
Order Reduction of Large Scale Circuit
Graphs

Diploma Thesis

By

Skouroliakou Vasiliki

Department of Electrical and Computer Engineering
University of Thessaly

Supervisors
Georgios Stamoulis, Professor

Tsompanopoulou Panagiota, Assistant Professor
Potamianos Gerasimos, Assistant Professor

September 2019

Περίληψη

Τις τελευταίες δεκαετίες υπάρχει ένα αυξανόμενο ενδιαφέρον για την κατασκευή μαθηματικών
μοντέλων τα οποία περιγράφουν σύνθετα συστήματα. Συγκεκριμένα, όσον αφορά τον τομέα του
σχεδιασμού κυκλωμάτων τα μαθηματικά μοντέλα δημιουργούνται με σκοπό να χρησιμοποιηθούν

σε αριθμητικές προσομοιώσεις, οι οποίες μας βοηθούν να αναπαράξουμε τη συμπεριφορά του κυκλώματος.
Ωστόσω, τα μαθηματικά μοντέλα, έχοντας προκύψει από την ανάλυση ρεαλιστικών κυκλωμάτων, γίνονται
ολοένα και πιο πολύπλοκα οδηγώντας σε μοντέλα μεγάλων διαστάσεων, τα οποία εντέλει αδυνατούμε
να επεξεργαστούμε αριθμητικά.

Επομένως, ένα μεγάλο κομμάτι έρευνας έχει αφιερωθεί στην ανάπτυξη τεχνικών που έχουν ως
στόχο τη μείωση της διάστασης των μοντέλων σε μια μικρότερη, ώστε να είναι πλέον δυνατή η χρήση
τους σε αριθμητικές προσομοιώσεις. Αυτη η μέθοδος προσέγγισης ονομάζεται ”ΜείωσηΤάξηςΜοντέλου”.
Μια μέθοδος για να καταλήξουμε στο μειωμένης τάξης μοντέλο από ένα αρχικό μεγάλης τάξης, προτείνεται
από τους Monshizadeh, Harry L. Trentelman και M. Kanat Camlibel σε σχετικό άρθρο τους το οποίο
δημοσιεύτηκε το 2014 από τον οργανισμό ΙΕΕΕ. Η μέθοδος βασίζεται στην κατάτμηση των κορυφών
ενός γράφου σε μικρότερα τμήματα, κάθε ένα από τα οποία θεωρείται ένας καινούριος κόμβος στο
μειωμένο μοντέλο.

Στόχος της παρούσας διπλωματικής είναι -έχοντας ένα αρχικό μοντέλο που προήλθε από ένα RC
δίκτυο- να παράξουμε ένα μειωμένης τάξης μοντέλο βασιζόμενοι στην παραπάνω μέθοδο. Θα περιγράψουμε
αναλυτικά τη διαδικασία που ακολουθείται και κλείνοντας θα παρουσιάσουμε τη σύγκριση μεταξύ
αρχικού και μειωμένου μοντέλου.

i

Abstract

In the last few decades there is an increasing interest in creating mathematical models to describe
complex physical systems. Especially, concerning circuit design area mathematical models are
mostly generated to be used in simulations that help us replicate the behavior of a circuit. How-

ever, circuit designing process becomes more and more complicated nowadays forcing mathematical
models to adopt that complexity. As a result, it is too hard to use them in simulations.

Therefore, a lot of research has been devoted to developing techniques in order to reduce the high
order of a model to a lower one, such that it is feasible to deal with it numerically. These approaching
techniques are generally called ”Μodel Οrder Reduction”. One technique that aims to obtain a reduced
order model is proposed by N.Monshizadeh, Harry L. Trentelman and M. Kanat Camlibel in their work
published in 2014 by IEEE. The method is based on partitioning a set of nodes in a graph into cells,
called clusters, and then regard each cluster as a single node in reduced model.

The objective of this thesis is to obtain a reduced order model for a given original one, based on
the above method. The original model has derived from a RC network. We will describe the procedure
analytically and in closing we will present the comparison between the original and reduced model.

iii

Dedication and Acknowledgements

Firstly, i would like to thank my lead supervisor, professor Nestor Eumorfopoulos, for all his help
and guidance to complete this thesis. I would also like to thank my family and friends for their
support during all this years.

v

Table of Contents

Page

List of Tables ix

List of Figures xi

1 Introduction 1

2 Linear Time Invariant Systems (LTI) and Circuit Modeling 3
2.1 Definition . 3
2.2 Differential Equations and State Variables . 4

2.2.1 State Variables . 4
2.2.2 Differential Equations . 4

2.3 Transfer Function of LTI Systems . 6
2.4 Circuit Modeling . 7

2.4.1 Circuit Structure . 7
2.4.2 Incidence Matrix . 8
2.4.3 Modified Nodal Analysis Method . 9

3 Graph Theory and Graph Partitioning 13
3.1 Graph Definition . 13
3.2 Graphs and Matrices . 14

3.2.1 Degree Matrix . 14
3.2.2 Adjacency Matrix . 14
3.2.3 Incidence Matrix . 15
3.2.4 Laplacian Matrix . 15

3.3 From Circuit to its Graph . 16
3.4 Graph Partitioning . 16

3.4.1 Characteristic Matrix of Partition . 16
3.4.2 Reduced Graph . 18

3.5 Graph Partitioning Techniques . 18
3.6 Applications . 19

vii

TABLE OF CONTENTS

4 Model Order Reduction 21
4.1 Motivation . 21
4.2 Projection Based Model Order Reduction . 23

4.2.1 Projection Method . 23
4.2.2 Petrov-Galerkin Condition . 24

4.3 Projection Using Graph Partitions . 25

5 Order Reduction of RC Network Model 29
5.1 Problem Definition . 29
5.2 Partitioning Using METIS Software Package . 30

5.2.1 METIS Overview . 30
5.2.2 METIS API Routine . 31

5.3 Partitioning Using grPartition Algorithm . 33
5.3.1 Algorithm Overview . 33

5.4 Characteristic and Projection Matrices Formulation . 34

6 Numerical Results 37
6.1 Comparison Between Reduced and Original Model . 38

6.1.1 Frequency Domain . 38
6.1.2 Time Domain . 42

6.2 Determining a Different Partition . 46
6.2.1 Frequency Domain . 47
6.2.2 Time Domain . 49

7 Conclusion 51
7.1 Summary . 51
7.2 Further Work . 51

A Appendix A 53

B Appendix B 55

C Appendix C 61

Bibliography 63

viii

List of Tables

Table Page

1.1 Chapter overview . 2

5.1 List of Routine’s Parameters . 32

ix

List of Figures

Figure Page

2.1 State Variables from [15] . 4
2.2 LTI Systems in Time and Frequency Domain . 7
2.3 Second Order RC Filter . 8
2.4 Modified Nodal Analysis Method . 11

3.1 An undirected and unweighted graph from [12] . 14
3.2 Graph corresponding to circuit in Figure 2.3 . 16
3.3 G=(V,E) from [13] . 17
3.4 G̃=(Ṽ ,Ẽ) from [13] . 18

4.1 Model Order Reduction from [3] . 22
4.2 Model Order Reduction Based on Projection from [5] . 25

5.1 The three phases of multilevel k-way graph partitioning. During the coarsening phase, the
size of the graph is successively decreased. During the initial partitioning phase, a k-way
partitioning is computed, During the multilevel refinement (or uncoarsening) phase, the
partitioning is successively refined as it is projected to the larger graphs. G0 is the input
graph, which is the finest graph.G i+1 is the next level coarser graph ofG i.G4 is the coarsest
graph. Figure from [11] . 30

5.2 METIS Routine from [11] . 31
5.3 A simple graph from [11] . 32
5.4 Adjancy Structure of the Simple Graph in Figure 5.3 from [11] 33
5.5 Matlab script adjacency.m . 33
5.6 Function grPartition.m . 34
5.7 Matlab script matrices_formulation.m . 34
5.8 Matlab script reduced_model_matrices_formulation.m . 35

6.1 Matlab script load.m . 38
6.2 Matlab script comparison_frequency_domain.m . 39
6.3 H(1,1) for reduced (’r’) and original (’b’) model . 40
6.4 Plots of diagonal pairs of H(s) . 41

xi

List of Figures

6.5 Plots of diagonal pairs of H(s) . 42
6.6 Matlab function sim.m . 43
6.7 Matlab script time_domain.m . 43
6.8 Script Output . 44
6.9 Plots of output vectors elements y(i) . 45
6.10 Plots of output vectors elements y(i) . 46
6.11 Plots of diagonal pairs of H(s) . 47
6.12 Plots of diagonal pairs of H(s) . 48
6.13 Plots of output vector elements y(i) . 49
6.14 Plots of output vector elements y(i) . 50

A.1 C++ program to call METIS routine . 54

B.1 grPartition algorithm implementation in Matlab . 59

C.1 excitation_sel.m . 62

xii

C
h
a
p
te

r

1
Introduction

Modeling large scale, complex dynamical systems is one of grate importance problems in en-
gineering. However, most of the times the models extracted directly from physical systems
analysis are too complicated to be used in numerical simulations. This could be either due to

limitations in computational resources or because the simulation requires a significant amount of time
or storage capatiance. Consider the electronic industry and specifically the design of computer chips
[6]. Their development is highly associated with Moore’s law, which generally states that every 18
months a new generation of chips is created. Every new generation is twice as fast as the previous, op-
erating at higher frequencies while, at the same time the dimension of devices are dramatically reduced.
That means that chip design becomes more and more complex. Simulating the behavior of such a cir-
cuit along with interconnection structure consists a huge mathematical problem with high complexity.
Indicatively, the scale of the model could be 1011.

So, the question is whether a simpler model of the system can be obtained. Model order reduction
techniques aim to answer this question.[8]. The general idea is to replace the large scale model of the
system with one of lower dimension. The reduced model should behave similarly to the original one
concerning its frequency or time response characteristics. This thesis focuses on linear time invariant
systems modeling, meaning that the original system is described by a set of linear differential equations
with constant coefficients. There are two types of linear order reduction techniques: those based on
projection and those based on truncation techniques.

