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“It is the people who no one imagines anything of, who do the things that no one can

imagine"

Alan Turing
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Abstract

A long-standing challenge in the computer vision field is to recognize the perceived
objects and leverage their rich visual information. In fact, objects constitute key
elements for a wide variety of real-world applications; from scene understanding and
industry automation to security and robotics. Significant steps have been made to-
wards 2D/3D object detection and recognition over the last few years that were com-
plemented by the rapid advancements in processing units technology. However, robust
object understanding remains an open challenge since recent works focus mostly on
the appearance attributes of the objects, such as shape and texture, and omit any
information about their functionalities.

In this dissertation we develop models and techniques that allow us to understand
and exploit these functionalities, also known as object “affordances”, i.e. the set of
actions that humans can perform while interacting with the object. In particular,
first we investigate the impact of object affordances to RGB-D object recognition
through the “function from motion” perspective, where the affordance information is
extracted by observing human-object interactions. Motivated by the research find-
ings of cognitive neuroscience, we are the first to apply the so-called “sensorimotor”
learning theory in computer vision, using end-to-end deep neural networks to fuse the
object appearance (sensory) and affordance (motor) information and improving ob-
ject recognition in RGB-D videos. Second, we develop an encoder-decoder model that
is able to localize and segment the object parts that support specific human-object
interactions. Rather than relying on object-specific information, such as bounding
boxes and class labels, our model is able to learn to focus in the interaction spot
through processing spatio-temporal information and predict affordance segmentation
masks both in RGB-D videos and static images. Lastly, we introduce SOR3D, the
first large-scale RGB-D dataset that consists of human-object interaction sequences
and facilitates affordance-related research. The corpus is publicly available and in-
cludes various object and action related annotations, ranging from video-level object
and action class labels to frame-level affordance heatmaps and segmentation masks.

Extensive experiments on the introduced SOR3D dataset demonstrate the efficacy
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of the proposed models in the aforementioned tasks. From the presented results, we
observe that: a) the utilization of object affordance information leads to improved ob-
ject recognition, and b) object affordance localization and segmentation in videos and
static images can be achieved without the need for extra object-related information,
such as object class and location.
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Greek Abstract

Αναγνώριση Χαρακτηριστικών 2Δ/3Δ Αντικειμένων με Καινοτόμες

Τεχνολογίες Βαθιάς Μάθησης και Αλληλεπίδρασης

Η δυνατότητα να αναγνωρίζουμε τα αντικείμενα που μας περιβάλουν και να αξιο-

ποιούμε την πλούσια οπτική πληροφορία που τα χαρακτηρίζει, αποτελεί μια σημαντική

πρόκληση για τον τομέα της όρασης υπολογιστών. Τα αντικείμενα αποτελούν στοιχεία

κλειδιά για ένα ευρύ πεδίο εφαρμογών που εκτείνεται από την κατανόηση χαρακτηριστι-

κών σκηνής και τον αυτοματισμό, μέχρι την ασφάλεια και τη ρομποτική. Τα τελευταία

χρόνια έχουν γίνει σημαντικά βήματα προς τον εντοπισμό και την αναγνώριση 2Δ/3Δ

αντικειμένων χρησιμοποιώντας τεχνικές βαθιάς μάθησης, που συνοδεύτηκαν από τη ση-

μαντική βελτίωση στον τομέα της υπολογιστικής ισχύος. Ωστόσο, η εύρεση αποτε-

λεσματικών αλγορίθμων για την κατανόηση των χαρακτηριστικών ενός αντικειμένου

παραμένει μια ανοιχτή πρόκληση, μιας και οι υπάρχουσες ερευνητικές εργασίες επικε-

ντρώνονται κυρίως στα χαρακτηριστικά εμφάνισης των αντικειμένων, όπως το σχήμα και

το χρώμα, αγνοώντας τη λειτουργικότητά τους.

Στην παρούσα διατριβή αναπτύσσονται μοντέλα και τεχνικές για την κατανόηση της

λειτουργικότητας των αντικειμένων, η οποία καθορίζει τους τρόπους με τους οποίους

μπορούν να χρησιμοποιηθούν τα αντικείμενα αυτά από τον άνθρωπο. Αρχικά, εξετάζε-

ται η επίδραση της λειτουργικότητας των αντικειμένων ως πρόσθετο χαρακτηριστικό για

την αναγνώρισή τους. Το χαρακτηριστικό αυτό εξάγεται παρατηρώντας ακολουθίες αλ-

ληλεπίδρασης ανθρώπου-αντικειμένου. Μάλιστα, αξιοποιώντας πρόσφατα αποτελέσματα

από έρευνες στον τομέα των νευροεπιστημών, εφαρμόζεται για πρώτη φορά η λεγόμε-

νη «αισθητικοκινητική» μάθηση στο πεδίο της όρασης υπολογιστών, χρησιμοποιώντας

μοντέλα βαθιάς μάθησης ώστε να συνδυαστούν χαρακτηριστικά εμφάνισης και λειτουρ-

γικότητας (μέσω κίνησης) με σκοπό τη βελτίωση της αναγνώρισης 2Δ/3Δ αντικει-

μένων σε βίντεο και εικόνες. Στη συνέχεια, παρουσιάζεται ένα μοντέλο κωδικοποίησης-

αποκωδικοποίησης πληροφορίας για τον εντοπισμό και το διαχωρισμό (σε επίπεδο εικο-

νοστοιχείου) του μέρους του αντικειμένου που υποστηρίζει συγκεκριμένες χρήσεις. Η

παραπάνω διαδικασία είναι εφαρμόσιμη και σε δεδομένα βίντεο και εικόνας. Μάλιστα, το

συγκεκριμένο μοντέλο έχει τη δυνατότητα να επικεντρώνεται στο σημείο της επαφής του

ανθρώπου με το αντικείμενο κατά τη διάρκεια της αλληλεπίδρασης, χωρίς την ανάγκη

χρησιμοποίησης πρόσθετης πληροφορίας όπως είναι η κλάση ή η ακριβής τοποθεσία του

αντικειμένου. Τέλος, παρουσιάζεται η πρώτη εκτενής βάση δεδομένων που μπορεί να

χρησιμοποιηθεί για την εκπαίδευση και την αξιολόγηση μοντέλων που επεξεργάζονται

χαρακτηριστικά λειτουργικότητας αντικειμένων. Η συγκεκριμένη βάση δεδομένων είναι
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διαθέσιμη για δημόσια χρήση και αποτελείται από δεδομένα RGB-D βίντεο (περιέχοντας
δηλαδή σε κάθε πλαίσιο εικόνας και δεδομένα χρωματικού πεδίου και δεδομένα βάθους)

τα οποία απεικονίζουν αλληλεπιδράσεις ανθρώπων με αντικείμενα. Ακόμα, περιέχει ε-

πισημειώσεις για τα παραπάνω δεδομένα σε μορφή κλάσεων για τα αντικείμενα και τις

αλληλεπιδράσεις, σε επίπεδο βίντεο, εικόνας, αλλά και εικονοστοιχείου.

Η αποτελεσματικότητα των μοντέλων που σχεδιάστηκαν για τους παραπάνω σκοπο-

ύς αποδεικνύεται μέσω εκτενών πειραμάτων που αξιοποιούν δεδομένα από την παραπάνω

βάση. Συγκρίνοντας τα παραπάνω αποτελέσματα με αντίστοιχα της βιβλιογραφίας εξάγο-

νται δύο συμπεράσματα. Πρώτον, είναι σαφής η βελτίωση στην αναγνώριση αντικειμένων

όταν αξιοποιείται η λειτουργικότητά τους ως πρόσθετο χαρακτηριστικό, και δεύτερον

είναι δυνατός ο ακριβής εντοπισμός και διαχωρισμός του μέρους του αντικειμένου που

υποστηρίζει μια συγκεκριμένη λειτουργικότητα σε δεδομένα βίντεο και εικόνας, και μάλι-

στα χωρίς να είναι απαραίτητη η ύπαρξη πρόσθετης πληροφορίας για το αντικείμενο.

Thesis Supervisor: Professor Gerasimos Potamianos, Chair

Thesis Supervisor: Dr. Petros Daras

Thesis Supervisor: Professor Antonios Argyriou
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ACOF Accumulated Colorized Optical Flow
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SVM Support Vector Machine
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Chapter 1

Introduction

1.1 Object Affordance

Objects constitute a significant part of the perceived environment. Their presence

is usually all we need to define the rest of the scene. In fact, it is our brain that

identifies objects and connects them with specific environments. That is, a “dish”

and a “pan” indicate a kitchen environment, while a “board” and a “chalk” indicate

a classroom one. Thus, due to the objects high correlation with the scene, computer

vision researchers have dedicated tremendous efforts in detecting and recognizing

them in the 2D and 3D space [3, 27, 40, 41, 83, 115]. To perform these tasks, the

majority of the existing methods focus on the appearance attributes of the objects,

such as shape and color [13,32,41,53–55]. However, the aforementioned characteristics

vary dramatically in real-world scenarios, where object deformation, occlusions, and

illumination variation occur.

Besides appearance, objects can also be defined by their functionality, the so-called

object “affordance”. According to Gibson [22], “the affordances of the environment

are what it offers the animal”, implying the complementarity between the animals

and the environment. Based on this theory, Minsky [59] argues on the significance of

understanding items according to what they can be used for, i.e. what they afford.

These theoretical foundations have resulted to the so-called function-based object

understanding, which can be viewed as an approach applicable to environments in
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Figure 1-1: Example of the “function from motion” perspective. Here we observe a
“squeeze sponge” video from the SOR3D dataset (see Chapter 4), where the human-
object interaction indicates that the “sponge” is “squeezable”.

which objects are designed or used for specific purposes [86]. Moreover, the work

in [98] describes three possible ways for extracting affordance information for an

object: a) “Function from shape”, where the object shape provides some indication of

its function; b) “Function from motion”, where an observer attempts to understand

the object function by perceiving a task being performed with it; and c) “Function

from manipulation”, where function information is extracted by manipulating the

object.

In this thesis we adopt the “function from motion” perspective, focusing on un-

derstanding the affordance information through observing human-object interaction

videos such as the one depicted in Fig. 1-1. In particular, we define affordance under-

standing as: a) the exploitation of the information “revealed” during the hand-object

interaction for improving object recognition, and b) the localization and segmentation

of the object parts that support specific interactions.

1.2 Recognition, Reasoning, and Segmentation

If we manage to understand and exploit object affordances, we can confidently answer

two crucial questions: a) what is the identity of the perceived object, and b) how can

we use it?

Regarding affordance-based object recognition, the existing types of information,

i.e. the object appearance and affordance attributes, have motivated the investigation
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of the so-called “sensorimotor” learning approach [31, 44]. This approach is based on

research findings in cognitive neuroscience that describe the human object perception

as the fusion of sensory (object appearance) with motor (object affordance) informa-

tion [107]. In this thesis, we adopt the sensorimotor learning paradigm and design

a neuro-biologically inspired two-stream model for RGB-D object recognition. We

implement both streams as state-of-the-art deep neural networks that process and

fuse appearance and affordance information in multiple ways.

To answer the object functionality question, recent studies focus on optimizing

the affordance localization and segmentation tasks. However, existing approaches

in the localization context rely mostly on predicting saliency-based heatmaps [8, 34,

50, 71] in static images, without associating the heatmaps with specific affordance

classes. Similarly, existing affordance segmentation methods [12,62,65,66,90] predict

pixel-level affordance labels on objects that are detected in static images. However,

these image-based approaches of affordance localization and segmentation are limited

by a significant knowledge gap. That is, affordance information is spatio-temporal

by its nature, and the temporal domain is fully omitted when learning from static

representations. In this thesis, we design a deep encoder-decoder model that is able

to process human-object interactions and predict object affordances based on spatio-

temporal information. Using the aforementioned model, we jointly investigate the

affordance reasoning, i.e. recognition and localization of the object affordance, and

segmentation tasks.

1.3 Contributions and Outline

In this dissertation we design two learning frameworks for understanding the object

affordance information. Both frameworks consist of deep neural network architectures

that are trained and evaluated using human-object interaction videos. A brief descrip-

tion of each chapter follows that includes a brief overview of the Thesis contributions

that can be found in Chapters 4, 5, and 6.

In Chapter 2 we present existing works in the literature that exploit affordance
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information. First we report the relevant works for recognizing objects through em-

bodiment, i.e. active manipulation of the object, and by observing human-object

interactions. Then we present the works related to the object affordance localization

and pixel-level segmentation.

In Chapter 3 we describe the structure and advantages of widely-known convo-

lutional and recurrent neural networks. These networks are partially or fully utilized

in the model architectures proposed in this thesis for the investigated tasks. Addi-

tionally, we provide details about the deep learning frameworks used to implement

the deep model architectures presented in this thesis.

In Chapter 4 we provide details of our developed Sensorimotor Object Recogni-

tion 3D corpus (SOR3D), the first ever large-scale RGB-D dataset in the literature

that consists of multiple object types and complex affordances. The content of this

chapter is based primarily on [100], where the dataset is introduced, as well as on [99]

where the SOR3D-AFF subset of SOR3D is presented in detail.

In Chapter 5 we present our novel, neuro-biologically inspired two-stream model

for the RGB-D object recognition task. Both streams are realized as deep neural

networks that process and fuse appearance and affordance information in multiple

ways. We develop three model variants to efficiently encode the spatio-temporal

nature of the hand-object interaction, and investigate an attention mechanism that

relies on the appearance stream confidence. The content of this chapter is based on

the spatial and spatio-temporal models presented in [100] and [102], as well as on [101]

where the attention mechanism is proposed.

In Chapter 6 we propose a deep encoder-decoder model that learns to encode

spatio-temporal information from human-object interaction videos and predict affor-

dance heatmaps and pixel-level labels with minimal supervision. First, we focus on

affordance reasoning as an independent task, using a model variant with only one

decoder that predicts affordance heatmaps. Then, we employ a second decoder and

train them jointly for both tasks, using the predicted affordance heatmap to guide

the segmentation decoding process. Note that our model is able to infer affordance

heatmaps and pixel-level labels both in videos and static images. The content of this
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chapter is based on [99] and [103].

Finally, in Chapter 7 we identify the remaining challenges and discuss possible

future directions, while in the Appendix we list the publications related to this

thesis.
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Chapter 2

Related Work

This chapter presents existing works in the literature that investigate the utilization

of affordance information in object recognition, as well as affordance reasoning and

segmentation. In particular, Section 2.1 discusses works on appearance-based object

recognition using traditional computer vision methods or adopting the deep learning

paradigm, but also recent studies that exploit object affordances to boost recognition.

Subsequently, Section 2.2 presents works that investigate object affordance reasoning

in static images and videos, while Section 2.3 discusses the state-of-the-art in pixel-

level affordance segmentation.

