
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Programme of MSc Studies

Visual SLAM implementation and optimization on FPGAs

Master’s Thesis

Maria Rafaela Gkeka

Supervisor: Nikolaos Bellas

Computer Systems Laboratory (CSL)

Volos 2020

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

https://www.e-ce.uth.gr/?lang=en
https://faculty.e-ce.uth.gr/nbellas/
https://csl.e-ce.uth.gr/

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Programme of MSc Studies

Visual SLAM implementation and optimization on FPGAs

Master’s Thesis

Maria Rafaela Gkeka

Supervisor: Nikolaos Bellas

Computer Systems Laboratory (CSL)

Volos 2020

iii
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

https://www.e-ce.uth.gr/?lang=en
https://faculty.e-ce.uth.gr/nbellas/
https://csl.e-ce.uth.gr/

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Πρόγραμμα Μεταπτυχιακών Σπουδών

Υλοποίηση και βελτιστοποίηση αλγορίθμου visual SLAM σε FPGAs

Μεταπτυχιακή Διπλωματική Εργασία

Μαρία Ραφαέλα Γκέκα

Επιβλέπων: Νικόλαος Μπέλλας

Computer Systems Laboratory (CSL)

Βόλος 2020

v
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

https://www.e-ce.uth.gr/
https://faculty.e-ce.uth.gr/nbellas/
https://csl.e-ce.uth.gr/

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Approved by the Examination Committee:

Supervisor Nikolaos Bellas

Professor, Department of Electrical and Computer Engineering,

University of Thessaly

Member Christos D. Antonopoulos

Associate Professor, Department of Electrical and Computer En-

gineering, University of Thessaly

Member Spyros Lalis

Professor, Department of Electrical and Computer Engineering,

University of Thessaly

Date of approval: 16-10-2020

vii
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

https://faculty.e-ce.uth.gr/nbellas/
https://faculty.e-ce.uth.gr/cda/
https://faculty.e-ce.uth.gr/lalis/

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Acknowledgements

I would like to express my deepest gratitude to my supervisor Prof. Nikolaos Bellas for

his guidance and invaluable contribution. I am also grateful to my advisors, Prof. Christos D.

Antonopoulos and Prof. Spyros Lalis for their extremely useful help, ideas and feedback.

I would also like to thank Alexandros Patras for our collaboration over the last year.

Last but not least, I would like to thank people that were close to me. My friends, for the

fun moments we spent together, their support and understanding throughout these years. My

parents and my sister, for their encouragement and unwavering support.

This research has been co-financed by the European Union and Greek national funds

through the Operational Program Competitiveness, Entrepreneurship and Innovation, under

the call RESEARCH – CREATE – INNOVATE Project VipGPU: Very Low Power GPUs for

Mobile Robotics and Virtual Reality applications (project code: Τ1ΕDΚ-01149)

ix
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work /

contributions of third parties for which the permission of the authors / beneficiaries is re-

quired and are not a product of partial or complete plagiarism, while the sources used are

limited to the bibliographic references only and meet the rules of scientific citing. The points

where I have used ideas, text, files and / or sources of other authors are clearly mentioned

in the text with the appropriate citation and the relevant complete reference is included in

the bibliographic references section. I fully, individually and personally undertake all legal

and administrative consequences that may arise in the event that it is proven, in the course of

time, that this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Maria Rafaela Gkeka

16-10-2020

x
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Abstract

In the field of robotic automation, Simultaneous Localization and Mapping (SLAM) is

the problem of constructing and continuously updating a map of an unknown environment

while keeping track of an agent’s trajectory within this environment. SLAM is widely used

in robotics, navigation, and odometry for augmented and virtual reality. Owing to the prolif-

eration of cameras and the availability of new high performance and low power platforms,

visual SLAM is rapidly becoming a popular domain in embedded computing with many dif-

ferent possible applications. An interesting visual SLAM category is dense SLAM which

constructs and updates the map at pixel granularity at a very high computational and energy

cost especially when operating under real-time constraints.

In this thesis, KinectFusion (a well-known dense visual SLAM algorithm) is approx-

imated without exceeding user-defined error constraints. This is important to ensure that

these approximations do not prevent the agent from navigating correctly in the environment.

Specifically, this work introduces and evaluates a plethora of MPSoC FPGA designs for

KinectFusion, featuring a variety of optimizations and approximations, to highlight the in-

terplay between SLAM performance and accuracy.

We show that these approximations when applied on top of aggressive (but precise) hard-

ware optimizations, can achieve almost real-time performance and higher energy efficiency

compared with a software-only CPU implementation without compromising agent tracking

and map construction.

xi
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Περίληψη

Η οικογένεια αλγορίθμων SLAM περιγράφει το πρόβλημα αυτόνομης κίνησης των ρο-

μπότ. Συγκεκριμένα, αφορά την κατασκευή και τη συνεχή ενημέρωση του χάρτη ενός άγνω-

στου περιβάλλοντος, ενώ παράλληλα παρακολουθείται η πορεία κίνησης ενός πράκτορα

μέσα στο ίδιο περιβάλλον. Το SLAM χρησιμοποιείται ευρέως στη ρομποτική, την πλοήγηση

και την οδομετρία για εφαρμογές επαυξημένης ή εικονικής πραγματικότητας. Λόγω της ευ-

ρύας ανάπτυξης και χρήσης των καμερών, το οπτικό (visual) SLAM καθίσταται ένας δημο-

φιλής τομέας στα ενσωματωμένα υπολογιστικά συστήματα με πολλές διαφορετικές εφαρ-

μογές. Μια ενδιαφέρουσα κατηγορία visual SLAM είναι το dense SLAM, όπου ο χάρτης

κατασκευάζεται και ενημερώνεται κάνοντας χρήση όλης της πληροφορίας εισόδου από τον

αισθητήρα. Επιπλέον, χαρακτηρίζεται από πολύ υψηλό υπολογιστικό και ενεργειακό κόστος,

ειδικά όταν λειτουργεί υπό συνθήκες ανταπόκρισης του συστήματος σε πραγματικό χρόνο.

Σε αυτή τη διατριβή, ερευνάται η απόδοση του KinectFusion, ενός dense visual SLAM

αλγορίθμου. Εφαρμόζονται βελτιστοποιήσεις της απόδοσης του συστήματος που μειώνουν

την ακρίβειά του (προσεγγιστικές), χωρίς όμως η μείωση να υπερβαίνει τους περιορισμούς

σφάλματος που καθορίζει ο χρήστης. Η διακύμανση του σφάλματος εντός συγκεκριμένων

ορίων διασφαλίζει την σωστή πλοήγηση του πράκτορα στο περιβάλλον. Συγκεκριμένα, η ερ-

γασία αναλύει και αξιολογεί πληθώρα υλοποιήσεων του αλγορίθμου KinectFusion σε MP-

SoC FPGA, που εφαρμόζουν ποικίλες προσεγγιστικές, και μη, βελτιστοποιήσεις, ώστε να

τονίσει την αλληλεπίδραση μεταξύ απόδοσης και ακρίβειας ενός SLAM συστήματος.

Επιπλέον, δείχνουμε ότι αυτές οι προσεγγίσεις όταν εφαρμόζονται σε συνδυασμό με

αποδοτικές και ακριβείς βελτιστοποιήσεις υλικού, μπορούν να επιτύχουν απόδοση σχεδόν

πραγματικού χρόνου και ενεργειακή απόδοση υψηλότερη από εκείνη που απαιτείται για την

εκτέλεση σε έναν επεξεργαστή, ενώ παράλληλα διασφαλίζεται η σωστή παρακολούθηση του

πράκτορα και η κατασκευή του χάρτη.

xiii
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Table of contents

Acknowledgements ix

Abstract xi

Περίληψη xiii

Table of contents xv

List of figures xvii

List of tables xix

Abbreviations xxi

1 Introduction 1

1.1 Problem statement & Contributions . 2

1.2 Overview of the content . 2

2 Background 5

2.1 SLAM and KinectFusion . 5

2.1.1 SLAM Systems . 5

2.1.2 KinectFusion . 9

2.1.3 ICL-NUIM dataset . 13

2.1.4 Error evaluation . 14

2.2 FPGA Technology . 15

2.3 Related work . 17

xv
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

xvi Table of contents

3 Precise and Approximate Optimizations on KinectFusion 19

3.1 Bilateral Filter . 21

3.2 Tracking . 22

3.3 Integration . 22

3.4 Raycasting . 24

4 Experimental evaluation 25

4.1 Methodology . 25

4.2 Design Space Exploration . 27

4.3 Significance Analysis . 30

4.4 Power and Area exploration . 36

4.5 Timeline analysis . 37

5 Conclusions 39

Bibliography 41

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

List of figures

2.1 Stereo camera placement . 7

2.2 Visual SLAM pose estimation . 8

2.3 Left: Colored points are points of PTAM sparse map [1], Right: All surface

points are part of the DTAM dense map [2] 9

2.4 KinectFusion workflow for real-time volumetric reconstruction [3] 10

2.5 Store scene geometry as truncated signed distance function (TSDF) [4] . . . 11

2.6 KinectFusion data processing pipeline [5]. 12

2.7 KinectFusion I/O: The input RGB scene (top left), the input depth frame (bot.

left), the tracking output (top right), and the reconstructed 3D map (bot. right). 14