In this thesis a projection method based on graph partitioning is described. We consider the Lapla-
cian matrix of the system to be a graph and we aim to obtain a partition of it. The projection is formed
in terms of the characteristic matrix of the partition. The advantage of this procedure is that the spatial
structure of the system is preserved, meaning that the reduced model is still an input-output system.
The objective is to compare the behavior of the reduced and original model. This thesis is organized in
chapters as seen in the following Table 1.1:

1

CHAPTER 1. INTRODUCTION

Chapter 1 Introduction
Chapter 2 Linear Time Invariant Systems and CircuitModeling
Chapter 3 Graph Theory and Graph Partitioning
Chapter 4 Model Order Reduction
Chapter 5 Model Reduction of RC Network
Chapter 6 Numerical Results
Chapter 7 Conclusions

Table 1.1: Chapter overview

Chapter one is an introductory chapter. Chapter two introduces linear time invariant systems and also
describes the procedure to extract a linear time invariant model from a simple circuit using modified
nodal analysis method. Chapter three is an introduction to graph theory and exhibits the concept of
graph partitioning. Chapter four presents a projection-based model order reduction technique that uses
the partition of the graph to form projection matrices. Chapter five applies the previous technique to a
certain model originated from a RC network. We use two alternative methods to obtain a partition of
the graph. Chapter six includes numerical results concerning the comparison between the reduced and
original model in frequency and time domain. Finally, chapter seven concludes this thesis.

2

C
h
a
p
te

r

2
Linear Time Invariant Systems (LTI) and Circuit Modeling

Mathematical models, used to describe physical systems, are many times in the form of linear
time invariant systems. They consist of a set of first order differential equations in terms of
a sate vector x(t). A classical paradigm arises from RLC circuit area. In this chapter, after

introducing linear time invariant systems, we will use modified node analysis method to extract the
mathematical model for a simple RC circuit.

2.1 Definition

Linear Time Invariant Systems are a special category of systemswhich exhibit two basic properties[9],[19]:

• Linearity: The main aspect based on which a system is considered to be linear or not is super-
position. Superposition principal states that if the input applied to a system is the sum of two
or more individual signals, then the overall response of the system is the sum of the responses
that each individual signal would have caused. Specifically, if a system is described by f(x), and
y1 = f (x1), y2 = f (x2) are the responses corresponding to input signals x1 and x2 respectively,
then the system is linear if the following conditions are satisfied:

1. f (x1+ x2)= f (x1)+ f (x2)= y1+ y2

2. f (ax)= af (x)= ay ,for any scalar factor a.

• Time Invariance: A system is considered to be time invariant if a shift in time on the input causes
the same shift in time on the output. Specifically, if y(t)= x(t), then y(t−δ)= x(t−δ).

3

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS (LTI) AND CIRCUIT MODELING

2.2 Differential Equations and State Variables

2.2.1 State Variables

State variables refer to a minimum set of system variables enough to fully describe the state of the
system mathematically and also determine the response of the system to any given input.[15]. Knowing
these variables {x1, x2, ..., xn} and their initial value at a time t0, together with the system inputs for time
t⩾ t0, suffices to predict any future state of the system and, in addition, the output vector for time t > t0.

For example, the system in Figure 2.1 has an input vector of size m, {u1,u2, ...um} and an output
vector of size q, {y1, y2, ..., yq}. The knowledge of state variables {x1, x2, ..., xn} and their value at time t0,
as well as the knowledge of the input vector {u1,u2, ...,um} for time t⩾ t0 are all we need to determine
any future behavior of the system and compute the output vector {y1, y2, ..., yq}.

Figure 2.1: State Variables from [15]

Νο set of state variables, used to describe a system is unique. In fact, any set of system variables,
able to describe the system effectively can be considered to be state variables. On the other hand, the
order of a given system is unique, independent of the chosen set of state variables and equal to n.

2.2.2 Differential Equations

Mathematically, a system is described by a set of n coupled first order differential equations. Each
one of them expresses the time derivative of states variables in terms of state variables {x1, x2, ...xn} and
system inputs {u1,u2, ...,um}. Generally a state equations is in the form:

x′i = f i(x,u, t) (2.1)

i = {1,2, ...,n} ,where x′ = dx
dt and f could be a nonlinear time varying function in terms of state variables,

inputs and time.
Usually, the sets of n state variables andm inputs are expressed in vector form, x(t)=

[
x1 x2 ... xn

]T

and u(t)=
[
u1 u2 ... um

]T
, so the set of state equations is written:

x′ = f (x,u, t) (2.2)

4

2.2. DIFFERENTIAL EQUATIONS AND STATE VARIABLES

referring to x′ and f as vectors with n components.
In case of linear time invariant systems the differential equations are linear with constant coeffi-

cients:

x1(t)′ = a11 x1(t)+a12 x2(t)+ ...a1n xn(t)+b11 u1 + ...+b1m um (2.3a)

x2(t)′ = a21 x1(t)+a22 x2(t)+ ...a2n xn(t)+b21 u1 + ...+b2m um (2.3b)

... (2.3c)

... (2.3d)

... (2.3e)

xn(t)′ = an1 x1(t)+an2 x2(t)+ ...ann xn(t)+bn1 u1 + ...+bnm um (2.3f)

Equations (2.3) can be written in matrix form aw well:

d
dt

x1

x2

.

.

.

xn

=

a11 a12 . . . a1n

a21 a22 . . . a2n

.

.

.

an1 an2 . . . ann

x1

x2

.

.

.

xn

+

b11 b12 . . . b1m

b21 b22 . . . b2m

.

.

.

bn1 bn2 . . . bnm

u1

u2

.

.

.

um

(2.4)

which may be summarized in equation:

x′(t)= Ax(t)+Bu(t) (2.5)

where x is a column vector of size n containing the state variables, u is a column vector of size m
containing the system inputs, A is a square n× n matrix of constant coefficients and B is an n× m

matrix consisting of the coefficients that weight the inputs.
The output of the system consists of any variables of interest. One output variable yi is expressed

as a linear combination of state variable xi and system input ui. One arbitrary output variable could be:

yi(t)= c1x1(t)+ c2x2(t)+ ...+ cnxn(t)+d1u1 + ...+dmum (2.6)

where ci, di are constants. If the output vector of a given system is of size q, then q equations are
constructed in the form of (2.6):

y1

y2

.

.

.

yq

=

c11 c21 . . . c1n

c21 c22 . . . c2n

.

.

.

cq1 cq2 . . . cqn

x1

x2

.

.

.

xn

+

d11 d21 . . . d1m

d21 d22 . . . d2m

.

.

.

dq1 dq2 . . . dqm

u1

u2

.

.

.

um

(2.7)

5

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS (LTI) AND CIRCUIT MODELING

which could be summarized in equation:

y= Cx(t)+Du(t) (2.8)

where y is a column vector of size q containing the output variables, C is an q×n matrix of constant
coefficients and D is a q×m matrix of constant coefficients that weight the system inputs. For many
systems the matrix D is a null matrix, so the output variables are written as a combination of state
variables only.

y= Cx(t) (2.9)

So, the complete model used to describe a linear time invariant system is summarized in equations
(2.5) and (2.8). Matrices A and B result from the structure of the system, while C and D result from the
particular choice of output variables.

2.3 Transfer Function of LTI Systems

In previous lines we described how LTI systems are represented in time domain using state equations.
Alternatively, any LTI system can be represented in frequency domain by computing transfer function
H(s) using Laplace Transform.

To begin with, we quote two basic properties of Laplace Transform, concerning the transfer of a
function f(t) and the first derivative f ′(t) to s-domain:

L { f (t)}= F(s) (2.10)

L { f ′(t)}= sF(s)− f (0) (2.11)

So using the Laplace Transform and the initial condition x(0) = 0, equations (2.5) and (2.8) are
written in s-domain:

L {x′ = Ax+Bu}=⇒ sX (s)= AX (s)+BU(s) (2.12)

L {y= Cx+Du}=⇒Y (s)= CX (s)+DU(s) (2.13)

In the case that D is a null matrix the second one is written:

L {y= Cx}=⇒Y (s)= CX (s) (2.14)

Transfer function H(s) is defined as a fraction with numerator equal to the output of the system in
s-domain and denominator equal to the input applied to it in s-domain too:

H(s)=Y (s)/U(s) (2.15)

6

2.4. CIRCUIT MODELING

So we need to rewrite (2.12) as an expression of X(s) and combine it with (2.14) to compute Y(S)
in terms of U(s):

sX (s)= AX (s)+BU(s) (2.16a)

sX (s)− AX (s)= BU(s) (2.16b)

(sI − A)X (s)= BU(s) (2.16c)

X (s)= (sI − A)−1BU(s) (2.16d)

and (2.14) is now written:

Y (s)= C(sI − A)−1BU(S) (2.17)

According to (2.15) transfer function is computed:

H(s)= C(sI − A)−1B (2.18)

H(s)U(s)Laplaceu(t) Y(s)=H(s)U(s) Inverse Laplace y(t)=u(t)*h(t)

h(t)

Figure 2.2: LTI Systems in Time and Frequency Domain

2.4 Circuit Modeling

2.4.1 Circuit Structure

Every electronic circuit consists of basic elements which are: ohmic resistor, capacitor, inductor, volt-
age and current sources [4],[16]. In fact, real physical circuits contain semiconductor devices too, which
for modeling purposes are replaced by idealized elements. Each basic element of the circuit corresponds
to a characteristic equation:

• Resistor: I = 1
R V

• Capacitor: I = CV ′

• Inductor: V = LI ′

7

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS (LTI) AND CIRCUIT MODELING

• Current Source: I = i(t)

• Voltage Source: V = v(t)

In addition, again for modeling purposes, all wires between circuit elements are considered to be
ideal, meaning they have no extra resistance, capatiance or inductance. Hence, the circuit is reduced to
a conceptual structure that contains only the basic elements connected by ideal wires. This conceptual
structure is usually called network topology.

In conceptual form, a circuit is an assemblage of branches and nodes. A branch originates from
a circuit element while the terminals of the element are the nodes, which allow the interconnection
with other elements. We assign a direction to each branch according to the direction of current flow
through it and a serial number to each node. Usually one node of the circuit is regarded as the ground
node, meaning that has constantly zero voltage and as a consequence all node voltages are expressed as
voltage differences between each node and the ground node.

The electrical circuit shown in Figure 2.3 consists of five branches- two resistors, two capacitors
and a voltage source- and four nodes including the ground node. In this example ground node is the
node denoted by number four. The circuit is a second order RC filter.

Figure 2.3: Second Order RC Filter

2.4.2 Incidence Matrix

For any circuit in the conceptual form we can define the incidence matrix associated with it. This
matrix is p× b, where p is the number of nodes, including the ground node, and b is the number of
branches. The elements of the matrix are defined as follows taking into account the current flow through
each branch:

r i j =

−1 : if node i is the tail of branch j
1 : if node i is the head of branch j
0 : otherwise

(2.19)

8

2.4. CIRCUIT MODELING

For the circuit shown in Figure 2.3 the incidence matrix will be 4×5, cause it consists of five nodes
and four branches:

R =

1 1 0 0 0

0 −1 1 1 0

0 0 0 −1 1

−1 0 −1 0 −1

 (2.20)

Since the voltage of the ground node is constantly zero the information concerning that node is
redundant, so the incidence matrix can be reduced to (p−1)×b. In our example the incidence matrix is
the same with the one in (2.20) removing the last row, hence it is 3×5.

