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The theoretical and computational investigation of non-equilibrium transport phe-
nomena in rarefied gases is one of the most interesting and challenging fields in
engineering and physics. In recent years, this topic is gaining constantly increasing
attention mainly due to its implementation in a wide range of technological applications,
ranging from small scale devices like accelerometers and micro gas analyzers up to large
scale gas distribution systems in fusion reactors and particle accelerators. The behavior
of gasses in rarefied conditions cannot be captured by conventional fluid dynamic
approaches, based on the Navier-Stokes-Fourier equations, due to the limited number
of intermolecular collisions leading to a departure from local equilibrium. Modeling
must be based on kinetic theory of gases on the basis of the Boltzmann equation, which
unavoidably is associated with increased complexity and computational cost.

In the present work, advanced kinetic modeling is conducted using the well-
established deterministic Discrete Velocity (DVM) and stochastic Direct Simulation
Monte Carlo (DSMC) methods. Novel numerical additions are developed for both
methodologies and their validity and effectiveness is demonstrated by solving prototype
problems in rarefied gas dynamics. Then, these new approaches are implemented to
investigate and understand the underlying physics of unexpected transport phenom-
ena observed in gas flows and heat transfer configurations far from local equilibrium.
Furthermore, based on computationally efficient and advanced modeling, certain flow
and heat transfer configurations, encountered in the design of various devices with
miniaturized sizes and/or operating under low pressure conditions, are simulated.

The computational advancements in conjunction with the Discrete Velocity Method
include the development and implementation of a) a semi-analytical-numerical method-
ology based on the method of characteristics to simulate kinetic equations with external
force terms, b) a marching DVM algorithm on unstructured meshes approximating
complex geometries and c) a half-range synthetic acceleration scheme to speed-up
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the convergence rate of the DVM including the bulk quantities at the boundaries.
The computational advancement in conjunction with the DSMC method includes
the decomposition of the solution into its ballistic and collision parts, by accordingly
tagging the simulation particles. The four advancements are briefly analyzed.

In the majority of kinetic simulations, external forces can be neglected and numerical
schemes able to treat the external force term in a deterministic manner have not gained
considerable attention. The extension of deterministic kinetic modeling of rarefied flows,
subject to external fields is an open issue. Here, a suitable semi-analytical-numerical
scheme, based on the method of characteristics, is developed. Upon introducing the
characteristic variables, the force term is eliminated from the streaming part of the
kinetic equation and it is included in the collision term and in the integral expressions
of the macroscopic quantities. The accuracy of the proposed algorithm is demonstrated
simulating a force driven one-dimensional nonlinear fully developed flow and successful
comparisons with existing results are performed.

Following the discretization of the kinetic equations in the phase space (molecular
velocity and physical spaces) via the DVM leads to linear algebraic systems with a
huge number of equations requiring high computational cost. The so-called marching
schemes provide an alternative approach, since they do not require the solution of
algebraic systems, but they are limited to simple geometries and structured meshes.
Here, a marching DVM algorithm on unstructured meshes is developed using two
different approaches. The first one is the typical backtracking methodology, which is
robust but computationally expensive and the second novel one, is based on simple
generic geometrical arguments and it is computationally efficient, but it may fail when
obtuse triangular grid elements exist in the mesh. In the present implementation
both methodologies are used, with the geometrical method always being the first
choice and introducing the backtracking algorithm as the second choice only when
the geometrical approach fails. The developed marching DVM code on unstructured
meshes is successfully benchmarked in several two-dimensional rarefied gas flows and
heat transfer configurations in convex and non-convex domains using both linear and
nonlinear kinetic models.

The typical iteration map of the DVM suffers from slow convergence in the slip
and hydrodynamic regimes. Advanced synthetic type acceleration schemes, based
on the full-range Hermite polynomials, has been previously developed speeding-up
the slow convergence rate, with spectacular results. Their application is limited to
fully developed flows through long capillaries, due to their inability to accelerate the
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boundary nodes. It is computationally demonstrated that accelerating the boundary
nodes is crucial in the general case, where the boundary conditions are part of the
solution. The proposed synthetic acceleration methodology is based on half-range
Hermite polynomials and the derived system of half-range moment equations are
accelerating the macroscopic quantities in the interior as well as in the boundary nodes
of the physical domain. The developed half-range synthetic acceleration scheme is
applied to one-dimensional linear flow and heat transfer configurations clearly indicating
their computational efficiency. In addition, solving the half-range moment equations
decoupled from the kinetic equations provides accurate results in a range of the Knudsen
number, much wider than expected. This is attributed to the ability of the half-range
moments to incorporate the discontinuity of the distribution function.

In rarefied conditions, where intermolecular collisions are scarce, particles can
travel long distances without interacting with other particles. Particles emitted from
the boundaries may reach locations well into the flow domain carrying the boundary
information that may be very different form the local conditions leading to a number of
interesting not always expected non-equilibrium phenomena. Therefore, it is interesting
therefore to distinguish between particles with and without intermolecular collisions.
In the framework of the DSMC method, the solution is decomposed into its ballistic
and collision parts and the contribution of each part to the macroscopic quantities
is computed, providing insight information about the microstructure of the flow and
aiding physical understanding.

Continuing with the implementation of the above computational methodologies to
investigate unresolved phenomena, the novel DSMC decomposition has been applied
to interpret non-equilibrium phenomena arising in thermally induced flow and heat
transfer configurations in enclosures. More specifically, in cavities, with temperature
gradients in the lateral walls, an unexpected flow from hot to cold regions, opposite to
the well-known thermal creep flow, has been observed. The formation of this counter
flow is explained using physical arguments obtained by the decomposition methodology.
Furthermore, computing the heat transfer in a square cavity, where the bottom wall
is in a high temperature and all other three walls are maintained in the same lower
temperature, it has been found that the heat flux departing from the heated wall does
not have a monotonic behavior with respect to the temperature ratio but exhibits
a maximum value at some particular value of the temperature ratio. Based on the
DSMC decomposition methodology, a physical explanation to this counter intuitive
observation has been provided.
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The DSMC decomposition methodology has been also applied to pressure driven fully
developed flows through long capillaries providing a complete quantitative justification
of the celebrated Knudsen minimum. The minimum value of the dimensionless flow rate
in the transition regime is explained in a simple manner by computing the corresponding
contributions of the ballistic and collision parts.

Applying the DVM semi-analytical-numerical scheme to force driven flow it has been
observed that the distribution function is strongly non-equilibrium, and multimodal
with long tails. It is believed that this is due to the fact that in addition to collisions
other external forces are also acting on the gas molecules.

Next, topics concerning the application of kinetic theory and modeling in the design
process of devices operating under rarefied conditions are addressed. The range of
validity of the so-called implicit boundary conditions in pressure driven flows with
respect to the flow parameters is specified. Also, a detailed parametric investigation
is conducted for various geometrical configurations encountered in thermally driven
micropumps. Finally, an uncertainty propagation analysis is performed for typical gas
flow and heat transfer configurations.

