

GLITCH ANALYSIS USING

MACHINE LEARNING TECHNIQUES

Author: Christos Voutsadakis

Diploma Thesis

Supervisor: Georgios Stamoulis

Volos, August 2020

GLITCH ANALYSIS USING

MACHINE LEARNING TECHNIQUES

Author: Christos Voutsadakis

Diploma Thesis

Supervisor: Georgios Stamoulis, Professor

Additional Committee Members:
Fotios Plessas, Associate Professor

Antonios Dadaliaris, Assistant Professor

Volos, August 2020

ⅱ

ΑΝΑΛΥΣΗ ΣΠΙΝΘΗΡΙΣΜΩΝ

ΜΕ ΤΕΧΝΙΚΕΣ ΜΗΧΑΝΙΚΗΣ ΜΑΘΗΣΗΣ

Χρήστος Βουτσαδάκης

Διπλωματική Εργασία

Επιβλέπων: Γεώργιος Σταμούλης, Καθηγητής

Μέλη Επιτροπής:
Φώτιος Πλέσσας, Αναπληρωτής Καθηγητής

Αντώνιος Δαδαλιάρης, Επίκουρος Καθηγητής

Βόλος, Αύγουστος 2020

ⅲ

Acknowledgements

I would like to thank professor Stamoulis for giving me the opportunity to work for

my thesis on a topic I found highly interesting.

I would also like to thank doctoral candidate Dimitrios Garyfallou for his guidance

and seamless cooperation.

A special thanks to Nikos Arvanitopoulos for his help in all things machine

learning.

Lastly, I would like to thank my brother, my parents and my friends for their love

and support throughout my academic years and beyond.

ⅳ

 Abstract

CMOS circuits are a category of integrated circuits broadly used in a number of

devices. A key factor in this is their low power consumption. A cause of elevated

power consumption, or more accurately, dissipation, is a phenomenon known as a

glitch. The power dissipated during glitches serves no functional purpose in the

circuit, while the levels of this dissipation are high enough that a number of

techniques for glitch elimination have been proposed. These techniques, however,

may lead to unreasonably complicated circuits. For this reason, sometimes an

attempt at predicting the level of power that is dissipated during a glitch is

preferable, in order to account for it. The purpose of this thesis is to examine the

use of machine learning techniques for the prediction of the output voltage and

power supply current of a circuit during a glitch. To this end, a number of glitch

SPICE simulations were used for the training of two machine learning models

based on random forest regression. These models were then used to predict the

values of the output voltage and the power supply current for similar glitch

simulations. Experimental results on a two-input NAND gate implemented at 45

nm show that our prediction technique achieves an average mean error of 0.01

mV (0.001%) for the output voltage and 0.69 μA (15.64%) for the power supply

current, compared to the respective values of the SPICE simulations. Therefore,

there is a promising basis for further research on machine learning algorithms for

the prediction of glitch behavior.

ⅴ

Περίληψη

Τα κυκλώματα CMOS είναι μια κατηγορία ολοκληρωμένων κυκλωμάτων ευρείας

χρήσης σε πληθώρα συσκευών. Ένας σημαντικός παράγοντας σε αυτό είναι η

χαμηλή κατανάλωση ισχύος τους. Μια αιτία αυξημένης κατανάλωσης, ή πιο

συγκεκριμένα απώλειας, ισχύος είναι ένα φαινόμενο γνωστό ως σπινθηρισμός. Οι

σπινθηρισμοί καταναλώνουν ισχύ χωρίς κάποιο όφελος για το κύκλωμα, ενώ η

ποσότητα ισχύος που χάνεται κατά τους σπινθηρισμούς είναι τέτοια ώστε να έχει

οδηγήσει σε αρκετές τεχνικές που αποσκοπούν στην εξάλειψή τους. Όμως αυτές

οι τεχνικές πολλές φορές οδηγούν σε αδικαιολόγητα αυξημένη πολυπλοκότητα του

κυκλώματος. Για τον λόγο αυτό, ενδέχεται κατά περίπτωση να είναι προτιμότερη η

πρόβλεψη της ακριβής κατανάλωσης ισχύος, με σκοπό να ληφθεί υπόψη κατά τον

σχεδιασμό του κυκλώματος. Αυτή η διπλωματική εργασία αποσκοπεί στην εξέταση

της προοπτικής πρόβλεψης κάποιων τιμών τάσης και ρεύματος του κυκλώματος

κατά τον σπινθηρισμό, με τη χρήση μηχανικής μάθησης. Προς αυτό το σκοπό,

προσομοιώσεις σπινθηρισμών χρησιμοποιήθηκαν ως δεδομένα εκπαίδευσης δύο

μοντέλων μηχανικής μάθησης, τα οποία βασίστηκαν σε έναν αλγόριθμο γνωστό

ως οπισθοδρόμηση τυχαίου δάσους. Μετά την εκπαίδευση, τα μοντέλα

χρησιμοποιήθηκαν για να προβλέψουν τις αντίστοιχες τιμές τάσης εξόδου και

ρεύματος παροχής του δοκιμαστικού κυκλώματος κατά τη διάρκεια σπινθηρισμών.