We could also define individual incidencematrices for every basic element of the circuit, concerning
only the branches associated with this particular element. The basic elements of a circuit are: resistor or
conductance(R or G),capacitor(C), inductor(L), voltage source(V) and current source (I), so the avail-
able matrices to be defined are: RR,G , RC , RL, RV , RI . For the circuit in Figure 2.3 we define three
extra matrices: one for capacitors, one for resistors or conductances and one for the voltage source.
These matrices are (p−1)× b, where b now indicates the number of branches including one certain
element and b is equal to the number of nodes excepting the ground one. The capacitors matrix is 3×2,
as long as the circuit consists of three nodes- excepting the ground node- and two capacitor branches.
The other two matrices are formed correspondingly.

RC =

0 0

1 0

0 1

 ,RG =

1 0

−1 0

0 −1

 ,RV =

1

0

0

 (2.21)

2.4.3 Modified Nodal Analysis Method

We are going to use Modified Nodal Analysis (MNA) method in order to obtain a mathematical
model for the circuit shown in Figure 2.3. The method aims to determine the node voltages of a circuit
applying the Kirchhoff’s current law at every node. The current law states that the total current entering
a node is exactly equal to the total current leaving the same node or in other words the sum of currents
meeting at a certain node is equal to zero. Conventionally, the current leaving one node is regarded as
”positive”. The example circuit has three nodes to apply Kirchhoff’s current law as the ground node
is excepted. In addition, we are going to use the characteristic equations of the elements found in the
circuit ,as well as the fact that ohmic resistor is commonly expressed in terms of conductance as G = 1

R .
The currents of the branches are iR1, iR2, iC1, iC2, iV in and the current flow direction through

them is shown in the picture 2.3. Kirchhoff’s current law, applied at nodes e1,e2, e3, yields:

iVin + iG1 = 0 (2.22a)

−iG1 + iC1 + iG2 = 0 (2.22b)

−iG2 + iC2 = 0 (2.22c)

9

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS (LTI) AND CIRCUIT MODELING

Looking at the circuit, we easily observe that the node voltages e1,e2, e3 are associated with element
voltages as follows:

Vin = e1 (2.23a)

VR1 = e1 − e2 (2.23b)

VC1 = e2 (2.23c)

VR2 = e2 − e3 (2.23d)

VC2 = e3 (2.23e)

Using the characteristic equations I =GV and iC = C dV
dt the above equations are written:

iVin + (e1 − e2)G1= 0 (2.24a)

−(e1 − e2)G1+C1
de2

dt
+ (e2 − e3)G2= 0 (2.24b)

−(e2 − e3)G2+C2
de3

dt
= 0 (2.24c)

However, note that there are three equations for four unknowns: e1,e2, e3, iVin . The fourth equation
needed is the fact that:

Vin = e1 (2.25)

As long as all the elements in the circuit obey to linear characteristic equations we can write equa-
tions (2.24), (2.25) in the form:

Ex′(t)=−Ax(t)+Bu(t) (2.26)

The four unknown variables comprise the column vector ∈ R4:

x(t)= [e1 e2 e3 iV in]T (2.27)

The input vector u consists of the excitation, meaning the voltage source Vin, applied to node e1, so
u ∈ R:

u(t)= [Vin] (2.28)

Matrices E, A and B are directly extracted from equations (2.24), (2.25). Matrix E concerns the time
derivative x′(t), while matrix A contains the coefficients of x(t) and matrix B associates the excitation
Vin with equation (2.25).

E =

0 0 0 0

0 C1 0 0

0 0 C2 0

0 0 0 0

 , A =

G1 −G1 0 1

−G1 G1+G2 −G2 0

0 −G2 G2 0

1 0 0 0

 ,B =

0

0

0

1

 (2.29)

The output is usually a linear relationship of state vector and the input, generally of the form:

y(t)= Cx(t)+Du(t) (2.30)

10

2.4. CIRCUIT MODELING

However, in circuit design we rarely observe feedthrough of the input to the output, hence matrix
D is equal to zero. Moreover, the matrix C is often the transpose of the input matrix B, BT . Therefore,
the output vector y is written:

y(t)= BT x(t) (2.31)

where in our example BT = [0 0 0 1].
Generally, Modified Nodal Analysis method can be applied to any circuit, in order to write it in

the form of (2.26) and (2.31). Consider a circuit having p nodes- including the ground node- and b
branches. The number of unknown variables and therefore the size of the state vector x(t) is equal to
n = (p−1)+m, where m is the sum of sources, voltage or current. We apply Kirchhoff’s current law to
nodes {e1, e2, ..., ep−1}- ground node is excepted. That results to p−1 equations, containing the unknown
variables. We find the extra m equations needed using the fact that every source is assigned to a node e i.
We should take into account that the circuit may contain inductors too. This makes state vector x(t) to
grow, since the current iL flowing through each inductor branch is an unknown variable too. Moreover,
matrix E should contain this extra information about inductors.

MNA MethodCircuit Mathematical Model

p nodes,b branches,m sources n=(p-1)+m equations n×n E and A matrices, n×m B matrix

Figure 2.4: Modified Nodal Analysis Method

The matrices E, C and B of can be extracted directly from individual incidence matrices as follows:

E =

RCCRT

C 0

0 L 0

0 0 0

 , A =

RGGRT

G RL RV

−RT
L 0 0

−RT
V 0 0

 ,B =

RI 0

0 0

0 Inv

 (2.32)

The C, G and L are diagonal matrices containing the values of capacitors, conductances and induc-
tors of the circuit respectively. The Inv is the identity matrix in Rnv×nv , where nv is the number of
voltage sources in the circuit.

Here, E and A Rn×n and B Rn×m.

11

C
h
a
p
te

r

3
Graph Theory and Graph Partitioning

Generally, a graph is a structure consisting of a set of objects that are somehow related to each
other.In this chapter we will introduce graph theory and define the basic matrices associated
with graphs. In addition, we will describe the concept of graph partitioning.

3.1 Graph Definition

A simple graph consists of a finite set of elements, which is called the vertex set and it is denoted by
V [12]. Each element in this set V = {v1,v2, ...vn} is a vertex in the graph. The graph is formally defined
by the pair G = (V ,E), where E comprises the edge set of the graph. Usually one edge is denoted
by the letter e and two pointers {i j} indicating the connection between vertices {vi,v j}. The graphical
representation of a graph consists of ”dots” indicating vertices and ”lines” indicating the connection
between two vertices {vi,v j} when {i, j} ∈ E.

A graph is called undirected, when every {vi,v j} ∈ E simply connects vertices {vi,v j}, without in-
dicating direction from one vertex to the other. Alternatively, it is called directed, when each edge
{ei j} ∈ E is actually an arc starting from the head vertex vi and ending at the tail one v j. Furthermore, a
graph is considered to be weighted, if a non-negative number -called weight- is assigned to each edge,
otherwise it is considered to be unweighted.

In the following Figure 3.1 a graph of five verticesV = {u1,u2,u3,u4,u5} and six edges {e12}, {e23},

{e34}, {e35}, {e25}, {e45} is shown:

13

CHAPTER 3. GRAPH THEORY AND GRAPH PARTITIONING

Figure 3.1: An undirected and unweighted graph from [12]

3.2 Graphs and Matrices

3.2.1 Degree Matrix

For an undirected, unweighted graph the Degree matrix is a diagonal matrix of size n×n, where n
is equal to number of the vertices in the graph. For each vertex, the corresponding diagonal element
d(vi) is equal to the number of vertices adjacent to vertex vi. In case of weighted graphs the diagonal
elements d(vi) of Degree matrix are equal to the sum of weights of edges adjacent to each vertex vi.

The Degree matrix of the above graph 3.1 is:

1 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 2 0

0 0 0 0 3

 (3.1)

3.2.2 Adjacency Matrix

The Adjacency matrix A is a symmetric n×n matrix which represents the connections between the
vertices of the graph. The elements of Adjacency matrix are defined:

| ai j |=
{

1 : if vertices vi,v j are connected
0 : otherwise

(3.2)

In case of weighted graphs:

| ai j |=
{

wi j : if vertices vi,v j are connected
0 : otherwise

(3.3)

14

3.2. GRAPHS AND MATRICES

For the graph in 3.1 the Adjacency matrix is:

0 1 0 0 0

1 0 1 0 1

0 1 0 1 1

0 0 1 0 1

0 1 1 1 0

 (3.4)

3.2.3 Incidence Matrix

We referred to Incidence matrix R in Chapter two too. It is an n×m matrix, where n is the number of
vertices in the graph and m the number of edges. The incidence matrix encodes not only the adjacency
of the vertices in the graph but also the orientation of edges, thus it concerns only directed graphs. The
elements of incidence are defined:

r i j =

−1 : if vertex vi is the tail of edge e i j

1 : if vertex vi is the head of edge e i j

0 : otherwise
(3.5)

3.2.4 Laplacian Matrix

An extra representation of a graph is Laplacian matrix which can be extracted directly from Degree
and Adjacency matrices as follows:

L = D− A (3.6)

For example, the Laplacian matrix corresponding to the graph shown in 3.1 is:

L =

1 −1 0 0 0

−1 3 −1 0 −1

0 −1 3 −1 −1

0 0 −1 2 −1

0 −1 −1 −1 3

 (3.7)

Alternatively, given an arbitrary orientation to the edge set, Laplacian matrix can be defined using
Incidence matrix as:

L = RRT (3.8)

If the graph is weighted then the Incidence matrix is defined:

L = RWRT (3.9)

where W is an n×n diagonal matrix containing the weights w(e i j) on the diagonal.

15

CHAPTER 3. GRAPH THEORY AND GRAPH PARTITIONING

3.3 From Circuit to its Graph

It is common to represent circuits using their equivalent graph. To define a graph G = (V ,E) we
need to identify the set of vertices V = {v1,v2, ...,vn} and the set of edges E = {e i j}, which are mapped
to the nodes and branches of the circuit respectively. As long as, we have assigned a direction to the
current flowing through each branch the graph will be directed. For the RC filter shown in Figure 2.3,
the corresponding graph is:

2 31

4

Figure 3.2: Graph corresponding to circuit in Figure 2.3

3.4 Graph Partitioning

Computer scientists frequently use graphs when modeling real life problems. Cutting a graph into
smaller pieces is often part of the solution, making graph partitioning a major algorithmic problem with
a lot of applications. When speaking of graph partitioning we refer to dividing a large graph into two
or more individual clusters- also called cells- based on a certain condition.