2.8 FPGA structure: 1. Configurable logic blocks (CLBs), 2. Programmable rout-

ing, 3. I/O Blocks . 15

2.9 Zynq UltraScale+ MPSoC ZCU102 [6] 16

3.1 Floating Point formats according to IEEE 754 standard. 20

4.1 Contribution of eachKinectFusion kernel to total execution time (T=#threads,

C=#cores). The y-axis to the right shows throughput in frames/sec. 26

4.2 Trajectories with various average RMSE values. Grid unit distances are 0.5m

in x-axis, 0.05m in y-axis, and 0.5m in z-axis. 27

4.3 Execution time of each kernel for the Unoptimized, Fastest Precise and Ap-

proximate versions. Note the logarithmic scale of the y-axis 28

4.4 The scatter plots show throughput vs. average RMSE of various SW and HW

kernel implementations when running the lr.kt2 benchmark. 29

4.5 Lasso analysis validation for the Bilateral Filter kernel. 31

4.6 Lasso analysis validation for the Tracking kernel. 32

4.7 Lasso analysis validation for the Integration kernel. 33

xvii
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

xviii List of figures

4.8 Lasso analysis validation for the Raycast kernel (SW). 34

4.9 Area utilization for the fastest precise and approximate configurations. . . . 36

4.10 Area utilization vs. throughput for the entire application configurations. . . 37

4.11 Timeline showing execution time and RMSE per frame for the fastest precise

and approximate FPGA implementations. 38

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

List of tables

2.1 Lie groups frequently used to describe rigid body transformations [7] 12

3.1 Precise (top rows) and Approximate (bottom rows) optimizations for the

KinectFusion kernels. 20

4.1 Performance of HW and SW kernel implementations (1 accelerator). 28

4.2 Lasso analysis of KinectFusion Bilateral Filter 31

4.3 Lasso analysis of KinectFusion Tracking 32

4.4 Lasso analysis validation for the Integration kernel. 33

4.5 Lasso analysis of KinectFusion Raycast SW 34

4.6 Lasso analysis of KinectFusion Combined kernels 35

4.7 Optimization Selection Based on Lasso ranking. 35

4.8 System metrics for x86 and FPGA fastest configurations 36

xix
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Abbreviations

wrt. with respect to

e.g. for example

SW Software

HW Hardware

FPGA Field Programmable Gate Arrays

SoC Systen-on-Chip

MPSoC Multi-Processor System-on-Chip

RMSE Root Mean Square Error

MSE Mean Square Error

fps frames per second

FP Floating Point

HP Half Precision

TSDF Truncated Signed Distance Function

2D Two-Dimensional

3D Three-Dimensional

xxi
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Chapter 1

Introduction

The proliferation of autonomous robots and unmanned aerial vehicles (UAVs) has cre-

ated the need to construct highly accurate maps of their observed environment and to track

the position and the trajectory of these agents within these maps. This process, which is re-

ferred to as Simultaneous Localization and Mapping (SLAM), typically merges data from

various sensors such as stereo/mono and RGB-D cameras, laser scanners (lidars) and Inertial

Measurement Units (IMUs) and involves a non-trivial amount of data processing.

Given that most robotic platforms have size, weight and energy limitations, SLAM is

usually implemented using resource-constrained and power-efficient embedded systems. In

order for such implementations to be useful they have to deliver high performance in a power

constrained environment.

Due to the energy and performance limitations, most embedded visual SLAM imple-

mentations focus on sparse SLAM algorithms, which reduce computational requirements by

maintaining only a sparse selection of key feature points and are typically limited to local-

ization only. On the other hand, dense SLAM, which uses all pixels of the input frame for

map reconstruction, provides the potential for richer 3D scene modeling. However, its high

computational and energy requirements make real-time implementation very challenging, es-

pecially for an embedded system. Chapter 2 provides more information on dense and sparse

SLAM aglorithms.

In an effort to tackle this challenge, we explore the large design space of FPGA-based

dense SLAM accelerators, by combining application-specific optimizations with approxi-

mate computing. Approximate computing has been shown to accelerate computations and

reduce energy requirements in various application domains [8]. In this thesis, we leverage

1
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

2 Chapter 1. Introduction

a set of algorithmic optimizations to study the trade off between performance and accuracy

of localization and mapping in an effort to improve the design space exploration of similar

applications.

1.1 Problem statement & Contributions

For our study, we use the KinectFusion algorithm of the SLAMBench suite [9]. Start-

ing from the baseline C++/OpenMP implementation, we develop precise as well as approx-

imate hardware accelerators for each of the most important components of the algorithm,

by re-writing the code and using HLS directives. As a target platform we use the Ultra-

scale+ ZCU102 MPSoC board, and exploit the OpenCL API of VitisTM Unified Software

Platform [10] to generate and evaluate different solutions at a high level of abstraction.

KinectFusion is a closed-loop algorithm which continuously embeds new information

(depth frames) to a partially constructed 3D view of a globally consistent map. Therefore,

the scale of approximations is limited by its impact on the convergence to a consistent view.

Approximate computing provides a speedup of up to 9.4x compared with the precise FPGA

implementation without violating the tight constraints on the cumulative trajectory error.

Our contributions are summarized as follows:

• We enumerate a list of precise and approximate optimizations targeting KinectFusion,

and, based on those, we introduce a multitude of parameterizable FPGA implementa-

tions spanning the performance vs. accuracy space.

• We evaluate these implementations to provide quantitative and qualitative analysis of

the effect of each optimization separately and groups of optimizations in tandem on

the performance and accuracy of KinectFusion running on an MPSoC FPGA.

• Finally, we provide a mechanism to rank the significance of each optimization on per-

formance and accuracy for each kernel and for the whole application, and we show

how this mechanism drives the generation of FPGA configurations with user-defined

performance requirements.

1.2 Overview of the content

This thesis is organized in five chapters as follows:

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

1.2 Overview of the content 3

Chapter 2 describes the concepts and terminologies used in SLAM systems. It also

provides information about the Xilinx Zynq UltraScale+ MPSoC device used in our

experiments and discusses related work.

Chapter 3 presents and analyzes the precise and approximate optimizations we apply

on each kernel separately.

Chapter 4 presents the experimental results, corresponding to our work contributions.

In particular, it provides the performance improvements achieved by our designs con-

cerning error constraints and analyzes the significance of the optimizations described

in chapter 3.

Chapter 5 concludes the thesis.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Chapter 2

Background

This chapter describes the background of SLAM computing and FPGA platforms. We

start with a review, in Section 2.1, of visual SLAM algorithms characteristics and information

about KinectFusion, the algorithm we implement and optimize on hardware. In Section 2.2

we describe the functionality of the FPGA platform, and in Section 2.3 we discuss prior work

on FPGA-based implementations of SLAM algorithms.

2.1 SLAM and KinectFusion

2.1.1 SLAM Systems

Simultaneous Localization and Mapping (SLAM), a concept used to solve a very impor-

tant problem in mobile robotics, consists of two parts:

• mapping, which refers to building a map of the agent’s environment, and

• localization, which refers to the navigation of the environment using the map while

keeping track of the agent’s relative position and orientation.

Using visual input from a camera, SLAM algorithms estimates the path on which the

camera has moved, and the positions in 3D space of all of the objects and features in an

unknown environment that the camera has observed.

A robot to achieve autonomous navigation without any human input, needs to be able to

localize itself in its environment based on the constructed map. Robot localization requires

sensory information regarding its position and orientation of the robot within the built map.

5
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

6 Chapter 2. Background

Because of the significant role of input sensors in a SLAM system’s localization part, the

following subsection is an overview of the available types and their characteristics.

Types of input sensors

Sensors are divided into two main categories:

1. Exteroceptive sensors, which provide absolute position measurements, such as cam-

eras and lasers

2. Interoceptive sensors, which generate relative position measurements, such as wheel

odometers and IMUs (Inertial Measurement Units)

One of the demands on an autonomous robot is the ability to sense its environment. Proper

sensor selection is crucial as it affects the quality and quantity of environmental information

available to the robot and subsequently determines what SLAM approach is most suitable to

be used [11]. The three major types of sensors applied to current SLAM technology are the

following.

1. Acoustic sensors: Sonar sensors are mostly used underwater. However, the monotony

of subsea regions means sonar depth information is much harder to interpret with high

angular uncertainty. Ultrasonic sensors are generally the cheapest available source of

spatial sensing formobile robots. They are compatible withmost surface types, whether

metal or non-metal, clean or opaque, as long as the surface measured has sufficient

acoustic reflectivity.

2. Laser Range Finders: Due to the high speed and high precision of laser range find-

ers that enable them to produce highly accurate distance measurements, laser-based

systems can obtain robust results in both indoor and outdoor environments.

3. Visual sensors: We will analyze the three basic types of sensors and the characteristics

of the systems that use them.

• Monocular cameras are modified refracting telescopes used to magnify the im-

ages of distant objects by passing light through a series of lenses and usually

prisms [12]. They generate 2D images and used in SLAM systems with strict

cost, area, and energy requirements (e.g. in mobile telephony). However, due to

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

2.1 SLAM and KinectFusion 7

the lack of clear depth information from a 2D image, a drawback is that the al-

gorithms and software necessary for monocular SLAM are far more complex.

Another weakness are the difficulties due to pure rotational motion. Since the

estimation of 3D points are essential, it is unavoidable that a system based on

monocular sensor will encounter numerical issues during periods of pure rota-

tional motion or slow motion [13]. However, there exist works which can han-

dle this situation, as described in [14]. LSD-SLAM [15], ORB-SLAM [16] and

ORB-SLAM2 [17] are some noted SLAM systems which provide implementa-

tions based on Monocular camera sensor input.

• Stereo cameras. A stereo camera system consists of two cameras separated by

a fixed distance. It can estimate depth by computing the difference between the

two slightly offset camera images. Specifically, as figure 2.1 shows, owing to

their disparate locations, a point in the physical world is projected differently by

two cameras onto two film frames. In the right camera picture, the point in the

left camera picture is shifted by a defined distance. The depth value can then be

obtained if the relative location of each point in each camera is known. A good

estimation of depth needs a decent baseline distance: The wider the baseline, the

better the depth estimation. However, since the cameras are mounted on the robot,

the distance between them can be limited. Some Stereo-based SLAM systems are

ORB-SLAM2 [17], PL-SLAM [18] and StereoScan [19].