2.1 Affordance-based Object Recognition

Object recognition is a fundamental problem in computer vision. Focusing solely

on object appearance attributes, relevant approaches can be divided into two main

categories: methods that represent the object with hand-crafted features and ones

that learn deep object representations exploiting the deep learning paradigm. Char-

acteristic works of the first category are reported in the survey of [3]. Regarding

deep learning-based methods, numerous works appear in the literature. For example,

among others, [54] proposes a recurrent Convolutional Neural Network (CNN) frame-

work to classify objects based on their appearance and the context of the scene; [97]

presents a multi-view CNN with a view-pooling layer to categorize 3D objects; [80]
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proposes a volumetric CNN for object point-cloud processing and classification; [117]

utilizes polynomial kernels and bilinear pooling in a CNN to aggregate local convo-

lutional features in a 3D object representation; and [17] proposes a group-view CNN

that models the hierarchical correlations among multiple 2D views of a 3D object,

leading to a powerful 3D descriptor.

Besides appearance-based learning, there are extensive studies related to func-

tional object recognition exploiting object affordances. In particular, affordance-

oriented object recognition is investigated in the literature from two viewpoints: a)

embodiment and b) observation. The former indicates the scenario where there is di-

rect interaction of the perceiver with the object, while the latter denotes the scenario

where the perceiver observes others interacting with the object.

2.1.1 Inferring Object Affordances from Embodiment

Regarding the embodiment scenario, object affordances that are inferred from agent-

object interaction have been recently leveraged in object recognition. In particu-

lar, [91] concentrates on robotic grasping of novel objects using a set of 2D object

views labeled with grasping points. Additionally, [31] proposes a Gaussian process

to model object-related sensorimotor “contigencies” [69] and categorizes objects by

“pushing” them and observing their displacement. Further, [56] employs the iCub

and Meka robots to categorize objects by combining visual and proprioceptive knowl-

edge with motion behavior observed during interaction. Focusing on more composite

actions, [18] utilizes robotic “push”, “pull”, and “poke” actions to further explore object

representations, while [60] presents a scenario where a robot with basic motor skills

categorizes objects by observing human-object interactions and subsequently selects

its own action that will have the same effects on the object. Additionally, [38] pro-

poses a system for active visual recognition through agent-object interaction, where,

given an initial view of the object, the system predicts how the choice of motion

alters the environment and integrates the result of the object manipulation at each

time-step to classify the object. The system is trained end-to-end using reinforcement

learning.
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Besides recognition, object affordances provide valuable feedback for numerous

tasks in the field of cognitive vision and developmental robotics, such as scene un-

derstanding [9,110], action anticipation [47,48,85,121], and action prediction [20,21,

36, 46, 68, 114, 118]. However, further elaboration on this aspect of affordance-based

learning lies outside the scope of this Thesis.

2.1.2 Observation-based Sensorimotor Learning

Learning to recognize objects by observing others interacting with them is a chal-

lenging machine learning task. However, recent works on observation-based senso-

rimotor object recognition mostly rely on simple fusion schemes (e.g. using simple

Bayesian models or the product rule), hard assumptions (e.g. naive Gaussian prior

distributions), and simplified experimental settings (e.g. few object types and simple

affordances).

For example, [44] utilizes histograms of oriented gradients to model object ap-

pearance, while the global velocity, orientation, and joint angles of the hand are used

to encode the affordance information. A binary Support Vector Machine (SVM) is

trained for each stream, while the predicted object-hand pairs of 3 consecutive frames

are utilized by factorial conditional random fields for the final object class prediction.

This method is evaluated using a dataset of 6 objects and 3 affordances. Further, [45]

proposes a framework where GIST-features of object appearance and affordance are

used to form sensorimotor representations. Then, probabilistic reasoning comprised

of a Bayesian network with information gain strategy is used for object classification,

exploiting these representations. The method is evaluated on a dataset that consists

of 8 object classes and a single affordance. Additionally, [6] encodes the object ap-

pearance as frequency histograms of 200 bins, while 22 motor features provided by a

motion-capture glove sensor are used as affordance representation. The appearance

and affordance features are fused using positively weighted linear combination of Mer-

cer kernels and are used to train a one-versus-all SVM for object classification. The

algorithm is evaluated on a dataset of 7 objects and 5 affordances. Finally, [122] pro-

poses a framework aiming at understanding the affordance and the functional basis
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(e.g. the part of the hammer that touches a surface when hammering) of tool objects

through observing a human, using them for task-oriented object recognition. Object

appearance, action sequence, and physical quantities produced by the interaction are

modeled using graphs and a ranking-SVM classifier is then trained to recognize the

objects. The framework is evaluated on a dataset consisting of 10 objects and 3

affordances.

2.2 Reasoning About Object Affordances

Affordance reasoning is realized as the combination of the affordance localization,

i.e. prediction of a heatmap on the object part that supports an interaction, and affor-

dance recognition tasks. Early studies focus solely on the localization part, proposing

saliency-based methods to predict affordance heatmaps in static images [8,71]. More

recent approaches adopt the “learning from observation” perspective by processing

human-object interaction videos, and reason about object affordances by associating

each predicted heatmap with the corresponding affordance class. In particular, [15]

presents “Demo2Vec” that learns spatio-temporal embeddings from product demon-

strations and predicts keypoints on the object affordance part. Further, [63] proposes

a model that infers spatial hotspot maps on static images using gradient-weighted

attention maps for pre-defined actions.

2.3 Segmenting Object Affordances

Object affordance segmentation, i.e. the pixel-wise identification of the object part

that enables a specific interaction, is a challenging task that has been mostly treated

as a static semantic segmentation problem, usually coupled with object detection.

For example, [62] uses hierarchical matching pursuit, as well as normal and curvature

features derived from RGB-D data, to learn pixel-wise labeling of affordances for com-

mon household objects, while [65] proposes an encoder-decoder architecture to predict

pixel-wise affordances based on depthmaps. Further, [12] expands the architecture
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of [65] by adding a region proposal network [84] to predict the bounding box of the

target object and also investigate the joint learning of detecting and segmenting the

object affordance part. All aforementioned works rely on strong supervision, as each

object affordance part must be fully annotated at pixel-level. On the other hand, [90]

proposes a weakly-supervised setting using CNNs and keypoints annotation to pre-

dict reasonable but not precise pixel-level affordances, which are then refined using

the GrabCut algorithm [88].
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Chapter 3

Deep Learning Background

This chapter provides the technical background for the deep neural networks that are

used in the context of affordance understanding. In particular, Section 3.1 describes

two widely-known CNNs, Section 3.2 presents the vanilla RNN and a more efficient

variant, while Section 3.3 provides details about the deep learning frameworks we

used to implement the models presented in this thesis.

3.1 Convolutional Neural Networks

CNNs have dominated most computer vision neural network architectures specifically

designed for handling data with some spatial topology, such as images, videos, and

3D voxels. They apply a hierarchy of operations, such as convolutions and non-

linear activations, to embed the input into a feature space. This space is learned by

optimizing an objective function that varies depending on the task. Some of the most

popular CNN models in the literature are: a) the AlexNet [49], b) the VGGNet [95],

and c) the ResNet [28]. In this thesis, we utilize a VGGNet variant as base network

for all investigated tasks, which consists of 16 layers and is denoted as VGG16.

The main characteristics of the VGG16 model, depicted in Fig. 3-1, are the depth

and simplicity. This model is widely used in the context of several computer vision

tasks, e.g. semantic segmentation [92] and action recognition [16], as it reinforces the

notion that CNNs should be deep networks to really take advantage of the hierarchical
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Figure 3-1: VGG16-CNN for image recognition (figure from [67]). The input image
is being processed through a hierarchy of local convolutions, non-linear activation
functions, and pooling. A classifier is trained to predict whether the input image
belongs to one of 1000 classes of the ImageNet dataset [10].

representation of visual data. In particular, it consists of: a) thirteen convolutional

(CONV) layers, b) five pooling (POOL) layers that perform 2 × 2 max-pooling with

stride set to 1, and c) three fully connected (FC) layers on top of the network. Every

CONV layer is followed by a Rectified Linear Unit (RL) non-linearity to filter its

activations. In total the VGG16 architecture has approximately 138M parameters.

The main advantage of VGG16 compared to similar CNN architectures is that all used

CONV layers perform 3×3 convolutions. This enables the stacking of multiple CONV

layers between consecutive POOL layers, as shown in Fig. 3-1, that creates an effective

receptive field of 5 × 5 or 7 × 7 resolution (for stacking two or three CONV layers,

respectively). The presented CONV stacking has another benefit. It enables the

utilization of three RL activations instead of one, which leads to more discriminative

learned representations. On the other hand, the main disadvantage of the VGG16

model is that it requires more memory compared to more recent architectures, such

as ResNet [28], due to the high number of parameters (138M). However, most of these

parameters are in the FC layers that are used only for the object recognition task, as

VGG16 is used for convolutional feature extraction, i.e. up to the last CONV layer,
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Figure 3-2: A schematic representation of the C3D model [105]. It can be seen that
C3D follows the VGG16 structure, but utilizes 3D kernels in all convolutional and
pooling layers.

in the context of affordance reasoning and segmentation.

However, the VGG16 model cannot encode any temporal dependencies and cor-

relations as it relies solely on 2D convolutions. On the contrary, 3D convolutions are

applied to both the spatial and the temporal domain, thus are advantageous in mod-

eling spatio-temporal and 3D characteristics. This is the reason that they are used in

several computer vision applications that process either 3D input data (e.g. voxelized

representations) for tasks such as 3D object recognition [32,41,115] and 3D shape re-

trieval [51, 89], or spatio-temporal data for activity [42] and action recognition [105].

Since this thesis focuses on understanding affordances by observing human-object

interactions, we use 3D convolutions for encoding spatio-temporal information.

A widely used deep neural network that utilizes 3D convolutions for spatio-temporal

information processing is the C3D model [105]. As depicted in Fig. 3-2, it consists

of 8 3D convolutional (3DCONV), 5 POOL, and 2 FC layers, mimicking the VGG16

overall structure. This model processes groups of video frames, stacked along the

RGB-channel axis to form 3D representations. Note that a very important module

of C3D is the 3D POOL operators, as they further reduce the size of the input data,

while preserving the encoded motion patterns and removing irrelevant information.

3.2 Recurrent Neural Networks

An RNN is a connectivity pattern that forms a directed graph along a temporal

sequence of vectors {𝑥1, . . . , 𝑥𝑇}. The ability to process variable length sequences is

based on the internal state ℎ𝑡 of the model, also known as internal memory. The

model uses a recurrence formula of the form ℎ𝑡 = 𝑓𝜃(ℎ𝑡−1, 𝑥𝑡), where 𝑓 is a linear

combination of the previous hidden state, i.e. ℎ𝑡−1, with the current input vector 𝑥𝑡,
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followed by a non-linear activation function. Note that at each time step the model

utilizes the same parameters 𝜃, enabling the processing of sequences with an arbitrary

number of vectors. A typical form of an RNN network is the following:

ℎ𝑡 = tanh

(︂
𝑊

(︂
𝑥𝑡

ℎ𝑡−1

)︂)︂
, (3.1)

where the hidden vector ℎ𝑡 can be interpreted as a running summary of all vectors 𝑥

until the time step 𝑡, and 𝑓 is realized as the parameters 𝑊 followed by a hyperbolic

tangent 𝑡𝑎𝑛ℎ non-linearity. Note that in (3.1) the bias terms are omitted for brevity.

However, the vanilla RNN has a major disadvantage when processing long sequences.

In particular, during the backpropagation through time, the gradients either decrease

or increase exponentially, depending on the used activation functions. The exponen-

tial increase problem, known as “exploding gradients”, has been circumvented using

a heuristic approach of clipping the gradients at some maximum value [74]. Nev-

ertheless, the RNNs still suffer from the exponential decrease problem, also termed

“vanishing gradients”.

To address the aforementioned limitations of the RNN, the Long-Short Term Mem-

ory (LSTM) model is introduced in [30]. Its recurrence formula allows the input and

hidden state vectors to interact in a more computationally complex manner that in-

cludes multiplicative interactions and propagates the gradients back in time more

efficiently. The main contribution of the LSTM is its memory vector 𝑐𝑡, which can be

used to read from, write to, or reset at each time step, using explicit gating mecha-

nisms. In more detail, the update of an LSTM cell at each time step is described by

the following equation:

⎛⎜⎜⎜⎜⎜⎜⎝
𝑖

𝑓

𝑜

𝑔

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
𝜎

𝜎

𝜎

tanh

⎞⎟⎟⎟⎟⎟⎟⎠𝑊

(︂
𝑥𝑡

ℎ𝑡−1

)︂
,

𝑐𝑡 = 𝑓 ⊙ 𝑐𝑡−1 + 𝑖⊙ 𝑔

ℎ𝑡 = 𝑜⊙ tanh(𝑐𝑡)
, (3.2)

where the sigmoid function, denoted as 𝜎, and the hyperbolic tangent are applied in
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Figure 3-3: A schematic representation of a Long-Short Term Memory cell [30].

an element-wise manner. Note, that the 𝑖, 𝑓 , and 𝑜 vectors are realized as binary

gates that control whether each memory cell is updated, reset to zero, or its local

state is propagated to the hidden vector, respectively. This binary nature originates

from the utilized sigmoids that are used as activation functions and make the model

differentiable. Further, the vector 𝑔 has values in the [−1, 1] range due to the 𝑡𝑎𝑛ℎ

activation function and is used to additively modify the memory cell 𝑐 content. This

additive form is a significant part of the LSTM as the sum operation distributes

the gradients equally during back-propagation, allowing the gradients of 𝑐 to flow

backwards through time for long time periods.

3.3 Torch and PyTorch Frameworks

All models investigated in the context of this thesis are implemented using the Torch71

and PyTorch [75] frameworks. Both frameworks can be used to build arbitrary graphs

of neural networks and parallelize them over CPUs and/or GPUs in an efficient man-

ner. Torch7 supports LuaJIT, i.e. a user-friendly scripting language that is used for

scientific programming, while its packages are implemented in C and CUDA. On the

other hand, PyTorch supports the Python programming language and is a highly

1http://torch.ch/
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efficient library for building complex and production ready deep learning architec-

tures. Since Python is a highly flexible language, PyTorch has replaced Torch7 in

most deep learning communities, such as in computer vision, natural language pro-

cessing, and medical imaging. One of its key functionalities is that it applies a graph

meta-programming based approach, where the executive code for defining layers,

composing models, loading data, and running the optimizer are expressed by general

purpose programming. This design ensures that any new neural network architecture

can be easily implemented and generalized. Other advantages of this framework are

its interoperability and extensibility, which enable the bi-directional exchange of data

with several external libraries.
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Chapter 4

The SOR3D Dataset

In this chapter, the large-scale dataset designed to advance research in affordance un-

derstanding is detailed. The corpus, denoted as SOR3D, consists of multiple object

types and complex affordances, and focuses on the task of affordance-based object

recognition. Note, that it constitutes the broadest and most challenging dataset

in the affordance-based object recognition literature. A subset of SOR3D, denoted

as SOR3D-AFF, provides extra annotations targeting the affordance reasoning and

segmentation tasks. SOR3D, as well as the aforementioned subset, facilitate the de-

velopment and efficient evaluation of affordance-based object recognition, affordance

reasoning, and affordance segmentation approaches. The dataset is publicly available

at http://sor3d.vcl.iti.gr/.