3.4.1 Characteristic Matrix of Partition

Let G = (V ,E) be a graph and V = {v1,v2....,vn} the set of vertices. Any non-empty subset of V,
comprises a cell of V. A collection of cells, π= {C1,C2, ...Cr} is called a partition of V if ∪iCi =V and
Ci ∩C j =; whenever i ̸= j [13]. We consider π to be a partition of G as well. In addition, we define a
column vector, indicating which vertices belong to each particular cell C ⊆V :

P(Cr)=
{

1 : if vertex i belongs to Cr

0 : otherwise
(3.10)

For a certain partition π= {C1,C2, ...,Cr} of V the individual column vectors are combined to form
the characteristic matrix P(π) or simply P. Matrix P is n× r, where n is the original number of vertices
in graph and r is the number of cells.

The objective here is to create a graph having fewer vertices than the original one. If the original
graph G has n vertices, the reduced one G̃ should have r«n vertices, where r is equal to the number of
cells in the partition. Each cell of the partition π in G is mapped to a new vertex in G̃. Moreover, there
is an arc from vertex p to vertex q in G̃ if and only if there exists i ∈ Cp and j ∈ Cq with p ̸= q such
that e i j ∈ E.

16

3.4. GRAPH PARTITIONING

Let’s take the graph shown in the following Figure 3.3 as an example. The graph consists of ten
vertices and we aim to obtain a partition π such that the reduced graph G̃ consists of five vertices.

Figure 3.3: G=(V,E) from [13]

The partition chosen is:

π= {{1,2,3,4}, {5,6}, {7}, {8}, {9,10}} (3.11)

Hence, the characteristic matrix is:

P =

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1

(3.12)

17

CHAPTER 3. GRAPH THEORY AND GRAPH PARTITIONING

3.4.2 Reduced Graph

The reduced graph G̃ will be:

Figure 3.4: G̃=(Ṽ ,Ẽ) from [13]

Graph G̃ consists of five vertices, one for each cell in partition π. For instance, vertex one in G̃

corresponds to the cell C1 = {1,2,3,4} and similarly vertex two correspond to cell C2{5,6}. Concerning
edges {e i j} ∈ Ẽ the weights associated with them are equal to the average of the weights of the edges
{e i j} ∈ E with i ∈ Cp and j ∈ Cq. They are given by the relationship:

wpq = 1
Cq

∑
i∈Cp, j∈Cq

wi j (3.13)

where p,q denote two cells in G and therefore two vertices in G̃.

3.5 Graph Partitioning Techniques

This section goes through some of the most popular techniques trying to solve graph partitioning
problem [7],[14].

• Spectral Partitioning: Spectral Partitioning is one of the first methods used to partition a graph.
Originally the method aimed to split a graph into two clusters (spectral bisection) by computing
the eigenvector associated with the second smallest eigenvalue of the Laplacian matrix of the
graph. Then the median value of this eigenvector is determined and based on that the two clusters
are created. The first one consists of all nodes with an entry smaller or equal with median value
and the second one consists of the rest of the nodes. Later, the method was expanded to produce

18

3.6. APPLICATIONS

k > 2 clusters by using multiple eigenvectors. The method is more useful when a small number
of clusters is required, namely four or eight.

• Breadth First Search: This is a very simple method that works as follows: Starting from a random
vertex u, the method traverses the graph using Breadth First Search algorithm, assigning the vis-
ited vertices to cluster V1. When half of the original vertices are assigned to V1 the method stops.
Then the remaining vertices are assigned to cluster V2.

• Kernighan-Lin (KL) and Fiduccia-Mattheyes Algorithms: Kernighan-Lin is one of the oldest
graph partitioning algorithms. It is a local search algorithm, which given a graph G = (V ,E)

and a two-way or k-way partition of it, tries to produce a new optimum partition, improving the
cut size. Kernighan-Lin is also a balanced partitioning algorithm, meaning that it aims to pro-
duce equal size clusters of vertices. It iteratively exchange pair of nodes between clusters of the
partition, until it reaches an optimum one. Fiduccia-Mattheyes algorithms are an improvement
of Kernighan-Lin algorithm. The difference is that Fiduccia-Mattheyes method selects a single
node to exchange between clusters in each iteration.

• Multilevel Graph Partitioning: This method is comprised of three phases [18]:

1. Coarsening Phase: At this phase a sequence of G1,G2, ...,Gm smaller graphs are extracted
from original graph G. Each vertex in one of smaller graphs represent a set of connected
vertices in original graph G. At each stage of this phase a set of interconnected vertices are
combined to comprise a vertex in the next stage. The coarsening phase stops when graph is
small enough.

2. Initial Partitioning Phase: This phase utilizes the coarsest graph given by phase one and
provides a k-way partition of the graph minding the load balance. This means that this
phase tries to create equal size partitions of the graph. Since the coarsest graph is usually
very small this step is fast.

3. Refinement Phase: This phase attempts to minimize communication by grouping together
strongly connected nodes, preserving at the same time the load balance. The phase utilizes
the k-way partition has derived from phase two. The algorithm aims to minimize the cut-
set, meaning the the number of edges that cross over clusters, by moving vertices from one
cluster to another. A move is considered to be useful if it reduces the cut-set and preserves
the load balance.

3.6 Applications

Since the size of graph structures describing physical systems keep increasing, the question of graph
partitioning becomes mandatory. This section exhibits some of the applications that use graph partition-
ing to reach solution:

19

CHAPTER 3. GRAPH THEORY AND GRAPH PARTITIONING

• Parallel Processing: A classic application of graph partitioning is the distribution of load at pro-
cessors of a parallel machine. Graph partitioning should ensure the balance and minimize the
communication between the processors.

• Power Grids: Partitioning algorithms can be used to split a power grid into a number of self-
sufficient sub-grids in order to prevent the propagation of disturbances. The objectives of the
partitioning along with load shedding enhance the robustness of the power grid.

• Biological Networks: Many biological networks can be modeled using graph representation. The
nodes of the graph are biological entities and the edges correspond to their common participation
in some biological process. It is useful to partition these networks for many reasons, for example
to reduce the data, by grouping together in a cluster nodes that behave biologically similarly to
each other.

• Image Processing: Concerning image segmentation, algorithms aim to divide the pixels of an
image into groups that correspond to objects in order to obtain a more compressed representation
of the image referring to objects rather than pixels. Each image pixel corresponds to a node in
the graph and nodes are connected by a weighted edge if they are similar to each other. The
weight represents an other quantity, like the difference in the intensity between the connected
pixels-nodes.

• VLSI Physical Design: Physical design of digital circuits for VLSI systems is also a very common
application for graph partitioning techniques. The goal is to reduce the complexity of the system.
this can be achieved by partitioning the components into smaller groups and keep the length
of wires short. In graphical form the digital circuits is an assemblage of subcircuits -denoted
by the clusters of the graph-, where the nodes are functional units of the circuit and the edges
are the wires. The actual objective is to minimize the total communication between subcircuits.
In addition, graph partitioning concerning this certain area of VLSI systems is usually associated
with some constraint. For example, computation time of partitioning matters and even for circuits
with million components should be small.

20

C
h
a
p
te

r

4
Model Order Reduction

Speaking of Model Order Reduction we refer to a sum of techniques that aim to approach a large
and complex mathematical model by reducing its order. In this chapter we will present a certain
projection-based technique that uses the partition of a graph to obtain a reduced order model.

4.1 Motivation

Mathematical models are clearly created for a reason. They attempt to describe the behavior of phys-
ical systems in terms of state variables. The goal is to simulate and, eventually control the system. The
model of a dynamical system consists of a number of differential equations, ordinary or partial- which
are often discretized into ordinary. This number is usually large, making the model too complex for
further processing. The question is if it is possible to find a simpler model, while at the same time
preserve the behavior of the original one. Speaking of ”simpler” model we refer to a liner time invari-
ant one that consists of fewer state variables than the original. Specifically, having a model of order n,
model order reduction techniques are responsible to replace it with one of lower order, saying r, taking
into consideration that the reduced system must behave as closely as possible equal to the original one
[3],[16].

21

CHAPTER 4. MODEL ORDER REDUCTION

Figure 4.1: Model Order Reduction from [3]

Model order reduction is a technique having a wide range of applications. The ones described previ-
ously in graph partitioning section are between them. It is also very important at optimal control area,
aiming to reduce the order of controller. A wide area of applications for order reduction techniques
arises from circuit simulation problems. We need to simulate circuits consisting of million resistors,
capacitors and inductors as well as active devices, like transistors and diodes. The models used for
these active devices are indefinite themselves. Moreover, the more and more increasing frequencies
have brought up problems concerning the electromagnetic effects in interconnection structure, that can
affect the transmission of signals. To overcome this problem we need to solve the Maxwell equations
resulting to very large systems.

The importance of model order reduction can be summarized [8]:

• To obtain lower-order model so as to make the understanding of the system simpler.

• To reduce computational efforts in simulation.

• To make the design numerically more efficient.

22

4.2. PROJECTION BASED MODEL ORDER REDUCTION

• To obtain simpler control laws.

4.2 Projection Based Model Order Reduction

MOR approaches are classified in two major categories: those based on projection techniques and
the ones based on truncation. All of them aim to obtain a reduced model preserving the most useful
information and removing the less important one. Their difference lies in how each technique measures
importance.

Projection methods attempt to approach the high-dimensional state vector using a new vector be-
longing to a lower-dimension subspace. They mostly depend on the structure of the original model. In
addition, they are simpler and cheaper to implement. On the other hand, truncation techniques attempt
to preserve key characteristics of the system, like controllability and observability[17]. They obviously
achieve better performance giving optimal model. However the basic disadvantage is that their imple-
mentation is more expensive.

4.2.1 Projection Method

Consider the eigenproblem [20]:

Au = lu

where A ∈ Rn×n and λ ∈ R.
Assume that there is a lower-dimensional subspace M, let’s say M Rr×r. A projection method, like

Galerkin Projection, seeks for ũ ,λ̃, that satisfy:

ũ ∈ M (4.1a)

(Aũ− λ̃ũ)⊥M (4.1b)

That means (Aũ− λ̃ũ)⊥M must be orthogonal to any base of subspace M. Let V = {v1,v2, ...vr} be
an orthogonal base of M. Then if y is a vector in Rn equation (4.1) can be written:

ũ =V y (4.2a)

V T (AV y− λ̃V y)= 0 (4.2b)

Let P =V T AV be the projection matrix. Then the original eigenproblem is written:

H y= λ̃y (4.3)

which is a simpler problem to solve.