Figure 2.1: Stereo camera placement

• RGB-D cameras, such as Kinect [20] have high mobility and low cost. This

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

8 Chapter 2. Background

type of sensors are widely used in various applications while capture RGB im-

ages along with pixel-wise depth information. The most noted SLAM algorithms

which use this sensor type are KinectFusion [21], ElasticFusion [22], BundleFu-

sion [23], DVO-SLAM [24], Kintinuous [25] and InfiniTAM [26].

Visual Odometry

Odometry is used to estimate the sequential changes of sensor positions over time using

sensors such wheel encoder to acquire relative sensor movement. Localization is the main

task for autonomous vehicles to be able to track their paths and properly detect and avoid

obstacles. According which one of the visual sensors referred above the autonomous machine

use, this determines the type of Visual Odometry. Each camera-based odometry called Visual

Odometry (VO). Vision-based odometry is one of the robust techniques used for vehicle

localization [27]. VO can also be used in conjunction with information from other sources

such as GPS, inertia sensors, wheel encoders, etc.

Figure 2.2: Visual SLAM pose estimation

Visual SLAM

Visual SLAM is a SLAM system which uses visual input sensors such as monocular

cameras, stereo rigs, RGB-D cameras etc. The majority of modern visual SLAM systems are

based on tracking a set of points through successive camera frames and use them to estimate

the camera pose. These tracks are also used to triangulate their 3D position to create the

map. Figure 2.2 shows three consecutive input frames where each one sees the same object

from a different point of view. All input frames contain common features related to the object

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

2.1 SLAM and KinectFusion 9

characteristics, which the algorithm recognizes them approximately and uses them to estimate

each frame camera pose and also fuse this information in the map. More information on this

procedure will be found in section 2.1.2.

Figure 2.3: Left: Colored points are points of PTAM sparse map [1], Right:All surface points

are part of the DTAM dense map [2]

Visual SLAM algorithms are classified into two categories according to how many pixels

are used to reconstruct the map:

• Sparse vs. Dense. Sparse SLAM systems use only a small selected subset of the pixels

in an input frame, while dense SLAM systems use most or all of the pixels in each

received frame. Figure 2.3 shows the difference between them.

• Feature-based vs. Direct. Feature-based systems require that features are first ex-

tracted from the input images (such features may include corners, lines, curves, etc.).

These features match the features obtained from different poses, and solve the SLAM

problem by minimizing the feature projection error. On the other hand, direct systems

utilize the whole image (at the pixel level) to perform localization and mapping.

2.1.2 KinectFusion

KinectFusion algorithm was the first attempt to real-time volumetric reconstruction of a

scene in variable lightning conditions [21]. This reconstruction method projects each point

(voxel) of the depth image within a volumetric grid which represents a model of the problem’s

world. Referring to the categories of subsection 2.1.1, KinectFusion is a real-time dense,

direct RGB-D surface mapping and localization SLAM algorithm.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

10 Chapter 2. Background

Figure 2.4 the steps to do 3D volumetric reconstruction. To be more precise, below de-

scribed the functionality of each step.

Figure 2.4: KinectFusion workflow for real-time volumetric reconstruction [3]

Surface Measurement: In this step, the depth input from the depth sensor (Rk), af-

ter applying a Gaussian bilateral filter, is used to build normal map and vertex map

pyramids (Nk, Vk).

Pose Estimation: Using information gained in the previous step, an Iterate Closest

Point (ICP) algorithm estimates the optimal alignment between current frame vertex

and normal map pyramids and 3D world map by using steps of rotations and transla-

tions. The tracked 6 DOF camera pose is described by the rigid body transformation

matrix given below (eq. 2.1), which refers to the frame g, a given time k.

Tg,k =

 Rg,k tg,k

0 1

 ∈ SE3 (2.1)

where the Euclidean group SE3 := {R, t|R ∈ SO3, t ∈ R3}. Any rigid transformation

in 3D can be described by means of a 4x4matrix T with the structure above, where the

3x3 orthogonal matrix R ∈ SO3 is the rotation matrix (the only part of T related to

the 3D rotation) and the vector t represents the translational part of the 6D pose. For

such a matrix to be applicable to 3D points, it must be represented first in homogeneous

coordinates which, in our case, will consist in just considering a fourth, extra dimension

to each point which will be always equal to the unity [28]. Table 2.1 derives useful

information about topological groups used to describe transformations in 2D and 3D

space.

Update Reconstruction: A volumetric representation (voxel grid) is defined here and

fused with new information of each new input depth map. In each location (voxel)

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

2.1 SLAM and KinectFusion 11

in 3D representation of the world p ∈ R3, is assigned a signed value determined by

a Truncated Signed Distance Function (TSDF) Sk(p). During this phase, each voxel

stores the normalized signed distance to the nearest surface, which is positive if the

voxel located in-front of and negative if it is behind the surface (figure 2.5).

Figure 2.5: Store scene geometry as truncated signed distance function (TSDF) [4]

Surface Prediction: It is a post-volumetric integration step in which the surface is

visualized by ray-casting the signed distance stored in voxel grid into an estimated

frame and aligning this ray-casted view with live depth map. It constitutes a depth

map (consisting of normal and vertex map) representation of the 3D world, used as

described in Pose estimation phase.

After analysing characteristics of volume reconstruction based algorithms, which also

KinectFusion complies with, the following section examine more precisely the algorithm’s

specific features.

KinectFusion implementation

As starting point, we use SLAMBench suite [9] which provides a KinectFusion imple-

mentation in C++, OpenMP, OpenCL and CUDA. Figure 2.6 outlines the functionality of

this implementation.

The acquisition step reads a new RGB-D frame from the input source. This step models

I/O costs during benchmarking.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

12 Chapter 2. Background

Group Description Dim. Matrix Representation

SO3 3D Rotations 3 3D rotation matrix

SE3 3D Rigid transformations 6
Linear transformation on

homogeneous 4-vectors

SO2 2D Rotations 1 2D rotation matrix

SE2 2D Rigid transformations 3
Linear transformation on

homogeneous 3-vectors

Sim3

3D Similarity transformations
7

Linear transformation on

(rigid motion + scale) homogeneous 4-vectors

Table 2.1: Lie groups frequently used to describe rigid body transformations [7]

In correspondence with the previous analysis of the algorithm, the bilateral filter referred

to SurfaceMeasurement phase. It is a stencil-based, edge-preserving filter that blurs the depth

image in order to reduce the effects of noise and invalid depth values [29]. This kernel uses

a 5x5 coefficients array, which combines position-based with range filtering. Range filtering

averages image values with weights that decay as image dissimilarity increases. In this step,

also a three-level pyramid is created by sub-sampling the filtered depth image. The generated

pyramid determines the input data structure of tracking (vertex and normal map pyramid).

Figure 2.6: KinectFusion data processing pipeline [5].

Tracking estimates the 3D pose of the agent by registering the input depth frame with the

2D projection of the currently reconstructed model from the most recent camera position (the

voxel map produced by raycasting). Tracking is based on the Iterative Closest Point (ICP)

algorithm which estimates the optimal alignment between the depth and the 2D voxel map

using steps of rotations and translations [30]. An additional step in Pose estimation phase is

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

2.1 SLAM and KinectFusion 13

reduction step which sums up all the distances of corresponding vertices of the two maps

with a highly parallel tree reduction process to produce a 6×6 system of linear equations and

finally compute the best match. Εquation 2.1 describes the estimated camera pose. Tracking

and reduction are called multiple times (until convergence or up to a maximum number of

iterations) at each image of a three-level pyramid of images.

Once the new pose of the tracked frame has been determined, integration merges the

corresponding depth map into the current 3D reconstructed model. KinectFusion utilizes a

3D voxel grid as the data structure to represent the global map, employing a truncated signed

distance function (TSDF) to represent 3D surfaces [31], as described above for Update Re-

construction phase.

The post-volumentric integration step is ray-casting, a computer graphics algorithm used

to render 3D scenes to 2D images. From each pixel point of the final 2D image, raycast emits

(casts) an imaginary ray towards the 3D voxel grid. The algorithm iteratively traverses the ray

with a specific step size to select sampling points. Since these points are not typically aligned

with the voxels of the grid, a trilinear interpolation step is necessary to compute the value

of the sampling point from its surrounding eight voxels. Ray traversal terminates when the

interpolation computes a negative value (indication that it has intercepted the surface of an

object), or the ray reaches the bounding box of the 3D voxel grid (indication of empty space).

Once an object is detected, a gradient of illumination values is computed that represents the

orientation of the detected surface. Raycast updates the vertex and normal maps that identify

the surface to the current estimate of the camera position.

Finally, rendering draws the constructed 2D voxel map (the output of raycasting) and

the tracking trajectory of the agent. Rendering is not part of the SLAM algorithm and is not

considered in our study.

2.1.3 ICL-NUIM dataset

SLAMBench introduces a alternative way of SLAM systems benchmarking. Instead of a

robot and sensors live use, provide as input pre-captured video frames. There are numerous

published datasets for this purpose, but we focus on ICL-NUIM [32]. The ICL-NUIM dataset

aims at benchmarking RGB-D, Visual Odometry and SLAM algorithms. They present a col-

lection of handheld RGB-D camera sequences within two different synthetically generated

environments (the living room and the office room) with ground truth information.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

14 Chapter 2. Background

Figure 2.7 shows how the baseline KinectFusions algorithm manipulates the input depth

scene. The input RGB and Depth images describe a frame of the third living room trajectory

(lt_kt2) of ICL-NUIM dataset.