Τα αποτελέσματα που παρουσιάζονται στην παρούσα διπλωματική εργασία

πηγάζουν από προσομοιώσεις με χρήση πύλης NAND 2 εισόδων σε τεχνολογία

45 nm και δείχνουν κατά μέσο όρο, μέσο σφάλμα 0.01mV (0.001%) για την τάση

εξόδου και 0.69μA (15.64%) για το ρεύμα παροχής. Συνεπώς, δείχνουν

υποσχόμενα για περαιτέρω έρευνα στο θέμα της χρήσης αλγορίθμων μηχανικής

μάθησης με σκοπό την πρόβλεψη της συμπεριφοράς των σπινθηρισμών.

ⅵ

Contents

Abstract ⅴ

Περίληψη ⅵ

Contents ⅶ

List of Figures ⅷ

1. I​ntroduction 1
1.1 Motivation 1
1.2 Contribution 1
1.3 Outline 2

2. G​litch Analysis 3
2.1 Glitches and Power Consumption 3
2.2 Glitch Example 4

3. M​achine Learning and Random Forest Regression 6
3.1 Brief History 6
3.2 Random Forest Regression 8
3.3 Implementing Machine Learning Algorithms 10

4. P​roposed Approach 14
4.1 Creating the Dataset 14
4.2 Creating the Models 24
4.3 Model Application 28

5. R​esults 29
5.1 Output Voltage 29
5.2 Power Supply Current 34

6. C​onclusion and Future Work 40

Bibliography 41

ⅶ

List of Figures

1. NAND2 truth table 4

2. NAND2 voltage values during a glitch 5

3. Decision tree example 9

4. Information stored in each successive principal component 11

5. Simplified schematic of the NAND2 circuit simulated 14

6. Example of HSPICE simulation input 16

7. Simulation 2760 - Current results, part 1 17

8. Simulation 2760 - Current results, part 2 18

9. Comparison of 0.5 ps and 1 ps time steps 20

10. Power supply currents of the entire dataset 21

11. Simulation 2760 - Voltage results, part 1 22

12. Simulation 2760 - Voltage results, part 2 23

13. Some voltage input values in CSV format 25

14. Some voltage output values in CSV format 25

15. A simulation with minimal voltage fluctuation 30

16. A simulation with substantial voltage fluctuation 31

17. A zoomed in view of the above example 32

18. A zoomed in view of another example 33

19. An example of great accuracy (92.39% of cases) 35

20. Another similar, even more accurate, example 36

21. A different case of similar accuracy 37

22. An example of slight deviation (5.47% of cases) 38

23. An example of greater deviation (2.13% of cases) 39

ⅷ

Chapter 1

INTRODUCTION

1.1 Motivation

This thesis is concerned with two different subjects and fields of study, namely

glitch analysis and machine learning, and the use of the latter for progress in the

former. Glitch analysis is a subject matter concerning unexpected circuit power

consumption, while machine learning consists of self taught and self improving

computer algorithms.

The goal of glitch analysis is the detection and reduction of occurrences of

glitches, due to the high power dissipation they cause ​[1]​. A number of different

approaches have been proposed in the literature (four such approaches can be

seen in ​[2, Ch. 2]​), but none of them results in complete elimination of the

phenomenon in conjunction with limited additional circuit complexity. Therefore, if

glitches cannot be consistently avoided, an attempt should be made to predict

their existence and the amount of power they are going to consume. This is where

machine learning comes in.

1.2 Contribution

The aim of this thesis is to use machine learning, specifically an algorithm known

as random forest regression, in order to gauge its effectiveness in accurate glitch

predictions. The machine learning models use glitch simulations for training and

their output was compared to the output of the SPICE simulation. The models

were trained to predict the output voltage and the power supply current,

respectively, during glitches in a simple two-input 45 nm NAND gate. The

prediction of the output voltage had an average mean error of 0.01mV (0.001%),

while the prediction of the power supply current had an average mean error of

0.69μA (15.64%), against the respective SPICE simulation values.

1

1.3 Outline

The ​second chapter is concerned with glitches and glitch power dissipation, while

also providing some information on circuit simulation program SPICE.

The ​third chapter delves into machine learning, the algorithm used to create the

models and the general theory of implementing a machine learning model.

The ​fourth chapter details the specific steps of the experiments that lead to this

thesis’ results.

The ​fifth chapter​ presents those results.

The ​sixth and final chapter comments on the results and proposes steps that build

on them for future work.

2

Chapter 2

GLITCH ANALYSIS

2.1 Glitches and Power Consumption

CMOS stands for Complementary Metal-Oxide-Semiconductor. CMOS is the

semiconductor technology used in the manufacturing of the transistors for most

modern computer microchips. Therefore, digital logic circuits are also created with

CMOS technology. Two remarkable characteristics of CMOS are its high noise

immunity and low static power consumption ​[3]​.