23

CHAPTER 4. MODEL ORDER REDUCTION

4.2.2 Petrov-Galerkin Condition

Consider the model derived from modified nodal analysis that is described by (2.26),(2.30).

Ex′(t)+ Ax(t)−Bu(t)= 0 (4.4a)

y(t)= Cx(t) (4.4b)

These equations are ∈Rn×n.We aim to project them onto a lower-dimension subspace, of dinmesion
r, where r«n [1], [5]. We chose subspaces V and W as well as the corresponding test basis matrices V
and W, both ∈ Rn×r. Then the state vector x(t) is expressed in terms of ˜x(t) ∈Rr:

x(t)=V ˜x(t) (4.5)

and based on that (4.4) is rewritten:

EV ˜x(t)′+ AV ˜x(t)−Bu(t)= 0 (4.6)

Applying Petrov-Galerkin condition to (4.6)

WT (EV ˜x(t)′+ AV ˜x(t)−Bu(t))= 0 (4.7)

leads to the reduced model:

Ẽ ˜x(t)′+ Ã ˜x(t)− B̃u(t)= 0 (4.8a)

ỹ= C̃ ˜x(t) (4.8b)

where the reduced matrices are given by:

Ẽ =WT EV (4.9a)

Ã =WT AV (4.9b)

B̃ =WTB (4.9c)

C̃ = CV (4.9d)

24

4.3. PROJECTION USING GRAPH PARTITIONS

Figure 4.2: Model Order Reduction Based on Projection from [5]

Note that the equality WTV = I is true. In special case that W =V the projection is orthogonal and
is called just Galerkin projection.

4.3 Projection Using Graph Partitions

Let’s take as an example the system represented by the graph shown in Figure 3.3. The set V =
{v1,v2, ...vn} is the set of vertices and there is a subset of V, say VL = {v1,v2, ...,vm}, to which the
system inputs are applied. Matrix B is responsible to assign the input vector u = {u1,u2, ...,um} to the
corresponding vertices, while matrix A includes the edge weights. Finally, column vector x denotes the
sate vector of size n. The system is described by the following model:

x′ =−Ax+Bu (4.10)

where A is the Laplacian n×n matrix of the graph while B is n×m matrix. Supposing that the input is
applied to vertices six and seven, B matrix is determined:

B =

0 0

0 0

0 0

0 0

0 0

1 0

0 1

0 0

0 0

0 0

(4.11)

25

CHAPTER 4. MODEL ORDER REDUCTION

The Laplacian matrix associated with the graph in Figure 3.3 is:

A =

5 0 0 0 0 −5 0 0 0 0

0 5 0 0 −3 −2 0 0 0 0

0 0 6 −1 −2 −3 0 0 0 0

0 0 −1 6 −5 −0 0 0 0 0

0 −3 −2 −5 25 −2 −6 −7 0 0

−5 −2 −3 0 −2 25 −6 −7 0 0

0 0 0 0 −6 −6 15 −1 −1 −1

0 0 0 0 −7 −7 −1 15 0 0

0 0 0 0 0 0 −1 0 1 0

0 0 0 0 0 0 −1 0 0 1

(4.12)

We aim to project the model in (4.10) onto a lower-dimension subspace, using Petrov-Galerkin
projection that described previously. It is significant to preserve a transparent relationship between the
original system and the reduced one and a direct application of Petrov-Galerkin method may be de-
structive. Taking this into account a projection procedure using graph partitions to determine V and W
matrices is proposed.

In previous chapter, and specifically in (3.11), we defined the partitionπ= {{1,2,3,4}, {5,6}, {7}, {8}, {9,10}}

of the graph G shown in Figure 3.3. Furthermore we defined the characteristic matrix P associated with
that partition. Then, matrices W and V are formed based on matrix P as follows:

W = P(PT P)−1 (4.13a)

V = P (4.13b)

The columns of P are orthogonal, thus the matrix (PT P) is a diagonal matrix with its diagonal
elements be equal to the number of vertices in each cell Ci. Hence, this matrix is invertible.

By applying Petrov-Galerkin Projection to model (4.10) we obtain the reduced one:

x̃′ =−Ãx̃+ B̃u (4.14)

where x̃ ∈Rr, Ã =WT AV and B̃ =WTB. Note that r is equal to the number of cells in partition π.
Considering the dimensions of W and V, Ã is a r× r matrix, while M̃ is a r×m matrix. For this

particular example r is equal to five. Matrices Ã and B̃ corresponding to reduced model are:

Ã =

5 −5 0 0 0

−10 23 −6 −7 0

0 −12 15 −1 −2

0 −14 −1 15 0

0 0 −1 0 1

 (4.15)

26

4.3. PROJECTION USING GRAPH PARTITIONS

B̃ =

0 0

0.5 0

0 1

0 0

0 0

 (4.16)

The input weights in B̃ depend on the cardinality of cells in π. Originally, input u1 is applied to
vertex six, which belongs to cell C2 and furthermore to vertex two in G̃. So input u1 is now associated
with x̃2

′ in terms of the average of input received by vertices in C2 = {5,6}.
The reduced graph G̃ is shown in Figure 3.4.

27

C
h
a
p
te

r

5
Order Reduction of RC Network Model

In this chapter we regard the model derived from an RC Network as the original and we aim to
obtain a reduced one applying the model order reduction technique based on graph partitions.

5.1 Problem Definition

Our original model is defined by the following equations:

Cx′(t)=−Gx(t)+Bu(t) (5.1a)

y(t)= BT x(t) (5.1b)

The equations above have derived from the Modified Nodal Analysis Method. Vector x is the state
vector of dimension n and vector u is the input vector of dimension m. Matrices C and G are the capa-
tiance and conductance matrices respectively. They are both n×n sparse symmetric matrices.Moreover,
matrices C and G are similar to each other, meaning that they contain elements for the same pairs of
{i, j}. Matrix B is responsible for assigning the input vector to the corresponding nodes while BT ex-
presses output vector y in terms of state vector. Matrix B is n×m. At this particular example n is equal
to 288 and m equal to 32. Hence, C and G matrices are 288×288 and B is 288×32.

Firstly, we need to determine a partition π of the corresponding to matrix C graph and the character-
istic matrix P associated with that. The next step requires to form projection matrices V andW based on
characteristic matrix P. Then, we are ready to apply Petrov-Galerkin projection to obtain the reduced
order model. Since matrices G and C are similar to each other we apply the same projection to both of
them.

In order to determine the partition of the graph we are going to use alternative methods. The first
is a software package named METIS [11] and the second one is an algorithm fully implemented with
Matlab commands [10].

29

CHAPTER 5. ORDER REDUCTION OF RC NETWORK MODEL

5.2 Partitioning Using METIS Software Package

5.2.1 METIS Overview

METIS is a serial software package for partitioning large irregular graphs, partitioning large meshes,
and computing fill-reducing orderings of sparse matrices. METIS has been developed at the Depart-
ment of Computer Science & Engineering at the University of Minnesota and is freely distributed. The
algorithms implemented in METIS are based on the multilevel graph partitioning approach, and they
seem produce high-quality partitionings and fill-reducing orderings in relatively small amount of time
fill-reducing orderings.

METIS can provide a k-partition of a given graph, where k is specified by user, using either multi-
level recursive bisection or multilevel k-way partitioning algorithms. Bothmethods provide high quality
partitions, however multilevel k-way partition algorithm is preferable, cause it provides additional ca-
pabilities.METIS stand-alone program for partitioning is gpmetis.

Figure 5.1: The three phases of multilevel k-way graph partitioning. During the coarsening phase, the
size of the graph is successively decreased. During the initial partitioning phase, a k-way partitioning
is computed, During the multilevel refinement (or uncoarsening) phase, the partitioning is successively
refined as it is projected to the larger graphs. G0 is the input graph, which is the finest graph. G i+1 is
the next level coarser graph of G i. G4 is the coarsest graph. Figure from [11]

The objective of graph partitioning problem is to obtain a k-way partitioning such that the number
of edges, or in case of weighted graphs the sum of weights of edges, that cross different clusters of
partition is minimized. This objective is commonly called the edge-cut.

30

5.2. PARTITIONING USING METIS SOFTWARE PACKAGE

5.2.2 METIS API Routine

All routines implemented in METIS can be called from C/C++ programs(Appendix A). The routine
we are going to use is k-way graph partitioning routine which is defined as follows:

int METIS_PartGraphKway(idx_t *nvtxs, idx_t *ncon, idx_t *xadj,
idx_t *adjncy,idx_t *vwgt, idx_t *vsize, idx_t *adjwgt,
idx_t *nparts, real_t *tpwgts, real_t ubvec,
idx_t *options,idx_t *objval, idx_t *part)

Figure 5.2: METIS Routine from [11]

idx_t is a special data type for storing integer quantities used by METIS and it is defined in metis.h
library. There is a real t data type for storing floating point quantities, also defined in metis.h. All rou-
tines in METIS take inputs that are of these two data types. Moreover, METIS allows some parameters
to have NULL value in order to minimize the complexity.

The list of parameters of the routine is described in the next table. The parameters allowed to be
NULL are indicated with a (NULL) following them.

31

CHAPTER 5. ORDER REDUCTION OF RC NETWORK MODEL

Parameter Description
nvtxs The number of vertices in the graph
ncon The number of balancing constraints. It should be at least 1
xadj, adjncy The adjacency structure of the graph as described in next lines
vwgt
(NULL)

The weights of the vertices

vsize
(NULL)

The size of the vertices for computing the total communication
volume

adjwgt
(NULL)

The weights of the edges

nparts The number of parts to partition the graph
tpwgts
(NULL)

This is an array of size nparts×ncon that specifies the desired
weight for each partition and constraint. A NULL value can be
passed to indicate that the graph should be equally divided among
the partitions

ubvec
(NULL)

This is an array of size ncon that specifies the allowed load imbal-
ance tolerance for each constraint. A NULL value can be passed
indicating that the load imbalance tolerance for each constraint
should be 1.001 (for ncon=1)

options
(NULL)

This is the array of options

objval Upon successful completion, this variable stores the edge-cut of
the partitioning

part This is a vector of size nvtxs that upon successful completion
stores the partition vector of the graph

Table 5.1: List of Routine’s Parameters

In order to include a graph in the parameter list of the routine we need its adjacency structure,
using compressed storage format(CSR). In this format a graph consisting of n nodes and m edges is
represented by two arrays: xadj and adjncy. For each vertex i the adjncy array contains the adjacent to
this vertices and it is of size 2m. Assuming that vertex numbering starts from 0, xadj[i] indicates the
starting point of vertex i in adjncy matrix, while xadj[i+1] indicates, but not includes, the ending point.
Array Xadj is of size n+1.