Figure 2.7: KinectFusion I/O: The input RGB scene (top left), the input depth frame (bot.

left), the tracking output (top right), and the reconstructed 3D map (bot. right).

2.1.4 Error evaluation

In general, a SLAM system produces the approximate agent trajectory. The quality of the

approximate trajectory from a given input sequence of RGB-D images, it is necessary to be

measured. Both sequences consist of homogeneous transformation matrices that express the

pose of the RGB-D frame of the Kinect from an (arbitrary) reference frame.

For visual SLAM systems, the Absolute Trajectory Error (ATE) is frequently used as

a trajectory error metric. ATE accumulates the error across all frames of a trajectory and

can be evaluated by comparing the absolute distances between the predicted trajectory and

the ground truth. As both trajectories can be specified in arbitrary coordinate frames, they

first need to be aligned, by using the method of Horn [33], which determines the rigid-body

transformation corresponding to the least-squares solution that maps the estimated trajectory

into the ground truth trajectory. ATE is computed as the sum of Root Mean Square Error

(RMSE) between the aligned ground truth and estimated trajectory of all frames. Since ATE

depends on the number of frames in the trajectory, in this work we use the average RMSE

across all frames, as the error metric.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

2.2 FPGA Technology 15

2.2 FPGA Technology

Field Programmable Gate Arrays (FPGAs) are semiconductor devices that are based

around a uniform matrix of configurable logic blocks (CLBs) that are interconnected by

a configurable routing grid. CLBs are digital circuits which form the core of the FPGA’s

programmable-logic capabilities. The CLBs interact with each other and with external cir-

cuitry. For these purposes, the FPGA uses a matrix of programmable interconnects and in-

put/output (I/O) blocks. CLBs include look-up tables (LUT), storage elements (flip-flops or

registers), and multiplexers that allow the CLB to perform data-storage, as well as logic and

arithmetic operations.

Programmable routing grid [34] consists of interconnecting wires that join CLBs together

to build complex logic. It also joins I/O blocks to CLBs and joins CLBs to memory resources

as figure 2.8 shows. The interconnects can readily be reprogrammed, allowing an FPGA to

accommodate changes to a design or even support a new application during the lifetime of

the part.

Figure 2.8: FPGA structure: 1. Configurable logic blocks (CLBs), 2. Programmable routing,

3. I/O Blocks

For an application execution, there is a need for an FPGA-based design which defines the

required computing tasks to transform this collection of thousands of hardware blocks into a

correct configuration. FPGA programming achieved either by traditionally using a hardware

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

16 Chapter 2. Background

description language (HDL) such as VHDL or Verilog or through software development kits

(SDKs) and High-level synthesis (HLS) design tools that allow designers to develop FPGA

solutions in popular high-level languages such as C/C++, Python and OpenCL.

FPGAs provide significant advantages compared with fixed-hardware platforms (CPUs,

GPUs), such as low latency/high performance and high power/energy efficiency. Due to their

programmable nature, FPGAs are an ideal fit for many different markets and applications

such as Aerospace & Defense, ASIC Prototyping, Audio, Automotive, Consumer Electron-

ics, Data Center, High Performance Computing and Data Storage, Industrial, Medical, Se-

curity, Video & Image Processing, Wired and Wireless Communications. In general, FPGA

performance strongly depends on the application characteristics.

Figure 2.9: Zynq UltraScale+ MPSoC ZCU102 [6]

Multiprocessor System on a Chip (MPSoC) FPGA

MPSoC FPGA devices integrate both processor and FPGA architectures into a single de-

vice. This provides higher integration, lower power, smaller board size, and high-bandwidth

communication between the processor and FPGA. MPSoC also include a set of peripher-

als, on-chip memory, an FPGA-style logic array, and high speed transceivers. In this thesis,

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

2.3 Related work 17

we use the Ultrascale+ ZCU102 MPSoC (Multi-Processor SoC) board as a target platform

(Figure 2.9).

2.3 Related work

It is only recently that dense SLAM algorithms have been ported in an FPGA. In [35],

Gautier at al. perform an extensive design space exploration is performed for the InfiniTAM

algorithm [36] (which is itself derived from KinectFusion [21]). They develop by developing

a large number of parameterized architectures for each of the dense SLAM components. The

performance of the different OpenCL-based InfiniTAM implementations is evaluated using

a low-cost Terasic DE1 FPGA System-on-Chip (SoC), and a high-performance Terasic DE5

PCIe board, achieving less than 2 fps and 44 fps on an 320x240 input depth image, respec-

tively. Most of the improvements wrt. to the SW-only implementation are due to the merging

of the depth fusion and raycasting kernels, loop-based optimizations and caching/prefetching

strategies. Unlike our work, the authors only focus on performance and do not explore any

accuracy vs. performance trade-offs. Since KinectFusion is a closed-loop algorithm, some of

the excessive approximations described in [35] may result in very large ATE. Earlier work

by the same authors only maps the tracking and depth fusion kernels in the FPGA [37].

ORB-SLAM is a feature-based sparse SLAM system that operates in real time without

acceleration in indoor and outdoor environments [16]. A hardware implementation of ORB-

SLAM is presented in [38]. Abouzahir et al. [39] evaluate a number of sparse SLAM algo-

rithms in desktop and embedded platforms and also implement FastSLAM 2.0 [40] in a GPU

and an Arria 10 FPGA.

To bridge the gap between dense and sparse SLAM approaches, a family of semi-dense

SLAM algorithms such as LSD-SLAM [15] have been proposed to provide a more dense and

information-rich representation compared to sparse methods, while achieving better compu-

tational efficiency from processing a subset of high quality observations. In [41], the LSD-

SLAM algorithm is accelerated on an FPGA SoC, achieving more than 60 mapped fps on a

640x480 input visual frame. Previous work by the same authors describes an FPGA accel-

erator only for semi-dense tracking (but not mapping) on embedded platforms [42]. A very

low-power ASIC design for real-time visual inertial odometry (VIO) targeting nano-drones

has been announced recently [43]. The chip, fabricated at 65nm CMOS technology, uses in-

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

18 Chapter 2. Background

ertial measurements and mono/stereo images to estimate the drone’s trajectory and a 3D map

of the environment. It can process 752×480 stereo images at 20 fps consuming an average

power of merely 2 mW.

Approximate computing has been used to accelerate SLAM implementations. [44] studies

the performance impact of reduced-precision floating-point arithmetic in SLAM algorithms.

In SLAMBooster, the degree of approximation is dynamically adjusted during the motion

of the robot [45]. For example, the accuracy of the SLAM algorithm is increased when the

surface is detected to be smooth (e.g. when the scene represents a flat field) or in case a

sudden pose change is detected between successive frames.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Chapter 3

Precise and Approximate Optimizations

on KinectFusion

In this chapter, we describe our proposed MPSoC FPGA-based architectures along with

the most significant performance optimizations for each kernel described in section 2.1.2.

The main objective is to maximize the throughput for each individual kernel and the complete

algorithm without considerably increasing the localization error.

Code optimizations are classified in the following two categories:

• precise optimizations, which retain the accuracy of the baseline code, and

• approximate optimizations, which may affect the accuracy of the baseline code

As we already mentioned in chapter 1, our starting point is the C++/OpenMP SLAM-

Bench suite implementation of KinectFusion algorithm. The first step is to transform the

C++ baseline code to FPGA-oriented C++ code by applying basic hardware optimizations.

These precise optimizations for all kernels include the usual assortment of loop unrolling

and software pipelining (with various factors and iteration intervals II, respectively) and us-

ing prefetching and BRAM array partitioning so that input elements are only read once from

external DRAM.

For each kernel, we apply the approximate optimizations on the fastest precise imple-

mentations, i.e. after the repertoire of precise optimizations has been exhausted. To increase

throughput, we aim at (i) reducing execution time of each kernel by selectively combining

both precise and approximate optimizations, and (ii) scheduling multiple accelerators for par-

allel execution.

19
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

20 Chapter 3. Precise and Approximate Optimizations on KinectFusion

Bilateral Filter Tracking Integration Raycast (SW)

Optim. Description Optim. Description Optim. Description Optim. Description

BF_Pad Pad input frame Tr_Unroll Unroll inner loop & Int_Inter Loop Interchange

BF_Unroll Unroll inner loop & cache in BRAM Int_Unroll Unroll inner loop &

cache in BRAM Tr_Pipe Pipeline inner loop cache in BRAM

BF_Pipe Pipeline inner loop to process a pixel Int_Pipe Pipeline inner loop

to process a pixel after II=1 cycles to process a voxel

after II=1 cycles Tr_NCU N Compute Units after II=1 cycles

BF_NCU N Compute Units Int_NCU N Compute Units

BF_Coeff 3x3 coefficients Tr_LP Loop perforation Int_SLP Loop perfor. (Skip) R_Step Larger ray steps

BF_HP fp16 arithmetic Tr_HP fp16 arithmetic Int_CLP Loop perfor. (Copy) R_LP Skip computing of rays

BF_Range No range filter Tr_LvlIter Skip pyramid levels Int_HP fp16 arithmetic R_TrInt Use fewer points

& reduce max # iter. Int_Br Eliminate checking for trilinear interp.

Int_FPOp Eliminate expensive R_Fast Use –ffast-math

FP Operations R_Rate Skip one frame

Table 3.1: Precise (top rows) and Approximate (bottom rows) optimizations for the Kinect-

Fusion kernels.

The following sections contain an analysis of each kernel precise and approximate op-

timizations shown in table 3.1. Some of the optimizations in the table are widely used as

techniques when accelerating an application on FPGAs. These are:

• multiple instances of the same accelerator (NCU), used to process different parts of the

input frame concurrently to further increase performance.