There are two ways power is consumed or dissipated in CMOS: statically and

dynamically. Static power consumption includes leakage currents and power

required for the device to remain on standby, while dynamic power consumption is

the power consumed while the circuit is active, including power dissipated during

glitches. Dynamic power constitutes about 80% of the total power consumed by

the circuit and glitch power dissipation can be between 20 and 70% of the total

power ​[2, Ch. 1]​. Consequently, there is a need to understand and limit the effects

of glitches.

Glitches are unwanted transitions of a logic gate’s output that have no

functionality. They are momentary switches of the gate’s output voltage, while it

has no operational reason to change value. If the output of a logic gate is 1, a

glitch would be the occurrence of an instantaneous spike to a value of 0 followed

by a return to 1 ​[4]​. This behavior could then, if the circuit designer had not taken

relevant precautions, be propagated throughout the circuit, adding successively to

the initial redundant power dissipation.

3

The problem is that glitch power dissipation can vary wildly and there is no reliable

way to get an accurate prediction, since, in practice, each glitch can vary. This

thesis proposes a way of predicting elements of glitch power dissipation, using as

an example a simple NAND gate and applying a machine learning algorithm that

attempts to predict the output voltage and the power supply current during the

abnormality caused by the glitch.

2.2 Glitch Example
A two-input NAND logic gate (NAND2) is taken as an example to demonstrate how

a glitch can be created. This gate has the following truth table:

INPUT OUTPUT

A B A NAND B

0 0 1

0 1 1

1 0 1

1 1 0
figure 1: NAND2 truth table

If A and B have different values and both need to switch, say from 01 to 10, the

output should remain 1 throughout. However, in practice there could be a brief

moment where both A and B have a value of 1, therefore changing the output from

1 to 0 then back to 1. That would be a glitch, as seen by the plot of the output

voltage in figure 2. The plots of course show that the values in actual circuits do

not instantly change, but rather have a transition time, i.e. time to transition from

low-to-high or high-to-low.

4

5

Chapter 3

MACHINE LEARNING AND RANDOM FOREST

REGRESSION

Tom M. Mitchell, a renowned scientist on the field, defines machine learning as:

“the study of computer algorithms that improve automatically through experience”

[5]​.

What is meant by that, as elaborated further by Mitchell, is: "A computer program

is said to learn from experience E with respect to some class of tasks T and

performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E."

3.1 Brief History

The idea of machines self improving through experience in their attempt to solve

problems, can be seen as early as 1943. In that year, neurophysiologist Warren

McCulloch and mathematician Walter Pitts published a paper where they modeled

a brain and its neurons as a network of electrical circuits ​[6]​.

Seven years later the famous Turing Test was created but its namesake, pioneer

mathematician Alan Turing ​[7]​. Two years after that, in 1952, Arthur Samuel, who

popularized the term “machine learning” ​[8]​, created a self educating computer

program that played checkers ​[7]​.

The following decades saw a number of new algorithms being developed, as well

as achievements like a machine playing tic-tac-toe ​[9]​, but the field was restrained

by the technology of its time.

6

A watershed event occured in 1997, when Deep Blue, a chess-playing computer

developed by IBM, beat the reigning world champion of chess, Garry Kasparov ​[7]​.

The decade after that saw renewed interest in the field, aided by the rapid

improvement of computer capabilities, which culminated in a number of large

businesses investing into major machine learning research teams and projects.

Some of these include:

● AlexNet (2012): The winner of the ImageNet competition. ImageNet is a

visual database and AlexNet is the name of the neural network that had the

highest accuracy of correctly recognizing its pictures and videos. AlexNet

cemented the value of GPUs in machine learning computations ​[10]​.

● Google Brain (2012): A Google research team that focuses on detecting

visual patterns in images and videos.

● DeepMind ​(2014): A neural network that learns to play board games and

simple video games, owned by Google.

● DeepFace (2014): A facial recognition neural network developed by

Facebook.

● AlphaGo (2016): Created by the developers of DeepMind, AlphaGo is a

program that in 2016 became the first machine to beat a professional Go

player in a regular match and in 2017 beat the world number 1 Go player,

Ke Jie. Go is seen as a much more complex board game than chess ​[11]​.

7

https://research.google/teams/brain/
https://www.deepmind.com/

3.2 Random Forest Regression
The machine learning algorithm used for the creation of this thesis’ models is

known as random forest regression. The reason this algorithm was chosen will be

explained in chapter 3.3. In order to better understand this algorithm, some basic

concepts will now be explained, demonstrating its type, use and methodology.

● Supervised and unsupervised learning: A supervised algorithm learns by

using a data set​* that helps it understand the expected output values,

whereas an unsupervised algorithm creates structure out of the input

without any prior knowledge as to what the output should look like ​[12, p. 3]​.

Random forest regression is a supervised learning algorithm.