Figure 5.3: A simple graph from [11]

Then the two arrays concerning its adjacency structure are:

32

5.3. PARTITIONING USING GRPARTITION ALGORITHM

xadj 0 2 5 8 11 13 16 20 24 28 31 33 36 39 42 44
adjncy 1 5 0 2 6 1 3 7 2 4 8 3 9 0 6 10 1 5 7 11 2 6 8 12 3 7 9 13 4 8 14 5 11 6

10 12 7 11 13 8 12 14 9 13

Figure 5.4: Adjancy Structure of the Simple Graph in Figure 5.3 from [11]

Note that according to xadj array for vertex 0 the adjacent vertices start from adjncy[0] and end, but
not include, at element adjncy[2].

Returning back to our problem, we need to convert C matrix to adjacency form in order to be
included in the parameter list of the routine. We use the following Matlab script to extract adjncy and
xadj arrays. Note that we need those arrays to begin element numbering from 0 (C style), while Matlab
starts element numbering from one.

adjncy=zeros(1,1234) % adjncy is of size 2*m=1234
xadj=zeros(1,289) % xadj is of size n+1
xadj(1)=0; % initialization of xadj array
k=1; % pointer runs adjncy array
m=2; % pointer runs xadj array

for i=1:n
for j=1:n

if C(i,j) ~= 0
adjncy(k)=j-1;
k=k+1;

end
end
xadj(m)=k-1;
m=m+1;

end

Figure 5.5: Matlab script adjacency.m

5.3 Partitioning Using grPartition Algorithm

5.3.1 Algorithm Overview

It is a graph partitioning algorithm based on spectral factorization. The algorithm is fully implemented
with Matlab commands (appendix B). The objective is to find a k-partition that minimizes the cost C(P)
which is:

C(P)=∑
i ̸= j

∑
(u,ũ)∈E/u∈Vi ,ũ∈Vj

c̃(u, ũ) (5.2)

The algorithm is called by the function:

33

CHAPTER 5. ORDER REDUCTION OF RC NETWORK MODEL

% C: is the Laplacian matrix of the model
% r: is the desired number of clusters
% nrep: number of repetion for the clustering algorithm ,optional input-default

is one
%ndex: r vector with with the cluster index for every node (indicates from 1)
%Pi: Projection matrix
%cost: cost of the partition (sum of broken edges)

[ndx,Pi,cost]= grPartition(C,r,nrep); %nrep=1

Figure 5.6: Function grPartition.m

5.4 Characteristic and Projection Matrices Formulation

METIS routine is called from a C++ program (Appendix A), where user defines nparts parameter to
be equal to the desired number of clusters. User also includes the adjncy and xadj arrays, which store
the adjncy structure of the graph and specifies the number of vertices through nvtxs variable. The rest of
the parameters in parameter list are set to their default values. Upon successful completion, part vector
indicates at which individual cluster each vertex belongs. This is all the information needed to form the
n×r characteristic matrix P and then projection matrices W and V. The routine also returns the edge-cut
through objval variable.

R=dlmread('part.txt'); % part.txt contains part vector
n=288; % original number of vertices
r=specified_by_user; % r is the desired number of clusters
for i=1:n
R(i,1)=R(i,1)+1; % Matlab starts element numbering from 1

end
P=zeros(n,r); % initialize characteristic matrix P
for i=1:n
j=M(i,1);
P(i,j)=1; %characteristic matrix formulation

end
W=P*inv((P')*P); % projection matrix W formulation
V=P; % projection matrix W formulation

Figure 5.7: Matlab script matrices_formulation.m

Note that if we use the grPartition algorithm ndx vector is used instead of part vector.

Then we form matrices C̃, G̃ and B̃ corresponding to the reduced model:

34

5.4. CHARACTERISTIC AND PROJECTION MATRICES FORMULATION

C_red=W'*C*V;
G_red=W'*G*V;
B_red=W'B;
D_red=B^T*V;

Figure 5.8: Matlab script reduced_model_matrices_formulation.m

35

C
h
a
p
te

r

6
Numerical Results

Following we will exhibit the comparison between the original and reduced model for a certain
number of clusters, but first we need to determine this number. Generally, we could partition the
graph in any number r<n of clusters. However, a good aspect is to take into account the balance

constraint that states [2]:

|Vi |≤ (1+ e)
n
r

(6.1)

where |Vi | is the number of vertices in cluster Ci, n is the total number of vertices and r is the desired
number of clusters. When e = 0, the partition is considered to be perfectly balanced. So, to begin with,
we chose r based on that, for instance r = 24.

First, we use the following Matlab script that loads the matrices C and G and creates input matrix
B and also input vector u. Furthermore, the script determines the timestep of the simulation and the
number of time instants. The last two quantities are needed for the simulation in time domain.

37

CHAPTER 6. NUMERICAL RESULTS

load G.dat;
load C.dat;
load f_io.txt;

n = 288;

G = sparse(G(:,1), G(:,2), G(:,3), n, n);
C = sparse(C(:,1), C(:,2), C(:,3), n, n);

N = length(f_io);

p = N/2;
q = p;

B = zeros(n, p);

for in_i = 1:p
B(f_io(2*in_i-1), in_i) = 1;

end

% Stimulus
[t, dt, e] = excitation_sel(1);
%excitation_sel in appendix C

u = zeros(length(e), N/2);

for in_i = 1:p
u(:, in_i) = e';

end

timestamps = length(e);

Figure 6.1: Matlab script load.m

6.1 Comparison Between Reduced and Original Model

6.1.1 Frequency Domain

In order to compare the reduced model with the original one in frequency domain we are going to
use the transfer function of the system which was described in Chapter 2. The original model is written
in frequency domain for x(0)= 0:

L {Cx′ =−Gx+Bu}=⇒ CX (s)=−GX (s)= BU(s)=⇒ X (s)= (sC+G)−1 +BU(s) (6.2)

while (5.1b) is written:
L {y(t)= BT x(t)}=⇒Y (s)= BTU(s) (6.3)

Hence, transfer function is defined:

H(s)=Y (s)/U(s)= BT (sC+G)−1B (6.4)

38

6.1. COMPARISON BETWEEN REDUCED AND ORIGINAL MODEL

The following Matlab script computes H(s) concerning the original and the reduced system, for
s = jω, where ω ∈ [102,106] Hz. Transfer matrix, H(s), is a m×m, here 32×32 and we chose to plot
some of the diagonal elements. The plot chart is common for the original and reduced model.

m=logspace(2,6,100);
%divides frequency range into 100 logarithmically spaced points
for i=1:100

s=j*m(i);
H=(abs((B')*inv((s*C+G))*B));
H_red=(abs((B_red')*inv((s*C_red+G_red))*B_red));
H_i(:,i)=mag2db(abs(H(1,1)));
%computes a row vector of H(1,1) for 100 different frequencies. Magnitude

is expressed in dbs
H_red_i(:,i)= mag2db(abs(H_red(1,1)));

end
figure('Name','Reduced and Original Model Comparison');
plot(m, H_red_i,'r');
hold on;
plot(m, H_i,'b');

Figure 6.2: Matlab script comparison_frequency_domain.m

6.1.1.1 Using METIS

The above script produces the chart:

39

CHAPTER 6. NUMERICAL RESULTS

0 1 2 3 4 5 6 7 8 9 10

Frequency 105

-160

-140

-120

-100

-80

-60

-40

-20

H
(1

,1
)

d
b

Figure 6.3: H(1,1) for reduced (’r’) and original (’b’) model

We chose to also plot H(10,10), H(20,20), H(30,30):

40

6.1. COMPARISON BETWEEN REDUCED AND ORIGINAL MODEL

0 1 2 3 4 5 6 7 8 9 10

Frequency 105

-160

-140

-120

-100

-80

-60

-40

-20

H
(1

0
,1

0
)

d
b

(a) H(10,10)

0 1 2 3 4 5 6 7 8 9 10

Frequency 105

-160

-140

-120

-100

-80

-60

-40

-20

H
(2

0
,2

0
)

d
b

(b) H(20,20)

0 1 2 3 4 5 6 7 8 9 10

Frequency 105

-160

-140

-120

-100

-80

-60

-40

-20

H
(3

0
,3

0
)

d
b

(c) H(30,30)

Figure 6.4: Plots of diagonal pairs of H(s)

6.1.1.2 Using grPartition Algorithm

If we use grPartition algorithm to obtain a partition of the graph corresponding to matrix C the output
charts are:

41

CHAPTER 6. NUMERICAL RESULTS

0 1 2 3 4 5 6 7 8 9 10

Frequency 105

-160

-140

-120

-100

-80

-60

-40

-20

H
(1

,1
)

d
b

(a) H(1,1)

0 1 2 3 4 5 6 7 8 9 10

Frequency 105

-160

-140

-120

-100

-80

-60

-40

-20

H
(1

0
,1

0
)

d
b

(b) H(10,10)

0 1 2 3 4 5 6 7 8 9 10

Frequency 105

-160

-140

-120

-100

-80

-60

-40

-20

H
(2

0
,2

0
)

d
b

(c) H(20,20)

0 1 2 3 4 5 6 7 8 9 10

Frequency 105

-160

-140

-120

-100

-80

-60

-40

-20

H
(3

0
,3

0
)

d
b

(d) H(30,30)

Figure 6.5: Plots of diagonal pairs of H(s)

6.1.2 Time Domain

In time domain, we attempt to approximate the output vector y, using the Implicit or Backward Euler
method. The approximations are given by:

yn+1 = yn +hf (yn+1, tn+1) (6.5)

where h is called step.

The output vector y is given by (5.1b) and it is a column vector of size m, where m = 32. The
following function approaches yi computing its value for a number of time instants, specifically this
number is equal to 36. So, the output y is a 32×36 matrix.