Pressure driven flows through capillaries are common in gas vacuum system and
processes as well as in micro electromechanical systems. The literature on this subject
is extensive. In flows through capillaries with relatively small length driven by large
pressure gradients, proper kinetic modeling is computationally very demanding, since
large upstream and downstream regions should be included in the computational
domain. Recently, the so-called implicit boundary conditions have been reported,
claiming the ability to eliminate the need of the inlet and outlet regions and therefore,
significantly decrease the involved computational effort. Here, a systematic and detailed
computational investigation of the accuracy of the implicit boundary conditions in
the transition and slip regimes for capillaries of small and moderate lengths in a wide
range of all involved parameters is performed. It has been computationally found that
the assumptions of these boundary conditions are questionable in rarefied conditions
and should be implemented with care only in capillaries with dimensionless length
larger than ten. Furthermore, is it is advised to always couple the implicit boundary
conditions with the end effect theory in order to significantly increase their applicability
range and associated accuracy.

In recent years an effort is underway for the miniaturization of devices and processes,
which are considered to be, compared to their normal sized counterparts, more reliable
and efficient with faster response and less expensive. There is a clear need for micro
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pumping with the varying specifications, in terms of flow rate and pressure difference,
depending upon the application. Knudsen type thermally driven pumps with no
moving parts are of particular interest. Here, a parametric analysis of different
configurations that can potentially be incorporated into the design of these pumps is
performed. The examined configurations include channels with saw tooth surfaces,
combination of straight and curved channels and assemblies of tapered channels. The
characteristics of each configuration are identified and guidelines for the design of
thermally driven micropumps are given, focusing on the tapered configuration, where
the pump performance curves are also provided.

Uncertainty analysis is a critical issue in several fields of engineering and science
including rarefied gas dynamics. The propagation of the uncertainty of the input
parameters to the simulation results in rarefied gas dynamics configurations is examined.
Three benchmark configurations are considered, namely pressure and temperature
driven flows through long tubes and heat transfer between two parallel plates. The
analysis is based on the Monte Carlo Method, which is reliable and applicable for the
uncertainty propagation in the investigated setups, which is performed in the whole
range of gas rarefaction and various values of the input quantities and their associated
uncertainties (pressure, temperature, geometry, pipe roughness, etc). The effect that
each input parameter has on the uncertainty of the main output quantity of interest is
found. This information can facilitate comparisons and aid in the design procedure of
systems operating in rarefied conditions.

It is hoped that the present work, providing certain advancements in kinetic
modeling and computing, in physical understanding of non-equilibrium phenomena
and in technological issues concerning the design of devices and apparatus, will prove
to be useful, at some extend, to the scientific communities in rarefied gas dynamics,
vacuum science and technology and gaseous microfluidics.
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ΠΡΟΧΩΡΗΜΕΝΗ ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΗ ΚΑΙ

ΣΤΟΧΑΣΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΦΑΙΝΟΜΕΝΩΝ

ΜΕΤΑΦΟΡΑΣ ΑΕΡΙΩΝ ΣΤΗ ΜΙΚΡΟΚΛΙΜΑΚΑ

Γιώργος Τατσιος

Πανεπιστήμιο Θεσσαλίας, Ιανουάριος 2019

Επιβλέπων Καθηγητής: Δ. Βαλουγεώργης

Η θεωρητική και υπολογιστική μελέτη φαινομένων μεταφοράς μακριά από τη θερ-

μοδυναμική ισορροπία σε καταστάσεις υψηλής αραιοποίησης είναι ένας από τους πιο εν-

διαφέροντες και απαιτητικούς κλάδους της μηχανικής και της φυσικής. Αυτό το πεδίο

έρευνας αποκτά όλο και περισσότερη προσοχή τα τελευταία χρόνια, καθώς τέτοιες κα-

ταστάσεις απαντώνται σε ένα μεγάλο εύρος εφαρμογών, από μικροδιατάξεις όπως επιτα-

χυνσιόμετρα και μικρό χρωματογράφους έως μεγάλης κλίμακας δίκτυα μεταφοράς αερίων

σε αντιδραστήρες σύντηξης και επιταχυντές σωματιδίων. Η συμπεριφορά των αερίων σε

καταστάσεις υψηλής αραιοποίησης δεν μπορεί να περιγραφεί από τις συμβατικές προσεγ-

γίσεις της ρευστοδυναμικής που βασίζονται στις εξισώσεις Navier-Stokes-Fourier λόγω
του περιορισμένου αριθμού των συγκρούσεων μεταξύ των μορίων του αερίου που οδηγεί

σε μεγάλες αποκλίσεις από την θερμοδυναμική ισορροπία. Η μοντελοποίηση φαινομένων

σε τέτοιες συνθήκες βασίζεται στην κινητική θεωρία των αερίων μέσω της εξίσωσης

Boltzmann. Αυτό αυξάνει σημαντικά την πολυπλοκότητα και το υπολογιστικό κόστος
αυτών των προσομοιώσεων.

Στην παρούσα διατριβή, οι κινητικές προσομοιώσεις γίνονται χρησιμοποιώντας τις,

πλέον καθιερωμένες ντετερμινιστικές και στοχαστικές μεθόδους, αυτές των διακριτών

ταχυτήτων (DVM) και της απευθείας προσομοίωσης Monte Carlo (DSMC). Καινοτόμες
επεκτάσεις εισάγονται και για τις δύο αυτές μεθοδολογίες και η ακρίβεια και αποδοτικότη-

τά τους παρουσιάζονται λύνοντας κάποια πρότυπα προβλήματα του κλάδου της αραιοποι-

ημένης θερμορευστοδυναμικής. Στη συνέχεια οι προσεγγίσεις αυτές εφαρμόζονται για

την μελέτη και κατανόηση της φυσικής πίσω από κάποια απρόσμενα και παράδοξα φαι-

νόμενα που παρατηρούνται σε διατάξεις ροής και μεταφοράς θερμότητας σε καταστάσεις

υψηλής αραιοποίησης. Επιπλέον, κάνοντας χρήση αποδοτικών και πρωτοπόρων υπολογι-

στικών προσεγγίσεων γίνεται υπολογιστική μελέτη ροής και μεταφοράς θερμότητας σε

διατάξεις που απαντώνται σε μικροηλεκτρομηχανολογικά εξαρτήματα και σε συσκευές

που λειτουργούν σε περιβάλλον χαμηλής πίεσης.
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Οι καινοτομίες στις αριθμητικές μεθοδολογίες που χρησιμοποιούνται σε συνδυασμό

με τη μέθοδο διακριτών ταχυτήτων περιλαμβάνουν την ανάπτυξη και εφαρμογή α) ενός

ημι-αναλυτικού αριθμητικού σχήματος που βασίζεται στην μέθοδο των χαρακτηριστικών

για την επίλυση των κινητικών εξισώσεων υπό την επίδραση εξωτερικών πεδίων δυνάμε-

ων, β) ενός σχήματος προέλασης για την επίλυση των κινητικών εξισώσεων σε αδόμητα

πλέγματα και περίπλοκες γεωμετρίες, γ) και ενός αριθμητικού σχήματος επιτάχυνσης της

σύγκλισης της μεθόδου διακριτών ταχυτήτων που επιδρά και στους οριακούς κόμβους και

βασίζεται σε ημιάπειρες ροπές. Η καινοτομία σε συνδυασμό με την μέθοδο απευθείας προ-

σομοίωσης Monte Carlo περιλαμβάνει τη διάσπαση της λύσης σε δύο επιμέρους τμήματα
που αντιστοιχούν στα σωματίδια που φτάνουν σε κάποιο σημείο του πεδίου με και χωρίς

ενδομοριακές αλληλεπιδράσεις. Οι συνολικά τέσσερις αυτές καινοτομίες παρουσιάζονται

συνοπτικά.

