =
roipoly(fabric, fegion coordinates(:,1,count), ...
region coordinates(:,2,count));
end

imshow(sample regions(:,:,2)),title('sample ragion

cform = makecform('srgbllab');

lab fabric = applycform(fabric,cform);

' QL

a = lab_fabric(:,:,2);
= lab fabric(:,:,3);
color markers = repmat (0, [nColors, 2]);

o
|

for count = l:nColors
color markers(count,l) = meanZ2(a(sample regions(:,:,count)));
color_markers(count,2) mean2(b(sample_regions(:,:,count)));
end

Il

dlsp(sprlntf(|

P
tihe Nearest

3 £y Bac 2l 1
color labels = 0:nColors-1;
a = double()
b = double(b);
distance = repmat (0, [size(a), nColors]);

>i]',color_markers(2,1),color markers(2,2)));

Kl o e b By Ty 3 o
Be1gnbDor Hule

for count = l:nColors
distance(:,:,count) = ((a - color markers(count,l)).”2 +
(b - color markers(count,2)).”2).”0.5;
and
[value, label] = min(distance, [],3);

label = color labels(label);
Clear WL, Al bz gz

]\V

rgb label — repmat (label, [1 1 3]

-
segmented images = repmat (uint8(0), [size(fabric), nColors])

for count = l:nColors

color = fabric;

color (rgb label ~= color labels(count)) = 0;

segmented images(:,:,:,count) = color;
end
imshow (segmented images(: ;2)), title('red ob-
figure;imshow (segmented 1mages(ikt 3))8 tltle(
figure;imshow(segmented images(:,:,:,4));title("’
figure;imshow(segmented images(:,:,:,5)); title(
figure;imshow(segmented images(:,:,:,6)); title(

purple = [119/255 73/255 152/255];

plot labels = {'k', 'r', '¢', purple, 'm', 'y'};
figure;
for count = 1l:nColors

plot (a(label==count-1),b(labe
plot labels{count}, 'dar]
hold on;
end

title ("’
xlabel (' ' at
ylabel ("' 'h*"!

Creating the color markers

create_color_markers.m

on [color markers] =
rs(image_ num
1262 to 1 3

)51

I=imread(fn);: il t : s of f
figure;imshow(I);title(fn);xlabel
area ') % 1Y
[x,y]=getpts () imar
coor(:,:,1)=[x,y]:% g
figure;imshow(I);title(fn);xlabel (':
iy !) s adis '
[x,yl=getpts();
coor (st 2)=[x,v1s

sux
=14

1
IS

{1

figure;imshow(I);title(fn);xlabél('¢ 3r
area ') xdisplay

[x,yl=getpts () ; na:

€OOFZ(t, 0, 3)=[R,y] ;%
nColors = 3;%define the : . oF &

ample regions = false([size(I,1l) size(I,2) nColors]);:- AT L EY
o ~ T e e "

vy«

il o ions from ti
for count = 1l:nColors

sample regions(:,:,count) =
roipoly(I,coor(:,1,count),coor(:,2,count));
end

lab fabric = applycform(I,cform); -«

i in the

G y L

a = lab fabric(:,:,

lab fabric(:,:,
(

o
Il

L = lab_fabric
color markers

.
AR

£{0, [mColots,; 21).:

for count = 1l:nColors
color markers(count,l) = mean2(a(sample regions(:,:,count)))
color markers (count, 2) mean2 (b (sample regions(:,:,count)))
color markers (count, 3) mean2 (L (sample regions(:,:,count)))

Il
Ne Ne N

Scanning contour images for the inner points of a contour

innerpoints.m {

fun “tiﬁn [data full] = 1nnerp01nts(d1rectory)
cd(di tory) O ¢ 7
cd('ba :
ex=exist('
1f ex==7
cd ("'

d=dir(**.png');

filenames={d.name}; ¢

start =

str2double(strtok(filenames(l,l),
g XYZ')) 2

Juncey

zet=1262—start;

for i2=1:size(I,1)% a«

for j2=l:size(I,2)
1f ~(I{iz2;]2)==0)

data full(count,1l)=i2;
data full(count,2)=j2;
data_ full (count, 3)=zet;
count=count+1;

and
data full(:,1l)=data full(:,1)*0.33;%
data full
data full

2)=data full(:,2)*0.33;
, 3)=data full(

data full data full/lOOO
fprlntf(

}

Save coordinates read from binary images

store_coord.m{

axil

appro

d=dir("*.p:
filenames= {d name};
start =
str2doub

A

I= 1mread(fllename);

for i2=1:size(I,1): ¢
for j2=1l:size(I, 2)
~{I(i2,]2)==0)
data(count 1)=
data(count,2)=j2;
data (count, 3)= zet;
count=count+1;

ard
and
end
zet= zet L

data(:;2)=data(:,2)*0.33;
data(:,3)=data(:,3)*0.99;
data:data/looo o R Py TR Y SOy
sound o
fprintf ("%

