
.

UNIVERSITY OF CENTRAL GREECE
COMPUTER SCIENCE

AND BIOMEDICAL INFORMATICS

Human Torso Modeling for MRI Simulations

t 4,,.

.· * 8a L -
-

.

' i x

l -'

Angelos Chalkias

THESIS PROJECT

Supervisor
Anthony H. Aletras, Ph.D.

Professor, Department of Computer Science and Biomedical
Informatics University of Central Greece, Greece

Lamia 30-10-2012

r*··· mwAi ΜΑ»Λ»ί
TM '·,· -iP O eO Pti^H J M (
ΐΦ Μ .- . ίΟ Γ Ρ ϊ TTH BIOIATPMCH

Β Ι Β Λ Ι Ο Θ Η Κ Η
Π Α Κ Ε Π ΙΠ Η Μ ΙΟ ΤΤΐΗΜ W .*tM
ΤΜΗΜ Α ΠΛΗΡΟΦΟΡΙΚΗΣ ME
ΕΦΑΡΜΟΓΈΣ ΣΤΗ SIO ΙΑΤΡΙΚΗ

Α». & ·.:...,S3fid............
Ηρε» τηκ

Contents
Contents...3

Abstract...5

Introduction... 6

Magnetic Resonance Imaging Basics... 7

The Spin Echo Sequence... 12

Gradient Echo Sequence.. 13

Imaging: Slice selection... 14

Imaging: Frequency Encoding..15

Imaging: Phase encoding... 16

Methods...17

The raw dataset... 17

Summary of image processing methods...17

Segmentation with gray scale images.. 19

Segmentation with true color images... 22

The L*a*b color space...22

Segmenting the heart area... 27

Identifying the heart structures...28

Contour undersampling..32

Data storage and coordinate system...36

Results.. 38

The initial grayscale algorithm results... 38

The L*a*b color space algorithm..38

Visualizing the data... 39

Hardware & Execution Times... 43

Conclusions..43

Future work, 43

Limitations, ,44

Hardware...44

Partial Data Corruption..44

Appendix...45

Matlab's demo code.. 45

Creating the color markers.. 47

Scanning contour images for the inner points of a contour................... 48

Save coordinates read from binary images.. 49

Segmentation with gray-scale images.. 51

Detecting the heart area.. 52

Segmentation with true color images...57

Undersampling - code version without parameters...............................59

Undersampling - code version with parameters....................................61

Torso undersampling. 65

Abstract
MRI simulations require a realistic and accurate human body model that adds to the

validity and accuracy of the simulation results. To build such a model it is necessary to start
with the creation of an anatomical map. This map was created using image segmentation on
images - transverse raw slices -from an in vitro human body (Virtual Human Project). The
information contained in the images was extracted using Matlab and reconstructed in space
to form the anatomical map. The result was suitable to be used for the design of the motion
models in the MRI simulator.

Introduction

Magnetic Resonance Imaging is a diagnostic tool used in radiology to monitor the
human body by means of strong magnetic fields and by taking advantage of the large
number of hydrogen atoms in the body. MRI has the advantage of not exposing the patient
to ionizing radiation. MRI simulators aid in research, education and training of individuals in
a controlled environment without the need of an expensive MRI scanner. A simulation
though may differ significantly from reality and may result in misleading results. The use of a
realistic model of the human body, which includes anatomical structures as well as biological
and MRI parameters, can make the MRI simulation more realistic and accurate. In the past,
human body models have been used in projects in the field of Imaging and more specifically
in MRI. For example, a human body model has been used for addressing issues of
electromagnetic interactions between the surroundings and the human body [1], However,
to date, human body models have not been used in MRI simulators for educational or
training.

The specific aim of this project was to create a model of the human body and to
visualize in three dimensions this model's output for the torso and heart. This Bachelor's
Thesis project describes the development of this realistic human body model based on raw
data acquired from a cadaver. This model is intended for use in a Magnetic Resonance
Imaging simulator and is based on the dataset of the Visible Human Project. The text that
follows will describe how spatial information necessary to form this model was extracted
from the raw data by means of image processing. The model development methodology is
based on identifying tissue borders within neighboring pixels for segmenting different
tissues. Each three-dimensional voxel was created so as to be utilized in a compatible MRI
simulation. In this manner, a magnetization vector with its characteristic parameters (Ti, T2)
could be assigned to each voxel by the simulator. We hypothesized that segmentation of the
Visual Human Project dataset with Matlab could produce a model of the female body that
was compatible with an MRI simulator, that is, it would allow for assigning magnetic
resonance parameters to at least the heart.

The organization of this thesis is as follows: basic MRI physics are introduced in
order to help the reader better grasp this project's concepts and goals. Then, there is a
detailed description of the methods that were applied for image processing and data
management. Last, the results are presented along with conclusions, limitations and future
work.

References:

[1] Vogel, M.H. and Kleihorst, R.P. Large-Scale Simulations Including a Human-Body Model
for MRI ihttp://ieeexplore.ieee.org/xpl/articleDetails. isp?arnumber=42640831

http://ieeexplore.ieee.org/xpl/articleDetails

Magnetic Resonance Imaging Basics [4]
Magnetic resonance imaging is a diagnostic tomographic technique which acquires

quality images of the human body by means of static and varying magnetic fields. MRI is
based on the fact that the human body consists of about 75% water. Since water consists of
one atom of oxygen and two atoms of hydrogen, there is an abundance of hydrogen atoms
in the human body. The nucleus of the hydrogen atom is a positively charged proton and has
a spin associated with it, thus resembling a small spinning magnet: a magnetic dipole (Figure
1). When examining more carefully the alignment of a spin with the static magnetic field,
one observes that the alignment is not perfect and that the spins is at an angle with respect
to the axis of B0.Therefore, the spin precesses about the static magnetic field. Precessional
motion can be best described by the spinning top motion.

Figure 1: The "spin"

Without the presence of a magnetic field the spins are randomly oriented in the
human body (Figure 2 - adapted from [2] and [18]).

Figure 2: The hydrogen atoms of the human body are randomly oriented inside the body in the absence of an
external magnetic field

During an MRI examination the patient is placed lying on his back, on a moving bed
(Figure 3 - adapted from [2]) which is inserted inside a large superconducting solenoid,
which generates the external magnetic field B0 with a strength that usually ranges from 1.5
to 7 Tesla. The strength of B0 depends on the part of the human body we want to image; for
example, when the region of interest is the head then a 3 T scanner is preferred. It should be
noted that the cost of the MRI scanner is directly proportional of the static field strength.
When the patient is subjected to the static external magnetic field, the hydrogen spins align
with the direction of the external field in a parallel or anti-parallel manner (Figure 3 -
adapted from [2]).This alignment results in a coordinated summation of the magnetic
dipoles into a net magnetization vector, M0 (Figure 4 - adapted from [2]), which can yield an
image if properly manipulated. In order to describe magnetic resonance, a Cartesian
coordinate system is introduced with its longitudinal z-axis aligned with the field B0 (Figure 3
- adapted from [3]).

Figure 3: Patient positioning in MRI scanner coordinate system

Be

Figure 4: The hydrogen spins align with the static magnetic field B0.

Inside the static magnetic field, the spins are precessing with a frequency that is calculated
via the Larmor equation:

f = Y h B0

where f is the frequency, yH is for the gyromagnetic ratio of hydrogen (measured in Hz/T),
B0 is the static magnetic field.

The spins not only precess about the static magnetic field B0 but also precess about
any secondary magnetic field that is applied. Such secondary field is used to excite the
nuclear spins in order to form the MRI signal. A rotating Bx magnetic field of a
radiofrequency (RF) is applied for a brief time period on the xy-plane so as to rotate
("nutate") the magnetization vector M0 away from the z-axis and onto the xy-plane. This RF
pulse is called a 90° pulse because it tilts the M0 vector 90 degrees from its original position.
To accomplish this nutation, the B2 field rotates at the same frequency as the spins precess.
When the magnetization vector reaches the xy-plane the RF pulse is removed and M0
rotates about B0 onto the xy-plane, thus generating the MRI signal. The spins now rotate
being affected at the same time by both fields. If we could visualize their movement in space
we would see the magnetization M0 as a spiral that descends from the z axis extending its
diameter, until it reaches the x-y level (Figure 1 - adapted from [3]). This point of view
represents the Laboratory Frame of Reference.

Figure 5: M0 descent as seen from the Laboratory Frame of Reference

If the observer could somehow sit himself on the Bj vector and watch the process
from that point of view then he would see the Βχ vector being still as he rotates with it and
the magnetization vector would be seen descending until it becomes parallel to the y axis
(Figure 6A-6B).This is the Rotating Frame of Reference point of view.

z z

\
y y

X X

A B

Figure 6: Magnetization descent in the Rotating Frame of Reference

If we want to see how the magnetization vector M rotates about the B1 magnetic
field then we use the "left hand rule". The left hand rule dictates that we place our left hand
in such a way that our thumb is parallel to the B: field and points in the same direction as Bj.
The remainder of the fingers will point in the direction in which M will be directed (Figure 8).