Στην πλειοψηφία των προσομοιώσεων μέσω κινητικής θεωρίας, δεν υπάρχουν εξωτερι-

κά πεδία δυνάμεων που επιδρούν στα σωματίδια, είτε αυτά είναι αμελητέας σημασίας όπως

η βαρύτητα. Για το λόγο αυτό αριθμητικά σχήματα ικανά να λάβουν υπ’ όψιν τους τον

όρο των εξωτερικών δυνάμεων δεν έχουν λάβει προσοχή και η ανάπτυξη τέτοιων ντετερ-

μινιστικών σχημάτων είναι ένα ανοιχτό ζήτημα. Στα πλαίσια της διατριβής, αναπτύχθηκε

ένα κατάλληλο ημι-αναλυτικό σχήμα βασιζόμενο στην μέθοδο των χαρακτηριστικών. Με

την εισαγωγή των μεταβλητών που περιγράφουν τις χαρακτηριστικές καμπύλες, ο όρος

της εξωτερικής δύναμης μεταφέρεται από το τμήμα της ελεύθερης κίνησης στο τμήμα των

συγκρούσεων των κινητικών εξισώσεων και στις ροπές που δίνουν τις μακροσκοπικές

ποσότητες. Η ακρίβεια του σχήματος παρουσιάζεται με την επίλυση μίας μη-γραμμικής

πλήρως ανεπτυγμένης ροής τύπου Poiseuille λόγω εξωτερικής δύναμης ανάμεσα σε δύο
πλάκες και τα αποτελέσματα συγκρίνονται με αντίστοιχα αποτελέσματα διαθέσιμα στην

βιβλιογραφία.

Η διακριτοποίηση της εξίσωσης Boltzmann και των εξισώσεων των κινητικών μο-
ντέλων με τη μέθοδο των διακριτών ταχυτήτων στον φασικό χώρο (χώρος μοριακών

ταχυτήτων και φυσικός χώρος) οδηγεί σε μεγάλα γραμμικά συστήματα αλγεβρικών εξι-

σώσεων, η επίλυση των οποίων είναι υπολογιστικά ακριβή. Μία εναλλακτική προσέγγιση

είναι τα λεγόμενα σχήματα προέλασης, που δεν απαιτούν την επίλυση μεγάλων συστη-

μάτων αλγεβρικών εξισώσεων. Η εφαρμογή τους όμως έχει περιοριστεί σε δομημένα

πλέγματα και απλές γεωμετρίες. Στην παρούσα διατριβή αναπτύσσεται ένα σχήμα προ-

έλασης εφαρμόσιμο σε αδόμητα πλέγματα βασιζόμενο σε δύο διαφορετικές προσεγγίσεις.

Η πρώτη προσέγγιση που στηρίζεται σε έναν τυπικό backtracking αλγόριθμο, παρέχει
πάντα σωστά αποτελέσματα αλλά είναι υπολογιστικά απαιτητική. Η δεύτερη προσέγγιση
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είναι μία καθαρά γεωμετρική μέθοδος η οποία απαιτεί μικρότερο υπολογιστικό φορτίο αλ-

λά αποτυγχάνει όταν υπάρχουν στοιχεία με αμβλείες γωνίες στο πλέγμα. Στην παρούσα

υλοποίηση και οι δύο μεθοδολογίες χρησιμοποιούνται. Η γεωμετρική μέθοδος εφαρμόζε-

ται πρώτα και ύστερα ο αλγόριθμος backtracking εφαρμόζεται μόνο στις περιπτώσεις
που η γεωμετρική μέθοδος αποτυγχάνει να δώσει μία έγκυρη λύση. Η μεθοδολογία προ-

έλασης σε αδόμητα πλέγματα που αναπτύχθηκε, εφαρμόστηκε με επιτυχία σε διάφορες

πρότυπες δισδιάστατες διατάξεις ροής και μεταφοράς θερμότητας σε συνθήκες αραιοπο-

ίησης, σε κυρτά και μη-κυρτά χωρία χρησιμοποιώντας γραμμικά και μη-γραμμικά κινητικά

μοντέλα.

Ο τυπικός επαναληπτικός χάρτης της μεθόδου διακριτών ταχυτήτων παρουσιάζει πο-

λύ αργή σύγκλιση στην περιοχή ολίσθησης και κοντά στη συνεχή περιοχή. Αριθμητικά

σχήματα επιτάχυνσης που βασίζονται στα τυπικά πολυώνυμα Hermite, έχουν εφαρμοστεί
στο παρελθόν επιταχύνοντας την επίλυση με εκπληκτικά αποτελέσματα. Η εφαρμογή τους

όμως περιορίστηκε σε πλήρως ανεπτυγμένες ροές σε αγωγούς μεγάλου μήκους καθώς τα

σχήματα που έχουν αναπτυχθεί εφαρμόζονται μόνο στους εσωτερικούς κόμβους. Αποδει-

κνύεται υπολογιστικά πως η επιτάχυνση των οριακών κόμβων είναι καίριας σημασίας στη

γενική περίπτωση, όπου οι οριακές συνθήκες είναι μέρος της λύσης. Σχήματα επιτάχυν-

σης της λύσης ικανά να επιταχύνουν τους εσωτερικούς καθώς και τους οριακούς κόμβους

αναπτύχθηκαν για τις γραμμικές κινητικές εξισώσεις. Τα σχήματα αυτά βασίζονται σε

ημιάπειρες ροπές και κατασκευάζονται χρησιμοποιώντας πολυώνυμα Hermite που είναι
ορθογώνια σε ημιάπειρα διαστήματα και όχι σε όλο το εύρος των πραγματικών αριθμών.

Η αποδοτικότητα των σχημάτων που αναπτύχθηκαν, παρουσιάζεται με την εφαρμογή τους

σε μονοδιάστατη ροή λόγω διαφοράς πίεσης και σε μεταφορά θερμότητας μεταξύ δύο ε-

πιφανειών. Επιπλέον, τα συστήματα εξισώσεων ροπών που κατασκευάζονται επιλύονται

ανεξάρτητα της κινητικής εξίσωση χρησιμοποιώντας μία τυπική μεθοδολογία για το κλε-

ίσιμο των συστημάτων αυτών, παρέχοντας ακριβή αποτελέσματα σε ένα μεγαλύτερο από

το αναμενόμενο εύρος του αριθμού Knudsen. Αυτό αποδίδεται στην ικανότητα αυτών
των σχημάτων να αντιμετωπίσουν την ασυνέχεια της συνάρτησης κατανομής.