Figure 4-1: Schematic representation of the SOR3D capturing setup. The three
Kinect sensors (K1-K3) are placed from left to right at 90∘, 180∘, and 225∘ with
respect to the subject orientation.
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Figure 4-2: SOR3D capturing snapshots. The two markers on the tablecloth indicate
the starting position of the object (at the middle of the table) and the hand (at the
edge of the table).

4.1 Capturing Setup

The SOR3D dataset recording setup involved three synchronized Microsoft Kinect II

sensors [58] in order to acquire RGB (1920 × 1080 resolution) and depth (512 × 424

resolution) streams from three different viewpoints, as depicted in Fig. 4-1, all at 30

Hz frame rate and an approximate 1.5 meters “head-to-device” distance. A monitor

was utilized for displaying the “prototype” instance before the execution of every

human-object interaction. Additionally, all involved subjects were provided with a

ring-shaped remote mouse, held by the other hand than that interacting with the

objects. This allowed the participants to indicate by themselves the start and end

of each session (i.e. performing real-time annotation). Before the execution of any

interaction, all objects were placed at a specific position on a desk, indicated by a

marker on the table cloth, while a similar marker was placed at the edge of the table

as a starting point for the hand that would participate in the hand-object interaction.

The two markers are depicted in the two recording snapshots of Fig. 4-2.

The dataset was recorded under controlled environmental conditions, i.e. with

negligible illumination variations (no external light source was present during the

experiments) and a homogeneous static background (all human-object interactions

were performed on top of a desk covered with a green tablecloth). Snapshots of the

captured video streams from each viewpoint are depicted in Fig. 4-3.
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Table 4.1: Supported object and affordance types in the SOR3D corpus. Considered
object-affordance combinations are marked with

√
.

Object types Affordances
Grasp Lift Push Rotate Open Hammer Cut Pour Squeeze Unlock Paint Write Type

Ball
√ √ √

Book
√ √ √ √ √

Bottle
√ √ √ √

Box
√ √ √ √ √

Brush
√ √ √

Can
√ √ √

Cup
√ √ √ √

Hammer
√ √ √

Key
√ √ √ √

Knife
√ √ √

Pen
√ √ √

Pitcher
√ √ √ √ √

Smartphone
√ √ √ √

Sponge
√ √ √ √ √

4.2 Classes and Data Splits

Regarding the nature of the supported human-object interactions, a set of 14 object

types was considered (each type having two individual instantiations, e.g. small and

big ball). The appearance characteristics of the selected object types varied signifi-

cantly, ranging from distinct shapes (like “box” or “ball”) to more challenging ones (like

“knife”). Taking into account the selected objects, a respective set of 13 affordance

types was defined, covering typical manipulations of the defined objects. Concerning

the complexity of the supported affordances, relatively simple (e.g. “grasp”), complex

(e.g. leading to object deformations, like affordance “squeeze”), and continuous-nature

ones (e.g. affordance “write”) were included. In contrast, other experimental settings

in the literature have mostly considered simpler and less time evolving affordances,

like “grasp” and “push”. In Table 4.1, all supported types of objects and affordances,

as well as all combinations that have been considered in the dataset, are provided. As

listed, a total of 54 object-affordance combinations (i.e. human-object interactions)

are supported. All participants were asked to execute all object-affordance combina-

tions indicated in Table 4.1 at least once. The experimental protocol resulted in a

total of 20,830 videos, considering the data captured from each Kinect as a different

human-object interaction instance. The length of every recording varied between 4
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Figure 4-3: Examples of human-object interactions captured by the 3 Kinect sensors
employed in the SOR3D corpus recording setup.

and 8 seconds. The dataset was split into training, validation, and test sets (25%, 25%

and 50%) that correspond to approximately 5k, 5k and 10k hand–object interaction

videos, respectively.

4.3 SOR3D-AFF Subset

In order to facilitate research in affordance reasoning and segmentation, the SOR3D-

AFF dataset was created, providing heatmap and pixel-level segmentation mask an-

notations for object affordances. In particular, it consists of 1201 RGB-D videos,

being a subset of SOR3D corpus. The data is split into 902 videos for training. 60 for

validation, and 239 for testing. SOR3D-AFF supports 9 affordances types, namely

“grasp”, “cut”, “lift”, “push”, “rotate”, “hammer”, “squeeze”, “paint”, and “type”, of 10

common household objects, such as “pitcher” and “knife”. Note that we choose to

omit some object categories from SOR3D, as well as their corresponding affordances,

as the affordance-related annotation for these objects is problematic (e.g. “pen” is

fully occluded during interaction and has very noisy depthmap, “box” has a removable

layer so the object shape in the last frame is not the same with the one during the

interaction). Note that only videos captured from the K1 and K3 viewpoints (see

Fig. 4-1) are used, as from the K2 viewpoint the interaction spot was not always visi-
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Figure 4-4: Four indicative SOR3D-AFF samples. From left to right: a) a frame
sampled from the interaction sequence (1920 × 1080 pixel resolution), b) the last
frame of the sequence that is used as target frame, c) the segmentation mask of the
target frame (1920 × 1080 pixel resolution), d) hotspot annotations on the target
frame (1920 × 1080 pixel resolution), e) the sampled interaction frame after RGB-D
alignment (the color image is mapped to the depthmap resolution, i.e. 512 × 424),
and f) the colorized 3D optical flow representation of the interaction frame after
center-cropping to 300 × 300 pixel resolution.

ble. For each video, the following annotations are provided only for the last frame: a)

pixel-level affordance segmentation mask, b) affordance heatmap based on Gaussian

blurring of marked pixels that indicate the human-object interaction hotspot, c) ob-

ject bounding box, and d) object label. The action label of each video is also provided,

which is complementary to the corresponding affordance, i.e. “grasp”, “squeeze”. Some

indicative annotated samples are depicted in Fig. 4-4.

4.4 Relevant Datasets in the Literature

Table 4.2 lists datasets that consist of tool-objects captured indoors and include af-

fordance information. From this Table, we can observe that the datasets that include

hand-object interaction sessions, apart from SOR3D, consist of small numbers of

samples and are not publicly available (note that the TTU dataset [122] provides
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Table 4.2: Datasets that consist of “tool-objects” (indoor scenes) and have affordance
information available in the form of instance or pixel-level annotations. The SOR3D
dataset is reported in the last row for comparison.

Dataset Interaction Format Objects Affordances Subjects Samples Public availability
[44] yes RGB 6 3 4 28 no
[6] yes RGB 7 5 20 130 no
[45] no RGB 8 1 n/a n/a no

TTU [122] yes RGB-D 10 3 1 452 no
ADE-Affordance [96] no RGB 8 4 n/a 10,360 yes
IIT-AFF [66] no RGB-D 10 9 n/a 8,835 yes
COQE [61] no RGB 10 1 n/a 5000 yes
UMD [62] no RGB-D 17 7 n/a 10,000 yes
OPRA [15] yes RGB n/a 7 n/a 20,612 yes
SOR3D yes RGB-D 14 13 105 20,800 yes

only the colored point clouds of the objects and not the hand-object sequences).

The OPRA corpus [15] is an exception, however this dataset focuses on affordance

reasoning by providing affordance heatmaps and action labels. On the other hand,

ADE-Affordance [96], IIT-AFF [66], COQE [61], and the one from [45] include only

static objects with no interaction, while the affordance information is represented as

pixel-wise annotation of the object part that enables a specific affordance (e.g. the

handle of a cup is annotated as “graspable”) followed by the corresponding bounding

box. These datasets are mostly used for affordance detection, reasoning, and segmen-

tation. Part of the information in Table 4.2 is also reported in the recent survey on

visual affordances by [26].

The datasets that are used for training and/or evaluation purposes in this thesis,

apart from SOR3D/SOR3D-AFF, are further detailed below:

IIT-AFF. The dataset consists of a combination of images from ImageNet [10]

and a collection from two RGB-D sensors at various resolutions. All images depict

cluttered scenes that include multiple objects. The 9 supported affordance classes are:

“contain”, “cut”, “display”, “engine”, “grasp”, “hit”, “pound”, “support”, and “w-grasp”.

For each image, there are pixel-level affordance labels and object bounding boxes.

UMD. The dataset provides pixel-level affordance labels for 105 kitchen, work-

shop, and garden tools. The tools were collected from 17 different object categories

covering 7 affordance classes, namely “grasp”, “cut”, “scoop”, “contain”, “pound”, “sup-
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port”, “wrap-grasp”. For each dataset sample, a color image and the corresponding

aligned depthmap are available, both in 640 × 480 pixel resolution.

OPRA. The dataset consists of 20,612 RGB video clips of various resolutions,

depicting product reviews for appliances, such as pans and washing machines, split

into 16,976 clips for training and 3,798 clips for validation. Each video contains the

demonstration of an appliance feature, e.g. scoop food from the pan, and is paired

with a static image that depicts the same object without any background or occlusion

(target image). The supported affordance classes (7 in total) are the following: “hold”,

“touch”, “rotate”, “push”, “pull”, “pick up”, “put down”. Note that each target image

is annotated with an affordance heatmap, which is the result of Gaussian blurring

applied on 10 marked pixels that indicate the location of the human-object interaction.
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Chapter 5

Sensorimotor Object Recognition

5.1 Introduction

In this chapter we investigate the contribution of the affordance information to object

recognition. As discussed in Chapter 1, objects constitute key elements for scene

understanding, action identification, interaction prediction, and other computer vision

tasks. Thus, the process of recognizing them in the context of an image or video has

been an challenging research topic over the last decades.

There is accumulated evidence that humans, at an early stage of their lives, per-

ceive objects by combining their visual attributes with the feedback from interacting

with them. This process is known as “sensorimotor learning” [11, 19, 76], due to the

parallel processing of the “sensory” and “motor” information in the human brain. In-

deed, it is well established by cognitive scientists that there are two main streams

that process the aforementioned information [106,107]: the ventral stream that runs

in the inferotemporal cortex is involved in the recognition of objects, while the dorsal

one that projects to the posterior parietal cortex is involved in the understanding

of 3D space and action planning. Research findings indicate that the two streams

process information both independently and in parallel, utilizing feedback loops and

sharing information through neural connections that exist in multiple stages [4, 7].

These identified interconnections enable the human brain to fuse sensory and motor

information, so as to achieve robust cognition.
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Figure 5-1: Schematic of the deep learning based architecture of the proposed senso-
rimotor 3D object recognition framework. Following fusion of the object appearance
and affordance processing streams, the object class is predicted.

Motivated by the above facts, we investigate sensorimotor learning for RGB-D

object recognition in the context of “function from motion”. Further, inspired by the

complex neural network of the human brain, we adopt the deep learning paradigm [52]

to form two parallel information streams that process object appearance (sensory) and

affordance (motor) information. These streams exploit deep learning architectures,

primarily CNNs and RNNs, and are fused in multiple ways, in order to mimic the

complex information exchange between the brain processing pathways. A schematic

of our approach is depicted in Fig 5-1.

The main contribution of this chapter is therefore the deep sensorimotor learning

approach for the RGB-D object recognition task. Specifically, three variants of the

proposed two-stream sensorimotor modeling approach are considered that utilize dif-

ferent deep neural networks to encode the spatial-only or spatio-temporal correlations

of suitable appearance and affordance input representations.

Additionally, inspired by the aforementioned neuro-scientific findings for the hu-

man brain complex information exchange at different levels of granularity, fusion at

one or multiple layers of each model variant is extensively investigated. Regarding

spatio-temporal information processing, the incorporation of an attention mechanism

is also proposed, which forces the model to selectively attend to the affordance in-

formation, when the appearance one is not discriminative enough, as indicated by

appropriate stream confidence measures.

Further, an auxiliary loss function is introduced, based solely on affordance pre-
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dictions. The new loss is combined with the object prediction one, and the result is

used to optimize both streams during training. In order to compute the auxiliary loss,

a classifier is added after the last affordance stream layer, but later removed during

inference.

Finally, an extensive quantitative evaluation of the proposed models is presented,

using the challenging SOR3D corpus (see Chapter 4) that includes a significantly

increased number of affordances compared to existing works in the literature (see

Section 4.4 and Table 4.2). Besides comparison of the two-stream models with the

appearance-only baseline, the best performing one is further benchmarked against

traditional probabilistic fusion approaches. The evaluation is concluded with a cross-

view analysis, providing valuable insights about how view-dependent is the affordance

information and how each viewpoint affects model performance.

5.2 Visual Front-end and Single-stream Models of

Appearance and Affordance

In this section, the preprocessing framework, as well as the appearance and affordance

input representations are detailed. Additionally, three single-stream models capable

of encoding either spatial-only or spatio-temporal information are presented.

5.2.1 Input Streams and Preprocessing

The SOR3D data preprocessing begins with the RGB and depthmap frame align-

ment, based on the Kinect intrinsic parameters. Then, the region that includes the

hand-object interaction is defined and a centered rectangular region (300 × 300 pix-

els) is cropped. Subsequently, using a simple thresholding method in the HSV color

space [108], the background is removed, and the skin color pixels (i.e. those corre-

sponding to the hand region) are separated from the object ones. As a result, the

hand and object RGB and depthmap frames are provided separately, as depicted in

Fig. 5-2. Note that the hand-object separation leads to the two types of information

49

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 00:16:39 EEST - 3.138.69.146



Figure 5-2: Preprocessing overview. The captured RGB and depth raw data (top)
are initially aligned, the 3D volume of interest is cropped (middle), and the hand and
object RGB and depth representations are separated (bottom).

utilized in this thesis, namely the object appearance that is related to the object

shape, color, and texture, and the object affordance that is related to the hand move-

ment. This process aims to remove information that is not relevant to the interaction

(e.g. background, tablecloth, etc.), in order to investigate the true added value of the

affordance information. Note also that as this database is collected in a controlled lab
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environment (i.e. illumination, green tablecloth, no long sleeves), traditional segmen-

tation approaches are very accurate, thus a more sophisticated semantic segmentation

algorithm would offer no substantial gains.

Due to the low object intra-class variance, we choose to ignore the RGB infor-

mation and instead encode the depth information using two different approaches. In

the first one, we adopt the depth encoding algorithm introduced by [24], which re-

lies on computing three depth-based features, namely the Horizontal disparity, the

Height above the ground, and the Angle between the surface normals and the gravity

direction of the captured scene (HHA). The three computed features are stacked to

form a 3-channel representation that has the same width and height as the original

depthmap. The second depth encoding approach is depthmap “colorization”. Moti-

vated by [14], depth colorization is performed by normalizing all depth values in the

interval [0, 255] and then mapping each pixel distance to color values ranging from

red (near) to yellow (far), transforming the one-channel depthmap to a three-channel

color image. Note that the aforementioned approaches also enable the exploitation

of transfer learning by using deep learning models pre-trained on large-scale image

datasets [72, 104,116].