The signal obtained after the magnetization M is on the x-y level is called Free
Induction Decay (FID) because from the moment it is created it starts to diminish until it is
completely dissolved. This happens because spins interact with each other gaining different
rotational speeds. The decay caused exclusively by these interactions is represented by the
T2 relaxation time of the tissue. There are other causes for the signal to decay though. The
magnetic field B0 is by default not completely homogenous due to design imperfections and

B:
M

Figure 8: The left hand rule

its homogeneity is additionally affected when the patient body is inserted. The signal decay
that includes spin to spin interactions as well as the inhomogeneity of the field is described

* *

by the T2 constant relaxation time. The T2 and T2 times both depend on the body tissue,
*

the myocardium for instance has a T2 of about 20 ms and a T2 of about 50 ms. So, if M0 is the
original magnetization, the magnetization on the x-y level Mxv at a given time moment t is
calculated by the formula:

Mxy(t) = M0 e t/T2*

Where M0 is the magnetization of the initial latitude (magnetization M at its
maximum)

The decay due to spin-spin interactions only is calculated likewise using the T 2
constant:

Mxy(t) = Mo *e't/T2

Where M0 is the magnetization of the initial latitude (magnetization M at its
maximum)

After the signal starts to decay the magnetization (vector M) starts to grow along the
direction of the z axis. This happens as the spins transfer the energy they have received back
to the lattice. This is "spin - lattice" relaxation. The magnetization reformation Mz along the
z axis at a given time t is calculated by the formula:

Mz(t)=M0* (l-e t/Ti)

Where Mz(t) is the magnetization formed ay time t and M0is the maximum value of
the magnetization (i.e. as it was when initially formed) and Tx is the time constant of the
tissue

The Spin Echo sequence

The spin-echo sequence is used to calculate the T2 value since the FID decay includes
more than spin-spin interactions. The magnetization is parallel to the y axis due to the 90x
pulse that was applied (Figure 7A). After a specific time period TE/2 the spins have dephased
due to the field heterogeneities and the magnetization has partially disappeared (Figure 7B).
At this point a 180°x pulse is applied and tilts the spins towards -y axis (Figure 7C). After
waiting for another TE/2, the spins have rephrased reforming the magnetization parallel to -
y axis this time (Figure 7D). The dephasing that occurs now to the newly formed
magnetization on the -y is free of field heterogeneities so the T2 time constant can be
calculated.

z z

A B

z z

C D

Figure 7: The spin echo sequence

The Gradient Echo Imaging Sequence

A gradient is a spatial change in a magnetic field, which is applied in addition to the
initial static B0 field, thus affecting the total at any given position. This has as a result spins at
different distances from the center of the magnet to have different precessional speeds
according to the Larmor equation. For example, by applying a Gy gradient, spins precess at
different frequencies as we move along the y axis. Based on the known strength of the
gradient we apply, if we know the precessional frequency of a spin it is possible to calculate
its position on the y-axis and vice versa. The precessional frequency of a spin while applying
a gradient along the y-axis is calculated in the Laboratory Frame of Reference by the Larmor
equation:

f-yH Bo + Gv y

where y is the distance from the center of the magnet (isocenter) on the y axis

In general, gradients can be applied in all three axes. So, the Larmor equation becomes:

f = Y h (B o + Gx x + Gy y + Gz z)

where GxG y Cz are the gradients along each axis respectively and x, y, z are the
spins distances from the isocenter.

In practice all three gradients are applied in order to obtain an image.

Imaging: Slice Selection

By applying a Gz gradient (Figure 9 A-B) we change the rotational speeds of the spins
along the z-axis. This means that we can select a distance at the z axis where the frequency
the spins precess to will be equal to the frequency of the Bj radiofrequency pulse (Figure
9C). Therefore, only the magnetization of the spins that belong to a plane perpendicular to
the z-axis at that specific distance on z will be tilted to the xy-plane thus generating a signal
(Figure 9D). This is how the "slice" selection is performed.

Figure 9: The "slice" selection process: different colors in M represent the different precessional frequencies
along the z-axis due to Gz

Imaging: Freguency Encoding

The Gx gradient is the frequency encoding gradient. The application of the Gx
gradient results in a frequency differentiation of the spins' precessional frequencies along
the x axis (Figure 10A). This means that at a specific distance on the x axis the spins have the
same precessional frequency. Since the precessional frequency does not change as a
function of the y coordinate, the spins form rows of specific frequencies perpendicular to
the x-axis (Figure 10B). The result is having different precessional frequencies in each row
while moving along the x-axis. The precessional frequency and the x distance are linearly
related as seen by the Larmor equation. Once the signal containing these different
frequencies is acquired, these frequencies can be distinguished by means of the Fourier
transform. These frequencies can be then translated to location along the x-axis based on
the Larmor equation.

Magnetization
vectors

1
1
1

t
t
t

1
1
1

T2T t
t
t
t

t
t
t

v \ -*T
t
t

t
t
t

t
t
t

t
t
t

t
t
t

t
t
t

v f » - * - *

- »
}

X

r G*
X

A B

Figure 10.2: Precessional frequency differentiation along the x axis - frequency encoding

Imaging: Phase encoding

To find the position of the spins along the y axis a phase encoding gradient is used. A
Gv gradient is applied along the y axis right after the RF pulse has ended and right before the
signal acquisition starts. During the application of this Gy gradient pulse the spins along the y
axis have different precessional speeds (Figure 11B) which depend on their distance from
the isocenter. As a result, at the end of the Gy gradient pulse every spin has the same
precessional frequency but a different phase (Figure 11C) depending on its distance from the
isocenter. For every location along the y-axis these different spin phases are summed. The
Fourier transform cannot extract the original phases from their sum alone and therefore it is
not possible to extract y position information from a single experiment such as this. To solve
this problem, the experiment is repeated several times with linearly increasing Gy gradient
strength. For each experiment, at every y location the phase will be linearly dependent on
the Gy gradient strength used for that particular experiment. Moreover, across experiments,
at every y location there is a linear dependence of phase to experiment index number. In
other words, across experiments there is a different "frequency" for every y location. The
Fourier transform can be applied along the "experiment direction" to distinguish these
frequencies form one another and provide y position information.

Magnetization
vectors

t Λ Μ Ψ
M

- » - » -* Φ ΐ * —F ·>! *
M

- 4 - 4 - 4 VGV y t * ^ - * >1 ♦ y

y - * —F ΐ ΐ Λ —> *
-) - f - f ■4 -4 t t Λ - » SI ·*

■4 -4 f Λ - » SI *

X

X X

A B c
Figure 11: W hen the G y grad ien t pulse stops the m agnetization vecto rs have the sam e rotational speed but d ifferen t phases

References:

[2] http://hippie.nu/~unicorn/tut/xhtml/ "Figure 2.1 Proportions of the human body"

[3] http://www.mathematische-basteleien.de/spiral.htm "Conical Helix"

[4] Class Notes in Introduction to Biomedical Engineering, course offered by the Department
of Computer Science and Biomedical Informatics, 2010

[18] http://primatologie.revues.org/508 "Figure 1"

http://hippie.nu/~unicorn/tut/xhtml/
http://www.mathematische-basteleien.de/spiral.htm
http://primatologie.revues.org/508

Methods
The raw dataset

The dataset used to create this model was provided by the Visible Human Project
(VHP) of the United States National Library of Medicine [17]. The Visible Human Project data
was generated from male and female cadavers and includes MR, CT and true color high
resolution axial anatomical images of the human body. The true color axial images of the
female cadaver were used for the model described herein. These images consisted of slices
taken at 0.33 mm intervals with a pixel size 0.33 x 0.33mm (i.e. with isotropic voxel). The
imaging matrix was 2048x1216 pixels with a color depth of 24 bits (8-bit per color) per pixel
and the images covering the entire torso. Each cell in the matrix contained the color
intensity of Red, Green and Blue (RGB) corresponding to a spatial pixel location (i.e. the
images were supplied in "pixel coordinates"). A total of 1941 images were included in this
dataset; however, not all images were used for the purposes of this thesis. Due to the high
density of the dataset, only every third image was used to generate the model described
below. This decimation of the dataset was dictated by the limited computing power of the
laptop computer used for data processing. Using the entire dataset would have resulted in
prohibitively long processing times. To account for the loss of slices along the superior-
inferior direction, the axial spacing used for data processing was 0.99mm.

Summary of image processing methods

In order to accommodate the needs of the MRI simulation platform, images of the
VHP had to be segmented so that, when used by the simulator, individual human organs
could be assigned specific magnetic resonance properties, such as proton density, Τ Ι, T2,
etc. Binary data were generated from the VPH dataset so that the contours delineating the
heart and the torso were identified so as to form the 3D objects. These "contour
coordinates" were generated by scanning the high resolution VHP images with custom built
software in Matlab version R2010a (Mathworks, Natick, Massachusetts, U.S.A.). The
conversion took into account the VHP pixel size and the axial slice spatial intervals. The
contour coordinates were finally reconstructed to display the 3D human organ. The figure
below displays in brief the sequence of the actions just described (Figure 12)

Figure 12: Data processing steps

Segmentation with gray scale images

Gray scale edge detection was first evaluated for detecting the torso boundaries.
While gray scale edge detection was not the method utilized for the final product code of
this thesis, it is included here for the sake of completeness. In summary, this type of edge
detection was based on signal intensity variations that occur throughout the image after the
initial dataset has been reduced to 256 shades of gray. The steps used for this type of
processing are shown in Figure 13.

Figure 13: Gray scale image processing

For gray scale segmentation, the boundaries of the torso were initially detected using the
image's intensity gradient i.e. using the changes in signal intensity. As mentioned above, first
the original 24-bit color image (Figure 14A) was converted to 8-bit grayscale (Figure 14B).
This was done using Matlab's "rgb2gray" function [5]. "rgb2gray" converts RGB values to
grayscale by using the three components R G B to create a sum. Each component adds to the
sum multiplied by a weight value. The weight values are 0.2989 for the R-component 0.5870
for the G component and 0.1140 for the B component. Next, gradient detection was
implemented by means of the "edge" Matlab function. An example of a gradient binary
image is shown in Figure 14C. The l's in this image represent the abrupt gradients detected.
The "edge" function takes as input the grayscale image and the type of mask we intend to
use (for instance sobel, prewitt, roberts) and returns as output a binary image with the
edges as pixels with value 1 and the rest with the value 0. In order to later group pixels
together and segment the torso, the binary gradient image was dilated. This dilation
consisted of assigning to the neighbors of non-zero pixels the value 1. This was done by
Matlab's "imdilate" [6] routine which takes as input the binary or gray-level image and a
structure element [7] and its output is the dilated image. The structure element is an
element that defines the neighborhood of the pixels that are affected during the dilation (for
example a disk, a line, or a square). This resulted in a binary image where the white parts are
"dilated" as seen in Figure 14D. As a result, the pixels corresponding to the edge of the torso
became more connected so that the outer contour could be extracted later on. In
segmenting the torso, the next step was to "fill" the gaps and "holes" of the torso gradient
image. This was done by using Matlab's "imfill" [8] routine (with parameter "holes") which
automatically fills the holes of an image, where a hole in this case is defined in the Matlab
documentation as "a set of background pixels that cannot be reached by filling in the
background from the edge of the image". The result of this step is shown in Figure 14E: the
torso area and the two arms appear now as a solid white object surrounded by a black
background, which contains some "salt and pepper" noise.

