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ABSTRACT 

 

This doctoral thesis explores computational approaches for signal analysis and 

information extraction. In view of scientific challenges for developing innovative 

solutions with a broad social impact, it investigates various applications in biomedicine.  

In this context, a novel signal analysis methodology, based on fuzzy logic, was 

proposed. This methodology, called Fuzzy Phrases, expresses signals or feature 

representations of signals using sets of words. Each of these words is represented by a 

fuzzy set. The words form phrases, which are obtained by the aggregation of the fuzzy 

sets. Experiments on publicly available datasets showed that it outperforms relevant state-

of-the-art approaches. Advantages of the proposed signal representation approach include 

intuitiveness and tolerance to uncertainty from imprecise or missing information. 

A significant part of this thesis is devoted to the analysis of endoscopic images, in 

the context of gastrointestinal tract examination. Endoscopic examination using a 

wireless camera (Wireless Capsule Endoscopy or WCE) has been established to study 

and diagnose gastrointestinal pathological conditions. The examination of the patient is 

performed by a swallowable camera that has the size of a large vitamin pill. The 

examination with WCE is a non-invasive screening procedure. During the examination, 

the wireless camera captures and transmits thousands of images of the gastrointestinal 

tract of the patient. Significant drawback of this examination is the large volume of 

images received; resulting in the capture of thousands of color images (> 100,000 images 

per patient). The clinical diagnosis of health conditions requires the review of this large 

number of collected images by medical specialists. Usually, the reviewers reach their 

human limits by trying to maintain their concentration undistracted in order to examine 

this large number of images within an average of 60-90min. This explains why this 

examination is prone to human errors and has low diagnostic accuracy. 

To address this important problem, image analysis methods for information 

extraction to assist in the clinical diagnosis of pathological conditions, were investigated. 

The development of such methods aims to support medical decision making by reducing 

the required human effort and by providing a second opinion on the examined medical 

problem. In-depth research of state-of-the-art methods of image processing and analysis 

in the literature led to several contributions. One of the contributions is the detailed 

recording of the literature on technological developments in the field of wireless capsule 

endoscopy in the last five years 2013-2018.  

Supervised classification methods were developed requiring only weak annotation 

of images by experts, i.e., the experts do not need to annotate in detail the areas of 

abnormality. Experimental results proved the suitability of the proposed weakly 

supervised methods for the detection of images with pathological content. Subsequently, 

algorithms were developed to identify the areas of abnormalities within these images. As 

the results from weak annotation approaches were encouraging for the classification 

between abnormal and normal images, supervised methods were adopted also for the 
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semantic interpretation of the whole content of images using multi-label classification 

methods. The effort to interpret the whole content of endoscopic images proved to be 

reasonable, as the results for image classification and pathology finding were further 

improved compared to previous approaches. 

An important aspect in image analysis is the detection of interest points. Such 

points are useful for the extraction of features from the areas around them. The 

development of these methods has the effect of limiting the sampling points of the images 

to these points only, and thus simplifying the computational cost of the analysis process. 

To this end, during this doctoral research the algorithms suggested by the literature for 

the detection of points of interest in images were studied and a novel detection algorithm 

for endoscopic images was proposed. The proposed algorithm was based on the color 

characteristics of the images. The experimental results were satisfactory with respect to 

locating points within pathological areas, and it is important to note that the algorithm 

was unsupervised, as it has no requirement of training, based on previous knowledge in 

order to detect points. 

  The work presented in this thesis provides the basis for further research on the 

topics studied. Particularly in the context of capsule endoscopy, it has contributed 

methods that can be practically used by physicians to detect various gastrointestinal 

abnormalities in endoscopic images. 
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ΠΕΡΙΛΗΨΗ 

 

 

Η παρούσα διδακτορική διατριβή διερευνά πρωτότυπες υπολογιστικές 

προσεγγίσεις ανάλυσης σημάτων και εξόρυξης πληροφορίας. Λαμβάνοντας υπόψη τις 

επιστημονικές προκλήσεις για την ανάπτυξη καινοτόμων λύσεων με ευρύ κοινωνικό 

αντίκτυπο, διερευνά διάφορες εφαρμογές στη βιοϊατρική.  

Αναπτύχθηκε μια πρωτότυπη μεθοδολογία βασισμένη στην ασαφή λογική, η 

οποία καλείται μέθοδος των Ασαφών Φράσεων (Fuzzy Phrases). Η μεθοδολογία αυτή 

εκφράζει τα σήματα ή τις χαρακτηριστικές αναπαραστάσεις τους με σύνολα λέξεων. 

Κάθε λέξη αναπαρίσταται από ένα ασαφές σύνολο. Οι λέξεις σχηματίζουν φράσεις, που 

λαμβάνονται από τη συνάθροιση των ασαφών συνόλων και αναπαριστούν το 

περιεχόμενο των σημάτων. Πειράματα σε δημοσίως διαθέσιμα δεδομένα έδειξαν ότι 

υπερτερεί σε αποτελεσματικότητα άλλων σύγχρονων συναφών προσεγγίσεων. 

Πλεονεκτήματα της συγκεκριμένης μεθόδου αποτελούν η διαισθητικότητα και η ανοχή 

στην αβεβαιότητα που προέρχεται από την ανακρίβεια ή την απώλεια πληροφορίας. 

Η διδακτορική διατριβή εστιάζει στην ανάλυση εικόνων που λαμβάνονται στο 

πλαίσιο ενδοσκοπικών εξετάσεων του γαστρεντερικού συστήματος με τη χρήση 

ασύρματης κάμερας. Η ενδοσκόπηση με χρήση ασύρματης κάμερας (Wireless Capsule 

Endoscopy ή WCE) έχει καθιερωθεί ως ένας τρόπος για την μελέτη και διάγνωση 

παθολογικών καταστάσεων του γαστρεντερικού συστήματος. Πραγματοποιείται με την 

κατάποση κάμερας στο μέγεθος ενός χαπιού βιταμίνης και αποτελεί μια μη-επεμβατική 

διαδικασία εξέτασης. Κατά τη διάρκεια μιας εξέτασης η ασύρματη κάμερα επιστρέφει 

χιλιάδες εικόνες για κάθε ασθενή. Ένα από τα σημαντικότερα προβλήματα αυτής της 

εξέτασης είναι ο μεγάλος όγκος των προσλαμβανομένων εικόνων τα οποία συνιστούν 

χιλιάδες έγχρωμες εικόνες (> 100.000 εικόνες ανά ασθενή). Η λήψη αποφάσεων σχετικά 

με την υγεία ενός ασθενούς απαιτεί την εξέταση αυτού του μεγάλου αριθμού 

συλλεγμένων εικόνων από εξειδικευμένο ιατρικό προσωπικό. Συνήθως, οι εξεταστές 

αγγίζουν τα ανθρώπινα όριά τους προσπαθώντας να διατηρήσουν την συγκέντρωση τους 

αδιάκοπη, προκειμένου να εξετάσουν αυτό το μεγάλο αριθμό εικόνων μέσα σε 60-90 

λεπτά κατά μέσο όρο. Αυτό εξηγεί γιατί η εξέταση αυτή είναι επιρρεπής σε ανθρώπινα 

σφάλματα και έχει χαμηλή διαγνωστική ακρίβεια. 

Αναγνωρίζοντας τη σημαντικότητα αυτού του προβλήματος, διερευνώνται 

μέθοδοι ανάλυσης εικόνων για την εξόρυξη πληροφοριών προς την κλινική διάγνωση 

παθολογικών καταστάσεων. Σκοπός αυτών των μεθόδων είναι η αξιοποίησή τους στο 

πλαίσιο συστημάτων υποστήριξης ιατρικών αποφάσεων με στόχο κυρίως τη μείωση της 

ανθρώπινης προσπάθειας και την παροχή μιας δεύτερης γνώμης ως προς το υπό εξέταση 

ιατρικό πρόβλημα. Από την ενδελεχή έρευνα της βιβλιογραφίας, μελετήθηκαν μέθοδοι 

αιχμής επεξεργασίας και ανάλυσης εικόνων. Μια από τις συνεισφορές ήταν και η 

λεπτομερής καταγραφή της βιβλιογραφίας για τις τεχνολογικές εξελίξεις στον τομέα της 

ενδοσκόπησης με κάψουλα την πενταετία 2013-2018 και η δημοσίευση της.  
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Αναπτύχθηκαν καθοδηγούμενες μέθοδοι ταξινόμησης (supervised classification) 

που απαιτούν μόνο ασθενή επισημείωση (weak annotation) των εικόνων από τους 

ειδικούς, δηλαδή μόνο την ένδειξη αν στην εικόνα περιέχεται ανωμαλία. Τα πειραματικά 

αποτελέσματα κατέστησαν τις μεθόδους κατάλληλες για την εύρεση εικόνων με 

παθολογικό περιεχόμενο. Ακολούθως δημιουργήθηκαν  αλγόριθμοι για τον εντοπισμό 

παθολογικών περιοχών/ανωμαλιών εντός των εικόνων αυτών. Καθώς τα αποτελέσματα 

από τις ασθενώς καθοδηγούμενες προσεγγίσεις για την ταξινόμηση εικόνων, σε 

παθολογικές ή  μη εικόνες, ήταν ενθαρρυντικά, έδωσαν βήμα για τη σημασιολογική 

ερμηνεία του συνόλου του περιεχομένου των εικόνων χρησιμοποιώντας πολλαπλές 

κατηγορίες (multi-label weakly supervised methods). Η προσπάθεια για ερμηνεία 

ολόκληρου του περιεχομένου των ενδοσκοπικών εικόνων αποδείχθηκε βάσιμη, καθώς τα 

αποτελέσματα για την ταξινόμηση των εικόνων και την εύρεση των παθολογιών 

βελτιώθηκαν ακόμα περισσότερο συγκριτικά με την προηγούμενη προσέγγιση.  

Ένα σημαντικό κομμάτι στην ανάλυση μεγάλου πλήθους εικόνων αποτελεί ο 

εντοπισμός σημείων ενδιαφέροντος και εξαγωγής χαρακτηριστικών από τις περιοχές που 

επιλέχθηκαν αυτά τα σημεία. Η ανάπτυξη των μεθόδων αυτών έχει ως αποτέλεσμα τον 

περιορισμό της δειγματοληψίας των εικόνων, μόνο στα σημεία αυτά, και κατά συνέπεια 

την απλοποίηση του υπολογιστικού κόστους για την ανάλυση των δειγμάτων. Για το 

σκοπό αυτό κατά τη διδακτορική αυτή έρευνα μελετήθηκαν οι προτεινόμενοι από τη 

βιβλιογραφία αλγόριθμοι για τον εντοπισμό σημείων ενδιαφέροντος σε εικόνες και 

προτάθηκε ένα νέος αλγόριθμος εντοπισμού σημείων για ενδοσκοπικές εικόνες. Ο 

προτεινόμενος αλγόριθμος βασίστηκε στα ιδιαίτερα χρωματικά χαρακτηριστικά των 

εικόνων. Τα πειραματικά αποτελέσματα ήταν ικανοποιητικά αναφορικά με τον 

εντοπισμό σημείων εντός παθολογικών περιοχών, ενώ είναι σημαντική η παρατήρηση 

πώς δεν απαιτήθηκε κάποια μορφή εκπαίδευσης ώστε ο αλγόριθμος να εντοπίζει σημεία.  

Το έργο που παρουσιάστηκε στην παρούσα διατριβή παρέχει τις βάσεις για 

περαιτέρω έρευνα στα αντικείμενα που μελετήθηκαν. Ειδικότερα στο πλαίσιο της 

ενδοσκοπίας με κάψουλα, συνεισέφερε μεθόδους που μπορούν να χρησιμοποιηθούν στην 

πράξη από τους γιατρούς για την ανίχνευση διαφόρων γαστρεντερικών ανωμαλιών σε 

ενδοσκοπικές εικόνες. 
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CHAPTER 1 

 

INTRODUCTION 

This chapter presents the aims of the performed research, as well as the novel 

contributions of this thesis. These contributions have been published in several 

international journals and international conferences.  

 

1.1 Introduction 

Signal analysis is important tool in many applications, including audio indexing and 

retrieval (Ghoraani & Krishnan 2011; Wilson et al. 1992), detection of various events 

from wearable sensors (Kalantarian et al. 2016), detection of problems in electrical power 

systems (Andrade et al. 2016), and many more. 

 

This thesis addresses the analysis mainly of two-dimensional (2D) signals, i.e., on 

images. Nowadays, as cameras have invaded to our everyday life, e.g., through smart 

phones, smart cars, and other smart applications, image processing and analysis is 

becoming more and more popular. Object detection and recognition are the most 

common tasks, generally posed as the problem of matching a representation of the target 

object with the available image features, while rejecting the background features (Lowe 

2004; Oliva & Torralba 2007). Another application of image analysis is the segmentation 

for the detection of objects whose boundaries are not defined (Chan & Vese 2001; 

Ronneberger et al. 2015). For the application of image analysis in tasks such as 

classification and retrieval significant information is provided by the extraction of image 

features, which are able to describe the content of an image in a more abstract but 

meaningful way. A popular method for global image description based on the appropriate 

features is the Bag-of-Visual-Words (BoW) or Bag-of-Words model (Sivic & Zisserman 

2008; Csurka et al. 2004). BoW is utilized for image classification and retrieval purposes 

(Wang et al. 2010; Sánchez et al. 2013). 

 

The concepts of signal and image analysis have been widely used for the extraction of 

biomedical information in the context of many clinical procedures, including examination 

and diagnosis of various diseases. Recent practice of signal analysis can be found in 

health care systems for disease monitoring.  Based on the type of the disease there are 

different monitoring approaches for recording one or 2D signals. For example, recording 

and analysis of one-dimensional (1D) signals through wearable smart devices (Athavale 
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& Krishnan 2017), which can provide recordings of Electrocardiography (ECG) or 

Electroencephalography (EEG).  Analyzing an EEG signal for measuring the electrical 

activity of the brain, can provide clinical information on diagnosis patients with 

Alzheimer's disease, epilepsy, EEG seizure detection (Alotaiby et al. 2014), sleep 

disorders(Boostani et al. 2017). An ECG signal describes the electrical activity of the 

heart. From the analysis of ECG signals details can be derived concerning the heart rate, 

the diagnosis of heart disease, emotion recognition and biometric identification (Berkaya 

et al. 2018). In the recent study of (Koulaouzidis et al. 2016) telemonitoring (TM) has 

been introduced, aiming to detect patients at high risk of heart failure by the use of daily 

collected physiological data (blood pressure, heart rate, weight). Another example of 

image analysis for healthcare systems is coming from Gastrointestinal Endoscopy (GIE), 

which is a fundamental modality for the investigation of the gastrointestinal (GI) tract 

and the detection of luminal pathology. The most common GIE procedures are 

gastroscopy and colonoscopy. Another GIE procedure, which has become the prime 

choice for the examination of the small bowel, is the wireless capsule endoscopy (WCE) 

(Vasilakakis, Koulaouzidis, Yung, et al. 2019; Koulaouzidis et al. 2015). Image analysis 

covers the clinical needs related to the detection and localization of lesions suspicious for 

malignancy or of bleeding sources, and to provide a second opinion on the assessment of 

lesions that require a more thorough examination (Iakovidis & Koulaouzidis 2015; 

Vasilakakis, Koulaouzidis, Yung, et al. 2019; Vasilakakis, Koulaouzidis, Marlicz, et al. 

2019). Another application of image analysis is the the detection of bone fractures in X-

Ray images(Vasilakakis, Iosifidou, et al. 2019; Al-Ayyoub et al. 2013; Donnelley & 

Knowles 2005). Combining the knowledge around signal and image analysis Medical 

Decision Support Systems (MDSS) can provide assistance to physicians supporting them 

in correct clinical decisions, and consequently can contribute to the improvement of the 

quality of medical care. 

 

The research of this thesis has been performed in the scope of the project “Klearchos 

Koulaouzidis”, investigating methodologies for endoscopic image analysis, especially in 

WCE images. The proposed methodologies of this thesis aim to the assistance of the 

medical experts during the review of the images captured in the endoscopic examination. 

Particularly, methods for the detection of images with pathologies of gastrointestinal tract 

have been studied to support the experts’ decisions as well as to increase the diagnostic 

yield of the examination.   
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1.2 Aims of this thesis 

This doctoral research investigates novel approaches to signal analysis and their 

application to biomedical problem-solving with broader social impact. It focuses on the 

analysis of multichannel 2D signals received in the context of endoscopic examinations 

of the gastrointestinal system using a wireless camera. Specific aims of this thesis include 

investigation of: 

 

• Methods for informative signal representation, considering aspects of real-world 

applications 

• Methods for information detection and extraction from biomedical signals 

• Applications of the signal analysis methods in the challenging domain of 

gastrointestinal endoscopy, towards effective approaches to computer-aided 

clinical diagnosis of pathological conditions. 

 

 

1.3 Thesis Contributions  

The effort that was made for the accomplishment of the aforementioned aims, led to the 

development of innovative methods, experimentally validated in comparison to relevant 

state-of-the-art methods. The novel contributions of this thesis can be summarized as 

follows: 

 

• A methodology based on fuzzy logic for uncertainty-aware signal representation 

and classification.  

• Detailed literature reviews on WCE technologies and endoscopic image analysis 

methods progress over the last five years 2013-2018 

• Development of image analysis and machine learning methodologies for 

automatic lesion detection and the semantic interpretation of endoscopic images. 

These methodologies require only weakly annotated images by experts for 

supervised classification.  

• An unsupervised approach to salient point and region of interest detection in 

wireless capsule images and video frames.  

 

The research performed in the scope of this doctoral thesis and the contributions of this 

research in the above topics, they have been published in five (5) international journals 

and have been presented in five (5) international conferences. The list of publications is 

in the Appendix A. 
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It is worth noting that one of the published papers (Vasilakakis, Iakovidis, et al. 2018), 

was nominated as one of the best articles published in 2018 in the ‘Sensor, Signal, and 

Imaging Informatics’ subfield of medical informatics (Hsu et al. 2019) in the 2019 

edition of the annual International Medical Informatics Association (IMIA) Yearbook of 

Medical Informatics.  

 

 

 

1.4 Thesis Outline 

The rest of this thesis is organized in five (5) chapters as:  

• Chapter 2 provides a necessary theoretical background to the signal processing 

and analysis methods, with respect to the methods investigated  

• Chapter 3 presents an original, generic framework for signal analysis based on 

fuzzy logic, developed in the context of this thesis. It includes experimental 

results on public datasets. 

• Chapter 4 performs an extensive literature review on technologies and methods 

for gastrointestinal endoscopic image acquisition and analysis.  

• Chapter 5 presents all the methods investigated and proposed in the context of this 

thesis for the extraction of semantic information from endoscopic images, and the 

detection of lesions indicating pathological conditions. 

• Chapter 6 is the last chapter where the conclusions and future prospects for 

further research, are summarized.
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CHAPTER 2 

SIGNAL PROCESSING AND ANALYSIS 

The main purpose this chapter is to provide the reader with the necessary background 

knowledge with respect to the signal processing and analysis methods considered in this 

thesis. This chapter covers methods for digital image processing and analysis, including 

image transformations, detection of interest points, feature extraction and image 

classification.  

 

2.1 Introduction  

Signal processing is an integral part of almost any digital media application, and it 

involves the transformation of signals to meet application requirement. For example, the 

most widely known processing operations are noise reduction and compression, which 

are common in audio and video transmission. The former one aims to improve the quality 

of the signals, whereas the second one to reduce the bandwidth required for the 

transmission. 

  

Signal analysis is generally considered the logical next step of signal processing. The 

purpose of signal analysis is the use of the signal in its processed form for the 

interpretation of its content (Allen & Mills 2004). In this way signal analysis stands 

within the scope of machine learning.  

 

Regardless the way and the purpose of signal collection, the digitization of signals 

involve sampling, quantization and coding. Once digitized signals are processed and 

analyzed, usually to detect meaningful patterns. The pattern discovery process involves 

feature extraction, i.e., the estimation of numerical quantities representing various signal 

characteristics. These quantities, called features, form numerical vectors, called feature 

vectors, and the process of the estimation of these features are known as feature 

extraction. Features may be extracted globally from the whole signal or locally from 

regions of interest in the signal. The result of feature extraction is a representation 

enabling the quantification and the semantic interpretation of the signal contents. This is 

usually performed using machine learning methods. Such methods classify the feature 

vectors into different classes, corresponding to semantics; thus, enabling computers to 

understand the contents of the signal.  
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2.2 Digital signal processing and analysis 

2.2.1 Signals and Images  

Signals can be categorized based on their form as one-dimensinal (1D), 

two_dimensinal(2D) (images), or multidimensional. An analog signal is defined as a 

function of a real variable 

 𝑠𝑎 ∶ ℝ → ℝ          (2.1) 

where ℝ is the set of real numbers, and  𝑠𝑎(𝑡) is the signal value at time t. 

Some very simple elementary analog signals play pivotal roles in the theoretical 

development. The Dirac delta is one of these elementary signals and it is defined as: 

 

     𝛿(𝑡) = {
0, 𝑡 ≠ 0
1, 𝑡 = 0

        (2.2) 

 

The unit step signal finds use in chopping up analog signals. It is also a building block for 

signals that consist of rectangular shapes and square pulses. 

 

     𝑢(𝑡) = {
0, 𝑡 < 0
1, 𝑡 ≥ 0

        (2.5) 

 

Periodic signals repeat their values over intervals. The interval over which a signal 

repeats itself is its period, and the reciprocal of its period is its frequency. The measure of 

frequency is Hertz (Hz), which represents the time period of the sinusoidal wave between 

to pikes per second. 

 

An analog signal 𝑠𝑎(𝑡) is periodic if there is a T > 0 with  

 

   𝑠𝑎(𝑡 + 𝑇) = 𝑠𝑎(𝑡), T>0         (2.6) 

for all 𝑡. 

 

Figure 2.1 provides two examples of real-world 1D signals.  
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(a) (b) 

Figure 2.1 (a) Example of an ECG signal; (b) Example of a sinusoidal sound signal 

produced by a violin. 

 

Electromagnetic waves can be considered as propagating sinusoidal waves with 

wavelength λ. They can be thought of as a stream of massless particles, that travel in a 

wavelike pattern and moving at the speed of light (Gonzalez & Woods 1992). Visible 

light is an electromagnetic wave within a certain portion of the electromagnetic spectrum. 

The electromagnetic spectrum is the range of frequencies of electromagnetic radiation 

and their respective wavelengths. Visible light is the portion of the spectrum that can be 

perceived by the human eye. The usual wavelengths of visible light have range between 

400 nm and 700 nm. The electromagnetic spectrum can be expressed in terms of 

wavelength, frequency. Wavelength (λ) and frequency (v) are related by the expression 

 

𝜆 = 𝑐 𝑣⁄               (2.7) 

 

where c is the speed of light (2.998 × 108 m/s). Electromagnetic waves can be 

visualized as propagating sinusoidal waves with wavelength λ, or they can be thought of 

as a stream of massless particles, each traveling in a wavelike pattern and moving at the 

speed of light(Gonzalez & Woods 1992). 

 

Light is a particular type of electromagnetic radiation that can be seen and sensed by the 

human eye. The colors that humans perceive in an object are determined by the nature of 

the light reflected from the object. A body that reflects light and is relatively balanced in 

all visible wavelengths appears white to the observer. However, a body that favors 

reflectance in a limited range of the visible spectrum exhibits some shades of color. For 

example, green objects reflect light with wavelengths primarily in the 500 to 570 nm 

range while absorbing most of the energy at other wavelengths (Figure 2.2). Light that is 

void of color is called achromatic or monochromatic light. The only attribute of such 

light is its intensity, or amount. The term gray level generally is used to describe 

monochromatic light intensity because it ranges from black, to grays, and finally to white. 
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Figure 2.2Human eye spectral sensitivity  

 

Images are 2D signals generated by the combination of an “illumination” source and the 

reflection or absorption of energy from that source by the elements of the “scene” being 

imaged. An image can be represented as a 2D continues function (Gonzalez & Woods 

1992)  

 

       𝐼𝑔: ℝ
+ × ℝ+ → ℝ+         (2.8)  

 

The amplitude of 𝐼𝑔(𝑥, 𝑦)  at any pair of coordinates (𝑥, 𝑦) is called the intensity or gray 

level of the image at that point. That is, 

 

           𝑔 = 𝐼𝑔(𝑥, 𝑦)                               (2.9) 

 

The interval between the maximum and the minimum values of g is the gray scale. 

Common practice is to shift this interval numerically to the interval [0, G-1], where g=0 

is considered black and g=G-1 is considered white on the gray scale. All intermediate 

values are shades of gray varying from black to white. 

 

A photosensitive device that captures the illumination of a scene is called image sensor. 

An image sensor is arranged in the form of a 2-D array. Typically, the two main types of 

image sensors are CCD and CMOS sensors (El Gamal & Eltoukhy 2005) and are mainly 

used in digital cameras and other imaging devices like capsule endoscopes. CCD stands 

for Charged-Coupled Device and CMOS stands for Complementary Metal–Oxide–

Semiconductor. Each sensor consists of cells, where each cell produces a single value 

independent of colour. To capture colour images, cells are organized in groups of four 

cells and a filter is placed on top of the group to allow only red light to hit one of the four 

cells, blue light to hit another and green light to hit the remaining two. The reasoning 

behind the two green cells is because the human eye is more sensitive to green light and it 

is more convenient to use a 4-pixel filter than a 3-pixel filter and can be compensated 

after an image capture with something called white balance. 
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Depending on the nature of the radiation source (Gonzalez & Woods 1992), which is 

transmitted through objects, different kinds of images are produced. Except of the 

electromagnetic radiation which is visible for the human eye, X-rays are also among the 

sources of electromagnetic radiation used for imaging. An example of X-rays is their use 

in medical diagnostics. An X-ray image is generated by the placement of a patient 

between an X-ray source and a film sensitive to X-ray radiation. The X-rays are absorbed 

as they pass through the patient’s body, and the resulting radiation is capture by the film. 

 

 

2.2.2 Signal digitization 

Sensors capture the amplitude and spatial behavior of physical phenomena, like heart rate 

or illumination, and they produce as output a continuous waveform. The conversion of 

continue sensed data into digital form utilizes the procedures of sampling, quantization 

and digitization. Thus, after the acquisition, an analog signal is sampled and then is 

digitalized. 

 

The sampling (Nyquist 1928) process keeps values of the analog signal at regular 

intervals. For one dimensional signal the sampling interval is the time between samples. 

For a time signal, the sampling frequency is measured in hertz (Hz) and it is the 

reciprocal of the sampling interval, measured in seconds (s). If 𝑠𝑎(𝑡) is an analog signal, 

then keeping samples in regular intervals from 𝑠𝑎(𝑡) can be expressed as 

 

 𝑠𝑛(𝑛)  =  𝑠𝑎(𝑛𝑇)      (2.10) 

 

where T is the time period and T> 0, the discrete value sampled signal  𝑠𝑛  of an instant n 

is a real value function 

𝑠𝑛: ℤ → ℝ           (2.11) 

 

The signal is digitized by quantizing the signal values(Allen & Mills 2004). Digital 

signals can take on only a finite number of output values in the dependent variable, as 

long as in computer processing only a finite number of bits can represent the value in 

binary form. Basically the quantization assigns to each signal value to a computer 

register. A digital signal is an integer valued function 

 

𝑠𝑑: ℤ → [−N,N]                            (2.12) 

where  𝑁 ∈ ℤ  and 𝑁 > 0. 

 

For images the result of sampling and quantization are illustrated in Figure 2.3. A 

continuous image 𝐼𝑔(𝑥, 𝑦) with continuous the x-coordinates, y-coordinates and 
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amplitude have to be converted to digital form. In the case of images the sampling is the 

digitizing of the coordinate values and the quantization is the digitizing of the amplitude 

values (Gonzalez & Woods 1992). After the digitization of the image the coordinates x, 

y, and the amplitude values of 𝐼𝑔 are all finite, discrete quantities. A digital image is 

composed of a finite number of elements, each of which has a particular location and 

value. These elements are referred to as picture elements or pixels. Pixel is the most 

widely used term to denote the elements of a digital image. 

 

  
                        (a)                   (b) 

 

Figure 2.3 (a) a continues image before sampling and quantization (b) a sampled and 

quantized image  

 

 

2.2.3 Discrete Fourier and Wavelet transformations   

The signals can be viewed as functions of one variable, i.e. time, or of two variables, i.e. 

spatial x-coordinate and y-coordinate. So far, they have been studied without considering 

their frequency content. The information about the frequency content of a signal can be 

derived by transformations such as the Fourier or the wavelet transformations. 

 

Fourier transformation 

   

The Fourier Transform(Allen & Mills 2004) of a continuous signal 𝑠𝑎 of a value variable, 

time t, is  

  

𝑆𝑎(𝜔) = ∫ 𝑠𝑎(𝑡)𝑒
−𝑗𝜔𝑡𝑑𝑡

∞

−∞
      (2.13) 

 

where ω is a frequency variable and  𝑗 = √−1 . The reverse  

Fourier Transform is 

 

𝑠𝑎(𝑡) = ∫ 𝑆𝑎(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔
∞

−∞
      (2.14) 
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The definition of Discrete Fourier Transform (DFT) of a discrete 𝑠𝑛(𝑛) signal is 

 

 

𝑆𝑛(𝑘) = ∑ 𝑠𝑛(𝑛)𝑒
−2𝜋𝑗𝑛𝑘

𝑁𝑁−1
𝑛=0         (2.15) 

 

where 0 ≤  𝑘 ≤  𝑁 –  1 and 𝑁 > 0.   

 

In general, Sn (k) is complex; the complex norm, | Sn (k)|, and complex phase, arg(Sn (k)), 

for 0 ≤ k < N, are called the discrete magnitude spectrum and discrete phase spectrum, 

respectively, of sn (n). 

 

There is an inversion theorem for the DFT. If sn(n) is a discrete signal and Sn (k) is the 

DFT of sn(n) on [0, N−1]. Then 

 

𝑠𝑛(𝑛) =
1

𝑁
∑ 𝑆𝑛(𝑘)𝑒

2𝜋𝑗𝑛𝑘

𝑁𝑁−1
𝑘=0                      (2.16) 

 

Extension of one dimensional DFT to two dimensions is straightforward(Gonzalez & 

Woods 1992). The DFT of a two dimensional signal, image, 𝐼𝑔(𝑥, 𝑦) of size 𝑀 × 𝑁 is 

defined by the following equation 

 

𝐹𝑔(𝑢, 𝑣) = ∑ ∑ 𝐼𝑔(𝑥, 𝑦)𝑒−2𝜋𝑗(
𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
)𝑁−1

𝑦=0
𝑀−1
𝑥=0                  (2.17) 

where u and v variables are the frequency variables and x and y are the spatial image 

coordinate variable. In similar way the inverse DFT of an image is  

 

𝐼𝑔(𝑢, 𝑣) = ∑ ∑ 𝐹𝑔(𝑢, 𝑣)𝑒2𝜋𝑗(
𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
)𝑁−1

𝑣=0
𝑀−1
𝑢=0                              (2.18) 

 

Wavelet transformation 

  

The Fourier Transform was for many years the basis of signals transformation in order to 

obtain their spectral information. However, Fourier Transform was not able to provide 

temporal information about the frequency content of signals. The wavelet transform is a 

more recent transformation that is used to localize the frequency information of a signal 

sa(t) while it keeps the temporal information of each frequency.  

 

In one dimensional Discrete Wavelet Transform (DWT) of a signal, two functions 

mutually orthonormal are initially adopted: the scaling function φ and the mother wavelet 
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ψ. Other wavelets are then produced by translations of the scaling function φ and 

dilations by the mother wavelet ψ, according to the equations (Mallat 1989): 

 

𝜑𝑗0,𝑘(𝑡) = 2𝑗0 2⁄ 𝜑(2𝑗0𝑡 − 𝑘)       (2.19) 

𝜓𝑗,𝑘(𝑡) = 2𝑗 2⁄ 𝜓(2𝑗𝑡 − 𝑘)                  (2.20) 

 

for 𝑗 = 𝑗0, 𝑗0 + 1,…  and 𝑗0 ∈ ℤ  . The scaling function φ defines a kernel function and the 

mother wavelet ψ results in an oscillation of the input signal. Families of scaling 

functions can act as suitable bases for L2(R) or for alternative spaces. The structure of a 

wavelet basis is deterministic in location and frequency due to translation and dilation 

respectively. A function s  L2(R) can be represented in a wavelet series, using a given 

basis, as: 

 

                               𝑠(𝑡) =  ∑ 𝑐𝑗0,𝑘(𝑡)𝜑𝑗0,𝑘
(𝑡)𝑘 + ∑ ∑ 𝑤𝑗,𝑘(𝑡)𝜓𝑗,𝑘(𝑡)𝑘∈ℤ

𝑗0
𝑗=1     (2.21) 

 

where j is the scale of the transform, j0 is the "coarsest scale", 𝑐𝑗0,𝑘 = 〈𝑓, 𝜑𝑗0,𝑘〉  and  

𝑤𝑗,𝑘 = 〈𝑓, 𝜓𝑗,𝑘〉 are the wavelet coefficients and <., .> is the standard L2 inner product of 

two functions: 

〈𝑠1, 𝑠2〉 = ∫ 𝑠1(𝑡)𝑠2(𝑡)𝑑𝑡
𝑅

        (2.22) 

 

The first term of (2.18) corresponds to a low resolution signal 𝐿𝑗0 = {𝑐𝑗0,𝑘}, 𝑘 ∈ ℤ, that 

can be obtained by lowpass filtering. The coefficients 𝐷𝑗 = {𝑤𝑗,𝑘}, 𝑘 ∈ ℤ, 1 ≤  𝑗 ≤  𝑗0, 

constitute the detail signal at scale j, that can be obtained by highpass filtering. Together 

𝐿𝑗0 and 𝐷𝑗  are known as the wavelet representation of depth j0 of the signal f.  

 

The expansion of DWT for two dimensional signals is straightforward considering that 

the wavelet transform is separable. The 2D DWT of a 2D signal can be calculated by first 

applying one dimensional DWT on its rows and then apply the one dimensional DWT on 

the columns of the resulted 2D-signal. More precisely a separable filterbank is applied to 

the original 2D signal L0 according to the following recursive equations: 

 

𝐿𝑗0 = [𝐻𝑥 ∗ (𝐻𝑦 ∗ 𝐿𝑗0−1)↓2,1]↓1,2      (2.23) 

 

𝐷𝑗1 = [𝐻𝑥 ∗ (𝐺𝑦 ∗ 𝐿𝑗0−1)↓2,1]↓1,2     (2.24) 

 

𝐷𝑗2 = [𝐺𝑥 ∗ (𝐻𝑦 ∗ 𝐿𝑗0−1)↓2,1]↓1,2     (2.25) 

 

𝐷𝑗3 = [𝐺𝑥 ∗ (𝐺𝑦 ∗ 𝐿𝑗0−1)↓2,1]↓1,2     (2.26) 
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where 𝑘 ∈ ℤ  ,1 ≤  𝑗 ≤  𝑗0, … , 𝑗3  ∈ ℤ, 2,1 and 1,2 denote the sub-sampling along the 

rows and columns respectively, * is the convolution operator, H is the lowpass filter and 

G is the highpass filter. As in the one dimensional DWT the coefficients  𝐿𝑗0 , 𝐷𝑗1 , 𝐷𝑗2 , 𝐷𝑗3, 

1 ≤  𝑗 ≤  𝑗0, … , 𝑗3 are known as the wavelet representation of depth j0 of a two 

dimensional signal L0.  

 

 

2.3 Digital image processing and analysis  

Every signal or image contains patterns that can be revealed through processing. Thus, 

for an image further details about the visual content of images can be extracted. Usually, 

these patterns are represented as numerical vectors and in literature are referred as 

features. The features are related to image properties such as the intensity, the color or the 

texture (Tuytelaars et al. 2008). Consequently, the effective feature extraction of an 

image is the key to obtain useful semantic information for the representation of the 

image, which can be exploited in image analysis tasks such as image classification.  

 

A feature tends to describe either the global scenery of the image or a local image region, 

which is discriminated from its immediate neighborhood. However, features for global 

image representation are not efficient to distinguish foreground from background, 

resulting in the insufficient description of some characteristic of the image scenery, i.e. 

small objects. Thus, image description based on many features derived from different 

regions of the image is often more preferable than a feature that describes the global 

scenery of the image. 