• use of half precision floating-point arithmetic or fp16 (HP), which mainly reduces

the FPGA utilization by replacing single precision (32-bit) FP operations with 16-bit

arithmetic. This leads to an increase in error of FP operations due to the use of fewer

Figure 3.1: Floating Point formats according to IEEE 754 standard.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

3.1 Bilateral Filter 21

bits to describe FP numbers as shown in figure 3.1.

3.1 Bilateral Filter

The bilateral filter (BF) kernel reads the input depth image which is a 2D array of 320x240

elements, the 5x5 convolution filter and writes back to an 320x240 image.

Precise optimizations:

(i) The input depth frame is padded (BF_Pad) by the host CPU with additional rows and

columns to eliminate checking of boundary conditions, which is a major limitation for

pipeline parallelism in FPGAs.

(ii) Unrolling the inner loop (BF_Unroll) which computes each input pixel convolution

has a significant performance impact.

(iii) Loop pipelining (BF_Pipe) is used to overlap loop iterations. Due to the need of mul-

tiple read accesses of the same buffer positions, for each output image line, five rows

of input structure are stored in BRAM applying the corresponding array partitioning.

(iv) Multiple instances of the kernel (BF_NCU) parallel the execution of independent parts

of the image.

Approximate optimizations: Bilateral filter kernel approximate optimizations mainly af-

fect FPGA utilization, without significant increase in error.

(i) We use a smaller 3x3 coefficient array (BF_Coeff) instead of the nominal 5x5 array.

Although a convolution filter with smaller radius results to a less smooth image, this re-

placement does not affect the system’s accuracy for the specific input trajectory. More-

over, this optimization reduces FPGAutilization and results into fewer BRAMmemory

accesses, which leads to higher performance.

(ii) We use half precision 16-bit floating point format (fp16) instead of 32-bit float (BF_HP).

(iii) We remove the range filtering stage of the bilateral filter (BF_Range), which eliminates

the invocation of an exponent function in the coefficient filter.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

22 Chapter 3. Precise and Approximate Optimizations on KinectFusion

3.2 Tracking

The tracking kernel accesses the current depth image row-wise and pairs each input pixel

to its corresponding point in the 2D projection of the reconstructed model. Therefore, some

accesses follow row-wise direction and other read voxel grid 2D representation randomly

depending on the camera pose. Tracking is invoked multiple times for the three pyramid

levels of each frame. In particular, the default maximum number of iterations is 10, 5, and 4

for the level 0 (the higher-resolution frame) and for levels 1 and 2, respectively.

Precise optimizations: We apply software pipelining and loop unrolling (Tr_Pipe and

Tr_Unroll) coupled with the provision to cache input and/or output data rows in BRAMs.

Moreover, we evaluate the option to merge the tracking and reduce kernels into a larger ker-

nel. Additionally, we use multiple instances of tracking accelerator (Tr_NCU) to process

concurrently different parts of the image.

Approximate optimizations:

(i) Loop perforation is an approximate computing technique used to skip loop iterations [46].

We employ this technique to skip pixels of the input depth frame (Tr_LP). For each 2D

part of input with dimensions 4x8, the updated top left pixel value is assigned to the

rest pixels of the block.

(ii) We replace all FP operations with half precision fp16 arithmetic (Tr_HP).

(iii) We reduce pyramid levels and skip tracking kernel invocations for each one of them

(Tr_LvlIter). Pyramids are frequently used for image detail enhancement and manipu-

lation. However, the smaller the image dimensions the fewer the details of an image. In

our application, the depth resolution is 320x240which implies that skipping processing

of lower resolution images will not substantially degrade image quality.

3.3 Integration

This kernel consists of a triple nested loop which updates the 3D voxel grid (consisting

of 256x256x256 voxels) using the new pose of the agent obtained by tracking. Each voxel

can be processed independently, which, combined with the row-wise access of the 3D voxel

grid suggests that the Integration kernel has a high acceleration potential in the FPGA.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

3.3 Integration 23

Precise optimizations: Besides the usual assortment of loop optimizations, we also per-

form loop interchange (Int_Inter) to improve the memory access patterns of the 3D grid and

thus increase the overall code spatial locality. Without the achieved spatial locality, any ef-

fort according to the loop pipelining and optimal memory access pattern does not pay off.

Then, we use internal BRAMs to prefetch and cache a variable number of TSDF rows to

overlap computing with memory reads. Thirdly, we apply software pipelining (Int_Pipe) and

unrolling (Int_Unroll) and allocate data in internal BRAMs to maximize bandwidth. Finally,

we instantiate multiple instances of the kernel to partition the 3D voxel processing into N

parts (Int_NCU).

Approximate optimizations:

(i) Loop perforation is used to skip iterations of the triple nested loop For each frame, the

TSDF values of the skipped iterations are evaluated as a function of TSDF values that

have been computed conventionally. We experimented with a variety of approaches

which include (a) skipping altogether the computation of new TSDF values (Int_SLP),

and use, instead, the old TSDF values (i.e the values at the same position in the pre-

vious frame), (b) using the average or just copying the newly computed TSDF values

of neighboring positions to the skipped positions (Int_CLP). Experimental evaluation

indicates that the maximum number of skipped iterations which does not affect system

accuracy is six (along the z axis).

(ii) We use the half-precision (fp16) format instead of high precision floating-point oper-

ations (Int_HP).

(iii) We eliminate some of the branches that are used in the loops to check for special con-

ditions (Int_Br). However, most of them constitute a significant role in the algorithm’s

flow.

(iv) We replace expensive floating point operations (Int_FPOp) which have low variation

across loop iterations with simpler functions or constant values. For example, we re-

move the calculation of a square-root operation used as a normalized factor in the dis-

tance between the current pixel and the estimated camera position in the z-axis.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

24 Chapter 3. Precise and Approximate Optimizations on KinectFusion

3.4 Raycasting

Even though all rays can be traversed concurrently as separate threads (thus facilitating

parallel execution by multiple accelerators), accessing the TSDF values results in a non-

contiguous and irregular memory access pattern, making memory prefetching, data distri-

bution to internal BRAMs, and data reuse very challenging. For these reasons, the raycast

kernel is executed on the ARM CPU in all implementations.

Approximate optimizations:

(i) Ray traversal uses steps of variable size (R_Step). The step starts with a larger size,

which becomes smaller as the ray approaches a surface or the edges of the 3D voxel

grid. We use steps of constant size to achieve a deterministic schedule and size of voxel

prefetching.

(ii) We only compute along a fraction of rays (similar to loop perforation). For a 2x2 block

of neighboring rays, when one of them (top left) reaches an object’s surface, then we

assume the same for the rest of them (R_LP).

(iii) Raycast trilinear interpolation accesses 8 different TSDF values for averaging. We pro-

vide the option to use simpler interpolation schemes that require only two TSDF ac-

cesses (R_TrInt).

(iv) We use fast math (R_Fast) to approximate expensive floating point operations.

(v) We perform raycast at a lower frequency, once every two frames (R_Rate).

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Chapter 4

Experimental evaluation

This chapter presents the effect and significance of each optimization described in chap-

ter 3. It also presents the fastest configurations performance, power and area analysis results.

4.1 Methodology

We implemented our designs using the VitisTM Platform targeting the Xilinx UltraScale+

MPSoCZCU102 Evaluation Kit. The FPGA includes a quad-core 1.2 GHzARMCortex-A53

processor paired with 4 GB DDR4 main memory and is based on Xilinx’s 16nm FinFET+

programmable logic fabric. The FPGA fabric runs at 300 MHz in all our experiments. For

comparison, we use the SW-only KinectFusion implementation on a desktop platform with a

3.6 GHz Intel Xeon® W-2123 processor with 4 cores (8 hardware threads) and 16 GB DDR4

main memory. Figure 4.1 shows the contribution (%) of each kernel to the total execution

time, when running the C++/OpenMP KinectFusion implementations on an ARM Cortex-

A53 and a Xeon W-2123 CPU, as well as the application throughput without including the

rendering and acquisition kernels. Note that the integration and raycast kernels contribute

more than 70% of total execution time.

To compare power consumption between the two architectures (FPGA, x86), we measure

power dissipation on the FPGA using the Power Management Bus (PMBus) protocol which

monitors multiple power rails, and on Xeon via the MSR power monitoring registers. 1

As input, we use four camera trajectories lr.kt[0-3] from ICL-NUIM dataset (described in

section 2.1.3), a synthetic dataset providingRGB-D sequences from a living roommodel [32].

1Power estimation was done by Alexandros Patras.

25
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

26 Chapter 4. Experimental evaluation

0% 20% 40% 60% 80% 100%

Bilateral Track Reduce Integration Raycast Rendering Other

ARM A-53 (4C) 2.38 fps

ARM A-53 (1C) 0.61 fps

Xeon W-2123 (8T) 26.67 fps

Xeon W-2123 (4T) 19.94 fps

Xeon W-2123 (1T) 5.95 fps

Figure 4.1: Contribution of each KinectFusion kernel to total execution time (T=#threads,

C=#cores). The y-axis to the right shows throughput in frames/sec.

We run all frames of each trajectory, lr.kt0:1510, lr.kt1:967, lr.kt2:882, lr.kt3:1242, but, for

the evaluation of our optimizations we mainly use lr.kt2. Note that precise optimizations have

the same performance effect for all trajectories, but approximate optimizations may be trajec-

tory dependent. In all experiments, we do not consider rendering as part of the KinectFusion

pipeline. We use the default SLAMBench parameters as follows:

• Input depth frame resolution is 320x240.

• Integration and tracking rate is once per frame.

• Number of pyramid levels in tracking is 3.

• Maximum number of tracking iterations is 10,5,4 for levels 0, 1 and 2, respectively.

