
University of Thessaly
Faculty of Engineering

Department of Electrical & Computer Engineering

An electronic health record management system

Diploma Thesis

STELLA D. TOMPAZI

Supervisor
Michael Vassilakopoulos
Associate Professor

Volos, June 2019

University of Thessaly
Faculty of Engineering
Department of Electrical & Computer Engineering

An electronic health record management system

Diploma Thesis

STELLA D. TOMPAZI

Supervising committee

Supervisor
Michael Vassilakopoulos
Associate Professor

Co-supervisor
Eleni Tousidou

Laboratory Teaching Staff

Co-supervisor
Aspassia Daskalopulu
Assistant Professor

Volos, June 2019

University of Thessaly
Faculty of Engineering
Department of Electrical & Computer Engineering

The present thesis is an intellectual property of the student who authored it. It is forbidden to
copy, store and distribute it, in whole or in part, for commercial purposes. Reproduction, storage
and distribution are permitted for non-profit, educational or research purposes, provided that the
source is referenced and this message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the Supervisor,
or the committee that approved it.

The author of this thesis assures that any help he/she has had for its preparation is fully
acknowledged and mentioned in this thesis. He/she also assures that he/she has referenced any
sources from which he/she used data, ideas or words, whether these are included in the text
verbatim, or paraphrased.

Πανεπιστήμιο Θεσσαλίας
Πολυτεχνική Σχολή
Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Σύστημα διαχείρισης ηλεκτρονικού φακέλου υγείας

Διπλωματική Εργασία

ΣΤΥΛΙΑΝΗΣ Δ. ΤΟΜΠΑΖΗ

Επιβλέπων
Μιχαήλ Βασιλακόπουλος
Αναπληρωτής Καθηγητής

Βόλος, Ιούνιος 2019

Abstract

Traditional, handwritten health records were effective before we had the means to manage
them easier. They surely were a significant factor in the progress of healthcare systems, as they
provided a way to share health information, which led to improved health care. However, they
were associated with multiple drawbacks. Costs, storage, accessibility, and some common errors
regarding sorting and transfering the data, are just a few of them. As a result, the provided health
care was quite mediocre.

The aim of this thesis is to overcome as many of the above problems as possible, with the use of
a web application. The implementation was made with a Python-based framework, called Django.
The app is useful for both doctors and patients. Specialists, along with some crucial information
about their services, can access and update any information about the health record of the patient
they are interested in. At the same time, they are able to organize their appointments, using a
calendar, provided by the app. On the other side, patients have also access to their own health
records, and can search for a doctor anytime. Moreover, there is a function which allows patients
and doctors to communicate, in order to schedule an appointment.

The app is available through any device that has a compatible web browser.

Keywords

Electronic Health Record, Django, Python, Web application

i

Περίληψη

Η χρήση παραδοσιακών, γραπτών ιατρικών φακέλων ήταν αποτελεσματική όσο δεν είχαμε
κάποιο πιο εύκολο τρόπο διαχείρισής τους. Ενώ σίγουρα πρόσφεραν σημαντικά στην ανάπτυξη
του τομέα της υγείας, επιτρέποντας σχετικά εύκολα τη μετάδοση της πληροφορίας και τη βελτίωση
της φροντίδας που προσφέρεται, ωστόσο δεν είναι λίγα τα προβλήματα που έπρεπε να αντιμετω-
πιστούν. Το κόστος, ο χώρος αποθήκευσης, η προσβασιμότητα, αλλά και τα λάθη που συνέβαιναν
στη μεταφορά των στοιχείων και της αρχειοθέτησης, είναι μόνο μερικά από τα μειονεκτήματα που
έχει η χρήση των κλασικών φακέλων. Αποτέλεσμα όλων των παραπάνω είναι μια μέτρια φροντίδα
και εξυπηρέτηση των ασθενών που εγκυμονεί κινδύνους για την υγεία των ασθενών.

Σκοπός της διπλωματικής είναι η δημιουργία μιας εφαρμογής ιστού, η οποία λύνει όσα από τα
παραπάνω προβλήματα είναι δυνατόν. Η υλοποίηση έγινε με τη χρήση ενός εργαλείου για τη δη-
μιουργία εφαρμογών ιστού, που έχει σαν βάση την Python, το Django. Πρόκειται για μια εφαρμογή
χρήσιμη τόσο σε γιατρούς, όσο και σε ασθενείς. Οι ειδικοί παραθέτουν πληροφορίες για τις υπηρε-
σίες που προσφέρουν μέσω της ειδικότητάς τους και ταυτόχρονα έχουν πρόσβαση σε οποιαδήποτε
καταχωρημένη πληροφορία υπάρχει για τον ασθενή που τους ενδιαφέρει, και προφανώς έχουν τη
δυνατότητα να προσθέσουν οποιαδήποτε πληροφορία επιθυμούν. Επίσης, μπορούν να διαχειρι-
στούν εύκολα το πρόγραμμά τους μέσω της ατζέντας που τους παρέχεται. Από την άλλη πλευρά,
οι ασθενείς έχουν και αυτοί πρόσβαση στο ιστορικό τους, ενώ μπορούν εύκολα να αναζητήσουν
κάποιο γιατρό. Επιπλέον, υπάρχει υπηρεσία ανταλλαγής μηνυμάτων, ώστε να κανονίζονται επι-
σκέψεις μέσω της εφαρμογής.

Η εφαρμογή είναι διαθέσιμη μέσω οποιασδήποτε συσκευής διαθέτει συμβατό φυλλομετρητή.

Λέξεις Κλειδιά

Εφαρμογή Ιστού, Ηλεκτρονικός Φάκελος Υγείας

iii

Acknowledgements

I would like to thank professor Michael Vassilakopoulos for supervising this diploma thesis
and giving me the chance to collaborate with him. Furthermore, I want to thank my parents and
family for the guidance they offered me during all these years.

v

Table of contents

Abstract i

Περίληψη iii

Acknowledgements v

Table of contents vii

List of figures xi

List of tables xiii

1 Introduction 1
1.1 Thesis Objective . 1

1.1.1 Contribution . 2
1.2 Organization . 2

2 Related Projects 3
2.1 75Health . 3
2.2 InSync . 4
2.3 iPatientCare . 4
2.4 EHR Software Comparison . 5

3 Development and Design Tools 7
3.1 What is a Web application? . 7

3.1.1 How a Web App works . 7
3.1.2 Benefits . 8

3.2 Django . 8
3.2.1 Top Web applications that use Django 9
3.2.2 The model layer . 10
3.2.3 The view layer . 11
3.2.4 URL dispatcher . 12

3.2.4.1 How Django processes a request 12

vii

viii Table of contents

3.2.5 The template layer . 13
3.2.5.1 Configuration . 13
3.2.5.2 The Django Template Language 14

3.2.6 Forms . 15
3.2.6.1 GET and POST . 16
3.2.6.2 Django’s role in forms . 16
3.2.6.3 Forms in Django . 17

3.2.7 Authentication . 20
3.2.7.1 The admin . 20
3.2.7.2 User objects . 21

3.2.8 Security . 21
3.2.8.1 Cross site scripting (XSS) protection 21
3.2.8.2 Cross site request forgery (CSRF) protection 21
3.2.8.3 SQL injection protection . 21
3.2.8.4 Clickjacking protection . 22
3.2.8.5 SSL/HTTPS . 22

3.3 Heroku . 22
3.3.1 Heroku and data . 22

3.3.1.1 Postgres . 22
3.3.2 Ecosystem of services . 24
3.3.3 Scale and enterprise . 24

4 Drawbacks of paper medical records 25
4.1 Cost and storage . 25
4.2 Accessibility . 25
4.3 Lost productivity . 26
4.4 Quality . 26
4.5 Security . 26
4.6 Diagnosis misidentification . 26

5 Advantages of Electronic Health Records 27
5.1 Real-time records . 27
5.2 Accessibility . 27
5.3 Safety . 27
5.4 Security . 28
5.5 EHR pros in a nutshell . 28

6 Electronic Health Record web application 29
6.1 ICD-10 . 29
6.2 EHR Homepage . 29

6.2.1 Users . 30
6.3 User: Doctor . 32

Table of contents ix

6.3.1 Registration for professionals . 32
6.3.2 Main page . 33
6.3.3 Schedule . 33

6.3.3.1 Create/View Event . 34
6.3.4 Opening Hours . 36
6.3.5 Price List . 37
6.3.6 Messages . 37
6.3.7 My Profile . 38
6.3.8 Search . 40

6.3.8.1 Add New Record . 40
6.3.8.2 Find Record . 44

6.4 User: Patient . 45
6.4.1 Registration for patient . 45
6.4.2 Homepage . 46
6.4.3 My Profile . 47
6.4.4 My Records . 48
6.4.5 Search Doctor . 49
6.4.6 Favourites . 52
6.4.7 Messages . 52

7 Implementation 53
7.1 Models . 54
7.2 Views . 54

7.2.1 ListView . 54
7.2.2 DetailVew . 55
7.2.3 DeleteView . 56
7.2.4 UpdateView . 56
7.2.5 function view . 56

7.3 Forms . 58
7.4 Templates . 58

8 Conclusion 61
8.1 Summary and conclusion . 61
8.2 Future Extensions . 61

I 63
I.1 How to install Django on Windows . 63

I.1.1 Install Python . 63
I.1.2 pip . 63
I.1.3 virtualenv and virualenvwrapper . 63
I.1.4 Install Django . 64

I.2 Creating a project in Django . 64

x Table of contents

I.2.1 Database setup . 65
I.2.1.1 Creating Models . 65

I.2.2 Database API . 65
I.2.3 Admin User . 65

I.3 Getting Started on Heroku with Python . 67
I.3.1 Prepare the app . 68
I.3.2 Deploy the app . 68
I.3.3 Procfile . 68
I.3.4 App dependencies . 69

Bibliography 71

Abbreviations 73

List of figures

3.1 How a Web Application works (source: [24]) 8
3.2 Django Architecture Flowchart (source: [5]) . 9

6.1 EHR - Homepage . 30
6.2 EHR - Patient - Log In . 30
6.3 EHR - Doctor - Registration . 33
6.4 EHR - Doctor - Main page . 33
6.5 EHR - Doctor - Schedule . 34
6.6 EHR - Doctor - New Event . 34
6.7 EHR - Doctor - New Event . 35
6.8 EHR - Doctor - Event . 35
6.9 EHR - Doctor - Opening Hours . 36
6.10 EHR - Doctor - Opening Hours Form . 36
6.11 EHR - Doctor - Price List . 37
6.12 EHR - Doctor - Price List Form . 37
6.13 EHR - Doctor - Inbox . 38
6.14 EHR - Doctor - Reply . 38
6.15 EHR - Doctor - Sent . 38
6.16 EHR - Doctor - My Profile . 39
6.17 EHR - Doctor - User Profile Update . 39
6.18 EHR - Doctor - Profile Info Update . 39
6.19 EHR - Doctor - Search . 40
6.20 EHR - Doctor - Patient’s Profile . 41
6.21 EHR - Doctor - New Diagnosis Record (part 1) 41
6.22 EHR - Doctor - New Diagnosis Record ICD10 code 42
6.23 EHR - Doctor - New Diagnosis Record (part 2) 42
6.24 EHR - Doctor - New Diagnosis Record (part 3) 43
6.25 EHR - Doctor - New Vaccination Record . 43
6.26 EHR - Doctor - New Surgery Record . 44
6.27 EHR - Doctor - Diagnosis Records List . 44
6.28 EHR - Doctor - Diagnosis Record . 45
6.29 EHR - Patient - Request Appointment . 46

xi

xii List of figures

6.30 EHR - Patient - Homepage . 47
6.31 EHR - Patient - Scheduled Appointment . 47
6.32 EHR - Patient - My Profile . 48
6.33 EHR - Patient - Diagnosis History List . 49
6.34 EHR - Patient - Diagnosis Record . 49
6.35 EHR - Patient - Specialties List . 50
6.36 EHR - Patient - List of Doctors . 50
6.37 EHR - Patient - List of Doctors . 51
6.38 EHR - Patient - Request Appointment . 51
6.39 EHR - Patient - Favourites . 52
6.40 EHR - Patient - Inbox . 52

7.1 Django MVT (source: [4]) . 53

I.1 Django - Admin - Log In . 66
I.2 Django - Admin - Index . 67

List of tables

2.1 EHR software comparison table . 5

xiii

Chapter 1

Introduction

The history ofmedical recordmanagement begins with the simplest form of the ability to record
a patient’s symptoms, complaints and treatment for the use of one provider, to a comprehensive
aggregation of data to improve care and outcomes. While enhancements in technology increased
responsibilities from managing paper records to managing the full scope of the process assembling
and sharing electronically-captured information, the name of the function eventually changed to
health information management. The original forms of medical records were narratives, written in
ancient Greece, to archive successful treatments and share observations. In the 1920s, physicians
realized that documenting thoroughly their observations and process was the best way to improve
diagnosing and treating. For a very long time, the only way to do that was by having handwritten
archives [19, 22, 25].