}

s2edd Lo alert me when work was done

\n',directory) ;

Segmentation with gray-scale images

graylevel_image_segmentation.m

se90
se0 = strel ('
seD = strel(’
start=1262;
for image num—start 1262 ; :
fn=['avi’ num2str(1mage_num,‘,

I = 1mread(
figure 1mshow(

H Ne

Y tltl
] le

12 rgngray()8ty
[junk threshold] = edge(IZ
=hat 11 s blndry
threshold * fudgeFactor);

; BLAECO

f'\ Y\, o
186 =

I2 = imerode (I2, seD)
I2 imerode (12, seD)
I2=bwareaopen(I2,9000);
cixels

figure;imshow(I2);

7
4

imwrlte(IZ,new_fn);“
fprlntf("\l S

Detecting the heart area

heart_detection.m{

se90 = strel('li
se0 = strel('1i
Load({'col

load('col

; %
2rs_fatZ.mat'};*
imac
for image num=1464:1465"
ion of the images
[': num2str (image num, '
the give:

o Rt

{image num,

o
f*— Y

Rorta.png']:

I=imread(filename

fi
fabric = I;TS+
fab2 rgb2gr Y

nColors
cform =

= lab fabrlc(s
= lab fabrie (s,

L = lab fabrlc(,303) 7%

\,«7'

I y xel o
color labels = 0:nColors- 1

a double (a);

b = double (b);

L = double(L); : flication

distance = repmat (O, [51ze(a), nColors]);

L atl
= 1: nColors
distance(:,:,count) = ((a - color markers5(count,1)).
(b - color markers5(count,2)).”2 +
color markersb5{count,3)).72).%0.5;

end

[value, label] = min(distance, [],3);
label = color labels (label);

clear

A2+ s aa

(L -

1

%t fabric by coloxz,
rgb _label = repmat (label,[1 1 3]);
segmented images = repmat (uint8(0), [size (fabric),

for count = l:nColors
color = fabric;
color (rgb label ~= color labels(count)) = 0;
segmented images(:,:,:,count) = color;

end

-

figure;imshow(segmented images(:,:,
title(filename) ;xlabel ('
figure;imshow (segmented images(:,:,
title(filename) ;xlabel (' /

.(1)21:2048)=.

(l:y 0;
BWs (y(2):1216,1:2048)=0;
BWs (1:1216,x(2):2048)=0;

I3=zeros(size(I,1),

the appro

for i=y(1l):y(2)

for j=x(1):x(2)
if (segmented images(i,j,:,2)==0)
i i a i b g ;

nColors]);

I3=imerode (I3, [se0 se90])
I3=imerode (I3, [se0 se90])
I3=imerode (I3, [se0 se90])

I3=edge (I3, 'canny'); «am et i

edge d

figure;imshow(I3);titlekfilename);xlabel('"

new filename=[":

i e

num2str (

¥ T rye

image num, "%

fprintf (

and

Segmentation with true color images

torso_detection.m{

se90 = strel('.l!
se0 = strel(‘*'
load(" Lor 3, ¥
for lmage num—1262 1262 ¢
fllename [num2str(image_num,‘{

e

I—imread(filename)

fabric = I;*®
fab2= rgb2gray(fabrlc)
nColors = 3;:

cform = makecform(

lab fabrlc(:,:
b = lab fabriecuiqs,
lab fabrlc(: 2

a = double(a);

b = double (b);

L = double(L);

distance = repmat (0, [size(a), nColors]);

~m v Feyvm o r
PSETOXrm « 3gifica

count = 1: nColors
distance(:,:,count) = ((a - color markers(count,l)).”2 +
(b - color markers(count,2)).72 +(L-
color markers(count,3))."%2);
and
[value, label] = min(distance, [],3);
label = color labels(label);

clear «

oot

rgb_label = repmét(label [1 1 3]

)
segmented images = repmat (uint8(0), [size(fabric), nColors]);
for count = 1l:nColors
color = fabric;
color (rgb label ~= color labels(count)) = 0;
segmented images(:,:,:,count) = coler;
end

flgure 1mshow(segmented lmages(
title(filename) ;xlabel ('
figure;imshow (segmented lmages(
title(filename) ;xlabel ('

figure; imshow (segmented 1mages(:
title(filename) ;xlabel ('cec 3
V segmented images (:,:,:,3);

~
} ee
W

V rgb2gray (V) ; :
V= 1mclearborder(V 8)

V bwareaopen(V 10000) ;

for ti=1l: 1216
for tj=1:2048
if V(ti,tj)==0
I(ti,tj,:)=0;

end
end

e ricl

BWoutllne
V=edge (V, ' ALY
new fllename ['

and

Undersampling — code version without parameters

undersV2.m{

count=1; %co
start=1406;
zet=1262- start

for i= start: 1406?
amount=0;
fllename [#

1,
Jp Ll

flgure 1mshow();title(fllename)

nold oa;i: <) srased’) ;

s=regionprops (I, 'centroid'); %locate

x=round(s(numel(s),l).Centroid(l,l));
3 Lo i oixel's

y= round((n umel(s) LY : Centr01d(2%).