Besides depth encoding, we further process the original depthmaps and RGB

frames in order to compute the 3D optical flow of the interaction (relating to object

affordance). Due to the development of affordable RGB-D sensors, several 3D flow

computation methods have been proposed in the literature [25, 33, 81]. Here, we

utilize the primal-dual algorithm proposed in [35] due to its efficiency. In detail, the

3D motion vectors between two pairs of RGB-D images, as well as their magnitude are

first computed. The 3D flow and its magnitude are then colorized by normalizing each

axis values in the interval [0, 255], transforming the 3D motion vectors into a three-

channel image. We further choose to encode the 3D flow sequence into a single motion

map, by accumulating the flow over the entire sequence, as such representations can

be very informative [109].

To summarize, the information streams that are utilized as input to the proposed

models are: a) HHA encoding, b) colorized depthmaps (CDM), c) colorized 3D op-
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Figure 5-3: Example video session “pour from pitcher” from the SOR3D corpus, sam-
pled every 4 frames. The object appearance is depicted as colorized depthmaps and
HHA encoding (only for an example frame, top-down: disparity, height, normals chan-
nels are shown), while the affordance information is depicted as colorized depthmaps,
HHA encoding (same example frame and top-down presentation as HHA-AP), 3D
optical flow, and 3D optical flow magnitude, as well as the accumulation of the latter
two over the sequence of 𝑇 frames.

tical flow (COF) along with the accumulated colorized 3D optical flow (ACOF), and

d) colorized 3D optical flow magnitude (COFM), coupled with the corresponding ac-

cumulated one (ACOFM). Fig. 5-3 depicts an example of two appearance and six

affordance input representations of a “pour from pitcher” session. For the sake of

clarity, the information stream that processes the object appearance is denoted as

the “appearance stream”, while the one that processes the hand-object interaction is

denoted as the “affordance stream”. Additionally, the notation {AP, AF} is used to

state that a specific input is received from the appearance or the affordance stream

(e.g. CDM-AP denotes that the appearance stream receives colorized depthmaps as

input).

5.2.2 Single-stream Models

For the appearance and affordance information processing, three single-stream models

are proposed, as detailed next.
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Figure 5-4: Detailed architecture of the adopted single-stream models: a) VGG16 that
is capable of encoding spatial information; b) VGG16-LSTM that utilizes a VGG16
and an LSTM to encode spatio-temporal information; and c) C3D that exploits 3D
convolutions to encode spatio-temporal information. The CDM-AP or HHA-AP can
be used as input appearance representations, while various affordance input represen-
tations of Fig. 5-3 can be used, as evaluated in Table 5.1 of Section 5.4.1.

The first model, depicted in Fig. 5-4(a), is the VGG16 model, which encodes

the spatial-only information of an input image. Note that this model can efficiently

learn complex spatial feature representations and has been widely used for visual

recognition purposes. The second model is capable of encoding both spatial and

temporal information, by processing sequences of 2D frames. As shown in Fig. 5-

4(b), the model consists of a VGG16 model followed by an LSTM one. Finally, as

a third model we use the C3D network, depicted in Fig. 5-4(c), which is capable of

encoding spatio-temporal information.

The aforementioned models are separately trained for object and affordance recog-

nition, using the 14 object and 13 affordance classes as ground truth, respectively.

Note that all models use a Softmax layer for class prediction. Additionally, HHA

encoding and CDM are used as input representations of object appearance, whereas

all six affordance input representations reported in Section 5.2.1 are utilized to inves-
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tigate their impact on RGB-D object recognition.

Regarding the VGG16 model, which predicts classes for individual images, the

video-level object prediction is obtained by averaging all frame-level predictions. How-

ever, this process is not effective for affordance recognition. Intuitively, object affor-

dances are explicitly described by hand motion, which is time-evolving. Thus, using

the VGG16 model to predict the affordance class of a sequence would be inconsistent.

This intuition is confirmed in Section 5.4.1 (see also Table 5.1), hence for most of

the Thesis we utilize only the ACOF and ACOFM representations as input to the

affordance VGG16, as they summarize the entire motion of the sequence accumulated

within a single frame.

5.3 Two-stream Models Fusing Appearance and Af-

fordance

Motivated by the two-stream hypothesis of the human brain sensorimotor learning

process, the aforementioned single-stream models are fused in multiple ways in or-

der to achieve robust object recognition. Three sensorimotor models are presented,

where the appearance and affordance information exchange between the two streams

is extensively investigated.

5.3.1 Spatial-only Model (SP)

The two-stream spatial-only model (SP), depicted in Fig. 5-5, utilizes two VGG16 net-

works, one for appearance and the other for affordance information processing. The

appearance VGG16 receives HHA-AP or CDM-AP input, while the affordance one

processes either ACOF-AF or ACOFM-AF representations, similarly to the single-

stream affordance VGG16 described in Section 5.2.2. Three fusion schemes of the

two streams are investigated: a) late fusion at the FC layer level (SP𝐿−𝐹𝐶); b) late

fusion at the CONV layer level (SP𝐿−𝐶𝑂𝑁𝑉 ); and c) multi-layer fusion (SP𝑀𝐿) that

combines the aforementioned approaches.

54

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 00:16:39 EEST - 3.138.69.146



Figure 5-5: Detailed architecture of the SP model for: a) late fusion at the FC layer;
b) late fusion at the CONV layer; and c) multi-layer fusion. Each block (B1-B5)
corresponds to a CONV-RL-POOL sequence of VGG16, while FUS indicates feature
fusion (concatenation). At the right side of each fusion scheme, the dimensionality
of the activation matrix for each CONV block is reported as “ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ ×
𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠” and for each FC layer as the number of neurons. The CDM-AP or HHA-
AP representations can be used as input to the appearance stream, whereas the
ACOF-AF and ACOFM-AF as input to the affordance stream.

Late fusion at the FC layer level (Fig. 5-5(a)) is realized by concatenating the

activations of FC6 (i.e. the sixth VGG16 layer, which is a FC one) of each stream,

after the RL non-linearity. After fusion, a single stream of a 4096-dimensional (dim)

FC layer and a Softmax layer is formed.

Regarding late fusion at the CONV layer level (Fig. 5-5(b)), the activation maps

after RL5 (non-linearity of CONV5) are concatenated along the channel dimension.

In more detail, if 𝑋ℎ×𝑤×𝑑
𝑠 represents each activation matrix, where 𝑠 ∈ {AP,AF,FUS}

and ℎ, 𝑤, 𝑑 correspond to the height, width, and number of channels, then 𝑋14×14×512
𝐴𝑃 ,

𝑋14×14×512
𝐴𝐹 are the inputs and 𝑋14×14×1024

𝐹𝑈𝑆 is the output of the fusion. The latter is
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further convolved with 512 filters of 1× 1 size and downsampled using a max-pooling

layer (2 × 2 size), thus resulting in a 𝑋7×7×512
𝐹𝑈𝑆 activation matrix. Similarly to the

FC layer late fusion, a single processing stream is formed that consists of 2 FC layers

(4096-dim) and a Softmax layer.

Finally, in order to allow more complex information exchange at different levels of

granularity between the two streams, a multi-layer fusion scheme is also investigated

(Fig. 5-5(c)). In particular, the two streams are initially fused after the last CONV

layer (RL5) and then fused again after FC6 (RL6). The appearance FC6 layer receives

as input the fused activations, while the affordance FC6 receives the activations from

POOL5 (POOL layer after CONV5) of the affordance stream only. Subsequently, the

activations after RL6 of both streams are concatenated forming a 8192-dim feature,

followed by a 4096-dim FC layer and a Softmax layer. Note that, in the multi-layer

fusion case only, the weights of the affordance B1-B5 layers are not updated from the

gradients computed at the CONV fusion level during backpropagation. In that way,

the affordance stream contributes to the appearance one in multiple levels, without

being particularly affected by the appearance information.

For the video-level object class prediction, the object probabilities for each frame

of the sequence are averaged. Note that the affordance input representation remains

unaltered, as it includes the aggregated information of the entire sequence.

5.3.2 Spatio-temporal 2D Model (ST2D)

Another approach for modeling the dynamic nature of the affordance information

is realized with the proposed two-stream Spatio-Temporal 2D model (ST2D). As

shown in Fig. 5-6, we adopt the VGG16-LSTM structure to model the spatio-temporal

nature of the hand-object interaction. Two fusion approaches are considered, namely

intermediate (ST2D𝐼𝑀) and late fusion (ST2D𝐿).

Regarding the ST2D𝐼𝑀 model, the 4096-dim spatial feature vectors extracted by

each VGG16 model (i.e. the activations after the RL7 layer) are concatenated and

then processed by the LSTM at every time instant, namely at every frame of the input

sequence. The LSTM encodes the temporal correlations of the interaction, while its
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Figure 5-6: Detailed architecture of the ST2D model for: a) late fusion and b) in-
termediate fusion. Blocks B1-B5, FC6, and FC7 correspond to the VGG16 network,
while FUS indicates feature fusion. At the right side, the internal structure of the
LSTM, as well as the input 𝑥 and output ℎ vector dimensionality for each fusion
scheme are depicted. The appearance stream processes HHA-AP or CDM-AP in-
puts, while the HHA-AF, CDM-AF, COF-AF, and COFM-AF representations can
be used as input to the affordance stream.

internal state vector [ℎ(𝑡)] (4096-dim) is further processed by a Softmax layer for the

object class prediction.

On the other hand, ST2D𝐿 adopts the VGG16-LSTM structure only for the af-

fordance information processing, since the appearance VGG16-LSTM performs sig-

nificantly worse than VGG16 as a single-stream object classifier (see Section 5.4.1

and Table 5.1). Thus, for this model, the RL7 activations of the appearance stream

(4096-dim) are concatenated with the internal state vector [ℎ(𝑡)] (4096-dim) of the

affordance VGG16-LSTM at every time instant. The outcome of the concatenation

is further processed by a Softmax layer.

Regarding the final prediction, two approaches are investigated for both fusion

schemes. These approaches aggregate the frame-level prediction to yield a video-level

classification decision. Given a series of frame-level posteriors 𝑝𝑡,𝑐, where 𝑡 = 1, . . . , 𝑇

is the frame number and 𝑐 = 1, . . . , 𝐶 the object class, the video-level classification

decision 𝑐 is given either by:

57

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 00:16:39 EEST - 3.138.69.146



𝑐𝑎𝑣𝑔 = arg max
𝑐

1

𝑇

𝑇∑︁
𝑡=1

𝑝𝑡,𝑐 , (5.1)

employing the averaging approach, or by:

𝑐𝑤 = arg max
𝑐

1

𝑇

𝑇∑︁
𝑡=1

𝑡 𝑝𝑡,𝑐 , (5.2)

using the weighting approach, respectively. Clearly, (5.1) indicates that all frame-level

predictions contribute equally to the video-level one. However, the LSTM weights

are updated after every processed frame, thus the affordance features prior to fusion

should be more discriminative at the end of the sequence. Thus, we utilize (5.2)

to force the model to focus more on the frame-level predictions over the last video

frames.

5.3.3 ST2D Model with Attention

The proposed attention mechanism is based on the appearance stream confidence. As

depicted in Fig. 5-7 (green box), a Softmax layer is added after the last FC layer of

the appearance CNN, which predicts the label of the object for each frame. The new

layer is followed by a module that measures the appearance-based classifier confidence

for the entire frame sequence. The output of the latter is used to selectively attend

to the affordance features extracted by the affordance CNN-LSTM stream, prior to

the fusion Multi-Layer Perceptron (MLP).

In order to measure the appearance classifier confidence, we investigate three

different metrics. Let 𝑐𝑡,𝑛, 𝑛 = 1, . . . , 𝑁 be the ranked 𝑁−best object class pre-

dictions of the appearance CNN classifier, 𝒞 the number of the object classes, and

𝑝𝑡,𝑛 = 𝑃𝑟(𝑐𝑡,𝑛|𝑥𝑡) the probability distribution after the Softmax given the appearance

feature vector 𝑥𝑡 at frame 𝑡. As the first metric, the entropy ℐ𝑡,𝐸 is computed for the

probability distribution as:

ℐ𝑡,𝐸 = −
𝒞∑︁

𝑛=1

𝑝𝑡,𝑛 log (𝑝𝑡,𝑛). (5.3)
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Figure 5-7: Detailed architecture of the proposed spatio-temporal late fusion model.
The green box includes the attention mechanism modules attached to the final FC
layer of the appearance CNN (top), which selectively attends to the affordance CNN-
LSTM output (bottom). The feature fusion MLP follows (right-most), while ⊘, ⊙,
and ⊕ represent normalization, frame-level multiplication, and concatenation.

Clearly, ℐ𝑡,𝐸 values that are close to zero indicate strong confidence, while larger

values indicate difficulty in discrimination. The second investigated metric is the

average 𝑁−best log-likelihood difference, computed as:

ℐ𝑡,𝐴 =
1

𝑁 − 1

𝑁∑︁
𝑛=2

(log (𝑝𝑡,1) − log (𝑝𝑡,𝑛)), (5.4)

where 𝑁 ≥ 2. In contrast to the entropy metric, larger values of ℐ𝑡,𝐴 indicate high-

confidence predictions. The last metric measures the log-likelihood dispersion among

the 𝑁−best class predictions, and is given by:

ℐ𝑡,𝐷 =
2

𝑁(𝑁 − 1)

𝑁−1∑︁
𝑛=1

𝑁∑︁
𝑚=𝑛+1

(log (𝑝𝑡,𝑛) − log (𝑝𝑡,𝑚)), (5.5)

where 𝑁 ≥ 2. Similarly to (2), larger ℐ𝑡,𝐷 values indicate high classification con-

fidence. It must be noted that the presented metrics have been also used in the

context of audio-visual speech recognition [1,78]. Following the appearance classifier
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confidence measurement, the ℐ𝑡 values of all frames are normalized to [0, 1] by:

𝑤𝑡 =
ℐ𝑡 − ℐ𝑚𝑖𝑛

ℐ𝑚𝑎𝑥 − ℐ𝑚𝑖𝑛

, (5.6)

where ℐ𝑚𝑖𝑛, ℐ𝑚𝑎𝑥 are calculated over the entire frame sequence, and 𝑤 ∈ [0, 1] is the

video confidence vector. The last step of the mechanism is given by:

𝐻̂ =

⎧⎪⎨⎪⎩𝑤 ⊙𝐻 if (5.3)

(1 − 𝑤) ⊙𝐻 if (5.4) or (5.5)

where ⊙ indicates the frame-level multiplication of confidence values with the LSTM

output matrix 𝐻𝑇×𝑀 . Notice that by multiplying 𝑤𝑡 with the corresponding ℎ𝑡, the

mechanism alters the impact of the affordance information on the final prediction,

since 𝐻̂𝑇×𝑀 is fused with the appearance features as:

𝑝𝑡 = softmax(𝜑(concat(𝑥𝑡, ℎ̂𝑡))), (5.7)

where 𝑥𝑡 ∈ 𝑋𝑇×𝐹 denotes the appearance feature vector, 𝜑 is the fusion MLP followed

by a Softmax function, and 𝑝𝑡 is the probability distribution of the attention-based

ST model (Fig. 5-7) for the 𝑡−th frame.