Σε συνθήκες υψηλής αραιοποίησης όπου οι συγκρούσεις μεταξύ σωματιδίων είναι

σπάνιες, τα σωματίδια ταξιδεύουν μεγάλες αποστάσεις χωρίς να συγκρουστούν με άλλα

σωματίδια. Τα σωματίδια που φεύγουν από τα τοιχώματα φτάνουν σε περιοχές του

ροϊκού πεδίου μακριά από τα τοιχώματα μεταφέροντας την πληροφορία του τοιχώματος

η οποία μπορεί να διαφέρει σημαντικά από τις τοπικές συνθήκες. Αυτός ο μηχανισμός

οδηγεί σε ενδιαφέροντα και απρόσμενα φαινόμενα, λόγω της μεγάλης απόκλισης από

τη θερμοδυναμική ισορροπία. Είναι λοιπόν ενδιαφέρον να γίνει ένας διαχωρισμός των
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σωματιδίων που φτάνουν σε κάποιο σημείο του ροϊκού πεδίο μετά από συγκρούσεις και

αυτών που δεν έχουν αλληλεπιδράσει με άλλα σωματίδια. Αναπτύσσεται μία μεθοδολογία,

στα πλαίσια της μεθόδου DSMC που διασπά την λύση σε αυτά τα δύο τμήματα και
υπολογίζει την συνεισφορά του καθενός στις μακροσκοπικές ποσότητες, παρέχοντας έτσι

πληροφορία για την δομή της ροής και βοηθώντας την φυσική κατανόηση των φαινομένων

που παρατηρούνται.

Συνεχίζοντας με την εφαρμογή των παραπάνω υπολογιστικών καινοτομιών σε α-

πρόσμενα θερμορευστοδυναμικά φαινόμενα, η μεθοδολογία διάσπασης της λύσης που

αναπτύχθηκε εφαρμόζεται για την καλύτερη κατανόηση φαινομένων που παρατηρούνται

στη ροή και μεταφορά θερμότητας σε κοιλότητες με μη-ισοθερμοκρασικά τοιχώματα. Πιο

συγκεκριμένα, σε κοιλότητες με κλίσεις θερμοκρασίας στα κάθετα τοιχώματα παρατηρε-

ίται μία μη αναμενόμενη ροή με κατεύθυνση αντίθετη της κλίσης θερμοκρασίας, αντίθετα

δηλαδή από την αναμενόμενη ροή λόγω θερμικού ερπυσμού. Ο σχηματισμός αυτής της

ροής εξηγείται μέσω της μεθοδολογίας διάσπασης της λύσης. Στην μεταφορά θερμότητας

μέσω αερίου σε κοιλότητα με ένα θερμαινόμενο τοίχωμα, ο ρυθμός μεταφοράς θερμότη-

τας δεν συμπεριφέρεται μονότονα σε σχέση με τον λόγο θερμοκρασίας, αλλά παρουσιάζει

μέγιστο σε κάποια κρίσιμη τιμή του. Με βάση την μεθοδολογία διάσπασης της λύσης,

παρέχεται μία φυσική εξήγηση αυτού του φαινομένου. Η μεθοδολογία διάσπασης της

λύσης, εφαρμόστηκε επίσης σε πλήρως ανεπτυγμένες ροές λόγω κλίσης πίεσης σε αγω-

γούς μεγάλου μήκους παρέχοντας μία ποσοτική εξήγηση του γνωστού παράδοξου του

Knudsen. Το ελάχιστο που παρατηρείται στην αδιάστατη μαζική παροχή ερμηνεύεται με
βάση την διάσπαση στα δύο τμήματα της λύσης υπολογίζοντας την επίδραση του καθενός

στην συνολική μαζική παροχή.

Στη συνέχεια, γίνεται εφαρμογή της κινητικής θεωρίας στον σχεδιασμό συσκευών

και διατάξεων που λειτουργούν σε συνθήκες υψηλής αραιοποίησης. Βρίσκεται το ε-

ύρος εφαρμογής, σε σχέση με τις παραμέτρους της ροής, των λεγόμενων πεπλεγμένων

οριακών συνθηκών σε ροές λόγω κλίσης πίεσης. Γίνεται, επίσης, μία λεπτομερής πα-

ραμετρική ανάλυση διαφόρων διατάξεων που απαντώνται στον σχεδιασμό μικρο-αντλιών

χωρίς κινούμενα μέρη. Τέλος, γίνεται ανάλυση αβεβαιότητας σε τυπικές διατάξεις ροής

και μεταφοράς θερμότητας. Ροές αερίων λόγω κλίσης πίεσης συναντώνται συχνά σε συ-

στήματα κενού και μικρο ηλεκτρομηχανολογικά συστήματα. Η βιβλιογραφία σχετικά με

αυτές τις ροές είναι εκτενής. Στην περίπτωση που ο αγωγός είναι σχετικά μικρού μήκους

και η βαθμίδα πίεσης μεγάλη, μεγάλες περιοχές ανάντι και κατάντι του αγωγού πρέπει

να ληφθούν υπ’ όψιν και το υπολογιστικό κόστος αυξάνει σημαντικά. Πρόσφατα, οι πε-

πλεγμένες οριακές συνθήκες έχουν προταθεί που εφαρμόζονται στα άκρα του αγωγού
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εξαλείφοντας την ανάγκη για τις μεγάλες αυτές περιοχές. Μία συστηματική μελέτη της

εγκυρότητάς τους στην μεταβατική περιοχή και περιοχή ολίσθησης πραγματοποιείται για

αγωγούς μικρού και μέσου μήκους και για ένα μεγάλο εύρος των παραμέτρων της ροής.

Αποδεικνύεται πως οι υποθέσεις πίσω από αυτές τις οριακές συνθήκες είναι αμφισβητήσι-

μες σε συνθήκες υψηλής αραιοποίησης και πως η εφαρμογή τους πρέπει να γίνεται με

προσοχή και μόνο σε αγωγούς μεγάλου μήκους. Επιπλέον συνιστάται η εφαρμογή αυτών

των οριακών συνθηκών με ταυτόχρονη εφαρμογή της θεωρίας των φαινομένων εισόδου

και εξόδου κάτι που μπορεί να αυξήσει σημαντικά το εύρος εφαρμογής τους.