42

6.1. COMPARISON BETWEEN REDUCED AND ORIGINAL MODEL

% dt is the timestep of simulation,dt = ti − ti−1
% x0 is a zero vector
% timestamps is the total number of time instants in the simulation
%D=B^T, the matrix weighting output vector

function [y] = tr_sim_be(C, G, B, D, e, dt, x0, timestamps)
S = G + (1/dt)*C;
[L,U] = lu(S);clc
y = zeros(size(D,2), timestamps);
x = x0;
tic;
for k = 1:32

b = (B*e(k, :)') + (1/dt)*C*x;
c = L\b;
x = U\c;
y(:, k) = D(:, k)'*x;

end
toc;

end

Figure 6.6: Matlab function sim.m

The function is called from the next script which is also responsible for plotting in common chart
some certain yi for the original and reduced model. The script plots the first output y(1) for all time
instants. In addition, it plots one of the system inputs, specifically the input applied to vertex one of the
original graph. Note that all inputs are of same form.

x0_red=zeros(r,1); %r is the dimension of reduced model vector
x0=(288,1);

y_red=sim(C_red, G_red, B_red, D_red', e, dt, x0, timestamps);
y=sim(C, G, B, B, e, dt, x0_288, timestamps);
%matrix B is used for parameter D

figure('Name','Reduced and original model comparison in time domain');
plot(y_red(1,:),'r');
hold on;
plot(y(1,:),'b');

%plot one system input
figure('Name','Input 1');
plot(u(:,1));

Figure 6.7: Matlab script time_domain.m

Considering the edge cut for this certain partition of 24 clusters, METIS routine returned the objval

43

CHAPTER 6. NUMERICAL RESULTS

variable equal to 289, while grPartition algorithm computed the cost equal to 120.

6.1.2.1 Using METIS

The script produces the chart:

0 5 10 15 20 25 30 35

Time Instants

0

1

2

3

4

5

6

7

O
u
tp

u
t
y
(1

)

10-10

(a) y(1) for reduced (’r) and original (’b’) model

0 5 10 15 20 25 30 35 40

Time Instants

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
p
u
t
F

o
rm

(b) Input 1

Figure 6.8: Script Output

Some more outputs y(i):

44

6.1. COMPARISON BETWEEN REDUCED AND ORIGINAL MODEL

0 5 10 15 20 25 30 35

Time Instants

0

1

2

3

4

5

6

7

O
u

tp
u

t
y
(1

0
)

10-9

(a) y(10)

0 5 10 15 20 25 30 35

Time Instants

0

1

2

3

4

5

6

7

8

O
u

tp
u

t
y
(2

0
)

10-9

(b) y(20)

0 5 10 15 20 25 30 35

Time Instants

0

1

2

3

4

5

6

7

O
u

tp
u

t
y
(3

0
)

10-9

(c) y(30)

Figure 6.9: Plots of output vectors elements y(i)

6.1.2.2 Using grPartition Algorithm

If we use grPartition algorithm the corresponding output charts are:

45

CHAPTER 6. NUMERICAL RESULTS

0 5 10 15 20 25 30 35

Time Instants

0

0.2

0.4

0.6

0.8

1

1.2

O
u

tp
u

t
y
(1

)

10-9

(a) y(1)

0 5 10 15 20 25 30 35

Time Instants

0

1

2

3

4

5

6

7

O
u

tp
u

t
y
(1

0
)

10-9

(b) y(10)

0 5 10 15 20 25 30 35

Time Instants

0

1

2

3

4

5

6

7

8

O
u

tp
u

t
y
(2

0
)

10-9

(c) y(20)

0 5 10 15 20 25 30 35

Time Instants

0

1

2

3

4

5

6

7

O
u

tp
u

t
y
(3

0
)

10-9

(d) y(30)

Figure 6.10: Plots of output vectors elements y(i)

6.2 Determining a Different Partition

In previous section we presented the comparison between the original and reduced model graphically,
having determined the number of clusters to be equal to 24. Now, taking into account the same balance
constraint in (6.1) we define a partition that consists of 48 clusters, meaning that each cluster now will
contain less vertices. The procedure and Matlab scripts used are exactly the same. The only difference
is that part and ndx vector have changed to divide vertices into 48 clusters instead of 24.

Concerning the edge cut for this partition, METIS routine determines that it is equal to 257, while
grPartition algorithm returns cost variable equal to 170. Based on that we can conclude that for METIS
the partition of 48 clusters is cheaper, but this is not true for grPartition algorithm.

46

6.2. DETERMINING A DIFFERENT PARTITION

6.2.1 Frequency Domain

6.2.1.1 Using METIS

0 1 2 3 4 5 6 7 8 9 10

Frequency 105

-140

-120

-100

-80

-60

-40

-20

H
(1

,1
)

d
b

(a) H(1,1)

0 1 2 3 4 5 6 7 8 9 10

Frequency 105

-160

-140

-120

-100

-80

-60

-40

-20

H
(1

0
,1

0
)

d
b

(b) H(10,10)

0 1 2 3 4 5 6 7 8 9 10

Frequency 105

-160

-140

-120

-100

-80

-60

-40

-20

H
(2

0
,2

0
)

d
b

(c) H(20,20)

0 1 2 3 4 5 6 7 8 9 10

Frequency 105

-160

-140

-120

-100

-80

-60

-40

-20

H
(3

0
,3

0
)

d
b

(d) H(30,30)

Figure 6.11: Plots of diagonal pairs of H(s)

47

CHAPTER 6. NUMERICAL RESULTS

6.2.1.2 Using grPartition Algorithm

0 1 2 3 4 5 6 7 8 9 10

Frequency 105

-140

-120

-100

-80

-60

-40

-20

H
(1

,1
)

d
b

(a) H(1,1)

0 1 2 3 4 5 6 7 8 9 10

Frequency 105

-160

-140

-120

-100

-80

-60

-40

-20

H
(1

0
,1

0
)

d
b

(b) H(10,10)

0 1 2 3 4 5 6 7 8 9 10

Frequency 105

-160

-140

-120

-100

-80

-60

-40

-20

H
(2

0
,2

0
)

d
b

(c) H(20,20)

0 1 2 3 4 5 6 7 8 9 10

Frequency 105

-160

-140

-120

-100

-80

-60

-40

-20

H
(3

0
,3

0
)

d
b

(d) H(30,30)

Figure 6.12: Plots of diagonal pairs of H(s)

48

6.2. DETERMINING A DIFFERENT PARTITION

6.2.2 Time Domain

6.2.2.1 Using METIS

0 5 10 15 20 25 30 35

Time Instants

0

1

2

3

4

5

6

7

O
u

tp
u

t
y
(1

)

10-10

(a) y(1)

0 5 10 15 20 25 30 35

Time Instants

0

1

2

3

4

5

6

7
O

u
tp

u
t

y
(1

0
)

10-9

(b) y(10)

0 5 10 15 20 25 30 35

Time Instants

0

1

2

3

4

5

6

7

8

O
u

tp
u

t
y
(2

0
)

10-9

(c) y(20)

0 5 10 15 20 25 30 35

Time Instants

0

1

2

3

4

5

6

7

O
u

tp
u

t
y
(3

0
)

10-9

(d) y(30)

Figure 6.13: Plots of output vector elements y(i)

49

CHAPTER 6. NUMERICAL RESULTS

6.2.2.2 Using grPartition Algorithm

0 5 10 15 20 25 30 35

Time Instants

0

0.2

0.4

0.6

0.8

1

1.2

1.4

O
u

tp
u

t
y
(1

)

10-9

(a) y(1)

0 5 10 15 20 25 30 35

Time Instants

0

1

2

3

4

5

6

7

O
u

tp
u

t
y
(1

0
)

10-9

(b) y(10)

0 5 10 15 20 25 30 35

Time Instants

0

1

2

3

4

5

6

7

8

O
u

tp
u

t
y
(2

0
)

10-9

(c) y(20)

0 5 10 15 20 25 30 35

Time Instants

0

1

2

3

4

5

6

7

O
u

tp
u

t
y
(3

0
)

10-9

(d) y(30)

Figure 6.14: Plots of output vector elements y(i)

50

C
h
a
p
te

r

7
Conclusion

7.1 Summary

In this thesis, a certain technique to achieve order reduction of high order models was described. The
technique is based on projection, meaning that it reduces the high dimension of a state vector x by
mapping it into a new state vector of lower dimension. We regarded the Laplacian matrix of the model
as a directed and weighted graph and we used a partition of it to determine projection matrices. After
applying projection we obtained a reduced graph having fewer vertices, which correspond to fewer state
variables. The reduced graph is again associated with a new, also reduced Laplacian matrix.

In the last chapter numerical results were presented. We used Matlab software to compare the be-
havior of the original and reduced model in frequency and time domain, using two alternative methods
to partition the graph. We observed that the reduced model approaches the behavior of the original one.
We repeated the procedure using a different partition of the graph, consisting of smaller clusters, and
we observed that behaves even more similarly to the original one.

Generally, model order reduction is a crucial technique, of grate importance in the field of approach-
ing large and complex physical systems. It allows the extraction of simpler mathematical models, so we
are eventually able to simulate, control or optimize the original complex systems of interest.

7.2 Further Work

In this thesis we described one effective technique to achieve the reduction of a model that has derived
from a linear time invariant system. Clearly, this one piece of research concerning model order reduc-
tion concept. There are further challenging problems, like the reduction of nonlinear or time varying
systems.

51

A
p
p
e
n
d
ix A

Appendix A

The current appendix exhibits the C++ program used to call METIS routine. METIS can be down-
loaded from // http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/metis-5.1.0.tar.gz for free.

53

APPENDIX A. APPENDIX A

#include <cstddef> /* NULL */
#include <metis.h>
#include <iostream>
#include <stdio.h>

int main(){

idx_t nVertices = 288;
idx_t nEdges = 617;
idx_t nWeights = 1;
idx_t nParts = 24;
idx_t objval;
idx_t part[nVertices];

// Indexes of starting points in adjacent array
idx_t xadj[nVertices+1] =

{0,2,6,11,15,20,24,...1216,1220,1224,1228,1230,1232,1234};

// Adjacent vertices in consecutive index order
idx_t adjncy[2 * nEdges] =

{0,1,0,1,2,3,1,2,4,16,17,1,3,4,5,2,3,4,6,18,...,285,278,286,284,287};

int ret = METIS_PartGraphKway(&nVertices,& nWeights, xadj, adjncy,
NULL, NULL, NULL, &nParts, NULL,
NULL, NULL, &objval, part);

std::cout << ret << std::endl;
for(unsigned part_i = 0; part_i < nVertices; part_i++){
std::cout << part_i << " " << part[part_i] << std::endl;
}
std::cout << objval << std::endl;
return 0;

}

Figure A.1: C++ program to call METIS routine

54

A
p
p
e
n
d
ix B

Appendix B

This appendix exhibits the grPartion Algorithm implementation in Matlab [10].