This method though has quite a few disadvantages [20], including:

• Costs - associated with supplies and storing

• Lost productivity - mistakes like misplacing or sorting manually are time consuming

• Accessibility - not accessible bymore than one physician at a time, unless there is a duplicate

• Quality - paper is considered fairly fragile, illegible handwriting by professionals is very
common

• Fragmentation - records at various facilities may be incomplete

• Diagnosis misidentification - the lack of a universal medical language can lead to lost
information through translation

1.1 Thesis Objective

This dissertation aims to eliminate as much of the above problems as possible, by developing a
web app that manages health records electronically. The web application requires minimum costs
comparing to using handwritten records. There is no lost productivity, as misplacing and sorting
the files isn’t a concern anymore. Meanwhile, every record will be accessible by those interested

1

2 Chapter 1. Introduction

and no one needs to worry about the quality of the file, because it will be digitally written. Finally,
with the integrated ICD-10 codes, everyone who reads the file will have exactly the information
they need about their patient.

1.1.1 Contribution

The contribution of the thesis can be summarized as follows:

1. Real-time records that can be available any time.

2. Accessibility at any moment by multiple specialists.

3. Security and legitimate storing.

4. Patient’s safety.

5. Scheduling.

6. Universal medical language.

1.2 Organization

Similar projects are presented in Chapter 2. In Chapter 3 there are some technical information
about the tools that were used during the development of the web application, that are essential
to understand how it was built. Chapter 4 shows why such an app is significant by discussing
the drawbacks of paper medical records, while Chapter 5 εmphasized on the advantages of using
Electronic Health Records. There follows a detailed presentation of how the web app works in
Chapter 6, including many photos. Chapter 7 explains some of the code used to develop the app.
Finally, Chapter 8 consists of a conclusion and future extensions to the project.

Chapter 2

Related Projects

As computers became smaller and easily accessible, hospitals and clinics started creating their
own archive. However, these files could not be shared between different departments. As health
systems began to grow faster, the increased need for interoperability that supported data-sharing
grew. The importance of integrated electronic health records (EHRs) to enable specialists to make
better decisions expanded, thus many physicians used them in order to minimize the incidence of
error.

2.1 75Health

75Health is the Electronic Health Record software which is not just about being paperless. It
is about inculcating a tradition of simulated and simplified working with intelligent systems that
help doctors work efficiently and enhance patient care. Working on a cloud-based technology, it is
cost-efficient, fast and secure. 75Health is an attempt for improving the doctor-patient relationship.
Successfully track, store and pass on patient information from one end to the other [1, 7].

Web based electronic health records software are patient-centric and real-time digital version
of the paper charts describing in detail the patient data. This way of furnishing data enables in-
formation exchange in a quick, reliable, and accurate manner to the destination in a secure way.
It becomes necessary for patients at times, to approach multiple medical treatment at different
medical facilities. In certain cases, a number of physicians located at various places need to be
contacted simultaneously as well. The problems such as understanding and furnishing details—
conveying what each doctor requires, and where the data has to reach, etc, have to be tackled in
a quick and intelligent manner. This multiplicity is met effectively using EHRs. EHR software
unfolds case-specific solutions.

Digitizing patient details helps meet these challenges in an efficient way as in this format,
information can be circulated with ease irrespective of time and location. EHR Software, created
keeping in mind these features, helps individuals as well as professionals in the medical service
field.

3

4 Chapter 2. Related Projects

2.2 InSync

InSync is a fully integrated, easy-to-use, cloud-based healthcare IT solutions. It provides prac-
tice management, revenue cycle management and medical transcription solutions and services that
can better serve you and your patients, grow your practice, help maintain compliance and increase
productivity and profitability [7, 13]. InSync’s electronic medical record and practice manage-
ment software solutions are configured to work with your practice, not against it while operating
seamlessly across all workflows. InSync is committed to delivering the market’s most complete
healthcare solution - one that will unify the patient experience across a growing number of patient
healthcare touch points, for both providers and patients alike.

InSync provides the following software solutions, depending on a professionals practice:

• Behavioral Health Software

• Substance Abuse Software

• Ob/Gyn Software

• Pediatric Therapy Software

• Primary Care Software

• Physical Therapy Software

• Software for other specialties

2.3 iPatientCare

iPatientCare a pioneer in mHealth and Cloud-based EHR and integrated PMS, Patient Por-
tal, HIE, and mobile solutions, serves the ambulatory, acute/sub-acute is a Preferred MU Partners
for more than 77,000 physicians/users nationally. Certified for Meaningful Use stage 2 Ambula-
tory and Inpatient, selected by NASA Space Medicine, US Army, numerous Regional Extension
Centers (REC), hospitals and has been designated as a Test EHR by the CMS [7, 15].

Their simple and intuitive web-based electronic medical records software makes patient chart-
ing, e-prescribing, scheduling, and other tasks easy, so that a specialist can devote more time to
their patients. Its user-centric design and high performance architecture allows to work efficiently,
again leaving a lot of time for the patients. The patient records are securely held in a HIPAA com-
pliant storage.

iPatientCare also provides different software for different specialties, such as:

• Allergy

• Cardiology

• Chiropractic

• Dermatology

• ENT

• Gastroenterology

• Nephrology

• OB/Gyn

• Opthalmology

2.4 EHR Software Comparison 5

• Orthopedics

• Pain Management

• Pediatrics

• Physical Therapy

• Podiatry

• Psychiatry

• Pulmonary

• Rheumatology

• Urology

• Vascular

2.4 EHR Software Comparison

The EHR developed for this thesis might not include hand/voice recognition, but what makes
it stand out, is that EHR has integrated the addition of ICD-10 codes in diagnosis records. This
function is quite important, as it allows professionals to communicate through a global medical
language, without worrying about confusing others who gain access to the records.

Below there is a comparison table between EHR and other electronic medical records software
[7].

EHR

Medical History ✓ ✓ ✓ ✓
Appointment Scheduling ✓ ✓ ✓ ✓

E-Prescribing ✓ ✓ ✓ ✓
Hand/Voice Recognition - ✓ ✓ ✓

Billing - ✓ ✓ -
ICD-10 ✓ - - ✓

Table 2.1: EHR software comparison table

Chapter 3

Development and Design Tools

3.1 What is a Web application?

Any program that performs functions by using a web browser as its client, is actually, called a
Web Application. Countless businesses use the internet in order to commute information with their
target market, as it is a profitable communication channel. Additionally, it gives them away tomake
quick and secure transactions. Nevertheless, the business needs to be able to store significant data,
as well as to process them, to provide sufficient services.

Web applications use client-side scripts (JavaScript, HTML) to display information to users
and server-side scripts (PHP, ASP) to deal with the storage and data. In this way, users are able to
interact with a company using online forms, making transactions, etc [24].

3.1.1 How a Web App works

Normally, Web applications are written in browser-supported languages, like JavaScript and
HTML. Some of them are totally static, which means that they do not require any processing at the
server at all, while others are dynamic and require server-side processing.

A common web application flow looks like this:

1. A user makes a request to theweb server, either through the applications interface or through
a browser.

2. The web server forwards the request to the correct web application server

3. TheWeb application server performs the requested task (processing the data or querying
the database for instance) and generates the results, which then are forwarded to the web
server, including the requested information.

4. TheWeb server responds the requested information and eventually it appears on the user’s
display.

7

8 Chapter 3. Development and Design Tools

Figure 3.1: How a Web Application works (source: [24])

3.1.2 Benefits

• They can run on various platforms regardless of the device or OS. Their only demand is a
compatible browser.

• There are no space limitations, as a result of not being installed on the hard drive.

• Compatibility issues are eradicated, as all users have access to the same version.

• Decreased cost for businesses and users as well.

• Reduced software piracy in web applications that require subscription (i.e. SaaS).

3.2 Django

Django is a high-level Python Web framework that encourages rapid development and clean,
pragmatic design, andmost importantly it is free and open source. A framework is actually a collec-
tion of modules that make development simple. Basically, instead of starting from zero, they allow
you to build applications and websites based on existing sources. This is how modern websites and
apps include advanced functionality like management and admin panels, authentication support,
etc. If someone tried to create a website from scratch, they’d need to develop all these components
by themselves. By using a framework, a developer just has to configure these components in order
to match their project [2, 6, 11, 21, 3].

Django provides:

• Speed. It was designed to help developers build their applications as fast as possible.

• Modules. It combines many extras that can be used to handle common Web development
tasks, such as content administration, user authentication, site maps, etc.

• Security. Security means a great deal, thus Django helps developers avoid typical security
mistakes, like SQL injection, cross-site request forgery, cross-site scripting and clickjacking.
A protected way to handle user accounts and passwords is provides through the authentica-
tion system.

• Scalability. It has the ability to scale to meet the haviest traffic needs.

3.2 Django 9

• Versatility. Companies, organizations and governments have used Django to build such dif-
ferent kind of things, from content management systems to social networks, or even scientific
computing platforms.

Figure 3.2: Django Architecture Flowchart (source: [5])

3.2.1 Top Web applications that use Django

Many known web applications have turned to Django [23].
Some of them are:

• Instagram

• Spotify

• Youtube

• The Washington Post

• Dropbox

• Mozilla

• Prezi

10 Chapter 3. Development and Design Tools

3.2.2 The model layer

A model contains all the important information about the data, like fields and behaviour. Gen-
erally, each model represents a database table.

• Each model is a Python class with a django.db.models.Model subclass.

• Every database field is represented by a model attribute.

• With the above, Django gives an automatically-generated database-access API

The following model defines a PatientProfile:

from d j ango . db import models

c l a s s P a t i e n t P r o f i l e (models . Model) :
u s e r = models . OneToOneField (User , o n _ d e l e t e =models .CASCADE)

b i r t h d a y = models . D a t e F i e l d (n u l l =True)
s o c i a l _ s e c u r i t y _ n umb e r = models . Cha rF i e l d (max_leng th =11 , un ique=True)
gende r = (

(’Male ’ , ’Male ’) ,
(’ Female ’ , ’ Female ’)

)
sex = models . Cha rF i e l d (max_leng th =6 , c h o i c e s =gender , d e f a u l t = ’Male ’)
i n s u r a n c e = models . Cha rF i e l d (max_leng th =100 , b l ank=True)

b l ood_ t ype = (
(’Ο− ’ , ’Ο− ’) ,
(’Ο+ ’ , ’Ο+ ’) ,
(’Α− ’ , ’Α− ’) ,
(’Α+ ’ , ’Α+ ’) ,
(’Β− ’ , ’Β− ’) ,
(’Β+ ’ , ’Β+ ’) ,
(’ΑΒ− ’ , ’ΑΒ− ’) ,
(’ΑΒ+ ’ , ’ΑΒ+ ’) ,

)
b lood = models . Cha rF i e l d (max_leng th =3 , c h o i c e s =b lood_ type , d e f a u l t = ’ ’)
c i t y = models . Cha rF i e l d (max_leng th =50 , b l ank=True)
a d d r e s s = models . Cha rF i e l d (max_leng th =50 , b l ank=True)
phone = models . Cha rF i e l d (max_leng th =12 , b l ank=True)
imp o r t a n t _ n o t e s = models . T e x t F i e l d (d e f a u l t = ’ ’)

The above model would create a database table like this:

CREATE TABLE m r _ p a t i e n t p r o f i l e (
” i d ” s e r i a l NOT NULL PRIMARY KEY AUTOINCREMENT,
” b i r t h d a y ” date NULL,
” s o c i a l _ s e c u r i t y _ n umb e r ” varchar (1 1) NOT NULL UNIQUE ,
” sex ” varchar (6) NOT NULL,
” i n s u r a n c e ” varchar (1 00) NOT NULL,
” b lood ” varchar (3) NOT NULL,

3.2 Django 11

” c i t y ” varchar (5 0) NOT NULL,
” a d d r e s s ” varchar (5 0) NOT NULL,
” phone ” varchar (1 2) NOT NULL,
” im p o r t a n t _ n o t e s ” t e x t NOT NULL,
” u s e r _ i d ” i n t e g e r NOT NULL UNIQUE REFERENCES ” a u t h _ u s e r ” (” i d ”)

DEFERRABLE INITIALLY DEFERRED
) ;

3.2.3 The view layer

A view function, is actually a Python function that takes a Web request and returns a Web
response. The response can be literally anything, HTML content of a web page, 404 error, redirect,
an image, an XML document, etc. The view is used to generate this response, by executing any
code that is necessary. For convenience, the views exist in a file called views.py, in the project’s
or app’s directory.

A simple view that gives us the index when a doctor is logged in.

from d j ango . s h o r t c u t s import r e n d e r
from d j ango . u t i l s . t imezone import d a t e t im e

def i ndex (r e q u e s t) :
t oday = d a t e t im e . t oday ()
t o d a y s _ e v e n t s = Event . o b j e c t s . f i l t e r (

d o c t o r = r e q u e s t . u s e r . u s e r p r o f i l e ,
s t a r t _ t i m e _ _ y e a r = today . year ,
s t a r t _ t ime__mon t h = today . month ,
s t a r t _ t im e _ _ d a y = today . day)

r e c e i v e d_me s s a g e s = Message . o b j e c t s . f i l t e r (
r e c e i v e r = r e q u e s t . u se r ,
was_read= F a l s e)

re turn r e n d e r (r e q u e s t , ’mr / i ndex . h tml ’ , {
”home” : ” a c t i v e ” ,
” t o d a y s _ e v e n t s ” : t o d ay s _ ev en t s ,
” r e c e i v e d_me s s a g e s ” : r e c e i v ed_me s s a g e s
})

Let’s step through this code one line at a time:

• First, we import render from the django.shortcuts module, along with datetime from the
django.utils.timezone library.