Regarding the final prediction, two approaches are investigated. Both aggregate

the frame-level prediction of the attention-based ST model to yield a video-level deci-

sion for the object label. Given a series of frame-level predictions 𝑝1,𝑐, . . . , 𝑝𝑡,𝑐, . . . , 𝑝𝑇,𝑐

from (5.7), the video-level classification decision 𝑦 is given either by:

𝑦𝑎𝑣𝑔 = arg max
𝑐

1

𝑇

𝑇∑︁
𝑡=1

𝑝𝑡,𝑐, (5.8)

as the averaging approach, or by:

𝑦𝑤 = arg max
𝑐

1

𝑇

𝑇∑︁
𝑡=1

𝑡 𝑝𝑡,𝑐, (5.9)
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Figure 5-8: Detailed architecture of the ST3D model for: a) late fusion at the FC
layer; b) late fusion at the CONV layer; and c) multi-layer fusion. At the upper right
side the dimensionality of the activation matrix for each CONV block is reported
as “ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ × 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠” and for each FC layer as the number of neurons.
The appearance stream processes HHA-AP or CDM-AP inputs, while the HHA-AF,
CDM-AF, COF-AF, and COFM-AF representations can be used as input to the
affordance stream.

as the weighting approach, respectively. Clearly, the latter forces the model to focus

more on the frame-level predictions over the last frames of the video, while the former

treats all frame-level predictions equally.

5.3.4 Spatio-temporal 3D Model (ST3D)

An alternative approach for modeling the spatio-temporal nature of time-evolving

interactions is by incorporating the 3D CNN structure in a two-stream model. The

two-stream Spatio-Temporal 3D model (ST3D) consists of two C3D ones, one for

appearance and the other for affordance information processing. Note that we choose

to process the appearance information using a C3D instead of a VGG16 model, as

we observed that despite its slightly inferior performance as single-stream classifier

for object recognition (see Section 5.4.1 and Table 5.1), it performs better when it

is combined with the affordance C3D. Additionally, since its structure is very sim-

ilar to VGG16, we investigate the same three fusion schemes as for the SP model
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(i.e. ST3D𝐿−𝐹𝐶 , ST3D𝐿−𝐶𝑂𝑁𝑉 , ST3D𝑀𝐿). The aforementioned fusion schemes are

depicted in Fig. 5-8.

Note that, unlike ST2D, the C3D models used as appearance and affordance

streams can selectively attend to both appearance and motion information. To sup-

port this hypothesis, [105] use the deconvolution method proposed in [119] to visualize

the patterns learned by the C3D weights over video samples. They report that based

on observations, the C3D starts by focusing on appearance in the first few frames

and tracks the salient motion in the subsequent ones. Thus, unlike ST2D, no extra

attention mechanism is incorporated to the model.

5.3.5 Auxiliary Loss Function

The training objective for the proposed two-stream models is to minimize the cross-

entropy loss between the predicted object class and the ground truth. This loss is

used to compute the gradients and update the weights of both streams. However,

besides incorporating affordance information to improve object class prediction, fur-

ther optimization of the models weights using an auxiliary loss function based solely

on the affordance stream performance can be beneficial. In order to compute the

auxiliary loss, the affordance features prior to fusion are used to train a Softmax

classifier. The training objective of the new classifier is to minimize the cross-entropy

loss between the predicted affordance class and the affordance ground truth. The two

loss functions can be combined and used to optimize both streams. This aggregated

loss is computed as:

ℒ𝑎𝑔𝑔 = − 1

𝐾

𝐾∑︁
𝑘=1

(︁
𝑦𝑜,𝑘 log(𝑝𝑜,𝑘) + 𝑦𝑎,𝑘 log(𝑝𝑎,𝑘)

)︁
, (5.10)

where 𝐾 is the total number of training samples, 𝑦𝑜,𝑘 and 𝑝𝑜,𝑘 are the object ground

truth and predicted probability, and 𝑦𝑎,𝑘 and 𝑝𝑎,𝑘 are the affordance ground truth and

predicted probability of sample 𝑘. The auxiliary loss can be applied to the affordance

stream of any two-stream model, except for the ST2D𝐼𝑀 where the two streams are

fused before the LSTM. Fig. 5-9 depicts an example of the auxiliary loss applied to
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Figure 5-9: Example of the auxiliary loss application on the SP𝑀𝐿 model. The
auxiliary loss is computed based on the affordance classifier and then combined with
the object recognition loss.

the SP𝑀𝐿 model.

5.4 Experimental Results

The presented single-stream and fusion models were evaluated using the SOR3D

dataset for the task of object recognition. The data captured from the three view-

points (see also Fig. 4-1) were accumulated into a unified (i.e. all-viewpoint) dataset,

which was then split into training, validation, and test sets (25%, 25% and 50%) that

correspond to approximately 5k, 5k and 10k hand-object interaction videos, respec-

tively, as also discussed in Section 4.2. For all 300×300 pixel extracted video frames,

a 224×224 patch was randomly cropped and used as input to the models. All models

were trained with the negative log-likelihood criterion, whereas for backpropagation,

Stochastic Gradient Descent with 0.9 momentum was used. The standalone VGG16

network was pre-trained on ImageNet [10], while the VGG16-LSTM and the C3D

were pre-trained on Sports-1M [42]. Subsequently, all models were fine-tuned on the

SOR3D dataset with learning rate set to 5 × 10−3, decreased by a factor of 5 × 10−1
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Table 5.1: Recognition accuracy of the three single-stream models of Section 5.2.2
on the test set of the SOR3D database for various appearance and affordance input
stream representations. Object recognition accuracy (%) is reported in the upper
part of the table (appearance stream) and affordance recognition accuracy (%) in the
lower part (affordance stream).

Input Stream VGG16 VGG16-LSTM C3D

HHA-AP 84.98 73.96 84.45
CDM-AP 85.12 74.33 84.67

HHA-AF 56.89 67.44 79.12
CDM-AF 57.28 69.27 81.44
COF-AF 58.32 68.02 82.68
COFM-AF 58.49 68.85 83.19
ACOF-AF 80.84 n/a n/a
ACOFM-AF 81.92 n/a n/a

when the validation accuracy curve plateaued. For fusion models training, 𝐿2 regu-

larization [64] was incorporated in order to prevent over-fitting. All experiments are

conducted on 2 Nvidia Titan X GPUs.

5.4.1 Single-stream Model Evaluation

The first set of experiments deals with the evaluation of the single-stream models

presented in Section 5.2.2. The results are reported in Table 5.1 in terms of overall

object and affordance recognition accuracy. For each video sequence, a set of 20

uniformly selected video frames was provided to each single-stream model, while due

to computational and memory restrictions the input sequence length for the C3D

model was set to 8 frames. For the latter, a sliding window of 8 frames was applied

to each sequence and the window-level predictions were averaged to provide a video-

level one. The aforementioned setup was used during both training and testing. The

frame-level predictions of the VGG16 were also averaged to provide a single prediction

for each video.

Regarding object recognition, VGG16 yielded the best overall accuracy compared
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to the VGG16-LSTM and C3D models for both CDM-AP and HHA-AP input rep-

resentations. From the aforementioned representations, CDM-AP performed slightly

better than HHA-AP (i.e. 85.12% over 84.98%), mainly due to the nature of the

captured data, i.e. height and disparity are more informative in outdoor scenes, or

indoor ones that consist of large objects (e.g. furniture). Based on the reported re-

sults, the VGG16 model that processes CDM-AP input representation was considered

as the appearance-only baseline for the rest of the experiments. Further, due to the

CDM-AP superiority over HHA-AP, the former was considered as appearance input

representation for all two-stream models evaluation.

In order to truly understand the impact of the affordance information on object

recognition, we firstly evaluated the affordance encoding efficiency of each single-

stream model. For this experiment, only the affordance information was utilized

providing the target labels, with the experimental framework remaining unaltered.

However, the last layer of each network was restructured to predict probabilities

based on the 13 affordance classes. From the results reported in Table 5.1, we can

conclude that when processing individual frames (i.e. HHA-AF, CDM-AF, COF-AF,

and COFM-AF) the VGG16 model cannot implicitly capture the temporal informa-

tion of the affordance. Additionally, we observe that the VGG16-LSTM model cannot

efficiently encode the temporal correlations of the sequence, mainly due to the short

and fine-grained interaction. On the other hand, the C3D model yields satisfactory

results for all affordance input representations, while the VGG16 one performs con-

siderably well when using accumulated 3D flow as input.

5.4.2 Two-stream Model Evaluation

In this section, the fusion models evaluation is detailed. It should be noted that

for all fusion model experiments the appearance stream receives CDM input (CDM-

AP), as discussed in Section 5.2.1. Thus, the appearance input is not reported in

Tables 5.2-5.6 for simplicity.
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Table 5.2: Object recognition results (in accuracy, %) on the SOR3D test set, using
different SP-based fusion and training schemes and affordance inputs (in conjunction
with CDM-AP input).

Input Stream (Regularization) SP𝐿−𝐹𝐶 SP𝐿−𝐶𝑂𝑁𝑉 SP𝑀𝐿

ACOF-AF 87.03 87.93 89.10
ACOFM-AF 87.40 88.24 89.43
ACOFM-AF (aux. loss) 88.37 89.63 90.79
ACOFM-AF (𝐿2) 87.92 88.55 89.95
ACOFM-AF (aux. loss, 𝐿2) 88.54 89.81 91.12

5.4.3 SP Model Evaluation

Table 5.2 shows the performance of the SP model, in terms of object recognition

accuracy. From the presented results, it can be seen that using the ACOFM input

representation is advantageous compared to the ACOF one. Thus for the rest of

the SP model evaluation, the former representation is utilized. Further, the late

fusion of CONV features (i.e. fusion after RL5) appears to perform better compared

to the late fusion at the FC layer level. Note that at the FC layers the spatial

information is lost, thus fusing CONV layer activations leads to more discriminative

post-fusion features. Interestingly, SP𝑀𝐿 outperforms the aforementioned late fusion

schemes. Using this fusion approach, the model learns both mid-level and high-

level feature representations, without loosing the spatial correspondence due to the

feature-flattening at the FC layers.

Additionally, significant performance improvement can be observed when the aux-

iliary loss (see Section 5.3.5) is incorporated. This result reflects the importance of

the affordance modeling optimization in parallel with the overall object recognition

task. Further, regularization with the 𝐿2 norm leads to higher accuracy. In fact,

the SP𝑀𝐿 model trained using the auxiliary loss and the 𝐿2 norm outperforms the

appearance-only VGG16 by an absolute 6%.

Fig. 5-10(b) visualizes the confusion matrix of the best performing SP𝑀𝐿 model

(ACOFM-AF, aux. loss, 𝐿2) on the SOR3D test set. It can be observed that
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Table 5.3: Object recognition results using the ST2D𝐼𝑀 and ST2D𝐿 models in con-
junction with the averaging (AVG) and weighting (W) video-level prediction ap-
proaches for various affordance input representations and CDM-AP input.

Input Stream ST2D𝐼𝑀 -AVG ST2D𝐼𝑀 -W ST2D𝐿-AVG ST2D𝐿-W

HHA-AF 79.33 80.17 86.12 86.53
CDM-AF 79.65 80.43 86.50 86.87
COF-AF 78.98 79.94 86.30 86.64
COFM-AF 79.08 80.04 86.38 86.72

this fusion scheme boosts recognition performance of all supported objects over the

appearance-only VGG16 with CDM-AP input (see Fig. 5-10(a)), demonstrating the

additional discriminative power of affordance information.

5.4.4 ST2D Model Evaluation

Experimental results of the ST2D-based fusion evaluation are reported in Tables 5.3-

5.5. In all cases, as in Section 5.4.1, a set of 20 uniformly selected frames was provided

as input to the respective networks.

Table 5.3 reports the comparative evaluation of the averaging and weighting video-

level prediction for the ST2D𝐿 and ST2D𝐼𝑀 models. It can be observed that, for both

fusion schemes and all affordance input representations, the weighting approach leads

to better overall accuracy than the averaging one. Thus, for the rest of the ST2D

experiments reported in Tables 5.4 and 5.5, the weighting video-level prediction is

adopted.

Table 5.4 shows that the ST2D𝐼𝑀 performs worse than the appearance-only VGG16

(i.e. 80.43% over 85.12%). Thus, we conclude that the LSTM cannot efficiently en-

code the time-evolving object manipulation, using a sequence of fused representations

as input. Note that the latter is the result of fusing the two information streams at

the FC layer-level, where the spatial correspondence is lost; thus, the LSTM has diffi-

culty learning temporal correlations for both appearance and affordance. In contrast,

the ST2D𝐿 fusion scheme outperforms the appearance-only VGG16 for all affordance
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Table 5.4: Object recognition results using different ST2D-based fusion and training
schemes and affordance inputs (in conjunction with CDM-AP input).

Input Stream (Regularization) ST2D𝐼𝑀 -W ST2D𝐿-W ST2D𝐿-W
(attention)

HHA-AF 80.17 86.53 89.14
CDM-AF 80.43 86.87 89.84
COF-AF 79.94 86.64 89.91
COFM-AF 80.04 86.72 90.02
COFM-AF (aux. loss) n/a 86.86 90.18
COFM-AF (𝐿2) 80.42 86.78 90.09
COFM-AF (aux. loss, 𝐿2) n/a 86.95 90.31

input representations. In detail, the ST2D𝐿 scheme with HHA-AF input yields an

absolute improvement of 1.41% compared to the appearance-only VGG16, which is

further improved by CDM-AF, COF-AF, and COFM-AF to 1.75%, 1.52%, and 1.6%

boosts, respectively.

The performance of ST2D𝐿 is further improved when the attention mechanism

is incorporated. Based on Table 5.5, the 𝑁−best log-likelihood dispersion metric

(𝑁 = 3) is selected as it yields the best overall accuracy. The inclusion of the atten-

tion mechanism leads to a performance boost for all affordance input representations

(see right-most column of Table 5.4). Note also that the attention-based model us-

ing COFM-AF slightly outperforms the ones that use HHA-AF and CDM-AF as

input representations. One plausible reason is that the 3D optical flow of the hand

movement, prior to and after the interaction, may not contain significant affordance

information, thus its impact to the final prediction should be small for the corre-

sponding frames. The application of the auxiliary loss to the attention-based ST2D𝐿

model with COFM-AF input, in combination with 𝐿2 regularization, yields a 90.31%

object recognition accuracy.