Prior to identifying the outer contour of the torso and arms, the background noise needed to
be cleaned because the binary image background contained non-zero values as a result of
signal intensity gradients in the gel that the cadaver was immersed. The image dilation
process described earlier exacerbated the situation by increasing the number of non-zero
pixels in the background. Removing these background pixels was performed using the
"imclearborder"[9] routine, "imclearborder" as described in Matlab's documentation
"suppresses structures that are lighter than their surroundings and that are connected to
the image border" [9]. Objects that consisted of a number of pixels less than a predefined
value were erased. This was implemented by means of the "bwareaopen" [10] function in
Matlab, where the user defines the minimum amount of pixels that the objects should have.
The resulting image was clear from small objects. The result of this step is shown in Figure
14F where the torso and arms appear as a solid white object over a black background. In this
type of binary image the contour of the torso and arms can be more easily obtained as
requested for previous steps "by applying an edge detection routine the so called "edge"
[11], which now in contrary to its former application only detects a single object resulting in
a continuous single-lined contour (Figure 14G).

A B

C D

E F

G

Figure 14: The steps of the initial image processing sequence

A casual viewer of these contours may conclude that this type of gray scale image
processing works well. However, a more careful examination of the results indicates that

there are problems with this segmentation method since the torso was not completely
separated from the blue background i.e. from the surrounding gel (Figure 15).

Figure 15: Blue objects being detected as part of the contour of the torso were considered significant errors
that pointed to methodological improvements

Segmentation with true color images

To improve the segmentation a new methodology was developed based on a Matlab
demo code [12] that discriminates an images different colors using the L*a*b color space for
classification.

The L*a*b colorspace

The images that contain the VHP dataset are true-color png images. This allowed for
alternative image processing which takes advantage of the different colors so as to detect
the different tissues. The colors were classified using the L*a*b color space model (Figure
16). According to the L*a*b color space every color was represented by three components
The L-component stands for luminosity with 0 representing the darker value (black) and as

the values increase the brighter the objects become i.e. approaching white. The a-
component indicates where the color is located between the green (negative a values) and
the red (positive a values). The b-component indicates the color's position between the blue
(negative b values) and the yellow (positive b values).

(white)

Figure 16: The L*a*b color space coordinates

The use of this color model simplifies the segmentation procedure and fewer steps
are needed (Figure 17).

Figure 17: The final algorithm for the detection of the torso

The original Matlab code [12] classifies the image colors in six different classes using
predefined areas of the image for sampling in order to create a center for each color class
using the coordinates of the L*a*b color space. Following this classification, it calculates for
each pixel the distances from each class using the k-nearest neighbors method. The code

was modified to detect only three colors i.e. there were three class centers. The coordinates
of the class centers in the L*a*b color space were created just once by manually defining the
sampling areas for the colors and then using part of the original Matlab code to create the
L*a*b coordinates for the colors of the areas used for sampling. One center was created for
the torso for a sampling area that included all the colors of the torso area (fat - yellow,
muscle/flesh - red, blood - darker red). One center was created for a sampling area that
included the blue gel exclusively. Last, a third center was created using a sampling area with
just the black background (outside the blue gel). By applying this methodology three images
were obtained, each of them displaying the areas just described. The image of interest was
the one that resulted from the center created for the torso area (Figure.18.A) and it could be
used to define the torso area. Using this image a binary image was created with the torso
area being l's. The torso's edge was then detected by applying the same steps for removing
the unnecessary objects as described for the gray images in the previous section. In brief,
the image was transformed to gray-level (Figure 18B) and by applying Matlab's routines [9]
[10] mentioned previously, the objects near the border were removed. Objects with a
number of pixels less than a certain value were also removed (Figure 18C). Black "gaps"
resulted inside the torso because the pixels values of some areas inside the torso (lungs for
example) were close to those of pixels in the black background. These black "gaps" of the
inner torso area were "filled" (Figure 19D) using "imfill" [9] so that the torso created one
continuous area in the resulting binary picture. At this point the contour could be extracted
using edge detection (Matlab's "edge"[llj routine) as done in the gray-scale image
segmentation (Figure 19E).

Repeating this algorithm for the entire set of images yielded the 3D contour area of the
entire torso.

E

Figure 19: Color classification using the L*a*b color space

Segmenting the heart

The L*a*b color space technique was used for segmenting of the heart as well. This
time though there was no blue gel involved and the discrimination considered different
colors due to different tissues. As a result different sampling areas for the formation of the
class centers in L*a*b spatial coordinates were used. The procedure steps were similar to
those of the torso detection algorithm with the exception of engaging a manual frame
selection this time (Figure 18).

Figure 18: The heart area was segmented using the same method as the one used for the torso

Identifying the heart structures

The segmentation of the heart included the identification of cardiac structures.
Those were the Superior Vena Cava, Pulmonary Trunk, Right Pulmonary Artery, Aorta, Left
Atrium, Right Atrium, Left Atrium and Left Ventricle areas (Figure 19). Another tissue of the
heart was included in the heart components tissues, not visible in the figure below, was the
intraventricular septum, which is not easily detected by observing the "slices" and therefore
its segmentation was not as accurate.

Aorta
Pulmonary Trunk

Right Pulmonary Artery Left Atrium

Superior Vena Cava.

Left Ventricle

Right A trium -

Right VentrrciefEelow)

Image 19: The heart structures

There were three class centers formed like before, coming from three sampling areas
including a region for fat, a region for flesh (lighter red colored tissues) and a region for the
magenta objects (like the inner area of lungs and vessels - darker red colored areas). The
execution of this code generated three images (Figures 20A-C) were the colors were
classified thus helping identifying the structure of interest.

A

B

C

Figure 20: The classified colors

By observing these three images one can see that the colors were not classified completely
and exclusively i.e. every picture contained a range of colors instead of just one. This was
because the sampling areas that were created happened to contain pixels within a range of
values. So, the corresponding L *a*b coordinates represented a range of values. In practice
same color values exist in areas of different tissues. The resulting pictures were useful
though in detecting the different tissues of the heart. For example the left atrium appeared
in the first picture (Figure 20A) as a brown-purple colored area surrounded by a black area.
This meant that it could be detected by forming a binary image using its non-zero valued
pixels. In addition, it could also be detected using the third picture (Figure 20C) to form a
binary image by selecting the zero-valued (i.e. the black pixels) this time. The procedure that
was followed included some manual intervention in order to specify a frame that contained
the region of interest exclusively. For example, in order to detect the left atrium in the
picture in Figure 20A using the third picture, a binary image was created from the zero­
valued pixels of the Figure 20C. To achieve that a frame was set to include only the region of
interest and erase the rest (Figure 21A). The frame selection was manual and Matlab's
"getpts"[13] routine was used to achieve that, "getpts" allows mouse clicking on images for
manual point selection. In the binary image that was created, the lower left edge of the
frame (Figure 21B) included a disconnected small unnecessary area that needed to be
removed. The binary image was at that point dilated and the holes were filled so that
potentially unconnected objects became one entire continuous area (Figure 21C). Objects
with an amount of pixels less than a predefined value were removed, using the Matlab
functions [9] as before so that the unnecessary area was removed (Figure 21D). The
application of an edge detection [11] algorithm produced the contour of the left atrium
(Figure 21E).

D E

Figure 21: Segmenting the heart structures

This procedure was used for all other heart structures as well. Once the contours of some of
the heart structures had been identified then these could also be used to help in identifying
the remaining ones. For instance, in identifying the aorta, the pulmonary artery had already
been identified; a fact that made it easier to find the borders of the aorta on the side of the
pulmonary artery. This was done by excluding from the aorta the pixels belonging to the
pulmonary artery. This logic was applied when a tissue neighboring to the region of interest
had already been identified.

Contour undersampling

Each of the resulting contours consisted of a large number of points that changed
while moving from slice to slice (i.e. image to image) in the inferior-superior direction. This
makes sense since the diameter of the organ, e.g. the heart, may change along that axis. As
expected, a contour originating from the base of the heart will consist of more points than a
contour originating from the apex of the heart. The MRI simulator demanded that for
purposes of visualization and potential modeling of motion that consecutive contours
contained the same small number of points. To achieve this, the existing contours
underwent an undersampling process so that in the end the contour of every slice contained
a fixed number of points. The algorithm developed to achieve this is described below.

First, the contour image that was produced by the segmentation procedure was read in
Matlab (Figure 22). Then, the contour's center of mass was located (Figure 23) by means of
the function "regionprops" [14] routine with the parameter "centroid" set. "regionprops"
calculates a set of properties that include shape or pixel value measurements regarding
objects of the image. The specific parameter defines that the function should calculate the
center of mass of the images object. Once the center had been located, a line of pixels
(referred to as "main line" herein) was expanded from the center of mass towards the
contour of the image (Figure 24). The main line of pixels was expanded until a certain
predefined length of pixels. For every pixel that was added to the main line, a scan was
executed from the pixel located 7 pixels back on the x and 7 pixels back on the y axis up to
the pixel located 7 pixels forward on the x axis and 7 pixels forward on the y axis. If the pixel
of the main line had coordinates (xO,yO) the scan included a square area whose diagonal
corners were the points (x0-7,y0-7) i.e. the starting point, (x0+7,y0+7) i.e. the ending point.
Whenever a contour pixel was found inside this scanning area, its distance from the pixel of
the main line was calculated. If the current distance was less than an already calculated one
from a previous iteration, then its value replaced the previously stored distance value and
correspondingly the coordinates of the current contour pixel replaced the stored
coordinates of the previous contour pixel. So, when the scan was completed for one of the
pixels of the main line, its distance from the closest contour pixel had been calculated and if
it was less than the correspondingly calculated distance for the pervious pixel of the main
line, the new distance value replaced the previous one and the coordinates of the new main
line pixel replaced those of the previous one. The distance was given an initialization value in
case this was the first iteration and there was no previous value to be replaced. So, when all
the scans were executed for all the pixels of the main line, the saved pixel coordinates were
those of the expanding main line pixel closer to the contour, if an actual pixel of the contour
was not matched. The same procedure was repeated for pixel lines that expanded from the
center for different angles until a full 360 degrees rotation was complete. The rotational
angle for the heart components was set at 10 degrees, meaning that starting from 0 degrees
a main line was expanded from the center of mass of the the contour towards the contour
itself every 10 degrees detecting one point of the contour. This way, 36 points were
detected in total for each contour. The same procedure was applied for the undersampling
of the hearts neighboring vessels such as the pulmonary artery, except that the rotational
angle was set at 30 degrees thus resulting in a total of 12 points per contour. In order to
rotate the expanding main line of pixels the computation and application of these angles

was necessary. That was achieved by using the "cos" [15] and "sin" [16] functions of Matlab.
These functions return the cosine and sine values. Whenever the main line was expanded
one pixel inside the loop, the added pixel's x coordinate was multiplied by cos(a) and its y
coordinate by sin(a), where a was the current angle. As mentioned above, the angle a
changed with a step of 10 or 30 degrees per loop depending on the component until a 360
scan of the contour was performed. This way, the pixel line could be expanded towards
various angles. The initial design of this algorithm included expanding the main pixel lines
until a contour pixel was met. The coordinates of the pixels belonging to the expanding line
did not always coincide with those of a contour pixel, because they did not always form a
continuous line (due to the use of angles), meaning that although the expanding line of
pixels crossed the contour, there were not always coordinates of a pixel saved. This posed a
problem (Figure 25). The scanning around the expanding main line of pixels solved this
problem. In a case of non coincidence of the coordinates, the pixel of the main line with the
smallest distance from the contour was considered as a contour pixel met and its
coordinates were saved. So, it was ensured that every line that will cross the contour will
trace and save the coordinates of a pixel.