• Volume resolution for the scene reconstruction is 2563 voxels.

• Volume map (dimensions of the reconstructed scene) is 4.83m3.

The output error metric is the average (across all frames) root mean square error (RMSE)

between the ground truth and the estimated trajectories of the agent as described in sec-

tion 2.1.4. Figure 4.2 is the visualization of three lr.kt2 trajectories:

(i) the ground truth trajectory (RMSE=0),

(ii) the baseline KinectFusion trajectory (RMSE=2cm), and

(iii) a trajectory with RMSE=3.4cm.

Note that even the baseline KinectFusion algorithm is approximate with an average RMSE

equal to 2cm. Following the same procedure for a configuration with RMSE equals to 3.4cm,

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

4.2 Design Space Exploration 27

we do not observe too large error deviation. Moreover, a frame is defined as untracked when

the algorithm fails to recognize its position in the map. We have found experimentally that

an average RMSE higher than 3.4cm (for lr.kt2) almost always results into more untracked

frames.

 Ground Truth (RMSE=0)

 Baseline (RMSE=2cm)

 Worst Approximate (RMSE=3.4cm)

Figure 4.2: Trajectories with various average RMSE values. Grid unit distances are 0.5m in

x-axis, 0.05m in y-axis, and 0.5m in z-axis.

4.2 Design Space Exploration

As already described in chapter 3, the optimizations we use are categorized into precise

and approximate. Precise optimizations such as software pipelining, loop unrolling, BRAM

partitioning are used to improve performance without negatively affecting the RMSE of the

trajectory. Concerning approximate optimizations, we place an upper bound on the average

RSME which is trajectory-specific but does not exceed 3.4cm for the lr.kt2 trajectory. Fig-

ure 4.3 shows the execution time of each kernel (N=1) when implemented in hardware (using

Vitis HLS). Table 4.1 shows the throughput (in Hz) and the speedup achieved by the fastest

precise and approximate hardware implementations compared with the unoptimized hard-

ware implementation. The last column shows the average RMSE per frame when only the

corresponding kernel is approximate and all other kernels run precisely.

For a single bilateral filter HW accelerator, precise optimizations yield 705x speedup

compared with the unoptimized HW implementation, whereas approximate optimizations

further increase the speedup to 1044x (Table 4.1). For the integration kernel, the speedups

are 14x and 59x, respectively. These two kernels are characterized by regular memory access

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

28 Chapter 4. Experimental evaluation

Figure 4.3: Execution time of each kernel for the Unoptimized, Fastest Precise and Approx-

imate versions. Note the logarithmic scale of the y-axis .

Unopt. Fastest and Fastest and

Precise Approximate

Hz Hz (Speedup) Hz (Speedup) RMSE

Bilateral 0.54 380.5 (705x) 564 (1044x) 2.28

Tracking 0.49 17.7 (36x) 323 (659x) 2.02

Integration 0.72 10.1 (14x) 42.4 (59x) 2.54

Raycast (SW) 6.28 - 110 (17.5x) 2.07

Table 4.1: Performance of HW and SW kernel implementations (1 accelerator).

patterns (2D and 3D, respectively), and readily available coarse-grain parallelism. Interest-

ingly, loop perforation (Int_SLP) in the vertical z-axis also provides substantial speedup of

up to 5x for 5 skipped iterations, without noticeable loss of accuracy. This is because the 3D

voxel grid is not updated frequently along this direction.

For the tracking kernel (the slowest unoptimized kernel at 0.49 Hz), the execution time

decreased from 2026ms (unoptimized) to 3ms (approximate) at a 59x speedup.

As we mentioned in section 3.4, the raycast kernel is not suitable for hardware accelera-

tion mainly due to complex memory accesses in the large 64 MB 3D voxel grid. Given this,

in table 4.1 and figure 4.3 the corresponding results referred to the software implementation

of the kernel, and yielded 25.9x speedup.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

4.2 Design Space Exploration 29

0 200 400 600
1.5

2

2.5

3

3.5

0 100 200 300
1.5

2

2.5

3

3.5

0 20 40 60 80
1.5

2

2.5

3

3.5

0 10 20 30 40 50 60
1.5

2

2.5

3

3.5

0 5 10 15 20 25 30
1.5

2

2.5

3

3.5

Approximate SW Only Precise

Bilateral Tracking

Integration Raycast SW

Total

Frames Per Second

R
M

S
E
 (

c
m

)

Throughput (Hz)

Figure 4.4: The scatter plots show throughput vs. average RMSE of various SW and HW

kernel implementations when running the lr.kt2 benchmark.

Figure 4.4 shows the results of the throughput vs. average RMSE design exploration of

precise and approximate optimizations for each kernel separately and for the entire applica-

tion. Each red mark corresponds to an approximate HW configuration using a combination of

the precise and approximate optimizations shown in Table 3.1. In Total, raycast is executed

in the ARM CPU and all other kernels in HW. Precise HW in the Total plot corresponds

to a configuration in which all kernels are executed precisely and each one has a single in-

stance. Using reduced fp16 precision has proven beneficial for the hardware implementation

of most kernels, primarily due to the reduced FPGA resources and the potential for fitting

multiple accelerators in the fabric. In this way, approximate total configurations include mul-

tiple instances of some kernels. We found that Int_NCU provides speedup almost linear to

the number of accelerators N and is more beneficial than Tr_NCU and R_NCU because the

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

30 Chapter 4. Experimental evaluation

integration kernel accesses a bigger data structure (3D) compared with bilateral and tracking.

As it is validated in the following section 4.3, without Int_NCU enabled the execution time

is too high to achieve real-time execution.

4.3 Significance Analysis

To better quantify the significance of individual optimizations of Table 3.1 on perfor-

mance and RMSE, and provide a systematic approach to select optimizations for a given per-

formance target, we use Lasso [47], a regularized linear regression method that builds models

to fit objective functions (e.g. throughput, RMSE). Lasso tends to favor the case when there

is a small number of significant optimizations by pushing the coefficients of insignificant

optimizations to zero. The result of this analysis are coefficients θj for each feature j, which

represent the relative contribution of j to performance, aiming at minimizing the following

loss function:

J(Θ) = J(θ0, θ1, . . . , θn) =

1

2m
(

n∑
i=1

(ΘTXi − yi)
2+λ

m∑
j=1

|θj|)

where Θ is the vector of the m coefficients to be computed, the vector Xi contains the

optimizations settings and yi is the resulting performance for the ith (out of a total of n)

experiment. The result of this analysis are the coefficients θj for each optimization j, which

represent the relative contribution of this optimization to the performance. The regularization

parameter λ controls the amount of variance of the model. Lasso tends to favor the case

when there is a small number of significant optimizations by pushing the Θ coefficients of

insignificant optimizations to zero.

We perform Lasso analysis for each kernel separately and for the whole application. Coef-

ficients with a high absolute value indicate a stronger correlation between the corresponding

feature and performance. Since using features with higher degree provides better model ac-

curacy (lower mean square error, MSE), we choose to report features up to the second degree

for each kernel. Using only first degree features typically results in a higher MSE which

indicates non-linear relations between optimizations and performance.

Table 4.2 shows the features with the largest coefficients for bilateral filter throughput

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

4.3 Significance Analysis 31

Table 4.2: Lasso analysis of KinectFusion Bilateral Filter

Throughput (MSE=0.039) RMSE (MSE=0.0019)

Feature Coeff. Feature Coeff.

BF_Unroll2 0.126 BF_Coeff2 0.408

BF_Pipe*BF_Unroll 0.099 BF_Range -0.237

BF_Pipe -0.095 BF_Coeff*BF_Range 0.056

BF_Unroll*BF_Coeff 0.064 BF_Coeff*BF_HP -0.048

BF_Coeff -0.060 BF_HP*BF_Range 0.023

Figure 4.5: Lasso analysis validation for the Bilateral Filter kernel.

and average RMSE. Figure 4.5 is used as validation of this ranking. The x-axis consists

of a sequence of optimizations sorted by the largest Lasso coefficient. Each x value means

that the current optimization and all optimizations to the left are enabled. RMSE analysis

shows that enabling 3x3 convolution filter, the RMSE decreases (positive Lasso coefficient,

also described in section 3.1), whereas BF_Range and BF_HP have a negative impact on

localization error.

Figure 4.6 shows the Lasso ranking of tracking optimizations of Table 4.3. In particu-

lar, the first three of them almost yield the final kernel throughput. Concerning approximate

optimizations, Lasso analysis validates that both Tr_LP and Tr_LvlIter increase error.

Figure 4.7 shows that integration need 5 enabled optimizations (more than the previous

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

32 Chapter 4. Experimental evaluation

Table 4.3: Lasso analysis of KinectFusion Tracking

Throughput (MSE=0.077) RMSE (MSE=0.008)

Feature Coeff. Feature Coeff.

Tr_Pipe2 0.078 Tr_LP -0.091

Tr_Pipe*Tr_LP 0.062 Tr_LvlIter -0.060

Tr_LP -0.039 Tr_LvlIter*Tr_NCU 0.046

Tr_Pipe*Tr_LvlIter 0.031 Tr_LvlIter2 0.043

Tr_LvlIter 0.021 Tr_LP2 0.024

Tr_Pipe -0.003 Tr_Pipe * Tr_LP -0.010

Figure 4.6: Lasso analysis validation for the Tracking kernel.

kernels need) to reach its best performance due to each optimization contribution to the time

reduction is small. We also observe that Int_NCU belongs to this set, but, as mentioned in

section 4.2, to achieve this performance for the entire application, approximate optimizations

which reduce FPGA resources must be enabled, due to area constraints. In table 4.4, the

column of throughput determines the order in which integration optimizations appears in

figure’s 4.7 x-axis, and RMSE analysis confirms that all the applied approximations lead to

error increment.