 

The effectiveness of image representation through multiple extracted features of different 

image regions is depended to the content of each region. In order to select the appropriate 

regions of the image to extract features, methods able to detect salient or interest points 

inside an image are often utilized. Salient or interest points are usually associated with a 

change of one or more image properties simultaneously (Tuytelaars et al. 2008), without 

necessarily the location of the detected interest point to be exactly on this change. The 

region around the interest point is a region of interest, which encloses the change of 

image properties.  

 

 

2.3.1 Color spaces and color features 

Color is one of the main characteristics of the surface of objects and the scenery of an 

image. Color is the most intuitive and obvious feature of an image and is robust to 

changes in noise, image size, orientation, and resolution. A simple holistic description of 
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the image color is the distribution of the color in the image pixels. The color distribution 

can be depicted by a histogram, which measures the frequency with which each color 

appears among the image. 

 

The purpose of a color space is to facilitate the specification of colors in some standard, 

generally accepted way. In essence, a color model is a specification of a coordinate 

system and a subspace within that system where each color is represented by a single 

point. A color system generally defines a set of axes along which certain properties of 

color are quantitatively expressed. As it was previously referred, due to the acquisition of 

image and the human visual perception, a single color is often characterized by a 3D 

vector. In this thesis, the elements of such vector are referred as the color components or 

color channels.  

 

Since the advent of digital image processing, several color systems have been proposed, 

each with specific advantages. The RGB color space is aligned with the color channels of 

most electronic sensors and displays. The CIE-Lab color space is designed so that the 

same amount of numerical change in these values corresponds to roughly the same 

amount of visually perceived change.  

 

 

 
 

           Figure 2.4 RGB color cube 

 

In the RGB color system, colors are defined by the intensities of their spectral 

components around wavelengths of red, green and blue light. Hence, a color is 

represented by components R, G, B with 𝑅, 𝐺, 𝐵 ∈ [0,255], yielding a linear subspace 

with the form of a cube (see Figure 2.4). In this color cube, the points (255, 0, 0), (0, 

255, 0) and (0, 0, 255) define the pure form of the colors red, green and blue, 

respectively. Black and white are represented by (0, 0, 0) and (255, 255, 255), 

respectively, and the line between these two points contains all grayscale values within 
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the cube, i.e. all points with equal color components. Most hardware for capturing and 

displaying images employs separate red, green and blue components. For this reason, 

RGB is an attractive color system to work with, as the input signal requires no additional 

transformations. 

 

Due to the distribution of cones in the eye, the tristimulus values depend on the observer's 

field of view. To eliminate this variable, the International Commission on Illumination 

(CIE) defined a color-mapping function called the standard (colorimetric) observer, to 

represent an average human's chromatic response 

 

                                      (
𝑋
𝑌
𝑍
) = (

0.412 0.357 0.180
0.212 0.715 0.072
0.019 0.019 0.950

)(
𝑅
𝐺
𝐵
)                               (2.27) 

 

The CIE XYZ color space encompasses all color sensations that are visible to a person 

with average eyesight. That is why CIE XYZ (Tristimulus values) is a device-invariant 

representation of color. It serves as a standard reference against which many other color 

spaces are defined. The CIE model capitalizes on this fact by setting Y as luminance. Z is 

quasi-equal to blue, or the S cone response, and X is a mix of response curves chosen to 

be nonnegative. Setting Y as luminance has the useful result that for any given Y value, 

the XZ plane will contain all possible chromaticities at that luminance.   

 

  

 
Figure 2.5 CIE-Lab color space represented as a sphere. 
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The CIELAB color space (Schwiegerling & others 2004) is an attempt at providing a 

perceptually uniform color space. It expresses color as three values 

 

• L for the lightness with range [0,100], where black=0 and white=100 

• a ranges from green, negative (−) values of a, to red, positive (+) values of a 

• b ranges from blue, negative (−) values of b, to yellow, positive (+) values of b 

 

CIELAB was designed so that the same amount of numerical change in these values 

corresponds to roughly the same amount of visually perceived change. In this color 

space, the distance between two points also approximately tells how different the colors 

are in luminance, chroma, and hue. The 1976 CIELAB coordinates (L, a, b) in this color 

space can be calculated from the tristimulus values XYZ with the following formulas. 

The subscript n denotes the values for the white point. CIELAB equations that define the 

color transformation from XYZ are: 

 

 

𝐿 = 116𝑓 (
𝑌

𝑌𝑛
) − 16 

                                                  𝑎 = 500[𝑓 (
𝑋

𝑋𝑛
) − 𝑓 (

𝑌

𝑌𝑛
)]                                      (2.28) 

𝑏 = 200[𝑓 (
𝑌

𝑌𝑛
) − 𝑓 (

𝑍

𝑍𝑛
)] 

 

 

where f(s)=s1/3   for s>0.008856 and f(s)=7.7877s+16/116 for s<0.008856 and Xn, Yn and 

Zn are the CIE XYZ tristimulus values of the reference white point. 
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(a) 

 

 
 

 

 
 

 

 
 

(b) (c) (d) 

 

 
 

 

 
 

 

 
 

(e) (f) (g) 

Figure 2.6 (a) Original RGB image of vascular lesion; (b) R component of (a); (c) G 

component of (a); (d) B component of (a); (e) L component of CIE-Lab color space of 

(a); (f) a component of CIE-Lab color space of (a); (g) b component of CIE-Lab color 

space of (a); 

 

Due to the high correlation between the components of RGB color space, CIE-Lab is 

usually preferred for medical images. In Figure 2.6(a) there is an example of a medical 

image of small bowel captured during endoscopic examination. In the upper left side of 

the image there is a vascular lesion, which can be distinguished from its red color. In the 

second row of Figure 2.6 images (b)-(d) are respectively the R, G, B components, where 

there is no clear highlight of the lesion based on the intensity of image. On the other 

hand, in the last row of Figure 2.6 in the image (f) the lesion can be discerned due to the 

high intensity on the red color. 

 

Several studies used features extracted from color. Color histogram was one of the first 

approaches considered for color feature extraction from images (Swain & Ballard 1991).  

Being orderless(Grauman & Leibe 2011), the histogram offers invariance to viewing 

conditions and some tolerance for partial occlusions. This insensitivity makes it possible 
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to use a small number of views to represent an object, assuming a closed-world pool with 

distinctly colored objects. However, color indexing fails when the incident illumination 

varies either spatially or spectrally. (Funt & Finlayson 1995) proposed a preprocessing 

phase with a color constancy algorithm using a histogram color ratios to overcome the 

limitation of illumination. On the domain of medical image processing (Bashar et al. 

2010) proposed a methodology for removal of non-informative frames of an endoscopic 

video based on color histograms to discriminate frames that are highly contaminated by 

turbid fluids, faecal materials and/or residual foods.  

 

2.3.2 Texture features 

Texture is an essential image characteristic for describing the innate surface properties of 

a particular object and its relationship with the surrounding regions. Texture features 

have become an important basis for describing image characteristics because of the 

extensive use of image information. 

 

Gray-Level Co-occurrence Matrix (GLCM) 

 

The Gray-Level Co-occurrence Matrix (GLCM) (Haralick et al. 1973) is one well-known 

texture analysis method. The GLCM calculates how often the intensity, with value i, of a 

pixel within a grayscale image 𝐼𝑔 occurs either horizontally, vertically, or diagonally to 

adjacent pixels with the value j. Practically, GLCM is able to capture local pixel 

differences providing a texture description of image contents based on the statistical 

properties of this matrix. The GLCM is expressed by the following equation: 

 

 

                 𝐶(𝑖, 𝑗) = ∑ ∑ {
 1, 𝑖𝑓 𝐼𝑔(𝑥, 𝑦) = 𝑖 𝑎𝑛𝑑 𝐼𝑔(𝑥 + 𝛥𝑥, 𝑦 + 𝛥𝑦) = 𝑗

 0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       
𝑁
𝑦=1

𝑀
𝑥=1        (2.29) 

 

 

where C is the GLCM of a grayscale image 𝐼𝑔 with size 𝑀 × 𝑁 pixels and Δx and Δy 

define the spatial relation for which this matrix is calculated. The GLCM method to 

extract textural features for different angles, such as 0°, 90°, 180° and 270. From the 

resulting co-occurrence matrices statistical features are extracted (Haralick et al. 1973). 

The description of selected relevant features is given in the following equations. 

 

 

Energy : 

        ( )
i j

jiC ,2                            (2.30) 
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Entropy: 

     ( ) ( )jiCjiC
i j

,log,−       (2.31) 

  

 

Contrast : 

            ( ) ( )jiCji
i j

,
2

 −        (2.32) 

   

 

Inverse Difference Moment: 

       
( )

 
−i j

ji
ji

jiC
,

,
2

        (2.33)  

 

Correlation: 

    
( )( ) ( )

y

jiji Cyjxi







 −− ,
                    (2.34)  

 

In the above list, C denotes the normalized co-occurrence matrix, with C (i, j) referring to 

individual matrix elements. Parameters μx, μy and σx, σy denote the statistical mean and 

standard deviation in the directions of i and j, respectively. The choice of the above six 

features is motivated by the visual features of the image signal: flatness (Homogeneity), 

contrast, signal variation (Energy), signal activity (Entropy), signal statistics (Correlation) 

and averaged local signal difference (Dissimilarity). Energy, also called Angular Second 

Moment and Uniformity, is a measure of textural uniformity of an image. Energy reaches 

its highest value when gray level distribution has either a constant or a periodic form. A 

homogenous image contains very few dominant gray tone transitions, and therefore the C 

matrix for this image will have fewer entries of larger magnitude resulting in large value 

for energy feature. In contrast, if the C matrix contains a large number of small entries, 

the energy feature will have smaller value. Entropy measures the disorder of an image 

and it achieves its largest value when all elements in C matrix are equal. When the image 

is not texturally uniform many GLCM elements have a very small value which implies 

that entropy is very large. Therefore, entropy is inversely proportional to GLCM energy. 

Contrast is a difference moment of the C and it measures the amount of local variations in 

an image. Inverse difference moment measures image homogeneity. This parameter 

achieves its largest value when most of the occurrences in GLCM are concentrated near 

the main diagonal Inverse different moment is inversely proportional to GLCM contrast 
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film and digitizers (Partio et al. 2002). Correlation measures the linear dependence of 

gray levels on those neighboring pixels being examined. 

 

Local binary pattern (LBP) 

 

The Local binary pattern (LBP) operator was proposed by (Ojala et al. 1996; Ojala et al. 

2002), as  a  non-parametric,  grey-scale  invariant  texture  representation model for the 

description of the local spatial structure of an image. The LBP operator represents the 

local texture around a pixel exploiting the information of its 3×3 neighborhood (Figure 

2.7). More specifically, a neighborhood is represented by a set of nine pixels with 

intensities 𝐺 = {𝑔𝑐, 𝑔0, 𝑔1, . . . , 𝑔7}, where 𝑔𝑐   is the intensity of the pixel in center and 

𝑔𝑖(0 ≤ 𝑖 ≤ 7) are the intensities of the pixels around the 𝑔𝑐 (Figure 2.7(a)). The 

neighborhood is characterized by a set of binary values 𝑏𝑖(0 ≤ 𝑖 ≤ 7) based on the 

condition(Figure 2.7(b)) 

 

                                                          𝑏𝑖 = {
0, 𝑖𝑓 𝑔𝑖 < 𝑔𝑐

1, 𝑖𝑓 𝑔𝑖 ≥ 𝑔𝑐
                                          (2.35) 

 

 

    

(a) (b) (c) (d) 

Figure 2.7 Local Binary Pattern computation steps 

 

A unique LBP value is extracted for each center pixel of a neighborhood considering the 

following equation(Figure 2.7(c)-(d)): 

 

𝐿𝐵𝑃 = ∑ 𝑏𝑖 ∙ 2𝑖7
𝑖=0                                            (2.36) 

 

 

This way, the local texture information around a pixel is described by a local binary 

pattern with code 𝐿𝐵𝑃 ∈ [0,255]. Every pixel in an image generates a single LBP code.  

The textural information of the image is described by a histogram that represents the 

occurrences of different LBP codes from all pixels. This histogram is the texture feature 

vector of the image.  

 

 

 

   

   

   

   

  

   

   

  

   

*  *  *  

*  *  

*  *  *  
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Complete local binary pattern (CLBP) 

 

An extension of LBP was Complete local binary pattern (CLBP) and proposed by (Guo et 

al. 2010). Despite the LBP, CLBP exploits the information of magnitude. A 

neighborhood is represented by a set of Q pixels with intensities𝐺 =

{𝑔𝑐, 𝑔0, 𝑔1, . . . , 𝑔𝑄−1}, where 𝑔𝑐 is the intensity of the pixel in center and 𝑔𝑖(0 ≤ 𝑖 ≤ 𝑄 −

1)  are the intensities of the pixels around the 𝑔𝑐. In CLBP a local neighborhood of pixels 

is described by the local difference 𝑏𝑖 = 𝑔𝑖 − 𝑔𝑐 that is decomposed to sign-magnitude  

 

        𝑏𝑖 = 𝑔𝑖 − 𝑔𝑐 = 𝑠𝑖 ∗ 𝑚𝑖                                        (2.37) 

 

   𝑠𝑖 = 𝑠𝑖𝑔𝑛(𝑏𝑖) and 𝑚𝑖 = |𝑏𝑖|     (2.38) 

 

where 𝑠𝑖 is the sign of 𝑏𝑖 and 𝑚𝑖 is the magnitude of 𝑏𝑖 respectively. Then, two operators 

CLBP-Sign (CLBP_S) and CLBP-Magnitude (CLBP_M) are used to code them. Another 

operator the CLBP_Center (CLBP_C) is used for the coding of the central pixel of the 

neighborhood based on a global thresholding. All the three code maps produced by the 

CLBP_C, CLBP_S, and CLBP_M operators are in binary format. The CLBP feature for 

textural description of the image is the combination of all computed codes for the 

formation of a CLBP histogram.   

 

2.3.3 Feature detectors-descriptors 

The detection of regions of interests begins with the detection of salient/interest points. 

Preferably, these points have to be invariant and distinctive under various conditions as 

viewpoint changes, noise, translation or rotation of image. For the detection of invariant 

interest points (Lowe 2004) proposed Scale Invariant Feature Transform (SIFT) and (Bay 

et al. 2008) proposed Speeded-Up Robust Features (SURF).  

 

Scale Invariant Feature Transform (SIFT) 

 

In SIFT, the Difference-of-Gaussians detector (DoG) was utilized for the detection of 

interest point between different scales. In DoG there is a smoothing of the initial image 

multiple convolutions with a Gaussian mask. From every convolution a smoothed image 

is produced. The smoothed images are combined pairwise to compute a set of DoG 

points. More precisely, the scale space of an image is the product of the convolution of a 

variable-scale Gaussian,  𝐺(𝑥, 𝑦, 𝜎): 

 

𝐺(𝑥, 𝑦, 𝜎) =
𝑒−(𝑥2+𝑦2)/2𝜎2

2𝜋𝜎2      (2.39) 
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with an input image 𝐼𝑔(𝑥, 𝑦) and scale variable 𝜎. The DoG is the difference between two 

adjacent scales that are separated by a factor of k 

 

𝐷(𝑥, 𝑦, 𝜎) =  (𝐺(𝑥, 𝑦, 𝑘𝜎) −  𝐺(𝑥, 𝑦, 𝜎)) ∗ 𝐼𝑔(𝑥, 𝑦)     (2.40) 

 

Every scale has at least s+3 (s an integer number) images, which compose an octave.  

These images are the different products of convolutions with Gaussian for different 

values of scale variant 𝑘. Then the initial image 𝐼𝑔 is down-sampling by a factor 2 and the 

DoG for a new octave with the down-sampling image is computed. The minimum and the 

maximum extrema points are defined by comparing each point of 𝐷(𝑥, 𝑦, 𝜎) with the 

immediate 8 neighbors and with the 9 closest neighbors in two adjacent scale levels. 

From the defined extrema point the final points of interest are determined after a 

threshold for the rejection of low contrast points and a threshold based on the ratio of 

principal curvatures. 

 

The description of the region of interest around the detected interest point is based on the 

magnitude of a point coordinate at (x,y): 
 

𝑚(𝑥, 𝑦) = √(𝐺(𝑥 + 1, 𝑦, 𝜎) ∗ 𝐼𝑔(𝑥, 𝑦) − 𝐺(𝑥 − 1, 𝑦, 𝜎) ∗ 𝐼𝑔(𝑥, 𝑦))
2
+ (𝐺(𝑥, 𝑦 + 1, 𝜎) ∗ 𝐼𝑔(𝑥, 𝑦) − 𝐺(𝑥, 𝑦 − 1, 𝜎) ∗ 𝐼𝑔(𝑥, 𝑦))

2
      (2.41) 

 

and the orientation of the same point 

 

        𝜃(𝑥, 𝑦) = tan−1 ((𝐺(𝑥, 𝑦 + 1, 𝜎) ∗ 𝐼𝑔(𝑥, 𝑦) − 𝐺(𝑥, 𝑦 − 1, 𝜎) ∗ 𝐼𝑔(𝑥, 𝑦)) /(𝐺(𝑥 + 1, 𝑦, 𝜎) ∗ 𝐼𝑔(𝑥, 𝑦) − 𝐺(𝑥 − 1, 𝑦, 𝜎) ∗ 𝐼𝑔(𝑥, 𝑦)))  (2.42) 

 

by encoding the image information of the region in a localized set of gradient orientation 

histograms. The region is a regular grid of 16 ×16 pixels that is divided in subgroups of   

4 ×4. The content of 4×4 subgroup is then summarized in gradient orientation histogram 

with 8 orientation bins. The final feature vector of each region of interest is the 

concatenation of each subgroup’s histogram resulting in a feature vector with 

dimensionality of 128. 

 

Speeded-Up Robust Features (SURF) 

 

SURF(Bay et al. 2008) was proposed as a more efficient alternative of SIFT. It utilizes 

the integral images(Viola & Jones 2001) for  fast approximation of the Hessian matrix 

𝐻(𝑥, 𝑦, 𝜎) of an image 𝐼𝑔 at scale σ 

 

𝐻(𝑥, 𝑦, 𝜎) = [
𝐿𝑥𝑥(𝑥, 𝑦, 𝜎) 𝐿𝑦𝑥(𝑥, 𝑦, 𝜎)

𝐿𝑥𝑦(𝑥, 𝑦, 𝜎) 𝐿𝑦𝑦(𝑥, 𝑦, 𝜎)
]     (2.43) 
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where 𝐿𝑥𝑥(𝑥, 𝑦, 𝜎), 𝐿𝑥𝑦(𝑥, 𝑦, 𝜎), 𝐿𝑦𝑦(𝑥, 𝑦, 𝜎) are the convolutions of the Gaussian second 

order derivative  with the image 𝐼𝑔 in point (x,y). 

 

The sum of all pixels in a rectangular region formed by the origin (0,0)  and (𝑥, 𝑦) of the 

input image 𝐼𝑔 is preserved as index in the integral image 𝐼𝛴(𝑥, 𝑦): 

 

𝐼𝛴(𝑥, 𝑦) = ∑ ∑ 𝐼𝑔(𝑖, 𝑗)
𝑗≤𝑦
𝑗=0

𝑖≤𝑥
𝑖=0       (2.44) 

 

After the computation of the integral image, four additions are needed to calculate the 

sum of the intensities over any upright, rectangular area, as shown in Figure 2.9.  

 

 

 
 

Figure 2.8  Using integral images, it takes only four operations to calculate the area of a 

rectangular region of any size 

 

 

SURF doesn’t rely on Gaussian derivatives as SIFT does. SURF utilizes simple 2D box 

filters (“Haar wavelets”). The box filters approximate determinant of the Hessian and are 

efficiently evaluated using integral images. Based on the approximated determinant of the 

Hessian in the image, the local maxima are detected using non-maximum suppression. 

 

The SURF features are inspired by SIFT dividing the region of interest into a 4 × 4 grid. 

However, instead of building up a gradient orientation histogram, SURF computes the 

statistics ∑𝑑𝑥, ∑|𝑑𝑥|, ∑𝑑𝑦, ∑|𝑑𝑦| ,where 𝑑𝑥, 𝑑𝑦 are the wavelet responses vertically and 

horizontally. 

 

0,0 

Σ 

D B 

C A 

Σ=A-B-C+D 
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Figure 2.9 The detected point of interest in the a-channel of CIE-Lab color space of 

Figure 2.6 (a) using SURF. 

 

In biomedical image processing, (Iakovidis & Koulaouzidis 2014b) proposed the use of 

SURF for the detection of lesion in endoscopic images, Figure 2.10. The proposed 

methodology has a preprocessing step of image transformation from RGB to CIE-Lab 

color space. SURF algorithm detects salient points in the a component of CIE-Lab color 

space. 

 

2.3.4 Superpixel segmentation 

Segmenting the image into group of pixels is an alternative way for feature extraction 

from arbitrarily shaped uniformly colored image regions image regions. Superpixels 

provide a convenient way for image representation, where the image segments typically 

have the right trade-off between locality and distinctiveness(Tuytelaars et al. 2008). The 

algorithm simple linear iterative clustering (SLIC) (Achanta et al. 2012) performs a local 

clustering of along with a distance measure that enforces compactness and regularity in 

the superpixel shapes, and seamlessly accommodates grayscale as well as color images. 

SLIC creates clusters of pixels defining regions of homogeneous color properties, called 

superpixels. SLIC is simple to implement and easily applied in practice the only 

parameter specifies the desired number of superpixels. This is done in the five-

dimensional [L,a,b,x,y] space, where [L,a,b] is the pixel color vector in CIE-Lab color 

space, which is widely considered as perceptually uniform for small color distances, and 

x,y is the pixel position. While the maximum possible distance between two colors in the 

CIE-Lab space is limited, the spatial distance in the (x,y) plane depends on the image 

size. It is not possible to simply use the Euclidean distance in a 5D space without 

normalizing the spatial distances. In order to cluster pixels a distance measure is used that 

considers superpixel size. First the distance of pixels in CIE-Lab is defined as  

 

𝑑𝐿𝑎𝑏 = √(𝐿𝑖 − 𝐿𝑗)2 + (𝑎𝑖 − 𝑎𝑗)2 + (𝑏𝑖 − 𝑏𝑗)2                       (2.45) 
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and then spatial distance of x,y 

 

           𝑑𝑥𝑦 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2                                   (2.46) 

 

The final distant measure is  

 

                      𝐷𝑠 = 𝑑𝐿𝑎𝑏 +
𝑚

𝑆
𝑑𝑥𝑦                                                        (2.47) 

 

 

where Ds is the sum of the L,a,b distance and the x,y plane distance normalized by the 

grid interval S. A variable m is introduced in Ds allowing us to control the compactness 

of a superpixel. The greater the value of m, the more spatial proximity is emphasized and 

the more compact the cluster.  

 

 

 

 
 

Figure 2.10 The superpixels with SLIC in Figure 2.6(a) 

 

For medical images capture during endoscopic procedure, many recent methodologies 

have used SLIC in order to extract local features. In the approach proposed by (Iakovidis 

et al. 2015), the superpixels that contain at least one salient point are also characterized as 

salient. However, in that study the pixel-level saliency was disregarded, and the 

localization of abnormalities smaller than a superpixel was impossible. In the study of 

(Vasilakakis, Iakovidis, et al. 2018), the pixel-level saliency defined by DINOSARC 

algorithm is not superseded by the region-level saliency defined by the superpixels. Each 

DINOSARC salient region is defined by a superpixel that includes only a single, 

representative salient point. If the superpixel contains a cluster of salient points, then the 

cluster centroid is regarded as its corresponding salient point. 
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2.3.5 The model of Bag-of-Words for image representation 

The Bag-of-Words or Bag-of-Visual Words (BoW/BoVW) (Csurka et al. 2004) is a 

widely used method to model generic categories in detection, classification and 

recognition problems (Sivic & Zisserman 2008). This method has been originally 

inspired by text document analysis techniques, and consists of calculating the frequency 

of appearances of a word. Bag-of-Visual-Words can be considered as a model built upon 

the notion of visual vocabularies. The BoW describes an image as a set of “words”, 

which capture its visual content. 

 

 A visual vocabulary can be defines as a quantization on the feature vector space of local 

image descriptors. That way, any novel descriptor vector can be coded in terms of the 

discretized region of feature space to which it belongs. The visual vocabulary consists of 

a collection of a large sample of features from representative images, and the quantization 

of the feature space. Given an adequately large dataset, a set of features is extracted from 

every image and typically quantized using a clustering approach, e.g., the k-means 

algorithm (Drake & Hamerly 2012). Upon clustering, the centroids (or in some 

approaches the medoids, which opposed to centroids are actual members of the dataset) 

that have been determined, are used as a “visual vocabulary” and are often referred to as 

“visual words.” 

 

In that case, the visual “words” are the k cluster centers, and the size of the vocabulary k 

is a user-supplied parameter. Then a novel image’s features can be translated into words 

by determining which visual word they are nearest to in the feature space. This procedure 

involves a histogram construction, which describes the appearance frequency of every 

visual word within an image. Thus, this histogram is used to characterize the visual 

content of the image. Among the advantages of BoW, we should emphasize that it 

succeeds to reduce the problem of classifying a large number of high dimensional vectors 

from local point descriptors to a fixed-size, one dimensional vector without significant 

loss of visual information. 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 16:40:13 EEST - 18.217.200.173



 

27 

 

 

 

(a) (b) 

 
(c) 

Figure 2.11 BoW Feature Model (a) features are extracted from a group of images (b) 

quantization on the feature vector space of image descriptors for the construction of 

visual vocabulary (c) histogram construction for the characterization of the visual content 

of the image based on the frequency that each word appears in the image 

 

 

2.4 Data classification 

Usually, the extracted features are labeled in relation to the content of the image or the 

content of the image region that these features represent. For example, features coming 

from an area of medical image with abnormality have the label “abnormal” and this label 

indicates the class that these features are categorized. Otherwise, feature from an area of a 

medical image without abnormality have the label “normal”. 

 

Following the image processing, the extracted features are used for the analysis of the 

image content. The purpose of image analysis is to reveal the relations between features 

extracted from different images. In this way, image analysis stands within the scope of 

machine learning, as the image features are employed by machine learning algorithms. 
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Such algorithms are trained from the given features with known labels and classify the 

unknown features predicting their content.  

 

In biomedicine, image classification is a task of great importance, as the classification 

result can improve the diagnostic accuracy of physicians. An example of image 

classification in medicine is the classification of endoscopic images, in order to detect a 

possible abnormality (Vasilakakis, Koulaouzidis, Yung, et al. 2019; D. K. Iakovidis et al. 

2018). 

 

2.4.1 Supervised learning 

Let 𝑋 = 𝑅𝑑 be the feature vector space derived from a set of images used to train the 

supervised classification system. Also, let Y denote the label space, where each label 

refers to a class, i.e. “normal” or “abnormal”. In the supervised learning an algorithm 

learns from a set of labeled examples a function 𝑓: 𝑋 → 𝑌, by using the feature vectors  

𝑥 ∈ 𝑋,  that have been extracted from a set of N images and are labeled by 𝑦 ∈ 𝑌. This 

algorithm learns from a set of labeled features that are used as training data, in order to 

make predictions for features with unknown label. The features with unknown are usually 

referred as test features 𝑥𝑡 ∈ 𝑋  This is the most common scenario associated with 

classification problems (Mohri et al. 2012). 

 

K-nearest neighbors (KNN) is a simple classification algorithm that stores all available 

cases and classifies new cases based on a similarity measure i.e. Euclidean distance. 

KNN is a non-parametric technique and it has been used in pattern recognition and 

feature classification from the beginning of 1970’s. Each feature can be classified based 

on the majority vote of its neighbors. This way, an unseen feature is assigned to the class 

to the class most common amongst its K nearest neighbors measured by a distance 

function that is used as a similarity measure.  

 

KNN classification has two parameters that are needed to be set. The first is the number 

of neighbors K and the second is the similarity measure that used for determining the set 

of closest neighbors. For the case of K=1, the feature is assigned to the class of the 

neighbor that is nearest. Choosing the optimal value for K is best done by first inspecting 

the data. In general, a large K value is more precise as it reduces the overall noise. 

However, the increase in classification accuracy is no guarantee.  

 

KNN is relatively slow during testing, although it can be trained fast. This happens 

because when a new sample is tested, it has to be compared to all training samples. 

Additionally, the deficiency of an underlying parametric model leads to a high memory 

demand, as all the training points have to be stored. 
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Another method for supervised classification is based on Support Vector Machine (SVM) 

(Sergios Theodoridis & Koutroumbas 2008). SVM has been proposed by Cortes and 

Vapnik (Cortes & Vapnik 1995). SVM performs classification by finding the hyperplane 

that maximizes the margin between the two classes. The hyperplane separates the labeled 

data of different classes and the features (vectors) that define the hyperplane are the 

support vectors. The region bounded by hyperplanes is called the margin. 

 

 

 
 

Figure 2.12 Example of linearly separable classes 

 

To define an optimal hyperplane the maximization of the margin width w of label data is 

needed. Let 𝑦𝑖 where   𝑦 ∈ {−1,1}, denotes a class label of feature  𝑥 ∈ 𝑅𝑑, SVM finds 

the hyperplane  

 

𝑤⃗⃗ ∙ 𝑥 + 𝑏⃗  =  0                                                  (2.48) 

 

where b is the offset of the hyperplane. The hyperplanes of each class can be described as 

 

             𝑤⃗⃗ ∙ 𝑥 + 𝑏⃗ ≥  1, 𝑖𝑓 𝑦 = 1                                              (2.49) 

 

𝑤⃗⃗ ∙ 𝑥 + 𝑏⃗ ≤  −1, 𝑖𝑓 𝑦 = −1                                         (2.50) 

 

that divides the data points with label 𝑦𝑖 = −1 from the data points with label 𝑦𝑖 = 1 

with maximum margin. These constraints state that each data point must lie on the correct 

side of the margin. This can be rewritten as 

 

𝑦𝑖(𝑤⃗⃗ ∙ 𝑥 𝑖 + 𝑏⃗ ) ≥  1, ∀𝑥𝑖                                               (2.51) 

 

Support  
vectors 

Margin 
width 
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Figure 2.13 Linear support vector classifier 

 

Based on the geometry the distance of two hyperplanes is 
2

‖𝑤‖
, so for the maximization of 

the distance between the planes, the minimization of ‖𝑤‖ is needed as well as to find w 

and b by solving the following objective function  

     

𝑚𝑖𝑛‖𝑤‖ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤⃗⃗ ∙ 𝑥 𝑖 + 𝑏⃗ ) ≥  1, ∀𝑥𝑖                         (2.52) 

 

In SVM, if the data is linearly separable, there is a unique global minimum value. Ideally, 

SVM analysis should produce a hyperplane, where the feature vectors are completely 

separable into two non-overlapping classes. However, perfect separation may not be 

possible, or it may result in a model with many cases that the model does not classify 

correctly. In this situation SVM finds the hyperplane that maximizes the margin and 

minimizes the misclassifications 

 

𝑦𝑖(𝑤⃗⃗ ∙ 𝑥 𝑖 + 𝑏⃗ ) ≥  1 − 𝜉𝑖, ∀𝑥𝑖  𝑎𝑛𝑑 𝜉𝑖 > 0                   (2.53) 

 

where the slack variable 𝜉𝑖 allows some instances to fall off the margin with a penalty. 

 

Objective function penalizes for misclassified instances  

 

   min
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖𝑖  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤⃗⃗ ∙ 𝑥 𝑖 + 𝑏⃗ ) ≥  1 − 𝜉𝑖 , ∀𝑥𝑖 𝑎𝑛𝑑 𝜉𝑖 > 0         (2.54) 

 

where 𝐶 is a positive cost parameter. 

 

The algorithm tries to maintain the slack variable 𝜉𝑖 to zero while maximizing margin. 

However, it does not minimize the number of misclassifications, but the sum of distances 

from the margin hyperplanes. 

 

 

 

1 
1 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 16:40:13 EEST - 18.217.200.173



 

31 

 

 

 
Figure2.14 Non-linear separable hyperlane 

 

 

The simplest way to separate two groups of data is with a straight line, if they are 1D 

data, flat plane, if they are 2D data or an N-dimensional hyperplane for data of more than 

two dimensions. However, there are situations where a nonlinear region can separate the 

groups more efficiently.  

 

SVM handles this by using a kernel function, as a way to map the data from the non-

linear space into a different space with higher dimensionality, where a hyperplane can be 

used to separate the data. This mapping exploits the fact that the inner product of vectors 

of a higher dimensional space can be expressed as a function of the inner product of 

vectors of the initial space. The mapping 𝜑:𝑅𝑑 → 𝐻, where 𝐻is a higher dimensional 

space, is achieved with a kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥 𝑖) ∙ 𝜑(𝑥 𝑗) that maps the inner 

product 𝑥 𝑖 ∙ 𝑥 𝑗  →  𝜑(𝑥 𝑖) ∙ 𝜑(𝑥 𝑗) 

 

This is called kernel trick which means the kernel function transform the data into a 

higher dimensional feature space to make it possible to perform the linear separation. 

Thus, the (2.31) can be rewritten as 

 

min
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖𝑖  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤⃗⃗ ∗ 𝜑(𝑥 𝑖) + 𝑏⃗ ) ≥  1 − 𝜉𝑖, ∀𝑥𝑖  𝑎𝑛𝑑 𝜉𝑖 > 0      (2.55) 

 

A kernel that is used in this thesis is the Gaussian Radial Basis function or RBF and it can 

be describe by the function below 

 

 

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒
−

‖𝑥𝑖−𝑥𝑗‖
2

2𝜎2                                       (2.56) 

 

 

 

ξi 
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Artificial Neural Networks(ANNs) 

Artificial Neural Networks(ANNs) (Sergios Theodoridis & Koutroumbas 2008) are 

inspired from the way that the human brain works. ANNs are composed by units named 

perceptron. Figure 2.14 illustrates the basic perceptron model. For a feature vector 

𝑥 = [𝑥1𝑥2 …𝑥𝑛] ∈ 𝑅𝑁
 every   𝑥𝑖  is multiplied with the respective weight 𝑤 =

[𝑤1𝑤2 …𝑤𝑛] ∈ 𝑅𝑁  which is called synaptic weight or synapses. Activation function 

applies step rule which converts the numerical value to 0 or 1 so that it will be easy for 

data set to classify. The activation functions that are usually use are the sigmoid 

     𝑆(𝑥) =
1

1+𝑒−𝛽𝑥       (2.57) 

 

     𝑆(𝑥) = tanh
𝛽𝑥

2
       (2.58) 

 

where they have a smooth gradient for the values of parameter β.  

Also, there is a bias value 𝑤0 which is added to the weighted sum product 𝑤⃗⃗ ∙ 𝑥  is an 

element that adjusts the boundary away from origin to move the activation function left, 

right, up or down.  

Perceptron algorithms can be divided into two types they are single layer perceptron and 

multi-layer perceptron. In single-layer perceptron’s neurons are organized in one layer 

and they are used for linear classification problems. If there is more than one class, then 

more than one neuron are placed parallel in the same layer.  

 

Multi-Layer perceptron is substantially formed from multiple layers of perceptron. Every 

single neuron present in the first layer will take the input signal and send a response to 

the neurons in the second layer and so on. The multilayer perceptron (MLP) are used for 

non-linear classification cases. In the first layer there are no neurons and each node 

represents each xi. In the output layer there is the same number of neurons as the number 

of classes. The hidden layers include a number of neurons that is usually defined 

experimentally.  

  

In the first phase the activations are propagated forward from the input to the output layer 

and the error between the output and the desire value is calculated by 

 

𝐸 = ∑ (𝑑𝑘 − 𝑦𝑘)
2𝑀

𝑘=1        (2.59) 

 

where 𝑦𝑘  is the output of the k-neuron and 𝑑𝑘 is the desire value. 
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The back propagation algorithm propagates backwards the error iteratively and tries to 

find the optimal values for weights, so as the error value to be minimized. To minimize 

the error back propagation algorithm calculates partial derivatives from the error function 

till each neuron’s specific weight is defined. The basic iteration scheme for the 

computation of optimal weights is 

 

 

𝑤𝑗
𝑟(𝑛𝑒𝑤) = 𝑤𝑗

𝑟(𝑜𝑙𝑑) + ∆𝑤𝑗
𝑟      (2.60) 

∆𝑤𝑗
𝑟 = −𝜂

∂E

  𝜕𝑤𝑗
𝑟        (2.61) 

 

where is the partial derivatives  
∂E

  𝜕𝑤𝑗
𝑟 of the error function with respect to each weight w 

and η is the learning rate. 