• Request it the object used to generate this response.

• Next, we use datetime.today which returns the current local datetime.

• We define todays_events and received_messages which both are querysets and consist of
events that are scheduled for today and unread messages associated with the current user,
respectively.

12 Chapter 3. Development and Design Tools

• Finally, we use render to return the desired content, in this case the content includes to-
days_events and received_messages querysets and a home variable with value=”active”
and helps declare which tab is currently active in out homepage. This content is being given
tomr/index.html template.

To display this view in a particular URL, a URLconf should be created.

3.2.4 URL dispatcher

To design URLs for an app, you create a Python module informally called a URLconf (URL
configuration). This module is pure Python code, used to map URL path expressions to Python
functions (views). This mapping can have any length. short or long, and even reference to other
mappings. The fact that it’s pure Python, makes it possible to have a dynamic construction.

3.2.4.1 How Django processes a request

Algorithm 1 Algorithm to decide which Python code to execute when a request is made
1: Django determines the root URLconf module to use. Ordinarily, this is the value of the ROOT_URLCONF

setting, but if the incoming HttpRequest object has a urlconf attribute, its value will be used in place of the
ROOT_URLCONF setting.

2: Django loads that Python module and looks for the variable urlpatterns.
This should be a sequence of django.urls.path() and/or django.urls.re_path() instances.

3: Django runs through each URL pattern, in order, and stops at the first one that matches the requested URL.
4: Once one of the URL patterns matches, Django imports and calls the given view, which is a simple Python function

(or a class-based view). The view gets passed the following arguments:

• An instance of HttpRequest

• If the matched URL pattern returned no named groups, then the matches from the regular expression are
provided as positional arguments.

• The keyword arguments are made up of any named parts matched by the path expression, overridden by
any arguments specified in the optional kwargs argument to django.urls.path() or django.urls.re_path().

5: If no URL pattern matches, or if an exception is raised during any point in this process, Django invokes an appro-
priate error-handling view.

A sample URLconf:

from d j ango . u r l s import pa t h
from . import views

app_name = ’mr ’
u r l p a t t e r n s = [

p a t h (’ ’ , v iews . eh r_ index , name= ’ eh r _ i n d ex ’) ,
p a t h (’ homepage / ’ , v iews . index , name= ’ i ndex ’) ,
p a t h (’ r e g i s t e r / ’ , v iews . r e g i s t e r , name= ’ r e g i s t e r ’) ,
p a t h (’ l o g i n / ’ , v iews . u s e r _ l o g i n , name= ’ l o g i n ’) ,
p a t h (’ l o g o u t / ’ , v iews . u s e r _ l o gou t , name= ’ l o g o u t ’) ,

3.2 Django 13

pa t h (’ c a l e n d a r / ’ , v iews . CalendarView . as_v iew () , name= ’ c a l e n d a r ’) ,
p a t h (’ c a l e n d a r / new_event / ’ , v iews . new_event , name= ’ new_event ’) ,
p a t h (’ c a l e n d a r / e v en t / e d i t / < i n t : pk > / ’ , v iews . Even tUpda te . as_v iew () ,

name= ’ e d i t _ e v e n t ’) ,
p a t h (’ c a l e n d a r / e v en t / d e l e t e / < i n t : pk> ’ , v iews . Even tDe l e t e . a s_v iew () ,

name= ’ d e l e t e _ e v e n t ’)
]

Notes:

• Angle brackets are used to capture a value from the URL.

• Captured values can include a converter type. For example, <int:name> can be used to
capture an integer parameter. In case there isn’t any converter, any string, excluding a /
character, is matched.

Example requests:

• A request to /calendar/event/edit/5/ would match the 8th pattern of the list.

• /calendar/event/delete/ would not match any of the patterns.

3.2.5 The template layer

Every web framework needs a handy way to generate dynamically HTML, and so does Django.
The most typical way is by using templates. In a template, there are the static parts of the HTML,
along with some special syntax, used to illustrate how the dynamic content will be inserted.

None, one, or evenmultiple template engines can be used to configure a Django project. Django
has its own template-system, called Django Template Language or DTL. Jinja2 is a common al-
ternative.

A standard API is used for loading and rendering templates in Django. Loading includes find-
ing the template for a specific identifier and preprocessing it. Rendering means interpolating the
template with context data and returning the resulting string.

The DTL is also used by Django’s contrib apps that include templates.

3.2.5.1 Configuration

To configure template engines, the TEMPLATES setting is used. It includes a list of config-
urations, one for each engine. The default value is empty. The startproject command generates a
settings.py file with a more useful value.

14 Chapter 3. Development and Design Tools

TEMPLATES = [
{

’BACKEND’ : ’ d j ango . t emp l a t e . backends . d j ango . DjangoTempla te s ’ ,
’DIRS ’ : [] ,
’APP_DIRS ’ : True ,
’OPTIONS ’ : {

. . . some o p t i o n s h e r e . . .
} ,

} ,
]

BACKEND is a dotted Python path to a template engine class implementing Django’s template
backend API. The top-level configuration for each engine has the following common settings, as
most templates get loaded from files.

• DIRS is a list of directories where the engine should look for template source files, in search
order.

• APP_DIRS tells whether the engine should look for templates inside installed applications.
Each backend defines a conventional name for the subdirectory inside applications where
its templates should be stored.

3.2.5.2 The Django Template Language

Django’s template language is designed in such a way, that those working with HTML feel
very comfortable.

A template is basically a text file, and is able to generate any text-base format (HTML, XML,
CSV, etc.). It includes tags, that are used to control the logic of the template, and variables, which
during the evaluation of the template, get replaced with values.

The function of tags is similar to some programming constructs, such as boolean tests using
the if tag, looping using the for tag, etc. However, these are not executed as common Python code,
and the system will not execute arbitrary Python expressions.

The Django Template Language syntax consists of the following four constructs.

1. Variables look like this: {{ variable }}

When a template gets evaluated, the variable gets replaced by a corresponding value. Vari-
able names can not start with underscore. They consist of combinations of alphanumeric
characters and the underscore.

A dot (.) is used to access the attributes of a variable.

2. Tags look like this: {% tag %}

Tags can be more complicated than variables. They can be used to create text in the output,
control the flow with logic or loops, load some external information, etc.

3.2 Django 15

Some tags require beginning and ending tags:

(i.e. {% tag %} ... tag contents ... {% endtag %}), such as:

• {% for %} ... {% endfor %}

• {% if %} ... {% elif %} ... {% else %} ... {% endif %}

3. Filters are like this: {{ name|lower }}

This would display the value of the name variable, after filtering through the lower filter,
which actually converts the text to lowercase. More than one filters can be applied with the
chain method.

4. Comments.

They are used to comment-out part of a line in a template. Their syntax is: {# #}

Example:

{% ex t e nd s ’mr / ba se . html ’ %}

{% b lock body_block %}
<h3 c l a s s =” t e x t−c e n t e r ”>Welcome {{ u s e r . f i r s t _ n ame }} ! < / h3>
< t a b l e c l a s s =” t a b l e ”>

{% i f t o d a y s _ e v e n t s %}
< t r >

<th >Today ’ s Appoin tments < / th >
</ t r >

{% e n d i f %}
{% f o r ev en t i n t o d a y s _ e v e n t s %}

< t r >
<td ><a s t y l e =” c u r s o r : p o i n t e r ”

h r e f =”{% u r l ’mr : e d i t _ e v e n t ’ e v en t . i d %}”>
{{ even t . s t a r t _ t i m e . t ime }} −
{{ ev en t . p a t i e n t . u s e r . g e t _ f u l l _ n ame }}
</ a>

</ td >
</ t r >

{% empty %}
<p>You have no appo i n tmen t s s c h edu l e d f o r t oday . < / p>

{% end f o r %}
</ t a b l e >

{% endb lock %}

3.2.6 Forms

An extended list of tools and libraries that Django provides, help the developers build forms
depending on their needs, either accept input from site visitors, or process the input to respond.

In HTML, a form is built inside <form>...</form>, which includes a collection of elements.
These elements allow the visitor to do different actions, such as enter a text, select between options,
manipulate objects and send these information to the server.

16 Chapter 3. Development and Design Tools

Some of them are so simple that are built into HTML itself, while others that can be quite
complex, as for example an interface that pops a date picker, will probably use CSS and JavaScript
as well.

Regarding an <input> element, a form must specify a couple of things:

• where: the URL to which the data corresponding to the user’s input should be returned

• how: the HTTP method the data should be returned by

The Django admin form, for example, is consisting of several <input> type elements.

• type=”text” for the username

• type=”password” for the password

• type=”submit” for the log in button

It also contains some hidden text fields that are not visible to the user, that help Django decide
what should happen next.

The <form>’s action attribute specifies the URL - /admin/ - that the form data should be sent,
while themethod attribute - post - declares the HTTP mechanism that should be used.

When the <input type=”submit” value=”Log in”> element is triggered, the data is returned
to /admin/.

3.2.6.1 GET and POST

When dealing with forms, there are only two available methods, GET and POST. Django’s
login form uses the POST method to send the data.

GET bundles the submitted data into a string, which later to compose a URL, which contains
the address where the data must be sent, as well as the data keys and values.

GET and POST are generally used for different purposes. Requests that could change the state
of a system, update the database for example, should use the POST method, while requests that
do not affect the system at all, should use the GET method.

GET would also be inappropriate for a password form, as the password would appear in the
URL, in the browser history and server logs, all in plain text. If a web application user GET re-
quests for admin forms is a security risk. This way, an attacker can mimic a form’s request and
consequently gain access in sensitive information. GET would be suitable for different actions,
like a search form.

POST offers better control over access, especially when used with other Django’s protection,
suck as CSRF protection.

3.2.6.2 Django’s role in forms

Handling forms can be complex. Numerous items of different types of data need to be prepared
for display in a form, rendered as HTML, edited using a user-friendly interface, and then returned

3.2 Django 17

back to the server where they first get cleaned and validated, and then saved or even passed on for
processing.

This process can be simplified thanks to Django’s form functionality.
Django handles three distinct parts of the work involved in forms:
When handling forms, Django deals with three parts:

• get data ready for rendering by preparing and restructuring them

• creating HTML forms for the data

• receiving and processing submitted forms and data from the client

By choice, someone can do all of this manually.

3.2.6.3 Forms in Django

Django Form Class
A form class describes a form and determines the way it works and appears, just like a Django

model describes the structure of an object. A form class’s fields map to HTML form <input>
elements. Form’s fields are also classes that manage data when a form is submitted.

Every field type handles different kinds of data, and have to do different things with it.
A form field is displayed to a user in the browser as an HTML “widget” - a piece of user

interface machinery. There is a default Widget class for each field type, which can be overridden
if required.