● Classification and regression: Supervised learning algorithms are

categorized into classification and regression algorithms based on the

desired output. If the aim is the assignment (classification) of data into a

discrete number of categories, then it is a classification algorithm. If on the

other hand, the output consists of continuous values, then it is a regression

algorithm ​[12, p. 3]​. As the name suggests, random forest regression falls

into the regression category.

● Decision tree learning: A random forest algorithm utilizes decision trees.

Decision trees reach answers to a problem by answering sequential

questions. A simple case of a classification decision tree is shown below

(figure 3), as discrete answers are better in demonstrating the basic

concept. Using single decision trees is not advised, as they are

computationally expensive to train and their results are heavily variable

dependent.

* each entry of ​the data set or dataset (the two terms are used interchangeably)
consists of two things: a number of input variables and their corresponding output
variables, the values of which are dependent on the input.

8

figure 3: Decision tree example. Source ​[13]

To sum up, random forest regression is a supervised regression algorithm that

combines the predictions of multiple decision trees and accepts their mean as the

more accurate prediction. This combination is why this algorithm is also

categorized as an ensemble learning algorithm and also why it eliminates the

weaknesses of single decision trees.

In a random forest algorithm, the trees run parallel to one another, with no

interaction between them. The actual formula of the predictions is:

, with being the prediction for a new y︿ = ∑
n

i=1(1
m ∑

m

j=1
W j (x , x)i ′) yi y︿

point ​x’​, ​n the size of the dataset, m ​the number of trees and ​the W j (x , x)i ′

weight of ​x’ in relation to all of which are all the other input variables. This is xi

equal to ​ for on the same leaf but on the other trees, and 0 otherwise. ​[14]k
1 xi

9

3.3 Implementing Machine Learning Algorithms

The methodology followed for the creation of a model is based on Bishop’s book

[12]​. This methodology can be followed for the implementation of machine learning

algorithms in general. The steps after the dataset is created are the following:

1. Standardization​: The first step is simplifying the dataset’s input. This is done

by normalizing it, that is, scaling the data to values between 0 and 1. This is

done as follows:

, with x being the original value, y the new and min/max y = x − min
max − min

indicating the spectre of values​. This is done for the entire input. The

reason is to avoid variables with greater value span unduly affecting the

importance of others. ​[12, p. 425]

2. Principal Component Analysis:

The Principal Component Analysis (PCA) is used to detect variables that

could be removed with minimal loss of information. PCA needs the data to

be standardized. The first step is the computation of the covariance matrix

of the input data, in order to determine the correlation between the

variables. The covariance of two values X, Y is given by:

, where E the mean value. Theov(X ,) E[(X [X])(Y [Y])] c Y = − E − E

covariance matrix of 3 variables for example, is:

The important aspect of the covariances is not their value but their sign; a

positive sign means that the two variables are correlated and a negative

sign means they are inversely correlated.

Next, the eigenvectors and eigenvalues of the covariance matrix are used

to obtain the principal components of the original variables.

10

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bbmatrix%7Dcov(X%2CX)%26cov(X%2CY)%26cov(X%2CZ)%5C%5Ccov(Y%2CX)%26cov(Y%2CY)%26cov(Y%2CZ)%5C%5Ccov(Z%2CX)%26cov(Z%2CY)%26cov(Z%2CZ)%5Cend%7Bbmatrix%7D#0

Principal components are new variables created through combinations of

the initial, in ways that create uncorrelated variables, with most of the

information stored in the first one, as shown in figure 4, and less information

in every subsequent variable.

The order of significance of the principal components is determined by

sorting eigenvectors in order of their related eigenvalues, from highest to

lowest. To ascertain the percentage of information each primary component

carries, the relevant eigenvalue is divided by the sum of eigenvalues. A

decision can then be made to remove primary components that carry a

miniscule percentage, for the sake of lower complexity and speed. For a

more detailed analysis of PCA, see ​[12, pp. 561-570]​.

11

3. Hyperparameter Optimization: model parameters like, for this specific

algorithm, the number of decision trees in the forest or the depth of each

tree, are known as hyperparameters.

A method of hyperparameter optimization is the use of grid search. Grid

search is an exhaustive search, wherein the model is trained on the dataset

using different combinations of hyperparameters each time. Every

combination is tested through cross validation; that is, the dataset is each

time split into a number of subsets and the performance of each

combination is the average of successful predictions across the subsets.

The optimal hyperparameter combination is the one with the highest

accuracy of predictions and that is the one chosen to be further analysed.

[12, pp. 280-281]

4. Train-Test split: The entire dataset, both input and output, are then split into

a “train” subset and a “test” subset. The “train” is the larger one, usually

making up 80 or 90 per cent of the entire dataset. This is used, as the name

suggests, for the model to train on, whereas the “test” part is used to test its

accuracy. Usually repeated splits are needed to reach a more conclusive

result. The train-test split method is preferred because it splits the dataset

randomly, in an attempt to maintain its variety in values ​[12, p. 2]​.