Τα τελευταία χρόνια υπάρχει μία έντονη τάση για σμίκρυνση συσκευών, καθώς τυπικά

αυτές οι συσκευές έχουν χαμηλότερο κόστος, μεγαλύτερη αξιοπιστία και αποδοτικότητα

καθώς και καλύτερη απόκριση από τις αντίστοιχες κανονικού μεγέθους. Σε αυτές τις

διατάξεις υπάρχει ανάγκη για μικρο-αντλίες καθώς συχνά είναι απαραίτητη μία μαζική πα-

ροχή ή διαφορά πίεσης. Οι αντλίες τύπου Knudsen που δεν έχουν κινούμενα μέρη, αλλά η
αρχή λειτουργίας των οποίων βασίζεται σε κλίσεις θερμοκρασίας, παρουσιάζουν ιδιαίτερο

ενδιαφέρον. Στην παρούσα διατριβή γίνεται μία παραμετρική μελέτη διαφόρων διατάξεων

που θα μπορούσαν δεινητικά να χρησιμοποιηθούν στον σχεδιασμό τέτοιων αντλιών. Οι

διατάξεις που μελετήθηκαν περιλαμβάνουν κανάλια με πριονωτά τοιχώματα, συνδυασμό

ευθέων και κυρτών καναλιών και διατάξεις από συγκλίνοντα και αποκλίνοντα κανάλια. Τα

χαρακτηριστικά κάθε διάταξης παρουσιάζονται και διατυπώνονται κατευθυντήριες γραμ-

μές για των σχεδιασμό τέτοιων αντλιών. Η μελέτη εστιάζεται κυρίως στην περίπτωση των

συγκλινόντων και αποκλινόντων αγωγών όπου δίνονται και οι χαρακτηριστικές καμπύλες

των αντλιών. Η μελέτη της αβεβαιότητας είναι υψηλής σημασίας σε διάφορες περιοχές

της μηχανικής και της επιστήμης, συμπεριλαμβανομένης και της αεροδυναμικής χαμηλών

πυκνοτήτων. Η διάδοση της αβεβαιότητας των παραμέτρων εισόδου στα αποτελέσματα

των προσομοιώσεων μέσω κινητικής θεωρίας εξετάζεται. Συγκεκριμένα μελετώνται τρία

πρότυπα προβλήματα, η ροή λόγω κλίσης πίεσης και θερμοκρασίας σε αγωγούς μεγάλου

μήκους και η μεταφορά θερμότητας μεταξύ δύο πλακών. Για την διάδοση της αβεβαιότη-

τας εφαρμόζεται η στοχαστική μεθοδολογία Monte Carlo, που είναι αξιόπιστη και ικανή
να εφαρμοστεί στις συγκεκριμένες περιπτώσεις. Η ανάλυση γίνεται σε ένα μεγάλο εύρος

της αραιοποίησης και για διάφορες τιμές των παραμέτρων εισόδου (πίεση, θερμοκρασία,

γεωμετρικά μεγέθη, τραχύτητα επιφανειών κτλ) και των αβεβαιοτήτων τους. Βρίσκεται η

επίδραση που έχει κάθε παράμετρος εισόδου στην αβεβαιότητα των αποτελεσμάτων. Αυτή

η πληροφορία μπορεί να βοηθήσει συγκρίσεις μεταξύ πειραματικών μετρήσεων και υπο-

λογιστικών αποτελεσμάτων καθώς και να χρησιμοποιηθεί στον σχεδιασμό συστημάτων

που λειτουργούν σε καταστάσεις κενού.
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Ελπίζεται πως η παρούσα διατριβή που περιλαμβάνει διάφορες καινοτομίες στην υπο-

λογιστική εφαρμογή της κινητικής θεωρίας, στην υπολογιστική επίλυση των κινητικών

εξισώσεων, στην πληρέστερη κατανόηση των φαινομένων μακριά από τη θερμοδυναμική

ισορροπία καθώς και σε διάφορα θέματα που αφορούν τον σχεδιασμό συσκευών θα φανεί

χρήσιμη στις επιστημονικές κοινότητες της αραιοποιημένης αεροδυναμικής, της τεχνολο-

γίας κενού και των μικροηλεκτρομηχανολογικών εξαρτημάτων.
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5.16 Mass diodicity coefficient Eṁ in terms of Pin for L/Hm = 20, 50 with

Hm = 10µm and various values of α in an open system with zero pressure
difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.17 Pressure and gas rarefaction parameter distributions along a converging
channel with L/Hm = 20, 50, Hm = 10µm, Pin = 103, 0.5 × 105Pa and
α = 2, 3, 4 in an open system with zero pressure difference. . . . . . . 139

5.18 Pressure and gas rarefaction parameter distributions along a diverging
channel with L/Hm = 20, 50, Hm = 10µm, Pin = 103, 0.5 × 105Pa and
α = 2, 3, 4 in an open system with zero pressure difference. . . . . . . 140

5.19 Pressure difference ∆P = Pout − Pin in terms of the mass flow rate
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Chapter 1

Introduction

1.1 General concepts

The computational investigation of transport phenomena in gasses is one of the
most interesting and challenging fields in engineering and physics. The macroscopic
description provided by the Navier-Stokes-Fourier equations has proven to be a valid
approach, able to handle the majority of physical phenomena. However, there are a
significant number of applications, where the assumptions behind this macroscopic
model collapse and a more fundamental modeling approach is required. This is
happening when the molecular mean free path, i.e., the average distance that gas
molecules travel between successive intermolecular collisions, becomes comparable
with a characteristic length scale of the flow. Then, the gas is in a rarefied state and
the continuum assumption along with the constitutive laws of Newton, Fourier and
Fick are no longer valid. Proper modeling in these cases should take into account the
molecular nature of gasses and such an approach is the well-known kinetic theory of
gasses. Simulations using kinetic theory are constantly gaining attention in recent years,
because kinetic modeling may be successfully applied in emerging technological fields,
which cannot be treated by other approaches. In parallel, the high computational cost
(time and storage), which is typically required in mesoscale approaches, such as kinetic
modeling, is constantly decreased due to the advancements in scientific computing
both in software and hardware resources.

Gas flows and heat transfer in rarefied conditions may occur in low density systems,
where intermolecular collisions are rare, or in micro and nano scale systems, where the
characteristic lengths are very small or in setups with both low densities and small
sizes. In addition, rarefied flows or otherwise flows far from local equilibrium may be
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present in thin layers adjacent to the boundaries or characterized by steep gradients
of the macroscopic quantities such as in Knudsen layers and shock waves respectively.
High altitude aerodynamics and reentry flows [1], [2] are typical examples of such
flows, where due to the high speeds many interesting non-equilibrium phenomena arise
[3], [4]. Similarly, flows under rough, moderate, high and ultra-high vacuum, are also
considered as rarefied flows and are encountered in many applications, from vacuum
packed MEMS devices [5], or thermally driven micro-pumps [6], to large scale gas
distribution networks [7] that are involved in the vacuum systems of fusion reactors
[8] and accelerators. Vacuum pumps and pumping is one the major technological
fields, where kinetic theory and modeling is implemented [9]–[11]. Also, the design
and uncertainty analysis performed in pressure sensors and flow meters [12] used in
metrology devices and standards [13] are based on measurements supplemented by
accurate kinetic simulations. Furthermore, rarefied gas flows appear in semiconductors,
filtering, porous media, vapor and chemical deposition processes, etc.

In general, kinetic theory and modeling has been proven to be a reliable approach
to tackle physical phenomena far from local equilibrium, while the availability and
the constantly reduced cost of high computing resources observed worldwide, has
provided new possibilities and potential. Recently, there is an increasing need for more
demanding and advanced kinetic simulations in order to properly capture complex
microscale phenomena in complicated geometries very close or identical to the actual
ones.