Instantiating, processing, and rendering forms
Rendering an object:

1. gets hold of it in the view (fetch it from the database, for example)

2. passes it to the template context

3. expands it to HTML markup using template variables

Rendering a form in a template is quite similar to rendering other objects. A form gets instan-
tiated in the view, and can be left empty or pre-populated, for example, with:

• data from a saved model instance (in case of update)

• data collated from other sources

• data received from a another HTML form submission

18 Chapter 3. Development and Design Tools

Building a form

• The Form class

forms.py

from d j ango import forms
from mr . models import *
from d j ango . c o n t r i b . a u t h . models import User

c l a s s UserForm (forms . ModelForm) :
password = forms . Cha rF i e l d (w idge t = forms . Pa s swo rd Inpu t ())

c l a s s Meta :
model = User
f i e l d s = (’ username ’ , ’ ema i l ’ , ’ password ’ ,

’ f i r s t _ n ame ’ , ’ l a s t _name ’)

c l a s s Use rP r o f i l eFo rm (forms . ModelForm) :
c l a s s Meta :

model = U s e r P r o f i l e
f i e l d s = (’ s p e c i a l t y ’ , ’ c i t y ’ , ’ a d d r e s s ’ , ’ phone ’)

• The view

views.py

from d j ango . s h o r t c u t s import r e n d e r _ t o _ r e s p o n s e
from . models import *
from . fo rms import *

def r e g i s t e r _ p a t i e n t (r e q u e s t) :
c o n t e x t = Reque s tCon t ex t (r e q u e s t)

r e g i s t e r e d = F a l s e
i f (r e q u e s t . method == ’POST ’) :

p a t i e n t _ f o rm = UserForm (d a t a = r e q u e s t . POST)
p a t i e n t _ p r o f i l e _ f o r m = P a t i e n t P r o f i l e F o rm (d a t a = r e q u e s t . POST)

i f (p a t i e n t _ f o rm . i s _ v a l i d () and p a t i e n t _ p r o f i l e _ f o r m . i s _ v a l i d ()) :
u s e r = p a t i e n t _ f o rm . save ()
u s e r . s e t _ p a s swo rd (u s e r . password)
u s e r . s ave ()

p r o f i l e = p a t i e n t _ p r o f i l e _ f o r m . save (commit= F a l s e)
p r o f i l e . u s e r = u s e r
p r o f i l e . s ave ()
r e g i s t e r e d = True

u s e r = a u t h e n t i c a t e (username=

3.2 Django 19

p a t i e n t _ f o rm . c l e a n e d _ d a t a [’ username ’] ,
password=
p a t i e n t _ f o rm . c l e a n e d _ d a t a [’ password ’]
)

l o g i n (r e q u e s t , u s e r)
e l s e :

pr in t (p a t i e n t _ f o rm . e r r o r s , p a t i e n t _ p r o f i l e _ f o r m . e r r o r s)
e l s e :

p a t i e n t _ f o rm = UserForm ()
p a t i e n t _ p r o f i l e _ f o r m = P a t i e n t P r o f i l e F o rm ()

re turn r e n d e r _ t o _ r e s p o n s e (’mr / r e g i s t e r _ p a t i e n t . h tml ’ , {
’ p a t i e n t _ f o rm ’ : p a t i e n t _ f o rm ,
’ p a t i e n t _ p r o f i l e _ f o rm ’ : p a t i e n t _ p r o f i l e _ f o rm ,
’ r e g i s t e r e d ’ : r e g i s t e r e d } ,
c o n t e x t)

• The Template

mr/register_patient.html

{% load s t a t i c %}
< !DOCTYPE html>
<html lang=” en ”>
<head>

<meta char s e t=”UTF−8”>
<meta name=” v i ewpo r t ” con ten t=” wid th=dev i ce−width , i n i t i a l −s c a l e =1 .0 ”>
<meta h t t p−equ iv=”X−UA−Compa t ib l e ” con ten t=” i e =edge ”>
< l i n k r e l =” s t y l e s h e e t ” type=” t e x t / c s s ”

hre f=”{% s t a t i c ’mr / c s s / s t y l e . css ’ %}”>
< t i t l e >EHR r e g i s t e r < / t i t l e >

< / head>
<body>

<h1>R e g i s t e r i n E l e c t r o n i c Hea l t h Record< / h1>
{% i f r e g i s t e r e d %}

< s t rong>Thank you f o r r e g i s t e r i n g ! < / s t rong>

<a hre f=”{% u r l ’my_mr : my_index ’ %}”>Go t o Homepage< / a>

{% e l s e %}
< s t rong>R e g i s t e r h e r e ! < / s t rong>

<form id=” use r_ fo rm ” method=” po s t ”

ac t i on=”{% u r l ’mr : r e g i s t e r _ p a t i e n t ’ %}”
enc t ype =” m u l t i p a r t / form−d a t a ”>

{% c s r f _ t o k e n %}
{{ p a t i e n t _ f o rm . as_p }}
{{ p a t i e n t _ p r o f i l e _ f o rm . as_p }}

< input type=” submi t ” name=” submi t ” va lue=” R e g i s t e r ”>
< / form>

{% en d i f %}

20 Chapter 3. Development and Design Tools

< / body>
< / html>

• The urlconfig

urls.py

from d j ango . u r l s import pa t h
from . import views

app_name = ’mr ’
u r l p a t t e r n s = [

. . .
p a t h (’ r e g i s t e r _ p a t i e n t / ’ , v iews . r e g i s t e r _ p a t i e n t ,

name= ’ r e g i s t e r _ p a t i e n t ’) ,
. . .

]

3.2.7 Authentication

Django provides a full-featured and secure authentication system. It is designed to handle user
accounts, permissions, groups, even cookie-based user sessions, and let users create accounts and
log in/out with safety.

3.2.7.1 The admin

The automatic admin interface of Django is a powerful asset. It provides a simple, model-
centric interface, by reading metadata from models, where authorized users can manage the data.

Both authentication and authorization are handled by Django;s authentication system. Authen-
tication verifies that a user is who they claim to be, while authorization determines what an au-
thenticated user is allowed to do.

The auth system consists of:

• Users

• Permissions: Binary (yes/no) flags designating whether a user may perform a certain task.

• Groups: A generic way of applying labels and permissions to more than one user.

• A configurable password hashing system

• Forms and view tools for logging in users, or restricting content

• A pluggable backend system

The Django authentication system is basic, so it doesn’t include some features commonly used
in authentication systems, like:

• Password strength checking

3.2 Django 21

• Throttling of login attempts

• Authentication against third-parties (OAuth, for example)

• Object-level permissions

However, they can be implemented with extra packages.

3.2.7.2 User objects

An authentication system’s foundations are the user objects. Generally, they represent the peo-
ple interacting with the site. In Django’s authentication framework there is only one class of users,
’superusers’ or admin ’staff’ users.

A default user has the following primary attributes:

• username

• password

• email

• first_name

• last_name

3.2.8 Security

3.2.8.1 Cross site scripting (XSS) protection

XSS attacks allow a user to inject client side scripts into the browsers of other users. For this
to happen, the malicious scripts need to be stored in the database, and then retrieved and displayed
to other users, or by getting them to click a link which allows the attacker’s script to be executed
by the user’s browser.

By using Django Templates, a user is protected against the majority of such attacks.

3.2.8.2 Cross site request forgery (CSRF) protection

CSRF attacks allow a malicious user to execute actions using the credentials of another user
without that user’s knowledge or consent. Including a built-in protection, Django provides security
against most CSRF attacks.

3.2.8.3 SQL injection protection

SQL injection is when a malicious user is able to execute arbitrary SQL code on a database,
which can lead to deleted or leaked data.

Django’s querysets are safe from this kind of attacks, since their queries are constructed using
query parameterization.

22 Chapter 3. Development and Design Tools

3.2.8.4 Clickjacking protection

Clickjacking is an attack where a malicious site wraps another site in a frame. This way, an
unsuspecting user can be tricked into performing unintended actions on the target site.

Django contains clickjacking protection in the form of the X-Frame-Optionsmiddleware which
in a supporting browser can prevent a site from being rendered inside a frame.

3.2.8.5 SSL/HTTPS

It is always safer to deploy a site behind HTTPS, as it is less possible for malicious users to
sniff credentials or any kind of information.

3.3 Heroku

Heroku is a platform as a service based (PaaS) on a managed container system, with integrated
data services and a powerful ecosystem, for deploying and running modern apps. The Heroku
developer experience is an app-centric approach for software delivery, integrated with today’s most
popular developer tools and workflows. Briefly, it enables companies to build, deliver, monitor and
scale applications without trouble.

Heroku is one of the first cloud platforms, as it has been in development since June 2007,
when it only supported one programming language, Ruby. Currently, it also supports Java, Node.js,
Python, PHP, Scala, Clojure, Go and therefore, is described as a polyglot platform, as it allows
a developer to build, run and scale applications in a similar way across different programming
languages.

The procedure of deploying, tuning, configuring, scaling, and managing an application can be
quite irritating. Heroku makes it as straightforward as it can be, and thus it allows developers to
focus on what is more vital, building better apps that satisfy the costumers [10].

3.3.1 Heroku and data

At the center of any app lie data. Whether it is about the service or costumer data, an app and
its data go conjointly. Heroku’s services provide Postgres, a built in database service which comes
with operational expertise. In this way, developers do not need to be concerned about provision a
database.

3.3.1.1 Postgres

Heroku Postgres is a managed SQL database service provided directly by Heroku. You can
access a Heroku Postgres database from any language with a PostgreSQL driver, including all lan-
guages officially supported by Heroku. In addition to a variety of management commands available
via the Heroku CLI, Heroku Postgres provides a web dashboard, the ability to share queries with
dataclips, and several other helpful features [17, 8, 16].

3.3 Heroku 23

PostgreSQL is one of the world’s most popular relational database management systems. Mil-
lions of developers and companies rely on PostgreSQL as their transactional data store of choice
to drive application health and decision-making. And developers with knowledge of Oracle or
MySQL databases can use their SQL querying experience to quickly leverage PostgreSQL’s capa-
bilities as a fast, functional, and powerful data resource.

PostgreSQL earned a strong reputation for its proven reliability, architecture, extensibility, data
integrity, robust feature set, and the dedication of the open source community. PostgreSQL runs
on all major operating systems, and has powerful add-ons such as PostGIS, a geospatial database
extender.

PostgreSQL features intent to help developers build applications, administrators to protect data
integrity and build fault-tolerant environments, and help with data management no matter how big
or small the dataset.

PostgreSQL tries to conform with the SQL standard and supports many of its features, though
sometimes with slightly differing syntax or function [18].

Below there is a list of features found in PostgreSQL:

• Data Types

– Primitives: Integer, Numeric, String, Boolean

– Structured: Date/Time, Array, Range, UUID

– Document: JSON/JSONB, XML, Key-value (Hstore)

– Geometry: Point, Line, Circle, Polygon

– Customizations: Composite, Custom Types

• Data Integrity

– UNIQUE, NOT NULL

– Primary Keys

– Foreign Keys

– Exclusion Constraints

– Explicit Locks, Advisory Locks

• Concurrency, Performance

– Indexing: B-tree, Multicolumn, Expressions, Partial

– Advanced Indexing: GiST, SP-Gist, KNN Gist, GIN, BRIN, Covering indexes, Bloom
filters

– Sophisticated query planner / optimizer, index-only scans, multicolumn statistics

– Transactions, Nested Transactions (via savepoints)

– Multi-Version concurrency Control (MVCC)

– Parallelization of read queries and building B-tree indexes

24 Chapter 3. Development and Design Tools

– Table partitioning

– All transaction isolation levels defined in the SQL standard, including Serializable

– Just-in-time (JIT) compilation of expressions

• Reliability, Disaster Recovery

– Write-ahead Logging (WAL)

– Replication: Asynchronous, Synchronous, Logical

– Point-in-time-recovery (PITR), active standbys

– Tablespaces

• Security

– Authentication: GSSAPI, SSPI, LDAP, SCRAM-SHA-256, Certificate, and more

– Robust access-control system

– Column and row-level security

• Extensibility

– Stored functions and procedures

– Procedural Languages: PL/PGSQL, Perl, Python (and many more)

– Foreign data wrappers: connect to other databases or streams with a standard SQL
interface

– Many extensions that provide additional functionality, including PostGIS

• Internationalisation, Text Search

– Support for international character sets, e.g. through ICU collations

– Full-text search

3.3.2 Ecosystem of services

Heroku includes add-ons that are fully-managed services, integrated for use with Heroku. De-
velopers are able to extend the efficiency of an application by provisioning and scaling these add-
ons in one command.

3.3.3 Scale and enterprise

Heroku makes it effortless for apps to scale, even if it is a 2-person startup or a 10,000-person
enterprise, by insuring that the app stays app, as well as in terms of how the app is managed.

Chapter 4

Drawbacks of paper medical records

There are several reasons to havemedical records for each patient. They can be used as memory
support for the professionals, or give information to others who get involved in the healthcare
process of a patient. It is also possible that documenting the process is required by law in several
countries.

A paper based medical record includes particular distinct parts. The identity of the patient, the
background and the history , the reason of visit, symptoms, the results of examinations, assessment
of the situation and treatments, as well as description of the process and who the record was written
by, are among them.

Throughout the visit, the physician takes notes on the description of symptoms by the patient
and checks them, in an attempt to exclude some and finally reach to a diagnosis. Eventually, the
more visits a patient makes, the thicker the record file gets. Obviously, analyzing paper based
patient records can be challenging when using computational linguistic methods. To do that, the
records need to be scanned and processed with optical character recognition techniques (OCR).

However, storing the records in digital form, can be quite convenient when it comes to access-
ing and analyzing data [20].

4.1 Cost and storage

Paper records, aside from taking up considerably more space, are not eco-friendly. They require
a huge amount of paper and ink supplies and sooner or later they naturally deteriorate when stored
for long, even in well preserved environment.

4.2 Accessibility

One of the main disadvantages of paper-based records is the fact they are not accessible si-
multaneously by other interested parties. In this case, they need to either be mailed or converted
to digital format before they can be transferred via email for example. This process requires time
and possibly money.

25

26 Chapter 4. Drawbacks of paper medical records

4.3 Lost productivity

By storing medical records in the traditional way, the possibility of errors is quite large. Be-
cause people tend to make mistakes, like misplacing files. Moreover, sorting handwritten data is
almost impossible when it comes to such big archives. Even if the files are sorted as correctly as
possible, retrieving a specific file can be time-consuming, especially in emergency cases, when
time is significant. A combination of the above can have serious impact on a patient’s care, be-
cause errors can become too easy when a professional does not have all the information they need,
exactly when they need it.

4.4 Quality

Paper archives tend to be quite unreliable, as they are easily damaged. They can be shred ef-
fortlessly or ruined by any liquid. Even with common use they become deteriorated over time.
Though the material is not the only flaw when it comes to paper-based records. The quality of the
person writting themmust also be taken into account. Deciphering handwriting that includes termi-
nology can be extremely challenging, especially when someone is not familiar with that particular
vocabulary.