5. Fit: By “fitting” the model, it is meant that the model trains on the “train” part

of the dataset. With no further input from the programmer, the model trains

by comparing predictions to real values and adjusting its inner weights

assigned to every subsequent result. ​[12, p. 2]

6. Prediction: Predictions are then attempted when the model receives the

new, “test” subset and uses its input values to predict the corresponding

output.

12

7. Mean Squared Error (MSE): The mean squared error of the prediction of

the “test” subset output measured against the actual “test” subset output, is

used to gage the accuracy of the model. MSE is given by:

, where ​n the number of values, ​theSE (Y) M = n
1 ∑

n

i=1
i − Y i
︿ 2 Y i

actual output and the predicted output. Comparing the MSE of models Y i
︿

that use different algorithms, a decision can be made as to the most

effective algorithm ​[12, pp. 46-47]​.

Repeating steps 4 to 7 yields a more definitive result.

13

Chapter 4

PROPOSED APPROACH

4.1 Creating the Dataset

In order to create the dataset a number of simulations had to be run. These were

done in HSPICE. HSPICE is one of the most accurate commercial continuations of

the original SPICE ​[15]​, the established program of circuit simulations.

The circuit that was simulated was that of figure 5 and included a two-input, 45

nanometer NAND gate, two voltage sources for the input signals (V1, V2), a power

supply source (Vdd) and a capacitor connected to the gate’s output (C).

14

The method for creating the dataset of the size required in order to train the

models, was built on the work done by A. O. Troumpoulou ​[16]​. With the help of a

C program, a number of transient analysis simulations with different variable

values were run in an attempt to replicate numerous glitch cases.

The following four parameters were taken into account for the creation of glitches:

The first parameter was the capacitance value of the output capacitor.

Each simulation had two signals as input of the NAND2 gate. These two voltage

sources were simulated as Piecewise Linear sources (PWL). This was done to set

the actual points in time when the sources would start and end transitioning from 0

volts (V) to 1.10 V and from 1.10 V to 0 V respectively. The interval between the

start and the end of this transition is known as transition time. The two transition

times were two more of the aforementioned parameters. The actual points of time

that the transitions begun and ended were variables set by the C program for each

simulation. In every case however, one signal was at 0 V and 15 picoseconds (ps)

later had a value of 1.10 V while the other started at 1.10 V and 15 ps later had a

value of 0 V.

The fourth and final parameter was the distance between the transitions of the

two signals. For this, the time interval between the points that each of the two

signals was at 50% of the input voltage was measured.

To summarize, the four parameters were the capacitance value of the output

capacitor (C), the two transition times (T1 and T2) and the distance between the

two signals (HDIST).

15

There were 7 signal transition time values given by the C program and 22

capacitance values for the output capacitor. An example of input values during a

conducted HSPICE transient analysis can be seen below.

As indicated by the underlined values in figure 6, in this example the first signal

(V1) started transitioning at 0.248169 ps and finished at 0.496337 ps, while the

second signal (V2) started at 0.446704 ps and completed its transition at 0.694872

ps. The difference between each set of underlined values is the corresponding

transition time. It is also illustrated above that the output capacitor (C1) had a

capacitance of 59.3567 fF. Finally, the initial transient analysis was performed for

200 ps with a timestep of 1 ps. This simulation time was selected in order to gage

the time it would take for the output voltage to revert to its initial value of 1.10 V.

Every simulation produced a .LIS file with the results, whence the C program

retrieved them one by one and saved them in two .TXT files, one for the current

values, including the power supply current, and one for the output voltage values.

An example of these .TXT files for one simulation can be seen below, with figures

7 and 8 having the values of its current variables and figures 11 and 12 of its

voltage output variable.

16

figure 7: Simulation 2760

Current results, part 1

17

figure 8: Simulation 2760

Current results, part 2

18

At the top of figure 7, the input values for this specific simulation can be seen. In

addition to the variables ​already mentioned​, those of C (capacitance value of

output capacitor), T1 and T2 (signal transition times) and HDIST (time interval

between the moments when each of the two signals was at 50% of the input

voltage), there is an additional DIS variable. This is the elapsed time between the

moment that V2 started transitioning and the moment V1 finished transitioning.

This variable was dropped during PCA, because its influence on the output was

trivial.

Below those, there are four columns on the left that continue on the right and then

continue similarly in figure 8. The leftmost column in each, with values from 0 to

200p, is the simulation time in ps. The other three columns are the corresponding

current values for every picosecond, the output of the simulation: v6 indicates the

power supply current, the one examined in this thesis, c1 the output capacitor

current and v0 the ground current. In these three columns, ‘u’ indicates

microampere, ‘n’ is nanoampere and ‘p’ is picoampere.

Upon further experimentation, it was decided to halve the step from 1 ps to 0.5 ps,

so as to limit the chance of missing an upward or downward current spike, as seen

in figure 9.