clear(‘ﬂ');

L
¥

fprlntf(
STR8pace
d=16;
a=30;
gtp=180/a;

for a=0: pl/gtp

(2*pi-

nx=x+r* cos(
ny=y+r*sin
nx=round (nx
ny—round(ny

for jj=nx-T7:nx+7

i
avary white pixel met
d=distance([ii,jj], [ny,nx]);
end
if (d<=dis) %the unders

Ciate

£ ~(I(idi,J7)==0)

L]
dis=d; %of L
om
hl=ny; %the contour pizel (for the case
o not match)

h2=nx;

and

and
hold on;plot(h
amount=amount+1;
fprintf (" o I
wohn',1i,amount,h2,hl);%dizplay
Pulmonayl2 1 Sp(count,1l)=hl;
Pulmonayl2 1 Sp(count,2)=h2;
Pulmonayl2 1 Sp(count, 3)=zet;

count=count+1;

end

zet=zet-1; :sat

fprintfi(*\n

ge Oon wol

Pulmonayl2_ 1 Sp(:,1)=Pulmonayl2 1 Sp(:,1)*0.33; % from pigel to
S0 al coo stEs
Pulmonayl2 1 Sp(:,2)=Pulmonayl2 1 Sp(:,2)*0.33;
PulmonaylZ_l_Sp(:,3)=Pulmonay12_l_Sp(:,3)*0.99;
Pulmonayl2 1 Sp=Pulmonayl2 1 Sp/1000; *convert to : s
51 dimsssage) ;s d ale je

Undersampling — code version with parameters (function)

unders.m{

function [data] =
unders (directory,angle,displ, autol
fprintf('\n E ing : i
zSatell ',directory, angle); ‘¢

sy

2 O

c,starting im,ending im)
3 i1} £ Ir 3 3

8 Lo Laer DX G aE

(i

¢ %

manual=0;
fprintf('\n

nd
if (autoloc==1)"

{

manual=1;
fprintf (*\z

end

(nargin>4) %ot
manual=2'
fprintE (! 3
,\L‘,startlng im, endlng lm)
el
if (nargin>6)*
error (°

=

end
cd(dlrectory)
ed ("’
Cd(* K
d=dir('*. o

0

"
R i\rlf\'

filenames={d. name},

start =

str2double(strtok(ilenames(l,l),'
) ') ; e

V7

iE (manual==2) 1 » where
range startlng im- start,

the end—endlng im;
end
zet 1262 start,

for i= start the end & ran
amount Ot

;tltle(filename);xlabel(’

zoom (2) ;
[x,y]l=getpts();
x=round (X) ;
y=round(y) ;
(manual==2)

;title(filename);xlabel(‘

zoom(25
[x1l,yl]=getpts();

T(yl(1):y1(2),x1(1):x1(2)
hold on;imshow(I); xlabel(
s=regionprops (I, &!

roid®) of

. LR .
troid") of a

x=round (s

(numel(

), l;jCentréid(l,l));

clear ('

and

if (displ==1) ated is
figure;imshow(I);title(fllename)
hold on;plot{x,y,'w");:hold on;

end

fprintf (!

d=16;

gtp=180/angle;

for a=0: pl/gtp (2%pi= (pl/gtp) _

if (displ==1l):activate ed wl the option is activa

figure;imshow(I); tltle(fllename) tltle(é)

dis=15;%i
h1=0;#i

pr=180;
for r=l:pr
nx=x+r*cos (a)
ny=y+r*sini(a)
nx=round (nx) ;

e Ne

') ;hold on;

’for ji=nx-7:nx+7
if ~{I(ii,]J])==0)
d=distance([ii,J3j], [ny,nx]);

and
(d<=dis)

dis=d;

hl=ny; *s30 in

L8 sawv

h2=nx; %to the ¢
end

if

1y

and
1f (displ==1) &

hold on;plot (h2,hl, 'v');hold on;
and
amount=amount+1;
data(count,1)=hl;*
data (count, 2)=h2;
data (count, 3)=zet;
count=count+1;

end

intsin', 1, amount) ;=3

LE next
and
if(displ==1)%act d is

close =z
end
data(:,1l)=data(:,1)*0.33;con

data(:,2)=data(:,2)*0.33;
data(:,3)=data(:,3)*0.99;
data=data/1000; -z ;
fprintf ('\nData cre
2\n',directory,angle

o1 Y

ang

ﬂANEﬂlZTHMlO OEIIANAZ

\\\\Il\\\l\I\\ll\l\\\l\\ll\l\\\ll\

00400013051