4.5 Security

Paper records storage systems suffer from some vulnerabilities. They may be generally safe
from unauthorized individuals, unless someone gets access to them physically, however, they are
susceptible when it comes to natural disasters and accidents like floods and fire. Additionally,
because of the resources they require in space and supplies, a facility will probably won’t have
more than one copy of each file, which means that in case of an unfortunate event, the files will be
possibly completely lost.

4.6 Diagnosis misidentification

The foundation of effective healthcare is the correct identification of a patient. It is common
for specialists to describe diagnosis slightly different relatively to each other, which will probably
lead to misdiagnosing or mistreatment eventually. Such errors can be proven really dangerous, fatal
even, for a patient’s health.

Chapter 5

Advantages of Electronic Health
Records

Today’s demands on improved health care and outcomes have made the collection of data
absolutely necessary, as it’s the only way for specialists to make fast and better decisions, while
reducing medical errors. In an attempt to alleviate the drawbacks of traditional medical records,
specialists started to turn to Electronic Health Records (EHR). Electronic Health Records have
literally revolutionized modern health care in many ways [20, 25].

5.1 Real-time records

One of the major advantages of Electronic Health Records, is that unlike regular records, they
can be viewed in real-time. Hypothetically, every examination result can be available to entire
medical teams just as soon as they are completed.

5.2 Accessibility

By using Electronic health records, professionals can access a patient’s chart at any time, while
being able to exchange and store information instantaneously. This possibility turns out extremely
important during emergency situations or even whenmultiple professionals need to coordinate care
for patients whose conditions are somehow complicated.

5.3 Safety

Compared to paper health records, EHRs provide an added level of safety, as they include all
of patient’s pertinent information. They make it easier to prevent possibly risky drug interactions
or prohibit severe reactions regarding to allergies.

27

28 Chapter 5. Advantages of Electronic Health Records

5.4 Security

Firstly, misfiling belongs to the past when using electronic health records. They are kept in
a protected database, where is almost impossible to get lost or destroyed by a cup of coffee for
example. At the same time, it is easy to have more than one copies of each file and keep them safe
from unanticipated disasters, such as fire or floods.

5.5 EHR pros in a nutshell

• Decreased cost

• Patient safety and better health care quality

• Increased storage capabilities

• Accessibility to multiple interested parties at various locations at the same time

• Almost instantaneous information retrieval

• Real-time update

• Medical alerts

• Less charting time and fewer errors

Chapter 6

Electronic Health Record web
application

For the purposes of this thesis, there was developed a web application that not only provides
an easy way to store and handle electronic health records, but at the same time makes it possible to
find a specialist and arrange an appointment. It is meant to be used by professionals and patients as
well. Most importantly, EHR allows specialists to include one or multiple ICD10 codes in a record.

6.1 ICD-10

ICD-10 is the 10th revision of the International Statistical Classification of Diseases and Re-
lated Health Problems, which is actually a medical classification list, created by the World Health
Organization (WHO). It consists of codes for diseases, symptoms, signs, complaints, abnormal
findings, social circumstances, and external causes of injury or diseases [12].

It was designed to map health conditions to corresponding generic categories together with
specific variations, by assigning a designated code up to six characters long. This way, it allows
the world to share health information using a common language, by including more than 70.000
codes [14]. This organized list, allows:

• easy storage, retrieval and analysis of health information, helping a specialist make evidence-
based decisions.

• comparing and sharing information between professionals.

• data comparison in locations across different periods.

6.2 EHR Homepage

In the EHR homepage users choose whether they want to register or log in to the app. The log
in page requires a username and a password, in order to identify the user.

29

30 Chapter 6. Electronic Health Record web application

Figure 6.1: EHR - Homepage

Figure 6.2: EHR - Patient - Log In

6.2.1 Users

The users of the application can be identified either as doctors or patients. The main difference
between them, is the fact that patients can not interact with the data of medical records. In order
to have two different types of users, there were built to models, one for each type. Regardless
the type, each object is related to a built-in User using one-to-one connection, which is similar to a
ForeignKeywith unique=True, although the ”reverse” side of this relation returns a single object.

So, besides the User attributes (username, password, email, first_name, last_name), each user
type has the following attributes:

• Doctor

– specialty

– city

– address

– phone

6.2 EHR Homepage 31

c l a s s Us e r P r o f i l e (models . Model) :
u s e r = models . OneToOneField (User , o n _ d e l e t e =models .CASCADE)

s p e c i a l t i e s _ l i s t = (
(’ Acc iden t_and_Emergency_Medic ine ’ ,

’ Acc i d en t and Emergency Medic ine ’) ,
(’ A l l e r g i o l o g y ’ , ’ A l l e r g i o l o g y ’) ,
(’ A n e s t h e t i c s ’ , ’ A n e s t h e t i c s ’) ,
(’ Ca r d i o l ogy ’ , ’ Ca r d i o l ogy ’) ,
(’ C h i l d _ P s y c h i a t r y ’ , ’ Ch i l d P s y c h i a t r y ’) ,
(’ C l i n i c a l _B i o l o g y ’ , ’ C l i n i c a l B io logy ’) ,
(’ C l i n i c a l _Ch em i s t r y ’ , ’ C l i n i c a l Chemis t ry ’) ,
(’ C l i n i c a l _Neu r o p h y s i o l o g y ’ , ’ C l i n i c a l Neu rophys i o logy ’) ,
(’ Den t a l _Ora l _Max i l l o−f a c i a l _ s u r g e r y ’ ,

’ Den ta l , Ora l and Maxi l lo−f a c i a l Su rge ry ’) ,
(’ Dermato−Venereo logy ’ , ’ Dermato−Venereo logy ’) ,
(’ Dermato logy ’ , ’ Dermato logy ’) ,
(’ Endoc r i no l ogy ’ , ’ Endoc r i no l ogy ’) ,
(’ F ami l y_and_gene r a l _Med i c i n e ’ , ’ Fami ly and Gene r a l Medic ine ’) ,
(’ F i c t i o n a l _M e d i c a l _ S p e c i a l i s t ’ , ’ F i c t i o n a l Medica l S p e c i a l i s t ’) ,
(’ Gas t ro−e n t e r o l o g i c _ S u r g e r y ’ , ’ Gas t ro−e n t e r o l o g i c Su rge ry ’) ,
(’ G a s t r o e n t e r o l o g y ’ , ’ G a s t r o e n t e r o l o g y ’) ,
(’ Genera l_Hemato logy ’ , ’ Gene r a l Hematology ’) ,
(’ G e n e r a l _ P r a c t i c e ’ , ’ Gene r a l P r a c t i c e ’) ,
(’ Gene r a l _Su rg e r y ’ , ’ Gene r a l Su rge ry ’) ,
(’ G e r i a t r i c s ’ , ’ G e r i a t r i c s ’) ,
(’ Immunology ’ , ’ Immunology ’) ,
(’ I n f e c t i o u s _D i s e a s e s ’ , ’ I n f e c t i o u s D i s e a s e s ’) ,
(’ I n t e r n a l _Med i c i n e ’ , ’ I n t e r n a l Medic ine ’) ,
(’ Labo r a t o r y_Med i c i n e ’ , ’ L abo r a t o r y Medic ine ’) ,
(’ Maxi l lo−f a c i a l _ S u r g e r y ’ , ’ Maxi l lo−f a c i a l Su rge ry ’) ,
(’ Mic rob io l ogy ’ , ’ Mic rob io l ogy ’) ,
(’ Nephro logy ’ , ’ Nephro logy ’) ,
(’ Neuro−p s y c h i a t r y ’ , ’ Neuro−p s y c i a t r y ’) ,
(’ Neu ro su rge ry ’ , ’ Neu ro su rge ry ’) ,
(’ Nuc l ea r_Med i c ine ’ , ’ Nuc l e a r Medic ine ’) ,
(’ Ob s t e t r i c s _ and_Gyneco l ogy ’ , ’ O b s t e t r i c s and Gynecology ’) ,
(’ Occupa t i on a l _Med i c i n e ’ , ’ Oc cup a t i o n a l Medic ine ’) ,
(’ Optha lmology ’ , ’ Optha lmology ’) ,
(’ O r t h op a e d i c s ’ , ’ O r t h op a e d i c s ’) ,
(’ O t o r h i n o l a r y n g o l o g y ’ , ’ O t o r h i n o l a r y n go l o g y ’) ,
(’ P a e d i a t r i c s ’ , ’ P a e d i a t r i c s ’) ,
(’ P a e d i a t r i c s _ S u r g e r y ’ , ’ P a e d i a t r i c s Su rge ry ’) ,
(’ P a t ho l ogy ’ , ’ P a t ho l ogy ’) ,
(’ P h y s i c a l _Med i c i n e _ a n d _R e h a b i l i t a t i o n ’ ,

’ P h y s i c a l Medic ine and R e h a b i l i t a t i o n ’) ,
(’ P l a s t i c _ S u r g e r y ’ , ’ P l a s t i c Su rge ry ’) ,
(’ Pneumology ’ , ’ Pneumology ’) ,
(’ P o d i a t r i c _ S u r g e r y ’ , ’ P o d i a t r i c Su rge ry ’) ,
(’ P s y c h i a t r y ’ , ’ P s y c h i a t r y ’) ,

32 Chapter 6. Electronic Health Record web application

(’ P u b l i c _ h e a l t h _ a n d _P r e v e n t i v e _Med i c i n e ’ ,
’ P u b l i c Hea l t h and P r e v e n t i v e Medic ine ’) ,

(’ Rad i a t i on_Onco logy ’ , ’ R a d i a t i o n Oncology ’) ,
(’ R e s p i r a t o r y _Med i c i n e ’ , ’ R e s p i r a t o r y Medic ine ’) ,
(’ Rheumatogoly ’ , ’ Rheumatology ’) ,
(’ S toma to logy ’ , ’ S toma to logy ’) ,
(’ Tho r ag i c _Su rg e r y ’ , ’ Tho r ag i c Su rge ry ’) ,
(’ T r op i c a l _Med i c i n e ’ , ’ T r o p i c a l Medic ine ’) ,
(’ Urology ’ , ’ Urology ’) ,
(’ Va s cu l a r _Su r g e r y ’ , ’ Va s cu l a r Su rge ry ’) ,
(’ Venereo logy ’ , ’ Venereo logy ’)

)

s p e c i a l t y = models . Cha rF i e l d (max_leng th =100 , c h o i c e s = s p e c i a l t i e s _ l i s t ,
d e f a u l t = ’ G e n e r a l _ P r a c t i c e ’)

c i t y = models . Cha rF i e l d (max_leng th =50 , b l ank=True)
a d d r e s s = models . Cha rF i e l d (max_leng th =50 , b l ank=True)
phone = models . Cha rF i e l d (max_leng th =12 , b l ank=True)

• Patient

The PatientProfile model is mentioned in Ch. 3.

– birthday

– social security number

– sex

– insurance

– city

– address

– phone

6.3 User: Doctor

Undoubtedly, the most important function for doctor users is the capability to retrieve medical
information of patients, as well as save or update data regarding their visits by those patients.
They have also been given the opportunity to organize their schedule, while accepting requests for
appointments online, through a messaging system. Furthermore, they can include some additional
information about the services they provide, such as opening hours and a price list for their services.

6.3.1 Registration for professionals

During registration, professional need to include some basic contact information along with
their specialized field.

6.3 User: Doctor 33

Figure 6.3: EHR - Doctor - Registration

6.3.2 Main page

When registering or logging in as a specialist, the user is redirected to a homepage, where they
can view a list of appointments that they have in their schedule for this day. More information can
be seen by clicking on an appointment.

Figure 6.4: EHR - Doctor - Main page

6.3.3 Schedule

The schedule tab includes a monthly calendar, where the doctor can see every appointment that
has been scheduled, and also add new appointments.

34 Chapter 6. Electronic Health Record web application

Figure 6.5: EHR - Doctor - Schedule

6.3.3.1 Create/View Event

Doctors can easily add new events in their schedule. Firstly, a search term regarding the patient
needs to be given, as for example a first or last name, or a social security number. Right after, only
a simple form with information has to be filled.

Figure 6.6: EHR - Doctor - New Event

6.3 User: Doctor 35

Figure 6.7: EHR - Doctor - New Event

When clicking on an already scheduled event, through the homepage or the calendar, the in-
formation about it will appear, where the event can be completely deleted or updated.

Figure 6.8: EHR - Doctor - Event

36 Chapter 6. Electronic Health Record web application

6.3.4 Opening Hours

In this tab, professionals can include the hours they are available for visitation. By clicking on
Add Opening Hours appears a form where proper details are needed to create an object.

Figure 6.9: EHR - Doctor - Opening Hours

Figure 6.10: EHR - Doctor - Opening Hours Form

6.3 User: Doctor 37

6.3.5 Price List

Specialists can add information about the services they provide in this sector, quite similarly
like the opening hours tab. Among the details they can include a short name of the service, as well
as an extended description, and also, the cost and the approximate duration of such visit.