 

Convolutional Neural Networks 

 

Within the last decades, Convolutional Neural Networks (CNNs)(LeCun et al. 1990) 

have shown high predictive capacity in the broader field of computer vision (Krizhevsky 

et al. 2012; Simonyan & Zisserman 2014; Szegedy et al. 2015) on single label datasets, 

such as ImageNet (Deng et al. 2009) and CIFAR (Krizhevsky et al. 2009). CNNs are 

contemporary extensions of the MPL characterized by a deep structure that enables 

feature extraction from raw input images through layers of adaptable filtering 

components (LeCun et al. 1998). This makes them independent from any hand-crafted 

feature extraction method “tailored” to specific diagnostic tasks (Greenspan et al. 2016).  

 

The main layers of CNN architecture are the Convolution layer, the Pooling layer and the 

Fully Connected layer.  

 

In the Convolution layer valuable features are extracted from an image. A convolution 

layer has a number of 𝑘 filters that are convolved with the image. Let a 𝑛 ×  𝑚 ×  𝑟 

image be the input of the convolutional layer, where 𝑛  is the height and  𝑚 is width of 

the image and  𝑟 is the number of channels, i.e. RGB images have 𝑟 = 3. Each filter has 

size ℎ × 𝑤 ×  𝑑 where ℎ < 𝑛, 𝑤 < 𝑚. After the convolution of the image with 𝑘 filters 

the result between input image and convolution layer is a feature map with 𝑛′ ×  𝑚′ ×  𝑟′ 

where 𝑛′ = (𝑛 − ℎ + 1), 𝑚′ = (𝑚 − 𝑤 + 1) and 𝑟′ = 𝑘.  

 

Pooling layer operates on each feature map independently. Its function is to progressively 

reduce the spatial size of the representation to reduce the amount of parameters and 

computation in the network. The most common approach used in pooling is max pooling, 
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where selects the maximum value in a region  𝑝 ×  𝑝 of the feature map, 𝑝 < 𝑛′, 𝑚′ and 

usually 𝑝 = 2. 

 

Fully connected layers are placed before the classification output of a CNN. Fully 

connected layers flatten the results of convolution and pooling layers before 

classification. This is similar to the output layer of an MLP. 

 

 
Figure 2.15 Basic CNN architecture 

 

 

An approach of using a CNN in a classification task is through a pre-trained network 

used for feature extraction exploiting the convolution layer feature maps. Zhang et al. 

(Zhang et al. 2016) utilized a pre-trained network, and more specifically CaffeNet (Jia et 

al. 2014), to transfer learning by extracting features from intermediate convolution layers 

of the network and then use them to train an SVM classifier. 

 

2.4.2 Unsupervised learning 

In the previous section, the training features were available, and the classifier was 

designed by exploiting known information. However, this is not always the case, and 

there is another type of pattern recognition tasks for which training data, of known class 

labels, are not available. When the given training data are unlabeled and the learning 

algorithm has to predict for unseen data, this procedure is called unsupervised learning. 

Since in general no labeled example is available in that setting, it can be difficult to 

quantitatively evaluate the performance of a learner. Clustering and dimensionality 

reduction are example of unsupervised learning problems. The k-means algorithm (Drake 

& Hamerly 2012) is a well-known clustering algorithm. 

 

 

2.4.3 Weakly-supervised learning 

As it was previously mentioned, the image region from which the features are extracted is 

important, especially when the extracted features need to characterized a specific object 

Input  
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Pooling  
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in the foreground of the image without taking into account the background information. 

In object classification problems, the features are extracted from specific image regions, 

which contain the object and have been manually annotated. This specific human labeling 

about the object’s location inside the image limits the application of classification 

methods for two reasons. First, the manual annotation of the objects in a large collection 

of image is time consuming. Second, the manual annotation of the objects introduces 

arbitrary biases, as annotations of the same image from different people maybe differ.   

 

In order to overcome the limitations of human annotation in the training data,  the method 

of supervised learning on weakly annotated data was proposed(Hoai et al. 2014). In 

weakly supervised learning each label y refers to the semantic content of the whole 

image, since a given feature vector x describes the whole image rather than a specific 

region. The weakly annotation was useful especially for abnormality detection in medical 

images. A representative example is the gastrointestinal abnormality detection in capsule 

endoscopy images(Vasilakakis et al. 2016; D. K. Iakovidis et al. 2018).   

 

 

2.4.4 Multi-label learning 

Multi-label classification is a special case of data classification, where multiple labels 

may be assigned to a given instance. One may consider it as a generalization of multi-

class classification, which enables the semantic characterization of data instances by 

labels that are not mutually exclusive. 

 

One of the most exciting and continuously growing research areas in computer vision is 

the understanding of the visual image content. The majority of research efforts have 

turned to the automatic extraction of semantic annotations, aiming to imitate the way 

humans perceive and describe such content. This problem is often referred to as "bridging 

the semantic gap" (Smeulders et al. 2000) and consists of automatic extraction of high-

level semantics from a given image, based on low-level features computed from raw data 

(pixels). To this goal, semantic concepts are formalized, learned, and ultimately linked to 

their linguistic representation. The semantic content of a video frame may not be 

completely characterized by a single annotation, as it may contain more than one 

semantic concept; therefore, the need for multi-label classification becomes evident. 

Moreover, semantic interpretation of images can become even more challenging by 

extending its application to video scale. State-of-the-art works on semantic video 

interpretation are mainly based on supervised machine learning algorithms capable of 

classifying the contents of the video frames into semantically relevant categories (H. Li et 

al. 2016).  
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Let 𝑋 = 𝑅𝑑 be the feature space derived from a set of images used to train the supervised 

classification system. Also, let Y denote the label space. In the binary case the 

classification system aims to learn a function  𝑓: 𝑋 → 𝑌, by using the feature vectors xi∈

𝑋, 𝑖 = 1,2, … , 𝑁, that have been extracted from a set of N images and are labeled by yj,∈

𝑌, 𝑗 = 1,2 from a training set {(𝑥𝑖 , 𝑦𝑖 ∨ 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 2)}. In weakly supervised 

learning each label yj refers to the semantic content of the whole image, since a given 

feature vector xi describes the whole image rather than a specific region. 

 

When tackling the problem of multiple-label classification, one may use a cascade of 

binary or multi-class classifiers on image regions. In the latter case, an image is labeled 

with a single label yj ∈ 𝑌, 𝑦 = 1,2, … ,𝑚; m denoting the number of the available classes 

to describe image content. However, such an approach does not take into account that the 

visual content of a single image may be described with more than one, different labels. 

Therefore, taking this observation into account, a multi-label classification learning 

scheme will be more useful to be utilized (Tsoumakas & Katakis 2007; Zhang & Zhou 

2013). 

 

More specifically, let 𝑣 be a vector of m multiple labels for each  𝑥𝑖 ∈ 𝑋, 𝑖 = 1,2, … ,𝑁, 

where 𝑣𝑗 ∈ 𝑌, 𝑣𝑗 = (𝑦1, 𝑦2, … 𝑦𝑚), 𝑗 = 1,2, … , 𝑧. Each label is a binary flag denoting the 

presence of different kinds of image contents. The purpose of training a multi-label 

classifier is to learn a function ℎ: 𝑄 → 2𝐿. 

 

There are two main learning strategies, namely the algorithm adaptation, and the problem 

transformation strategies (Tsoumakas & Katakis 2007). Algorithm adaptation tackles 

multiple labels by adapting existing learning algorithms from single- to multi-label. 

Examples of algorithms implementing this strategy include an adaptation of the k-Nearest 

Neighbor (k-NN) (S Theodoridis & Koutroumbas 2008) a classifier for multi-label 

classification (MLkNN) (Zhang & Zhou 2007) and kernel methods, e.g., multi-label 

SVMs (Elisseeff & Weston 2002). 

 

On the other hand, the problem transformation strategy deals with multi-label learning 

problem by reducing it into binary or multi-class categorization. This way, a traditional 

classifier, e.g., an SVM may be used. More specifically, the four basic problem 

transformation strategies are: 

• The binary relevance (Tsoumakas & Katakis 2007) trains different binary 

classifiers, each of which classifies the video frames according to a single label 

• The ranking and thresholding (Tsoumakas & Katakis 2007; Fürnkranz et al. 

2008) aim to transform the task of multi-label learning into a multi-class 

problem. In ranking the task is to order the set of labels. A threshold function is 

constructed from multi-label data, so that the topmost labels are more related 
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with the new instance. A ranking of labels requires post-processing in order to 

give a set of labels, which is the proper output of a multi-label classifier. 

• The pairwise classification (Fürnkranz et al. 2008; Menc𝚤a & Furnkranz 2008) 

adopts the “one-vs-one” approach, where one classifier is associated with each 

pair of labels. This is contrary to the binary relevance approach of “one-vs-all” 

where one classifier is associated with the relevance of each label.  

• The label combination (Read et al. 2008) transforms the task of multi-label 

learning into a standard, single-label, multi-class classification. It considers each 

different set of labels that exist in the multi-label data set as a single one. In this 

way, it treats every label combination in the training data as a unique class label 

in a binary label problem. 

 

Artificial Neural Networks (ANNs) have been traditionally used in single-label binary 

classification tasks. Zhang and Zhou (Zhang & Zhou 2006) proposed an adaptation of the 

error function of a back-propagation learning algorithm for Multi-Layer Perceptron 

(MLP) architecture so as to account for multiple labels in the learning process. 

 

2.5 Summary and conclusions 

This chapter provided a brief overview about the needed background knowledge for 

signal processing and analysis methods that are used in a variety of applications, 

including applications in biomedicine. Furthermore, the discussion about 1D signals was 

extended to 2D signals.  

 

This chapter presented various well-known image processing and analysis methods, 

including machine learning methods, which were considered in the context of this thesis, 

and they were used as building elements to develop novel approaches.  
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CHAPTER 3 

FUZZY PHRASES 

This chapter proposes a framework for the representation of data, enabling classification 

and feature selection based on fuzzy logic. As the representation of collected data may 

suffer for incompleteness and uncertainty, fuzzy logic can provide a solid mathematical 

background to overcome the representation problem. The proposed model is inspired by 

the bag-of-words (BoW) feature extraction, which follows an intuitive approach of 

describing data, using histograms of data granules, referred to as words. 

 

3.1 Introduction  

Real-world data are usually characterized by uncertainty and incompleteness. Since 

Zadeh (Lotfi Asker Zadeh 1975; Lotfi A Zadeh 1975a; Lotfi A Zadeh 1975b; Zadeh 

1965; Zadeh 1988) established the foundations of the fuzzy sets theory, fuzzy logic has 

been effectively used as a basis for the foundation of various classification and pattern 

recognition models. Fuzzy logic is the intuition of reasoning which is more an approximate 

description rather than an exact description (Zadeh 1996). Thus, the theoretical framework 

of systems based on fuzzy set theory, enables the handling of the uncertainty and 

incompleteness of the input data. A fuzzy system can represent the input data and 

describe their relations with a non-linear manner.  A fuzzy set can be seen as a set of 

input data forming a granule. Labeling each granule with a word, the data can be 

associated with expressions close to human perception (Zadeh 1999). A set of rules that 

have the form of antecedent and consequent can be utilized for the classification of input 

data.  More specifically, these rules usually follow a form of a structure “IF x is a THEN 

z is b”.  

 

Fuzzy logic has been adopted and applied in a variety of research domains. These include 

financial prediction(Chou et al. 2017), fault diagnosis of power systems (Peng et al. 

2017), dig data processing (Wang et al. 2017), image processing (Ziólko et al. 2017), 

medical diagnosis(Vasilakakis, Iosifidou, et al. 2019; Pota et al. 2017; Vasilakakis & 

Iakovidis 2020) 

 

The design of a fuzzy classification framework depends on various aspects (Pota et al. 

2017), including the partitioning of the input data for the construction of the membership 

functions, the rules encoding the domain knowledge, and the inference process for the 

categorization of unknown data samples to a class.  
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Fuzzy classification has been investigated in several studies. Indicatively, in (Hu et al. 

2018)the optimization of the granularization of the feature space has been considered in 

the context of pattern recognition. That study proposed a concept of fuzzy classifiers built 

upon a logic-based computing architecture utilizing t-norms and t-conorms. In (Hu et al. 

2019) an Evolutionary Multi-Objective algorithm was proposed for the allocation of 

information granularity in the context of classification. In (Fu et al. 2019)a classification 

model is constructed by engaging a synergy of Fuzzy C-Means (FCM) clustering  and the 

principle of justifiable granularity with weighted data. In (Duan et al. 2018)a time-series 

clustering method, called Linear Fuzzy Information Granule-based Dynamic Time 

Warping Hierarchial Clustering, was proposed by defining a new distance measure for 

hierarchical clustering. 

 

This chapter proposes a constructive fuzzy representation model that is called Fuzzy 

Phrases(Vasilakakis, Iosifidou, et al. 2019; Vasilakakis & Iakovidis 2020). The aim of 

Fuzzy Phrases is to enhance the expressivity of conventional feature spaces, and 

consequently to improve the classification of the respective data instances. The proposed 

model is inspired by the bag-of-words (BoW) method, which follows an intuitive 

approach for the description of data, that resembles the way humans use specific 

vocabularies of words for the description of real-world concepts. Unlike BoW, the 

proposed model considers that data can be represented by fuzzy phrases constructed by 

fuzzy words. Different words can be instantiated by different fuzzy sets derived from 

data. Besides its intuitiveness, this modeling approach is also simpler to implement than 

the respective state-of-the-art approaches. The general aspects of Fuzzy Phrases make the 

model able for handling like missing data values and feature selection.  

 

A preliminary version of the proposed model was presented in (Vasilakakis, Iosifidou, et 

al. 2019)however, that study  was focused on bone fracture detection in x-ray images, 

was based on different clustering approach and did not include feature selection. 

 

 

3.2 Basic elements of fuzzy sets   

Let V (Figure 3.1 (a)) be a classical set of objects, called the of discourse s, whose 

generic elements are denoted 𝑜. Membership of a subset of V is often viewed as a 

characteristic function  

𝜇𝑉(𝑜) = {
1, 𝑜 ∈ 𝑉
0, 𝑜 ∉  𝑉

                     (3.1) 
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(a) (b) 

Figure 3.1 (a) the set V where the membership of an objects has value one inside the set 

or the value zero outside the set (b)  the fuzzy set V’ where the membership of an objects 

value is in the interval [0,1], where the value set is closer to one as the objects is closer to 

the center of the set. 

A membership function for a fuzzy set V’(Figure 3.1 (b)) on the universe of discourse V 

is defined as 𝜇𝑉′: 𝑉 →  [0,1], where each object of V is mapped to a value between 0 and 

1 (Zadeh 1965). This value, called membership value or degree of membership, 

quantifies the grade of membership of an object in V to the fuzzy set V’. The use of the 

interval [0, 1] allows a convenient representation of the gradation in membership (Dubois 

1980). The more an object o belongs to V’, the value of the membership of o is closer to 

one.  

The extension of union (∪) and intersection (∩)of ordinary sets to fuzzy sets proposed by  

(Zadeh 1965) .  

Definition 3.1 Let V’ and Z’ be two fuzzy sets the union is define 

 

∀𝑜 ∈ 𝑉, 𝜇𝑉′∪𝑍′(𝑜) = max (𝜇𝑉′(𝑜), 𝜇𝑍′(𝑜))       (3.2) 

 

Definition 3.2Let V’ and Z’ be two fuzzy sets the intersection is define 

 

∀𝑜 ∈ 𝑉, 𝜇𝑉′∩𝑍′(𝑜) = min (𝜇𝑉′(𝑜), 𝜇𝑍′(𝑜))        (3.3) 
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3.3 The constructive fuzzy representation model: Fuzzy Phrases 

The proposed Fuzzy Phrases methodology is a supervised method consisting of a training 

and a test phase. 

 

3.3.1 Fuzzy Phrases training 

The proposed Fuzzy Phrases methodology is illustrated in Figure. 3.2. Let K be the 

number of different classes of the classification problem under investigation, and NK be 

the number of training feature vectors 𝑣𝑖𝑘 from each class in the training phase. Every 

feature vector is composed of different features. Let 𝑣𝑖𝑘(𝑓1
𝑣𝑖𝑘 , 𝑓2

𝑣𝑖𝑘 , … , 𝑓𝐿
𝑣𝑖𝑘)  be an L-

dimensional feature vector extracted from a training sample, with features 𝑓𝑙
𝑣𝑖𝑘 , l=1,2,…, 

L, k=1,2,…,K, where K is the number of  classes, and i=1,2…,Nk, where Nk is the number 

of training samples per class k. 

 

 
Figure 3.2 The Fuzzy Phrases method schematically. In the training phase the features of 

each feature vector are used for the extraction of the fuzzy phrases. 

 

 

Fuzzy Phrases applies a clustering algorithm to cluster the feature vectors  𝑣𝑖𝑘, 𝑖 =

1,2. . 𝑁𝑘, into a set of 𝑀𝐾 < 𝑁𝐾 clusters. Every cluster has a centroid  𝐶𝑗𝑘, which has the 
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form 𝐶𝑗𝑘(𝑓1
𝐶𝑗𝑘 , 𝑓2

𝐶𝑗𝑘 , … , 𝑓𝐿
𝐶𝑗𝑘), 𝑗 = 1,2, … ,𝑀𝐾. Each feature  𝑓𝑙

𝐶𝑗𝑘
, l=1,2,…, L of the 

centroid 𝐶𝑗𝑘 of the jth cluster represents a centroid of the features 𝑓𝑙
𝑣𝑖𝑘  in 𝑙𝑡ℎ dimension 

with a respective standard deviation  𝑓𝑙
𝑆𝑗𝑘

 of the features  𝑓𝑙
𝑣𝑖𝑘 . After the computation of 

the centroid coordinates  𝑓𝑙
𝐶𝑗𝑘

 and their standard deviations  𝑓𝑙
𝑆𝑗𝑘  of the features 𝑓𝑙

𝑣𝑖𝑘  

in 𝑙𝑡ℎ dimension, a fuzzy set can be defined with a respective membership function 

having the form  𝜇𝑙

(𝑓𝑙
𝐶𝑗𝑘

)
(𝑓𝑙

𝑣𝑖𝑘). For instance, if the membership functions are Gaussians, 

then 

  𝜇𝑙

(𝑓
𝑙

𝐶𝑗𝑘
)
(𝑓𝑙

𝑣𝑖𝑘) = 𝑒

−(𝑓
𝑙

𝑣𝑖𝑘
−𝑓

𝑙

𝐶𝑗𝑘
)

2

2∗𝑝∗(𝑓
𝑙

𝑆𝑗𝑘
)2                                       (1) 

 

where p is a parameter given by the user.  

 

 

Definition 3.3 The fuzzy sets of a class k, which are defined according to the 

aforementioned procedure, are aggregated using the union for the fuzzy sets. The new 

fuzzy sets defined by this aggregation operation are considered as fuzzy words 

 𝐹𝑊𝑓𝑙

𝑘 = ⋃ 𝜇𝑙

(𝑓𝑙
𝐶𝑗𝑘

)
(𝑓𝑙

𝑣𝑖𝑘)
𝑀𝑘
𝑗=1                   (3.2) 

 

for l=1,2,…, L, k=1,2,…, K, and i=1,2…,Nk. 

Let 𝜇𝑙

𝐹𝑊𝑓𝑙
𝑘

 be the aggregated membership function of each fuzzy word 𝐹𝑊𝑓𝑙

𝑘. A feature 

 𝑓𝑙
𝑣𝑖𝑘  of a feature vector 𝑣𝑖𝑘 is a member of fuzzy word 𝐹𝑊𝑓𝑙

𝑘
 if     

  0 < 𝜇𝑙

𝐹𝑊𝑓𝑙
𝑘

( 𝑓𝑙
𝑣𝑖𝑘) ≤ 1        (3.3) 

 

for l=1,2,…, L, k=1,2,…, K, and i=1,2…,Nk.  

 

Definition 3.4 A set of fuzzy words   𝐹𝑊𝑓𝑙

𝑘
 defines a fuzzy phrase, which is representative 

for class k 

 

𝐹𝑃𝑘 ={𝐹𝑊𝑓1
𝑘 , 𝐹𝑊𝑓2

𝑘 , . . . , 𝐹𝑊𝑓𝐿

𝑘 }        (3.4) 
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3.3.2 Fuzzy Phrases testing 

The test phase of the proposed Fuzzy Phrases classification model is illustrated in Fig. 3.3. 

During the test phase, let 𝑣∗  be an unknown sample that is represented with the feature 

vector 𝑣∗(𝑓1
𝑣∗

, 𝑓2
𝑣∗

, … , 𝑓𝐿
𝑣∗

). For each feature 𝑓𝑙
𝑣∗

, l=1,2,…, L, the respective membership 

to the fuzzy sets 𝐹𝑊𝑓𝑙

𝑘, k=1,2,…,K. is computed.  

 

 
Figure 3.3 The Fuzzy Phrases method schematically. In the test phase the features of the 

unknown test sample are described based on the membership calculated from its features 

to the fuzzy words. Finally, the test sample is classified based on the adopted decision 

rule 

 

The overall membership of the feature vector 𝑣∗ to a class k is represented by a 

membership vector 𝐹𝑘(𝜇1

𝐹𝑊𝑓1
𝑘

, 𝜇2

𝐹𝑊𝑓2
𝑘

, … 𝜇L

𝐹𝑊𝑓𝐿
𝑘

) where each feature 𝜇𝑙

𝐹𝑊𝑓𝑙
𝑘

 represents a 

membership to the fuzzy word 𝐹𝑊𝑓𝑙

𝑘.  

 

Consequently, the test sample with feature vector 𝑣∗(𝑓1
𝑣∗

, 𝑓2
𝑣∗

, … , 𝑓𝐿
𝑣∗

) is described by 𝐹𝑘, 

k=1,2,…,K membership vectors, one for each class.  

 

In order to classify the test sample with feature vector 𝑣∗ to a class, a rule is adopted based 

on the distance of each membership vector 𝐹𝑘(𝜇1

𝐹𝑊𝑓1
𝑘

, 𝜇2

𝐹𝑊𝑓2
𝑘

, … 𝜇L

𝐹𝑊𝑓𝐿
𝑘

) k=1,2,…,K from a 

membership vector with components equal to one. More specifically, considering the fact 

that the maximum value of a membership is equal to one and that the minimum is equal to 

Fuzzy Phrases Test Phase 

, ,…, ) 
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Fuzzy phrase  FP1 Fuzzy phrase FPK 
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zero, the ideal case of a sample from the class k  is  to have all the features of the 

membership vector 𝐹𝑘 equal to one. Thus, a 𝐹𝑜𝑛𝑒𝑠(𝑓1
𝑜𝑛𝑒𝑠, 𝑓2

𝑜𝑛𝑒𝑠, … , 𝑓𝐿
𝑜𝑛𝑒𝑠) membership 

vector is defined to represent the ideal case, where each feature 𝑓𝑙
𝑜𝑛𝑒𝑠, 𝑙 = 1…𝐿, is 

𝑓𝑙
𝑜𝑛𝑒𝑠 = 1.  

Let 𝐷𝑘(𝐹𝑘, 𝐹𝑜𝑛𝑒𝑠) be the distances of 𝐹𝑘, k=1,2,…, K from 𝐹𝑜𝑛𝑒𝑠, and 𝐷𝑘′(𝐹𝑘′, 𝐹𝑜𝑛𝑒𝑠) be 

the distances of  𝐹𝑘′ and 𝐹𝑜𝑛𝑒𝑠, where 𝑘, 𝑘′ ∈ 𝐾 and 𝑘 ≠ 𝑘′, The following rule can be 

used for classification of 𝑣∗ in class k  

 

𝑅𝑈𝐿𝐸: 𝐼𝑓 𝐷𝑘 < 𝐷𝑘′  𝑡ℎ𝑒𝑛 𝑣∗𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑘 

 

 

3.3.3 Fuzzy Phrases for missing values 

It can be noticed that such a classification approach can be applied even if the test data 

have missing values. For example, given an unknown sample vector 𝑣∗(𝑓1
𝑣∗

, 𝑓2
𝑣∗

, … , 𝑓𝐿
𝑣∗

) 

represented by the membership values 𝜇𝑙

𝐹𝑊𝑓𝑙
𝑘

( 𝑓𝑙
𝑣∗

) of each feature  𝑓𝑙
𝑣∗

, 𝑙 = 1…𝐿. 

Consequently, for features with missing values the membership value will be 

𝜇𝑙

𝐹𝑊𝑓𝑙
𝑘

( 𝑓𝑙
𝑣∗

) = 0 for all k=1…K. Thus, Fuzzy Phrases achieves to exploit information for 

the unknown test sample relying on the rest of its features. 

 

3.3.4 Fuzzy phrases for feature selection 

The proposed model, Fuzzy Phrases, can be used for feature selection, in order to reduce 

the complexity of the classification task and identify the most informative features within 

a dataset. The Fuzzy Phrases Feature Selection (Fuzzy Phrases -FS) is based on the 

information, derived from the fuzzy words 𝐹𝑊𝑙
𝑘, defined during the training phase.  

 

More specifically, Fig. 3.4 illustrates that each class k is represented by a fuzzy 

phrase 𝐹𝑃𝑘, which is a set of fuzzy words 𝐹𝑊𝑙
𝑘. These fuzzy words are fuzzy sets that 

have been produced by clustering of the feature vectors  𝑣𝑖𝑘. The presence of overlap 

between two fuzzy words indicates that these words carry redundant information; 

therefore, the respective feature  𝑓𝑙
𝑣𝑖𝑘   can be considered as less important. For example, 

the fuzzy word illustrated in Fig.3.4(b) is expected to be less informative than the fuzzy 

word illustrated in Fig. 3(a). The ovelap h of the fuzzy words   𝐹𝑊𝑙
𝑘  and  𝐹𝑊𝑙

𝑘′ of the 

classes k and k’ respectively, is estimated by the intersection divided by the union of 

these fuzzy words. However, h can be considered only as a weak indicator of 

redundancy, since it results from a non-deterministic clustering procedure (e.g., clustering 

algorithms, such as the k-means, usually depend on a random initialization and arbitrarily 

determined parameters, such as the number of clusters). A stronger redundancy indicator 
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can be obtained by aggregation of multiple overlap observations from multiple 

executions of the clustering algorithm. Based on this approach, a feature is selected as 

informative if and only if all overlap observations of the respective words, are low. 

 

 

 

 

 

 
(a) 

 
(b) 

Figure 3.4(a) Fuzzy words 𝐹𝑊𝑓𝑙

𝑘 and 𝐹𝑊𝑓𝑙

𝑘′ of two different classes k and k’ with high 

overlap. (b) Fuzzy words 𝐹𝑊𝑓𝑙

𝑘 and 𝐹𝑊𝑓𝑙

𝑘′ of two different classes k and k’ that have 

lower overlap. 

 

 

3.4 Results 

Several experiments were performed in order to specify the representation of input data 

utilizing the Fuzzy Phrases model. The input data were from different data collections 

and were related with various real world problems. 

 

3.4.1 Real-word data classification 

The UCI (Blake & Merz 1998)  and KEEL (Alcalá-Fdez et al. 2011) are two of the 

mostly used dataset repositories for machine learning. 16 real-life datasets available from 

the UCI and KEEL dataset repositories were used for the experimentally evaluation of 

classification performance of the proposed Fuzzy Phrase constructive fuzzy 

representation model. Table 3.1 provides the main characteristics about these adopted 

datasets. The asterisk (*) above the name of some datasets indicated the existence of 

missing values in the instances of the dataset.  
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Table 3.1 Real-World Datasets 

Data Samples Dimensionality 

Australian 690 14 

Balance 625 4 

Sonar 208 60 

Diabetes 768 8 

Musk 6598 166 

Spectheart 267 44 

Wine 178 13 

Glass 214 9 

Haberman 306 3 

Ionosphere 351 33 

Seismic 2584 18 

Yeast 1484 8 

Liver 345 6 

Wpbc 198 33 

Breast Cancer* 699 10 

Votes* 435 16 

Mammographic 

mass* 
961 5 

Monk2 432 6 

Parkisons 19 23 

Heart(Statlog) 270 13 

 

 

Since the Fuzzy Phrases algorithm was proposed for representation and classification 

model based on fuzzy logic, Fuzzy Phrase was compared with 14 state-of-the-art fuzzy 

classification approaches as well as with the SVM classifiers.  Table 3.2 presents the 

comparisons with the proposed fuzzy classifiers(FC) HID-TSK of  (Zhang et al. 2017) , 

FRODT(Cai et al. 2019) and the fuzzy classifier of (Fu et al. 2019). The comparison 

results were better or comparable with the results of the other classifiers. The usual 

classification tactic of the other classifiers was to omit the sample with missing values, as 

it was happened for datasets Breast Cancer and Vote. However, the Fuzzy Phrases was 

able to use all the samples and extract valuable information from the sample with missing 

values. 
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Table 3.2 Comparative results FP with fuzzy classifiers(FC) HID-TSK of  (Zhang et al. 

2017) , FRODT(Cai et al. 2019) and the fuzzy classifier of (Fu et al. 2019) 

 

Data 

Study Study Study Study 

Fuzzy Phrases HID-TSK (Zhang 

et al. 2017)  

FRODT (Cai et al. 

2019) 

(Fu et al. 2019) 

Accuracy Std Accuracy Std Accuracy Std Accuracy Std 

Australian 0.8735 0.0196 0.8337 0.0187 0.8550 0.0100 0.8619 0.0188 

Balance 0.7725 0.0384 0.8416 0.0155 N/A N/A 0.8811 0.0168 

Sonar 0.7793 0.0264 0.6585 0.0351 0.7458 0.0247 N/A N/A 

Diabetes 0.7556 0.0393 0.7182 0.0156 0.7496 0.0105 0.7513 0.0280 

Musk 0.8849 0.0180 0.8763 0.0153 N/A N/A N/A N/A 

Spectheart 0.8322 0.0572 0.7520 0.0344 N/A N/A N/A N/A 

Wine  0.9610 0.0257 N/A N/A 0.9468 0.0101 0.9472 0.0273 

Haberman 0.7258 0.0457 N/A N/A 0.7457 0.0970 0.7420 0.0380 

Ionosphere 0.8717 0.0443 N/A N/A 0.8906 0.0094 N/A N/A 

Seismic 0.8959 0.0279 0.9321 0.0009 N/A N/A N/A N/A 

Liver 0.6379 0.0607 0.6563 0.0212 0.6658 0.0259 N/A N/A 

Wpbc 0.7928 0.0268 0.7745 0.0029 0.7521 0.0181 N/A N/A 

Breast Cancer* 0.9785 0.0113 0.9512 0.0081 0.9713 0.0240 N/A N/A 

Votes* 0.9497 0.0282 0.9113 0.0121 N/A N/A N/A N/A 

Monk2 0.7922 0.0257 0.6494 0.0012 N/A N/A N/A N/A 

Heart(Statlog) 0.8215 0.0124 N/A N/A 0.8156 0.0141 N/A N/A 

 

The classification results of Fuzzy Phrases in comparison to the classifiers PSO-FR 

(Chen et al. 2016), NEWFM(Lee 2015) and FCCI-TSK(Wang et al. 2019) are presented 

in Table 3.3. The reported results of Fuzzy Phrases were better or comparable with the 

other studies, as in four out of eight dataset the performance of Fuzzy Phrases were 

better.  

 

 

Table 3.3 Comparative results FP with PSO-FR (Chen et al. 2016), NEWFM(Lee 2015) 

and FCCI-TSK(Wang et al. 2019) 

Data 

Study Study Study Study 

Fuzzy Phrases PSO-FR (Chen et al. 

2016) 

NEWFM (Lee 

2015) 

FCCI-TSK(Wang 

et al. 2019) 

Accuracy Std Accuracy Std Accuracy Std Accuracy Std 

Diabetes 0.7556 0.0393 0.6759 0.186 N/A N/A N/A N/A 

Glass 0.5990 0.0521 0.5425 0.0441 N/A N/A N/A N/A 

Haberman 0.7258 0.0457 0.7365 0.0139 N/A N/A 0.7609 N/A 

Ionosphere 0.8717 0.0443 N/A N/A 0.8488 N/A 0.7360 N/A 

Yeast 0.4789 0.0147 0.5270 0.0116 N/A N/A N/A N/A 

Liver 0.6379 0.0607 0.5814 0.0267 N/A N/A 0.7067 N/A 

Parkisons 0.8928 0.0592 0.8147 0.0245 0.8308 N/A N/A N/A 

Heart(Statlog) 0.8215 0.01245 N/A N/A 0.8112 N/A N/A N/A 

 

The comparison results of Fuzzy Phrases with the linear SVM classifier, as well as with 

the fuzzy classifiers FS-FCSVM and zero order TSK-FC (Zhang et al. 2017) are presened 
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in Table 3.4. The overall classification ability of Fuzzy Phrases model exceeds the other 

classifiers, as in nine dataset comparison the Fuzzy Phrases has better results. 

 

Table 3.4 Comparative results FP with linear SVM, FS-FCSVM and zero order TSK-FC 

(Zhang et al. 2017) 

Data 

Study Study Study Study 

Fuzzy Phrases linear  SVM FS-FCSVM (Zhang 

et al. 2017)  

zero order TSK-FC 

(Zhang et al. 2017) 

Accuracy Std Accuracy Std Accuracy Std Accuracy Std 

Australian 0.8735 0.0196 0.7291 0.0243 0.7688 0.0501 0.7298 0.0399 

Balance 0.7725 0.0384 0.8566 0.0278 0.6861 0.0803 0.7907 0.0416 

Sonar 0.7793 0.0264 0.4824 0.0413 0.5572 0.0394 0.4930 0.0540 

Diabetes 0.7556 0.0393 0.6975 0.0121 0.6605 0.0168 0.6687 0.0327 

Musk 0.8849 0.0180 0.8458 0.0013 0.8460 0.0019 0.8685 0.0013 

Spectheart 0.8322 0.0572 0.7492 0.0463 0.7317 0.0396 0.7516 0.0346 

Seismic 0.8959 0.0279 0.9340 0.0019 0.9023 0.0011 0.9320 0.0016 

Liver 0.6379 0.0607 0.6458 0.0275 0.5540 0.0502 0.5523 0.0573 

Wpbc 0.7928 0.0268 0.7584 0.0126 0.7697 0.0138 0.7607 0.0094 

Breast Cancer* 0.9785 0.0113 0.9171 0.0459 0.9498 0.0142 0.8846 0.0432 

Votes* 0.9497 0.0282 0.8885 0.0374 0.8573 0.0237 0.8645 0.0087 

Monk2 0.7922 0.0257 0.6270 0.0459 0.6473 0.0163 0.6322 0.0517 

 

 

The details about the classification result of Fuzzy Phrases compared to the Bayesian 

TSK classifier (Gu et al. 2016), NCGMANF(Gao et al. 2019) and SVM with RBF 

kernel(Zhang et al. 2017) are provided in Table 3.5. 

 

Table 3.5 Comparative results FP with Bayesian TSK classifier (Gu et al. 2016), 

NCGMANF(Gao et al. 2019) and SVM with RBF kernel(Zhang et al. 2017) 

Data 

Study Study Study Study 

Fuzzy Phrases (Gu et al. 2016) NCGMANF(Gao et 

al. 2019) 

RBF SVM  

Accuracy Std Accuracy Std Accuracy Std Accuracy Std 

Australian 0.8735 0.0196 0.8688 0.0354 N/A N/A 0.7314 0.0243 

Balance 0.7725 0.0384 0.9505(2vs3) 0.0120 0.8168 N/A 0.8875 0.0294 

Sonar 0.7793 0.0264 N/A N/A 0.7173 N/A 0.5294 0.0053 

Diabetes 0.7556 0.0393 0.7722 0.0156 0.7375 N/A 0.7099 0.0274 

Musk 0.8849 0.0180 N/A N/A N/A N/A 0.8466 0.0013 

Spectheart 0.8322 0.0572 N/A N/A N/A N/A 0.7517 0.0432 

Glass 0.5990 0.0521 N/A N/A 0.5327 N/A N/A N/A 

Haberman 0.7258 0.0457 0.7587 0.0293 N/A N/A N/A N/A 

Seismic 0.8959 0.0279 N/A N/A N/A N/A 0.9343 0.0011 

Liver 0.6379 0.0607 0.6671 0.0405 0.6430 N/A 0.6535 0.0281 

Wpbc 0.7928 0.0268 N/A N/A N/A N/A 0.7652 0.0134 

Breast Cancer* 
0.9785 0.0113 

0.9600(no 

missing-values) 
0.0160 0.6794 N/A 0.9062 0.0371 

Votes* 0.9497 0.0282 N/A N/A N/A N/A 0.9049 0.0111 

Mammographic 

mass* 
0.8233 0.0418 0.8313 0.0210 N/A N/A N/A N/A 

Monk2 0.7922 0.0257 N/A N/A N/A N/A 0.6343 0.0294 

Heart(Statlog) 0.8215 0.01245 0.8562 0.0363 N/A N/A N/A N/A 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 16:40:13 EEST - 18.217.200.173



 

49 

 

 

Finally, Table 3.6 concentrates the last comparisons between the proposed Fuzzy Phrases 

and the fuzzy classifiers FC (Hu et al. 2018), FCO (Hu et al. 2018) and (Pota et al. 2017). 