The aforementioned undersampling came with a slight accuracy loss since a pixel neighbor
to the contour pixel may have replaced the actual contour pixel. In case the expanding line
of pixels did not find a match to the contour, the pixel with the closest distance to the
contour was considered the contour pixel instead of the actual contour pixel itself. The
maximum distance of a neighbor pixel which was chosen as a contour pixel instead of an
actual contour pixel can be calculated. Assuming the pixel of the expanding main line had
coordinates (x0,yo) and the scan finds a contour pixel located at the most distanced point
possible i.e. either the (x0+7,y0+7) or the point (xo-7,y0-7) it makes no difference, their
distance (d) is d= ^/(x0 + 7 - x0) 2 + (y 0 + 7 - y0) 2 = V49 + 49 = 9.89 pixel. Knowing that
the pixel size is 0.33 mm we can calculate the spatial distance in mm which is 9.89 x
0.33=3.2637mm. That is the maximum diversion that may occur from this process according
to the worse scenario where the most distant pixel has been chosen as a contour pixel. Note
that the undersampling process aims in improving the result visually (and potentially
enabling the formation of areas which can be modeled for motion),the loss of accuracy takes
place exclusively in the visualization process and does not affect the saved data. This
accuracy loss is visually undetectable.

Figure 22: The contour picture of the right atrium (input)

Figure 23: The contour center is detected

Figure 24: The pixel lines cross the contour while expanding

Figure 25: Zooming in to the procedure, yellow pixels: the expanding main line, magenta pixels: the pixels
considered as contour pixels met, white pixels: contour pixels.

Data storage and coordinate system

When all of the contours had been successfully created the data were stored in an
array with three columns where the first column stored the pixel's x coordinate the second
column the pixel's y coordinate and the third column the pixel's z coordinate which changes
along the inferior-superior direction i.e. along the slice direction. As the images were read in
one after another the z coordinate was reduced, so that the pixels of the current contour
were placed below those of the previously read image. This array was then saved as a .mat
file. At that point the coordinates in pixel values had been saved, since these coordinates
resulted straight from scanning the images. In order to transition to spatial coordinates, the
data acquisition parameters, as described in the official webpage of the Visible Human
Project, were considered. The pixel dimensions were 0.33x0.33 mm so by multiplying the
first two columns (x and y coordinates) of the array with 0.33 these were automatically
converted to spatial coordinates in mm. The VHP images had been obtained every 0.33 mm
but as mentioned earlier the images used to form the model were not read one after
another but for every image used the two following images were skipped instead. That
meant that the distance along the z axis was 0.99mm between slices. By multiplying the
third column of the array (z coordinates) by 0.99 the transformation into spatial coordinates
was completed. The x,y,z spatial coordinate values were also divided by 1000 in order to
convert from mm to meters.

References:

[5] rgb2gray: http://www.mathworks.com/help/images/ref/rgb2grav.html

[6] imdilate: http://www.mathworks.com/help/images/ref/imdilate.html

[7] imfill: http://www.mathworks.com/help/images/ref/imdilate.html

[9] bwareaopen: http://www.mathworks.com/help/images/ref/bwareaopen.html

[10] imclearborder:
http://www.mathworks.com/help/images/ref/imclearborder.html

[11] edge: http://www.mathworks.com/help/images/ref/edge.html

[12] lab color space: http://www.mathworks.com/help/imaq/examples/color-based-
segmentation-of-fabric-using-the-l-a-b-color-space.html

[13] getpts: http://www.mathworks.com/help/images/ref/getpts.html

[14] regionprops: http://www.mathworks.com/help/images/ref/regionprops.html

http://www.mathworks.com/help/images/ref/rgb2grav.html
http://www.mathworks.com/help/images/ref/imdilate.html
http://www.mathworks.com/help/images/ref/imdilate.html
http://www.mathworks.com/help/images/ref/bwareaopen.html
http://www.mathworks.com/help/images/ref/imclearborder.html
http://www.mathworks.com/help/images/ref/edge.html
http://www.mathworks.com/help/imaq/examples/color-based-segmentation-of-fabric-using-the-l-a-b-color-space.html
http://www.mathworks.com/help/imaq/examples/color-based-segmentation-of-fabric-using-the-l-a-b-color-space.html
http://www.mathworks.com/help/images/ref/getpts.html
http://www.mathworks.com/help/images/ref/regionprops.html

[15] cos: http://www.mathworks.com/help/matlab/ref/cos.html

[16] sin: http://www.mathworks.com/help/matlab/ref/sin.html

[17] VHP NLM dataset: http://www.nlm.nih.gov/research
/visible/visible human.html

http://www.mathworks.com/help/matlab/ref/cos.html
http://www.mathworks.com/help/matlab/ref/sin.html
http://www.nlm.nih.gov/research

Results
The initial gray scale algorithm

As mentioned in Methods, the gray scale image segmentation approach method was
not preferred due to poor results (Figurel5). By overlaying the initial image to the binary
image resulting from the segmentation one can observe quite a few cases when blue objects
remained attached to the torso and thus erroneously considered to be part of the torso.

The L*a*b colorspace algorithm

To verify the results of the L*a*b color space algorithm, the overlay of the initial
image to that of the algorithm's resulting binary image shows that the torso area is detected
without any additional objects attached to it in error (Figure 26)

Figure 26: The torso area contains no errors, the improvement is visible in comparison to the previous results
seen in Figure 15

Since the binary images of the L*a*b color space algorithm produced successful
detection of the boundaries of the torso area, an edge detection function was applied in
order to obtain the torso contour (Figure 27).

Figure 27: The corresponding contour of the torso area segmented using the L*a*b color space

Visualizing the data

To visualize the data gathered from the images in 3D we read the arrays with the
saved coordinates and plotted the points in space (Figure 28) one by one in order to create a
3D visualization.

A

B C

Figure 28: The torso reconstructed in 3D by plotting the data one point at a time as seen from different angles

The heart was visualized likewise (Figure 29)

ο

-0 06,

The above 3D plots could not be manipulated easily since the hardware proved to be
inadequate for the volume of data. This was easily noticed when manually trying to rotate
the object in space and experiencing a very slow response. By plotting the data that occur
from the undersampling process, the visualization result was easier to rotate in real time
(Figure 30). The data after the undersampling were less dense, which improved the response
during the object rotation in space. In addition, the heart consisted of points that were
aligned along the z axis, which allowed for connecting them with each other thus creating
the effect of a surface. Some of the details may be lost in this type of visualization. The
images below show the spatial visualization of the data resulting from the undersampling
process. The 36 or 12 points were connected horizontally per slice and vertically per angle
location (angular step during undersampling).

HEART HEART

A B

Figure 30: The heart visualized by plotting and connecting in space the points that resulted from the
undersampling process (views correspond to those of figure 27)

Undersampling was also applied to the torso data by following the same technique to that of
the heart. The data are visualized in Figure 31. The points in space are connected per slice
and angle in this visualization as well.

A B

C

Figure 31: The torso formed by the points that remained after the undersampling process was applied, C
displays a less dense visualization of the torso containing the heart

Hardware & Execution Times

For the hardware used for this work (Intel Pentium dual core CPU T4300
tuned at 2.1 Ghz and 3Gb RAM), the detection of the contours required an execution time of
seconds to one minute (for the case where the user's manual intervention was required) per
contour. The process of scanning the binary images in order to store the coordinates in
arrays took days due to the data volume, which consisted of 647 binary images each of them
containing hundreds of pixels whose coordinates were saved. Also, when trying to visualize
3D objects using the full dataset (without undersampling), the response times to just load
the datasets were prohibitively slow.

Conclusions
We have created an anatomical map using images of the human torso, coming from

an actual human body (cadaver). The information for constructing this map was extracted
from the Virtual Human Project images using image segmentation. This segmentation was
implemented using Matlab. The anatomical map can be used to form a model for the
simulation of MRI. The project required the careful study of anatomy too, in order to identify
the heart's anatomical structures on the raw data images. The execution times were slow
when it came to manipulating (visualizing or storing) the resulting data and more advanced
hardware should help in the future.

Future Work
Future directions include expanding the model by including more areas, organs or

tissues. This would for the current anatomical map, regardless of the method or the
algorithm. The L*a*b classification algorithms used herein for the detection of the different
tissues of the heart can be used also for the detection of other tissues within the torso, such
as the lungs or the fat, by simply selecting different sampling areas thus resulting in different
class centers that correspond to different colors and tissues. Another topic suitable for
future work is the generation of the tissue motion models. The undersampling process
should be the first step towards the design of these models.

Limitations
Hardware

The computer hardware was inadequate for the task and prolonged data processing
times to several days. This could be improved by purchasing more advanced hardware so as
to reduce execution times. This should also allow for more reasonable data management
times during the data storing and visualization.