Raycast kernel is a special case since each new optimization that is activated has the same

speedup (Fig. 4.8). Concerning error analysis, all the applied approximate optimizations have

a negative effect on application’s RMSE, but the combination some of them, such as R_TrInt

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

4.3 Significance Analysis 33

Table 4.4: Lasso analysis validation for the Integration kernel.

Throughput (MSE=0.0008) RMSE (MSE=0.017)

Feature Coeff. Feature Coeff.

Int_Pipe2 0.184 Int_SLP*Int_CLP -0.255

Int_Pipe*Int_Inter -0.167 Int_CLP2 -0.219

Int_Inter2 0.156 Int_FPOp2 0.169

Int_SLP -0.120 Int_SLP -0.083

Int_Inter*Int_SLP 0.113 Int_HP -0.072

Int_Unroll -0.039 Int_SLP2 -0.06

Figure 4.7: Lasso analysis validation for the Integration kernel.

and R_Step, keeps the error almost unchanged.

The Table 4.6 shows the coefficients of the most impactful features of the full KinectFu-

sion design. As expected, the dominant optimizations are related to inner loop implementa-

tion such as loop interchange, pipelining, unrolling and caching of pixels/voxels to internal

BRAMs. Approximate optimizations such as loop perforation and half precision arithmetic

also score high. However, the combined analysis could not be as detailed as of the individ-

ual ones for each kernel, because too many configurations are required (27 optimizations-

features generate 227 runs-samples). For this reason, the validation table 4.6 reports grouped

optimizations impact on performance.

The second column of Table 4.6 presents a similar Lasso analysis to quantify the effects on

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

34 Chapter 4. Experimental evaluation

Table 4.5: Lasso analysis of KinectFusion Raycast SW

Throughput (MSE=0.0016) RMSE (MSE=0.038)

Feature Coeff. Feature Coeff.

R_LP -0.145 R_LP2 -0.166

R_Rate -0.110 R_TrInt2 0.166

R_Step -0.057 R_LP 0.127

R_Fast -0.056 R_LP*R_TrInt 0.096

R_LP*R_Rate 0.049 R_TrInt -0.084

R_TrInt -0.047 R_Step*R_TrInt 0.072

Figure 4.8: Lasso analysis validation for the Raycast kernel (SW).

the average RMSE due to the approximations applied on all kernels in combination. Typically,

loop perforation, if not applied judiciously, has the most negative effect on output error.

Table 4.7, shows how Lasso ranking is used to cumulatively apply optimizations accord-

ing to their impact on throughput. The Baseline configuration executes KinectFusion at 0.18

fps using one unoptimized accelerator for each kernel (and raycast in SW). Conf1 uses only

the 5 most impactful optimizations according to Lasso ranking in the Throughput column

of Table 4.6 to achieve 11.2x speedup. Then, Conf2 incrementally includes the 15 optimiza-

tions shown for each individual kernel in the corresponding Lasso analysis tables, which are

included in the qualitative total analysis When the first 22 (out of 27) optimizations of the

Lasso ranking are enabled, the entire application achieves top performance at 27.5 fps. The

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

4.3 Significance Analysis 35

Table 4.6: Lasso analysis of KinectFusion Combined kernels

Throughput (MSE=0.0016) RMSE (MSE=0.038)

Feature Coeff. Feature Coeff.

Int_Pipe2 0.085 R_Step -0.035

Int_Inter*Int_Pipe -0.056 Int_SLP 0.032

Tr_Pipe2 0.044 Tr_LvlIter*R_LP -0.027

Int_Pipe*Int_Unroll -0.043 Int_SLP*Tr_LvlIter -0.025

Int_Inter*Int_Unroll 0.039 Tr_LP -0.021

BF_Unroll2 0.037 Tr_LvlIter*R_Interp 0.017

Table 4.7: Optimization Selection Based on Lasso ranking.

Baseline Conf1 Conf2 All Optimiz.

Throughput (fps) 0.18 2 15.6 27.5

Speedup wrt. Baseline 1 11.2 86.2 151.7

Speedup wrt. - 11.2 7.69 1.76

previous configuration

last 5 optimizations resulted into implementations that exceeded available FPGA resources

and their Lasso coefficients are zero. As this statistical analysis indicates, additional optimiza-

tions after Conf1 are still important to increase performance further although at diminishing

returns.

Besides inter-frame, kernel-based optimizations, we also tried to overlap execution of

multiple frames to increase accelerator utilization and further increase performance. Due to

frame recurrent computations (back edge in Fig. 2.6), we can only overlap the bilateral filter,

gaining 4 ms per frame.

The fastest approximate configuration consists of one bilateral, one tracking and four

integration kernels (all approximate), and has average RMSE equal to 2.5cm. Approximate

computing not only enables faster individual kernel executions, but it also makes a better use

of FPGA resources allowing more accelerators to be deployed. The fastest precise configu-

ration includes one bilateral, one tracking and one integration kernel and runs at 2.91 fps, i.e.

9.4 times slower than the fastest approximate solution.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

36 Chapter 4. Experimental evaluation

4.4 Power and Area exploration

The average power of the PL fabric for all our experiments is in the range (2.6W, 3.2W),

whereas the average power of ARMwith 4 threads in the range (1.27W, 1.65W). The average

power dissipation in the fastest approximate FPGA configuration is 1.56W for ARM and

3W for the PL fabric. On the other side, the average power in the baseline implementation

on x86 Xeon W-2123 is 51.4W. Table 4.8 shows the difference between the baseline x86

configuration and the fastest FPGA configurations in performance, error, power and energy

consumption for the lr.kt2 trajectory.

Configuration Mean Execution Time per RMSE Mean Power Energy

Frame [ms] / FPS [cm] [W] [J]

Baseline - x86 37.5 / 26.7 2 51.4 1722

Fastest Precise 343 / 2.9 2 1.4 / 2.7 424 / 817

Fastest Approximate 36.3 / 27.5 2.5 1.56 / 3 50 / 96

Table 4.8: System metrics for x86 and FPGA fastest configurations

Figure 4.9 shows the FPGA resource utilization for the fastest precise and the fastest

approximate configurations. Approximation allows efficient use of resources by reducing

the area of the bilateral filter and the integration kernels, thus, enabling multiple integration

accelerators. Figure 4.10 shows that the increase in performance (frames per second) for the

entire application requires more FPGA resources (BRAM, DSP, FF, LUT).

BRAM DSP FF LUT BRAM DSP FF LUT
Precise Approximate

0
10
20
30
40
50
60
70

Bilateral Tracking Integrate

A
re

a
 u

ti
li
za

ti
o
n

 (
%

)

Figure 4.9: Area utilization for the fastest precise and approximate configurations.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

4.5 Timeline analysis 37

Figure 4.10: Area utilization vs. throughput for the entire application configurations.

4.5 Timeline analysis

The timelines of Figure 4.11 present the execution time and the RMSE per frame for the

fastest precise and the fastest approximate FPGA configurations for two trajectories lr.kt1

and lr.kt2. The graphs reveal considerable execution time variation (especially in lr.kt2), in

both the precise and approximate executions (the latter is not clearly visible in this graph

due to lower values of execution time). The reduced execution time around frame 365 is due

to the fast exits from the raycast and integration kernels since most objects in the scene are

much closer to the moving agent than, for example, the objects in frame 460. Note also the

ubiquitous ”high frequency” variations, which are almost entirely due to small intra-frame

execution time variations of the tracking kernel.

Our fastest configuration achieves 29.5 fps (33.5ms per frame) in lr.kt1 and 27.5 fps

(36.3ms per frame) in lr.kt2. The Fastest Approximate RMSE line in lr.kt1 shows higher

error deviation from the baseline compared with the error deviation in lr.kt2 trajectory. How-

ever, since this value does not exceed 1.5cm and all frames are tracked, our configuration is

acceptable.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

38 Chapter 4. Experimental evaluation

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0

2

4

6

8

10

12

Fastest Precise Ex. Time Fastest Precise RMSE
Fastest Approximate Ex. Time Fastest Approximate RMSE

Trajectory lr.kt1

Trajectory lr.kt2

frame

E
x
e
c
u

ti
o
n

 T
im

e
 /

 f
ra

m
e
 (

s
e
c
)

R
M

S
E
 / fra

m
e
 (c

m
)

Figure 4.11: Timeline showing execution time and RMSE per frame for the fastest precise

and approximate FPGA implementations.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Chapter 5

Conclusions

Dense visual SLAM algorithms have stringent throughput and accuracy requirements, a

combination that makes high performance implementations particularly challenging, espe-

cially in power-constrained environments. In this thesis, we have described and evaluated a

very large space of parameterizable MPSoC FPGA architectures for the KinectFusion algo-

rithm by blending together precise and approximate optimizations. We have shown that even

though approximations provide additional speedup on top of what is achieved by conven-

tional hardware optimizations, they need to be judiciously applied to avoid large cumulative

errors. We proposed a systematic methodology to rank the impact of each optimization on the

performance and output error of KinectFusion, and used it as an optimization selection mech-

anism. Our best FPGA design achieve 27.5 fps (11.55x faster than the ARMOpenMP imple-

mentation and 1.03x faster than the Xeon W-2123 OpenMP implementation) at an 320x240

input depth frame resolution without exceeding the tight error bounds necessary for tracking

convergence.

39
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Bibliography

[1] Georg Klein and David Murray. Parallel tracking and mapping for small AR

workspaces. In Proc. Sixth IEEE and ACM International Symposium on Mixed and

Augmented Reality (ISMAR’07), Nara, Japan, November 2007.

[2] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam: Dense tracking and map-

ping in real-time. In 2011 International Conference on Computer Vision, pages 2320–

2327, 2011.