Table 3.6 Comparative results FP with FC (Hu et al. 2018), FCO (Hu et al. 2018) and 

(Pota et al. 2017) 

Data 

Study Study Study Study 

Fuzzy Phrases (Hu et al. 2018) FC (Hu et al. 2018) 

FCO 

(Pota et al. 2017) 

Accuracy Std Accuracy Std Accuracy Std Accuracy Std 

Diabetes 0.7556 0.0393 0.7662 0.0372 0.7727 0.0471 0.7734 N/A 

Spectheart 0.8322 0.0572 0.8667 0.0435 0.8778 0.0699 N/A N/A 

Wine  0.9610 0.0457 0.9727 0.0614 0.9727 0.0614 N/A N/A 

Haberman 0.7258 0.0457 N/A N/A N/A N/A 0.7614 N/A 

Ionosphere 0.8717 0.0443 0.9405 0.0388 0.9491 0.0414 N/A N/A 

Breast Cancer* 0.9785 0.0113 N/A N/A N/A N/A 0.9757 N/A 

Mammographic 

mass* 
0.8233 0.0418 0.8096 0.0491 0.8096 0.0424 N/A N/A 

Parkisons 0.8928 0.0592 0.8792 0.0860 0.8897 0.0513 N/A N/A 

Heart 0.8215 0.01245 0.7519 0.0553 0.7519 0.0553 0.8284 N/A 

 

 

 

3.4.2 Bone fracture detection 

Fuzzy Phrases was utilized for the problem of bone fracture detection(Vasilakakis, 

Iosifidou, et al. 2019). The database used in the experiment consisted of 790 x-ray bone 

images of upper and lower extremity collected from Public General Hospital in digital 

Portable Network Graphics (PNG) format. The method used to create images with x-

radiation, is to pass an x-ray beam through the body section, which is needed to be 

examined. The characteristic parameters of the x-ray beam are Peak kilovoltage (kV) and 

Milliampere-seconds (mAs). Based on the type of bones the parameters of the x-ray 

beams are varied. For example, x-rays images of small bones of the body (wrist, ankle 

etc) need kV=43 and mas=5, while long bones (Humerus, femur etc) need KV=60 and 

mas=18. 300 x-ray bone images were randomly selected from this database, 200 normal 

and 100 abnormal (fractured) x-ray bone images. The images where sampled using 

32×32 pixel sub-images, in order to evaluate the local texture of the bones. The sub-

image size was determined so that the number of pixels belonging in the fracture to be 

approx. 20-30% of the total number of pixels in the sample. Examples are illustrated in 

Figure 3.5. It can be noticed that the samples with the bone fractures are characterized by 

directional textural patterns. This justifies the texture analysis approach considered in this 

study. 
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                                       (a) 

  
                                      (b) 

Figure 3.5 Samples obtained from different x-ray images of the database used (a) 

Samples with a bone fracture. (b) Samples without a bone fracture. 

 

Several experiments were performed in order to evaluate the proposed classification 

methodology for the analysis of the bone x-ray images. In the case of Fuzzy Phrases 

classification method, k-means (Drake & Hamerly 2012)was used to cluster the different 

attributes of normal (without fractures) and abnormal (with fractures) classes. Different 

numbers of clusters for attributes belonging to vectors of normal and abnormal classes 

were examined. The number of clusters tested was in the range from 1 to 5 clusters. Also, 

Gaussian membership functions used, for p ranging from 1 to 5; Slightly better 

performance was observed using 3 clusters with p = 2. 

 

For comparison purposes GLCM-based (Umadevi & Geethalakshmi 2012), the Hough 

Transformed-based (Donnelley & Knowles 2005) and the DWT-based  (Al-Ayyoub et al. 

2013)feature extraction approaches were used. The classification of the feature vectors 

obtained by these methods was implemented by an SVM classifier. A linear, polynomial 

and Radial Basis Function (RBF) kernels, and followed the grid-search approach (Chang 

& Lin 2011)to determine its optimal parameters were tested. The RBF kernel provided 

the best results, for a minimum cost parameter c = 10.  

   

Table 3.7 Bone Fracture Classification Results 
Classifier Features Accuracy Sensitivity Specificity 

SVM GLCM 0.71 0.38 0.89 

SVM HT 0.79 0.53 0.94 

SVM DWT 0.80 0.59 0.92 

FP GLCM 0.77 0.81 0.75 

FP HT 0.82 0.73 0.86 

FP DWT 0.84 0.81 0.86 

 

The classification performance was thoroughly investigated using the accuracy as well as 

the sensitivity and specificity of the classification of the test images. Experiments were 
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performed using the 10-fold cross validation evaluation scheme.  The results with regards 

to the bone fracture detection are summarized in Table 3.1.  It can be noticed that the 

Fuzzy Phrases method achieved higher overall results both in terms of accuracy and 

sensitivity than the SVM classifier. The best results were performed by the Wavelet 

transformed features Figure 3.6. 

 
Figure 3.6 The ROCs achieved by the proposed FP classification method. 

 

The average training and testing time of the DWT-FP was 0.36 seconds and 0.038 

seconds respectively, while the training and testing time of SVM was 0.57seconds and 

0.047 seconds respectively. 

 

 

3.4.3 Fuzzy Phrases for Heart Disease detection and Heart Failure prediction results 

The experimental validation of Fuzzy Phrases classification model was performed using 

two datasets from the cardiology domain. These datasets have been used in recent studies 

and have been considered to enable comparisons with the state-of-the-art. Among the 

studies investigating the detection of Heart Disease (HD) with fuzzy computational 

approaches, a recent one(Lee 2015), was based on a supervised feature selection method, 

considering the bounded sum of weighted fuzzy membership functions. Also, in a 

previous study was presented (Koulaouzidis et al. 2016), a methodology for prediction of 

patients at high risk of Heart Failure (HF), using features extracted from daily collected 

physiological data, based on Multi-Resolution Analysis (MRA) using the Discrete 

Wavelet Transform (DWT).  

 

The first dataset is Statlog Heart dataset is from the Cleveland Clinic Foundation, 

contains 270 samples. The dataset is publicly available from UCI repository (Blake & 
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Merz 1998). The classification problem under study with respect to this dataset is the 

absence (150 samples) or presence (120 samples) of heart disease, based on 13 features, 

which are presented in Table 3.2. 

 

The second dataset is the Heart Failure dataset based on retrospective telemonitoring 

(TM) data from 308 patients in Kingston-upon-Hull(Koulaouzidis et al. 2016). The data, 

which are presented in Table 3.3, have been collected using the Motiva telemonitoring 

system (Domingo et al. 2012)as part of the daily HF service between 2010 and 2013. An 

admission as HF Hospitalization (HFH) was defined based on the first diagnosis, which 

should be ‘Heart Failure’. The study is limited on the cases for which death has been 

reported (6.5%) and considers only the information extracted from the monitored 

physiological signals heart rate (HR), systolic blood pressure (SBP), diastolic blood 

pressure (DBP), and body weight (BW). The MRA features extracted from Heart Failure 

dataset correspond to time-intervals of 4-day patient monitoring. The dataset is highly 

imbalanced, with only 0.2% of the vectors representing Worsening HF (WHF) precursor 

patterns, i.e., vectors corresponding to HFH. This makes the classification task even more 

challenging. Another challenge in this dataset is that in one fourth of the patients' data 

there are missing values during consecutive 4 days prior to HFH, respectively. This is due 

to low compliance of the patients to the use of TM. 

 

In both case studies the k-means was used for clustering, with k ranging from 1 to 12 

clusters. Also, the Gaussian membership function was utilized for p ranging from 1 to 2. 

Regarding the Fuzzy Phrases-FS the number of clustering executions was set to 5. 

 

The classification performance was thoroughly investigated using the accuracy, the 

sensitivity and specificity of the classification of the test data as well as the Area Under 

the receiving operating Characteristic (AUC). Experiments were performed using the 10-

fold cross validation evaluation scheme in order to limit the bias in the selection of the 

vectors used for training and testing the classifier. 

 

Table 3.8 13 Features of Statlog Heart dataset 
Feature 

type 
Feature Description 

Feature 

value 

Numerical Age  (f01) [29, 77] 

Binary Sex  (f02) [0, 1] 

Nominal Chest pain type  (f03) [1, 4] 

Numerical Resting blood pressure  (f04) [94, 200] 

Numerical 
Serum cholesterol in mg/dl (f05) [126, 

564] 

Binary Fasting blood sugar > 120 mg/dl (f06) [0, 1] 

Nominal Resting electrocardiographic results (f07) [0, 2] 

Numerical Maximum heart rate achieved   (f08) [71, 202] 
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Binary Exercise  (f09) [0, 1] 

Numerical Oldpeak = ST depression induced by 

exercise relative to rest (f10) 
[0.0, 6.2] 

Nominal The slope of the peak exercise ST 

segment (f11) 

[1, 3] 

Nominal Number of major vessels  (f12) [0, 3] 

Nominal Thal: Defect type (f13) [3, 7] 

 

 

 

 

 

Table 3.916 features of Heart Failure dataset 

Feature type 
Feature Description 

(day1, day2, day3, day4) 

MRA Numerical Heart rate (HR) (f01, f05, f09, f13) 

MRA Numerical Systolic blood pressure (SBP)  (f02, f06, f10, f14) 

MRA Numerical Diastolic blood pressure (DBP) (f03, f07, f11, f15) 

MRA Numerical Body weight (BW) (f04, f08, f12, f16) 

 

 

Experiments were conducted with and without feature selection using the proposed 

model. The results are summarized in Table 3.4, in comparison with the results obtained 

from the application of state-of-the-art methods on the same datasets. 

 

It can be noticed that the overall performance of Fuzzy Phrases is comparable or higher 

to the performance of the state-of-the-art methods, whereas the performance of Fuzzy 

Phrases-FS is higher in all compared cases. The subset of features selected by Fuzzy 

Phrases-FS is {f03, f04, f05, f08, f09, f11, f12, f13}. The respective Receiver Operating 

Characteristics (ROCs) (Fawcett 2006) are presented in Fig. 3.6.   

 

 

Table 3.10 Statlog Heart dataset Comparative  Results 

Method 
Evaluation metrics 

AUC Accuracy Sensitivity Specificity 

FP 0.81 0.82 0.80 0.87 

FP-FS 0.88 0.85 0.71 0.94 

Lee  (Lee 

2015) 
N/A 0.82 N/A N/A 

Hu et al. 

(Hu et al. 

2018) 

0.74 0.75 N/A N/A 
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Table 3.11 Heart Failure dataset Comparative Results 

Method 
Evaluation metrics 

AUC Accuracy Sensitivity Specificity 

FP 0.80 0.93 0.50 0.94 

FP-FS 0.78 0.88 0.38 0.88 

MRA (Koulaouzidis 

et al. 2016) 
0.76 N/A 0.47 0.96 

MRA BW 

(Koulaouzidis et al. 

2016) 

0.75 N/A 0.38 0.98 

MRA BW, DBP 

(Koulaouzidis et al. 

2016) 

0.77 N//A 0.48 0.96 

 

The proposed Fuzzy Phrases framework was compared with the state of the art study of 

Koulaouzidis et al. (Koulaouzidis et al. 2016). In  (Koulaouzidis et al. 2016) a Naïve 

Bayes classifier was used to predict a possible HFH event for the Heart Failure dataset, 

i.e., to classify the MRA vectors into two classes, namely the normal and HFH classes. 

The results are summarized in Table IV, which shows that Fuzzy Phrases outperforms the 

state-of-the-art methods. On the other hand, the performance of Fuzzy Phrases -FS is 

lower than Fuzzy Phrases. This could be attributed to the fact that Heart Failure dataset is 

particularly imbalanced, which can affect the clustering process applied for the formation 

of the fuzzy words. The features selected using Fuzzy Phrases -FS include {f04, f08, f12, 

f16}, which represent the BW, in agreement with the results of relevant medical studies. 

The respective ROCs are presented in Fig. 3.6 

 

 

 
Figure 3.7 The ROCs achieved by the proposed Fuzzy Phrases (FP) for Statlog Heart and 

Heart Failure datasets respectively. 
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3.5 Conclusion 

This chapter investigated a novel, generic model for data classification, named Fuzzy 

Phrases. This model manages to enhance the expressivity of crisp feature spaces, such as 

those considered in the experimental study of the paper. The proposed model resembles 

the human way of expression using multiple different words to describe and make 

decisions about real-world concepts. Furthermore, Fuzzy Phrases was a generic model 

that was efficiently extended to a novel feature selection methodology, named Fuzzy 

Phrases-FS. 

 

The performance of both Fuzzy Phrases and Fuzzy Phrases -FS were investigated and 

evaluated. Both approaches resulted in a better or comparable performance from the 

previously reported methodologies for detection of HD and prediction of HF. The case 

study for HD showed that Fuzzy Phrases-FS can result in a better classification 

performance than Fuzzy Phrases using a smaller number of features. Also, of particular 

interest for medical applications, is the inherent tolerance of Fuzzy Phrases in missing 

data.  

 

The Fuzzy Phrases classification method is still in an early stage. Further investigation is 

required to fully explore all the potentials of this method. Potential areas for further 

research include alternatives rules for decision making, and systematic evaluation of its 

robustness to noise and the presence of missing values. 
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CHAPTER 4 

GASTROINTESTINAL IMAGE ANALYSIS:                    

BACKGROUND AND STATE-OF-THE-ART 

 

This chapter summarizes background and the state-of-the-art of CE as a multidisciplinary 

field and aims to provide an overview of both medical and technological advances, 

including concept and prototype capsule endoscopes, and software methodologies for 

enhanced visualization, abnormality detection and capsule localization. 

 

4.1 Introduction  

4.1.1 The beginning of Wireless Capsule Endoscopy 

The imaging of gastrointestinal (GI) tract for diagnosis and treatment of diseases is a 

matter of great significance, because the examination of the whole GI tract due to its 

large size is still remaining a challenging task. The beginning of for the imaging of GI 

tract was back in back in 1868, when the flexible endoscopes were first used by Wolf and 

Schindler (Sliker & Ciuti 2014). From then, the endoscopes have evolved to an efficient 

and reliable tool for the screening through different segments of the GI tract, such as 

esophagus, stomach, large bowel or colon and part of the small bowel. Other imaging 

techniques of GI tract are magnetic resonance enterography (MRE), or computed 

tomography enterography (CTE). 

 

Although, the conventional endoscopes can efficiently diagnose pathologies of GI tract, 

they still have safety issues as they are able to traumatize the patient. The discomfort of 

the patient during the endoscopic procedures, such as colonoscopy, must be considered. 

Also, the main drawback of conventional endoscopes is still their inability to reach and 

examine all the areas of the GI tract, such as most of the small bowel.  

 

The beginning of the 21st century was also the beginning of a new technology keen to 

overcome the discomfort and the pain during the examination of GI tract. A capsule 

endoscope that has the size of large vitamin pill with the ability to capture and transmit 

wirelessly video frames was first proposed by (Iddan et al. 2000). After that, Wireless 

Capsule Endoscopy (WCE) or Capsule Endoscopy (CE) has become widely adopted into 

conventional clinical practice since the introduction of the first commercial model in 

2001(Iakovidis & Koulaouzidis 2015; Vasilakakis, Koulaouzidis, Yung, et al. 2019), 

because it was able to overcome the drawbacks of the conventional endoscopes. Due to 

the ability of the capsule to be swallowed, CE can be characterized to be a minimal 
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invasive procedure, which is a user-friendlier examination method, than the conventional 

endoscopes. The biggest advantage of CE is the visualization of all segments of GI tract 

and especially the small bowel. For this reason, CE has known great success in the field 

of small bowel examination as well as monitoring of bowel diseases.  

 

4.1.2 Diagnostic Yield in CE 

The common significant pathologies that can be found in the GI tract are classified into a 

few main groups: vascular lesions, neoplasms (i.e. polyps/tumours), and inflammatory 

lesions – idiopathic inflammatory bowel disease (IBD) and pharmacogenetic or infectious 

inflammation. CE has proven valuable for clinical problems such as small bowel bleeding 

and the investigation or monitoring of inflammatory bowel disease as well as the ability 

to directly visualize the small bowel mucosa. The data so far show that small bowel (SB) 

CE has an overall diagnostic yield (DY) of about 50% (Koulaouzidis et al. 2012; 

Koulaouzidis, Rondonotti, et al. 2013). There are two main aims of the CE for the 

improvement of DY. The first one is the identification and selection of patients who are 

likely to have relevant findings. The second one is optimization of images obtained. 

Indication is the key in the selection of patients who are likely to benefit from CE; as 

detailed previously, CE is of diagnostic value in certain well-established indication 

groups. 

 

A group of patients who benefit from SBCE are those with known or suspected 

inflammatory bowel disease (IBD). Crohn’s Disease (CD) affects only the SB in up to a 

third of patients, in which case CE is valuable for both diagnosis and monitoring of 

treatment response (Kopylov & Seidman 2014), and can play a complementary role 

compared to MRI enterography (Enns et al. 2017). Emerging data now show that CE has 

comparable accuracy to conventional methods for the investigation of SB pathologies, 

such as ileocolonoscopy, enterography and push or device assisted-enteroscopy (Enns et 

al. 2017; Kopylov et al. 2017), whilst offering the advantages of minimal invasiveness 

and direct mucosal visualization. 

 

However, age is another significant factor which has been shown to affect DY (Diana E 

Yung, Rondonotti, Giannakou, et al. 2017). Elderly patients have a higher overall DY, 

especially in the setting of suspected small bowel bleeding, and the most common 

findings are angioectasias and bleeding. Furthermore, even a negative CE examination is 

of value in guiding further investigation and management, as pooled data have shown that 

patients with no significant findings on CE have a much lower rate of re-bleeding (19%) 

compared to those with a positive capsule (40%)(Diana E Yung, Koulaouzidis, et al. 

2017). This is especially important in the significant subgroup of patients with iron 

deficiency anaemia (IDA), who are often referred for repeated capsule investigations with 

poor diagnostic yield (DY)(Sonnenberg 2015; Woodward et al. 2016). CE is useful for 
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monitoring or detection of these pathologies of the small bowel, such as CD or bleeding, 

because the small bowel is predominantly inaccessible to regular endoscopes due to its 

long and convoluted structure. 

 

Younger patients are more likely to be referred for the investigation of known or 

suspected IBD, with ulcers the more common finding in this group; however, notably, 

young patients referred with IDA are more likely to have significant SB findings such as 

SB malignancies. Timing of CE examination in the setting of SB bleeding is another 

important factor, with studies showing that carrying out a capsule closer to the onset of 

symptoms improves DY(Singh et al. 2013). Some studies have even investigated the use 

of CE in the acute to semi-acute setting as a method of triage or to guide further 

management of such patients(Chandran et al. 2013; Gralnek et al. 2013; Gutkin et al. 

2013; Meltzer et al. 2013; Sung et al. 2016). 

 

Although there remain significant technological limitations to the quality of images 

which can be obtained by current models of capsule endoscopes, clinical methods to 

optimize the images, which are obtained have been investigated. Chiefly, the use of 

simethicone has been shown in meta-analysis to improve image clarity by reducing 

interference from gas and bubbles in the small bowel(Koulaouzidis, Giannakou, et al. 

2013). The need for bowel preparation with laxatives remains a controversial topic, with 

conflicting results from various studies and meta-analyses(Diana E Yung, Rondonotti, 

Sykes, et al. 2017). 

 

Finally, the reporting of a CE examination is hindered by long reading times and 

reviewer’s concentration span (Kim et al. 2018). Long reading times in SBCE can be 

reduced by optimizing reading settings and by using “QuickView” mode when 

appropriate; however, it may result in missed findings, thus the use of this function is 

recommended mostly when panenteric pathology is expected(Mitselos & Christodoulou 

2018). Another approach to counteract reader’s stress and reducing attention span is by 

pausing and replaying CE video segments, thus allowing the reader to rest. However, this 

way the reading time may eventually increase, thus affecting the overall productivity of 

the reviewer. In summary, although CE has come a long way since its introduction to 

clinical practice, there remain several key limitations yet to be addressed in order to 

optimize its utilization. 

 

The significant advantages of CE have led to the further development of capsules for 

colonic, oesophageal and gastric investigation (gastric capsule endoscopes are not yet 

available; technological advances aim at capsule locomotion control and tissue sampling 

(Hale et al. 2015)). 
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In general, the appeal of CE as a minimally-invasive, more comfortable alternative to 

conventional endoscopy can be extended to indications outwit the SB. Colon CE(CCE) 

has been shown in several studies to have a comparable DY for colonic pathology such as 

polyps and colitis(Spada et al. 2015). Therefore, although not as widely used, it is 

recommended as a viable option for colon investigation in patients who failed or 

unwilling to undergo conventional colonoscopy. Oesophageal CE (OCE) has also been 

investigated in a smaller number of studies and may offer benefit to patients with 

coagulation disorders who require repeated oesophageal surveillance for varices (Parker 

et al. 2015). At this time, esophageal capsules do not demonstrate to confer any 

diagnostic advantage against oesophagogastroduodenoscopy (OGD) (Park et al. 2018).  

 

 

4.1.3 Motivations for further improvement 

Advances in CE technology have tended to concentrate on the areas of image quality, 

battery life and processing software. Since its inception, the main hardware constraint has 

been the size and volume of the capsule, estimated approximately at 2 cm3, which limits 

both the quality and quantity of its components. Therefore, image quality remains inferior 

to that of conventional endoscopy, with lack of capacity for image enhancement 

technologies, such as high definition and narrow band imaging. Moreover, there is at 

present no reliable technology for localization or steering, and current capsules are unable 

to collect and procure tissue samples.  

 

From the point of view of several comprehensive review papers on CE (Iakovidis & 

Koulaouzidis 2015; Vasilakakis, Koulaouzidis, Yung, et al. 2019; Koulaouzidis et al. 

2015; Fisher & Hasler 2012), it is clear that CE is a rapidly evolving, multidisciplinary 

field, and the annual tally of relevant research contributions is high. More specifically, 

since 2009 the annual number of publications tagged with “capsule endoscopy” as a 

keyword, across all fields, is in the range of 500 per year. The majority of these 

publications are medical, although a reducing from 92% in 2009 to 79% in 2017. This 

reflects the interest levels of non-medical (mainly biomedical engineering and 

information technology) scientific communities, to address the challenges posed by the 

still-open practical issues of CE affecting its DY.  

 

 

4.2 State-of-the-art Commercial Wireless Capsule Endoscopes 

In the first 18 years of commercial availability of CE the main players in the CE market 

are the five companies. The names of these companies are Medtronic, Intromedic, 

Olympus, JINSHAN Science &Technology Co. Ltd, and CapsoVision Inc. Recently, a 
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number of other companies from China have also claimed a share of the market. These 

new companies are ANKON Technologies Co., Ltd and Shangxian Minimal Invasive Inc. 

They provide diagnostic technology, especially for SB investigation, but also products for 

the non-invasive exploration of the oesophagus and the colon. 

 

The commercially-available capsule endoscopes share common manufacture principles 

i.e. a pill-shaped device with, usually, 1-2 domed cameras on either end. They contain 

Complementary Metal-Oxide Semiconductor (CMOS) cameras and light-emitting diodes 

(LEDs) in various numbers and configurations, miniaturized batteries and components 

for data transmission or storage. The average weight of a capsule endoscope is 

approximately 3-4g, and most capsule models require an external data receiver and 

recorder system. Each model comes with its own proprietary reading software, most of 

which offer some form of image enhancement technology. Table 4.1 contains a 

comparative summary of existing capsule models on the market. 

 

 

 

 

Table 4.1 Specifications of current commercial capsule endoscopes 

Company Capsule  

endoscope 
Dimensi

ons 

(mm) 

LED 

lights 
FPS Weight 

(g) 
Resoluti

on 

(pixels) 

Batter

y life 

(h) 

Reviewing 

software 
Optical 

enhance-

ments 

Image 

Sensor 

Medtronic Pillcam®  

SB3 
11.4×26.

2 
4 2-6 3.0±0.1 340×340 ≥11.5 RAPID 9.0 Blue mode; 

FICE 
CMOS 

Medtronic Pillcam®  

Crohn’s 

Capsule 

11.6×32.

3 
8 4-35 2.9 + 0.1 * n/a ≥10 RAPID 9.0 Blue mode; 

FICE 
CMOS 

Medtronic Pillcam® 

COLON 2 
11.6×31.

5 
8 4-35 2.9±0.03 * n/a ≥10 RAPID 9.0 Blue mode; 

FICE 
CMOS 

Medtronic Pillcam® 

UGI 
11.6×32.

3 
4 18-35 2.9 ± 0.1 * n/a 90 min RAPID 9.0 Blue mode; 

FICE 
CMOS 

IntroMedic 

Co Ltd 
Mirocam® 

1200 
10.8×24.

5 
6 3 3.25 320×320 ≥10 MiroView™ 

U 4.0 
n/a* CMOS 

IntroMedic 

Co Ltd 
MiroCam 

2000 
10.8×31.

1 
12 6 3.5±0.1 320 ×320 12 MiroView™ 

U 4.0 
n/a CMOS 

Olympus 

Corporation 
EndoCapsu

le® EC-S10 
11×26 4 2 3.3 512×512 12 Endocapsule 

Software 10 

Server 

Image 

adjustment 

function 

CMOS 

Capsovisio

n 
CapsoCam

® Plus 
11×31 16 20 4 221,884 15 CapsoView® Advanced 

Color 

Enhanceme

nt (ACE) 

CMOS 
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Jinshan 

Science and 

Technology 

OMOM 13×27.9 6 2 6 640×480 ~12 VUE™ RGB 

Imaging 

Color 

Enhanceme

nt 

CMOS 

Jinshan 

Science and 

Technology 

OMOM 

Capsule 2 
11×25.4 6 2 4.5 256×256 > 10 

hours 
VUE™ RGB 

Imaging 

Color 

Enhanceme

nt 

CMOS 

Ankon 

Technologi

es Co., Ltd. 

Ankon 

NaviCam® 
11.8× 27 * n/a * n/a 5 480×480 >8hour

s 
* n/a * n/a CMOS 

Shangxian 

Minimal 

Invasive 

Inc. 

Capsubot 11×28 * n/a * n/a 3.9 * n/a * n/a * n/a * n/a * n/a 

* n/a (not available). 

 

 

4.2.1 PillCam™ CE  

The PillCam™SB 3 (PillCamTM 2016) is the latest commercial SB capsule from 

Medtronic. The image capturing software offers adaptive variable frame rate, which 

changes from 2 to 6 frames per second (fps) based on capsule speed as it is propelled 

through the small bowel. Images captured are transmitted by a radiofrequency (RF) 

transmitter to a receiver belt worn around the patient’s waist, and then stored in an 

external data recorder which has real-time viewing and image capture/thumbnailing 

capability. A study conducted by Medtronic concluded that PillCam™SB3 had an 

approximately 40% increase in DY for relevant pathology compared to the earlier model 

(Dunn et al. 2014). 

 

The proprietary reading software is the RAPID™Reader 9.0 version. The software 

provides additional diagnostic features and study reviewing aids. It contains enhanced 

controls similar to the ribbon-type toolbar concept used in Microsoft® products, 

including the Lewis Score (LS) (Gralnek et al. 2008) calculator, the Fujinon Intelligent 

Colour Enhancement (FICE) (D. E. Yung et al. 2017) the suspected blood 

indicator(Kopylov et al. 2017), QuickView (QV) (Koulaouzidis et al. 2015), a thumbnail 

comparison feature, backward compatibility with studies from previous RAPID™ 

software versions and an improved progress indicator/localization guide. 

 

A further iteration of the PillCam is the Crohn’s capsule, which has two heads located on 

both ends of the capsule in order to increase mucosal coverage. It has been developed 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 16:40:13 EEST - 18.217.200.173



 

62 

 

specifically for the investigation and monitoring of patients with Crohn’s disease, who 

often require serial visualization of the digestive tract. The accompanying software 

reflects this, with features to facilitate LS calculation and comparison of capsules in 

patients undergoing repeat examinations. 

 

In addition, Medtronic has developed the Pillcam™COLON2 and Pillcam™Upper GI 

(UGI) tract. Pillcam™COLON2 is designed for colon investigation, while Pillcam™UGI 

enables direct visualization of the upper GI tract, sacrificing recording time for a greatly 

increased image capture rate of up to 35 fps as a reflection of the much faster transit time 

through the oesophagus.  

 

 

4.2.2 MiroCam® 

The MiroCam (http://www.intromedic.com/eng/main/ 2018) (which stands for Micro 

Intelligent Robotic Object Camera) was developed by the intelligent Microsystem center 

established by the Korea Ministry of Science & Technology in Seoul, South Korea, 

renamed IntroMedic Co Ltd in 2006. The standard model is MC1000-W®. The newer 

MC2000 capsule has two CMOS cameras, located at both ends of the capsule, and 

provides a bidirectional 12-hour view of the SB. Instead of using RF to transmit video 

images to a data recorder, the MiroCam utilizes electric field propagation to transmit 

data, which is described as human body communication (HBC).  HBC uses the capsule 

itself to generate an electrical field and the human body as a conductive medium for data 

transmission, with less power consumption compared to RF transmission. Images are 

transmitted to a sensor array which must be kept in direct contact with the patient’s body, 

and stored on an external data recorder. The data recorder has real-time viewing and 

image capture capabilities, whereas older models without a LCD display allow real-time 

viewing through USB connection to a notebook or wirelessly to a smartphone or tablet. 

 

The MiroCam®Navi (Rahman et al. 2014) magnetic capsule is marketed for visualization 

of the stomach, and as such has limited steering capabilities using magnetic force. It can 

be controlled with an external hand held magnet, allowing clinicians to position the 

capsule to direct gastric views via real time imaging.  

 

4.2.3 Endocapsule 10 

The Endocapsule (EC-S10) (https://www.olympus-europa.com/medical/en/Products-and-

Solutions/Products/Product/ENDOCAPSULE-10-System.html 2018) is the newest 

version of the small bowel CE manufactured by Olympus Corporation, Japan and 

approved for use by the Food and Drug Association ( FDA). Images are captured by an 

eight-sensor array inserted into a belt worn around the waist. The data recorder has a 
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battery life of 12 h and has real-time viewing capabilities allowing capture of images and 

playback.  

 

The proprietary reading software for this capsule is the Endocapsule System 10 software. 

The system tracks the capsule’s journey through the small intestine utilizing the receiving 

signal of the belt-style antenna. The 3D Track function allows the system to display in 3D 

the capsule track. This functionality provides an estimation of the location of captured 

images and in this way assists the detection of abnormalities location. It is also supports 

Omni-selected Mode (Hosoe et al. 2016), which skips over images that overlap with 

previous ones and can recognize similar images when captured from different angles. The 

Adjust mode also changes playback speed depending on the differences detected in the 

images.  

 

4.2.4 CapsoCam Plus® 

The CapsoCam® Plus (http://www.capsovision.com/physicians/product-specifications 

2018) (Capsovision, Saratoga, CA) capsule is unique in having 4 CMOS cameras placed 

around the body of the capsule at 90° angles, giving a 360° side-on panoramic field of 

view. Instead of transmitting images like other CE devices, CapsoCam®Plus uses a 

large-capacity onboard storage system and does not require external receiver equipment. 

The capsule itself must be retrieved, following which images are downloaded directly 

from the capsule to a workstation for review.  

 

The proprietary reading software is CapsoView 3.4. It includes an automated Red 

Detection system that highlights suspected images of bleeding and Advanced Color 

Enhancement (ACE) technology which uses computed spectral sequences based on the in 

vivo image data to enhance tissue characterization. 

 

 

 

 

4.2.5 OMOM® 

Jinshan Science and Technology, Chongqing, China has developed the OMOM Capsule 

(http://english.jinshangroup.com/capsuleendoscopy.html 2018).  The OMOM Capsule is 

still not available for use in the USA.  A unique and notable difference of the OMOM 

capsule is that the physician can view the captured images in real time and send a signal 

to the capsule to change the frame rate from 0.5 to 1 or 2 fps, in order to optimize 

visualization. The latest version OMOM capsule 2 has a wider field of view and it is 

slightly smaller. Images are sent via RF transmission to a receiver belt and external data 

recorder. 
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The proprietary review software is VUE™. VUE offers bleeding detection, which 

highlights portions of the recording that appear red and quick view to find areas of 

interest in short time. For Image Enhancement (ICE) RGB mode separates the different 

RGB spectrums in the images, in order to achieve a more detailed view of mucosa and 

capillaries.  

 

 

4.2.6 Ankon NaviCam® 

Ankon Technologies Co., Ltd. (http://www.ankoninc.com.cn 2018) established in 2008 in 

China and it has developed Ankon NaviCam® capsule. Ankon NaviCam® is a magnetic 

guidance robot. It has field of view of 140° and battery life more than 8 hours. Ankon 

NaviCam® has a CMOS camera capturing 2 frames per second. 

 

 

4.2.7 Capsubot 

Shangxian Minimal Invasive Inc.(http://www.shangxianinc.com/en/ 2018) has developed 

Capsubot capsule endoscope. The Capsubot capsule is available for use in China. 

 

4.2.8 Drawbacks of commercial capsules 

Despite their simplicity in patient examination and high DY commercial capsules have 

several drawbacks. Traversing the GI tract in a passive manner is perhaps the most 

important of them; physicians are not able to interfere in the movement and/or the speed 

of the capsule as it moves in the lumen of the GI tract propelled by contractions. In other 

words, it is not possible to stop or navigate the capsule towards an area of interest, for a 

more thorough review. Other drawbacks are the limited battery life, which may result in 

incomplete SB examination, and their lack of capability for treatment, such as drug 

delivery, or biopsy of suspicious areas. 

  

 

4.3 State-of-the-art research capsule endoscopes 

New capsule modes have been designed by several research groups aiming to improve on 

existing capsule designs and add novel functions. Various solutions have been proposed 

to cope with the limitations of existing CE systems. The first category of developmental 

capsule endoscopes aims to provide capabilities for enhanced diagnosis, and the second 

group aims to provide capabilities that aid therapeutic interventions.  
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Also, the research for the enhancement of diagnostic ability of CE devices leads towards 

Therapeutic CE (TCE) devices. Research for TCE has been limited because of 

drawbacks, such as the inaccurate capsule localization that makes difficult the drug 

delivery in specific regions of GI tract. As the number of capsule endoscopy related trials 

currently exceeds 150 records in ClinicalTrials.gov registry, so the demand for new 

capsule based technologies and solutions is also growing(clinicaltrials.gov 2019) 

 

Table 4.2 presents a summary of representative state-of-the-art research prototypes or 

concepts of capsule endoscopes. 

 

 

Table 4.2 Research (P)rototypes or (C)oncept capsule endoscopes 

 

Study 

(year) 
Project Status 

Multimodal 

imaging 

 

Active 

actuation 

 

Magnetic 

propulsion 

 

Drug 

delivery 

 

Specific 

treatment 

 

Biopsy 

capabilities 

 

(Jang et al. 

2018) 

4-Camera 
High-

Resolution 

and -
Throughput 

Capsule 

Endoscope 

P yes no no no no no 

(Fontana et 

al. 2017) 

Wireless 
Spherical 

Endoscopic 

Capsule 

P no no yes no no no 

(Son et al. 
2017) 

Magneticall

y Actuated 

Soft 
Capsule 

Endoscope 

for Fine-
Needle 

Aspiration 

Biopsy 

P no no yes no no yes 

(Fu et al. 