Partial data corruption

Due to data corruption in several of the original VHP images the algorithm could not
detect the torso contours for 14 images (the images are counted from 1262 to 1909 and the
corrupted images are from image 1489 to 1502). So, the last contour that was correctly
detected was copied and considered to be the contour of the torso for each of these
corrupted images. The total number of images whose contours form the torso in 3D was
647. So, the fact that 14 of the contours were corrupted does not affect the results much.

APPENDIX

Matlab programs

Matlab's demo code: "Color based segmentation Using the L*a*b Color Space"

{

% This is the demo code from the Matlab documentation that uses the
L * a * b
i colorspace "Color-Based Segmentation Using the L*a*b* Color Space"
ΐ where the algorithm for the detection of the contours was adapted
£ r ora
fabric = imread('fabric.png');
figure(1), imshow(fabric), title('fabric');
'KCalculate Sample Colors in L*a*b* Color Space for Each Region
load regiοncοordinates;

nColors = 6;
sample_regions = false([size(fabric,1) size(fabric,2) nColors]);

for count = 1:nColors
sample_regions(:,:,count) =

roipoly(fabric,region_coordinates(:,1,count),...
region_coordinates(:,2,count));

end

imshow(sample_regions(:,:,2)),title(’sample region for red');

1 Convert your fabric RGB image into an L*a*b* image using makecform
a n d a p p 1 y c f o r m .
cform = makecform('srgb21ab');
lab_fabric = applycform(fabric,cform);

% Calculate the mean 'a*' and 'b*' value for each area that you
extracted with roipoly. These values serve as your color markers in
’a*b*·’ space.
a = lab_fabric(:,:,2);
b = lab_fabric(:,:,3);
color_markers = repmat(0, [nColors, 2]);

for count = 1:nColors
color_markers(count,1) = mean2(a (sample_regions(:,:,count)));
color_markers(count,2) = mean2(b(sample_regions(:,:, count)));

end

% For example, the average color of the red sample region in. '*a*'b*'
space is

disp(sprintf(' [% 0.3f,3 0.3 f] ’,color_markers(2,1),color_markers(2,2)))
% Classify Each Pixel Using the Nearest Neighbor Rule
color_labels = 0:nColors-l;
a = double(a);
b = double(b);
distance = repmat(0, [size (a), nColors]);
for count = 1:nColors

distance(:,:,count) = ((a - color_markers(count,1)).Λ2 + ...
(b - color_markers(count,2)).A2).Λ0.5;

end

[value, label] = min(distance, [],3);
label = color_labels(label);
clear value distance;
iDisplay Results of Nearest Neighbor Classification
rgb_label = repmat(label,[1 1 3]);
segmented_images = repmat(uint8(0),[size(fabric), nColors]);

for count = 1:nColors
color = fabric;
color(rgb_label ~= color_labels(count)) = 0;
segmented_images(:,:,;,count) = color;

end

imshow(segmented_images(:,:,:,2)), title('red objects');
figure;imshow(s e g m e n t e d _ i m a g e s 3)); title('green objects');
figure;imshow(segmented_images(:,:,:,4));title('purple objects');
figure;imshow(segmented i m a g e s 5)); title('magenta objects');
figure;imshow(segmented i m a g e s 6)); title('yellow objects');
purple = [119/255 73/255 152/255];
plot_labels = {'k', ' r ’, ' g', purple, ' m ', 'y *};

figure;
for count = 1:nColors

plot (a (label-count -1) ,b (label==count-l), ' . ', 'MarkerEdgeColor', . .
plot labels{count}, 'MarkerFaceColor', plot labels{count});

hold on;
end

title('Scatterplot of the segmented pixels in ''a*b*'' space');
xlabel('''a*'' values');
ylabel('''b*'' values');

}

Creating the color markers

create_color_markers.m

{

f this function is used to create the color markers necessary for the
functions that detect the contours
% of the heart components and the torso it requires an image for
sampling
% in the same directory
function [colorjmarkers] =
create_color_markers(image_num)timage num=the image number, images
are numbered from 1262 to 1909
fn=['avf' num2str(image_num,'%02d') 'a .png']; «create the filename
according to the given image number
I=imread(fn);tread the image of the filename created
figure;imshow(I);title(fn);xlabel('select sampling points for the 1st
area ');%display
[x, y] =getpts ();'«manually select the points of the sampling area
coor{:,:,1)=[x,y];«save the sampling area coordinates
figure;imshow(I)/title(fn);xlabel(’select sampling points for the 2nd
area 1); -display
[x,y]=getpts();«manually select the points of the sampling area
coor(:, :, 2) = [x,y];«save the sampling area coordinates
figure;imshow(I);title(fn);xlabel('select sampling points for the 3rd
area '); display
[x,y]=getpts();«manually select the points of the sampling area
coor(:,:,3)=[x,y];«save the sampling area coordinates
nColors = 3;«define the amount of colors
sample_regions = false([size(1,1) size(I,2) nColors]);«create array
for samp1e regiοns
'«set the sample regions from the regions you have defined manually
for count = 1:nColors

sample_regions(:,:,count) =
roipoly(I,coor(:,1,count),coor(:,2,count));
end

cform = makecform('srgb21ab'); «color transformation structure cform
, srgb21ab = standarRGB->L*a*b
lab fabric = applycform(I,cform);«converts the color values in fabric
to the color space specified in the color transformation structure
c £ o r m i . e . h e r e : P, G B - > L * a * b
% Calculate the mean ' L ', 'a*'1 and "b* ’ value for each area that you.
extracted with roipoly.
% These values serve as your color markers in ’ Ldadb'4' space.
a = lab_fabric(:,:,1);
b = lab_fabric(:,:,2);
L = lab f a b r i c 3);
color markers = repmat(0, [nColors, 2]);

for count = 1:nColors
color markers(count,1)
color markers(count,2)
color markers(count, 3)

= mean2(a(sample
= mean2(b(sample
= mean2(L(sample

regions (
regions(
regions(

:,:,count)));
:,:,count)));
:,:,count)));

end

}

Scanning contour images for the inner points of a contour

innerpoints.m {

% this code was used to obtain the coordinates of the points

% of the cotours and additionally all the points inside the contours
lit requires that the appropriate directories exist
function [data_full] = innerpoints(directory)
c d (dire ct or y);% change t o directo ry
cd('binary images');»change to sub-folder "binary images"
ex=exist{'fill','dir');
if ex==7 %check if name is a folder

cd('fill'); {change to "fill" directory
else %change to "tissue" directory otherwise

cd('tissue');
end
d=dir ('■*'. png') ; Hist all the , png files of the existing directory
f i 1 ename s = {d. name}; % c re a t e a n a r r a y c οn t: a iη i ng t he name s o £ t h £3 f i 1 e s
start =
str2double(strtok(filenames(1,1),'abodefghijklmnopqrstuvwxyzABCDEFGHI
JKLMMOPQRSTUVWXYZ'));iisolate the image number from the filename {1st
image)
the_end=str2double(strtok(filenames(1,numel(filenames)),'abodefghijhi
mnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'));«isolate the image number
from the filename (last image)
count=l;%counter that is used for numbering the elements in the array
zet=1262-start; %the position in the z axis is calculated according
to the numeration of the whole set of images - the first image is
numbered 1262 so it is used as a constant
for i= start:the_end 1 images range

filename=char(filenames(1,(i-start+1))); %create a charcter
variable containing the name of the file to be read

I=imread(filename);iread an image named after the filename
created'

for i2=l:size(I,1)% scan the image
for j2=1:size(I,2)

if ~ (I (i2,j2)==0) %whenever a white pixel is met
data full (count, 1) =i2; %sa.ve its coordinates
data_full(count, 2)=j2;
data_full(count,3)=zet;
count=count+l;

end
end

end
zet=zet-l; 1 change the z axis value every time we pass to the next

image, so that eventually the points of the next slice are placed
under the already

fprintf(’\n is \n’,filename);%saved ones (placing the next slice
under the last one)
end
data_full(:,1)=data_full(:, 1)*0.33; convert from pixel to spatial,
coordinates
data_full(:,2)=data_full(:,2)*0.33;
data_full(:,3)=data_full(:,3)*0.99; %replace all the z values with
their negatives so that the values of the z axis are decreasing
(placing the next slice under the last one)
data_full=data_full/1000;ήconvert to metres
fprintf (’ \nDa.t a crea t ed. f or % s \n1 , directory) ; %pr i nt
}

Save coordinates read from binary images

store_coord.m{

% this code is used to scan the coordinates of the binary images
% in the specified directory, it requires that the directory
definition for
s the area {selected heart component or torso) and the sub folder 'o'

% contour, ’f' - fill or 't' - tissue exist

function data=store_coord(directory,ctf)
% mess=wavread('program complete.wav');%sound message I used to alert
me when work was done
cd(directory);
cd(’binary images 1);%check and switch to the appropriate directory
if ctf=='c'

cd('contours');
end
if ctf==!t '

cd{'tissue');
end
if ctf=='f'

cd('fill');
end
d=dir('*.png'); Hist all the .png files of the existing directory
filenames={d.name};«create an array containing the names of the files
start =
str2double(strtok(filenames(1,1), 'afccoefghijklmnopqr s t u vwxyz/
■JKLMNC'PQRSTUVWXYZ')); «isolate the image number from the filename (Is·
image }
the_end=str2double(strtok(filenames(1,numei(filenames)), 'abode fqni

/WXY2')); isolate t
from the filename {last image)
count=l; -counter that is used for numbering the elements in the array
zet=1262-start; % %the position in the z axis is calculated accordinq
to the numeration of the whole set of images - the first image is
numbered 1262 so it is used as a constant
for i= start:the end %images range

filename=char (filenames (1, (i-start + 1))) ; ‘«create a charcter
variable containing the name of the file to be read