The confusion matrix of the attention-based ST2D𝐿 (COFM-AF, aux. loss, 𝐿2)

model on the SOR3D test set is given in Fig. 5-10(c). It can be seen that it confuses

objects that are very small or thin and their manipulation is very similar (e.g. small-
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Table 5.5: Object recognition results of the ST2D𝐿 −𝑊 model with CDM-AP and
CDM-AF inputs using attention in conjunction with the following confidence estima-
tion metrics: a) the entropy, b) the average 𝑁−best log-likelihood difference (𝑁 = 3),
and c) the 𝑁−best log-likelihood dispersion (𝑁 = 3).

Confidence Metric Test Acc. (%)

Entropy 88.91
𝑁−best difference 89.27
𝑁−best dispersion 89.84

Table 5.6: Object recognition results using different ST3D-based fusion schemes and
affordance inputs. CDM-AP is used as appearance input representation.

Input Stream (Regularization) ST3D𝐿−𝐹𝐶 ST3D𝐿−𝐶𝑂𝑁𝑉 ST3D𝑀𝐿

HHA-AF 87.12 87.92 88.76
CDM-AF 87.97 88.32 89.23
COF-AF 88.06 88.65 89.79
COFM-AF 88.49 89.14 90.47
COFM-AF (aux. loss) 89.12 90.02 91.44
COFM-AF (𝐿2) 88.86 89.58 90.70
COFM-AF (aux. loss, 𝐿2) 89.67 90.88 91.98

size ones, like “Key”, “Pen”, etc.).

5.4.5 ST3D Model Evaluation

For the ST3D model evaluation, we used sequences of 20 uniformly selected frames

as input for each stream combined with an 8-frame sliding window, similarly to the

single-stream C3D experiment (see Section 5.4.1). Note that in contrast to the LSTM

learning process (see Section 5.3.2), the window-level predictions of the C3D model

are independent from each other, thus for the final prediction the averaging approach

was used.

Table 5.6 reports the overall accuracy of the ST3D models. Similarly to the SP
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(a) VGG16 baseline (appearance-only in-
put)

(b) SP𝑀𝐿 (ACOFM-AF, auxiliary loss, 𝐿2
reg.)

(c) ST2D𝐿 (COFM-AF, auxiliary loss, 𝐿2
reg.) with attention

(d) ST3D𝑀𝐿 (COFM-AF, auxiliary loss, 𝐿2
reg.)

Figure 5-10: Object recognition confusion matrices of the appearance-only VGG16
and the best performing fusion scheme of each two-stream model. Training parame-
ters, such as affordance input and regularization of each model, are reported inside the
parentheses. In all cases, CDM-AP is used as the appearance stream representation.

evaluation, ST3D𝑀𝐿 outperforms ST3D𝐿 for all affordance inputs, due to the informa-

tion sharing at different levels of granularity. Additionally, training both schemes with

the auxiliary loss and 𝐿2 regularization leads to additional performance improvement.

From the reported results, it can be observed that using 3D flow information instead

of colorized depthmaps is advantageous. The latter is in accordance with the results

presented in Table 5.1 for affordance recognition. Furthermore, it must be noted that

ST3D𝑀𝐿 with COFM-AF input, which is the best performing approach presented in

this chapter, outperforms the appearance-only VGG16 by 6.86% (i.e. 91.98% over
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Table 5.7: Comparative evaluation of the ST3D𝑀𝐿 (CDM-AP, COFM-AF, aux. loss,
𝐿2) model, three probabilistic fusion methods, and the appearance-only VGG16 base-
line. In all cases, object recognition accuracy (%) is reported.

Model Fusion Layer Test Acc. (%)

Appearance-only VGG16 baseline no fusion 85.12
Product Rule Softmax 77.91
SVM [44] RL7 84.77
Bayes [31] RL7 80.63
ST3D𝑀𝐿 RL5, RL6 91.98

85.12%), which corresponds to an approximately 46% relative error reduction.

From a practical perspective, the ST3D model handles both the lack of temporal

information modeling of the SP model and the difficulty of the ST2D one to learn the

spatio-temporal correlations of fine-grained interactions. Additionally, it can better

exploit 3D optical flow information, which explicitly describes the motion between

sequential frames, thus making the recognition easier as the network does not need

to estimate motion implicitly.

Finally, the confusion matrix of the ST3D𝑀𝐿 model (COFM-AF, aux. loss, 𝐿2) on

the SOR3D test set is depicted in Fig. 5-10(d). Notice that this model boosts recog-

nition performance of all objects, while further improving it for the most challenging

ones (e.g. “Key”, “Knife”, and “Pen”), by modeling the affordance information more

efficiently.

5.4.6 Comparison with Probabilistic Fusion

The best performing fusion model, namely ST3D𝑀𝐿 that utilizes COFM-AF as input

and is trained with auxiliary loss and 𝐿2 regularization, is also comparatively eval-

uated against typical probabilistic fusion approaches of the literature. To perform

a fair comparison, two C3D models are trained following the process presented in

Section 5.4.1, using CDM-AP and COFM-AF as input representations. The product

rule for fusing the appearance and the affordance C3D output probabilities is adopted
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Table 5.8: Cross-view object recognition results using the appearance-only VGG16
and ST3D𝑀𝐿 (COFM-AF, aux. loss, 𝐿2) models. The last row reports the results
using the original SOR3D training and test sets.

Training Set Test Set VGG16 ST3D𝑀𝐿

𝐾1 𝐾2,𝐾3 51.74 55.13
𝐾2 𝐾1,𝐾3 53.28 57.80
𝐾3 𝐾1,𝐾2 49.42 53.96
𝐾2,𝐾3 𝐾1 62.43 69.74
𝐾1,𝐾3 𝐾2 66.14 72.86
𝐾1,𝐾2 𝐾3 78.65 85.33
𝐾1,𝐾2,𝐾3 𝐾1,𝐾2,𝐾3 85.12 91.98

as the first probabilistic approach. Additionally, after removing both Softmax classi-

fiers, the concatenated FC7 activations of the appearance and affordance C3D models

are used to train a one-versus-all SVM classifier with RBF kernel [6, 44], as well as a

naive Bayes classifier [31]. From the results presented in Table 5.7, it can be observed

that the evaluated probabilistic fusion approaches fail to increase object recognition

accuracy compared to the appearance-only VGG16 baseline. On the contrary, the

proposed ST3D𝑀𝐿 model exhibits a significant performance increase.

5.4.7 Cross-view Analysis

In this section, we perform a cross-view analysis on the SOR3D data, in order to

evaluate the contribution of each viewpoint to the performance of the appearance-

only VGG16 and the ST3D𝑀𝐿 model. For this analysis, the three viewpoints of the

SOR3D capturing setup, depicted in Fig. 4-1, are denoted as 𝐾1, 𝐾2, and 𝐾3. For

each 𝐾𝑖, 𝑖 ∈ 𝑉 = {1, 2, 3}, the evaluated model is initially trained using the 𝐾𝑖 data

and tested on the 𝐾𝑉−{𝑖} set, and then trained with 𝐾𝑉−{𝑖} data and tested on the

𝐾𝑖 one. It must be noted that no viewpoint fusion is considered for any of the ex-

periments. The appearance-only VGG16 employs the CDM-AP input representation,

while the ST3D𝑀𝐿 utilizes CDM-AP and COFM-AF inputs, auxiliary loss, and 𝐿2
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regularization.

Intuitively, the affordance information should be significantly more viewpoint-

dependent, since the starting point of the hand movement is different from each

viewpoint and the actual interaction may not always be visible (e.g. the handle of

the cup might be from the opposite side of the RGB-D sensor). From the results

presented in Table 5.8, it can be observed that both models perform worse when

trained on one or two viewpoints and tested on the rest. Additionally, it can be seen

that, contrary to the aforementioned intuition, the starting point of the hand does

not significantly affect the models performance, and the affordance information is

discriminant even if some parts of the interaction are not entirely visible. We can

further conclude that 𝐾1 and 𝐾2 are the most critical viewpoints for both appearance

and affordance exploitation, as their absence from the training set leads to inferior

overall classification accuracy.

5.5 Conclusion

In this chapter, we investigate the application of sensorimotor learning in RGB-D

object recognition, following the observation learning scenario. Three deep learning-

based models that fuse appearance and affordance information by adopting multiple

fusion schemes are presented. Further, six alternative representations are used as

input to the affordance stream in order to maximize the information gain by incorpo-

rating affordance information. An attention mechanism based on appearance stream

confidence is developed, and an auxiliary loss for fusion model optimization based on

the affordance stream performance is also introduced. The 3D convolution based two-

stream model with multi-layer fusion is experimentally shown to significantly improve

the appearance-only baseline and outperform the rest of the proposed models, as well

as alternative probabilistic fusion methods of the literature. A cross-view analysis

conclude the study, providing intuition concerning viewpoint contribution to model

performance and viewpoint-dependency of the affordance information.
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Chapter 6

Affordance Reasoning and

Segmentation

6.1 Introduction

In this chapter we investigate the joint reasoning, i.e. the combination of affordance

localization and recognition, and pixel-wise segmentation of the object affordances.

Recent work in affordance reasoning [15, 63] has demonstrated the advantages of

learning spatio-temporal feature embeddings instead of predicting salient hotspots on

static images. The proposed methods learn to predict the object part that affords

specific actions by processing hand-object interaction videos. Interestingly, these

methods do not depend on object details. Inspired by the these findings, we go

further and argue that affordance reasoning can be exploited to improve affordance

segmentation in a joint-learning scenario, which constitutes a critical step towards

truly robust affordance understanding.

In particular, we argue that it is possible to localize and segment the object

affordance using hand-object interaction information, without the need for strong

object-related supervision (i.e. object labels and bounding boxes) or any intermediate

object detection step. Following this intuition, visualized in Fig. 6-1, we adopt the

“funtion from motion” perspective (discussed in Chapter 1) and propose an end-to-

end encoder-decoder model to exploit the spatio-temporal information for improving
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Figure 6-1: Overview of the proposed approach. Our approach aims to exploit the
spatio-temporal information of the human-object interaction to localize and classify
the affordances of the object, and further utilize this information to improve their
pixel-level segmentation. In particular, given a human-object interaction (top), our
model encodes the provided spatio-temporal information and predicts the heatmap
for the interaction spot and the corresponding affordance label (left branch). The
predicted heatmap is then used as auxiliary information to improve the pixel-level
segmentation prediction of the model (right branch). Note that our approach does
not rely on object-related annotations during training (e.g. object label and bounding
box), and it is able to infer affordance heatmaps and pixel-level segmentation maps
both in videos and static images.

affordance segmentation. The decoding part of this model consists of two decoders

that can be trained jointly for the tasks of affordance reasoning and segmentation.

To demonstrate the advantages of having a specific decoder for localization, we first

investigate the reasoning task independently using only one decoder and comparing

this model variant with state-of-the-art models in this task (see Fig. 6-2(a)). Then, as

shown in Fig. 6-2(b), we add the second decoder targeting semantic segmentation, and

train the model jointly without any object-related supervision. Besides the decoding

part, this model exploits an attention module designed for the implicit localization
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Figure 6-2: The proposed model encodes the appearance and motion information of
human-object interaction sequences and produces spatio-temporal embeddings. The
embeddings are then used as input to the soft-attention mechanism (*) that focuses
on the human-object interaction spot, and to the affordance recognition branch that
consists of an MLP. There are two different decoder variants that can process the
output of the soft-attention mechanism and the predicted affordance class: a) the
reasoning-only decoder that is designed for the affordance reasoning task, which pre-
dicts affordance heatmaps and associates them with the predicted affordance classes
(see Fig. 6-3 for more details), and b) the two-decoder model that is trained jointly for
affordance reasoning and segmentation. The joint model predicts affordance heatmaps
that are further used to improve performance of the segmentation decoder (see Fig. 6-5
for more details).

of the hand-object interaction. This soft-attention mechanism fuses the frame-level

spatial information with the video-level temporal one, forcing the network to focus

on the object part that participates in the interaction.

6.2 Model Architecture and Learning Approach

In this section we present the proposed encoder-decoder model, which is depicted

in Fig. 6-2(b). Its architecture, inspired by the U-Net model [87], consists of two

encoders, a convolutional LSTM (cLSTM) [93], a soft-attention mechanism, an MLP

for affordance recognition, and two decoders. We adopt an architecture that includes

skip connections between the encoder and the decoder layers, as they help to recover

the full spatial resolution and improve the gradient flow [28, 87, 92]. Further, note

that the utilized cLSTM enables the robust video representation learning as it is able

to capture the temporal dependencies of the human-object interaction. Prior to the
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model components description, we present the supported input representations.

6.2.1 Input Representations

Localizing and segmenting object parts based on human-object interaction can ben-

efit from both appearance and motion information. In our approach, we use color

and depth information to accurately represent appearance, while for motion, we use

3D optical flow information that can efficiently encode the temporal dynamics of the

hand movement [73]. We choose to combine RGB and depth information by con-

catenating the color image and the depthmap along the channel dimension forming

a 4 ×𝐻 ×𝑊 input, where 𝐻 = 𝑊 = 300 represent the height and the width of the

input image/depthmap. Regarding 3D optical flow, we use the same algorithm as

in Section 5.2.1, which computes the 3D motion vectors between two pairs of RGB-

D images, and colorize them by normalizing each axis values within [0, 255], thus

transforming them into a three-channel image of size 3 ×𝐻 ×𝑊 .

6.2.2 Appearance and Motion Feature Encoders

In order to exploit the appearance and motion features of the human-object interac-

tion, we encode the RGB-D and the 3D flow information using two decoders, as shown

in Fig. 6-3, where the affordance reasoning model variant is depicted. Both encoders

follow the typical structure of a VGG16 model, while the encoded feature maps are

concatenated at the bottleneck of the model. In particular, let 𝑋𝑑×ℎ×𝑤
𝑅𝐺𝐵𝐷 be the output

feature of the RGB-D encoder, and 𝑋𝑑×ℎ×𝑤
3𝐷𝑂𝐹 be the corresponding 3D flow one, where

𝑑 = 512, ℎ = 𝑤 = 37 are the number of channels, height, and width of both features.

Then, the two convolutional features are concatenated along the channel dimension

and are convolved with 𝑑 kernels of 1× 1 size, producing the 𝑋𝑑×ℎ×𝑤
𝐶𝐴𝑇 activation map.

6.2.3 Bottleneck and Affordance Recognition Branch

The bottleneck of the model, also visible in Fig. 6-3, consists of a residual block and

two cLSTM layers. The residual block follows the RL-CONV-RL-CONV structure,
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Figure 6-3: Detailed architecture of a variant of the proposed encoder-decoder model
that is used for the affordance reasoning task (for the full model see Fig.6-2(b)).
From left to right: a) the model receives RGB-D and 3D flow information using two
convolutional encoders and fuses the encoded features, b) the latent space consists
of one residual block and a convolutional LSTM module (cLSTM), followed by a
soft-attention mechanism (*), denoted with the asterisk, c) the decoder receives the
output of the attention module to predict the affordance hotspot, and d) a fully
connected network (MLP) receives the convolutional LSTM output to predict the
affordance class using a softmax operator (⊘). The skip connections help to recover
the full spatial resolution and improve the gradient flow. The numbers under/over
layers indicate number of channels (e.g. 64, 128, 512), while 𝐻×𝑊 numbers indicate
spatial resolution (e.g. 37 × 37).

adopting the pre-activation method and the identity mapping proposed in [29] for

performance improvement. Both the residual block and the cLSTMs use CONV

layers with 3 × 3 kernel size and stride equal to 1. The activation maps after the

residual block and the last cLSTM layer have the same dimensionality, and they are

denoted as 𝑋̃𝑑×ℎ×𝑤 and 𝑋̄𝑑×ℎ×𝑤, respectively. The cLSTM layers are followed by a

soft-attention mechanism that is detailed in Section 6.2.4.