The present dissertation is focused on the derivation of advanced kinetic modeling
and software as well as in the implementation of these tools to simulate non-equilibrium
gaseous transport phenomena. More specifically,
a) certain advancements in deterministic and stochastic kinetic modeling are proposed,
b) new physical findings in the field of rarefied gas dynamics and heat transfer are
presented and
c) novel microscale devices are simulated and optimized.

1.2 Dissertation structure and contents

The present dissertation handles a number of diverse topics related to kinetic theory
and modeling. These topics include new numerical schemes, which are proposed in order
to improve and extend the capabilities of the existing ones, the computational solution
of some physical problems, which have not been solved so far and the simulation of
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Section 1.2

some configurations, which may be used in the design of micro devices. Following
Chapters 1 and 2, where a brief introduction in the field and a survey of the relative
literature are presented respectively, each of the investigated topics is covered in a
separate chapter of the dissertation from Chapter 3 to 8 and finally, in Chapter 9 the
dissertation is concluding with a brief summary and the main concluding remarks.
In Chapters 3-8, where each of the investigated topics are presented, there is some
repetition, mainly related to the formulation of each problem, which is considered as
necessary for completeness and clarity purposes and beneficial to the reader. Next, the
detailed structure of the thesis is presented.

Chapter 1 includes a short introduction in the field highlighting the main research
areas of the present work, a brief description of the contents and a summary of the
main novelties and contributions of the thesis.

Chapter 2 covers a detailed literature survey related to the various areas of
kinetic theory and modeling covered in the present work. The review includes the
basic principles of kinetic theory, the involved flow regimes, the governing kinetic
model equations with the associated boundary conditions, as well as the implemented
deterministic and stochastic computational methods. In addition, specific attention
is paid to pressure and temperature driven flows, which are present throughout the
thesis and also to methodologies related to propagation of uncertainties.

Chapter 3 refers to two pressure driven rarefied gas flows. The first one is nonlinear
fully-developed flow between parallel plates with the external force term driving the
flow included in the governing equations. A new methodology based on the method
of characteristics is implemented to compute the flow rate and the heat flux paying
specific attention to the distribution function, which is characterized by multiple modes
and long tails. The second one is typical nonlinear pressure drive flow between plates
and through tubes. The range of validity of validity of the so-called implicit boundary
conditions is investigated in terms of the gas rarefaction parameter, the imposed
pressure difference and the capillary length by comparing this approach with others
having a more solid theoretical background.

Chapter 4 presents the implementation of the discrete velocity method (DVM) on
unstructured grids. The proposed novel methodology keeps the marching characteristics
of the typical implementation of the discrete velocity schemes on structured grids and
yields the solution of the problem without requiring the solution of a system of algebraic
equations. The developed unstructured DVM algorithm is validated by solving fully
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developed flows through long channels with cross sections of fractal geometries, as well
as linear lid driven and nonlinear temperature driven cavity flows.

Chapter 5 refers to thermally driven flows with application to the design of
micropumps without rotating parts. The considered configurations include saw-tooth
surface channels, tapered channels with diverging and converging parts and curved
serpentine type channels. A detailed parametric investigation is performed in terms of
the geometry, the operating conditions and the number of stages. The simulation of
the saw-tooth surface channels is based on the unstructured grid approach presented
in Chapter 4. The diode effect in the case of tapered channels is investigated in detail.
The advantages and drawbacks of each design are considered and discussed, indicating
the pumping performance of each flow configuration.

Chapter 6 describes, in detail, a novel decomposition technique of the Direct
Simulation Monte Carlo (DSMC) method. The particle distribution function is de-
composed into ballistic and collision parts. The first one includes particles arriving
directly from the boundaries without interacting with other particles and the latter one
particles arriving after an arbitrary number of collisions. The decomposition technique
is implemented to cavity flows driven by non-uniform temperature distributions in the
lateral walls and by a heat flux in the bottom wall, as well as to the classical Poiseuille
flow in capillaries. In all cases, based on the decomposition of the distribution function,
very interesting physical findings of the observed non-equilibrium transport phenomena,
including the famous Knudsen minimum, are interpreted.

Chapter 7 examines the propagation of uncertainties, which may be present in
the input data through the numerical solution to the computed results of the thermo-
fluid setup. The introduced uncertainties may be due to measurements defining the
geometrical data and operational conditions, as well as due to modeling assumptions and
simplifications. The proposed approach is based on the Monte Carlo Method (MCM),
which is considered as the most suitable for the present work and relies on a large
number of trials. The total uncertainty of fully-developed pressure and temperature
driven flows, including the thermomolecular pressure difference phenomenon, as well
as of the heat transfer flow between parallel plates are obtained. In each case the
most important input parameters, the uncertainty of which, mostly affect the total
uncertainty of the results, are identified.

Chapter 8 deals with synthetic acceleration schemes of the DVM iteration map.
An extension of the existing synthetic algorithms is provided to speed-up the slow
convergence of the classical iteration scheme in the slip and continuum regimes, even in
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flow configurations where the boundary incoming distributions are not explicitly given
but they are part of the solution. This is achieved by coupling the kinetic equations
with half-range moments of the distribution functions resulting to the acceleration of
the convergence of the macroscopic quantities even at the boundary nodes. This new
acceleration strategy is validated by solving the one-dimensional Poiseuille flow and
then, it is successfully implemented to the solution of the heat transfer flow between
parallel plates.

Chapter 9 concludes the dissertation by providing a brief summary of the work
included in Chapters 3-8 pointing out the main theoretical and computational observa-
tions and findings. Also, tentative extensions of the present work in the short future
are proposed.

1.3 Novelty and scientific contributions

The novelties of the present dissertation include both theoretical and computational
scientific contributions. They may be briefly highlighted as follows:

a) Development and implementation of a computational methodology solving kinetic
equations with external force terms, based on the method of characteristics, in
order to model complicated rarefied gas flows of charged particles in the presence
of electric and magnetic fields (Chapter 3).

b) Specification of the range of validity of the so-called implicit boundary conditions
in rarefied gas flows in terms of the geometrical and operational parameters in
order to support decision making about their proper implementation in an effort
to reduce computational resources (Chapter 3).

c) Development and implementation of a computationally efficient DVM algorithm
on unstructured meshes, capable to simulate complex geometries with boundary
fitted grids (Chapter 4).

d) Detailed parametric investigation of the thermal transpiration pumping perfor-
mance in various geometrical configurations to provide useful guidelines in the
design, optimization and fabrication of micro Knudsen type pumps (Chapter 5).

e) Physical explanation and quantitative justification of unexpected non-equilibrium
transport phenomena appearing in boundary heated cavities, based on the
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decomposition of the DSMC computational particles into ballistic and collision
particles (Chapter 6).

f) Physical explanation and quantitative justification of the presence of the famous
Knudsen minimum in rarefied gas flows, based on the DSMC decomposition
(Chapter 6).

g) Development and implementation of a computational methodology estimating
the total uncertainty of the output quantities, based on the input uncertainties
of the geometrical and operational data, as well as of the modeling assumptions
and errors, via a large number of MC trials (Chapter 7).