Figure 6.11: EHR - Doctor - Price List

Figure 6.12: EHR - Doctor - Price List Form

6.3.6 Messages

The messages includes an indicator that mentions the number of unread incoming messages,
if they exist. When clicking on Messages on the navigation bar, two choices appear: inbox and

38 Chapter 6. Electronic Health Record web application

sent. A message that hasn’t be marked as read, appears in bold. The reply button pops up a window
where the doctor state whether the suggested appointment has been confirmed or declined.

Figure 6.13: EHR - Doctor - Inbox

Figure 6.14: EHR - Doctor - Reply

Figure 6.15: EHR - Doctor - Sent

6.3.7 My Profile

InMy profile there are all the information about the user that is currently using the application.
These information can be easily updated by clicking on the ”update” pencil buttons.

6.3 User: Doctor 39

Figure 6.16: EHR - Doctor - My Profile

Figure 6.17: EHR - Doctor - User Profile Update

Figure 6.18: EHR - Doctor - Profile Info Update

40 Chapter 6. Electronic Health Record web application

6.3.8 Search

On the navigation bar there is a search form which is used to find a patient. To do so, a search
term has to include either a first/last name or a social security number, full or partial. After that,
there is available a list of possible results that can be chosen by clicking.

Figure 6.19: EHR - Doctor - Search

Patient’s Profile

A patient’s profile consists of all the information about them. On top, there are two buttons to
navigate through the records or create new ones. Each button has three options in order to find/cre-
ate a diagnosis record, a vaccination record or a surgery record.

6.3.8.1 Add New Record

Each of these options display different forms, whose their steps vary according to their content
and purpose.

• Add Diagnosis Record

When creating a new record that sums up a visit, a 3 step form need to be completed. The
first step includes information about when the visit was made, what symptoms the patient
had, the examination, the prescribed medication and side effects, and even a field where a
doctor can add a note which will be visible only to them.

6.3 User: Doctor 41

Figure 6.20: EHR - Doctor - Patient’s Profile

Figure 6.21: EHR - Doctor - New Diagnosis Record (part 1)

42 Chapter 6. Electronic Health Record web application

In the next step, one or multiple icd10 codes can be used, to describe the diagnosis according
toWorld Health Organization. As the list of the icd10 codes is overlong, when typing a word
of interest, an auto-complete list is created in order to choose.

Figure 6.22: EHR - Doctor - New Diagnosis Record ICD10 code

Figure 6.23: EHR - Doctor - New Diagnosis Record (part 2)

Finally, in the last step, one or more files regarding the visit can be uploaded.

6.3 User: Doctor 43

Figure 6.24: EHR - Doctor - New Diagnosis Record (part 3)

• Add Vaccination Record

Creating a vaccination record only requires the completion of a simple form including the
date, a description, side effects and a note.

Figure 6.25: EHR - Doctor - New Vaccination Record

• Add Surgery Record

A surgery record form is also quite simple and consisting of two steps. The first one requires
the details and the second is for uploading relative files, just like in a diagnosis record.

44 Chapter 6. Electronic Health Record web application

Figure 6.26: EHR - Doctor - New Surgery Record

6.3.8.2 Find Record

The existing records are also categorized as Diagnosis, Vaccination and Surgery history. All
of them, when selected, will display a list of the related records and when they were inserted, as
well as some basic information of the record. To view more details, a specialist can just click on
the desired record. Every relevant file can be downloaded easily. Furthermore, it is possible for
someone to take a look on the details of the doctor who created the record, in case of wishing to
contact them. Every detail can be updated any time.

Figure 6.27: EHR - Doctor - Diagnosis Records List

6.4 User: Patient 45

Figure 6.28: EHR - Doctor - Diagnosis Record

Vaccination and surgery records are being handled the exact same way.

6.4 User: Patient

EHR isn’t just an application for doctors. It is useful for patients too. Except for having access
to their own health records, although not being able to make any changes obviously, patients can
search for doctors, request an appointment through the app, as well as mark doctors as ”favorites”.
This bookmark system allows them to have an easy access to the doctors information, such as their
opening hours and price list.

6.4.1 Registration for patient

Registration for patients require some more data that would be probably useful in any case.
So, along with contact information, users need to include some information about themselves like
their date of birth, type of blood, social security number, insurance, etc.

46 Chapter 6. Electronic Health Record web application

Figure 6.29: EHR - Patient - Request Appointment

6.4.2 Homepage

Registering or logging in as patient redirects the user to a homepage, which displays their future
scheduled appointments. Through this list they are able to see the details of each appointment,
regarding the doctor, the description and the cost.

6.4 User: Patient 47

Figure 6.30: EHR - Patient - Homepage

Figure 6.31: EHR - Patient - Scheduled Appointment

6.4.3 My Profile

This section includes all the user and personal information of the patient. Everything can be
updated by clicking on the edit buttons, just like doctor users.

48 Chapter 6. Electronic Health Record web application

Figure 6.32: EHR - Patient - My Profile

6.4.4 My Records

By clicking onMy records on the navigation bar, a drop-down list shows, which consists of
three choices: Diagnosis, Surgery and Vaccination History. Each option displays the a related list
of records. This list is actually a table that includes some basic information, the name and specialty
of the professional that added the record and a short description. Further information can also be
accessed for each record.

6.4 User: Patient 49

Figure 6.33: EHR - Patient - Diagnosis History List

Figure 6.34: EHR - Patient - Diagnosis Record

6.4.5 Search Doctor

This tab displays a list of professional specialties in descending order. When selecting a spe-
cialty, a corresponding list of available doctors will appear. From this list, there can be found
further information for each specialist, regarding their contact information, the opening hours and
the price list, if they have been provided. Furthermore, through the page with the doctor’s informa-

50 Chapter 6. Electronic Health Record web application

tion, a user can bookmark that specialist as their favourite by clicking the star on the top, and even
request an appointment. To request an appointment, the user has to submit a simple pop up form
where they suggest a convenient date and time period, as well as a preferred type of appointment.

Figure 6.35: EHR - Patient - Specialties List

Figure 6.36: EHR - Patient - List of Doctors

6.4 User: Patient 51

Figure 6.37: EHR - Patient - List of Doctors

Figure 6.38: EHR - Patient - Request Appointment

52 Chapter 6. Electronic Health Record web application

6.4.6 Favourites

All specialists marked as ”favourite” is presented in this page, so the user can have immediate
access to their information and be able to request an appointment very easily.

Figure 6.39: EHR - Patient - Favourites

6.4.7 Messages

Clicking on Messages drops a list of two choices, inbox and sent, where a user can see their
messages, mark them as read or delete them. Unread messages appear in bold.

Figure 6.40: EHR - Patient - Inbox

Chapter 7

Implementation

Any Django project consists of one or more apps, as explained in Chapter 3. And any Django
app includes some standard .py files. The most important ones, that include most of the code that
is written by the developer, are:

• forms.py

• models.py

• views.py

• templates (folder with HTML files)

Figure 7.1: Django MVT (source: [4])

So basically, by filling a form for example, or pressing a button, the user makes a request,
which is processed in a view. This request may result in alternation of the database. Finally, the
view returns the results to a template where they are visible to the user.

53

54 Chapter 7. Implementation

7.1 Models

A Django model represents a table in the database. They are used to store data through views,
and display them in templates.

The following model was used to save information about surgical history of a patient.
from d j ango . db import models
from d a t e t im e import d a t e
import os

c l a s s Surge ry (models . Model) :
p a t i e n t = models . Fore ignKey (P a t i e n t P r o f i l e , o n _ d e l e t e =models .CASCADE)
do c t o r = models . Fore ignKey (U s e r P r o f i l e , o n _ d e l e t e =models .CASCADE)

d a t e = models . D a t e F i e l d (n u l l =Fa l s e , d e f a u l t = d a t e . t oday)
p r o c e d u r e _ d e s c r i p t i o n = models . Cha rF i e l d (max_leng th =5000 , b l ank=True)
r e s u l t _ d e s c r i p t i o n = models . Cha rF i e l d (max_leng th =5000 , b l ank=True)
med i c a t i o n = models . Cha rF i e l d (max_leng th =500 , b l ank=True)
s i d e _ e f f e c t s = models . Cha rF i e l d (max_leng th =1000 , b l ank=True)
s e c r e t _ n o t e = models . Cha rF i e l d (max_leng th =1000 , b l ank=True)

def __ s t r _ _ (s e l f) :
re turn s e l f . p a t i e n t . u s e r . username + ’ − ’ + s e l f . d o c t o r . s p e c i a l t y

• The patient and doctor variables are defined as ForeignKeys which allows to create amany-
to-one relationship. Shortly, it means that the patient and the doctor are actually objects of
PatientProfile (3.2.2) and UserProfile (6.2.1) respectively.

• Date is a DateField, used to store the date that the surgery took place, it can not be null and
has a default value, which is the day that the record is inserted. Default does not mean it can
not change.

• The rest are all defined as CharField. These fields include strings with a predefined max
length. The blank option allows the variable to be empty.

• The function returns the username of the patient and the doctor’s specialty.

7.2 Views

Every time a user makes a request, a view is triggered. The views are python functions, but they
can also be classes. Django provides some generic class-based views that are very useful, because
they offer an easy way to display lists of a model, details of a specific object of a model, and even
update and delete objects.

7.2.1 ListView

In order to show the list of surgeries that are related to a patient we can use the following
class-based View:

7.2 Views 55

from . models import *
from d j ango . v iews import g e n e r i c

c l a s s s u r g e r i e s _ l i s t (g e n e r i c . L i s tView) :
c on t e x t _ ob j e c t _ n ame = ’ s u r g e r i e s _ l i s t ’
t empla t e_name = ’mr / s u r g e r i e s _ l i s t . h tml ’
p a g i n a t e _ by = 15

def g e t _ q u e r y s e t (s e l f) :
p_ id = s e l f . r e q u e s t . s e s s i o n . g e t (’ p_ id ’)
re turn Surge ry . o b j e c t s . f i l t e r (p a t i e n t _ _ i d =p_ id) . o r d e r_by (’−d a t e ’)

def g e t _ c o n t e x t _ d a t a (s e l f , **kwargs) :
c o n t e x t = super (s u r g e r i e s _ l i s t , s e l f) . g e t _ c o n t e x t _ d a t a (** kwargs)
c o n t e x t [’ r e c e i v e d_me s s a g e s ’] = Message . o b j e c t s . f i l t e r (

r e c e i v e r = s e l f . r e q u e s t . u se r , was_read= F a l s e)
re turn c o n t e x t

• First of all, the template that displays whatever this view returns, is ”surgeries_list.html”

• The paginate_by variable defines the maximum records shown in a page. If there are more,
more pages are created.

• What the view returns:

1. ’surgeries_list’ which is the queryset generated by get_queryset So, p_id refers to the
patient that the doctor has chosen.

The query Surgery.objects.filter(patient__id=p_id).order_by(’-date’) actually re-
turns objects of the Surgery model that have as patient the one the doctor asked for,
and are order by newest to oldest.

2. some extra content which is actually used in the parent template.

7.2.2 DetailVew

Another type of generic view is the following:

from . models import *
from d j ango . v iews import g e n e r i c

c l a s s s u r g e r y _ d e t a i l (g e n e r i c . De t a i lV iew) :
model = Su rge ry
t emp l a t e = ’mr / s u r g e r y _ d e t a i l . h tml ’

def g e t _ c o n t e x t _ d a t a (s e l f , **kwargs) :
c o n t e x t = super (s u r g e r y _ d e t a i l , s e l f) . g e t _ c o n t e x t _ d a t a (** kwargs)
c o n t e x t [’ r e c e i v e d_me s s a g e s ’] = Message . o b j e c t s . f i l t e r (

r e c e i v e r = s e l f . r e q u e s t . u se r , was_read= F a l s e)
re turn c o n t e x t

56 Chapter 7. Implementation

This view will be triggered when a doctor tries to see the details for a specific surgery record.
In this case, a primary key will be sent from the template to the view, through the URL. This is
how the view knows which record the user asked for.

The get_context_data function wouldn’t be necessary, but here it is useful for the parent tem-
plate.

7.2.3 DeleteView

from . models import *
from d j ango . v iews import g e n e r i c
from d j ango . u r l s import r e v e r s e _ l a z y

c l a s s Su r g e r yDe l e t e (g e n e r i c . Dele teView) :
model = Su rge ry
s u c c e s s _ u r l = r e v e r s e _ l a z y (’mr : s u r g e r i e s _ l i s t ’)

This is how simple it is to delete objects in Django. The primary key of the objects is passed
through the URL, so Django knows which object to remove.