19

figure 9: Comparison of 0.5 ps and 1 ps time steps

Here the purple plot indicating a step of 0.5 ps, picked up on spikes that were

missed with the blue plot of 1 ps step. It was also decided to set a cutoff point at

20 ps, as the current values were fairly stabilized from that point forward (see

figure 10).

20

figure 10: Power supply currents of the entire dataset

Figures 11 and 12 continue the example of the .TXT values of simulation 2760,

presenting its output voltage in two columns, the first being the time and the

second the corresponding voltage values. Like before, the two columns start on

the left of figure 11, continue on the right and then go on to figure 12 until the

200th picosecond.

21

figure 11: Simulation 2760
Voltage results, part 1

22

figure 12: Simulation 2760

Voltage results, part 2

23

In summary, the data utilized for this experiment consisted of ​10780 simulations

of different combinations of the 4 variables (or machine learning features)

mentioned above. Lastly, as can be seen in figures 7, 8, 11 and 12, each

simulation produced 200 instances of values. Only 40 of those (0.5 step to 20ps)

were used for the current, for the reason ​mentioned previously​.

4.2 Creating the Models

In order to apply the relevant machine learning techniques ​elaborated upon in

chapter 3, a number of tools had to be used. Firstly, version 2019.3.3 x64 of

PyCharm, which is a Python language integrated development environment. The

version of Python was Python 3.

Regarding libraries, pandas ​[17]​, Scikit-learn ​[18]​, Matplotlib ​[19] and Pickle ​[20]

were employed. pandas enabled the reading and formatting of the data, whereas

Scikit-learn provided all the machine learning tools and algorithms. Matplotlib was

used as an efficient way to get a visual representation of the results. Pickle

allowed the encoding of the models and their data standardization scalers into

binary files and can also be used to load them from the binary files for use.

In order to be accessible to the methods presented by pandas, the data had to be

transformed into .CSV format. A small Python program was created to that effect.

Both initial .TXT files were split into two .CSV files each, one file containing the

machine learning input and the other containing the output. Only the values for the

current of the power supply were kept in the relevant .CSV file, as this was the

current that was examined in this thesis. Figures 13 and 14 show a part of both

.CSV voltage files, input and output.

24

To conform to the .CSV format, each simulation’s variables in the input file and

results in the output file, were written in one line and separated by commas. For

both the voltage and the current, the initial value was dropped from the .CSV,

given that it was a constant value of 1.10 V and 2.7139 nA respectively; as

constants they were immaterial for predictions.

25

Scikit-learn provided both the machine learning algorithms and the tools required

in order to train and test the models that were created:

● Standardization​: The sklearn.preprocessing.StandardScaler class

was used to standardize the data.

● Principal Component Analysis​: sklearn.decomposition.PCA was a

class imported to test the standardized weights calculated using the

previous class. By testing the weights, it was concluded that the DIS

variable had minimal effect on the outcome, therefore it was

eliminated from the dataset.

● Train-Test split​: sklearn.model_selection.train_test_split was used in

order to split the dataset into two unequal portions in a 90-10

division. The larger was used to train the model, whereas the smaller

was used to test the effects of the training.

● Random Forest Regression​:

sklearn.ensemble.RandomForestRegressor was the machine

learning algorithm that was chosen, after a number of algorithms,

including k-nearest neighbours, were tried​.​ Details about random

forest regression were outlined in section ​3.2​.

● Grid Search​: sklearn.model_selection.GridSearchCV was used to

determine some of the hyperparameters which are the parameters of

the RandomForestRegressor class. Specifically it was determined

that the best number of trees in the forest was 150.

26

● Mean Squared Error (MSE)​: ​sklearn.metrics.mean_squared_error

provided the MSE of the model predicting the output of the train and

of the test subsets. The requirements are a small difference between

the two values and a small MSE on the test subset. The smaller this

value is, the more accurate the predictions during the testing were.

This step decided the use of random forest regression, since its MSE

was consistently lower than that of k-nearest neighbours, the

algorithm with the second lowest MSE.

● Mean Absolute Error (MAE): sklearn.metrics.mean_absolute_error

gave an easier to understand metric, with mean absolute error being

the prediction’s deviation from the real values given in the actual

units; V and μA respectively.

● Multi-output Regression​: Finally, since the subject of this thesis is a

problem of multi-output nature and regular machine learning

algorithms tend to be single output oriented, a wrapper class had to

be used in conjunction with

sklearn.ensemble.RandomForestRegressor. This wrapper was

sklearn.multioutput.MultiOutputRegressor.

After the algorithm was decided on and the models created, the dataset was

repeatedly split into “train” and “test” and the input each time was standardized.

Then, the models trained on the appropriate subdataset and attempted to predict

the output of the “test” input, comparing the MSE of the two. Finally, the actual

output and the predicted output were plotted on the same graph, utilizing the

pyplot module of Matplotlib.