I=imread(filename) ;%.read an image named after the filename
created

for i2-l:size(1,1)% scan the 1mage
for j2=1:size(I,2)

if ~(I(i2,j2)==0) iwhenever a white pixel is met
data(count,l)=i2;%save its coordinates
data(count,2)=j 2;
data(count,3)=zet;
count=count+l;

end
end

end
zet=zet-l;‘«change the z axis value every time we pass to the next

image, so that eventually the points of the next slice are placed
und e r t h e a 1 r e a dy

fprintf('\n %s \n',filename);%saved ones (placing the next slice
under the last one)
end
data(:,1)=data(:,1)*0.33;%convert from pixel to spatial coordinates

data(:,2)=data(:,2)*0.33;
data(:,3)=data(:,3)*0.99;
data=data/1000; -'.convert to metres
% sound(mess);%%sound message I used to alert me when work was
fprintf('XnData gathered for Is \n',directory);
}

done

Segmentation with grayscale images

graylevelJmage_segmentation.m

{

%the current code was adapted from Matlab's "Detecting a Cell Using
Image
%Segmentation" example, note that the contours that form the torso do
not come from this method because the results contain errors
land additionally this method needs configuration (adding or removing
a dilation or erosion) for every single image
se90 = strel (' line ', 3, 90) ; .-create structure elements that
seO = strel('line *, 3, 0);twill be used for the image
seD = strel(’diamond’,1);(dilation & erosion
start=1262;*set the starting image number
for image_num=start:1262 %set the ending image number
fn=['avf' num2str(image_num,'%02d') 'a.png'];(create a variable
bearing the file name following the specific pattern the images are
named alter
new_fn=['avf' num2str(image num,'%02d') 'aContour.png'];%create the
new filename the image will be saved as
I = imread(fn);tread the image named like the filename
figure;imshow(I);title('original image');%d.:Lsplay original image -
comment to disable
I2=rgb2gray (I) ;?·transform to gray-level
[junk threshold] = edge(12,’sobel');tset a threshold for the mask
that will create the binary image
fudgeFactor = . 5; 'Olefine the segmentation sensitivity
12 = edge (12, ' sobel * , threshold * fudgeFactor) ; ‘«create binary image
1 figure; imshow (12); title ('binary') ; (-uncomment to display binary
image
12 = imdilate(12, [se90 seO]);fdilate image
% figure; imshow(12);title('dilated');%uncomment to display dilated
image
12 = imfill(1 2 holes');tfill the holes
; figure;imshow(12);title{'filled holes image'); famcormnent to display
filled holes image
12 = imclearborder(12,8);iclear image border connectivity: 8
neighbors
% figure;imshow(12);title('cleared border image');1uncomment to
display
12 = imerode(12, seD);ierode
12 = imerode(12,seD);%the image
I2=bwareaopen(12,9000);lerase objects sustained by less than 9000
pixels
figure;imshow(12);title('final');lcomment to disable displaying
s 12 = bwperim(12); %uncomment to display the
% Segout — I; %contour on the original image
% Segout(12) = 255; |
% figure;imshow(Segout);title{'outlined original image');%
imwrite(12,new_fη);isave the contour image as defined in the "new_fn"
fprintf('\nlmage %02d \n', image num);^display the image number on
workspace
end

}

Detecting the heart area

heart_detection.m{

Tnis code is based on the demo "Color-Based Segmentation Usincr the
L*a*b*
Color Space" and is used for the detection of the heart, it recruires
that
ithe original images and the appropriate "color markers" files to be
in the
%current directory

se90 = strel('line', 3, 90);%ereate the structure
seO = strel (' line', 3, 0) ;'Selements
s load('color_markers4.mat');%the files containing the coordinates
load('color_markers5.mat'); of the colours in L*a*b color space
> load('colorjmarkers.mat');«several of these were created because
1 load{'colorjmarkers_fat2.mat');teach may work better in a specific
image
for image_num=1464:1465%define the range of images using the
numeration of the images
filename»['avf num2str(image_num,'%02d') 'a.png'];%read the file
names following the given pattern
k 1 1 - % k k % % % 1 V % % % % % % % % % % % % % % % % % ή % % % % % % % % s % % % % % k; % 0 1 1 η η :> η ; 9 η 9. v ' ;v 9. y :> 1 y 9 g.
%%%%%%%%%%%%%%%%%%%%
k % k k k %kkk%% k s % % % k % % %%%%%! % % % k % k % %%%%%%%%«%%% % % % % k % % Vk % % Vk % % % k % % % fc % % ΐ k
% 1 % -6 % % % % % % % % % % % % % % % %
1 kk % % k k % % k k % % % k % % % k % % % 1 1 1 k % % % k % % % k % % % k % % % k % % ΐ k % % % k %%kk%k%»%%kk%%
-··; % % % M; % '{·, % yc % % % % % % % %
■ THE FOLLOWING PART OF COMMENTED CODE REEFERS TO AREAS THAT HAVE
ALREADY
%BEEN DETECTED AND ARE AREAS NEIGHBORS TO THE CURRENT REGION OF
INTEREST (ROI)
%UNCOMMENT TO READ A SPECIFIC CONTOUR WHEN IT CAN BE USED TO EXCLUDE
A PART
'••DURING THE DETECTION OF OUR ROI, CONTINUES ON LINE 116
% % % 'is % k k % % k % % % % % % % % % % % k % % % % % % % k % % % t % % % k % %%%%%%%%%%%%%%% k % % k k % % k % % % k % % %
% % k % k k k % % k k % 1 % k % % % k %
k1 k 1 k % k k k % k 1k % k 1 k 1 k 1 % % k 1 % % k 1 k % k 19; % k 1 % % k ϊ % k k 1 % % k 1 % % k 1 % % k 1 % k k 11 % k I t 1 k 1 %

k % % k k % k v ; , % % % k % % k k % % k ■ % % % k % % k 'k % k k k % k ■ k k k · . % 9; k k k % k % k k k % % k · k k k -- % k; k k % % k k
% k k % % k k % % k % % % k % % % k k %
k filename!» [' avf ' num2str {image nurt, ' 02cl') ' SuperiorVenaCava. png'] ;
% SVC=imread(filename!);

3 VC=1■ g i c a 1 {S VC) ;
k SVOimfill (SVC, 'holes ') ;
% filenames»['avf num2str(image num,'%02d') 'Carotide.png'];
% Car=imread(filenames);
··. Car»logical (Car) ;
% Car = i.mfi 11 (Car, 'hο 1 es ') ;
k filename4=['avf' num2str(image_num,'%02d1) 'Aorta.png'];
% A=i m r e a d (f i 1 e n a m e 4) ;
k A=logical(A);
t A=imfill(A,'holes') ;
-· f ilenameS» [' avf' num.2str (image num, 1 %02d') ' LeftAtrium. png'] ;

% LA=imread(filenames};
% LA= 1 o g i c a 1 (LA) ;
k LA»imfill(LA,'hο1es');

% fjj.ename6=['avf1 numlstr(image num.,'202d')
1RightPulmonaryArtery.png'];
■ RPA«*imread (filename-6) ;
% RPA=1ogic a1(RPA};
% RPA=imfill(RPA,'holes');
% filename"/» [' avf ' num2str {image_num, ' %02d*} ' PulmonaryTrunk.pnq '] ;
/ PT=imread(filename/) ;
% PT=logical(PT);
a PT=imfill(PT,'holes'};
% filenames»['avf' num2str(image num,'%02d') 'RightAtrium.png'];
I R A= i. m r e a d (f i 1 e n a m e 3 } ;
% BA = 1 o g i c a 1 (R A j ;
. RA=imfill(RA,'holes');
■ filename3=['avf' num2str(image_num,'/02d’}
'Leftv e n t ric1etiesh.png'1;
T-VF in reno: filename/)) ;

; LVF—logical(LVF);
1 LVF=imfill(LVF, ’holes');
% filename10=['avf' num2str(image_num,'%02d') 'RightVentricle.png'];
» RV=imread(filenamelO};
% RV=logical(RV);
% RV=imfill(RV,'holes'5;
I=imread(filename);%read the image name
fabric = I; Leave the image read to a new variable
fab2=rgb2gray(fabric); convert the image to grayscale
% f i g u r e; i m s b o w (f a b r i. c) ; t i 11 e (f i. 1 e n ame) ; % u n c omme n t t o display
'/Calculate Sample Colors in L*a*b* Color Space for Each Region
nColors = 3;/the amount of different: colors to be detected
cform = makecform(!srgb21ab');/creates the color transformation
structure that defines the color space conversion specified, here
srgb21ab= from rgb to L*a*b
lab_fabric = applycform(fabric, cform) ; -.-convert the color values of
the image to what the "cform" defines i.e. here: rgb to L*a*b
a = lab_fabric(:,:,1);/Calculate the mean 'L '’a*’ and 'b*'
b = l a b _ f a b r i c 2);rvalue for each area that you extracted with
roipoly.
L = lab_fabric(:,:,3); These values serve as your color markers in
'â b*·' space.

disp(sprintf('[%Q.3f,% 0 .3f,%0.3f]',color markersi(2,1),color markers{
2,2) , coi.or_jn.arkers (2,3))) ;
/ Classify Each Pixel Using the Nearest Neighbor Rule
color_labels = 0:nColors-l; Create an array that contains your color
.labels
a = double(a);/Initialize matrices to be
b = double(b);/used in the nearest neighbor
L = double(L);/classification.
distance = repmat(0,[size(a), nColors]);
zperform c 1assification
for count = 1:nColors

distance(:,:,count) = ((a - color_markers5(count,1)).Λ2 + ...
(b - color_markers5(count,2)).Λ2 + (L -

color_markers5(count, 3)).Λ2).Λ0.5;
end
[value, label] = min(distance,[],3);
label = color_labels(label);
clear value distance;
:Display Results of Nearest Neighbor Classification
.· The label matrix contains a color label for each pixel in the
fabric
% image. Use the label matrix to separate objects in the original