Besides the attention module, the output of the cLSTM is further processed by

three 512-dimensional MLP layers. The MLP is followed by a softmax classifier, which

is used for affordance recognition. We use affordance recognition to further regular-

ize the model parameters during training, and to associate the predicted affordance

label to the corresponding affordance heatmap of the reasoning decoder (detailed in

Section 6.2.5). Note that we choose to place the affordance recognition branch after

the cLSTM module, inspired by the 2D/3D action recognition literature, where both

79

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 00:16:39 EEST - 3.138.69.146



Figure 6-4: Detailed architecture of the proposed spatio-temporal soft-attention mech-
anism. The spatial feature of the last residual block of the network bottleneck is
concatenated with the output of the convolutional LSTM. The result is processed
by a CONV layer with 1 × 1 kernel size and a softmax operator (⊘) to get the at-
tention mask. The mask is then multiplied with the spatio-temporal feature in an
element-wise manner (⊙).

appearance and motion features are encoded in the context of various CNN-LSTM

model architectures [79,94].

6.2.4 Soft-attention Mechanism

Using detection mechanisms to localize the object before predicting its affordance

requires extra knowledge about its class label and bounding box, while also adding

significant complexity to the model architecture. Since the affordance part of the

object is “exposed” during the interaction with the human, we design a soft-attention

mechanism that forces the model to focus on that specific part using both spatial and

temporal information [120].

The aforementioned mechanism is object-agnostic and its structure is summarized

in three steps, as depicted in Fig. 6-4. First, we concatenate the 𝑋̃ and 𝑋̄ activation

maps at the channel dimension and convolve the produced feature using a kernel of

1 × 1 size. Second, we use the softmax function to normalize the activation values

to the [0, 1] space, forming the “excitation” mask 𝑀1×ℎ×𝑤. Finally, 𝑀 is multiplied

with each channel of 𝑋̄ in an element-wise manner, and then it is upsampled using

nearest neighbor interpolation and re-applied to the activation maps of the reasoning
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Figure 6-5: Detailed representation of the joint model decoding part. Both decoders
receive the spatio-temporal feature of the convolutional LSTM as input. The soft
attention mechanism (*) is used to guide the reasoning decoder at different levels
of granularity. The predicted interaction hotspot operates as a second attention
mechanism, masking the segmentation decoder activations to achieve a more accurate
pixel-wise affordance class prediction.

decoder after each upsampling layer, as shown in Figs. 6-3 and 6-5.

6.2.5 Reasoning and Segmentation Decoders

We use different decoders for the tasks of affordance reasoning and segmentation.

The two decoders share similar structure, however the segmenation one is deeper, as

more detailed spatial information is required for semantic segmentation at the pixel

level compared to the coarser heatmap prediction.

First we use solely the reasoning decoder for the affordance reasoning task, propos-

ing a model variant that is depicted in Fig. 6-3. This decoder is a combination of 6

CONV, 6 RL, and 3 upsampling layers, and predicts an 𝐻 ×𝑊 heatmap. After each
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upsampling layer, a CONV layer follows, while its output feature is concatenated

with the corresponding one from the appearance and motion encoders through the

corresponding skip connections. A CONV layer with 1× 1 kernel size follows, forcing

intra-channel correlation learning. Note that each channel of produced activation

map is multiplied with the attention mask 𝑀 in a element-wise manner (as described

in the previous section). The last CONV layer results in a 1×𝐻 ×𝑊 feature, where

a softmax function is applied to get the final heatmap. We use RL as activation after

each CONV layer, and nearest neighbor interpolation for upsampling.

As reported, the segmentation decoder shares similar structure with the reasoning

one, using 14 CONV layers to preserve the spatial information details. The main

difference is that instead of using the output of the soft-attention mechanism to mask

the activations after each upsampling module, the predicted affordance heatmap is

exploited. In particular, the affordance heatmap is multiplied in an element-wise

manner with each channel of the activation map after each upsampling layer. Note

that the heatmap is downsampled to two different spatial resolutions, namely 75×75

and 150 × 150, to match the height and width of the activation map after each

upsampling layer. The decoder results in a 𝐶 × 𝐻 ×𝑊 dimensional feature, where

each 𝑐 = 1, . . . , 𝐶 corresponds to a predicted affordance map, and 𝐶 is the number of

affordance classes. The structure of the segmentation decoder is depicted in Fig. 6-

5(top).

6.2.6 Joint-task Learning

We argue that the affordance reasoning and segmentation tasks are complementary

to each other as: a) their predictions are based on the same spatio-temporal embed-

ding that is designed to focus on the human-object interaction hotspot, and b) the

segmentation task can benefit from the localization of this hotspot, as the affordance

heatmap and segmentation mask should overlap.

To take advantage of this complementarity, we train our model jointly for the two

tasks, by minimizing the following loss function:
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ℒ𝑡𝑜𝑡𝑎𝑙 = 𝜆1ℒ𝑠𝑒𝑔 + 𝜆2ℒℎ𝑒𝑎𝑡 + 𝜆3ℒ𝑎𝑓𝑓 , (6.1)

where 𝜆1, 𝜆2, 𝜆3 ∈ [0, 1] are hyper-parameters that add to 1. We compute ℒℎ𝑒𝑎𝑡 as

the Kullback–Leibler Divergence (KLD) between the predicted and the ground-truth

heatmaps as follows:

ℒℎ𝑒𝑎𝑡 =
1

𝑁

∑︁
𝑘

𝐷̂𝑘 log
𝐷̂𝑘

𝐷𝑘

, (6.2)

where 𝑁 = 𝐻 ×𝑊 , while 𝐷̂ and 𝐷 are the probability distributions of the predicted

and the ground-truth heatmaps, normalized over the total number of pixels. ℒ𝑠𝑒𝑔

is the per-pixel cross-entropy of the predicted and ground-truth affordance labels,

defined as:

ℒ𝑠𝑒𝑔 = − 1

𝐻 ×𝑊

∑︁
𝑐,𝑖,𝑗

𝑈𝑐,𝑖,𝑗 log(𝑈̂𝑐,𝑖,𝑗), (6.3)

where 𝑈̂ , 𝑈 are the predicted and the ground-truth affordance maps, normalized over

the total number of pixels. Similarly, we define ℒ𝑎𝑓𝑓 as:

ℒ𝑎𝑓𝑓 = −
∑︁
𝑐

𝑎𝑐 log(𝑎̂𝑐), (6.4)

where 𝑎̂, 𝑎 are the predicted and ground-truth affordance labels, respectively.

6.3 Experimental Framework and Results

In this section, we present the quantitative and qualitative evaluation of the proposed

model for the affordance reasoning and segmentation tasks.

6.3.1 Datasets

We use our own SOR3D-AFF dataset, discussed in Section 4.3, to evaluate our model

in both tasks. Besides SOR3D-AFF, we also use the OPRA video dataset to evaluate

the reasoning model variant, as this dataset does not contain pixel-level affordance

annotations. Additionally, we use the UMD and IIT-AFF datasets to qualitatively
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evaluate our segmentation model on unseen objects. These two datasets consist of

static images coupled with segmentation annotations, however there are no human-

object interactions and hotspot annotations included. Note that OPRA, UMD, and

IIT-AFF are presented in detail in Section 4.4.

6.3.2 Reasoning Evaluation

Implementation Details

The videos of SOR3D-AFF and OPRA are subsampled to 10 FPS, while their frames

are center-cropped to 300 × 300 pixel resolution. We pre-train both encoders on

separate datasets; the RGB-D encoder followed by the cLSTM is trained for 50 epochs

on the UTKinect action recognition dataset [113], while for the colorized 3D flow

encoder we utilize the weights of a VGG16 model pre-trained on ImageNet. To enable

fair comparison with the RGB-only baseline models, we further compute the 2D flow

of each video, and pre-train the respective encoder using only color information.

For the decoder and the MLP layer weights initialization, we employ the Xavier

method [23]. The model is fine-tuned in an end-to-end fashion for 80 epochs, using

batch size equal to 6, Adam optimization [43], and learning rate set to 2×10−5. Since

the model is trained using small batch size, we choose to use group normalization [112]

between each CONV and RL layers. Further, in (6.1) we set 𝜆1 = 0, since there is no

segmentation for this task, 𝜆2 = 0.3 and 𝜆3 = 0.7 for the first 50 epochs, as affordance

recognition is a critical step towards affordance hotspot prediction and should guide

the total loss. For the last 30 epochs, both hyperparameters are set to 0.5. All

experiments are conducted on 2 Nvidia Titan X GPUs.

Alternative Models Considered

We evaluate our reasoning model against the following state-of-the-art methods:

∙ SalGAN [71]: SalGAN estimates the most salient regions in an image by

predicting heatmaps. It is trained in a supervised manner using saliency an-

notations. We use the original implementation of [71] and pre-train the model
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using the SALICON dataset [39].

∙ Demo2Vec [15]: Demo2Vec predicts affordance heatmaps on target object

images based on demonstration videos. It is trained in a supervised setting using

heatmap annotations. We re-implement the model to support both SOR3D-

AFF and OPRA input resolution.

∙ Img2Heatmap: Adopting the term and goal from [63], we define Img2Heatmap

as a static Demo2Vec variant. The model architecture is identical with the

Demo2Vec one, however it is trained without the video context, i.e. using only

static images.

∙ Grounded Human-Object Interactions (GHOI) [63]: GHOI also predicts

affordance heatmaps based on human-object interaction videos. However, the

model is trained in a weakly supervised manner using only affordance class

annotations. We use the original implementation of [63].

Note that we consider SalGAN as a weakly supervised model for affordance pre-

diction, as it is trained using saliency heatmaps that do not correspond to specific

affordance classes. Similarly, GHOI is weakly supervised in the content of affordance

heatmap prediction as it is trained using affordance class labels. On the other hand,

both the original Demo2Vec and its static variant are strongly supervised using af-

fordance heatmap annotations. Note that in the context of affordance reasoning, our

model is also strongly supervised using heatmap annotations.

Evaluation Metrics

To quantitatively evaluate our reasoning model against the aforementioned baselines

we use two metrics: a) KLD as described in (6.2), and b) SIM, which is a popular

metric in the saliency research community [5] and measures the similarity between

two heatmaps 𝐷̂ and 𝐷 that have values in the [0, 1] range and add up to 1. In
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Table 6.1: Comparative evaluation of the proposed affordance reasoning model against
the state-of-the-art on the SOR3D-AFF and OPRA datasets. The performance of the
RGB-D based model variant is reported only for SOR3D-AFF. ↑ indicates that higher
values are better, while ↓ indicates that lower values are better.

SOR3D-AFF OPRA
Method KLD (↓) SIM (↑) KLD (↓) SIM (↑)

SalGAN [71] 2.452 0.289 2.121 0.308
GHOI [63] 1.992 0.319 1.425 0.363
Img2Heatmap 2.026 0.312 1.481 0.352
Demo2Vec [15] 1.961 0.322 1.198 0.483
Ours (RGB-only) 1.818 0.332 1.189 0.488
Ours (RGB-D) 1.439 0.412 n/a n/a

particular, SIM is defined as:

SIM(𝐷̂,𝐷) =
∑︁
𝑖

min(𝐷̂𝑖, 𝐷𝑖), (6.5)

summing over all pixels 𝑖. In our case 𝐷̂,𝐷 correspond to the predicted and ground-

truth heatmaps, respectively.

Quantitative Evaluation Results

Table 6.1 reports the performance of the aforementioned models on the SOR3D-AFF

and OPRA datasets. Since SOR3D-AFF consists of RGB-D data, we evaluate two

model variants, one using only color as input representation (RGB-only) coupled with

2D optical flow, while the second utilizes both color and depth information (RGB-D)

along with 3D optical flow. On the other hand, for the experiments on the OPRA

dataset, where there is no depth information, we evaluate our color-based model only.

Note that for the SOR3D-AFF experiments, we use the last frame of each video as

“target” frame.

From the reported results, we observe that the strongly supervised models achieve

better overall performance than the weakly supervised ones on both datasets. Re-

garding the SOR3D-AFF experiments, our RGB-D model achieves the best results in
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Figure 6-6: Affordance heatmap prediction on target images from the SOR3D-AFF
(upper three rows) and the OPRA [15] (lower three rows) datasets. For the former,
the target frame corresponds to the last frame of the video, while the latter utilizes
an image that depicts the object of the video, but without background or occlusions.
Each heatmap is associated with the corresponding affordance class predicted from
each model (left), while the model name is shown at the top of the image. The
heatmaps are overlaid on the target images for better visualization, while the object
classes are shown for clarity.

both metrics, i.e. 1.439 KLD and 0.412 SIM, while our RGB-only model marginally

outperforms Demo2Vec. We believe that this performance difference between our

model and Demo2Vec is a result of our reasoning decoder design, namely the use of
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Table 6.2: Comparative evaluation of a number of variations in the reasoning model
architecture on the SOR3D-AFF test set. The soft-attention mechanism is denoted
as 𝛼. ↑ indicates that higher values are better, while ↓ indicates that lower values are
better.

Model Parameters KLD (↓) SIM (↑)
RGB 2.209 0.231
RGB + 𝛼 2.031 0.294
RGB + 𝛼 + 2D flow 1.818 0.332
RGB-D 2.189 0.292
RGB-D + 𝛼 1.914 0.368
RGB-D + 𝛼 + 3D flow 1.439 0.412

the “upsampling, CONV layers” instead of using transposed convolution layers. In

this way, our decoder is able to preserve more fine-grained spatial information up to

the heatmap prediction [111]. Based on the RGB-D model results, we observe that

the utilization of depth information in both appearance and motion, i.e. 3D flow,

leads to more discriminative features. Regarding the OPRA experiments, we observe

similar performance, with our RGB-only model marginally outperforming Demo2Vec.

Fig. 6-6 shows some indicative hotspot predictions using samples from both datasets.

From the visualized samples, we observe that our model is able to predict accurate

hotspots, associated with the affordance label of the interaction (e.g. highlight the

handle of the pan for affordance “hold"). In contrast, the static version of Demo2Vec

(Img2Heat) and the saliency model, which are trained on static images, highlight the

most salient regions of the objects regardless the affordance class. Finally, by observ-

ing the performance of the GHOI model, we conclude that the temporal information

of the human-object interaction is more critical than the strong supervision for the

affordance reasoning task.