2017) 

Magneticall

y Actuated 

Microroboti
c Capsule 

with 

Hybrid 
Motion 

C no yes yes no no no 

(Winstone 

et al. 2017) 

Bio-Inspired 

Tactile 

Sensing 
Capsule 

Endoscopy 

for 
Detection of 

Sub-

mucosal 
Tumors 

C yes no no no no no 

(Leung et 

al. 2017) 

A Capsule 

for 
haemostasis 

utilizing an 

inflated 

P no no no no yes no 
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balloon 

 

(Stewart et 

al. 2017) 

SonoCAIT 

 
C no no no yes no no 

(Guo et al. 
2017) 

Developme
nt of a novel 

wireless 

spiral 
capsule 

robot with 

modular 
structure 

P no no yes no no no 

(Le et al. 
2016) 

A soft-

magnet-
based drug-

delivery 

module for 

ALICE 

system 

P no no yes yes no no 

(Demosthe

nous et al. 

2016) 

Infrared 
Fluorescenc

e-Based 

Cancer 
Screening 

Capsule for 

the Small 
Intestine 

P yes no no no no no 

(Z. Li et al. 
2016) 

Blue Light 

Therapy 

Capsule for 
Helicobacte

r pylori 

 

C no no no no yes no 

(Tortora et 

al. 2016) 

A blue and 

red light 

Capsule for 
the 

Photodynam

ic Therapy 
of 

Helicobacte

r Pylori 
 

P no no no no yes no 

(Woods & 

Constandin
ou 2016) 

A wireless 

capsule 
endoscope 

with 

holding 
mechanism 

for 

medication 
release 

C no no no yes no no 

(Gao et al. 
2016) 

Motor-

based 

Capsule 
Robot 

Powered by 

Wireless 
Power 

Transmissio

n 

P no no yes no no no 

(Lee et al. 

2015) 

Active 

Locomotive 

Intestinal 
Capsule 

Endoscope 

(ALICE) 
System 

P no no yes no no no 
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(Gu et al. 
2015) 

6-Camera 

Endoscopic 

Capsule 

P yes no no no no no 

(Beccani et 

al. 2015) 

A capsule 

with a coil 

actuation 
mechanism 

for drug 

release 
 

P no no no yes no no 

(Yu et al. 

2015) 

A drug 

delivery 
capsule in 

specified 

location by 
magnet 

P no no no yes no no 

(Zhong et 

al. 2015) 

Tadpole 

Endoscopic 

Capsule 

P no yes no no no no 

(Shi et al. 
2015) 

Worm-

Inspired 

Capsule 
Endoscope 

with Arc-

Shaped 
Spiral Legs 

and 

Wireless 
Power 

Transmissio

n 

P no yes no no no no 

(Yim et al. 

2014) 

Magneticall
y Actuated 

Soft 

Capsule 
Endoscope 

with 

Untethered 
Microgrippe

rs for 

Biopsy 

P no no yes no no yes 

(Yim & 

Jeon 2014) 

Ring-

Shaped 

Magnetic 
Capsule 

Robot 

P no no yes no no no 

(Sun et al. 
2014) 

Legged 
Capsule 

Robot 

Actuated 
Wirelessly 

by 

Magnetic 
Torque 

P no yes yes no no no 

(Chen et al. 
2014) 

Wireless 

Autonomou

s Endoscope 
with Micro-

Jaw Forceps 

for Biopsy 

P no yes no no no yes 
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4.3.1 Capsule Locomotion and Navigation  

A large proportion of work addresses capsule locomotion and navigation, as the ability to 

control capsule movement would improve mucosal visualization, as well as enabling 

biopsy. Two main approaches are considered: active actuation and external magnetic 

guidance. In the former approach the capsule is equipped with actuators, such as robotic 

legs, enabling autonomous motion of the capsule within the GI tract. In the latter 

approach, the motion of the capsule is based on externally applied magnetic fields.  

 

Experimental or prototype capsules with active locomotion can be further grouped based 

on their method of propulsion. The first group uses magnetic forces. A preliminary model 

of a legged capsule robot with active locomotion has been presented by (Sun et al. 2014). 

The four legs move the capsule robot forward or backward. The activation of the legged 

capsule to move or to stop is achieved by magnetic torque without the dependence of a 

battery for power supply. The actuation of two external permanent magnets forces an 

internal permanent magnet to rotate. The internal permanent magnet is integrated in the 

capsule robot and rotates relative to the body of the robot. An internal mechanism 

transmits the magnetic torque of the rotating internal permanent magnet in order to 

activate or stop the legs. The group of (Yim & Jeon 2014) has presented  a capsule robot 

able to move in a fluid-filled tube. The capsule is designed with three different parts. The 

first part is the rotating frontal part of the robot, which consists of a permanent magnet 

that has the shape of a ring. The second part is the linearly moving clamper that is also 

equipped with a permanent magnet, a clamper with ribs to support the directional 

movement of the capsule, and a slider. The third part is the capsule body, which consists 

of a stroke limiter and a small motor of a diameter with a size 6 mm. This mechanic 

arrangement of the parts provides the locomotion of the capsule. The motor rotates the 

frontal part. The magnetic force of the magnet of the frontal part pulls or pushes the 

magnet of the second part. Thus, the second part is passively moving linear and forces the 

movement of the capsule robot. This mechanism enables the capsule robot to achieve 

enough speed for the generation of the appropriate propulsion inside the liquid tube. 

Several mobility mechanisms for the capsule endoscope have been developed by 

researchers without achieving adequate degrees of freedom or sufficiently-diverse 

capsule motions.  The group of (Lee et al. 2015)have developed the Active locomotion 

intestinal capsule endoscope (ALICE) system with diverse mobility consists of an 

Electro-Magnetic Actuation (EMA) system and capsule endoscope. The EMA system has 

three pairs of orthogonal uniform magnetic coils for 3-D alignment, and two pairs of 

gradient magnetic coils for propulsion and it achieves to realize complex motions of the 

capsule. The capsule has a tubular shape and moves through 5 degrees of freedom, 

enabling complex movements e.g., helical movements to closely scan the inner wall of 

the GI tract. The designed capsule endoscope has a diameter of 8 mm and length of 20 
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mm. The motion of ALICE system was evaluated in ex-vivo experiments, which verified 

the feasibility of the ALICE system for investigation of GI tract. 

 

A second group of capsules draws on movements seen in the natural world. Inspired by 

the movements seen in natural world the group of (Zhong et al. 2015) have proposed the 

Tadpole Endoscope, which adopts a thunniform swimming technique of tadpoles and can 

propel itself through the GI  tract. The Tadpole endoscope follows the traditional capsule 

endoscope design equipped with a soft tail and contains the driving unit, camera, control 

and an application specific integrated circuit transmitter, antenna and batteries. The 

driving unit drives the tail to flap and generates a propulsion force. The body of the 

capsule has a diameter of 13 mm and a length of 38 mm, where the 9 mm is the length of 

the tail. The total weight is only 6 g and one button battery of 1.5 V is used to drive the 

circuit board and the magnetic coil. Motion instructions are sent to the circuit board via 

infrared communication. The maximum swimming speed is 12.5 mm/s and the minimum 

turning radius is 25 mm. The tadpole endoscope’s motion was tested ex-vivo in a pig 

stomach, where it was showed that the movement of Tadpole endoscope and the change 

of direction when Tadpole endoscope reached the stomach wall. Relying on GI 

peristalsis, the WCE cannot actively move and treat effectively, necessitating further 

research into intestinal robotic devices. In order to support the locomotion in the 

intestinal tract capsule endoscopes are equipped with legs or paddles. However, the sharp 

ends of the legs have the potential to damage the intestine of the patient while navigating 

through it. The group of (Shi et al. 2015) proposed a capsule robot that mimics the 

movement of a worm equipped with elastic spiral legs. These arc-shaped spiral legs slide 

along the intestinal wall without hurting the intestine of the patient. In the body of the 

capsule a CMOS camera and a transmitting circuit are integrated for image acquisition. 

To avoid the limitation of insufficient battery duration a wireless power transmission 

system is used for power supply. The power supply system consists of receiving coils, a 

rectifier circuit and a voltage regulator circuit. The ring-like receiving coils are designed 

to surround the shell and to protect the inner space of the robot. The capsule has diameter 

of 16mm and length of 31mm. The locomotion and the wireless power transmission 

where tested in ex-vivo experiments. Sufficient power supply is important to support the 

functionalities of a capsule endoscope such as the video recording, video wireless 

transmission, biopsy devices etc. However, commercially-available button batteries are 

not sufficient to power these functionalities for long durations. The group of (Gao et al. 

2016)has proposed a motor-based capsule robot utilizing an inchworm mechanism 

consisting of two expanding devices at both ends and a middle extensor for active 

locomotion. The capsule robot is powered by Wireless Power Transmission (WPT). WPT 

is based on near-field inductive coupling could supply several hundred milliwatts to the 

moving capsule robot and has been considered as a promising solution. The WPT system 

normally consists of a 1D (1-D) transmitting coil that excites alternating magnetic field 
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and a three-dimensional (3-D) receiving coil with an inserted ferrite core that induces 

electromotive force (EMF). The motor-based capsule robot has a diameter of 13 mm and 

length of 42 mm for exploring the intestinal tract. The frame rate of the propose capsule 

is 30 frames per second with resolution of 320×240 dpi. Ex-vivo evaluation of proposed 

capsule robot was performed proving that the capsule is able to navigate in a collapsed 

porcine intestine. The group of (Fu et al. 2017) has proposed a conceptual, magnetically 

actuated, hybrid micro-robot with hybrid motion, that include screw jet, paddling and fin 

motion. It is driven by an electromagnetic actuation system, which generates a rotational 

magnetic field and alternate magnetic field. The experimental results from simulation 

indicated that the micro-robot realized the flexible motion in the pipe, by adjusting the 

changing magnetic frequency. The physician obtains the ability to move the microrobot 

in order to accomplish functions such as endoscopy examination or drug delivery, after 

taking into consideration information like the position and the posture of the microrobot. 

The proposed dimensions of the microrobot are a diameter of 13 mm and length of 

30mm. 

 

The application of external magnetic fields for the motion maneuvering of the capsule 

endoscopes has also been a matter of study. In the framework purposed by the group of 

(Fontana et al. 2017) a capsule with spherical shape was presented. The capsule has 26 

mm diameter and weighs 12.70 g. The capsule transmits images of 320×320 resolution at 

1.5 fps. The battery of the capsule can be recharged up to 6 times through a proposed 

recharging circuit. A power-on circuit and a localization module are embedded in the 

capsule. In order to reduce the friction during the examination of the colon that leads the 

camera in insufficient angles of view a structure combining an outer and an inner shell 

has been constructed. These shells have a 360° degree of orientation and the 

simultaneously movement maintaining the camera in the correct direction. The actuation 

of the capsule is based on the interaction of the integrated permanent magnet in the 

capsule and an external electromagnet. The capsule has been tested in an in-vitro colon 

simulation for image capturing. Detection and treatment of GI pathologies are two 

functionalities, which need different hardware integration, and the co-existence of both, 

in the same capsule is limited by its size. Thus, the group of (Guo et al. 2017) has 

proposed a wireless spiral capsule robot with modular structure driven by the external 

magnetic field. The capsule robot consists of two robots with modular structure with a 

mechanism to combine and separate them. It consists of a guide robot and an auxiliary 

robot with helical diversion grooves. The guide robot has a length of 39.4mm and a 

diameter of 12.5mm. The auxiliary robot has a length of 33.8mm and a diameter of 

12.5mm. In the two robots, permanent magnets have been placed in the center and 

magnetized in the radial direction. Under the same external magnetic field, generated by 

the three-axis Helmholtz coils, the motion of each capsule is relative to the other. After 

the inspection of the guide module robot, the treatment module robot can be swallowed 
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and then dock with the guide module robot and save the long time to reposition the target 

location. 

 

 

 

4.3.2 Capsules with Biopsy Capabilities 

A more limited amount of work has been done attempting to enhance capsule endoscopes 

with biopsy capabilities. Two types of micro-jaw mechanisms for biopsy, the slide-jaw 

and the sleeve-jaw, for a wirelessly powered capsule endoscope have been designed by 

(Chen et al. 2014). The capsule robots have the forceps in the front part of their body.  

The actuator of the capsule robot utilizes the lead-screw mechanism for the 

implementation of the stretching out and withdrawing motions of the micro-jaw. During 

the biopsy there are three movements that have to be executed. First one is the extension 

of the micro-jaws to the sampling area. Second the micro-jaws bite and cut off tissue. 

Third the micro-jaws withdraw back in the capsule. The collected samples are stored 

inside the capsule. The proposed two types of micro-jaw aim for supporting biopsy in 

surgical tasks. The slide-jaw extends along a guiding slot and pull back to cut off a tissue 

sample. The tissue sample is kept squeezed inside the two parts of jaw. The adjustment of 

the forward distance of jaw manages the sampling amount of tissue. The volume of the 

sampling tissues is around 1 mm3 to 1.5 mm3. The sleeve-jaw forceps are inspired by the 

traditional biopsy tools. The sleeve-jaw cuts off the tissue samples utilizing the pressure 

from the compressed spring. The sleeve-jaw is used for the retrieval and storage of 

smaller amount of tissue samples about 0.5 mm3 to 1 mm3 than slide-jaw. The cutting 

ability of the forceps was evaluated ex-vivo using small intestine of a pig. Another group 

(Yim et al. 2014) has developed a capsule endoscope system combining two devices for 

biopsy. Firstly, the system exploits the extra axial degree of freedom of the MASCE 

device for the functionalities of remote actuation, controlled navigation and drug release. 

Secondly, the system utilizes the microgrippers which can be actuated autonomously at 

the body temperature and self-fold collecting tissue samples in a highly parallel manner. 

The microgrippers have been optimized in order not to fold earlier than the pass of a 10 

min period. This time threshold for microgrippers to close prevents them to fold before 

their release from the capsule. The constructed capsule has a diameter of 18mm and a 

length of 31.5mm. Ex-vivo experiments were conducted and showed that the proposed 

capsule is capable for the retrieval of multiple tissue samples. The extraction of samples 

from suspicious tissue lesions through a thin and hollow needle is a method called fine-

needle aspiration biopsy. The group of (Son et al. 2017) has proposed a magnetically 

actuated soft capsule endoscope (B-MASCE) that utilizes the fine-needle aspiration 

biopsy functionality. The fine needle can penetrate deep inside the mass of a lesion, even 

in the case of sub-mucosal tumors and it can improve the diagnostic yield. The B-

MASCE has been manufactured to enable the rolling locomotion on the surface of a 
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stomach and the motion of axial jabbing of the needle. A magnetic field is used for the 

controlling and torqueing of the magnet inside the capsule endoscope. Four legs assist the 

guidance of the needle for the penetration in the area of the lesion. These four legs are 

made from soft material, thus the capsule endoscope is called “soft”. The capsule is 

designed for the examination of the upper GI tract and it has diameter of 12mm and 

length of 30mm. The fine needle has a length of 15 mm and penetration depth of 10 mm.  

In-vitro experiments for sampling were performed using pork fat as GI tumor. Samples 

were successfully captured from the proposed capsule with fine-needle aspiration biopsy 

functionality. 

 

 

4.3.3 Multimodal Imaging 

Various approaches have been proposed to enhance the multimodal imaging capabilities 

of current capsule endoscopes and add other novel lesion detection techniques apart from 

conventional white-light imaging. 

 

The random movement of the capsule and the limited visual field in GI tract results in a 

high miss rate of significant findings. For this reason, the group of  (Gu et al. 2015) has 

implemented a Multiple Cameras Endoscopic Capsule (MCEC) with smart control to 

reduce the miss rate. Multiple cameras are employed to create a larger visual field. 

Instead of wirelessly transmitting the image data, stores them in a flash memory thus 

enabling a high image acquisition rate. Moreover, a low-complexity image compression 

algorithm is proposed achieving a decrease in power consumption. A smart image 

capture control strategy based on motion information is used to control frame rate upon 

random movements within the digestive tract. This prototype endoscopic capsule has six 

cameras and captures frames with resolution of 480×480 pixels. Another multi-camera 

capsule, proposed by the group of  (Jang et al. 2018) has developed a capsule consisting 

of 4 Video Graphics Array (VGA) cameras. The capsule has a diameter of 12mm and 

length of 32mm, while it weighs < 4g. The field of view for every single camera is 120° 

enabling the capsule for capturing 360° images of 640×480 pixels at a frame rate of 4 

frames per second (fps). The capsule consists of a transmitter providing the image 

transmission up to 80Mb/s to an external receiver with power consumption at 0.8mW. 

The two batteries inside the capsule can last for >12 hours. Also, the capsule can provide 

images with information of the location inside the GI tract achieving sub-cm accuracy. 

The location of the capsule is specified measuring the signal power between the capsule 

and the external receiver that has 8-nodes and hub implanted on a tight vest. The location 

is determined to be near the node with the less channel attenuation and then specified 

using an adaptive selection of the nearest four nodes. In-vitro experimental results in pig 

intestine proved the sub-cm accuracy. 
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Moving away from white-light imaging, cancer detection in early-stage through infrared 

fluorescent-labelling is a well-known technique. The group of (Demosthenous et al. 

2016) has developed a screening capsule prototype for the detection of fluorescence 

emitted by very low concentrations of Indocyanine Green (ICG) fluorophores. The 

capsule has a diameter of 13mm and length 25mm. It is able to detect and record 

fluorescence levels for about 9 hours via a variable sampling rate methodology that 

reduces the amount of redundant data collected. The fluorescence levels are stored in the 

internal memory of the capsule. Therefore, this capsule provides a viable general 

screening method for small-bowel cancer. Analysis of 8 or more hours of video for each 

patient is not required, since the physicians can examine whether the detected 

fluorescence levels exceeded a predefined threshold when plotted on a chart. The 

proposed near infrared-based fluorometric capsule is the first of its kind, in that without 

external body-worn hardware and labour intensive video analysis, early stage cancers can 

be detected cost-efficiently and reliably. Ex-vivo experiments of the proposed capsule 

were conducted using ICG-impregnated swine intestine showing the detection and 

screening ability of the system at different ICG concentrations. 

 

Finally, a totally different approach to support diagnosis in CE has been proposed, based 

on tactile sensing technology. Inspired from human finger sensing anatomy (Winstone et 

al. 2017) have developed a biomimetic tactile fingertip sensor, named Tactip. Tactip uses 

remote palpation to stimulate a tactile sensing surface that deforms when is pressed 

against soft or hard lumps on the surface of the GI tract. This new diagnostic method 

enables the enhancement of visual investigation of lesions and it could provide further 

information about the structure of the lesions. A system able to classify abnormalities 

based on the shape, size and softness was utilized to test the sensor. Thus, information of 

the characteristics in different locations inside the surface of bowel without relying on the 

vision alone can be provided by the system. Tactip has embedded an artificial cast 

silicone skin, optically clear flesh like gel, camera with 720×1200 resolution and internal 

illumination using LEDs. 

 

 

4.3.4 Therapeutic Capsule Endoscopes 

Following the aforementioned categories capsule endoscopes, it is clear that the focus of 

capsule functionalities has to extend further than the diagnostic capabilities. In this 

subsection the potential capsule endoscopes capable for therapeutic functionalities are 

described. Therapeutic capsules can be further grouped based on their application. One 

group is the drug delivery capsules and the second group is the treatment capsules for 

specific pathologies as bleeding in the GI tract or the Helicobacter Pylori.  
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For the first group of therapeutic capsule, a smart capsule for location-specific drug 

release in the GI tract has been presented by the group of (Yu et al. 2015). The proposed 

capsule has length of 26mm and diameter of 9mm. The specific location for the releasing 

of the drug is determined by an implanted or externally worn permanent magnet. The 

capsule is activated when it is closed to the magnet. Then, the reed switch closes and the 

capacitor is discharged by the nichrome wire. The nylon fuse is melting while the cap is 

opening and the drug is released. The drug delivery procedure was tested in-vitro 

showing the locomotion of the capsule next to the permanent magnet. Another group of 

(Beccani et al. 2015) has designed a prototype Magnetic Drug Delivery Capsule 

(MDDC). A coil actuation mechanism is used by the capsule for the release of the drug. 

The capsule consists of a coil, a magnet and a drug chamber, in which matching magnets 

are placed. The drug chamber remains attached to the body of the capsule by the 

generated attraction between the magnets. The coil is able to produce the appropriate 

force for the magnets to be repulsed. Then, the chamber opens and the drug is released in 

the specific area of the GI tract. The diameter of the capsule is 13 mm and the length is 

30 mm. The capsule has a weight of 12 g and the drug chamber can store to 2.4 ml of 

drug.  

 

The group of (Woods & Constandinou 2016) has presented a concept of a microrobot 

with a medication release and a drug infusion mechanism for targeted drug delivery. The 

microrobot has been designed with resistance to natural peristalsis deploying a holding 

mechanism enabling the microrobot to localize a pathological area of interest in the GI 

tract. Then, a needle is positioned in this area and delivers a 1 ml dose of medication. The 

needle has the ability to be placed in a 360°scale, while simultaneously maintaining a 

diametrically opposite relationship with the holding mechanism. This feature guarantees 

the penetration of the GI tract wall by the needle. The holding mechanism utilizes a 

single micromotor to open and close two legs. The legs stretch and hold the microrobot in 

the region of interest inside the GI tract. A module for drug delivery that is combined 

with the ALICE (Lee et al. 2015)system has been presented by the group of Le et al (Le 

et al. 2016). The drug delivery module consists of two ring-type soft magnets and a 

simple plastic hinge. The ring-type magnets are axially magnetized attracting to each 

other keeping the drug enclosed inside the module. The ALICE system provides 

controlled navigation of the integrated ALICE with drug delivery module to investigate 

and accurately infuse the drug to the lesion area. The drug-delivery module is opened by 

the repulsive force between the two radially magnetized soft-magnetic rings, when the 

axial magnetization of the rings stops. The rings are demagnetized and a strong pulsating 

magnetic field in a radial direction is applied and the enclosed into the module drug is 

released. Then, the two rings are axially magnetized again, attracting to each other and 

thanks to the plastic hinge the drug-delivery module is returned to its initial shape. The 
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integrated drug delivery module with ALICE has a diameter of 12 mm and a length of 33 

mm. The proposed drug delivery module with ALICE was tested in-vitro. 

 

For an ultrasound (US)-mediated targeted drug delivery (UmTDD) proof-of-concept 

capsule named SonoCAIT has been developed by the group of  (Stewart et al. 2017). The 

prototype capsule is able for drug delivery in a specific location, utilizing US to release 

drugs and/or to increase drug uptake through sonoporation. SonoCAIT has a pill-like 

shape with the dimensions of 10mm in diameter and 30mm in length. An US transducer, 

a drug delivery channel, a vision module and the multi-channel external tether are 

integrated into the capsule. The vision module consists of a CMOS camera and circuit 

board with four white LEDs lights. The camera is cylindrical with resolution of 220×224 

pixels. The aim of SonoCAIT is to deliver drugs to the wall of the GI tract. One example 

of a therapeutic preparation is drug-filled microbubbles (MBs). When these reach the 

target zone, they must be released in close proximity to the wall where the drugs can then 

be released by US. That means the US focus and MBs have to be directed towards the 

same target. In-vitro experiments showed that SonoCAIT achieved enhancement of drug 

uptake. 

 

 

For the second group of capsule that are focus for specific treatment a blue light emission 

capsule for the therapy of Helicobacter pylori has been proposed by the group of (Z. Li et 

al. 2016). A module for pH sensing and measuring is used to differentiate locations and 

evaluate the digestive function by monitoring the pH values of the GI tract. The optical 

source of capsule consists of eight blue LEDs and emits blue light for treatment 

according to the preset range of pH values. Also, the capsule consists of a low power-

consumption microcontroller for the processing of the pH signal and a wireless 

communication module for the transmission of the measured pH values to an external 

receiver. The proposed capsule has a diameter of 11.5mm and a length of 22mm. The 

group of (Tortora et al. 2016) has also investigated  the efficiency of the LEDs in specific 

wavelengths needed for the therapy of the infection from Helicobacter Pylori. Based on 

their measurements, two easy-to-swallow capsule devices have been developed. The first 

is a capsule for research purposes that has a more performant battery that is not permitted 

in clinical examination. The second is the preindustrial capsule that integrates certified 

modules for clinical examination. The capsules integrate 8 LEDs placed in an electronic 

board along with a magnetic switch and a battery. There have been constructed two 

versions of capsule based on the emitting wavelength. The one emits red light only at 

625nm and the other blue light at 405 nm. The capsules have a diameter of 14mm and 

length of 27 mm.  
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Finally, an inflatable prototype capsule for haemostasis in the GI tract based on balloon 

tamponade effect has been proposed by the group of (Leung et al. 2017). The capsule 

consists of three segments linked with flexible joints. These segments are the gas 

generation chamber with a length of 13mm, the acid injector with a length of 35mm and 

the circuit box with a length of 12mm. The capsule has a diameter of 14mm and it is 

enclosed into a silicone balloon. The balloon inflates at a bleeding lesion and achieves 

haemostasis by the tamponade effect. The inflation of the balloon is achieved by an acid 

injection into a gas generation chamber filled with base powder. The amount of infused 

acid controls the pressure and the volume of the silicone balloon in order to suite the 

variation of the diameter and texture of the intestine. The inflation of the balloon is 

capable to achieve the appropriate pressure to the bowel wall to anchor the capsule 

steadily in the position of the bleeding.  Ex-vivo experiments for the evaluation of the 

appropriate pressure and in-vivo experiment of bleeding in the small intestine of a pig 

were conducted, showing that the proposed capsule is able to achieve haemorrhage 

control in the lower GI.  

 

 

4.4 Capsule endoscope Localization 

During the passive movement of capsule endoscopes through the GI tract, the accurate 

localization of the capsule is of great importance. Accurately identifying the location of 

the capsule can determine the exact position of possible abnormalities detected, and can 

therefore guide further management such as surgery or local drug delivery.  

 

Several methods have been proposed for capsule localization (Iakovidis & Koulaouzidis 

2015; Vasilakakis, Koulaouzidis, Yung, et al. 2019; Than et al. 2012). A summary of 

such studies performed during the last five years is provided in Table 4.3. The main 

approaches include electromagnetic or Radio-Frequency signal localization (RF) and 

magnetic localization (M); other techniques include Computed Tomography (CT) for 

patency capsule localization (Omori et al. 2015), and a recent approach based on Positron 

Emission Tomography (PET) (Than et al. 2017). However, the latter techniques involve 

radiation, which may have adverse health effects (Than et al. 2012).    

 

Radiofrequency based localization techniques include Time-Of-Arrival (TOA), Time-

Difference-Of-Arrival (TDOA), direction-of-arrival (DOA), and Received Signal 

Strength (RSS). The transmitting signal from the capsule endoscope is measured by the 

installed sensors around the patient’s abdomen and the sensors compute the received 

signal strength. However, RSS localization varies depending on the unique characteristics 

of each patient’s body and suffers from signal attenuation due to the complex non-

homogeneous environment. Several studies experiment with different ways of computing 

this path loss signal propagation in order to compute the location of capsule(Hany & 
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Akter 2017a; Hany & Akter 2017b; Hany & Akter 2018a; Hany & Akter 2018b; Ye et al. 

2014; Hany et al. 2017). In (Nafchi et al. 2014) the performance of TOA/DOA and 

TDOA/DOA measurements was investigated and compared for the capsule localization, 

while in  (Ito et al. 2016) a hybrid TOA and RSS estimation method was proposed. 

 

Current magnetic localization methods exploit a permanent magnet inside the capsule 

(He et al. 2015; Mahoney & Abbott 2016; Pham & Aziz 2014; Song et al. 2014) and they 

use of an external array of magnetic sensors to localize the capsule in the 3D abdominal 

space. In (Islam & Fleming 2014) a sensing coil was used inside the capsule and an 

alternating magnetic field is generated from outside the body. The voltages that are 

induced into the sensing coil could be used for the determination of capsule’s position. In  

(Song et al. 2016) a multiple objects positioning and identification method has been 

constructed aiming to the localization of more than one different magnetic targets, such 

as capsules. In (Umay & Fidan 2016) a hybrid scheme of a permanent magnet and RF 

was used to achieve better localization result. In first place the main study of the 

proposed works is around the required number, arrangement, position, and array of the 

magnet and magnetic sensors. 

 

Computer Vision (CV) algorithms can assist the localization process of the capsule 

endoscope by exploiting the visual content of the raw CE video frames (Dimas, 

Iakovidis, Ciuti, et al. 2017; Geng & Pahlavan 2016; Iakovidis et al. 2016; Mehmet Turan 

et al. 2018). Thus, the need for any other equipment, such as external sensors, can be 

bypassed. Recently published studies have demonstrated very promising results towards 

this direction. In (Dimas, Iakovidis, Karargyris, et al. 2017)an Artificial Neural Network 

(ANN) is used to automatically calculate the distance traveled by the endoscope based on 

visual cues. Its advantage over previous approaches (Spyrou et al. 2015; Spyrou & 

Iakovidis 2014) is that it does not require any prior knowledge about the geometric model 

of the capsule endoscope camera and its intrinsic parameters, such as its focal length. In 

(Dimas, Spyrou, et al. 2017)  that work was extended with the use of color information to 

enhance the localization performance. More recently, a less parametric, so called “deep 

visual measurement” approach was proposed for visual localization of capsule 

endoscopes with even higher accuracy (Dimitris K Iakovidis et al. 2018). In addition to 

localization, this methodology provided a means for contactless size measurement of 

lesions. A hybrid localization was proposed in(Turan et al. 2017), combining both 

computer vision and magnetic localization methods. Another hybrid localization was 

proposed in (Bao et al. 2015), where computer vision and radio frequency localization 

methods were combined. A thorough, but more technical, review on capsule localization 

methods has been performed by Mateen et al. (Mateen et al. 2017). 
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Table 4.3 provides a summary of the state-of-the-art capsule localization methods and 

respective results. There is at present no common evaluation metric for assessing 

localization. The metrics reported in the reviewed studies mainly express the error in the 

estimation of the capsule’s location. These include the Root Mean Square Error (RMSE), 

Localization Error (LE), Average Localization Error (ALE), Mean Absolute Error 

(MAE), Mean Error (ME), Translational Error (TE), Position Error (PE), Mean Distance 

Error (MDE), Average Position Error (APE). More details on how exactly these metrics 

are estimated can be found in the respective studies. Most of the results reported in the 

reviewed studies are not comparable to each other, not only due to the use of the different 

metrics, but also due to the different experimental setups used.  Most studies on RF and 

magnetic capsule localization have reported errors of sub-centimeter ranges, whereas 

studies based on CV have reported errors of a few centimeters. However, it should be 

noted that the former address the localization of the capsule in the 3D abdominal space, 

whereas the latter ones address the localization of the capsule within the intestinal lumen, 

which can be directly exploited for therapeutic interventions, e.g., localized drug 

delivery. This is a major difference, which can explain the differences in the error levels. 

Even promising perspectives arise from the hybrid approaches combining CV and sensor 

based localization, as in (Geng & Pahlavan 2016), where the localization error reported 

was very low (47mm).   

Although the developments are significant, the experimental assessment of the respective 

methods was mainly based on simulation/emulation models, fewer were based on ex vivo 

setups (Mehmet Turan et al. 2018), whereas only some of them were performed in vivo. 

Limitations for performing in vivo experiments are posed by the higher costs and the 

legal aspects to be treated. 

 

Table 4.3 State-of-the-art methods for capsule localization 

Study (Year) Experiments CV RF M Results 

(Hany & Akter 2018b) Simulation N Y N ALE, RMSE 18.66mm, 24.53mm 

(Mehmet Turan et al. 
2018) 

Ex vivo (pig 

stomach), 

Simulation 

Y N N TE 6% 

(Hany & Akter 2018a) Simulation N Y N RMSE 6.2mm 

(Than et al. 2017) Simulation N N N PE 0.39mm ±0.22mm 

(Dimas, Iakovidis, Ciuti, 

et al. 2017) 
In vitro Y N N MAE 7.9±5.1mm 

(Umay & Fidan 2016) Simulation N Y Y ALE 0.25mm 

(Hany et al. 2017) Simulation N Y N ALE 3.8mm 

(Turan et al. 2017) 

Ex vivo  

(5 pig 
stomachs) 

Y N Y TE >=2% 

(Dimas, Iakovidis, 

Karargyris, et al. 2017) 
In vitro Y N N MAE 1.14± 0.75cm 

(Dimas, Spyrou, et al. 
2017) 

In vitro Y N N MAE 2.7±1.62cm 

(Hany & Akter 2017a) Simulation N Y N ALE, RMSE 7.28mm, 10.43mm 

(Hany & Akter 2017b) Simulation N Y N ALE, RMSE 4.53mm 5.14mm 

(Mahoney & Abbott 2016) Simulation N N Y ALE 2.1mm 

(Iakovidis et al. 2016) In vitro Y N N MAE 1.4 ± 0.8 cm 

(Geng & Pahlavan 2016) Simulation Y Y N RMSE 47mm 
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(Ito et al. 2016) Simulation N Y N RMS 1.3mm 

(Song et al. 2016) Simulation N N Y MDE 3.5mm-4.0mm 

(He et al. 2015) Simulation N N Y ALE 0.76mm 

(Bao et al. 2015) Emulation Y Y N ALE 23mm 

(Nafchi et al. 2014) Simulation N Y N RMSE 
≥ 1cm 

(per axis) 

(Song et al. 2014) Simulation N N Y APE 0.003 mm 

(Pham & Aziz 2014) In vivo N N Y LE 5mm 

(Ye et al. 2014) Simulation N Y N ALE 
5cm (RSS) 

 1.5cm (TOA) 

(Islam & Fleming 2014) Simulation N N Y ME 6mm 

 

     

 

 

4.5 Image Enhancement   

Enhancing the visualization of CE video streams can affect diagnostic yield. Such 

enhancements mainly include approaches for faster reviewing of the CE video, as well as 

more complete and accurate display (Iakovidis & Koulaouzidis 2015; Vasilakakis, 

Koulaouzidis, Yung, et al. 2019) . As described in section 4.2, the commercially available 

capsule endoscopes provide software solutions for this purpose. Research towards 

enhanced visualization is active but still not sufficiently explored. In the following 

section, some of the latest and most representative works are presented.  

 

A cyber physical system for simultaneous RF experimentation and 3D imaging inside the 

small intestine has been proposed in (Pahlavan et al. 2015). 3D reconstruction was based 

on a hybrid localization and mapping technique. This technique uses the RF signal 

received from body mounted sensors and similarities among consecutive images from the 

VCE to construct 3D model of the small intestine. The path reconstruction algorithm was 

validated with clinical experimentations using a 3D X-Ray procedure. Another 3D 

mapping approach has been proposed in the context of a system for navigation of either 

active locomotion or magnetically propelled capsules, by a haptic user interface (Mura et 

al. 2016). This was achieved by using a robotic manipulator coupled with a computer 

vision module able to infer the 3D structure of the environment on a frame-by-frame 

basis. Based on the user input and the estimated scene structure, the control system was 

gently able to generate forces guiding the user along the centerline of the GI tract. 

Another 3D reconstruction method for visualization is a has been proposed in (M. Turan 

et al. 2018). That method was based solely on color images.   

 

Another approach aiming to time-efficient visualization of CE videos was based on the 

elimination of redundant video frames (Chen et al. 2015). The identification of such 

frames was based on their temporal correlation and their color and texture features. The 

selective elimination of the redundant frames, e.g., by keeping only representative frames 

from the CE video, results in a video summary that can be examined faster by the CE 
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reviewers (Iakovidis et al. 2008). Such video summarization approaches have been 

investigated in the studies(Ben Ismail & Bchir 2016; Chen et al. 2017; Mehmood et al. 