55

APPENDIX B. APPENDIX B

function [ndx,Pi,cost]= grPartition(C,k,nrep);
%
% function [ndx,Pi,cost]= grPartition(C,k,nrep);
%
% Partitions the n-node undirected graph G defined by the matrix C
%
% Inputs:
% C - n by n edge-weights matrix. In particular, c(i,j)=c(j,i) is equal
% to the cost associated with cuting the edge between nodes i and j.
% This matrix should be symmetric and doubly stochastic. If this
% is not the case, this matrix will be normalized to
% satisfy these properties (with a warning).
% k - desired number of partitions
% nrep - number of repetion for the clustering algorithm
% (optional input, defaults to 1)
%
% Outputs:
% ndx - n-vector with the cluster index for every node
% (indices from 1 to k)
% Pi - Projection matrix [see Technical report
% cost - cost of the partition (sum of broken edges)
%
% Example:
%
% X=rand(200,2); % place random points in the plane
% C=pdist(X,'euclidean'); % compute distance between points
% C=exp(-.1*squareform(C)); % edge cost is a negative exponential of distance
%
% k=6; % # of partitions
% [ndx,Pi,cost]= grPartition(C,k,30);
%
% colors=hsv(k); % plots points with appropriate colors
% colormap(colors)
% cla
% line(X(:,1),X(:,2),'MarkerEdgeColor',[0,0,0],'linestyle','none','marker','.');
% for i=1:k
% line(X(find(ndx==i),1),X(find(ndx==i),2),...
% 'MarkerEdgeColor',colors(i,:),'linestyle','none','marker','.');
% end
% title(sprintf('Cost %g',cost))
% colorbar
%
% Copyright (c) 2004, Joao Hespanha
% All rights reserved.

% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions
% are met:
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.

56

% * Redistributions in binary form must reproduce the above
% copyright notice, this list of conditions and the following
% disclaimer in the documentation and/or other materials provided
% with the distribution.
%
% * Neither the name of the <ORGANIZATION> nor the names of its
% contributors may be used to endorse or promote products derived
% from this software without specific prior written permission.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
% "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
% LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
% FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
% COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
% INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
% BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
% LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
% CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
% LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
% ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
%
% Modification history:
%
% October 21, 2006
% Use of stats/kmeans can be bypassed is the Statistics toolbox is not
% available, by using mykmeans.m
%
% Auguest 27, 2006
% GNU GPL added
%
% Before August 27, 2006
% No idea about what happened before this date...

if nargin<3
nrep=1;

end

[n,m]=size(C);
if n~=m
error('grPartition: Cost matrix is not square');

end

if ~issparse(C)
C=sparse(C);

end

57

APPENDIX B. APPENDIX B

% Test for symmetry
if any(any(C~=C'))
warning('grPartition: Cost matrix not symmetric, making it symmetric')
% Make C symmetric
C=(C+C')/2;

end

% Test for double stochasticity
if any(sum(C,1)~=1)
warning('grPartition: Cost matrix not doubly stochastic, normalizing

it.','grPartition:not doubly stochastic')
% Make C double stochastic
C=C/(1.001*max(sum(C))); % make largest sum a little smaller

% than 1 to make sure no entry of C becomes negative
C=C+sparse(1:n,1:n,1-sum(C));
if any(C(:))<0
error('grPartition: Normalization resulted in negative costs. BUG.')

end
end

if any(any(C<0))
C=abs(C);

end

% Spectral partition
options.issym=1; % matrix is symmetric
options.isreal=1; % matrix is real
options.tol=1e-6; % decrease tolerance
options.maxit=500; % increase maximum number of iterations
options.disp=0;
[U,D]=eigs(C,k,'la',options); % only compute 'k' largest eigenvalues/vectors

if exist('kmeans')==2
% Clustering -- REQUIRES the Statistics Toolbox
%ndx=kmeans(U,k,'Distance','cosine','Start','sample','Replicates',nrep,'EmptyAction','singleton');
ndx=kmeans(U,k,'Distance','cosine','Start','sample','Replicates',nrep);

elseif exist('litekmeans')==2
% requires litekmeans from file exchange
ndx=litekmeans(U',k);
%ndx=kmeans(U,k);

else
% warning('grPartition: Statistics Toolbox not available, using

mykmeans.m','grPartition:no Statistics Toolbox')
% Simple case
% [Q,R,E]=qr(U',0);
% Z=Q*(R(:,1:k)')^(-1);
% [dummy,ndx]=max(U*Z,[],2);
ndx=mykmeans(U,k,100,nrep);

end

58

if nargout>1
Pi=sparse(1:length(ndx),ndx,1);
end

if nargout>2
cost=full(sum(sum(C))-trace(Pi'*C*Pi));

end

return

Figure B.1: grPartition algorithm implementation in Matlab

59

A
p
p
e
n
d
ix C

Appendix C

This appendix exhibits the matlab script excitation_sel.m used in Chapter 6.

61

function [t, dt, e] = excitation_sel(sel)

dt = 1e-9;
t = (0:dt:35000e-12)'; % zoom into the transient phenomenon

e = zeros(length(t), 1);

if (sel == 1)
ref_t = 1*dt;
width = 5;
unitstep = and(t >= ref_t, t <= ref_t + width*dt);
e = unitstep;

elseif (sel == 2)
ref_t = 1*dt;
rise_t = 5*dt;
unitstep = and(t >= ref_t, t <= ref_t+rise_t);
ramp = t.*unitstep;
ramp = ramp(ref_t/dt + 1:ref_t/dt + 1 + rise_t/dt) - ref_t;
e = [zeros(ref_t/dt, 1); ramp; ramp(length(ramp)).*ones(length(t) -

length(ramp) - ref_t/dt, 1)];
else

ref_t = 5*dt;
delta = (t == ref_t);
e = delta;

end

end

Figure C.1: excitation_sel.m

Bibliography

[1] David Amsallem and Charbel Farhat.
Stabilization of projection-based reduced-order models.
International Journal for Numerical Methods in Engineering, 91(4):358–377, 2012.

[2] Konstantin Andreev and Harald Racke.
Balanced graph partitioning.
Theory of Computing Systems, 39(6):929–939, 2006.

[3] Athanasios C Antoulas.
An overview of approximation methods for large-scale dynamical systems.
Annual reviews in Control, 29(2):181–190, 2005.

[4] Athanasios C Antoulas, Roxana Ionutiu, Nelson Martins, E Jan W ter Maten, Kasra Mohaghegh,
Roland Pulch, Joost Rommes, Maryam Saadvandi, and Michael Striebel.

Model order reduction: methods, concepts and properties.
In Coupled multiscale simulation and optimization in nanoelectronics, pages 159–265. Springer,

2015.

[5] Peter Benner, Serkan Gugercin, and Karen Willcox.
A survey of projection-based model reduction methods for parametric dynamical systems.
SIAM review, 57(4):483–531, 2015.

[6] Peter Benner, Michael Hinze, and E Jan W Ter Maten.
Model reduction for circuit simulation.
Springer, 2011.

[7] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz.
Recent advances in graph partitioning.
In Algorithm Engineering, pages 117–158. Springer, 2016.

[8] Luigi Fortuna, Giuseppe Nunnari, and Antonio Gallo.
Model order reduction techniques with applications in electrical engineering.
Springer Science & Business Media, 1992.

63

BIBLIOGRAPHY

[9] Trevor M. Fowler.
LTI mathematical fundamentals.
In LTI System and Control Theory, pages 3–32, 2007.

[10] Joao P Hespanha.
An efficient Matlab algorithm for graph partitioning.
Santa Barbara, CA, USA: University of California, 2004.

[11] George Karypis.
METIS, a software package for partitioning unstructured graphs, partitioning meshes, and comput-

ing fill-reducing orderings of sparse matrices,version 5.1.0,http://www.cs.umn.edu/˜karypis.
2013.

[12] Mehran Mesbahi and Magnus Egerstedt.
Graph theory.
In Graph Theoretic Methods in Multiagent Networks, pages 14–26, 2010.

[13] Nima Monshizadeh, Harry L Trentelman, and M Kanat Camlibel.
Projection-based model reduction of multi-agent systems using graph partitions.
IEEE Transactions on Control of Network Systems, 1(2):145–154, 2014.

[14] Santosh Nage and Girish Potdar.
A survey on graph partitioning techniques.
In International Journal of Science and Research (IJSR). 2013.

[15] Derek Rowell.
State-space representation of LTI systems.
URL: http://web. mit. edu/2.14/www/Handouts/StateSpace. pdf, 2002.

[16] Wilhelmus HA Schilders, Henk A Van der Vorst, and Joost Rommes.
Model order reduction: theory, research aspects and applications, volume 13.
Springer, 2008.

[17] Joã|o M. S. Silva1, Jorge Fernández Villena, Paulo Flores, and L. Miguel.
Outstanding issues in model order reduction.
In Scientific Computing in Electrical Engineering, pages 139–152, 2006.

[18] Swaminathan Subramanian, Dhananjai Madhava Rao, and Philip A Wilsey.
Study of a multilevel approach to partitioning for parallel logic simulation.
In Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS 2000,

pages 833–838. IEEE, 2000.

[19] V.Oppenhiem, S.Willsky, and S.Hamid.

64

BIBLIOGRAPHY

Signals and Systems.
Pearson-2nd Edition, 1996.

[20] JIA Zhongxiao.
Composite orthogonal projection methods for large matrix eigenproblems.
Science in China Series A: Mathematics, 42(6):577–585, 1999.

65

	List of Tables
	List of Figures
	Introduction
	Linear Time Invariant Systems (LTI) and Circuit Modeling
	Definition
	Differential Equations and State Variables
	State Variables
	Differential Equations

	Transfer Function of LTI Systems
	Circuit Modeling
	Circuit Structure
	Incidence Matrix
	Modified Nodal Analysis Method

	Graph Theory and Graph Partitioning
	Graph Definition
	Graphs and Matrices
	Degree Matrix
	Adjacency Matrix
	Incidence Matrix
	Laplacian Matrix

	From Circuit to its Graph
	Graph Partitioning
	Characteristic Matrix of Partition
	Reduced Graph

	Graph Partitioning Techniques
	Applications

	Model Order Reduction
	Motivation
	Projection Based Model Order Reduction
	Projection Method
	Petrov-Galerkin Condition

	Projection Using Graph Partitions

	Order Reduction of RC Network Model
	Problem Definition
	Partitioning Using METIS Software Package
	METIS Overview
	METIS API Routine

	Partitioning Using grPartition Algorithm
	Algorithm Overview

	Characteristic and Projection Matrices Formulation

	Numerical Results
	Comparison Between Reduced and Original Model
	Frequency Domain
	Time Domain

	Determining a Different Partition
	Frequency Domain
	Time Domain

	Conclusion
	Summary
	Further Work

	Appendix A
	Appendix B
	Appendix C
	Bibliography