h) Development and implementation of a generalized accelerated DVM solver, cou-
pling the kinetic equations with half-range moments, to speed up the slow
convergence of the iteration map not only for fully-developed flows but also for
a much wider class of linear problems, where the incoming distributions at the
boundaries are part of the solution (Chapter 8).
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Chapter 2

Literature review

2.1 Brief historical overview and fundamental prin-
ciples of kinetic theory

The nature of matter itself has been a topic of long debates and arguments among
philosophers and scientists since ancient times. Although philosophers as Leucippus,
Democritus and Epicurus [14] had speculated that matter consists of tiny indivisible
parts, before 1900 clasical Newtonian mechanics considering matter as a continuum,
was the prototype of a successful physical theory. In contrast to this view were Maxwell
and Boltzmann, considering matter as composed of small tiny bits of matter with
empty spaces between them [15]. As time and science advanced these two approaches
were able to produce similar results and explain observations, as well as to generate
interesting paradoxes, which were understood by statistical arguments breaking the
classical prejudice that fundamental laws of physics have to be strictly deterministic.
In gasses, the kinetic theory, which is a part of statistical mechanics, has provided solid
answers to many open topics [16].

Kinetic theory of gases was first originated in 1738, when Daniel Bernoulli stated
in his book “Hydrodynamica” [17] that gasses consist of large amounts of molecules
traveling in all directions, while pressure is the force applied by these molecules to a
surface during collisions and heat is the kinetic energy of the traveling molecules. The
next great advance in kinetic theory was made much later, in 1860 by Maxwell [18],
who introduced the concept of the velocity distribution function f (t, r, ξ), indicating
the probability of finding a molecule around the location r, with velocity ξ at time t.
The distribution function proposed by Maxwell, although corrected few years later by
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Boltzmann, bears his name and it is known as the Maxwell (or Maxwell-Boltzmann)
distribution function. It is given by

fM (t, r, ξ) = n (t, r)
[

m

2πkBT (t, r)

]3/2

exp
[
−m (ξ − u (t, r))2

2kBT (t, r)

]
(2.1)

where n , T and u denote the local density, temperature and velocity vector, m is the
molecular mass and kB is the Boltzmann constant. There is no doubt that Maxwell’s
work laid the road for a statistical description of gases, which was followed and well
established by Boltzmann. Furthermore, Maxwell came very close in extracting a
transport equation for the distribution function, which was finally derived by Boltzmann
in 1870 [19]. The evolution equation of the distribution function is the well-celebrated
Boltzmann equation and may be written as [20]

∂f

∂t
+ ξ · ∂f

∂x
+ F · ∂f

∂ξ
= Q (f, f ′) . (2.2)

In Eq. (2.2), the left hand side describes the evolution of the distribution function with
time as the particles move in space according to their molecular velocities and as they
are accelerated due to an external force field with acceleration F . The intermolecular
collisions are considered by the right hand side term, which is given in terms of the
so-called collision integral

Q (f, f ′) =
∫ ∫

(f ′ f ′
∗ − f f∗) gσdΩdξ∗ (2.3)

where g = |ξ − ξ∗| is the relative velocity, σ is the collision cross section and Ω is
the solid angle within a molecule is deflected to after the collision [16], [20]. The
collision integral calculates the effect of collisions on the distribution of particles with
velocity ξ, investigating possible collisions with particles having all other velocities ξ∗.
It consists of a gain and a loss terms. The first term in the parenthesis corresponds to
the gain part and refers to particles that, after a collision, obtain a velocity around
ξ. The second term in the parenthesis corresponds to the loss part and refers to
particles that had a velocity around ξ and after a collision they obtain a different
velocity. The collision cross section σ and the differential solid angle dΩ are provided
by a molecular interaction potential or model (e.g., Hard Sphere, Inverse Power Law,
Maxwell, Variable Hard Sphere, Variable Soft Sphere, Generalized Hard Sphere and
Generalized Soft Sphere) [20]. It is noted that the Maxwellian distribution is a solution
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of the Boltzmann equation for a gas in equilibrium, i.e., when the first three terms at
the left hand side of Eq. (2.2) vanish.

In the derivation of the Boltzmann equation, two main assumptions are made. The
first one is that only binary collisions are assumed, limiting its application to dilute
gases, where the distance between molecules is at least one order of magnitude larger
than the molecular diameter. The second assumption is the so-call molecular chaos
assumption or as called by Boltzmann the “Stosszahlansatz”, stating that the velocities
of colliding molecules are uncorrelated.

The distribution function contains the information of the location and velocity
of the particles and all macroscopic quantities can be expressed as moments of the
distribution function as follows:
•Number density

n =
∫
fdξ (2.4)

•Velocity vector
u = 1

n

∫
ξfdξ (2.5)

•Pressure
P = m

3

∫
(ξ − u)2 fdξ (2.6)

•Stress tensor
Pij = m

∫
(ξi − ui) (ξj − uj) fdξ (2.7)

•Temperature
T = m

3kBn

∫
(ξ − u)2 fdξ (2.8)

•Heat flux vector
q = m

2

∫
(ξ − u)2 (ξ − u) fdξ (2.9)

It can readily be seen that combining Eqs. (2.6) and (2.8) yields the ideal gas law

P = nkBT. (2.10)

Another very significant advancement made by Boltzmann is his famous H-Theorem,
stating that the average value of the H function, defined as

H =
∫
f log fdξ, (2.11)
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is a non-increasing function of time [16], [17]. The special case of dH/dt = 0 corresponds
to the Maxwellian distribution. It is well known that this principle is directly related
to the entropy increase and to the second law of thermodynamics. This inequality
dH/dt ≤ 0 shows the tendency of the gas to minimize the H function, that is to
obtain the distribution with the highest number of microstates that correspond to the
macroscopic state of the system, and this distribution is the Maxwellian distribution.
This fact shows an inherent irreversibility of macroscopic processes, although the
interaction itself between particles is time-reversible.

2.2 The Knudsen number and flow regimes

The mean free path, introduced by Clausius in 1738 [19], is the average distance
that particles travel between successive collisions. For hard sphere molecules it is
provided in a closed form expression as

λ = 1√
2πd2n

, (2.12)

where d is the molecular diameter, or in terms of macroscopic quantities as

λ =
√
π

2
µυ0

P
, (2.13)

where µ is the dynamic viscosity at temperature T , P is the pressure and υ0 is the
most probable molecular speed defined as

υ0 =
√

2kBT
m

. (2.14)

One of the most important parameters in the field of kinetic theory and rarefied gas
dynamics, is the ratio of the mean free path λ over a characteristic length scale L,
known as the Knudsen number [20]

Kn = λ

L
. (2.15)

In cases where the typical length scales are orders of magnitude larger than the mean
free path, the Knudsen number is small and becomes important only in rarefied
conditions (moderate and large mean free paths) or in very small dimensions (small
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characteristic length scales). The characteristic length scale L may be a geometrical
or a physical length scale defined as L = ϕ/ (∂ϕ/∂x), where ϕ is a macroscopic flow
quantity. The latter definition of L is commonly used when stiff gradients of the
macroscopic quantities, such as in shock waves, are present.