2014a; Mohammed et al. 2017). In particular in(Mehmood et al. 2014a), a Mobile-Cloud-

Assisted Tele-Endoscopic System (MCATS) was proposed, aiming to provide ubiquitous 

access to CE videos through a flexible framework capable of adaptively performing video 

summarization. Through that framework CE videos can be visualized and shared through 

smartphones. Addressing the demands of growing CE data volume another video 

summarization framework was proposed for efficient management and analysis of CE 

data obtained from a tele-endoscopy system (Mehmood et al. 2014b). In that framework, 

a smartphone collects frame sequences and performs video summarization to generate 

keyframes. In parallel, the smartphone also transmits the generated keyframes to the 

corresponding medical specialists for analysis 

 

4.6 State-of-the-art abnormality detection software  

Several efforts have been made to develop computer-based medical systems capable of 

analyzing CE image sequences for the detection and recognition of abnormalities during 

the last five years. In such systems the images undergo transformations that enhance 

features significant for diagnosis, such as color, texture and shape. Based on these 

features, which are numerically represented, the systems are able to discriminate different 

kinds of tissues. The discrimination is performed by algorithms capable of classifying the 

tissue images, based on their features, into different categories, including normal, 

abnormal, or categories representing specific types of abnormalities, e.g., polyp, blood, 

angiectasia, ulcer, etc. The automatic detection of abnormalities can contribute in the 

reduction of the number of false negative diagnoses and, indirectly, it could contribute in 

the reduction of the time it takes to review WCE videos.  

 

Usually, supervised classification algorithms, such as Artificial Neural Networks 

(ANNs), and Support Vector Machines (SVMs) (Sergios Theodoridis & Koutroumbas 

2008) are employed for image classification and/or segmentation.  The results are 

presented in terms of average accuracy (ACC), representing the number of correctly 

detected abnormal samples divided by the total number of samples, and/or the average 

sensitivity (SN), which represents the true positive detection rate, and the specificity 

(SP), which represents the true negative detection rate. In few studies precision is 

provided instead of SP, the former representing the proportion of true positives over all 

positives. Also, in some studies, the Receiver Operating Characteristic (ROC) and the 

Area Under the ROC (AUC) are used as a more reliable metric for abnormality detection. 

Interestingly, most of these studies have focused on the detection of one category of 

pathologies. Only a few of them have focused on the detection of suspicious CE video 

frames, regardless of the pathology.  

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 16:40:13 EEST - 18.217.200.173



 

81 

 

 

The following paragraphs of this thesis present the state-of-the-art abnormality detection 

methods for computer-based medical software systems, per abnormality type.  

 

4.6.1 Blood detection methods 

Computer-based abnormality detection systems have been proved especially useful in 

detecting and locating the origin of obscure gastrointestinal bleeding (OGIB), which is 

defined as chronic bleeding from a source not found after traditional (wired) endoscopy. 

Most of the proposed systems concentrate on features associated with the color of the 

image, as blood has a distinct red hue. Color is the most important aspect that 

differentiates bleeding and non-bleeding region. However, in some cases edge pixels, 

such as those found in intestinal folds, and bleeding pixels share similar dark hues; which 

lead traditional algorithms to often mistake edge pixels for bleeding pixels. (Fu et al. 

2014) and (Usman et al. 2016), used a technique to remove these edge pixels aiming to 

enhance bleeding detection. (Usman et al. 2016) used the transformation of an image to 

HSV (Hue Saturation Value) color space to extract image features, while in (Fu et al. 

2014), the pixels are grouped adaptively into uniformly-colored segments based on color 

and location, with a procedure called superpixel segmentation. The feature is used from 

each superpixel for bleeding detection is the ratio of red to green, blue, or the sum of red, 

green and blue intensities in RGB (Red, Green, Blue) color space.  

 

(Yuan et al. 2016a), considered quantized color histograms as features for blood 

detection, using the technique of Bag-of-Words (BoW). In second a stage, the bleeding 

regions are localized using a saliency map that indicates regions of importance within the 

image, estimated based on color information from various color spaces. A classifier 

fusion algorithm to detect the bleeding frames and localize the bleeding area was 

proposed by (Deeba et al. 2018). It combines the results of two classifiers trained using 

first-order statistical features extracted from RGB and HSV color spaces, that include 

mean, standard deviation, entropy, skew and energy. Furthermore, (Ghosh et al. 2018) 

noted that the blue (B) component of RGB does not carry any valuable information for 

the discrimination between bleeding and non-bleeding zones. Instead, a composite color 

component obtained by dividing the green (G) with the red (R) components, i.e., G/R was 

found to be more informative. First-order statistical features were extracted from G/R and 

were used as input to an SVM classifier for the detection of bleeding frames.  

 

Aside color features, texture and shape features have been also considered for the 

discrimination of bleeding frames. In the study conducted by (Hu et al. 2016), a 

geometric image feature, called local-contrast- enhanced higher-order local auto-

correlation (LCEHLAC), was utilized along with an image pre-processing method for a 

non-linear conversion model of the HSV color space. A methodology combining color 
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histogram features and automatically extracted features, was proposed by (X. Jia & Meng 

2017) . The former ones are extracted from CIE-Lab color space, and the later ones are 

extracted using a deep (multi-layer) neural network architecture, called Convolutional 

Neural Network (CNN).  

 

A summary of the afore-mentioned blood detection methods along with their results in 

various datasets is provided in Fig. 4.1. It can be noticed that in all cases the performance 

metrics are high, exceeding 90%. The different methods cannot be directly compared to 

each other, since they have been tested on different datasets. It is notable that the highest 

overall performance was reported by (Hu et al. 2016), with an AUC of 99%, using one of 

the largest datasets, with 11,118 image frames, as compared to the other reviewed 

studies. 

 

4.6.2 Polyps and tumor detection methods 

Polyps are growing protrusions of mucosa inside the intestine due to excessive 

proliferation of tissue and inflammation or deep-seated malformations. Polyps are mainly 

discriminated by their shape and texture (Hu et al. 2016). (Mamonov et al. 2014) started 

by accepting polyps as protrusions that are mostly round in shape. Thus, best fit ball 

radius was used as a decision parameter of a classifier. (Yuan et al. 2016b) use the Scale-

Invariant Feature Transform (SIFT) to detect salient points in images that may 

correspond to polyps. From the neighborhoods of these points, texture features, called 

Complete Local Binary Pattern (CLBP) are extracted. A more complex methodology was 

proposed by (Liu et al. 2016) for small bowel tumor detection. This methodology is based 

on both texture and color analysis. Multi-scale texture analysis is performed (i.e. the 

analysis is performed at different image resolutions), by means of the curvelet 

transformation and fractal encoding. Color information is captured by means of higher 

order moments between different color channels. The extracted features classified by an 

optimally selected SVM classifier. In another study, (Alizadeh et al. 2017), proposed an 

adaptive neuro-fuzzy inference system aiming to classify CE video frames containing 

polyps. The system extracts 32 features including four statistical measures (namely 

contrast, correlation, homogeneity and energy) calculated from co-occurrence matrices. 

Mutual information (a measure of the information shared between pairs of features) was 

used to select a subset of more informative features for the discrimination of polyps from 

normal tissues.  

 

The results of the polyp/tumor detection methods reviewed in this subsection are 

presented in Fig.4.1. The highest results were reported by (Liu et al. 2016) that achieved 

accuracy 97.3%. However, the dataset used is smaller than the one used by (Hu et al. 

2016) that achieved accuracy 92.4%. The lower accuracy of the latter can be mainly 

attributed to its lower specificity.   
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4.6.3 Ulcer detection methods 

Ulcer is one of the most common pathologic outcomes of several diseases affecting the 

GI tract. Small-bowel ulcers, of variable severity and activity, are often challenging in 

terms of detection by traditional imaging techniques. Hence, CE is increasingly being 

used in ulcer diagnosis and management. Several solutions have been proposed for the 

detection and follow up of different forms of CD or NSAID-induced ulcerations. In this 

context, the majority of recent studies were based on combinations of texture and color 

features to discriminate ulcers from normal tissues. In the study of  (Suman et al. 2017), 

the color components of 7 different color spaces were analyzed in order to find an 

optimal combination of their color components that better discriminates ulcers from 

normal tissues. The selected components were Cr (which represents the difference of red 

from a reference value) from YCbCr color space, the yellow (Y) component from CMYK 

color space, and the blue (B) component from RGB.  A two-staged fully-automated 

computer-aided detection system is proposed by (Yuan et al. 2015) to detect ulcers in CE 

images. In the first stage, the image is segmented using superixels of different sizes. 

Color and texture features are extracted from each superpixel. Then, the extracted 

features are fused to form a saliency map per image. In the second stage the BoW 

technique uses the obtained saliency map to better characterize the images.  A system 

capable of using weakly annotated images was proposed by (M. Vasilakakis et al. 2017). 

Instead of annotating the images in detail, i.e., pixel-by-pixel, the images can be 

annotated at image level. In this way, a binary semantic label is assigned per image to 

indicate whether its content is normal or abnormal, e.g., a keyword “abnormal” if the 

image contains an abnormality. This system offers the convenience to robustly detect 

which images contain possible ulcers. A weakly image annotation method based on a 

CNN architecture was presented by (Georgakopoulos et al. 2016). The CNN receives a 

single CE image as input to process and it makes the decision regarding the presence of 

an inflammatory lesion in the input image (i.e. two-neuron output layer). 

 

Fig. 4.1 gathers the results from the previously presented studies, which focus on the 

ulcer detection. (Suman et al. 2017) reported the best results compared to the other 

methods achieving accuracy 97.9%. However, the results cannot be directly compared to 

the other methods, since different datasets were used. In the method of (Georgakopoulos 

et al. 2016) where a CNN architecture is utilized, the performance is noticeably high with 

an accuracy of 90.2%. Although, the dataset in the study of (Georgakopoulos et al. 

2016)consists of weakly annotated images, automatically extracted features of the 

proposed method are able to characterize the images and provide a classification system 

independent from handcrafted features and pixel-level image annotation. 
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4.6.4 Hookworm detection methods 

Hookworms are a leading cause of maternal and child morbidity, and their detection often 

is a challenging task.  An automatic hookworm detection system for CE images was 

proposed by (Wu et al. 2016). The system is based on the basic characteristics of 

hookworms, which are their tubular body structure, the parallel edges in the shape of their 

body and their body color features. The first step is the processing of the image for the 

enhancement and the detection of locations with tubular structure. The second step is a 

parallel region detection method identifying the potential regions having hookworm 

bodies. The last step for the detection of hookworms is the features based on their 

intensity, which discriminate the hookworms from different components of 

gastrointestinal, i.e. bubbles. A histogram of average intensity is proposed to represent 

their properties.  A deep hookworm detection system based on CNN was proposed by 

(He et al. 2018) for CE images. The system consists of two CNN networks, which enable 

the simultaneously model of visual appearances and tubular patterns of hookworms. 

 

The results of the proposed methods are in the Fig.4.1. The experiments performed in the 

same dataset for all the aforementioned hookworm detection methods. It can been noticed 

that the method of (He et al. 2018) for the hookworm detection achieved higher 

classification performance than the method of (Wu et al. 2016). This can be attributed to 

the better enhancement of the visual pattern of the hookworms achieved by the CNN.  

 

4.6.5 Multiple lesion detection methods 

The detection of different lesions is one of the most challenging tasks in the CE 

reviewing process. To this end, the majority of research studies focus on the detection of 

one kind of abnormality, probably, because it is easier for an algorithm to distinguish one 

abnormality each time, i.e. bleeding detection is mainly based on the characteristic red 

hue of blood. (Nawarathna et al. 2014) proposed a texture analysis method was proposed. 

Different texture features, i.e. LBP, of an image extracted and the distribution of these 

various texture features is captured by a histogram to characterize the content the each 

image. An automated technique was proposed (Sekuboyina et al. 2017) for abnormality 

detection in CE images. Every image is divided into several blocks and from each block 

the color information is extracted using a CNN to overcome the drawbacks of 

handcrafted features. In (Y. Yuan et al. 2017), the SIFT features are extracted from 

images in HSV color space to obtain visual words that represent the three lesion 

categories (bleeding, polyps, ulcer) and the normal images. Then, these four types of 

visual words are combined together to composite the representative visual words for 

classifying the CE images. It is known that the semantics of the normal content include 

mucosal tissues, the hole of the lumen, bubbles, and debris. Thus, an investigation of 
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such a semantic interpretation of the CE images may yield an improvement in lesion 

detection. In (M. D. Vasilakakis et al. 2017), a system for the semantic interpretation of 

the whole CE content was proposed, where each semantic content category, i.e. the hole 

of lumen, it represents a different label. The system consists of a salient point detection 

algorithm to detect points of interest in weakly annotated images and it extracts color 

features from the area around them. The representation of the CE images is based on the 

BoW image representation technique. Then, multi-label SVM classifiers are utilized to 

discriminate the labels that exist in a CE image. The study of (M. D. Vasilakakis et al. 

2017)was further extended in (Vasilakakis, Diamantis, et al. 2018), where a 

convolutional neural network architecture enabling multi-scale feature extraction (MM-

CNN) was proposed to detect the existing labels in the CE images. In (D. K. Iakovidis et 

al. 2018), a three phase methodology based on a CNN architecture for automatic 

detection and localization of lesions in CE images was presented. In the first phase, the 

proposed CNN architecture automatically extracts features from weakly annotated 

images. In the second phase, it suggests the possible locations of lesions in the detected 

CE images. In the third phase, a new algorithm is proposed to localize the lesions in the 

detected CE images. This algorithm uses the automatically extracted features from CNN. 

Then, the algorithm detects from the suggested locations from the second phase, which 

belong to lesions. 

 

A summary of previously presented methods for the detection of different kind 

abnormalities is on Fig.4.1. It can be noticed that the method proposed by (Vasilakakis, 

Diamantis, et al. 2018) has considerably higher results with AUC 90.0%, which indicates 

that the semantic interpretation of the content of a CE images can provide valuable 

information to assist the detection of different lesions. 
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Table 4.4 State-of-the-art abnormality detection algorithms 

 

Study & year Detection 

Dataset 

Images 

/Patients 

Features Best results (%) 

    ACCURACY SENSITIVITY SPECIFICITY AUC 

(Ghosh et al. 2018) Bleeding 2350 C 94 94.78 93.58  

(Deeba et al. 2018) Bleeding 

Database1 (D1) 

1224  

Database2 (D2) 
7648 

C 
D1: 97.22  

D2: 94.5 

D1: 98.13 

D2: 92.32 

D1: 96.52, 

D2: 95.07 
 

(He et al. 2018) Hookworm 440K/11 S 88.5 84.6 88.6 89.5 

(D. K. Iakovidis et al. 
2018) 

Bleeding, Polyps,  
Inflammatory 

Lesions 

2352 A    81 

(Vasilakakis, 
Diamantis, et al. 2018) 

Bleeding Polyps 

Inflammations, 

Intestinal content 

2352 A    90 

(Suman et al. 2017) Ulcers 48,000 C 97.89 96.22 95.09  

(Alizadeh et al. 2017) Tumors 315 T 94 94.16 96.27  

Y. Yuan, Li, & Meng, 

2017) 

Bleeding, Polyps, 

Ulcers 
1650 C,T 88.61    

(X. Jia & Meng 2017) Bleeding 1500/80 A,C  91 
94.79 

(precision) 
 

(Sekuboyina et al. 
2017) 

Inflammatory 

Lesions, Vascular 

lesions, 
Lymphangiectasias

, 

Polypoid Lesions 

137 C,T    

Aphthae: 

78.81 
Bleeding: 

64.08 

Chylous 
Cysts: 

87.85 
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(M. D. Vasilakakis et 

al. 2017) 

Bleeding, Polyps 

Inflammations, 
Intestinal Content 

2352 images C    0.88 

(Wu et al. 2016) Hookworm 440K/11 C 78.2 77.2 77.9  

(Hu et al. 2016) Bleeding ,Tumors 

Normal: 5642, 
Bleeding: 5476 

Tumor: 1164 

/28 patients 
 

C,T 

Bleeding: 

98.54          
Tumor: 

92.44 

Bleeding: 

99.49          
Tumor:96.7

4 

Bleeding: 

97.59      
Tumor: 

88.14 

Bleeding: 

99      
Tumor: 

97 

(Yuan et al. 2016b) Polyps 

Normal: 

2000normal/500
polyps 

T 93.2 90.88 94.54  

(Usman et al. 2016) Bleeding 
3000bleeding/5

500normal 
C 92 94 91  

(Yuan et al. 2016a) Bleeding 
400bleeding/20

00normal 
C 95.75 92 96.5 97.71 

(Liu et al. 2016) Tumors 
15patients/900t
umor+900norm

al 

T 97.3 97.8 96.7  

(Georgakopoulos et al. 
2016) 

Inflammatory 
Lesions, Ulcer 

826 A 90.2 92.6 88.9  

(Vasilakakis et al. 
2016) 

Multiple 
Inflammations 

1557 C    81 

(Yuan et al. 2015) Ulcers 

20patients/170 
ulcer and 

170normal 

images 

C,T 92.65 1.2 94.122.4 91.180.9  

(Nawarathna et al. 

2014) 

Erythema, 

Bleeding, Polyps, 
Ulcers 

500 images C,S 91.8  91.88  

(Mamonov et al. 2014) Polyps 18968/5 C,S  81 90  

(Fu et al. 2014) Bleeding 5000 C 95 99 94  

 C: Color features, S: Shape features, T: Texture features, A: Automatic features using Artificial Neural Networks 
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Figure 4.1.(Vasilakakis, Koulaouzidis, Marlicz, et al. 2019) Graphical representation and 

comparison of the aforementioned detection methods for the different kind of 

abnormalities during the last five years (2014-20181). The vertical bars indicate overall 

ranges of accuracy, sensitivity and specificity obtained from various abnormality 

detection methods. Single points indicate no variance. Missing bars indicate unavailable 

data due to inconsistent reporting of results across studies. 

 

4.7 KID dataset 

The aforementioned studies have reported rather high performances with respect to 

abnormality detection or discrimination of normal intestinal content. However, the use of 

different datasets and more importantly the unavailability of these datasets, prohibit direct 

comparisons of the results. Also, every study uses different evaluation method. Recently 

Koulaouzidis and Iakovidis proposed the KID (‘Kάψουλα’ – i.e., Greek for ‘Capsule’- 

Interactive Database) (Koulaouzidis et al. 2017), which is a publicly available database of 

annotated WCE images and videos and can be used as a reference dataset. Another 

visible drawback is the small size of the datasets, so it is difficult to know the 

computational efficiency and performance accuracy in a real time examination of entire 

endoscopic videos consisted from thousand number of frames. Also, more attention 

should be given in the concept of automatic feature extraction techniques, especially 

regarding the relevance of the automatically extracted features with the problem under 

investigation. Future approaches could be enhanced if they incorporate medical 

knowledge. Also, the current “black box” classification approaches, could become more 

acceptable for use in clinical practice, if they would be capable of providing a clinically-

relevant reasoning for diagnosis.   
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4.8 Conclusion  

In this chapter a complete review of the background and the state-of-the-art methods in 

GI image analysis was presented. Based on this review chapter a key weakness in clinical 

management of capsule endoscopy is that is still demanding with respect to required 

review time and effort per examination. Beyond the clinical protocols, training, and 

guidelines that could contribute towards this direction, several computer-based methods 

have been proposed for faster, more effective visualization, and artificially intelligent 

approaches have devised for automated lesion detection and localization. However, 

although higher and higher results are being reported, only small steps have been done 

towards their adoption from commercially available CE platforms. Essential progress 

towards the translation of the research accomplishments to the market and finally to the 

clinical practice can be driven by increasing the availability of CE data to the wider 

research community. Such datasets can contribute in setting standard measurable 

objectives and triggering the competitive spirit in algorithm development. The legal 

framework for data sharing can be prohibiting, but this can be considered as another 

challenge to be taken. Recent computational methods, such as (D. K. Iakovidis et al. 

2018), include algorithms that require minimum effort from the experts for the generation 

of large annotated capsule endoscopy datasets. 

 

Ultimately, tomorrow’s CE platforms should be able to support clinicians by providing 

both diagnostic and therapeutic features. However, capabilities such as locomotion, 

biopsy excision and drug delivery, requires actuation mechanisms, such as mechanisms 

to manipulate forceps and needles, which are energy-demanding. Research towards the 

development of energy-efficient CE platforms, e.g., by exploiting energy harvesting 

techniques, could pave the way for navigable robotic capsule endoscopes with sufficient 

autonomy to perform diagnostic and therapeutic interventions. It is envisaged that 

wireless power transfer will become a viable alternative for future capsules with 

enhanced diagnostic and therapeutic capabilities. As this technology has already 

demonstrated its feasibility, it is a prospective direction towards research outcomes of 

higher technology readiness levels (TRL), i.e., closer to the market. A significant amount 

of work has been done over the last couple of decades, albeit mostly in modular fashion, 

but the main structure and function of the available capsules remain unaltered. In order to 

remove barriers in the development and clinical adoption of new capsules, several 

workshops have been developed to allow consolidation of intricate and multidisciplinary 

networks between clinicians, engineers and other stakeholders in the field. 
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The key points of this review chapter can be summarized as follows:  

• Different kinds of capsule endoscopes have been proposed as solutions for image 

quality enhancement, navigation, biopsy, wireless power supply  

• Therapeutic capsule endoscopes targeting to treat specific lesions have been 

investigated 

• Clinical need of therapeutic capsule endoscopes is the therapy of pathologies, 

such as gastrointestinal bleeding, Crohn’s disease and small intestinal tumors 

• Most capsule endoscopes intend to improve the examination and therapy of the 

whole gastrointestinal tract   

• Different drug release and delivery mechanisms for capsule endoscopes have been 

presented in this review  

• Following the advances of capsule endoscopes in control and navigation inside 

the GI tract contributes to the progress of capsule endoscopes targeting the 

treatment 

• Most of the capsule endoscopes are concepts or prototypes without approval for in 

vivo clinical experiments 

• Some capsule endoscopes have diameter and/or length that make swallowing 

difficult  

• At this time there is no commercial or research capsule endoscope enable to put 

through all the aforementioned functionalities    

• The development of high resolution, high definition image should be seen as the 

cornerstone for further active promotion and wider clinical adoption of capsules  

• Automatic lesion detection and reporting and development of an accurate lesion 

localization system remain priority software challenge of our days 

• The establishment of standard, sufficiently large datasets for CE for lesion 

detection experiments is necessary 

• The lesion detection software is the lack of public, large and diverse datasets 

• The lesion detection methods that were presented have to comparatively evaluate 

using a standard data base of CE images/videos 

• The lack of regional controllability over the drug delivery in the target areas, in 

order to prevent the spreading of medication over other areas of GI tract    

• Treatment capsule endoscopes must been able to navigate either internally or 

externally and anchor at the target for therapy area inside the GI tract  

• Insufficient power backup  

• The size of the aforementioned experimental capsules has to adjust, in order to 

ease the swallowing for the examination and/or treatment of the patient 

• Miniaturization of the drug chamber, in order to facilitate the ingestible of 

therapeutic capsules due to theirs limited size 
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CHAPTER 5 

GASTROINTESTINAL ABNORMALITY DETECTION 

This chapter investigates the approaches for the detection of gastrointestinal anomalies. 

These approaches can be categorized in two types. The first type includes the approaches 

that examine and classify video frames as normal or as abnormal. The second type 

includes approaches for localization of lesions inside the endoscopic video frames. 

 

In Chapter 5 the approached for the detection of suspicious for lesion in video frames are 

focused on weakly-supervised learning. The purpose for this type of machine learning is 

to cope with the resource-demanding issue of detailed image (video frame) annotation. 

Thus, in this chapter as a first step is the investigation of machine learning approaches 

that are train to classify frame content based on a simple semantic label or more than one 

labels per video frame.  

 

After the examination of the weakly-supervised learning methodologies, as a solution to 

overcome the difficulty of detailed annotation of images, this chapter also examines the 

approaches for the localization of possible lesions. More specifically this chapter 

examines a weakly supervised methodology for lesion localization, as well as, an 

unsupervised lesion detection algorithm, which is result of a chromatic image analysis. 

 

 

5.1 Introduction to Medical Decision Support Systems 

Gastrointestinal Endoscopy (GIE) is a fundamental modality for the investigation of the 

gastrointestinal (GI) tract and the detection of luminal pathology. The most common GIE 

procedures are gastroscopy and colonoscopy. Another GIE procedure, which has become 

the prime choice for the examination of the small bowel, is wireless capsule endoscopy 

(WCE). WCE is performed with a swallowable, untethered capsule equipped with a 

camera that captures color images during its journey along the GI tract as it was 

described in the previous chapter. The amount of color images that are captured during 

any GIE procedure is significantly large and with a diverse content, making the detection 

of GI anomalies a challenging task for image-based Medical Decision Support Systems 

(MDSS).  

 

The first MDSS for automated detection of GI anomalies in GIE video sequences 

appeared in the early 2000’s (Karkanis et al. 2003). Since then, a variety of such systems 

has been proposed, aiming to reduce the number of the lesions missed during GIE 

(Liedlgruber & Uhl 2011). These mainly include supervised approaches based on CNNs 
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addressing the detection of only a single or a few kinds of GI anomalies, including polyps 

(Zhang et al. 2016; Ribeiro et al. 2016; Tajbakhsh et al. 2015; Bernal et al. 2017), both 

ulcers and polyps (Karargyris & Bourbakis 2011), celiac disease(Wimmer et al. 2016), 

inflammatory lesions(Georgakopoulos et al. 2016), and bleeding (Yuan et al. 2016a; Jia 

& Meng 2016; Xiao Jia & Meng 2017). Some recent approaches are more general in the 

sense that they address the detection of various kinds of anomalies(D. K. Iakovidis et al. 

2018). 

 

MDSS for GIE appeared primarily to cover clinical needs related to the detection and 

localization of lesions suspicious for malignancy or of bleeding sources, and to provide a 

second opinion on the assessment of lesions that require a more thorough 

examination(Iakovidis & Koulaouzidis 2015; Vasilakakis, Koulaouzidis, Yung, et al. 

2019; Karkanis et al. 2003). This way, the application of such systems can contribute in 

speeding up the flexible endoscopy procedures, which are uncomfortable for a lot of 

patients, and can also enable less experienced personnel to perform it, including 

physicians’ extenders or specialty nurses. Therefore, a consequent increase in clinical 

productivity, and an overall cost reduction for healthcare systems is possible 

(Koulaouzidis et al. 2015). The immense clinical need for such systems is more apparent 

in WCE. 

 

5.1.1 MDSS for WCE abnormality detection  

A major issue that is still unresolved in WCE is that it requires a lot of human effort for 

manually reviewing of the produced videos. During a WCE video review, WCE readers 

usually reach their human limits. Reviewing a WCE examination video is a very time-

consuming task, which can often be a burden to the everyday clinical practice, especially 

so in units with high turnaround of WCE procedures. The reviewer’s concentration 

should remain undistracted for a careful inspection of the output video in order to 

examine approximately 50,000-120,000 images within an average of 45-90min 

(Vasilakakis, Koulaouzidis, Yung, et al. 2019). Such a tiring procedure is prone to human 

errors; a fact with serious consequences in the diagnostic yield, which is alarmingly low 

the diagnostic accuracy of WCE(Zheng et al. 2012).   

 

In order to cope with this problem, automated lesion detection methods based on 

computer vision algorithms have been proposed(Iakovidis & Koulaouzidis 2015; 

Vasilakakis, Koulaouzidis, Marlicz, et al. 2019). Most of these methods exploit 

supervised machine learning methodologies, capable of learning what is defined as 

normal and what is defined as an abnormal finding within the WCE video. 

 

The majority of current MDSS for GIE are based on supervised machine learning 

algorithms aiming to detect/diagnose possibly abnormal conditions in the medical 
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images. These algorithms are called supervised because they are trainable with annotated 

images. The annotated images include information about the presence, the location and 

the pathology of their contents, as assessed, usually, by a group of experts. Typically, the 

training images are annotated by experts at pixel-level, i.e., the experts indicate which 

pixels correspond to anomalies.  

 

The generation of datasets for training the learning machines requires that experts 

indicate which pixels correspond to normal or abnormal tissues within the WCE images. 

Considering that the videos produced by a WCE examination are composed of thousands 

of frames, such a pixel-wise annotation task can prove very time-consuming and 

discouraging for annotation of large datasets by the experts. In this doctoral research 

thesis novel automated lesion detection methods based on computer vision algorithms 

have been proposed in order to assist MDSS systems.  

 

Firstly, a supervised learning of weakly labeled images for automated video analysis in 

GIE is investigated. This type of machine learning was presented in Chapter 2 and was 

investigated as an alternative to cope with the resource-demanding issue of detailed 

image annotation(Hoai et al. 2014; Blaschko et al. 2010; Manivannan & Trucco 2015). It 

involves annotation of the training images only at image-level, using a semantic tag 

indicating whether the image contains anomalies or not; thus, omitting the details that can 

be specified by pixel-level annotation. This way, a binary semantic label is assigned per 

video frame indicating whether its content is normal or abnormal.  

 

Acknowledging the significance of incorporating an image-level instead of pixel-level 

annotation process in the development of training datasets for lesion detection systems in 

WCE, in this thesis BoW-based supervised learning of weakly labeled images approach 

(Vasilakakis et al. 2016; Georgakopoulos et al. 2016; D. K. Iakovidis et al. 2018) is 

utilized using the state-of-the-art features that have been proposed in (Iakovidis & 

Koulaouzidis 2014a). These features represent colour information both at pixel and 

region level in CIE-Lab colour space, and despite their simplicity they have been proved 

very effective in the detection of a diverse set of abnormalities (Iakovidis & Koulaouzidis 

2014b).The system can robustly detect which frames contain possible lesions, which is 

significantly important for video reviewers, since the localization of the lesion becoming 

easier. However, the drawback of the lesion localization still remains a challenge. 

 

It is true that the normal content of images is diverse, while it includes various kinds of 

tissues and artifacts. Multiple semantic categories co-exist inside the GI tract. 

Considering that the image features of these contents are usually different (e.g., bubbles 

include white reflections, debris has green/yellow hues) approach to identify them as 

members of separate classes aiming to simplify lesion detection has been examined. 
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Thus, for each video frame a more complete description is provided using multiple 

semantic identifiers (labels). Semantic interpretation of endoscopy video using multi-

label classification techniques has not been previously proposed. A system  (M. D. 

Vasilakakis et al. 2017) for the semantic interpretation of the whole CE content was 

examined, where each semantic content category, i.e. the hole of lumen, it represents a 

different label. The system consists of a salient point detection algorithm to detect points 

of interest in weakly annotated images and it extracts color features from the area around 

them. The representation of the CE images is based on the BoW image representation 

technique. Then, multi-label SVM classifiers are utilized to discriminate the labels that 

exist in a CE image. This study (M. D. Vasilakakis et al. 2017) was further extended in 

(Vasilakakis, Diamantis, et al. 2018), where a convolutional neural network architecture 

enabling multi-scale feature extraction (MM-CNN) was proposed to detect the existing 

labels in the CE images. Thus, for each video frame a more complete description is 

provided using multiple labels corresponding to the different categories of its content. 

 

5.1.2 WCE abnormality localization  

After the detection of GI images/frames with a possible lesion, the next step for a 

complete MDSS is the information about the possible lesion. For this reason,  Iterative 

Cluster Unification (ICU) (D. K. Iakovidis et al. 2018) was proposed as a novel 

localization algorithm for the abnormal areas. The novelty of ICU algorithm is the ability 

to localize the anomalies within the video frames, based on Pointwise Cross-Feature-Map 

(PCFM) Weakly Supervised CNN (WCNN) features from weakly labeled images. These 

features are automatically extracted from the salient points detected by a Deep Saliency 

Detection (DSD) algorithm, enabling the detection of salient points relevant to GI 

anomalies in endoscopic video frames. The proposed ICU has been applied in the GIE 

domain, using publicly available datasets that include a diverse set of anomalies and 

normal video frames from various parts of the GI tract.  

 

A second attempt to localize abnormalities based on a unsupervised methodology, after 

an analysis on chromatic components of the GI images/frames. Distances on selective 

aggregation of chromatic image components (DINOSARC)(Vasilakakis, Iakovidis, et al. 

2018) has been proposed as a methodology for the detection of salient points in GI 

images. This methodology includes an unsupervised salient point and region detection 

algorithm, and the estimation of local and global image descriptors enabling the 

characterization of various abnormalities both at a regional and at an image level. It 

consists of several novel components, including a color-based salient point detector, a 

salient region detector defining salient superpixels, and a method to derive a vectorial 

representation of the color of the salient superpixels by taking into account both point and 

region-level information. This enables more accurate the localization and characterization 

of even very small abnormalities. Besides the local image descriptors derived, global 
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image descriptors are derived for supervised abnormality detection based on a BoW 

model. 

 

The remainder of this chapter is structured as follows. Section 5.2 introduces the 

supervised model using of weakly labeled images for the lesion detection in endoscopic 

video frames. Section 5.3 extends the classification of two classes to multiple classes for 

the semantic interpretation of the whole video frame. Section 5.4 discusses the point 

localization in video frames aiming for the localization of lesions. Section 5.5 presents 

the DINOSARC algorithm for detection of salient point in endoscopic frames without 

previous knowledge. Finally, section 5.6 provides the experimental results of the 

proposed methodologies.   

 

5.2 Supervised Lesion Detection in Video Capsule Endoscopy based on a 

Bag-of-Colour Features Model using Weakly Labeled Images 
 

Contrary to conventional supervised learning, weakly-supervised learning (Hoai et al. 

2014) does not require explicit and detailed annotation. Instead, only video frame-level 

annotation of the semantics of the video frame is required. Thus, a given video frame 

may be annotated, e.g., with the semantic concept “abnormal”, if it contains an 

abnormality, or with the semantic concept “normal”, if it does not contain an 

abnormality. An approach towards supervised learning of weakly labeled images is the 

previously described BoW model. BoW has been shown to be an effective strategy to 

cope with the demand for annotated GIE video frames (Vasilakakis et al. 2016). The 

vocabulary used for image/video frame representation is typically based on hand-crafted 

features. 

 

The model of BoW was presented in Chapter 2 in the subsection 2.3.4 as a method of 

image representation. From the description of BoW model can be considered as a model 

for supervised learning of weakly labeled images, as it is able to describe the image 

content relying on salient points that detected by detection algorithms such as SURF. 

SURF, which was also described in Chapter 2, is a powerful and fast descriptor scheme 

and has been successfully applied to a plethora of computer vision problems. It has been 

shown to achieve comparable repeatability and performance to other, more sophisticated 

schemes, at a lower computational cost. This way the specific human annotation is not 

needed in the BoW model. 

 

In  the domain of WCE for the detection of polypoids, Hwang (2011) applied BoW using 

SURF in order to detect interest points and extract descriptions from patches around 

them. In (Yu et al. 2012) the performance of BoW was investigated using SIFT and LBP 

for ulcer detection. A more complex feature extraction scheme for the construction 

required in BoW was proposed in(Yuan et al. 2016b). This scheme was applied for polyp 
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detection and includes extraction of SIFT, LBP, CLBP and histogram of oriented 

gradients (HoG) features from neighbourhoods of salient points detected using the SIFT 

key-point detector. In the context of bleeding detection, colour histograms extracted from 

various colour spaces were considered(Yuan et al. 2016a). Colour along with textural 

information has also been exploited in (S. Wang et al. 2016) for detection of gastric and 

oesophageal cancer, gastritis, and oesophagitis. In (S. Wang et al. 2016) superpixel 

segmentation was exploited for estimation of image descriptors from homogeneous 

regions. In (S. Wang et al. 2016) the descriptors considered include colour histograms 

from various colour spaces as well as LBP-based textural signatures. Most of the 

aforementioned approaches are based on SVM classifiers for the classification of 

abnormal images based on the BoW image description. 

 

This section investigates two different sampling methods of image regions. The first 

method utilizes the SURF detector and the second utilizes the dense sampling. Also, two 

different features are investigated, the SURF features and the color features of (Iakovidis 

& Koulaouzidis 2014b; Iakovidis & Koulaouzidis 2014a). The extracted features from 

the image regions are incorporated in the framework of BoW for image description. 

 

More specifically, Figure5.1 shows an initial WCE image of lymphangiectasia.  

 

 
Figure 5.1:  A raw WCE image depicting lymphangiectasia 

 

Figuge. 5.2 illustrates the set of the SURF interest points extracted from the Fig.5.1, 

combined with SURF regions. 
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     Figure 5.2:  SURF regions 

 

However, except of the use of SURF for the detection of interest points and the sampling 

of image, another “naïve” approach for interest point selection that is known as “dense 

sampling”, is used. Following this approach, all pixels are sampled using a regular grid 

(i.e., one with equal horizontal and vertical inter-pixel distances), which are then used as 

interest points. Although these points cannot be matched accurately, when compared to 

the SURF interest points, they carry valuable information regarding image content 

interpretation (Tuytelaars 2010). Figure 5.3 illustrates the set of the dense interest points, 

also combined with SURF regions. 