% fabric image by color.
rgb__label = repmat (label, [1 1 3]) ;
segmented_images = repmat(uint8(0),[size(fabric), nColors]);

for count = l:nColors
color = fabric;
color(rgb_label ~= color_labels(count)) = 0;
s e g m e n t e d _ i m a g e s c o u n t) = color;

end
«display the images with the classified colors
figure;imshow(segmented_images(: , :, :,1));
title (filename) ;xlabel (' segirnagesl') ;
figure;imshow(segmented_images(:,:,:,2)) ;
title(filename);xlabel('segirnagesl');
figure;imshow(s e g m e n t e d _ i m a g e s 3));
title(filename);xlabel('segimages3');
%manually set the frame for the ROI of the heart area
[x y]=getpts ();
x=round(x);
y=round(y);
• x=[1131;1196];«sometimes the ROI frame needs to stay fixed for
% y= [306; 376'] ; %m.ore iterations (i.e. images)
% erase everything outside the ROI boundaries
BWs(1:y (1),1:2048)=0;
BWs(y (2):1216,1:2048)=0;
BWs(1:1216,x(2):2048)=0;
BWs(1:1216,1:x (1))=0;
I3=zeros(size(I,1),size(I,2));«create an empty(black) binary image
iscan the appropriate "segmented images" image to create the binary
image
for i=y(1):y(2)

for j=x(1):x (2)
if (segmented_images(i,j,:,2)==0) %%set the appropriate

condition to create the binary image
if "(segmentedimages(i,j,:,2)==0)%%for example by using the

black
%%or not black, areas of

the suitable ”segmented images” image

13 (i, j) = 1 ;
e n d

e n d
e n d
m ' i i i i x % % % x % % x %%%%χ%%Χχ%%Χ % % % x % % fii % %%%%%%%%%% % % % % % % % % 11 % % X % % % * % % % t % % %
%%%%%%%%%%%%%%%%%%%%
x % % x % 1 %%%%%% % % % % X %%%%%%% % 1 x % % i 1 r % v x x % %%%% % % - a % x a % % % x % % χ χ χ % χ x % % % % %
%%%%%%%%%%%%%%%%%%%%
X % i X o % % X a % % ■ >. V I X % % % X % % Y. $ % % ■ X I I ■ a % I X X % % ; -X -|s 9; X % % % X X % % X ■ % % X i % % X X % % ' % X x X
% X % % % X % % % X % % % % % % % ¥:■ % %
% READ COMMENTS ON LINES 13-16:UNCOMMENT THE CORRESPONDING PART TO
ACTIVATE THE EXCLUSION
IOF A PART OF THE CURRENT ROI USING AN ALREADY DETECTED AREA
χ 1 % I X % 1 v. X 1 % % % 0 % % χ % % % x % % Ox % % X X % % % % % % % % % 5; X % % % % % % % % % % % X X % % X « % % % X % % X X % % X X
% % % % % I % % % X % % % X % % % % % %
I X X . % X X % % X X % % X X i i X x % X X X % 1 X X % X X X x X X X 1 X X X X x X X % X X x % X X X % X X x % X X. x % X X x % % X x % X
xxx xx xx xx xx ¥ x%xx% XxIx for 1=1:1216

for j=1:2018
x if (13(i,j)==1)&&(A(i,j)==1)
% 13 (i,j)=0;
% e n d
% e n d

% end
: for i=l:1216

for j=1:2048
if (13 (i, j) ==1 > & { RPA{i, j) ==1)

13(i,j)=0;
% end.
% end
i end
> for i=l:1216

for j=l:2043
i f (13 (i, j 5 ==1} & & (PT {i, j) ==.].)

13(i,j)=0;
end

end
3 end
% for .1=1:1216

for j=l:2048
if (13 (i, j) ==1} && (SVC (i, j} ==1.)

13(i,j)=0;
'i end

end
1 end
. for .1=1:1216

for j=l:2048
if (1.3 (i, j) ==1) && (RA(i, j)==1)

13(i,j}=0;
% end
% end
o end
3 for i=l:1216

for j=l.:2048
if (13(i,j}==!}&&(LVF(i,j)==1)

I3(i,j)=0;
% end
% end
% end
% for i=l:1216

for j=l:2048
if (13(i,j)==1)&£(RV(i,j)==1)

13 (i,j)=0;
% end
% end

and
‘ for i=l:1216

for j=l:2048
% i f (13 (i, j) == 1 j '< & {LA (.1, j) == .1)
% 13(i,j}=0;
% end
ΐ end
(' end

13=i. m c 1 e a r b1: ■ r d e r (13, 4) ; i c 1 ear s t r u c t:: u r e s c ο η n e c t:: e d t:: o t h e i m a q e
border here:connectivity 4 neighbors
I3=imclearborder(13,8);iclear structures connected to the imaqe
border here:connectivity 8 neighbors
I3=bwareaopen(13,300); erase structures sustained by less than 300
pixels
■; figure; irashow (13) ; title ('Cleared border') ; ̂ display
I3=imdilate (13, [seO se90]) ; dilate image

figure;imshow(13)/title{'Dilated')/^display
I3=imfill(13,'holes');-fill holes
figure;imshow(13)/title('filled holes'); display

I3=imerode (13, [seO se90]); -«erode image
I3=imerode(13,[seO se90]); .may need to add or
I3=imerode(13,[seO se90]);-subtract an erosion action
I3=edge(I3, ' canny'); “-apply edge detection
figure;imshow(13);title(filename);xlabel('final'); display
new_filename=['avf1 num2str(image__num,'102d')
'HeartFat.png']; create the filename the contour will be saved as
imwrite (13, new filename) ; : ·.uncomment to save the created contour

fprintf (' \nImage ?;02d \n*, image_num) ; ̂ display the image number or
the workspace
end

}

Segmentation with true color images

torso_detection.m{

se90 = strel('line', 3, 90);icreate structure elements
seO = strel('line', 3, 0); -for dilation/erosion
load (' color markers .mat') ; -.load the "color markers" file
for image_num=1262:1262%selec the images range
filename» ['avf' num2str (image_num, ' %02d’) ' a .png'] ; '«create the name
to read file following the pattern
I=imread (filename) ; % read file-
fabric = I;^assign the image read to a new variable ("fabric")
fab2=rgb2gray (fabric) ;«convert to graylevel
nColors = 3;(amount of colors to be detected
cform = makecform (' srgb21ab’) ; '4color transformation structure cform ,
s rgb2 lab = s t andarRGB- :>L * a*b
lab_fabric = applycform(fabric,cform);(converts the color values in
fabric to the color space specified in the color transformation
structure cform i.e. here:RGB->L*a*b
% Calculate the mean "L*, 'a*' and ' b*' value for each area that you
extracted with roipoly.
i These values serve as your color markers in space,
a = lab_fabric (: , : , 1) ; ’.Initialize matrices to be
b = lab_fabric(:,:,2);fused in the nearest neighbor
L = lab_fabric(:,:,3); -classification.
! Classify Each Pixel Using the Nearest Neighbor Rule
color_labels = 0: nColors-Ι; --.Create an array that contains your color
labels
a = double(a);
b = double(b);
L = double(L);
distance = repmat(0, [size (a), nColors]);
’•perform classification
for count = 1:nColors

d i s t a n c e c o u n t) = ((a - color_markers(count,1)).Λ2 + ...
(b - color_markers(count,2)).Λ2 +(L-

color_markers(count,3)).Λ2);
end

[value, label] = min(distance,[],3);
label = color_labels(label);
clear v a1ue dis t a nce;
(«Display Results of Nearest Neighbor Classification
i The label matrix contains a color label for each pixel in the
fabric
% image. Use the label matrix to separate objects in the original
% fabric image by color.
rgb__label = repmat (label, [1 1 3]);
segmented_images = repmat(uint8(0),[size(fabric), nColors]);

for count = 1:nColors
color = fabric;
color (rgb_label ~= color__labels (count)) = 0;
s e g m e n t e d _ i m a g e s c o u n t) = color;

end
'«display the images with the classified, colors % (comment to skip)
figure;imshow(segmented_images(:, : , :,1));
title(filename);xlabel('segimagesl’);
figure;imshow(s e g m e n t e d _ i m a g e s 2));
title(filename);xlabel('segimagesl!);

figure;imshow(s e g m e n t e d _ i m a g e s 3));
title(filename);xlabel('segimages3');
V = s e g m e n t e d _ i m a g e s 3);iselect one of the images containing the
c1assified colors
V=rgb2gray (V) ; (transform to graylevel
V=imclearborder(V,8);(clear objects connected to the image border
(connectivity 3 neighbors)
V (10 2 0 :1216, 1: 2 0 4 8) =0; erase a s p e c i f i c a r e a c o r r e s p ο n d i n g t: o t. h e
lower part of the image that contains numeration & labels
V=bwareaopen(V,10000); erase objects sustained by less than 10000
pixels
V=imfill(V, 1 holes»);tfill holes
scan original image to erase the parts that are not included in the
'■■detected torso area (projection of corresponding original image)
for ti=l:1216

for tj=l:2048
if V(ti,tj)==0

I (ti,tj,:)=0;
end

end
end
figure;imshow(I);title(1 projection of original image');%project
contour results corresponding on the original image (comment to
skip)
BWoutline = bwperim(V);
V=edge(V,1 canny'); obtain the contour of the area
new_fi1ename*[’avf· num2str(image_num,·%02d') 'alC.png'];«create the
filename the contour image will be saved as
- imwrite(V,new_filename);%save image %{uncomment for usage)
fprintf (filename) ; fprintf (' \n done\n') ; (-display message on workspace

end

}

Undersampling - code version without parameters

undersV2.m{

% this function is used to execute an under sampling to the specifed
binary
% images (the user must select by changing the code}, it requires the
o binary images exist in the same directory

count=l; counter used in the array numeration
start=14 0 6;- star ting image
zet=1262-start; ·.* z axis is defined by using the number of the first
image as a constant so that all resulting data has a common point of
reference
% message=wavread('program complete.wav15;ialert message
for i= start:1406% images range

amount=0; % counter
f ilename= [· avf ’ num2str (i, ’ %02d ’) ’ Right At rium. png ’] ; '-create a

file name according to the pattern depending on the directory (change
f or other tissues)

I=imread(filename);tread filename
1(1:430,1:2 04 8)=0;

figure;imshow(I);title(filename);1display
uncomment following to erase a manually selected frame

% zoom(2};
[x1, yl]=getpts ();
I (y l (15 :yl(2) ,xl (1):xl(2))=0;