27

4.3 Model Application
The Pickle library was used in order to save the two models and also the two

scalers responsible for standardizing the input into binary form. Pickle can be used

to access them after the creation and use them to predict output voltage and

power current supply during a glitch, given 4 values that represent: the

capacitance of the output capacitor in femtofarads, the two transition times of the

signals in picoseconds and the time interval between the moments each of the two

was at 50% of the input voltage value, also in picoseconds.

Therefore, after the creation of the models and the respective scalers, the product

of this thesis can be used with the help of a single python library: Pickle. The

program that interfaces with the user simply loads the four binary files with the

help of this library, uses the scalers and the models on the input provided by the

suer and produces two vectors. The one is the output voltage values every

picosecond and the other the values of the power supply current every half

picosecond.

28

Chapter 5

RESULTS

5.1 Output Voltage

The prediction of the behavior exhibited by the gate’s output voltage of the specific

dataset was fairly accurate. Firstly, the MSE of the “test” subset predictions,

compared to the actual “test” output has an average value of 0.00000003, out of

10 train-test splits. It is easily deductible therefore that the predictions made tend

to be of high accuracy. The average MAE, the average actual deviation from the

real values, was ​0.00011 V​ (average mean relative error of 0.001%).

Figures 15 to 18 illustrate comparisons between predicted and real output voltage

values.

29

This example showcases a simulation where, while a glitch did occur, the output

voltage did not decrease significantly from its original value. The red prediction plot

and the blue plot of simulation values are identical in this scale.

30

Same situation of identical values, but in this case the output voltage dropped

substantially. A zoomed in view of the above graph follows, that demonstrates the

existence of a slight deviation.

31

Indeed here the slight deviation between actual and predicted values becomes

apparent. Since the values in question are examined in V (as opposed to mV for

example), this deviation is not a significant problem.

32

As this is a machine learning algorithm, complete and consistent accuracy is not

the expected outcome; the goal is an approximation of the real values. Even with

the possible deviations that may occur between predicted and real values as

demonstrated in figure 18, an average MAE of 0.00011 V was deemed sufficient

for the purposes of this thesis.

33

5.2 Power Supply Current

The results of the model predicting the power supply current present a wider

range in accuracy. But due to​ ​the erratic behavior exhibited by the power supply

current during a glitch, as was demonstrated in figure 10, such results are not

unexpected. Even so, the model that was implemented achieved fairly accurate

predictions.

Ten train-test splits of the dataset led to an average MSE of 5.17 and a best case

MSE of 3.33. The specific test subset had 1078 simulations in it, 10% of the entire

dataset. The average MAE of the predictions against these 1078 simulations was

0.69 μA​ (average mean relative error of 15.64%). Using the model with the best

MSE, 92.39% of the predictions had a MAE of less than 2 μA, 5.47% had a MAE

of between 2 and 5 μA and only 2.13% had a MAE above 5 μA.

Εxamples follow (figures 19-23):

34

The accuracy presented here is high. There were cases that the MAE was as

small as 0.07 μA, as can be seen in the following page.

35

The difference between actual and predicted values here is almost non existent.

The red plot seems like a carbon copy of the blue.

36

Not all cases have a similar kind of plot however, as was shown in ​figure 10​. The

model created, as evident here, is able to predict the power supply current to

reasonable accuracy in a number of different cases.

37

Here there is a slight drop in accuracy, particularly apparent in peaks, where the

predicted values are consistently closer to 0 than the actual, which have a wider

range. An interesting point is at the start, where, unlike the rest of the graph, the

predicted and the actual values are almost opposite.

38

In this case the accuracy is even lower. A saving grace however is that the pattern

of peaks is more or less the same in both actual and predicted values. At 2.13% of

cases, this is an expected and acceptable result of a machine learning approach.

39

Chapter 6

CONCLUSION AND FUTURE WORK

The purpose of this thesis was to examine whether machine learning could be

used in glitch analysis, in order to approximate some circuit values during the

unpredictable power dissipation caused by a glitch.

To this effect, using an HSPICE simulation of a simple two-input 45 nm NAND

gate circuit, a dataset of multiple glitch cases was created. This dataset was then

analyzed by two machine learning models based on random forest regression, one

model predicting the output voltage and the other the power supply current.

The results show a reasonable accuracy of predictions, with average mean

squared error of 0.00000003 for the output voltage and 5.17 for the power supply

current. The average mean error was 0.1mV (0.001%) for the output voltage and

0.69 μA (15.64%) for the power supply current.

Even though the outcome seems promising, the scope was limited, so further work

is needed to consolidate the efficiency of this preliminary research. Based on this

thesis, some proposed next steps are the creation of models for predicting the

behaviour exhibited by the output capacitor and grounding currents, as well as

experimentation using different algorithms, datasets, logic gates, and advanced

technology nodes (below 22nm).

40

Bibliography

[1]​ K. Chung, T. Kim and C. L. Liu, “A complete model for glitch analysis in logic

circuits”, ​Journal of Circuits, Systems, and Computers​, vol 11, No. 2, pp. 137-153,

Feb. 2002

[2]​ R. Shah, “Glitch analysis and reduction in digital circuits”, ​International

Journal of VLSI design & Communication Systems (VLSICS)​, vol. 7, No. 4, pp.