Ablation Study

In order to demonstrate the contribution of each individual component to the pro-

posed model architecture, we perform an ablation study using the following varia-

tions: a) single-stream RGB-only encoder, b) single-stream RGB-only encoder and
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soft-attention mechanism, and c) two-stream encoder for RGB-only and 2D optical

flow, and soft-attention mechanism. Note, that the same model variations are inves-

tigated for the RGB-D and 3D optical flow information.

Table 6.2 reports the results of the investigated model variants on the SOR3D-

AFF test set. Evidently, RGB-D information leads to better overall performance,

while the integration of the soft-attention mechanism improves both RGB-only and

RGB-D based models in terms of KLD and SIM. Finally, we observe that the use of a

second stream that processes optical flow information significantly boosts each model

performance, mostly due to its contribution to the affordance recognition part of the

network.

6.3.3 Segmentation Evaluation

Implementation Details

Similarly to the reasoning setup, all data from the SOR3D-AFF, UMD, and IIT-AFF

datasets are resized to 300×300 pixel resolution, while each video from SOR3D-AFF

is subsampled to 10 FPS. Focusing on the joint model, we pre-train both encoders

as reported in the reasoning setup, and fine-tune the model for 200 epochs. We set

batch size equal to 4 and use group normalization to normalize the activations after

each CONV layer, while we set the learning rate to 2× 10−5. The model is optimized

using the Adam algorithm. Following (6.1), we set 𝜆1 = 0.3, 𝜆2 = 0.1 and 𝜆3 = 0.6,

and train our models on 2 Nvidia Titan X GPUs.

Alternative Models Considered

We compare our model with AffordanceNet [12], a convolutional encoder-decoder

model that utilizes a region proposal network [84] in order to restrict affordance seg-

mentation to the detected object bounding box in the static image. We re-implement

AffordanceNet in order to be able to receive 300 × 300 inputs, and train it for 50

epochs with the batch size set to 8 and learning rate equal to 2 × 10−5.
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Evaluation Metrics

We use two different metrics to assess model performance: a) the Intersection over

Union (IoU), and b) the F𝛽-score. IoU, originally proposed in [70], quantifies the

overlap between 𝑈̂ and 𝑈 , namely the predicted affordance and the corresponding

ground-truth set of pixels, and is defined as:

IoU(𝑈̂ , 𝑈) =
|𝑈̂ ∩ 𝑈 |

|𝑈̂ | + |𝑈 | − |𝑈̂ ∩ 𝑈 |
, (6.6)

where | * | denotes the cardinality of set *. Additionally, F-score provides helpful

insight about the model robustness based on false positive and negative predictions.

Since some affordances are associated with more objects, we choose to evaluate the

performance of the model using a weighted version of the F-score metric, which is

proposed in [57] and is denoted as:

F𝑤
𝛽 = (1 + 𝛽2)

P𝑤R𝑤

𝛽2P𝑤 + R𝑤
,with 𝛽 = 1, (6.7)

where P𝑤,R𝑤 are the weighted versions of the standard precision and recall metrics,

respectively. Since “grasp” and “lift” are the most dominant affordance labels, we

set their weight to 0.2, while next dominant label “push” is set to 0.1. We want the

weights of the labels to sum to 1, thus the weight of each remaining label is set to

0.083.

Quantitative Evaluation Results

Table 6.3 reports the overall performance of the joint model on the SOR3D-AFF

test set. Since there is no alternative model in the literature for inferring pixel-level

affordance labels based on videos, only our model results are reported (top row). For

the static, i.e. image-only based, affordance prediction, our model is compared to the

AffordanceNet and achieves competitive results (bottom rows). Recall also that the

goal of our work is to perform affordance segmentation using minimal supervision,

i.e. using affordance-related ground-truth only at the last frame of the video while
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Table 6.3: Overall object affordance segmentation results on the SOR3D-AFF test
set based on video (top) and static image inference (bottom). ↑ indicates that higher
values are better, while ↓ indicates that lower values are better.

Model IoU (↑) F𝛽 (↑) F𝑤
𝛽 (↑)

Ours 0.731 0.820 0.821

AffordanceNet [12] 0.561 0.618 0.621
Ours 0.559 0.617 0.622
Ours (extra supervision) 0.575 0.625 0.638

omitting any object-related annotations (i.e. the object class and bounding box).

The results also support our argument that a model can be trained using interaction

sequences and infer affordance labels for both videos and static images. However, since

SOR3D-AFF provides object bounding boxes and object classes, we also investigate

training our model using 2 extra losses to exploit the object-related annotations. We

use the 𝐿2-norm to measure the bounding box error, defined as:

ℒ𝑏𝑏𝑜𝑥 = ‖𝜌− 𝜌‖2, (6.8)

where 𝜌, 𝜌 are vectors with the predicted and ground-truth bounding box coordinates

(top left corner, width, and height). Further, we utilize (6.4) with 𝐶 = 10 (object

classes) to measure the object recognition loss, which we define as ℒ𝑜𝑏𝑗. The total

loss for this experiment becomes:

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝜆1ℒ𝑠𝑒𝑔 + 𝜆2ℒℎ𝑒𝑎𝑡 + 𝜆3ℒ𝑎𝑓𝑓 + 𝜆4ℒ𝑏𝑏𝑜𝑥 + 𝜆5ℒ𝑜𝑏𝑗, (6.9)

where we set 𝜆1 = 0.2, 𝜆2 = 0.1, 𝜆3 = 0.3, 𝜆4 = 0.1, and 𝜆5 = 0.3. As observed

in the last row of Table 6.3, the model trained with extra supervision outperforms

AffordanceNet, achieving 2.50%, 1.13%, and 2.74% relative improvement in IoU, F𝛽,

and F𝑤
𝛽 , respectively.

We also present results per affordance category in Table 6.4, based on both video

(top) and static image (bottom) inference. From the reported results, we can observe

91

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 00:16:39 EEST - 3.138.69.146



Table 6.4: Category-specific object affordance segmentation results of our model on
the SOR3D-AFF test set based on video (top) and static image inference (bottom).

Metric cut grasp hammer lift paint push rotate squeeze type

IoU 0.477 0.878 0.761 0.920 0.713 0.777 0.754 0.671 0.633
F𝛽 0.612 0.929 0.859 0.952 0.790 0.892 0.847 0.769 0.731
F𝑤
𝛽 0.613 0.931 0.860 0.952 0.791 0.894 0.859 0.772 0.734

IoU 0.381 0.673 0.594 0.709 0.532 0.634 0.579 0.533 0.408
F𝛽 0.447 0.707 0.652 0.761 0.590 0.678 0.641 0.592 0.479
F𝑤
𝛽 0.468 0.716 0.661 0.772 0.592 0.681 0.643 0.594 0.481

the superiority of the dominant affordances, i.e. these associated with most of the

objects, such as “grasp” and “lift”, as well as the adequate performance of complex

affordances that change the visual representation of the object, such as “squeeze”.

Note, that affordance label weighting leads to a slightly better overall performance

in terms of F-score, which is expected given the very confident predictions for the

dominant affordances.

Qualitative Evaluation Results

Besides quantitative evaluation, we use samples from the image-only UMD and IIT-

AFF datasets to qualitatively evaluate our model performance. As depicted in Fig. 6-

7, our model is able to confidently predict learned affordances on UMD corpus objects

that are similar to that of SOR3D-AFF (e.g. “bottle”, “hammer”, and “knife”), while

also inferring reasonable affordance labels of the dominant affordances on samples

from the challenging, due to the cluttered scenes, IIT-AFF (e.g. “rotate” or “grasp”

pixel-level predictions on the unseen object class “cable”). Note that we center-crop

a 300× 300 portion of each image and visualize the affordance pixel-level predictions

with values greater than 0.75.
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Figure 6-7: Pixel-level affordance class predictions on unseen objects from UMD [62]
(upper two rows) and IIT-AFF [66] (lower two rows) datasets. The predictions are
color-coded based on SOR3D-AFF annotation: “grasp” in light green, “lift” in green,
“rotate” in red, “push” in cyan and are shown when the classifier confidence exceeds
0.75.

Ablation Study

Similarly to Section 6.3.2, we evaluate different segmentation model variants in order

to demonstrate the contribution of each individual component. Note that for this
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Table 6.5: Comparative evaluation of a number of variations in the encoder-decoder
architecture on the SOR3D-AFF test set based on video (top) and static image infer-
ence (bottom). The 2𝑛𝑑 column reports the decoder used for segmentation: a) “Seg”
denotes the segmentation-only decoder (i.e. without using the reasoning decoder),
and b) “Joint” denotes the model with the two decoders proposed in this Thesis. ↑
indicates that higher values are better, while ↓ indicates that lower values are better.

Model Parameters Decoder IoU (↑) F𝛽 (↑)
RGB

Seg

0.619 0.733
RGB + 𝛼 0.652 0.769
RGB + 𝛼 + 2D flow 0.663 0.784
RGB-D 0.640 0.771
RGB-D + 𝛼 0.703 0.797
RGB-D + 𝛼 + 3D flow 0.718 0.801

RGB-D + 𝛼 + 3D flow Joint 0.731 0.820

RGB + 𝛼 + 2D flow Seg 0.471 0.529
RGB-D + 𝛼 + 3D flow 0.537 0.582

RGB-D + 𝛼 + 3D flow Joint 0.559 0.617

ablation we utilize a model variant that uses only the segmentation decoder (similar

to the reasoning-only decoder variant depicted in Fig. 6-2(a)), which is reported as

“Seg” in Table 6.5, while the jointly trained model is reported as “Joint”. We follow

the same logic and present from the single-stream RGB-only encoder up to the two-

stream RGB-D one coupled with attention.

The segmentation results of the aforementioned variations on the full sequences

of the SOR3D-AFF test set are reported in Table 6.5. As in the reasoning task,

we observe that the depth information, the optical flow, as well as the attention

mechanism lead to superior performance in both metrics. Besides the contribution

of the aforementioned components, we observe a significant performance boost when

training jointly the reasoning and segmentation decoders for the RGB-D model. In

fact, the joint model yields 1.81% IoU and 2.37% F𝛽 relative improvement when tested

on videos, while achieving 4.10% IoU and 6.01% F𝛽 relative improvement when tested

on static images.
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6.4 Conclusion

In this chapter, the affordance reasoning and segmentation tasks are jointly investi-

gated, following the “function from motion” scenario by processing videos that include

human-object interactions. In particular, an end-to-end deep encoder-decoder model

is proposed, which encodes color, depth, and motion information from human-object

interaction videos, and predicts affordance hotspots and segmentation maps. The

model uses a spatio-temporal soft-attention mechanism that enforces implicit local-

ization of the interaction hotspot, which leads to performance improvement in both

tasks. The reported results on the SOR3D-AFF corpus show that the proposed model

predicts more accurate affordance heatmaps compared to alternative state-of-the-art

methods in the literature, while regarding the segmentation task, it outperforms Af-

fordanceNet when predicting affordance masks from either videos or static images.

Finally, the model generalization ability is demonstrated through qualitative evalua-

tion using unseen objects from two image-only datasets.
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Chapter 7

Conclusions and Future Directions

This final chapter summarizes the thesis contributions and the significance of our

work. Additionally, based on the presented research findings, this chapter discusses

possible future research directions.

7.1 Conclusions

In this thesis we investigate the notion of the object affordance, namely the set of

interactions supported by the object, in the context of computer vision. In particular,

we focus on the so-called “function from motion” approach, where the affordance

information is visible when observing human-object interactions. To truly understand

the nature of the affordance information, we first use it as an auxiliary object attribute

to improve object recognition, while then we use it to localize and segment the part of

the object that supports the corresponding interaction. The aforementioned tasks are

investigated by adopting the deep learning paradigm. That is, we use state-of-the-art

deep neural networks to design each learning framework.

Regarding the affordance-based object recognition direction, we show that it is

possible to apply the sensorimotor learning approach on a computer vision problem by

designing a two-stream deep neural network. Additionally, we demonstrate that the

affordance information can be encoded in several representations, which are then fused

with the object appearance and lead to improved object recognition performance.
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On the other hand, we highlight the ability to localize and segment the affor-

dance part of an object in both videos and images. We show that by exploiting the

spatio-temporal nature of the affordance information, it is possible to reason about

the object affordances by localizing the actual object part that participates in the

interaction. Further, we confirm that the reasoning task can contribute to the pixel-

level segmentation of the affordance part of the object, by designing a deep neural

network to learn the two tasks jointly.

7.2 Future Directions

The ability to answer the “what object?” and “how to use it?” questions by exploit-

ing affordance information can impact many practical computer vision and robotics

applications. There are two distinct research directions that can be investigated: a)

the affordance information contribution to more complex indoor scenes, focusing on

both human-object and object-object interactions through observation, and b) the

sensorimotor learning approach in an active learning scenario that involves a robot

and an indoor environment.

The first direction can be adopted to design algorithms with application in real-

world scenarios that involve a passive perception system, such as smart homes [2,

77]. These algorithms will adopt the observation-based learning in cluttered scenes,

focusing not only on the prediction of the object functionality with respect to the

human-object interaction, but also with respect to the interaction among multiple

objects for a specific purpose. Note that this scenario enables the exploitation of

other modalities, such as speech in an audio-visual learning setup.

Regarding the active learning scenario, teaching a home robot to recognize objects

and understand how to use them is vital. One possible but rather impractical way

would be to collect data from the robot perspective in different indoor environments

and train different models for each task at a time. However, an active sensorimotor

learning scenario, where the robot combines the visual with the motor information

and is continuously rewarded or punished seems more promising [37,82]. In this case,
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the sensorimotor framework should be re-designed to be able to improve based on

the feedback of each learning step. Since visual recognition still heavily relies on

detailed annotated data, this reinforcement learning scenario seems necessary for the

transition from passive perception to active visual intelligence.
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Appendix A

Publications

This thesis has led to the following publications:

∙ S. Thermos, G. Potamianos, P. Daras. A deep learning approach to joint object

affordance reasoning and segmentation in RGB-D videos. Submitted to the IEEE

Transactions on Circuits and Systems for Video Technology, May, 2020.

∙ S. Thermos, G.T. Papadopoulos, P. Daras, G. Potamianos. Deep sensorimotor

learning for RGB-D object recognition. Computer Vision and Image Under-

standing, vol. 190 (4), Jan. 2020.

∙ S. Thermos, P. Daras, G. Potamianos. A deep learning approach to object

affordance segmentation. In Proc. IEEE International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP), pp. 2358-2362, Barcelona, Spain,

2020.

∙ S. Thermos, G.T. Papadopoulos, P. Daras, G. Potamianos. Attention-enhanced

sensorimotor object recognition. In Proc. IEEE International Conference on

Image Processing (ICIP), pp. 336-340, Athens, Greece, 2018.

∙ S. Thermos, G.T. Papadopoulos, P. Daras, G. Potamianos. Deep affordance-

grounded sensorimotor object recognition. In Proc. IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pp. 49-57, Honolulu, Hawaii,

USA, 2017.
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