 

 
       Figure 5.3:  dense SURF regions 

 

 

Except of the use of SURF visual descriptor, in (Vasilakakis et al. 2016) a visual 

descriptor proposed by (Iakovidis & Koulaouzidis 2014b; Iakovidis & Koulaouzidis 

2014a) was also utilized. The colour-based features of (Iakovidis & Koulaouzidis 2014b; 

Iakovidis & Koulaouzidis 2014a) are extracted from patched around the interest points 

that detected from SURF detector or from the whole image based on the dense sampling. 

During the procedure of the visual descriptor the images are first transformed to the CIE-

Lab colour space. Following the procedure colour information is extracted from a square 

region centered at each point. The colour information uses the Lab values of each interest 
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point, as well as, the minimal and maximal values of each chromatic component. This 

results to a visual description vector consisting of 9 values. Figure 5.4 illustrates the set 

of interest points detected with SURF detector and the square region, where the colour 

information is extracted.  

 

 
Figure 5.4  Lab regions 

 

 

 
 

Figure 5.5 illustrates dense interest points. 

 

One may easily observe that SURF points do not cover the visual properties of the whole 

image. Yet, the latter is achieved by the dense features. 

 

5.3 Semantic Interpretation of Gastrointestinal Image/Frame 

5.3.1 Multi-label classification in WCE video frames 

In subsection 2.4.4 the multi-label classification was presented as a special case of data 

classification, where multiple labels may be assigned to a given data. In this section the 

application of multi-label classification is applied on the domain of gastrointestinal (GI) 

video endoscopy and the focus of investigation is on Wireless Capsule Endoscopy 

(WCE) as a more challenging application domain (Iakovidis & Koulaouzidis 2015). The 
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video frames obtained from such an endoscopic examination are generally characterized 

as normal or abnormal depending on whether they contain abnormalities, such as lesions 

or blood. However, normal frames may include content belonging to a variety of 

semantic categories such as normal mucosa, bubbles, and debris. Also, the content of the 

abnormal video frames may include one or more kinds of abnormalities, as well as 

normal content. 

 

Following the BoW feature extraction process, the content of the WCE video frames 

needs to be classified into semantic categories. Usually the classification of the 

endoscopic video frame content is performed into two categories, corresponding to 

normal and abnormal tissues, using binary classifiers, e.g., SVMs (S Theodoridis & 

Koutroumbas 2008) . However such approaches only provide an abstract categorization 

of the video frame content. This happens due to the initial assumption that every video 

frame belongs in exactly one of the aforementioned categories. This assumption does not 

consider the multiple semantics that may co-occur within a given video frame. For 

example, the semantics of a normal video frame besides mucosal tissues may include 

normal intestinal content such as bubbles and debris, and the lumen hole. More 

specifically, based on the theoretic background of the Chapter 2, here a total of 5 labels 

are considered, indicating the presence of normal (l1), abnormal (l2), debris (l3), bubbles 

(l4), and lumen hole (l5).  

 

This section applies the multi-label classification in the context of endoscopic video 

frame analysis the problem transformation methods that were previously described in the 

subsection 2.4.4 (Tsoumakas & Katakis 2007). Here each of these multi-label 

classification methods are customized to fit in the context of the endoscopic video 

frames. 

 

In the binary relevance method (Tsoumakas & Katakis 2007) binary classifiers are used 

to determine the existence of each of the five categories of content considered, e.g., the 

existence of abnormalities or not, the existence of debris or not, etc. However, this 

methodology does not consider possible dependencies between labels. 

 

In the label combination method (Read et al. 2008) apart from the five classes that were 

referred earlier, there are also “classes” that derive from their combinations, e.g., a “new” 

class may be considered to be the set of video frames are labeled both as normal and 

debris. This artificial class is then denoted as the normal-debris class. 

 

The pairwise classification (Fürnkranz et al. 2008; Menc𝚤a & Furnkranz 2008) instead of 

five binary problems, ten binary problems are formed, because there exist ten different 

pairs of labels. Typically, each pairwise problem is constructed from examples with 
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which either labels (but not both) are associated, thus forming a decision boundary for 

these two labels. 

 

As it was mentioned in subsection 2.4.4, MLP architecture was proposed (Zhang & Zhou 

2006) for multi-label classification. Recently the usage of CNNs has been extended into 

multi-label classification problems. A common method to extend a CNN to multi-label 

classification is to transform it into multiple single-label classification problems by using 

one output neuron per label, as e.g., in the work of Gong et al. (Gong et al. 2013), who 

explored various multi-label loss functions on a network similar to the one proposed by 

Krizhevsky et al. (2012). While in a typical multi-class classification problem a common 

practice is to use softmax activations on the output neurons, in multi-label classification 

problems this does not apply since the softmax function forces the output neurons to 

express the selected class as a probability, which depends on the rest of the classes. In 

multi-label classification the usage of sigmoid neurons is typically employed with a 

cross-entropy loss (Guillaumin et al. 2009), which expresses the probability of a given 

class as a Bernoulli distribution. Other approaches have also been proposed, such as the 

one of (J. Wang et al. 2016) which utilized a combination of a Recurrent Neural Network 

(RNN) and a CNN to leverage the label dependencies that exist in natural images.  

 

In (Vasilakakis, Diamantis, et al. 2018) a Multi-scale and Multi-label CNN (MM-CNN) 

was proposed. The overall MM-CNN architecture consists of five layers of multiscale 

convolutional blocks. In order to perform the task of multi-label classification, the 

network has 4 output sigmoid neurons; i.e., one for each label. 

  

 

5.3.2 Weakly Multi-labeled Classification 

 

At next level, further semantic concepts may be also added to the annotation process. In 

the context of lesion detection in WCE, different “normal” concepts can be associated 

with different normal intestinal content, e.g., “debris”, “bubbles”, whereas different 

“abnormal” concepts may include GI lesions, e.g., “inflammatory lesions”, “vascular 

lesions”, etc.  

 

In the context of reviewing of large WCE videos, such an approach could significantly 

reduce the amount of effort required by the video reviewer, since it detects frames that 

possibly contain lesions. Since such frames are usually a rather small subset of the entire 

WCE video, the reviewers’ task may be limited to localization of abnormalities within 

this subset, which is a less tiring task.  
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5.3.3 BoW Weakly Multi-labeled classification based on Difference of Maxima 

Salient point detection  

 

One of the challenges within the problem of semantic description of WCE videos is the 

lack of standardized interpretation methods. Therefore, many research works begin by 

constructing a saliency map. Given such a map, they are then able to select a subset of a 

given image/video frame, i.e., regions that would be examined for potential existence of 

abnormalities. For example, (Yuan et al. 2016a), proposed a saliency map extraction 

method for the detection of bleeding frames in WCE videos, by creating two saliency 

maps and by fusing color information of the a and the M channel of the CIELab and the 

CMYK color spaces, respectively, as well as heuristic properties of the “reddish” colors. 

Superpixel-based segmentation has been investigated by several research efforts among 

others, also for the detection of bleeding regions. (Yixuan Yuan et al. 2017)fused 

contrast-based and object center-based saliency maps and used strong classifiers. Also, 

(Bernal et al. 2015) proposed the use of energy maps that indicated the likelihood of 

polyp presence. The problem of detection of multiple abnormalities within the same 

image/video frame has recently gained the attention of the research community. (Y. Yuan 

et al. 2017) aimed to detect bleeding, polyp, ulcer and normal video frames. To this goal 

they calculated color SIFT (Lowe 2004) features from each semantic category, separately 

extracted visual words from each and combined all words to obtain a visual dictionary. 

Video frames were also encoded by a novel adaptive saliency algorithm. 

 

The BoW approach can be based on a set of extracted patches surrounding dense points 

that result from a sampling process using a regular grid (i.e., one with equal horizontal 

and vertical inter-pixel distances) as it was described previously. In the context of 

endoscopic video frame analysis the application of SURF on channel a of the CIE-Lab 

color space (a-SURF) resulted in salient points on all the abnormalities included in that 

study. Also, the results of a preliminary study (Vasilakakis et al. 2016) showed that dense 

sampling may be more time-consuming, but it can result in higher abnormality detection 

rates. 

 

The dense sampling process using regular grid, extracts a large number of feature vectors. 

These feature vectors are not easily separable by a clustering algorithm. For this reason, 

there is a need to select some video frame points to extract fewer feature vectors without 

significant loss of information. A way to reduce these points in a video frame represented 

in CIE-Lab color space is to get points only from the video frame regions where a 

significant color change is observed(Vasilakakis, Diamantis, et al. 2018). The purpose 

behind this idea is to discriminate and sample video frame regions, where a discontinuity 

in their color description appears. The discontinuity in color of channel a, indicates the 

region as a region of interest. In that sense these regions can be considered as “salient” 
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points. In order to detect such salient points, the difference between two maximum values 

in a-channel around the densely sampled points are considered.    

 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 5.6: DoM salient point detection. (a) Original video frame. (b) The remaining 

points after dense sampling, around which the Euclidean distances are estimated. (c) A 

magnified region of Figure 5.6 (b), clearly indicating the outer window (1), the inner 

window (2) where the maxima are calculated, and the central point (3) of these windows. 

(d) Detailed graphical image annotation of Figure 5.6 (a). 

 

In this section Difference of Maxima (DoM) Algorithm 5.1 (Figure 5.6) for salient point 

detection is proposed. The steps of the DoM algorithm are:  

 

 

 

 

 

 

 

 

 

 

3 

2 

1 
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Algorithm 5.1 Difference of Maxima (DoM) 
Input: Video Frame I (M×N) ,  

Output: List of salient points SP[] 

 

1: // Initialize 

2: i  0; 

3: d[]  null; 

4: I[]  null; 

5: // Dense Sampling Video Frame I using window of size X and evaluate saliency 

6: For each I (x, y)  0,  NMyx ,),(   do 

7: // I (x, y) is the point 3 in Fig. 5.6(c) 

8: // X× X neighborhood is point 1 in Fig 5.6(c) 

9: // X/2× X/2 neighborhood is point 1 in Fig 5.6(c) 

10:  templarge[]X× X neighborhood centered at ),( yxI ; 

11:  tempsmall[]X /2× X /2 neighborhood centered at ),( yxI ; 

12:  ( ));[]max argarg elel tempM    

13:     ( );[]min argarg elel tempm   

14:  ( );[]max smallsmall tempM   

15:     ( );[]min smallsmall tempm   

16:  i  i + 1; 

17:  2arg2arg )()(][ smallelsmallel mmMMid −+−  

18:  );,(][ yxIiSP   

19: End For 

20: // Filter salient points upon their proximity 

21: For i = 1 to length(d[]) do 

22:  If d[i] ≤ average(d[]) then  

23:   remove(d[i]);  

24:         remove(SP[i]);  

25:      End If 

26: End For 

 

 

The BoW approach is adopted and it is based on a set of extracted patches surrounding 

points that result from the salient point detection process of DoM algorithm. For the low-

level description of the video frame patches, a set of color-based features is adopted, 

which has been previously applied to the problem of lesion detection  in section 5.2 and 

yielded superior results compared to the state-of-the-art approaches (Iakovidis & 

Koulaouzidis 2014b; Iakovidis & Koulaouzidis 2014a). 
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5.4 Gastrointestinal Lesion Localization 

5.4.1 CNN and CNN features 

CNNs have been utilized in a variety of medical imaging domains both as conventional 

supervised classifiers, trained using image patches (Sekuboyina et al. 2017; Zhang et al. 

2016; Ribeiro et al. 2016; Tajbakhsh et al. 2015; Bernal et al. 2017; Zhu et al. 2015; Van 

Grinsven et al. 2016; Anthimopoulos et al. 2016) and as weakly-supervised classifiers 

trained using weakly-annotated images (Georgakopoulos et al. 2016; D. K. Iakovidis et 

al. 2018; Zhang et al. 2016; Carneiro et al. 2017). Considering that image patches are 

sampled from known locations within the images, patch-based methods enable both the 

detection and the localization of possible anomalies; however, they require training with 

images annotated at pixel-level. In one of the most recent patch-based CNN approaches 

addressing the detection of various kinds of GI anomalies (Sekuboyina et al. 2017), input 

images were represented in CIE-Lab color space, and the CNN had a relatively low 

number of filters. 

 

A preliminary study utilizing a CNN in a weakly-supervised framework (WCNN) was 

performed by (Georgakopoulos et al. 2016), aiming at the detection of inflammatory 

lesions. Recently, weakly supervised CNN-based approaches have been proposed in the 

context of GIE. In (Zhang et al. 2016), accurate detection of polyps in white-light and 

narrow-band imaging endoscopy, was reported using a pre-trained CNN only as a feature 

extractor. The pre-training was performed with non-medical images from the ImageNet 

dataset. A standard SVM was used for the classification of the CNN feature vectors.   

 

5.4.2 Localization methodologies  

A drawback of most weakly-supervised approaches, over the patch-based ones, is that 

they do not provide information about the location of anomalies within an image. Only a 

few approaches have been proposed to this direction. 

 

State-of-the-art generic weakly supervised CNN-based methodologies with localization 

capabilities have been proposed mainly in the context of classification and segmentation 

of real-world objects. The methodology proposed in (Papandreou et al. 2015) uses 

weakly-labeled images or sub-images as bounding boxes of the objects of interest. In 

(Papandreou et al. 2015), it was shown that the use of weak annotations solely at the 

image-level is insufficient to train a high-quality segmentation model, and that the 

segmentation results become sufficient only when bounding boxes are used. The results 

improved with the use of pixel-level annotations from a subset of training images in a 

semi-supervised context. 
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In the context of GIE image analysis, abnormality localization has been based mainly on 

unsupervised image segmentation approaches, applicable on images with identified 

anomalies. As in the case of current abnormality detection methods most of them address 

the segmentation of only specific kinds of anomalies, such as polypoid lesions (Karkanis 

et al. 2003; Ganz et al. 2012; Jia 2015), and bleeding regions (Xiao Jia & Meng 2017). 

Recently, an application for a localized region-based active contour model for the 

unsupervised segmentation of various kinds of lesions was investigated (Koulaouzidis et 

al. 2017), and its utility was highlighted for the measurement of lesion sizes. Lesion 

localization, as considered in the current study, aims to attract the attention of the video 

reviewer at specific points within an image, where anomalies are possibly located. The 

specification of a few points instead of the segmentation of whole image regions provides 

more targeted cues about the location of the anomalies, while it usually involves fewer 

computations; therefore, it is preferable in terms of time-efficiency for application on 

GIE video frame sequences. 

 

5.4.3 Iterative Cluster Unification Algorithm (ICU) 

The proposed approach exploits WCNN architecture (D. K. Iakovidis et al. 2018) to 

detect and describe salient points within GIE images, Figure 5.7. In contrast to the 

current CNN-based image descriptors, which are mainly global (Zhang et al. 2016; Qian 

et al. 2016; Rui et al. 2018), PCFM pixel-level descriptors are extracted from each salient 

point. At this thesis a novel Iterative Cluster Unification (ICU) algorithm (D. K. Iakovidis 

et al. 2018) that exploits these descriptors to discern pixels that correspond to suspicious 

image regions without any detailed, pixel-level annotation. Unlike state-of-the-art 

approaches its application is not limited to specific GI anomalies, and it is investigated 

across different GIE modalities, including WCE and gastroscopy. 

 

 
  

Figure 5.7 Proposed WCNN for the localization of abnormalities in weakly annotated 

image. In Phase I, an endoscopic image is semantically characterized as abnormal or 
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normal by the WCNN. Abnormal images are further analyzed by DSD salient point 

detection algorithm (Phase II). The salient points are classified by ICU algorithm to 

identify and localize possible anomalies (Phase III). The dashed lines are used to indicate 

the workflow of the training process. 

 

The use of ICU algorithm is based on two preliminary phases. The first phrase a deep 

WCNN architecture classifies the GIE images as abnormal (having GI anomalies) or 

normal. In the second phase a Deed Saliency Detection algorithm is applied on the 

abnormal images to detect salient points in the input images using information extracted 

from the feature maps of a deeper WCNN convolutional layer. In the third phase ICU is 

now applied to identify a subset of salient points that possibly belong to GI anomalies. 

The coordinates of these points are then transformed (linearly scaled up) to match the 

spatial resolution of the input endoscopic image, on which they are superimposed to 

indicate the possible locations of the anomalies. Precisely, the phase of the ICU aims to 

determine which salient points of the abnormal images discovered in the first phase 

belong to GI anomalies. The motivation behind this idea is the assumption that abnormal 

images contain both abnormal and normal regions, whereas normal images contain only 

normal regions. Each salient point, detected using the DSD algorithm on these images, is 

represented by a feature vector composed of the values of each of the feature-maps 

derived from convolutional layer c of the WCNN at this point. The dimensionality of the 

feature vector is the equal to the number of feature maps of convolutional layer c (for c=3 

the dimensionality is 32). The derived pointwise cross-feature-map (PCFM) features are 

used as input to the ICU classifier.       

 

The ICU algorithm (Algorithm 5.2) is based on clustering to classify the salient points 

detected by the DSD algorithm in a weakly supervised way. It involves a training and a 

testing phase. During training it receives both abnormal and normal training images, and 

clusters their salient points upon their vector representations (which are unlabeled 

because the images are only weakly annotated). It considers that in the abnormal images 

some salient points may fall into normal regions as well. Iteratively, ICU unifies the 

clusters of the salient points of the abnormal images that are more similar to the clusters 

of the normal images. In the testing phase ICU receives an image classified as abnormal 

by WCNN, and the detected salient points are classified into possibly abnormal or normal 

upon the K-nearest neighbor (K-NN) clusters in the unified cluster space. 

 

For simplicity, the clustering algorithm used in this study is the well-known k-means 

algorithm (S Theodoridis & Koutroumbas 2008). Preliminary investigation using other 

clustering algorithms, including fuzzy c-means (S Theodoridis & Koutroumbas 2008) 

and the recent random direction divisive clustering algorithm (Tasoulis et al. 2013), did 

not lead to any significant classification performance improvement. To cope with the fact 
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that the result of this algorithm depends significantly on its initialization, the clustering 

algorithm is performed for T iterations with different initializations. Thus, a richer and 

more representative clustered vector space is generated by selecting T > 1. For the 

estimation of the distances between the clusters the Euclidean distance metric between 

the centroids of the clusters was used.   
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Algorithm 5.2  Iterative Cluster Unification (ICU) 

Training phase 

1. Let In and  Ia be the training sets of normal and abnormal images 

respectively;  
2. Let Zn and Za be the sets of salient points extracted using DSD algorithm 

from In and  Ia; 
3. For i = 1 to T do:   
   For each normal image in  In do: 
    Extract PCFM representations of Zn; 
   Cluster the PCFM representations of Zn into Q  

    clusters  Nq, q = 1,2,…,Q; 
   For each abnormal image in  Ia do: 
    Extract PCFM representations of Za; 
   Cluster the PCFM representations of Za  into R clusters  

  Ar, r = 1,2,…,R;   
4. Set TQQ = , TRR = ; 
5. For each abnormal cluster RrAr ,...2,1, =  do: 
   Calculate all distances ( ) QqNAd qrrq ,...2,1,, =

    
  between Ar and Nq; 

   Sort distances drq in ascending order; 
   Calculate the normalized distance 2112 rqrqrq ddd = ,   

 where drq1 and drq2 represent the distances of Ar to    its 
closest neighboring clusters Nq1 and Nq2;  

6. Estimate the mean normalized distance dq12 from all  Rrdrq ,...2,1,12 =  
calculated in step 5; 

7. For each abnormal cluster RrAr ,...2,1, =  do: 
   If drq12 < dq12 then unify Ar with normal clusters:  
    Q=Q+1;  NQ = Ar;  Ar = ;   
 
 
Test phase 

1. Let 
a

iI  be a new input image, characterized as abnormal  by the WCNN 
classifier; 

2. For each salient point s in 
a

iI  do: 
 Extract a PCFM representation of point s;    

  Calculate the distances of s from all clusters in Ar Nq; 
  Classify s as normal or abnormal based on its K nearest  
  neighbors by majority voting;  
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5.5 DINOSARC: Gastrointestinal Image/Frame Color Analysis 

5.5.1 Introduction to chromatic analysis of Gastrointestinal Images  

Many WCE image analysis approaches begin by detecting salient points to possible 

regions of abnormalities and construct saliency map, as it was stated earlier in this 

chapter. This section investigates a salient point detection method that is based on 

chromatic components of WCE. Based on this analysis a novel methodology for the 

detection of salient point, as well as, the definition of salient regions based on superpixel 

segmentation and color feature extraction is proposed. From each detected salient point 

and region a feature vector is calculated to describe the local color properties of the 

image that differentiate the abnormal from the normal tissues. 

 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 5.8 : Representative images from KID dataset (Koulaouzidis et al. 2017) (a) 

Vascular lesion. (b) Small inflammatory lesion. (c) Large inflammatory lesion. (d) 

Polypoid lesion. (e-h) Detailed graphic annotations 

 

The saliency is defined respectively to color differences that appear in the abnormal 

regions. The proposed approach is based on the observation that within WCE images, the 

appearance of abnormalities may be described within a relatively small color range that is 

usually located on the margins of the overall color range of an image. In many cases this 

range is non-overlapping with the color range of the normal image content. By examining 

each WCE image separately, one may observe that the color ranges are different for each 

image, even for the same kind of abnormalities (Figure 5.8). Also, given a diverse set of 

WCE images, the color ranges of both the normal and abnormal content are completely 

overlapping. Therefore, it is not straightforward to specify a standard color range 

discriminating the abnormalities from normal content.           
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The rationale of the proposed saliency detection algorithm can be explained by the 

respective color histograms of WCE images. WCE images are represented in the CIE-

Lab color space, which describes color with approximately decorrelated components 

(Iakovidis & Koulaouzidis 2014b). The components of this space represent lightness (L), 

the quantity of red (a>0) or the quantity of green (-a>0), the quantity of yellow (b>0) or 

the quantity of blue (-b>0) of a pixel. This way, color can be examined separately from 

lightness, which in our case varies significantly depending on the distance and the angle 

of the endoscope from the tissue surface. Thus, by only using the chromatic components 

a and b, the color information can be isolated and an approximately illumination-

invariant description of the image content may be obtained.    

 

Let HA and HN be the normalized histograms (probability distributions) of a WCE image 

for abnormal and normal regions, respectively. For the images of Figure 5.8 the 

respective histograms are illustrated in Figure 5.9. HA is represented by a red line, and HN 

is represented by a green line. The histograms is provided for the chromatic components 

i.e., a or b, of the images where a non-overlapping range between the two histograms can 

be observed. For example, in Figure 5.9(a) a non-overlapping region between HA and HN 

can be observed only in component a (in the chromatic region a[-9,-1]); this the 

respective histograms of component b are omitted. Similarly, Figure s. 5.9 (b)-(d) present 

the non-overlapping histograms of the images illustrated in Figure s. 5.8(b)-(d). In Figure 

5.10 the normalized histograms estimated over all images of KID dataset (section 5.6) are 

provided, where a total overlap between the abnormal and normal chromatic ranges can 

be observed. 

 

 

5.5.2 Salient point detection 

A novel algorithm named SARC (Algorithm 5.3) is proposed, which performs a Selective 

Aggregation of chRomatic image Components after an automatic segmentation process. 

This is based on the observation that abnormal image regions are usually characterized by 

higher positive or negative values of the a and b chromatic components. SARC produces 

saliency maps which emphasize on the regions that correspond to possible abnormalities.  
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Figure 5.9 Normalized chromatic histograms of WCE images of Fig. 5.8 (for chromatic 

components that have non-overlapping regions). Histogram HA which is estimated from 

abnormal image regions is represented with a solid red line, and HN which is estimated 

from normal image regions is represented with a dashed green line. (a) Vascular lesion. 

(b) Small inflammatory lesion. (c) Large inflammatory lesion. (d) Polypoid lesion. 

 

Let ILab be a M×N-pixel CIE-Lab input image, and Ia and Ib be the grayscale images 

representing a and b components of ILab.  This algorithm uses the histogram Hc of image 

Ic, c=a, b, to determine optimal thresholds maintaining the image regions that have a 

higher probability to include an abnormality. It calculates the first (rc) and second 

derivatives (Rc) of the positive (+) and negative (-) axes of Hc, and determines the 

maximum of each of the second derivatives as an optimal image threshold for 

maintaining as much as discriminating information about the possible abnormal regions 

within the chromatic components of the image as possible. This process determines the 

value of the chromatic component (a or b) where the rate of the first derivative changes. 

Considering that the chromatic ranges of the abnormal regions are located at the margins 

of the histograms, this value will be the most probable one for the abnormality. Figure 

5.11 illustrates this concept. It can be noticed that the maximum of the second derivative 

corresponds approximately to the value of the chromatic component a with the maximum 

probability of the abnormality. 
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(b) 

Figure 5.10 Normalized chromatic histograms estimated from all WCE images in KID 

dataset (Koulaouzidis et al. 2017). Histogram HA which is estimated from abnormal 

image regions is represented with a solid red line, and HN which is estimated from normal 

image regions is represented with a dashed green line. (a) Chromatic component a. (b) 

Chromatic component b. 

 

By applying the determined thresholds on the respective chromatic image components, 

four images are obtained. Indicative examples of such images for the cases of Fig.5.8(a) 

and Fig.5.8(b) are illustrated in the first and in the second row of Fig. 5.12, respectively. 

These images are subsequently filtered using a sliding window of n×n pixels, which aims 

to discard local non-maxima. The final step of SARC algorithm is the aggregation of the 

four filtered images using the sum operator. 

 

 
Algorithm 5.3. Selective Aggregation of chRomatic image Components (SARC) 

Input:  Images Ic (M×N) , c=a, b 

Output: Image ISARC 

 

1: Compute histogram Hc of images Ic,  

2: L =length(Hc); 

3: // Calculate the first and second derivatives of Hc  

4: // 
+

cr  first rate 

5: ;0,...,22/,12/,/)( −−=+ LLidiidHr cc
  

6: ;0,...,22/,12/,/)( +−+−=− LLidiidHr cc
 

7: ;0,...32/,22/,/)()( −−= ++ LLidiiriR cc
 

8: ;0,...32/,22/,/)()( +−+−= −− LLidiiriR cc
 

9: // denote the max values of value field 

10:  ( );maxarg // −+−+  cc RT  

11:  For each  NMyx ,),(   do 

12:  If ++  cc TyxI ),(  then ;0),( + yxI c
   

13:  If −−  cc TyxI ),(  then ;0),( − yxI c
 

14: End For 
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15: −+ /

cI Normalize −+ /

cI ; // Enhance contrast 

16: // Non-maxima filtering  

17: For each  NMyx ,),(   in −+ ,

cI  do  

18:  temp[]  n×n neighborhood centered at ),(, yxI c

−+  

19:  For i=0 to n×n do 

20:   If temp[i] < p(x, y) then temp[i]=0;  

21:  End For 

22: //temp is matrix with odd number of rows and columns 

23:  If 0][
],0[


 nni

itemp  then temp  n/2 + n/2)(n  = 0;  [];),(, tempyxI c −+  

24: End For 

25: 
=

−

=

+ +=
bac

c

bac

c III
,,

SARC  

 

 

 

 

Figure 5.11 Determination of the optimal threshold 
+

aT
 (black point) based on the second 

derivative 
+

aR
 of the histogram estimated from chromatic component a of the WCE 

image of Fig. 5.8(a). The application of this threshold on a results in Fig. 5.12(a).  
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(a) (b) (c) (d) 

Figure 5.12 Representative output images obtained from the application of Algorithm 1 

on the WCE images illustrated in Figure 5.8 (a) (first row) and Figure 5.8 (b) (second 

row) respectively. (a) Ia positive. (b) Ia negative. (c) Ib positive. (d) Ib negative. The 

arrows indicate the locations of the lesions. The vascular lesion of Fig. 1(a) is clearly 

discriminated in the respective Ia positive image. Also the small inflammatory lesion of 

Fig. 1(b) is clearly discriminated in the respective Ia negative image.  

 

 

In the next step the DInstances On SARC (Algorithm 5.4) uses ISARC to detect regions 

with significant changes in the chromatic components of CIE-Lab color space. Initially, 

ISARC is sampled using concentric square windows of s×s and s/2×s/2 pixels respectively 

at each pixel of ISARC with non-zero value. These pixels are more considered as points of 

more interest, since they have a maximum value within their neighborhood. From these 

points as salient are defined those ones that are characterized by a significant change in 

the chromatic values of their local neighborhood. This change is calculated by the 

distance between the maxima and the minima extracted from the concentric square 

windows. This definition of saliency is inspired by the fact that such chromatic changes 

are usual in the neighborhoods of most abnormalities. 
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Algorithm 5.4. DIstaNces On SARC (DINOSARC) Salient Point Detection 

Input: Images Ic (M×N) , c=a, b; ISARC (M×N) 

Output: List of salient points I[] 

 

27: // Initialize 

28: i  0; 

29: d[]  null; 

30: I[]  null; 

31: // Sample ISARC and evaluate saliency 

32: For each ISARC(x, y)  0,  NMyx ,),(   do 

33:  templarge[]s×s neighborhood centered at ),( yxIc
; 

34:  tempsmall[]s/2×s/2 neighborhood centered at ),( yxIc
; 

35:  ( ));[]max argarg elel tempM    

36:     ( );[]min argarg elel tempm   

37:  ( );[]max smallsmall tempM   

38:     ( );[]min smallsmall tempm   

39:  i  i + 1; 

40:  2arg2arg )()(][ smallelsmallel mmMMid −+−  

41:  );,(][ yxIiI c  

42: End For 

43: // Filter salient points upon their proximity 

44: For i = 1 to length(d[]) do 

45:  If d[i] ≤ average(d[]) then  

46:   remove(d[i]);  

47:         remove(I[i]);  

48:      End If 

49: End For 

 

 

5.5.3 Salient region detection 

 

The salient point detection process is followed by sampling image regions from their 

neighborhoods in order to estimate relevant descriptors. Instead of sampling square-

shaped neigborhoods, as in (Iakovidis & Koulaouzidis 2014b; Iakovidis & Koulaouzidis 

2014a), the DINOSARC descriptors are extracted from arbitrary-shaped neighborhoods. 

To this end, the input images are segmented using the simple iterative linear clustering 

(SLIC) algorithm (Achanta et al. 2012). SLIC creates clusters of pixels defining regions 
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of homogeneous color properties, called superpixels (Figure 5.13). Considering the 

approach proposed by (Iakovidis et al. 2015), the superpixels that contain at least one 

salient point are also characterized as salient. However, in that study the pixel-level 

saliency was disregarded, and the localization of abnormalities smaller than a superpixel 

was impossible. In this study, the pixel-level saliency defined by DINOSARC algorithm 

is not superseded by the region-level saliency defined by the superpixels. Each 

DINOSARC salient region is defined by a superpixel that includes only a single, 

representative salient point. If the superpixel contains a cluster of salient points, then the 

cluster centroid is regarded as its corresponding salient point. 

 

 

5.5.4 Local and Global Color Image Descriptors 

 
Another novel contribution of this work is that both DINOSARC salient regions and 

points are represented by a local color feature vector. The local feature vectors are 

subsequently used for the formation of feature vectors globally representing the WCE 

images. The feature extraction process presented is an extension of the approach 

(Iakovidis & Koulaouzidis 2014b) for only local representation of square WCE image 

patches along with their central point. 

 

The proposed, extended approach forms a 9-dimentional feature vector from the color 

components (L, a, b) of the CIE-Lab representation of a salient point, as well as the 

minimum and maximum values of each of the L, a, and b components within the 

DINOSARC salient region, i.e., min(L), max(L), min(a), max(a), and min(b), max(b). 

This is inspired by the way the WCE video reviewers empirically assess the image 

regions for the detection of abnormalities, which, takes into account regional color 

differentiations (Iakovidis & Koulaouzidis 2014a). By only including the minimum and 

maximum values from the salient regions (which are also determined by salient points 

derived from color differences) such differentiations can be captured. 

 

The local image representation approach is extended by adopting the BoVW model 

(Csurka et al. 2004) for the extraction of global features from the WCE images. This 

model considers that an entire image can be represented by a visual vocabulary. Such a 

vocabulary may be seen as a set of “exemplar” image patches (visual words), in terms of 

which any given image may be described. The vocabulary may be seen as a means of 

quantization of the feature space derived from the local feature vectors. Then, any 

previously unseen descriptor may be easily quantized to its nearest visual word. Thus the 

DINOSARC feature vectors are used to form histograms of visual words for the 

representation of entire WCE images. 
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(a) (b) 

  
(c) (d) 

Figure 5.13 Result of SLIC algorithm on an endoscopy image (left), superpixels with 

DINOSARC points (right). The images (c) and (d) show the effectiveness of saliency 

detection for small lesions. 

 

 

5.6 Experimental Results 

5.6.1 Datasets 

 

In order to enable reproducibility of the experiments and comparisons with current and 

future studies, two publicly available image datasets were used for the evaluation of the 

proposed methodologies of this chapter. These datasets have been acquired with different 

endoscopic imaging modalities. They have been selected primarily for their diversity, as 

they include different kinds of anomalies and normal images. 

 

The first dataset is composed of images obtained from gastroscopies. It was released for 

the purposes of a challenge that took place in MICCAI 2015 (Deep sparse feature 

selection for computer aided endoscopy diagnosis). The task in that challenge was to 

correctly classify the gastroscopic images and to detect abnormalities. In the whole 
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chapter, the same dataset is used for the detection of abnormal images using only 

semantically annotated training images. 

 

The gastroscopy challenge dataset was derived from a total of 10,000 images, obtained 

from 544 healthy volunteers and from 519 volunteers with various lesions, such as 

gastritis, cancer, bleeding and gastric ulcer. The original image resolution was 768×576 

pixels. The images were anonymized by cropping the image regions containing sensitive 

patient information. The size of the derived images is 489×409 pixels (Deep sparse 

feature selection for computer aided endoscopy diagnosis). 

 

For the purposes of the MICCAI challenge, a subset of images was selected and 

separated, into two approximately balanced sets of training and a set of testing images. 

The training set consists of 205 normal and 260 abnormal images, and the test set consists 

of 104 normal and 129 abnormal images. 

 

The second dataset is composed of WCE and has been recently released by  

(Koulaouzidis et al. 2017). KID dataset is a publicly available database of annotated 

WCE images and videos  (including pixel-level annotations), which can be used as a 

reference for both training and evaluation of such systems (Iakovidis & Koulaouzidis 

2015; Koulaouzidis et al. 2017). It contains WCE images obtained from the whole GI 

tract using a MiroCam capsule endoscope with a resolution of 360×360 pixels. These 

include 303 images of vascular anomalies (small bowel angiectasias, lymphangiectasias, 

and blood in the lumen), 44 images of polypoid anomalies (lymphoid nodular 

hyperplasia, lymphoma, Peutz-Jeghers polyps), 227 images of inflammatory anomalies 

(ulcers, aphthae, mucosal breaks with surrounding erythema, cobblestone mucosa, 

luminal stenoses and/or fibrotic strictures, and mucosal/villous oedema), and 1,778 

normal images obtained from the esophagus, the stomach, the small bowel and the colon. 

 

5.6.2 Preliminary evaluation of Classification on inflammatory lesion of KID 

database Results 

 

The proof of concept for the use of color BoW on WCE, a preliminary  evaluation of the 

proposed supervised BoW using weakly labeled images approach(Vasilakakis et al. 

2016) was conducted. The experiments were performed using a subset of KID database. 

This dataset displays a variety of different kinds of abnormalities. More precisely, the 

selected subset consists of 227 images of most common inflammatory lesions including 

ulcers, aphthae, mucosal breaks with surrounding erythema, cobblestone mucosa, 

stenoses and/or fibrotic strictures, and significant mucosal/villous oedema. It also 

includes a set of 1327 normal images derived from the small bowel (728 images) and the 

stomach (599 images). 
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Considering that supervised methods use whole images for training and testing, a more 

thorough evaluation, using 6-fold Cross Validation (CV) was computationally feasible, 

using KID dataset. This enables a less biased evaluation with respect to the selection of 

the training and testing sets, by randomly splitting the dataset into 6 non-overlapping 

parts. Out of the 6 parts, 1 was used for training and one for testing, repeatedly, until each 

part was used for testing once. The classification performance was investigated using 

Receiver Operating Characteristic (ROC) curves. An ROC curve depicts relative 

tradeoffs between benefits (correct decisions about abnormal cases, characterized as True 

Positives, TPs) and costs (false decisions about normal cases, characterized as False 

Positives, FPs) (Fawcett 2006). From a medical viewpoint, the ROC yields a pure 

measure of diagnostic accuracy, independent of the diagnostic criterion and of the 

frequencies of the alternative conditions under study (Swets 1979). With respect to the 

abnormality detection problem, the respective conditions are defined by the presence of 

an abnormal tissue within an endoscopic image or not. With respect to the localization 

problem, the respective conditions are defined as whether a point diagnosed as abnormal 

is located within an abnormal image area or not. The Area Under the ROC (AUC) is an 

overall summary measure of diagnostic accuracy (Alemayehu & Zou 2012). In order to 

enable comparisons between the ROC curves, the AUC was used as a classification 

performance measure which, unlike accuracy, is relatively robust for datasets with 

imbalanced class distributions (Provost et al. 1997), as in the case of KID dataset.  