47-55, Aug. 2016. doi: 10.5121/vlsic.2016.7405

[3]​ “CMOS, the Ideal Logic Family”, Fairchild Semiconductor Application Note

77, Jan. 1983

[4]​ J. Knight, “Glitches and Hazards in Digital Circuits”, Electronics Department -

Carleton University, Mar. 2001

[5]​ T. M. Mitchell, ​Machine Learning​, New York City NY: ​McGraw-Hill

Science/Engineering/Math, Mar. 1997, p. 3

[6]​ E. Roberts, “History: The 1940’s to the 1970’s”, ​Neural Networks -

Sophomore College 2000​, Stanford University, 2000. Accessed on: July 22, 2020.

[Online]. Available:

https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Hist

ory/history1.html

[7]​ “History of Machine Learning”, 2018. Accessed on: July 22, 2020. [Online].

Available: ​https://www.doc.ic.ac.uk/~jce317/history-machine-learning.html

[8]​ ​ ​A. L.​ ​Samuel, "Some Studies in Machine Learning Using the Game of

Checkers", ​IBM Journal of Research and Development​, vol 44, pp. 206–226,

1959. CiteSeerX ​10.1.1.368.2254​.​ ​doi​:​10.1147/rd.441.0206

41

https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/History/history1.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/History/history1.html
https://www.doc.ic.ac.uk/~jce317/history-machine-learning.html
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.368.2254
https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1147%2Frd.441.0206

[9]​ O. Child, (13 March 2016). "Menace: The Machine Educable Noughts And

Crosses Engine", ​Chalkdust Magazine, ​ 13 Mar, 2016. Accessed on: July 23,

2020. [Online]. Available:

http://chalkdustmagazine.com/features/menace-machine-educable-noughts-cross

es-engine

[10]​ A. Krizhevsky, I. Sutskever and G. E. Hinton,​ ​"ImageNet classification with

deep convolutional neural networks"​ (PDF), May 2017. ​doi​:​10.1145/3065386

[11]​ C. Metz, ​Google’s AI Wins First Game in Historic Match With Go World

Champion​, Wired, Sept. 3, 2016. Accessed on: July 23, 2020. [Online]. Available:

https://www.wired.com/2016/03/googles-ai-wins-first-game-historic-match-go-cha

mpion/

[12]​ C. M. Bishop, ​Pattern Recognition and Machine Learning​, New York, NY:

Springer Science+Business Media, 2006

[13]​ ​https://www.geeksforgeeks.org/decision-tree/

[14]​ Y. Lin, Y. Jeon, “Random Forests and Adaptive Nearest Neighbors”, ​Journal

of the American Statistical Association​, 2002. CiteSeerX ​10.1.1.153.9168

[15]​ “​HSPICE”​, Accessed on July 24, 2020. [Online]. Available:

https://www.synopsys.com/verification/ams-verification/hspice.html

[16]​ A. O. Troumpoulou, “Glitch Analysis”, M. S. thesis, School of Eng., Univ. of

Thessaly, Volos Greece, Oct. 2018. Accessed on Mar. 2020. [Online]. Available (in

greek):

https://www.e-ce.uth.gr/wp-content/uploads/formidable/59/Troumpoulou_angeliki-o

lympia.pdf

42

http://chalkdustmagazine.com/features/menace-machine-educable-noughts-crosses-engine
http://chalkdustmagazine.com/features/menace-machine-educable-noughts-crosses-engine
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F3065386
https://www.wired.com/2016/03/googles-ai-wins-first-game-historic-match-go-champion/
https://www.wired.com/2016/03/googles-ai-wins-first-game-historic-match-go-champion/
https://www.geeksforgeeks.org/decision-tree/
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.153.9168
https://www.synopsys.com/verification/ams-verification/hspice.html
https://www.e-ce.uth.gr/wp-content/uploads/formidable/59/Troumpoulou_angeliki-olympia.pdf
https://www.e-ce.uth.gr/wp-content/uploads/formidable/59/Troumpoulou_angeliki-olympia.pdf

[​17]​ W. McKinney, “Data Structures for Statistical Computing in Python”,

Proceedings of the 9th Python in Science Conference​, pp. 56-61, 2010. doi:

10.25080/Majora-92bf1922-00a

[18]​ F. Pedregosa et al, “Scikit-learn: Machine Learning in Python”, ​Journal of

Machine Learning Research​, vol. 12, pp. 2825-2830, 2011

[19]​ J. D. Hunter, “Matplotlib: A 2D graphics environment”, ​Computer in science

& Engineering​, vol. 9-3, pp. 90-95, 2007. doi: 10.1109/MCSE.2007.55

[20]​ G. Van Rossum, “The Python Library Reference, release 3.7.6”, ​Python

Software Foundation​, 2020

43