[3] Redhwan Jamiruddin, Ali Osman Sari, Jahanzaib Shabbir, and Tarique Anwer. Rgb-

depth slam review. arXiv preprint arXiv:1805.07696, 2018.

[4] Carnegie Mellon University. Real-time dense 3d reconstruction from rgbd.

http://graphics.cs.cmu.edu/courses/15769/fall2016/

lecture/realtime3d.

[5] Bruno Bodin et al. SLAMBench2: Multi-Objective Head-to-Head Benchmarking for

Visual SLAM. In ICRA, 2018.

[6] Xilinx zynq ultrascale+ mpsoc zcu102 hardware documentation. https:

//www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-

g.html#hardware.

[7] Ethan Eade. Lie groups for 2d and 3d transformations, 2017. http://www.

ethaneade.org/lie.pdf.

[8] Sparsh Mittal. A Survey of Techniques for Approximate Computing. ACM Comput.

Surv., 48(4), 2016.

[9] Luigi Nardi, Bruno Bodin, M. Zeeshan Zia, JohnMawer, Andy Nisbet, Paul H. J. Kelly,

Andrew J. Davison, Mikel Luján, Michael F. P. O’Boyle, Graham D. Riley, Nigel P.

41
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

http://graphics.cs.cmu.edu/courses/15769/fall2016/lecture/realtime3d
http://graphics.cs.cmu.edu/courses/15769/fall2016/lecture/realtime3d
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html#hardware
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html#hardware
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html#hardware
http://www.ethaneade.org/lie.pdf
http://www.ethaneade.org/lie.pdf

42 Bibliography

Topham, and Stephen B. Furber. Introducing SLAMBench, a Performance and Accu-

racy Benchmarking Methodology for SLAM. In International Conference on Robotics

and Automation, (ICRA), Seattle, WA, USA, 26-30 May, pages 5783–5790, 2015.

[10] Vitis Unified Software Platform. https://www.xilinx.com/products/

design-tools/vitis.html.

[11] TJ Chong, XJ Tang, CHLeng,MYogeswaran, OENg, and YZChong. Sensor technolo-

gies and simultaneous localization and mapping (slam). Procedia Computer Science,

76:174–179, 2015.

[12] Wikipedia. Monocular. https://en.wikipedia.org/wiki/Monocular.

[13] Á. P. Bustos, T. Chin, A. Eriksson, and I. Reid. Visual slam: Why bundle adjust? In

2019 International Conference on Robotics and Automation (ICRA), pages 2385–2391,

2019.

[14] Christian Pirchheim, D. Schmalstieg, and Gerhard Reitmayr. Handling pure camera

rotation in keyframe-based slam. 2013 IEEE International Symposium on Mixed and

Augmented Reality (ISMAR), pages 229–238, 2013.

[15] Jakob Engel et al. LSD-SLAM: Large-Scale Direct Monocular SLAM. In ECCV-Part

II, 2014.

[16] Raul Mur-Artal et al. ORB-SLAM: A Versatile and Accurate Monocular SLAM Sys-

tem. IEEE Trans. Robotics, 31(5), 2015.

[17] Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: an open-source SLAM system for

monocular, stereo and RGB-D cameras. IEEE Transactions on Robotics, 33(5):1255–

1262, 2017.

[18] Ruben Gomez-Ojeda, David Zuñiga-Noël, Francisco-Angel Moreno, Davide Scara-

muzza, and Javier Gonzalez-Jimenez. PL-SLAM: a Stereo SLAM System through the

Combination of Points and Line Segments. arXiv preprint arXiv:1705.09479, 2017.

[19] Andreas Geiger, Julius Ziegler, and Christoph Stiller. Stereoscan: Dense 3d reconstruc-

tion in real-time. In IEEE Intelligent Vehicles Symposium, Baden-Baden, Germany, June

2011.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

https://www.xilinx.com/products/design-tools/vitis.html
https://www.xilinx.com/products/design-tools/vitis.html
https://en.wikipedia.org/wiki/Monocular

Bibliography 43

[20] Wikipedia. Kinect. https://en.wikipedia.org/wiki/Kinect.

[21] Richard A. Newcombe et al. KinectFusion: Real-time dense surface mapping and track-

ing. In ISMAR, 2011.

[22] ThomasWhelan, Stefan Leutenegger, Renato Moreno, Ben Glocker, and Andrew Davi-

son. Elasticfusion: Dense slam without a pose graph. 07 2015.

[23] Angela Dai, Matthias Nießner, Michael Zollöfer, Shahram Izadi, and Christian

Theobalt. Bundlefusion: Real-time globally consistent 3d reconstruction using on-the-

fly surface re-integration. ACM Transactions on Graphics 2017 (TOG), 2017.

[24] C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for rgb-d cameras. In Proc. of

the Int. Conf. on Intelligent Robot Systems (IROS), 2013.

[25] Thomas Whelan, Michael Kaess, Maurice Fallon, Hordur Johannsson, John Leonard,

and John McDonald. Kintinuous: Spatially extended kinectfusion. 2012.

[26] V A Prisacariu, O Kähler, S Golodetz, M Sapienza, T Cavallari, P H S Torr, and D W

Murray. InfiniTAM v3: A Framework for Large-Scale 3D Reconstruction with Loop

Closure. arXiv pre-print arXiv:1708.00783v1, 2017.

[27] Luca Carlone, Roberto Tron, Kostas Daniilidis, and Frank Dellaert. Initialization tech-

niques for 3d slam: A survey on rotation estimation and its use in pose graph opti-

mization. Proceedings - IEEE International Conference on Robotics and Automation,

2015:4597–4604, 06 2015.

[28] Jose Luis Blanco. A tutorial on se(3) transformation parameterizations and on-manifold

optimization. 09 2010.

[29] Carlo Tomasi and Roberto Manduchi. Bilateral Filtering for Gray and Color Images.

In ICCV, Bombay, India, Jan., 1998.

[30] Paul J. Besl et al. A Method for Registration of 3-D Shapes. IEEE Trans. Pattern

Analysis and Machine Intelligence, 14(2), 1992.

[31] Brian Curless and Marc Levoy. A Volumetric Method for Building Complex Models

from Range Images. In SIGGRAPH, 1996.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

https://en.wikipedia.org/wiki/Kinect

44 Bibliography

[32] Ankur Handa et al. A benchmark for RGB-D visual odometry, 3D reconstruction and

SLAM. In ICRA Hong Kong, China, May, 2014.

[33] Berthold K. P. Horn. Closed-form solution of absolute orientation using unit quater-

nions. J. Opt. Soc. Am. A, 4(4):629–642, Apr 1987.

[34] Umer Farooq, Zied Marrakchi, and Habib Mehrez. Tree-based heterogeneous FPGA

architectures: application specific exploration and optimization, Chapter 2. Springer

Science & Business Media, 2012.

[35] Quentin Gautier et al. FPGA Architectures for Real-time Dense SLAM. In ASAP, Jul

2019.

[36] Olaf Kähler et al. Very High Frame Rate Volumetric Integration of Depth Images on

Mobile Devices. IEEE Trans. Vis. Comput. Graph., 21(11), 2015.

[37] Quentin Gautier et al. Real-time 3D Reconstruction for FPGAs: A Case Study for Eval-

uating the Performance, Area, and Programmability trade-offs of the Altera OpenCL

SDK. In FPT, 2014.

[38] Weikang Fang et al. FPGA-basedORBFeature Extraction for Real-TimeVisual SLAM.

CoRR, abs/1710.07312, 2017.

[39] Mohamed Abouzahir et al. Embedding SLAM Algorithms: Has it come of age?

Robotics and Autonomous Systems, 100, 2018.

[40] Michael Montemerlo et al. FastSLAM 2.0: An Improved Particle Filtering Algorithm

for Simultaneous Localization and Mapping that Provably Converges. In IJCAI, 2003.

[41] Konstantinos Boikos and Christos Savvas Bouganis. A Scalable FPGA-Based Archi-

tecture for Depth Estimation in SLAM. In ARC, 2019.

[42] Konstantinos Boikos and Christos Savvas Bouganis. A High-Performance System-on-

Chip Architecture for Direct Tracking for SLAM. In FPL, 2017.

[43] Amr Suleiman et al. Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial

Odometry Accelerator for Autonomous Navigation of Nano Drones. IEEE Journal

of Solid-State Circuits, 54(4), 2019.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

Bibliography 45

[44] Jinwook Oh, Jungwook Choi, Guilherme C. Januario, and Kailash Gopalakrishnan.

Energy-Efficient Simultaneous Localization and Mapping via Compounded Approxi-

mate Computing. In IEEE InternationalWorkshop on Signal Processing Systems (SiPS),

Dallas, TX, USA, October 26-28,, 2016.

[45] Yan Pei et al. SLAMBooster: An Application-Aware Online Controller for Approxi-

mation in Dense SLAM. In PACT, 2019.

[46] Stelios Sidiroglou-Douskos et al. Managing Performance vs. Accuracy Trade-Offs with

Loop Perforation. In ESEC/FSE, Szeged, Hungary, Sept., 2011.

[47] R. Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the Royal

Statistical Society (Series B), 58, 1996.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 22:01:32 EEST - 3.16.217.113

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Problem statement & Contributions
	Overview of the content

	Background
	SLAM and KinectFusion
	SLAM Systems
	KinectFusion
	ICL-NUIM dataset
	Error evaluation

	FPGA Technology
	Related work

	Precise and Approximate Optimizations on KinectFusion
	Bilateral Filter
	Tracking
	Integration
	Raycasting

	Experimental evaluation
	Methodology
	Design Space Exploration
	Significance Analysis
	Power and Area exploration
	Timeline analysis

	Conclusions
	Bibliography