 

In order to investigate whether BoW could be used as a reliable classification approach, 

its performance is examined in five different experiments. These differentiate on the 

method for the selection of interest points, the description of patches around the 

aforementioned points; and the colour space used. For the latter case the greyscale images 

and also transformations of CIE-Lab are used (using standard illuminant D65), where L 

and b channels had been discarded, keeping only the colour information of a. We shall 

refer to the latter as the “Lab images”. More specifically, the performed experiments are 

as follows:  

i) SURF points and features on the greyscale image;  

ii) dense points and SURF features on the Lab images;  

iii) SURF points and colour features of (Iakovidis & Koulaouzidis 2014a); 

iv) dense points and colour features of (Iakovidis & Koulaouzidis 2014a);  

v)  the state-of–the-art method of (Yuan et al. 2016a), where image 

description is based on the combination of SIFT and compound local 

binary pattern features (CLBP).  

In each case, interest points are extracted, then their descriptions for the visual 

vocabulary, which is use for image BoW description and finally train SVM classifiers.  
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Feature 

Extraction 
Feature Description 

Window 

Size 

Vocabulary 

Size 
AUC 

dense (18) Lab (Iakovidis & Koulaouzidis 2014a) 18×18 500 0.80 

dense (4) SURF (g) N/A 800 0.70 

dense (36) Lab (Iakovidis & Koulaouzidis 2014a) 36×36 700 0.79 

dense (18) SURF (g) 18×18 800 0.69 

dense (10) Lab (Iakovidis & Koulaouzidis 2014a) 18×18 700 0.81 

SURF (a) Lab (Iakovidis & Koulaouzidis 2014a) N/A 700 0.77 

SURF (g) SURF (g) N/A 500 0.59 

 

Table 5.1: Experimental Results; in dense(x), x denotes the step, in SURF(y), y denotes 

the color space (g: greyscale, a: a channel of Lab). Note that in case of SURF feature 

description, image patches are selected by the algorithm, thus is marked herein as “N/A” 

 

 

The visual vocabulary size ranged from 300 to 1200 words. For the experiments with 

dense SURF, multi-scale feature extraction with scale step 1.6, starting from scale 1.6, up 

to scale 6.4 is used. Experiments with various sizes of square regions, for the extraction 

of the colour features are done. Square areas of size 18×18 and 36×36 are used. For dense 

feature extraction grid steps of 4, 10, 18 and 36 pixels, both horizontally and vertically 

are used. For the method of (Yuan et al. 2016a) CLBP of patch size 4×4 and 8×8 is used. 

For the classification an SVM with RBF kernel is used. 

 

Most notable results are summarized in Table 5.1. In the table it is observed that best 

performance was achieved for the case of dense Lab features using a window size of 

18×18 pixels and a visual vocabulary of 700 words. The best performance of standard 

SURF features (i.e., applied on grayscale images) was achieved using dense extraction 

and a vocabulary size of 800 words. However, this advantageous performance comes at 

cost of efficiency, since the number of samples obtained by dense SURF is higher (due to 

the regular sampling process). In addition, the proposed approach had better results in 

comparison with of the state-of-the-art method of (Yuan et al. 2016a). In any case the 

application of SURF on the a channel of CIE-Lab leads to an increase of AUC. 

 

5.6.3 Performance Evaluation of supervised classification using weakly labeled 

images 

 

The results of the previous paragraph have been extended to the whole KID and MICCAI 

datasets. As in the previous paragraph, the supervised methods use whole images for 

training and testing, a more thorough evaluation, using 10-fold CV was computationally 

feasible, using MICCAI and KID datasets. 
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The color BoW was compared (D. K. Iakovidis et al. 2018)with four state-of-the-art 

supervised approaches. These include the CNN-based approaches of (Zhang et al. 2016) , 

and of Jia and Meng (Jia & Meng 2016), and the BoW-based approaches of Yuan et al 

(Yuan et al. 2016b) using SVM as a classification scheme and the optimal parameters 

suggested in the respective studies. The average results obtained over the CV evaluation 

are summarized in Table 5.2 and the standard deviation of the measurements was of the 

order of 10-2. Overall, focusing on the AUC measures, color BoW performs better than 

the compared supervised schemes, with a significant advantage over Yuan’s et al in the 

classification of KID. The classification performance of color BoW is almost equivalent 

to that of Zhang’s et al method on MICCAI, while it outperforms the other state-of-the-

art methods on KID dataset. 

 

 

Table 5.2: 10-Fold CV Classification Results of the WCNN and State-of-the-Art 

Supervised Methods  

 

Measure 
(Zhang et al. 

2016) 

(Jia & Meng 

2016) 

(Yuan et al. 

2016b) 

(Vasilakakis et 

al. 2016) 

 MICCAI KID MICCAI KID MICCAI KID MICCAI KID 

AUC 0.951 0.773 0.902 0.705 0.940 0.709 0.946 0.802 
Accuracy 0.851 0.760 0.827 0.690 0.867 0.696 0.892 0.768 
Sensitivity 0.930 0.537 0.806 0.602 0.876 0.432 0.911 0.454 
Specificity 0.779 0.836 0.857 0.785 0.854 0.820 0.872 0.886 

 

 

5.6.4 Performance evaluation of Multi-label Classification  

Several experiments were performed to evaluate multi-label classification as a means for 

semantic interpretation of endoscopy video frames. The saliency-enabled BoW 

methodology was evaluated in comparison to state-of-the-art approaches.    

 

In the case of the saliency-enabled BoW methodology, for each video frame, features 

have been extracted using the proposed DoM salient point detection method and the 

“naive” approach of dense feature extraction. For the proposed DoM salient point 

detection method image samples of 24×24 pixels were used.  The BoW model was 

constructed with a visual vocabulary with sizes in the range from 500 to 2000 words 

using the k-means clustering algorithm (Drake & Hamerly 2012). The classification of 

the feature vectors obtained using the BoW method, was implemented by an SVM 

classifier. Linear, polynomial and Radial Basis Function (RBF) kernels have been tested, 

and followed the grid-search approach (Chang & Lin 2011) to determine its optimal 
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parameters. The RBF kernel provided the best results, for a minimum cost parameter 

c=10 and γ=2-8. 

 

To compare the classification performance of saliency-enabled BoW with the transfer 

learning approach in multi-label classification of WCE gastrointestinal tract images, the 

implemented methodology by (Zhang et al. 2016) was followed. More specifically, for 

the feature extraction the same procedure as presented by the authors was followed, while 

for the classification of the extracted features, multi-label “one-vs-all” SVM with 𝑐 =

2−9and polynomial kernel was followed. The parameters of the SVM where selected 

after a series of experiments in order to determine the optimal values for the domain. 
 

The classification performance was thoroughly investigated using Receiver Operating 

Characteristic (ROC) analysis and the area under the ROC (AUC). Experiments were 

performed using the 10-fold cross validation evaluation scheme, using SVMs as a binary 

classifier. Multi-label classification was implemented using a derivative of WEKA 

library (Witten et al. 2016) called MEKA(Read et al. 2016). 

 

Initially, the case of binary classification of the video frames into normal and abnormal 

classes was examined.  The performance of BoW method was investigated using the 

proposed DoM for salient point detection in comparison with the state of the art 

methodologies, of (Yuan et al. 2016b), who used SIFT algorithm  for the detection of 

interest points and a concatenated feature vector of SIFT and LBP, or SIFT and 

CLBP(Yuan et al. 2016b), for the description of video frame regions. The comparison 

also includes the method of (Vasilakakis et al. 2016), who used SURF algorithm for 

salient point detection in the a-channel (SURF(a)) of CIE-Lab and the dense BoW 

approach and the CNN(Zhang et al. 2016). The results with regards to lesion detection 

are presented in Table 5.3. It can be noticed that the use of the proposed DoM algorithm 

increases the binary classification performance to an AUC of 0.81. All methods provide a 

low sensitivity. This indicates the difficulty of the lesion detection problem. The BoW 

method using DoM provided significantly higher specificity (less false positives) than all 

other methods. The higher sensitivity was obtained by CNN, at the cost of a higher false 

positive rate.  
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Table 5.3: Binary classification results for lesion detection using various supervised 

BoW methods and CNN with an SVM classifier. The confusion matrix (True Positives – 

TP, False Negatives – FN, False Positives – FP, and True Negatives – TN), the sensitivity 

and the specificity are provided along with the AUC for each method 

Methods TP FN FP TN Sensitivity Specificity AUC 

BoW+SURF(a) 232 342 214 1564 0.40 0.87 0.78 

BoW+SIFT+LBP 181 393 210 1568 0.31 0.88 0.72 

BoW+SIFT+CLBP 207 367 200 1578 0.36 0.88 0.78 

BoW+Dense 240 334 196 1582 0.42 0.88 0.8 

CNN 299 275 259 1519 0.52 0.85 0.78 

BoW+DoM 252 322 176 1602 0.44 0.90 0.81 
 

Multi-label classification was performed using the following labels: abnormal, debris, 

bubbles, and lumen hole. The use of DoM for multi-label classification, results in an even 

higher classification performance than the conventional binary classification scheme. 

Best results were obtained using the Multi-Layer Perceptron (MLP) multi-label 

classification method with 100 hidden layer neurons, a learning rate of 0.1, trained with 

the features extracted from BoW model. The obtained AUC reached up to 0.83 using a 

vocabulary of 800 visual words. The results for all methods using BoW features are 

presented in Figure 5.14. The basic methods for multi-label classification, which used, 

were Binary Relevance (BR), Label Combination (LC), Ranking and Thresholding (RT) 

and Pairwise Classification (PC). For all multi label methods the same SVM with Radial 

Basis Function kernel (RBF) with c=10 was used. As in the binary classification 

experiments, these parameters were determined using the afore-mentioned kernels and 

grid-search approach. Also, Figure 5.14 includes the results of CNN (Zhang et al. 2016) 

for multi-label classification It can be noticed that saliency-enabled BoW provided the 

highest performance compare to all the other approaches and achieved an AUC equal to 

0.83. 
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Figure. 5.14: Comparative multi-label lesion detection results for each multi-label 

method tested. 

 

 

The classification results per semantic category are presented in Figure 5.15. It can be 

noticed that the result for debris are significantly higher than the results of bubbles and 

lumen hole. The reason is that the most video frames in KID dataset had debris as content 

compare to the number of video frames that had bubbles and/or lumen hole. 

 

It can also be noticed that the classification performance of the CNN is not always better 

than the BoW-based approaches, although it has been proved effective in the context of 

endoscopy (Zhang et al. 2016). This could be explained by the diversity of the KID 

dataset, which includes several different kinds of lesions, whereas the dataset used by 

(Zhang et al. 2016) included only colorectal polyps.    
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Fig. 5.15: Classification results for each semantic label in KID dataset 2 for each multi 

label method 

 

 

5.6.5 Performance evaluation on Abnormality Localization  

The performance of the proposed methodology (D. K. Iakovidis et al. 2018) in the 

localization of GI anomalies was evaluated on both MICCAI and KID dataset, by 

extending the 10-fold CV scheme. The ICU algorithm (Algorithm 5.2) filters the salient 

points detected using the DSD algorithm (D. K. Iakovidis et al. 2018), by classification, 

and outputs a number of points that indicate possible locations of GI anomalies within 

abnormal images. The results obtained using the proposed PCFM features are compared 

to the results obtained using standard color features. To this end, a feature vector 

composed of the mean values of the respective CIE-Lab color space components (a, b) is 

used. The means are estimated over a 5×5 pixel neighborhood centered at the salient 

points. The choice of the window size used was determined as best, based on preliminary 

experimentation among window sizes of 1×1 to 16×16 pixels. 

 

The number of clusters Q and R tested in the k-means algorithm varied from 2 to 10, and 

the number of k-means executions was T=10. The number of nearest neighbors tested was 

K=1,3,5,7 and the best performance was achieved by K=1. The results obtained from the 

output of ICU, in terms of AUC are illustrated in Figure 5.16.  This figure shows that 

best results in the two datasets are achieved for the least number of clusters (k=2). For 

higher values of k the two classes are more difficult to discriminate. Using the PCFM 

features the best localization performance achieved in MICCAI dataset is 0.848, and in 

KID dataset it is 0.877. Using CIE-Lab features the respective performances were 0.801 

and 0.852. Overall, PCFM features perform better than CIE-Lab features, especially in 

the case of the larger dataset (KID).  
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Figure 5.16: Abnormality localization performance of the proposed method using PCFM 

vs. CIE-Lab features on MICCAI and KID datasets in terms of AUC, per target number 

of clusters k. 

  

 

Apart from these overall results, it is important to investigate the localization 

performance achieved at an image level. To this end the results per image were analyzed. 

This analysis showed that the average number of TP output points per image (i.e., points 

characterized as abnormal by the system that fall within the ground truth regions of the 

anomalies) in MICCAI dataset was 1.78, ranging from 1 to a maximum of 7 points. The 

respective number of FPs (i.e., points that fall outside the ground truth regions of the 

anomalies but are characterized as abnormal by the system) was 0.74, ranging from 0 to 

5. In KID dataset the average number of TPs was 1.14, ranging from 1 to 6. The average 

number of FPs was 0.69, ranging from 0 to 5 per image. Representative examples of 

results produced by the proposed ICU are illustrated in the last column of Figure 5.17. 

The output of ICU is a subset of the salient points detected by DSD, classified as 

abnormal. The dashed frame indicates the bounds of the region where these suspicious 

points are located. Points classified as normal are rejected. For example the result of ICU 

in Figure 5.17 (a) includes only two FP points (indicated with red squares), and four TP 

points. The FPs can be attributed to the lower illumination present in these regions. Each 

of the Figures 5.17 (b) and (c) has only one FP, and one TP. The FP of Figure 5.17 (b) 

corresponds to a reflection, and the FP of Figure 5.17 (c) corresponds to a point of under-

illuminated debris. Figure 5.17 (d) includes a TP and it does not include any FP.    
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 (a)  

   

 (b)  

   
 (c)  

   
 (d)  

Figure 5.17: Lesion localization results on four abnormal images. The ground truth 

lesion areas are outlined on the original images presented in the left column. The 

maximal images are illustrated (scaled up) in the middle column, along with the 

respective salient points detected by DSD.  The localized lesions after the application of 

ICU in Phase III are presented in the right column. All points indicated with red square 

and green circular marks comprise the output of ICU. The green circular marks indicate 

the TPs and the red square marks indicate the FPs. (a-b) Images from MICCAI. (c-d) 

images from KID. 

 

A summary of the localization results after the application of ICU using PCFM features, 

over all images of the available datasets is provided in Table 5.4. The output of this 

algorithm is a set of points (a subset of those detected by DSD) that are possibly 

abnormal (positive). This table lists the percentages of the images for which ICU 

produced 0, 1, 2,..., 7 TP and FP points (the maximum number of points per image was 

7). For example, the percentage of images with 0 detected FP points per image (i.e., 

without any FP) was 54.3% in Dataset 1 and 52.9% in Dataset 2; the percentage of 

images with one TP point, was 59.9% in Dataset 1 and 92.9% in Dataset 2; and the 

percentage of images which had one FP point, was 28.0% in Dataset 1 and 31.0% in 
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Dataset 2. It is notable that TPs were identified in all the abnormal images (the 

percentage of images with 0 detected TP points is 0.0%), and that the number of TPs or 

FPs per image did not exceed 7 in any case. 

 
 

Table 5.4: Abnormality Localization Results over All Images of MICCAI and KID 

datasets Using ICU With PCFM Features   

  
Detected Points per 

Image 
MICCAI KID 

TP (%) FP (%) TP (%) FP (%) 

0  0.0 54.3 0.0 52.9 

1 59.9 28.0 92.9 31.0 

2 22.4 11.2 5.3 9.6 

3 11.2 3.7 0.6 3.9 

4 4.7 1.9 0.0 2.2 

5 0.9 0.9 0.6 0.4 

6 0.0 0.0 0.6 0.0 

7 0.9 0.0 0.0 0.0 
 

 

 

The performance of ICU was compared with the performance of a related state-of-the-art 

approach, which is based on the creation of energy maps (Bernal et al. 2017). According 

to that approach, the salient points detected by DSD are considered as ’fixations’ or 

votes, and energy maps are created from this set of discrete fixations/votes. These 

fixation points are interpolated by a Gaussian function to build up the final energy map, 

from which the location of the global maximum of the saliency map is selected as the 

final output. After several experiments using Gaussian functions with different standard 

deviation values (σ = 16, 32, 64), the best result, considering as a priority not to miss any 

anomalies, was obtained for σ = 32. The respective percentages of images with TP and 

FP points are summarized in Table 5.5. It can be observed that the application of the 

energy-maps approach results in a significantly lower number of points per image; 

however, there are several images without any TP points detected (37.0% in Dataset 1 

and 77.3% in Dataset 2). Thus, ICU is preferable. 
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Table 5.5: Abnormality Localization Results over All Images of  MICCAI and KID 

datasets using Energy Maps   

  
Detected Points per 

Image 
MICCAI KID 

TP (%) FP (%) TP (%) FP (%) 

0  37.0 63.0 77.3 22.7 

1 63.0 35.1 21.4 57.2 

2 0.0 1.9 1.3 20.1 

3 0.0 0.0 0.0 0.0 

4 0.0 0.0 0.0 0.0 

5 0.0 0.0 0.0 0.0 

6 0.0 0.0 0.0 0.0 

7 0.0 0.0 0.0 0.0 

 

 

Aiming to a further reduction of the FPs produced by ICU, the experiments were repeated 

with the energy maps used as a post-processing step that could possibly refine its output. 

However, although the FPs were reduced, the reduction of the TPs was unacceptable, as 

the percentage of images without any TP reached 43.7% in Dataset 1 and 77.2% in 

Dataset 2.   

 

5.6.6 DINOSARC: Salient point detection  

Experiments on the WCE images were performed to evaluate the proposed DINOSARC 

feature extraction methodology in comparison to the state-of-the-art using the publicly 

available data described in section 5.5.  

 

Prior to the application of DINOSARC algorithm a series of experiments were performed 

to determine its optimal parameters. The criterion considered for this tuning process was 

the number of false negative images, i.e., the number of images that were actually 

containing abnormalities, but no salient points were detected on these abnormalities. 

Since the salient point detection process is considered as the first step in the analysis of 

the WCE images, it is important to be able to detect points on abnormalities, in as many 

as possible (ideally in all) abnormal images.    

  

To this end, the salient point detection performance of DINOSARC algorithm was 

investigated using various window sizes s×s between 4×4 and 20×20 pixels in each 

component of CIE-Lab color space. The results are illustrated in Figure 5.18. By using 

window sizes of 6×6 and 10×10 pixels in component a, at least one salient point was 

detected within the abnormalities. Among these choices the 10×10 pixel window is 
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considered preferable because it results in less salient points per image (Figure 5.18b).    

 

  
(a) 

  
(b) 

Figure 5.18: Salient point detection results for different (square) window sizes s×s. (a) 

Average number of salient points detected per image. (b) Number of images in which 

salient points have not been detected within abnormal regions (false negative).  

 

The DINOSARC salient point detector was compared with the standard SIFT (Lowe 

2004)(SIFT-L) and SURF (Bay et al. 2008) (SURF-L) algorithms, as they are typically 

applied on the luminance component (L) of images. Also, it was compared with the 

SURF-a color salient point detection method proposed in(Iakovidis & Koulaouzidis 

2014b), where SURF was applied on component a of CIE-Lab color space. For 

completeness, SIFT was also tested on that color component (SIFT-a). The evaluation 
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criterion for every detector was the minimum number of salient points needed in order to 

have the zero false negative images (Figure 5.19). 

 

 

Figure 5.19: Number of salient points detected within abnormal regions over abnormal 

images using different methods.  

Further reduction of the DINOSARC salient points is achieved by the salient region 

detection process (5.5), which results in only a single salient point per salient region.     

In the evaluation of DINOSARC detection algorithm we also computed the percentage of 

the salient points falling on the abnormal regions of the images. The percentages of these, 

true positive points, over the total number of detected points in the image are presented in 

Table 5.6. It can be noticed that the proposed salient point detection algorithm results in 

more true positive points in every abnormal image than the other algorithms. 
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Table 5.6: True positive points for each image 

Algorithm Salient points (%) 

DINOSARC 20 

SIFT-L 14 

SURF-L 11 

SIFT-a 15 

SURF-a 12 

 

 

5.6.7 DINOSARC: Salient region discrimination using local descriptors 

For the discrimination of abnormal from normal salient regions classification experiments 

were performed using various local image descriptors. As a baseline for the comparison 

of DINOSARC descriptor the hue histogram of the area around each salient point is 

considered. Since this descriptor is not associated with a particular salient point detection 

algorithm, the DINOSARC salient point detector was used. The hue histogram was 

quantized into 15 bins, which was the best performing one among histograms of 15.i, 

i=1,..,24 bins. Also, for comparison purposes we selected three state-of-the-art 

methodologies. The methodology of (Yuan et al. 2016b), which is very recent, the 

methodology of Li et al. (Li & Meng 2012), and the methodology of (Iakovidis & 

Koulaouzidis 2014b), which is a predecessor of the proposed approach. The experiments 

were performed using the 10-fold cross validation evaluation scheme, and a Support 

Vector Machine (SVM) with Radial Basis Function (RBF) kernel, as a standard classifier. 

The classification performance was thoroughly investigated using Receiver Operating 

Characteristic (ROC) analysis and the Area Under the ROC (AUC) was estimated to be 

able to compare the classification performances using a single measure. The classification 

accuracy, the sensitivity and the specificity are provided as additional measures 

facilitating comparisons.   

 

The results are presented in Table 5.7. The best AUC was obtained with the proposed 

methodology.  
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Table 5.7: Classification results of salient regions using local image descriptors. 

 
Hue Histogram 

(Iakovidis & 

Koulaouzidis 

2014b) 

(Yuan et al. 

2016b) 

(Li & Meng 

2012) DINOSARC 

AUC 0.584 0.774 0.606 0.718 0.813 

Accuracy 0.671 0.772 0.874 0.698 0.809 

Sensitivity 0.833 0.699 0.142 0.432 0.680 

Specificity 0.232 0.782 0.974 0.829 0.814 

 

 

The respective ROCs are illustrated in Figure 5.20. It can be noticed that methodology of 

(Yuan et al. 2016b) provides a higher accuracy; however, this is due to the high 

specificity, whereas the sensitivity is very low, i.e., its capability to detect positive image 

regions is low. Also low was the performance of the hue histogram descriptor. The 

second best performance was obtained by the method of (Iakovidis & Koulaouzidis 

2014b). 

 

 

 

 
Figure 5.20: The ROCs corresponding to the AUCs reported in Table 5.7 for the 

classification of salient regions using local image descriptors. 

 

An interpretation of these results can be based on the physical meaning of the respective 

descriptors. The descriptors proposed by (Yuan et al. 2016b) and (Li & Meng 2012) 

encode the texture of an image area (both SIFT/CLBP and ULBP/wavelet transform are 

textural descriptors), and hue histograms encode its colors as they are perceived by 

humans (Wyszecki & Stiles 1982). The best performing approaches are also based on 
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color; however, the regional minima and maxima of the opponent color components tend 

to provide more discriminative information about the abnormalities. The approach of 

(Yuan et al. 2016b)was originally proposed for the detection of polyps, and the approach 

of (Li & Meng 2012) was proposed for the detection of tumors, including adenomas and 

adenocarcinomas. Texture has been a discriminative feature of polyps and tumors in 

several studies with flexible endoscopy images (Karkanis et al. 2003; Liedlgruber & Uhl 

2011). However, the significantly lower resolution of WCE images limits the visibility of 

texture, and consequently, texture becomes less discriminative. More importantly, the 

database used in our experiments contains polyps but also several other kinds of 

abnormalities, for which texture may not be as discriminative as color, e.g., vascular 

lesions. 

 

5.6.8 DINOSARC: Abnormal image detection using global descriptors 

Experiments were performed for the investigation of the classification performance of 

entire WCE images using the DINOSARC features. For image representation global 

features were extracted using the BoVW model. The BoVW model was constructed with 

a range of visual vocabulary sizes in the range from 500 to 700 words. The experiments 

were performed using the 10-fold cross validation evaluation scheme, and an RBF-SVM 

classifier. Table 5.8 summarizes the results obtained. The proposed DINOSARC features 

achieved better results from the other methods.  

 

Table 5.8:  Classification results of WCE images using global image descriptors. 

 Hue 

Histogram 

(Iakovidis & 

Koulaouzidis 

2014b) 

(Yuan et al. 

2016b) 

(Li & Meng 

2012) DINOSARC  

AUC 0.684 0.774 0.701 0.754 0.815 

Accuracy 0.730 0.786 0.746 0.751 0.818 

Sensitivity 0.391 0.496 0.406 0.358 0.512 

Specificity 0.871 0.890 0.884 0.870 0.908 

 

 

The respective ROCs are illustrated in Figure 5.21. Considering the AUCs, the method 

of (Iakovidis & Koulaouzidis 2014b) was ranked second, the method of (Li & Meng 

2012) was ranked third, the method of (Yuan et al. 2016b) was ranked fourth, and the 

lowest classification performance was obtained by the hue histograms.    
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Figure 5.21: The ROCs corresponding to the AUCs reported in Table 5.8 for the 

classification of WCE images using global image descriptors.  

 

5.7 Conclusions  

In this chapter different approaches not only for the detection of video frames with 

possible existence of lesion, but also approaches for the localization of lesion in video 

frames were proposed and experimentally evaluated. Firstly, supervised classification 

scheme using weakly labeled images for automated lesion detection in WCE video 

frames was proposed following the BoW methodology and creating a visual dictionary 

encoding all extracted image features into visual words, and created BoW image 

descriptions, which were used to train SVM classifiers. This supervised approach was 

primarily investigated for inflammatory lesions (Vasilakakis et al. 2016). In the next step, 

the research for the contribution of supervised methodology using weakly labeled images 

was further investigated in the larger and more diverse datasets of MICCAI and KID (D. 

K. Iakovidis et al. 2018). The conclusions of this approach based on the results obtained 

can be summarized as follows: 

• The results indicate that standard SURF features do not provide a reliable 

descriptor in the given problem 

• The CIE-Lab color space is able to boost the performace of lesion detection and 

provide valuable results within the proposed supervised scheme using weakly 

labeled images 

• The performance of supervised methodology using weakly labeled images was 

comparable to other state-of-the-art methodologies. 

 

After the use of supervised methodology using weakly labeled images that could be used 

as an alternative to the demanding in terms of manual annotation effort, fully-supervised, 

methods, the motivation for the next step was the evaluation of supervised methods using 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e 
p

o
si

ti
v

e 
ra

te

False positive rate

Hue Histogram

Iakovidis et all [6]

Yuan et al [16]

Li et al [22]

DINOSARC

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 16:40:13 EEST - 18.217.200.173



 

137 

 

weakly labeled images for the purpose of semantic interpretation of the whole content of 

GI tract. Multi-label classification methods for the purpose of semantic interpretation 

were investigated and the results validate that the effect of using multiple labels can 

enhance abnormality detection. This includes removal of the uninformative video frames, 

but also to avoid the removal of frames video frames with the intestinal content there is a 

chance to also miss frames with abnormalities that are present with the intestinal content. 

The results obtained show that by expressing the problem of abnormality detection as a 

multi-label classification problem can be beneficial. The research contributions in this 

direction include: 

• DoM has been proposed as an alternative to the conventional salient point 

detection algorithms 

• The results obtained by both of these methods are better than those obtained by 

state-of-the-art methods.  

 

The localization of GI anomalies has also been addressed with unsupervised image 

segmentation methods. Such methods provide information about both the location and the 

area covered by an abnormality; therefore, they are also suitable for size measurement of 

GI anomalies. However, they are applicable only on images for which anomalies are 

present; otherwise by default they result in FP regions.           

Considering the practical significance of this application the field has rapidly grown, with 

BoW and CNN-based approaches to play a protagonistic role. ICU that refines the result 

of DSD by inferring the most suspicious of the salient points, using solely image-level 

information. This algorithm is based on clustering; however, unlike conventional 

approaches, it does not use clustering for image segmentation, and it does not exploit any 

pixel-level annotation. The output of this algorithm is a very small set of points that can 

attract the attention of a GIE video reviewer, so as to thoroughly examine the respective 

image locations. Important outcomes that can be derived from this study about the 

proposed methodology include: 

• The automatically extracted features from a  

CNN can provide significant better information about the characteristics of lesion 

than color features   

• The ICU algorithm is able to localize in both an effective and efficient way the GI 

anomalies.  

• The proposed methodology was challenged to detect and localize anomalies in 

MICCAI and KID dataset  

In the last part of  this chapter, DINOSARC(Vasilakakis, Iakovidis, et al. 2018), a color 

feature extraction methodology for WCE image analysis was presented. The proposed 
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methodology aimed to the discrimination of various abnormal tissues from normal image 

contents. Major contributions of this study include: 

• A novel salient point detection method, which considers saliency with respect to 

color differences observed in abnormality regions.  

• A novel definition of regional saliency based on superpixel segmentation that 

extends the approach we previously proposed for bleeding detection (Iakovidis et 

al. 2015) . The extension relies on the fact that region-level saliency is defined 

based on DINOSARC salient points, and that point-level saliency is preserved to 

enable the localization of smaller abnormalities.  

• A novel descriptor, which extends the descriptor we proposed in (Iakovidis & 

Koulaouzidis 2014b) by applying the calculations on an arbitrarily-shaped local 

region defined by a salient superpixel. 

• The proposed methodology was applied for both supervised detection of 

abnormalities in a rich publicly available dataset. The supervised approach was 

based on the proposed local descriptors, and the supervised approach using 

weakly labeled images was based on global image descriptors derived from the 

local ones by application of the BoWV model. 

The results showed that the proposed methodology can be more efficient and more 

effective than relevant state-of-the-art methods for the detection of abnormal images. 

More, specifically: 

• The proposed salient point detection approach results in a smaller number of 

salient points, which are more likely to fall within regions of abnormality than 

other current approaches. 

• The proposed local image descriptors result in better discrimination of the 

abnormalities from the normal image contents.  

• The global image descriptors enable more accurate detection of the abnormal 

images in the WCE dataset. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Summary of individual chapters  

This doctoral research thesis investigated and developed computational signal and image 

analysis methods. The proposed methods were applied in biomedical applications. As the 

research of this thesis was within the scope of the project “Klearchos Koulaouzidis”, a lot 

of effort was invested in the investigation of methodologies for endoscopic image 

analysis, especially for images captured by Wireless Capsule Endoscopes. This 

concluding chapter summarizes the most important findings of this dissertation. 

 

Chapter 2 provided the theoretical knowledge that was the basic background for the 

understanding of the methods that were described in the rest of this thesis’ chapters.  

 

Chapter 3 introduced a novel constructive fuzzy representation model for signal 

classification. The proposed model called Fuzzy Phrases was inspired by the bag-of-

words (BoW) feature extraction, which followed an intuitive approach of describing data, 

using histograms of data granules, referred to as words. Several experiments were 

conducted and presented. The performance of Fuzzy Phrases was comparable or better 

from other state-of-the-art fuzzy classification systems.  

 

Chapter 4 provided a detailed review about the technological advantages in the 

challenging domain of Gastrointestinal Endoscopy. More specifically, this chapter was 

focused on Wireless Capsule Endoscopes and divided the literature of this domain in four 

research fields: Capsule endoscopes, Capsule endoscopes localization, Image 

Enhancement and Abnormality detection software. 

 

Capsule endoscopes: This field was further divided in the current commercial capsule 

endoscopes and the research capsule endoscopes that were still developing. At the time of 

this thesis, the technological advancements of commercial capsule were only in the 

examination of the patients, without further capabilities for drug release or biopsy. A list 

with the available commercial capsule endoscopes and their specification were presented 

in Table 4.1. In order to extend the capabilities of commercial capsules and overcome 

their drawbacks, a lot of research had been made resulting in new capsule designs that 

were presented in Table 4.2. 
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Capsule endoscopes localization is a very important field in Capsule endoscopy. The 

detection of accurate location of the capsule identifying the location of the exact position 

of possible abnormalities detected, and can therefore guide further management such as 

surgery or local drug delivery. Table 4.3 summarized the state-of-the-art methods for 

capsule endoscope localization. These methods were dived in three fields  

• Computer Vision algorithms can assist the localization process of the capsule 

endoscope by exploiting the visual content of the raw CE video frames 

• Magnetic localization methods exploit a permanent magnet inside the capsule  

• Radiofrequency based localization techniques include Time-Of-Arrival (TOA), 

Time-Difference-Of-Arrival (TDOA), direction-of-arrival (DOA), and Received 

Signal Strength (RSS) 

 

Image Enhancement the visualization of CE video streams was aiming for the increasing 

of diagnostic yield. Table 4.4 provided of the later image enhancement used techniques. 

 

Abnormality detection software was an important aspect for Capsule Endoscopy for the 

development of a computer-based system. In the field of abnormality detection in 

Capsule Endoscopy, based on the literature the abnormalities fall beneath four basic 

categories: Blood detection, Polyp and tumor detection, Inflammation detection and 

Hookworm detection  

 

The most challenging part in the detection was the development of a software capable of 

detecting multiple abnormalities, as it was presented in the Table 4.4, where the specific 

abnormality detection software were outnumber the multiple detection software. 

 

Chapter 5 investigated and presented novel algorithms for the detection of 

gastrointestinal abnormalities that could be included in a framework of a MDSS. In 

Chapter 5 was presented for first time in the classification of Wireless Capsule 

Endoscopy images the concept of weakly annotated images. In supervised learning with 

weakly annotated images only the information of the existence or not of the abnormality 

was needed. The achieved AUC in the KID dataset was 81% and higher than other state-

of-the-art methods proving that the weakly supervised learning was appropriate for the 

detection of gastrointestinal image abnormalities. A step further was the development of 

a weakly multi label learning classification scheme, in order to interpret the whole 

semantic content of the gastrointestinal tract. The experimental results presented further 

improvement as the AUC was 90% on KID dataset. Also, this chapter presented the 

DINOSARC algorithm, which was an unsupervised algorithm for the detection of interest 

point in Wireless Capsule Endoscopy images.       
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6.2 Future Work 
 

The work presented is only in the beginning towards the challenges identified. 

Considering the continuous increase of signal data, the proposed methods can be further 

evolved and extended with respect to both their efficiency and effectiveness, e.g., for 

high throughput applications. Although the main focus of this thesis was on biomedical 

applications, extensions and generalizations are plausible. 

 

The proposed Fuzzy Phrases framework was the first attempt to transform the input 

signal data exploiting fuzzy logic into multiple different words to describe and make 

decisions about real-world concepts. Future work and extensions of this framework 

include: 

• Systematic evaluation of its robustness to noise and missing values   

• The derivation of a rule extraction scheme from data 

• The interpretability of black-box approaches, such as neural networks, by 

incorporating fuzzy phrases, e.g., into a CNN framework. 

 

In the field of WCE the software demands are changing in dependence to the available 

capsule endoscopes. As the hardware technology of capsule endoscopes is advancing, 

more challenges for development of the appropriate software will arise. Thus, the 

proposed methodologies of this thesis for gastrointestinal abnormalities detection can be 

encountered as a basis for future application development. Future extensions of the 

proposed abnormality detection software of this thesis include: 

• The experimental investigation in larger and more diverse datasets 

• The evolution of the current salient point detector to be able to detect less salient 

points with higher accuracy in the lesion areas 

• The localization of the abnormal region of the images and the identification of 

the size of the abnormal region. 
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Beyond lesion detection: Towards semantic interpretation of endoscopy videos. 

Communications in Computer and Information Science (Vol. 744, pp. 379–390). 
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