7.2.4 UpdateView

from . models import *
from d j ango . v iews import g e n e r i c
from d j ango . u r l s import r e v e r s e

c l a s s Surge ryUpda t e (g e n e r i c . UpdateView) :
model = Su rge ry
f i e l d s = [’ d a t e ’ , ’ p r o c e d u r e _ d e s c r i p t i o n ’ , ’ r e s u l t _ d e s c r i p t i o n ’ ,

’ med i c a t i o n ’ , ’ s i d e _ e f f e c t s ’ , ’ s e c r e t _ n o t e ’]
t empla t e_name = ”mr / u p d a t e _ s u r g e r y . h tml ”

def g e t _ s u c c e s s _ u r l (s e l f) :
re turn r e v e r s e (’mr : s u r g e r y _ d e t a i l ’ , kwargs ={ ’ pk ’ : s e l f . ob j e c t . id })

def g e t _ c o n t e x t _ d a t a (s e l f , **kwargs) :
c o n t e x t = super (SurgeryUpda te , s e l f) . g e t _ c o n t e x t _ d a t a (** kwargs)
c o n t e x t [’ r e c e i v e d_me s s a g e s ’] = Message . o b j e c t s . f i l t e r (

r e c e i v e r = s e l f . r e q u e s t . use , was_read= F a l s e r)
re turn c o n t e x t

This view is used to update the data of an object. Again, Django knows which entry by the
primary key. The fields variable determines which fields the user will be able to update.
7.2.5 function view

This is the most common way to handle forms that store data. The following view is used to
display the proper form to insert a surgery object in the data.

from . fo rms import *
from . models import *
from d j ango . s h o r t c u t s import r e n d e r

7.2 Views 57

from d j ango . c o n t r i b . a u t h . d e c o r a t o r s import l o g i n _ r e q u i r e d
from d j ango . t emp l a t e . c o n t e x t _ p r o c e s s o r s import c s r f
from d j ango . t emp l a t e import Reque s tCon t ex t

@log i n_ r equ i r e d
def add_ su r g e r y (r e q u e s t) :

t empla t e_name = ’mr / a dd_ su r g e r y . h tml ’
p_ id = r e q u e s t . s e s s i o n . g e t (’ p_ id ’)
r e g i s t e r e d = F a l s e
r e c e i v e d_me s s a g e s = Message . o b j e c t s . f i l t e r (r e c e i v e r = r e q u e s t . u se r ,

was_read= F a l s e)

i f (r e q u e s t . method == ’POST ’) :
s u r g e r y_ fo rm = SurgeryForm (d a t a = r e q u e s t . POST)

i f (s u r g e r y_ fo rm . i s _ v a l i d ()) :
s u r g e r y = su rg e r y_ fo rm . save ()
s u r g e r y . s ave ()

r e q u e s t . s e s s i o n [’ c u r r e n t _ s u r g e r y _ i d ’] = s u r g e r y . id
r e g i s t e r e d = True

e l s e :
pr in t (s u r g e r y_ fo rm . e r r o r s)

e l s e :
d e f a u l t _ p a t i e n t = P a t i e n t P r o f i l e . o b j e c t s . g e t (id=p_ id)
d e f a u l t _ d o c t o r = U s e r P r o f i l e . o b j e c t s . g e t (id= r e q u e s t . u s e r . u s e r p r o f i l e . id)

s u r g e r y_ fo rm = SurgeryForm (i n i t i a l ={
” p a t i e n t ” : d e f a u l t _ p a t i e n t ,
” d o c t o r ” : d e f a u l t _ d o c t o r

})

re turn r e n d e r (r e q u e s t , t empla te_name , {
’ s u r g e r y_ fo rm ’ : su rge ry_ fo rm ,
’ r e g i s t e r e d ’ : r e g i s t e r e d ,
’ p_ id ’ : p_id ,
’ r e c e i v e d_me s s a g e s ’ : r e c e i v e d_me s s a g e s
})

• @login_required decorator: if the current user is logged in the view will execute normally,
otherwise the user will be asked to log in.

• If the user clicks on the submit button and the first if is true, and also the form is valid, the
data are saved with surgery.save() command. If the form is not valid the user will see the
proper errors.

• Before the form is submitted (while request.method == ’POST’ is false), the doctor is set to
be the current user, and patient the one the doctor has chosen. This way the object that will
save later will be associated with the correct users.

58 Chapter 7. Implementation

7.3 Forms

Django provides a helper class which allows users to create form class from Django mod-
els. The generated Form class will have a form field for every model field specified, in the order
specified in the fields attribute. For example:

from d j ango import forms
from mr . models import *

c l a s s SurgeryForm (forms . ModelForm) :
c l a s s Meta :

model = Su rge ry
f i e l d s = (’ p a t i e n t ’ , ’ d o c t o r ’ , ’ d a t e ’ , ’ p r o c e d u r e _ d e s c r i p t i o n ’ ,

’ r e s u l t _ d e s c r i p t i o n ’ , ’ med i c a t i o n ’ , ’ s i d e _ e f f e c t s ’ ,
’ s e c r e t _ n o t e ’)

w idge t s = {
’ p a t i e n t ’ : forms . H idden Inpu t () ,
’ d o c t o r ’ : fo rms . H idden Inpu t () ,
’ d a t e ’ : forms . Da t e I npu t (a t t r s ={ ’ t yp e ’ : ’ d a t e ’ } , format= ’%d−%b−%Y’)
}

• The model variable defines the model that this form is based on.

• Then, with the fields variable, the developer chooses which fields of this model will be
included in the form.

• A widget is Django’s representation of an HTML input element. Django allows to specify a
widget, if not, a default widget will be used. In this case, the HiddenInput widget means that
this field will not be visible to the user. These fields are properly handled in the corresponding
view. The DateInput widget is used to define the desired format.

The model variable defines the model that this form is based on.

7.4 Templates

Django displays data to the users through templates. Let’s see the template that is used when a
doctor tries to see the list of surgeries of a patient.

{% ex t e nd s ’mr / ba se . html ’ %}

{% b lock body_block %}
{% i f u s e r . i s _ a u t h e n t i c a t e d %}

<h3>Surge ry h i s t o r y < / h3>
< t a b l e c l a s s =” t a b l e ”>

< t r>
< th>< / th>
< th>Date< / th>
< th>Doc to r S p e c i a l t y < / th>

7.4 Templates 59

< th>Doctor ’ s Name< / th>
< th>De s c r i p t i o n < / th>

< / t r>
{% f o r s u r g e r y i n o b j e c t _ l i s t %}
< t r>

< td><a data−t o g g l e =”modal ”
data− t a r g e t =”#moda lCon f i rmDe l e t eSu rge ry {{ s u r g e r y . i d }} ”>
< / span>< / a>

< / td>
{% i n c l u d e ’mr / s u r g e r y _ c o n f i rm_ d e l e t e . html ’ wi th i d = s u r g e r y . i d %}
< td><a hre f=”{% u r l ’mr : s u r g e r y _ d e t a i l ’ s u r g e r y . i d %}”>

{{ s u r g e r y . d a t e }}< / a>
< / td>
< td>{{ s u r g e r y . d o c t o r . g e t _ s p e c i a l t y _ d i s p l a y }}< / td>
< td>{{ s u r g e r y . d o c t o r . u s e r . g e t _ f u l l _ n ame }}< / td>
< td>{{ s u r g e r y . p r o c e d u r e _ d e s c r i p t i o n }}< / td>

< / t r>
{% empty %}

There a r e no s u r g e r y d a t a .
{% end f o r %}

< / t a b l e >
{% i f i s _ p a g i n a t e d %}

<ul c l a s s =” p a g i n a t i o n ”>
{% i f page_ob j . h a s _ p r e v i o u s %}

< l i ><a hre f=” ? page ={{ page_ob j . p r ev ious_page_number }} ”>
« ; < / a>

< / l i >
{% e l s e %}

< l i c l a s s =” d i s a b l e d ”>« ; < / span>< / l i >
{% en d i f %}
{% f o r i i n p a g i n a t o r . page_ range %}

{% i f page_ob j . number == i %}
< l i c l a s s =” a c t i v e ”>{{ i }}

 (c u r r e n t) < / span>< / span>
< / l i >

{% e l s e %}
< l i ><a hre f=” ? page ={{ i }} ”>{{ i }}< / a>< / l i >

{% en d i f %}
{% end f o r %}
{% i f page_ob j . h a s _nex t %}

< l i ><a hre f=” ? page ={{ page_ob j . nex t_page_number }} ”>
» ; < / a>

< / l i >
{% e l s e %}

< l i c l a s s =” d i s a b l e d ”>» ; < / span>< / l i >
{% en d i f %}
< / ul>

{% en d i f %}
{% en d i f %}
{% endb lock %}

60 Chapter 7. Implementation

• The first thing we see is the extends command. This tag tells the template engine that this
template ”extends” to another template. When the template system evaluates this template,
first it locates the parent. In this case, ”base.html” in the mr folder.

• At that point, the template engine will locate the block tag that exists in ”base.html” and
replace that block with the contents of the child.

• user.is_authenticatedwill be true if a user has a valid account. In this case only the following
will be visible.

• There is a header, so the users know what they are looking at.

• Below there is a table which shows the data that were generated by the view.

• The for tag is used to display every object in the list, and to access to their attributes. So
for every surgery in the objects_list is printed a row with the data that are essential for the
doctor. The first row of the table is a trash symbol. When clicked, a modal form appears, in
order to delete the particular record. The second row shows the date of the object, which is
also clickable, and when triggered, shows the details of the record.

• If the object_list is empty, a message appears, that says ”There are no surgery data”

• The code included in if is_paginated creates multiple pages when there are more than 15
results returned by the view.

Chapter 8

Conclusion

8.1 Summary and conclusion

This dissertation reveals many of Django’s capabilities. It literally is a multi-tool that can be
used for so many purposes, from simple web applications, like a plain blog website, to much more
complex projects with many functions. Though it my be a little challenging for beginners, the
detailed documentation is designed to cover all needs, whatever the skills of the developer may
be. Besides, it is not coincidental that more and more popular web apps turn to Django. Because
it is widely known, there are countless tutorials and answers to every kind of questions. Django
can offer everything a developer can possibly ever ask for, simple way to add new functionalities,
effortless handling of innumerus users, unlimited scalability.

As mentioned, the only possible drawback is that beginners might need to struggle a little until
they feel confident enough. They need nothing more than a little dedication, effort and time, so
they can make their ideas come true.

This web application is able to deal with the significant complications that traditional health
records may have, like patient’s safety, accessibility, storing, security, etc. It might lack some func-
tions that other similar applications provide, like hand-writting or voice recognition, but offers
something extra too. The addition of ICD-10 in an easy integrated way, can probably reduce the
occurrence of errors relatively to misdiagnosing and sharing health information of patients. Not
to mention, that this project gives all necessary skills to someone who is interested in doing this
professionally.

8.2 Future Extensions

There is still plenty of development to be made for this web application. One of the first things
would be to advance the search of doctors, providing an expanded number of filters and showing
the results on a map, so a patient can easily understand the position of the doctor’s office. For this
to happen, the use of geodjango would be crucial.

Another addition would be to create a bill every after visit, which would also allow an on-
line payment through the app. In the meanwhile, there would be constructed a database regarding

61

62 Chapter 8. Conclusion

healthcare costs.
Finally, the most significant step, will be to take advantage of these data. Either by providing

statistical analysis to the users, or by using the data to extract knowledge about trends regarding to
health with machine learning algorithms. A few possible inclusions would be:

• Analysis of earnings (specialists)

• Report of bills (patients)

• Statistics about health care costs in different regions

• Statistics regarding diseases globally or in specific areas

• Information about epidemic

• Vaccination Data

Appendix I

This chapter will describe the installation of django and heroku, that were necessary for the
creation of the web application.

All the files that were created for this project are on github [9].

• https://github.com/stellatompazi/EHR

I.1 How to install Django on Windows

Django is a Python Web framework, hence requires Python. So the first step is to make sure
that a recent version of python is installed [6].

I.1.1 Install Python

To download the latest version of python visit: https://www.python.org/downloads/
Download the executable installer and run it. Be sure to check the box next to Add Python

3.x to PATH and click Install Now. After the completion of the installation, check that the Python
Version is the same you installed, by opening the command prompt and executing:

py thon −−v e r s i o n

I.1.2 pip

pip is a package manage for Python. With pip, installing or uninstalling Python packages (like
Django) is very easy.

To install pip visit: https://pip.pypa.io/en/latest/installing/
Follow the instructions included in Installing with get-pip.py

I.1.3 virtualenv and virualenvwrapper

virtualenv and virualenvwrapper provide an environment for each Django project. It is not
mandatory but will possibly save you time in the future, probably when deploying a project. On
your cmd simply type:

p ip i n s t a l l v i r t u a l e n vw r a p p e r−win

63

https://github.com/stellatompazi/EHR
https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installing/

64 Appendix I.

After that, an environment for the project can be created by typing:

mkv i r t u a l e n v myp ro j e c t

The virtual environment is created automatically. To activate the environment in another com-
mand prompt window, use:

workon myp ro j e c t

I.1.4 Install Django

Installing Django is easy using pip within the virtual environment (if you choose to use one).
When using a virtual environment make sure you execute the following when the environment is
active. Else you just execute the following:

p ip i n s t a l l d j ango

I.2 Creating a project in Django

In Django, a project consists of at least one app, which essentially is a Web application that
actually does something. A project is a collection of apps and configuration for a website. Briefly,
a project can contain multiple apps, but also, an app can be included in multiple projects.

To create a project, run the following command in the command line, in your preferred direc-
tory.