% hold on; imshow {I} ; x 1. a be 1 (’erased') ;
s=regionprops(I,'centroid'); %locate centroid - mass center
x=round(s(numel(s),1).Centroid(1,1));%round the centroid

coordinates to match a pixel's
y=round(s(numel(s),1).Centroid(1,2));
clear(’s');«absolve variable

hold on;plot(x,y,'y*');hold on; «display - plot center
(u n c omrne n t t o u s e)

fprintf('\n Center found : id %d',x,y); display message on
w o r k s ρ a c e

d= 16; %initia11ze dis tan c e var1a b1e
a=30; °;set angle of rotation (change to redefine)
gtp=180/a; «convert from degrees to find the corresponding arch

distance step
for a=0:pi/gtp:(2*pi-(pi/gtp)) «arch distance step

figure;imshowίI};title{filename);title{a);
5;display (uncomment to
% activate)

d i s=15; % i. n i t i a 1 i z e v a r i a b 1 e
h1=0; :initia1ize variab1e
h 2=0; i n i t: 1 a I i. z e - ■ a r i a b 1 e
for r=l:90 % radius length for the expanding pixel lines

nx=x+r*cos(a); apply angles
ny=y+r * sin (a) ; or executing rotal :-··η
nx=round(nx); round to match
ny=round(ny) ; %pi.xel coordinates

hold on; plot(nx,ny,'y'};hold on;«uncomment to activate
% display

for ii=ny-7:ny+7 %inner loop (for every pixel of the
expanding lines)

for jj=nx-7:nx+7

if ~ (I(ii,jj)— 0) %calculate the distance of
every white, pixel met

d=distance([ii,jj],[ny,nx]);
end
ir (d<=dis) sthe undersampling saves the

coordinates
dis=d; iof the pixel that abstains the least

from
hl=ny; r.the contour pixel (for the case they

do not match)
h2=nx;

end
end

end
hold on;plot(h2,hi, ’ y') ;hold on;uncomment to plot

end
hold on; plot (h2, hi, ' y') ;hold on; Incontinent to plot

amount=amount + l; gcounter for. the iterations executed
fprintf('\n Image No %d found %d point(s) %d

M'i\ni, amount, h2, hi); ̂ display message on workspace
Pulmonayl2_l_Sp (count, 1) =hl; %st::rore coordinates in an array
Pulmonayl2_l_Sp(count,2)=h2;
Pulmonayl2_l_Sp(count,3)=zet;
count=count+l;

end
zet=zet-l;%set the z axis positioning for the next contour

(slice)
fprintf('\nImage No id found %d points\n',i,amount);idisplay

message on workspace
end
Pulmonayl2_l_Sp (: , 1) =Pulmonayl2_l_Sp (:, 1) *0.33; % convert from pixel, to
spatial coordinates

Pulmonayl2_l_Sp(:,2)=Pulmonayl2_l_Sp(:,2)*0.33;
Pulmonayl2_l_Sp(:,3)=Pulmonayl2_l_Sp(:,3)*0.99;
Pulmonay12_l_Sp«*Pulmonay12_l_Sp/1000; %convert to metres

% sound(message);%sound alert message

}

Undersampling - code version with parameters (function)

unders.m{

% This function takes as inputs the name of the directory that
contains
s the binary images (contours) that have resulted from previous
procedures, the angular .step according to which the expandincr lines

1 will be extended, the display activation, the automatic (or) not
center
*■ locating and optionally the starting and ending image (range) for
the
; execution in case the user wants a custom execution range instead
of
% the whole set.It executes an undersampling so that the final output
i contains the contour formed by a number of points less than the
% initial. The user defines an angular step and straight pixel lines
s a re extended from the center inside of the contour until they meet
a
% pixel belonging to the contour. This procedure is repeated for
every
% angle until a 360 degrees scan is completed for every picture of
the
3 directory (or the defined range).
% Examp 1 e: dat:a=intrpIte (’ Aorta ' , 30, 0, 0) ;
% Explanation: execution in the "Aorta" folder, for an angular step
of 30 degrees, display off, locating center automatically.
% Example!: data=intrplte('Aorta1,30,1,0);
» Explanation: execution in the "Aorta" folder, for an angular step
of 30 degrees, display on, locating center automatically.
% Examples: data=intrplte('Aorta',30,1, 1);
% Explanation: execution in the "Aorta" folder, for an angular step
of 30 degrees, display on, locating center manually (user).
3 Example!: data=intrplte('Aorta',10,0,0,1440,1450);
s Explanation: execution in the "Aorta" folder, for an angular step
of 10 degrees, display off, locating center automatically,
% from, the image numbered 1440 until image 1450 and additionally the
user must manually set a frame for erasing on the image
3 so that only one contour remains (this is aplied to images
containing more than one contours so that the automatic center
i locating is executed correctly)

function [data] =
unders(directory,angle,displ,autoloc,starting_im,ending_im)
fprintf('\n Executing undersampling in "3s" folder for id degrees
anglein’,directory,angle); display the execution directory and
angular step
if ~(autoloc«=l)%check if the user wants to locate automatically the
center

manual=0;
fprintf('\n Locating center automatioallyxn ’);

end
if (autoloc==l)%check if the user wants to locate manually the center

manual=l;
fprintf('\n Engaged manual center locating\n');

end
if (nargin>4)%check if the user wants to manually remove a frame

manual=2;
fprintf(1\nEngaged manual frame removal for images id -

%d\n', starting_im, ending im);
end
if (nargin>6)%check number of arguments

error('\nwo more than 6 arguments requiredXn');
end

cd(directory); %change to directory
c d ('binary images');
cd('contours'); change to the folder containing the contour

images
d=dir('*.png'); % list the names of the directory ending to
."png" i.e. the images
filenames={d.name}; i-.create an array with the list
start =
str2double(strtok(filenames(1,1),'abcdefghijklmnopqrstuvwxyzABCDEFGHI
JKLMNOPQRSTUVWXYZ'));textract the starting image number from the file
name
the_end=str2double (strtok (filenames (1, numel (filenames)) , ' abcdefghij k.l
mnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ')); -extract the ending image
number from the file name
count=l;
if (manual==2) fusecase where the image range is set by the user

range=starting_im-start; ^calculate a variable that is used to
skip to the right filename in the list (array) according to the range
set

start=starting_im; %in this usecase the starting image is set by
the user as an argument

the_end=ending_im; %also the ending image
end
zet=1262-start; %the position in the z axis is calculated according
to the numeration of the whole set of images - the first image is
numbered 1262 so it is used as a constant
for i= start:the_end i range

amount=0; % just a counter
filename=char(filenames(1,i-start+1)); %create a charcter

variable containing the name of the file to be read
I=imread(filename); tread an image named after the filename

created
if (manual==l) lease when the manual intervetion for the center-

locating is engaged
figure;imshow(I);title(filename);xlabel('Right clic on the

center of the contour'); display
«manual1y select the center
zoom(2);
[x,y]=getpts ();
x=round(x);
y=round(y);

elseif (manual==2) lease when the manual intervetion for the
removal of an area is engaged

filename=char(filenames(1,i-start+range+1));«get file name
from the containing struct

figure;imshow(I);title(filename);xlabel('Select the frame you
want to erase');%display

«manually select a frame to remove
zoom(2) ;
[xl,yl]=getpts ();

I(yl(1):yl(2),xl(1):xl(2))=0;
hold on;imshow(I);xlabel('erased1);
s=regionprops(I,’centroid'); %locates the centrer

("centroid") of a given binary image
x=round(s(numel(s),1).Centroid(1,1)); acquire the x

coordinate from the structure element created by "reqionprops"
y=round(s(numel(s),1).Centroid(1,2)); acquire the y

coordinate from the structure element created by "regionproos"
c 1 e a r ('s') ; « a b s ο 1 v e v a r i a b 1 e

else
s-regionprops(I,'centroid'); «1ocates the centrer

("centroid") of a given binary image
x=round(s(numel(s),1).Centroid(l,1));%acquire the x

coordinate from the structure element created by "regionproos"
y=round (s (numel (s) , 1) . Centroid (1,2)) / «.acquire the y

coordinate from the structure element created by "reqionprops"
clear ('s'); «absolve variable

end
if (displ==l) «activated when the display option is activated

figure;imshow(I);title(filename);%display
hold on;plot(x,y,'o')/hold on;%disp1ay

end
fprintf('\n Center found : id %d\n',x,y);
d=16; «initialize with a value
gtp=180/angle;
for a=0:pi/gtp:(2*pi-(pi/gtp)) «angular step
if (displ==l)«activated when the display option is activated

figure;imshow(I);title(filename);title(a);
end

dis=15; '«initial value
hl=0; initial value
h2=0; initial value

pr=180;
for r=1: p r « p i e 1 r: a d i u s

nx=x+r*cos(a);% is used to
n y=y+r * s i n (a) ; ?ch a n g s t h e a n g 1 e
nx=round(nx); %the values resulting from, the "cos" and

"sin"
ny=round(ny); «functions need to be rounded in order to

match values valid for a pixel
if (displ==l) «activated when the display option is

activated
hold on; plot(nx,ny,'y');hold on;

end
for ii=ny-7:ny+7 «inner loop (for every single point

of the extending pixel lines)
for jj=nx-7:nx+7

if ~(I(ii,jj)— 0)
d=distance([ii,j j], [ny, nx]);
end
if (d<=dis) «the undersampling process saves the

points
dis=d; «with the less distance from the

extending pixel line
hl=ny; «so in case there is not a c<amplete

match the nearest point
h2=nx; %to the contour is saved

end
end
end

if (displ==l)“activated when the display option is
activated

hold on;plot(h2,hi,'y’);hold on;
end

end
if (displ==l)%activated when the display option is

activated
hold on;plot(h2,hi,!y1);hold on;

end
amount=amount+l; dcounter

data(count,1)=hl;%create array with the points coordiantes
data(count,2)=h2;
data(count,3)=zet;
count=count+l;

end
zet=zet-l; tchange the z axis value every time we pass to the

next image, so that eventually the points of the next slice are
placed under the already

fprintf (* \nimage Wo id found Id points'.n', i, amount) ;isaved one
(placing the next slice under the last one)
end

if(displ==l)^activated when the display option is activated
close all;
end
data (:, 1) =data (:, 1) *0.33; J.convert from pixel to spatial

coordinates
data(:,2)=data(:,2)*0.33;
data(: , 3)=data(:,3)*0.99;
data=data/1000; ?convert to metres

fprintf('\nData created for is for sd degrees
ariglein' , directory, angle) ; print

}

rfr

Qo>2.
C l I A

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΒΙΒΛΙΟΘΗΚΗ

004000130516