$ django−admin s t a r t p r o j e c t eh r

This will create an ehr directory in the current directory.
The next step is to change into the outer ehr directory, the same directory asmanage.py. There,

to create an app, run the following:

$ py thon manage . py s t a r t a p p mr

To include an app in a project, it needs to be referenced to its configuration class in the IN-
STALLED_APPS setting.

ehr/settings.py

INSTALLED_APPS = [
’mr ’ ,
’my_mr ’ ,
’ u se rMessage s ’ ,
’ d j ango . c o n t r i b . admin ’ ,
’ d j ango . c o n t r i b . a u t h ’ ,
’ d j ango . c o n t r i b . c o n t e n t t y p e s ’ ,
’ d j ango . c o n t r i b . s e s s i o n s ’ ,
’ d j ango . c o n t r i b . messages ’ ,
’ d j ango . c o n t r i b . s t a t i c f i l e s ’ ,
’ b oo t s t r a p_moda l _ f o rms ’ ,
’ f o rm t o o l s ’

]

I.2 Creating a project in Django 65

To start the development server simply run:

$ py thon manage . py r u n s e r v e r

If everything works, the development server should have started. Django has a lightweightWeb
server written in Python. Now, if you visit http://127.0.0.1:8000/ in your browser, you will see a
”Congratulations” page.

I.2.1 Database setup

Django provides a lightweight database, SQLite. For someone new, this is the easiest choice.
In order to use other databases it would be wise to consult Django’s documentation.

I.2.1.1 Creating Models

Amodel includes all the essential information and behaviours of the data. After a model is cre-
ated, it needs to get activated. This way Django can create database schema for this app (CREATE
TABLE statements) and provide a Python database-access API for accessing the model objects.
Let’s say that we created the PatientProfile model from Chapter 3, in our mr app.

To activate the model run:

$ py thon manage . py makemig r a t i on s mr

This command tells to Django that there were made changes in the models of the mr app and
we’d like to see these changes stored as a migration. Migrations are the way Django stores any
change to the models. A simple command can run the migrations and manage the database schema
automatically.

$ py thon manage . py m i g r a t e

These 2 steps should be done every time there are changes in the models.

I.2.2 Database API

Django gives a free API to interact with the database. To invoke it, simply run:

$ py thon manage . py s h e l l

Through this API, a user can create, update, retrieve or delete objects stored in the database,
by making queries.

I.2.3 Admin User

It is necessary to create a user who can login to the admin site., by running:

$ py thon manage . py c r e a t e s u p e r u s e r

Enter a username and press enter. For example

Username : admin

Then you need to give an email address.

 http://127.0.0.1:8000/

66 Appendix I.

Email a d d r e s s : admin@mail . com

Finally, you have to enter a password twice.

Password : **********
Password (a g a i n) : *********

Let’s explore the admin site by starting the development server.

$ py thon manage . py r u n s e r v e r

Then, open a web browser and go to http://127.0.0.1:8000/admin/ The admin’s login should
look like this:

Figure I.1: Django - Admin - Log In

After logging with the superuser account, you should see the Django admin index page.
In order to make the models accessible through the admin’s page you need to include them to

the app’s admin.py file.
mr/admin.py

from d j ango . c o n t r i b import admin
from mr . models import *

R e g i s t e r your models h e r e .
admin . s i t e . r e g i s t e r (U s e r P r o f i l e)
admin . s i t e . r e g i s t e r (P a t i e n t P r o f i l e)
admin . s i t e . r e g i s t e r (Appo in tmen t s)
admin . s i t e . r e g i s t e r (V a c c i n a t i o n)
admin . s i t e . r e g i s t e r (Su rge ry)
admin . s i t e . r e g i s t e r (App \ _ f i l e s)
admin . s i t e . r e g i s t e r (P r i c e s)
admin . s i t e . r e g i s t e r (App \ _ i cd10)
admin . s i t e . r e g i s t e r (OpeningHours)
admin . s i t e . r e g i s t e r (Event)
admin . s i t e . r e g i s t e r (F a v o u r i t e s)

userMessages/admin.py

http://127.0.0.1:8000/admin/

I.3 Getting Started on Heroku with Python 67

from d j ango . c o n t r i b import admin
from use rMessages . models import *

R e g i s t e r your models h e r e .
admin . s i t e . r e g i s t e r (Message)

Figure I.2: Django - Admin - Index

I.3 Getting Started on Heroku with Python

To start deploying a project with Heroku [10], make sure to:

• Create a Heroku account for free

• Make sure Python version 3.7 is installed locally

• Install Postgres. Download Postgres here (Windows):

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads#windows

Do not forget to update your PATH environment variable to add the bin directory of your
Postgres installation. The directory will be similar to this:

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads#windows

68 Appendix I.

C:\Program Files\PostgreSQL\<VERSION>\bin.

In case you forget to update your PATH, commands like heroku pg:psql won’t work.

• Install Git.

Download Git here (Windows): https://gitforwindows.org/

• Install the Heroku Command Line Interface (CLI) Download here:

https://devcenter.heroku.com/articles/getting-started-with-python#set-up

I.3.1 Prepare the app

It is a good idea to clone the application. This way you have a local version of the code to
deploy to Heroku. To do so, execute the following to your cmd:

$ g i t c l o n e h t t p s : / / g i t h u b . com / heroku / e l e c t r o n i c h e a l t h r e c o r d . g i t
$ cd e l e c t r o n i c h e a l t h r e c o r d

I.3.2 Deploy the app

You need to create an app on Heroku. It prepares Heroku to receive the source code.

$ heroku c r e a t e e l e c t r o n i c h e a l t h r e c o r d

Creating an app also creates a git remote, which is associated with your local git repository.
To deploy your code, run:

$ g i t push heroku mas t e r

Open the app:

$ heroku open

Heroku offers information about the running app, through a logging command.

$ heroku l o g s −− t a i l

I.3.3 Procfile

A procfile is a text file, existing in the root directory of the application, which declares what
command should be executed to start the app. It should include something like this: Heroku offers
information about the running app, through a logging command. It declares a web process type
and the command needed to run it. The name web means that this process will be attached to the
HTTP routing stack of Heroku and receive web traffic when deployed.

$ web : gun i c o r n eh r . wsgi −−log−f i l e −−

https://gitforwindows.org/
https://devcenter.heroku.com/articles/getting-started-with-python#set-up

I.3 Getting Started on Heroku with Python 69

I.3.4 App dependencies

One way Heroku recognizes a Python app, is via a requirements.txt included in the root di-
rectory. In the requirements.txt is included a list of the app’s dependencies. To deploy the app,
Heroku reads this file and installs the proper Python dependencies using the pip install -r com-
mand.

requirements.txt example:

d j ango
gun i c o r n
django−heroku

To do this locally just run:

$ p ip i n s t a l l −r r e q u i r emen t s . t x t

Bibliography

[1] 75health. https://www.75health.com/.

[2] Michel Anders. Python 3 Web Development Beginner’s Guide. Packt Publishing, 2011.

[3] Leif Azzopardi and David Maxwell. Tango with Django. 2017.

[4] Django architecture. https://data-flair.training/blogs/django-architecture/.

[5] Django architecture flowchart. https://creately.com/diagram/iqjshero1/Django%
20Architecture%20Flowchart.

[6] Django: the web framework for perfectionists with deadlines. https://www.djangoproject.
com/.

[7] Electronic medical records (emr) software. https://www.capterra.com/electronic-medical-
records-software/.

[8] Rames Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems. Pearson, 7
edition, 2015.

[9] Github. https://github.com/stellatompazi/EHR.

[10] Heroku. https://www.heroku.com/home.

[11] Steve Holden. Python Web Programming. Sams Publishing, 2002.

[12] Icd-10. https://en.wikipedia.org/wiki/ICD-10.

[13] Insync. https://www.insynchcs.com/.

[14] International statistical classification of diseases and related health problems.
https://en.wikipedia.org/wiki/International_Statistical_Classification_of_Diseases_and_
Related_Health_Problems.

[15] ipatientcare. https://ipatientcare.com/.

[16] Salahaldin Juba and Andrey Volkov. Learning PostgreSQL 11: A beginner’s guide to building
high-performance PostgreSQL database solutions. Packt Publishing, 3 edition, 2019.

[17] P. Luzanov, E. Rogov, and I. Levshin. PostgreSQL for Beginners.

71

https://www.75health.com/
https://data-flair.training/blogs/django-architecture/
https://creately.com/diagram/iqjshero1/Django%20Architecture%20Flowchart
https://creately.com/diagram/iqjshero1/Django%20Architecture%20Flowchart
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.capterra.com/electronic-medical-records-software/
https://www.capterra.com/electronic-medical-records-software/
https://github.com/stellatompazi/EHR
https://www.heroku.com/home
https://en.wikipedia.org/wiki/ICD-10
https://www.insynchcs.com/
https://en.wikipedia.org/wiki/International_Statistical_Classification_of_Diseases_and_Related_Health_Problems
https://en.wikipedia.org/wiki/International_Statistical_Classification_of_Diseases_and_Related_Health_Problems
https://ipatientcare.com/

72 Bibliography

[18] Postgresql. https://www.postgresql.org/.

[19] Tom Seymour, Dean Frantsvog, and Tod Graeber. Electronic health records (ehr). American
Journal of Health Sciences, 3, October 2014.

[20] Surprising disadvantages of medical records you’ve never thought about. https://
medrecordsinfo.com/disadvantages-of-medical-records/.

[21] Sheetal Taneja and Pratibha R. Gupta. Python as a tool for web server application develop-
ment. JIMS 8i-International Journal of Information, Communication and Computing Tech-
nology(IJICCT), 2, Jan. 2014.

[22] The history of health information management. https://liaison.opentext.com/blog/2017/05/
02/history-heath-information-management-now/.

[23] Top 10 django apps. https://www.netguru.com/blog/top-10-django-apps-and-why-
companies-are-betting-on-this-framework.

[24] What is a web application? https://blog.stackpath.com/web-application/.

[25] Swati Yanamadala, Doug Morrison, Catherine Curtin, Kathryn McDonald, and Tina
Hernandez-Boussard. Electronic health records and quality of care. an observational study
modeling impact on mortality, readmissions, and complications. Medicine, 97(3), May 2016.

https://www.postgresql.org/
https://medrecordsinfo.com/disadvantages-of-medical-records/
https://medrecordsinfo.com/disadvantages-of-medical-records/
https://liaison.opentext.com/blog/2017/05/02/history-heath-information-management-now/
https://liaison.opentext.com/blog/2017/05/02/history-heath-information-management-now/
https://www.netguru.com/blog/top-10-django-apps-and-why-companies-are-betting-on-this-framework
https://www.netguru.com/blog/top-10-django-apps-and-why-companies-are-betting-on-this-framework
https://blog.stackpath.com/web-application/

Abbreviations

API Application Programming Interface
CMS Content Management System
DTL Django Template Language
EHR Electronic Health Record
etc et cetera
ICD-10 International Classification of Diseases - 10th version
IT Information Technology
MVT Model View Template
NASA National Aeronautics and Space Administration
OCR Optical Character Recognition
OS Operating System
REC Regional Extension Centers
WHO World Health Organization

73

	Abstract
	Περίληψη
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	Introduction
	Thesis Objective
	Contribution

	Organization

	Related Projects
	75Health
	InSync
	iPatientCare
	EHR Software Comparison

	Development and Design Tools
	What is a Web application?
	How a Web App works
	Benefits

	Django
	Top Web applications that use Django
	The model layer
	The view layer
	URL dispatcher
	How Django processes a request

	The template layer
	Configuration
	The Django Template Language

	Forms
	GET and POST
	Django's role in forms
	Forms in Django

	Authentication
	The admin
	User objects

	Security
	Cross site scripting (XSS) protection
	Cross site request forgery (CSRF) protection
	SQL injection protection
	Clickjacking protection
	SSL/HTTPS

	Heroku
	Heroku and data
	Postgres

	Ecosystem of services
	Scale and enterprise

	Drawbacks of paper medical records
	Cost and storage
	Accessibility
	Lost productivity
	Quality
	Security
	Diagnosis misidentification

	Advantages of Electronic Health Records
	Real-time records
	Accessibility
	Safety
	Security
	EHR pros in a nutshell

	Electronic Health Record web application
	ICD-10
	EHR Homepage
	Users

	User: Doctor
	Registration for professionals
	Main page
	Schedule
	Create/View Event

	Opening Hours
	Price List
	Messages
	My Profile
	Search
	Add New Record
	Find Record

	User: Patient
	Registration for patient
	Homepage
	My Profile
	My Records
	Search Doctor
	Favourites
	Messages

	Implementation
	Models
	Views
	ListView
	DetailVew
	DeleteView
	UpdateView
	function view

	Forms
	Templates

	Conclusion
	Summary and conclusion
	Future Extensions

	
	How to install Django on Windows
	Install Python
	pip
	virtualenv and virualenvwrapper
	Install Django

	Creating a project in Django
	Database setup
	Creating Models

	Database API
	Admin User

	Getting Started on Heroku with Python
	Prepare the app
	Deploy the app
	Procfile
	App dependencies

	Bibliography
	Abbreviations