The Knudsen number can be written in terms of the Mach and Reynolds numbers
as

Kn =
√
γπ

2
Ma
Re

. (2.16)

where γ is the ratio of the specific heats of the gas (γ = 5/3 for a monatomic gas).
A quantity frequently utilized, instead of the Knudsen number, is the gas rarefaction
parameter [23]

δ = LP

µυ0
, (2.17)

which is related to the Knudsen number through

δ =
√
π

2Kn. (2.18)

The definition of the gas rarefaction parameter does not involve the mean free path,
which is not readily defined and it is based on an equivalent mean free path, which may
be estimated from measurable macroscopic quantities and therefore, it is commonly
used, instead of the Knudsen number, to define the degree of gas rarefaction.

In terms of the Knudsen number or the gas rarefaction parameter, the following
flow regimes can be distinguished [24]:

• Kn ≤ 10−3 (δ ≥ 10−3): The gas is in the hydrodynamic regime. The gas is
considered as a continuum media and deviations from the local equilibrium
distribution are small. Modeling with typical CFD is valid.

• 10−3 < Kn ≤ 10−1 (10 < δ < 103): The gas is in the slip regime. Gas rarefaction
effects start to manifest close to the boundaries. CFD modeling is still valid with
the appropriate velocity slip and temperature jump boundary conditions.

• 10−1 < Kn < 10 (0.1 < δ < 10): The gas is in the transition regime. The effects
of rarefaction are significant and the number of intermolecular collisions has been
reduced. The constitutive equations used in CFD fail and a kinetic description is
mandatory.
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• Kn > 10 (δ ≤ 0.1): The gas is in the free molecular regime. The molecules
undergo ballistic motion and intermolecular collisions are negligible.

It should be noted, that the limits of each flow regime defined above, depending on the
flow setup, may slightly vary and therefore, they are commonly considered as indicative
providing an order of magnitude estimation. Modeling based on kinetic theory is
valid in the whole range of the Knudsen number. However, since kinetic modeling
is computationally intensive compared to the CFD approaches, it is mainly used in
the early slip, transition and free molecular regimes, as well as under non-equilibrium
conditions, where the continuum approaches fail.

The hydrodynamic regime is dominated by intermolecular collisions and collisions
between molecules and the wall boundaries. As the flow is entering in the slip regime
the collisions of the molecules with the boundaries start to decrease. The Navier-Stokes-
Fourier equations are still valid, while the no slip boundary conditions are not and
therefore, the velocity slip and temperature jump boundary conditions are introduced
[25]. In the transition regime, intermolecular collisions are also decreased, leading to
particles traveling large distances between collisions. For this reason, the state of the
flow field at some location is not only affected by its close neighborhood, but also from
distant regions. This provides a clear physical explanation of the failure of the Navier-
Stokes-Fourier equations, as they only consider local interaction. Researchers have
tried to extend the range of application of the hydrodynamic equations, introducing the
so-call high order hydrodynamic schemes, such as the Burnett and the super Burnett
equations or the moments methods, such as the Grad moment method [26]. However,
all these approaches are facing various problems including the definition of proper
boundary conditions for the higher moments and in all cases are limited to some finite
value of the Knudsen number. Over the years, kinetic theory and modeling, which are
based on solid fundamental principles, have proven to be the most reliable modeling
approach in the free molecular, transition and the early part of the slip regime.

2.3 Kinetic model equations and boundary condi-
tions

In general, the computational solution of the Boltzmann equation is a formidable
task and this is due to the five-fold collision integral, limiting significantly the potential
of implementing kinetic modeling in engineering problems. In order to circumvent
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this pitfall, relaxation models replacing the complicated collision integral have been
proposed. The so-called kinetic models sacrifice some of the physics resolution for a
greatly decreased computational load. A kinetic model is considered as acceptable,
provided that it fulfills the main properties of the Boltzmann collision integral, i.e., it
satisfies conservation of the collision invariants, fulfills the H-Theorem and provides
correct transport coefficients. Unfortunately only few models satisfy all these conditions.

ne of the first proposed models for monatomic gases is the BGK model [27], [28],
that replaces the collision integral with the simple expression

Q = ν
(
fM − f

)
, (2.19)

where v = P/µ is the collision frequency, assumed to be the local pressure over
viscosity. It is the simplest model and has been extensively used due to its unexpected
effectiveness. The collision frequency is independent of the molecular velocity and the
model assumes that particle velocities after one collision follow the local Maxwellian
distribution. The BGK model has provided results very close to the corresponding
ones obtained by the Boltzmann equation in the whole range of gas rarefaction [23].
However, it does not provide correct expressions for the viscosity and the thermal
conductivity simultaneously (for an ideal monatomic gas the Prandlt number is one
instead of 2/3) and therefore, it should not be used in configurations with coupled flow
and heat transfer phenomena.

The Shakhov model [29] is a generalization of the BGK model and its collision term
is given by

Q = v

{
fM

[
1 + 2 (1 − Pr)

5
m

n (kBT )2 q · (ξ − u)
(
m (ξ − u)2

2kBT
− 5

2

)]
− f

}
. (2.20)

The Prandlt number is an input parameter and can be accordingly fixed. By setting
Pr = 1, the BGK model is retrieved. The Shakhov model has proved to be a reliable
approach in simulating pressure and thermally driven flows. However, since the gain
term is a polynomial function of the molecular velocities and not purely exponential,
as in the BGK model, it can provide negative values of the distribution function, which
is obviously unphysical. In addition, there is no proof that satisfies the H-Theorem.
Despite these drawbacks, it has been proven to be very reliable and accurate, providing
physically justified results for the macroscopic quantities.
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The BGK and Shakhov models are applied throughout the present dissertation.
One model that has been derived in a similar manner as the BGK and Shakhov
models and should be also mentioned is the Ellipsoidal-Statistical (ES) model [30].
The equilibrium distribution function for the ES model has an ellipsoidal base and it
produces the correct Prandlt number, without however suffering the drawbacks of the
Shakhov model. It is not implemented in this work because it is not considered as
necessary for the investigated problems. The above mentioned models are constructed
for single monatomic gases. Several other models have been proposed for polyatomic
gases [30]–[37] and for gas mixtures [38]–[41].

The computational solution of the Boltzmann equation or of suitable kinetic model
equations require the formulation of the associated boundary conditions, which in
most cases are part of the solution. The main objective is to correlate the distribution
of molecules (f−) arriving to the boundary with the distribution of molecules (f+)
departing from the boundary. Denoting as n the unit normal to the boundary vector
with direction towards the flow field, a general expression for the boundary conditions
can be written as [16]

f+ (ξ) = −
∫

ξ′·n<0

ξ′ · n

ξ · n
W (ξ′ → ξ) f− (ξ′) dξ′. (2.21)

Here, W (ξ′ → ξ) is the scattering kernel, which presents the probability that a molecule
arriving at the boundary with a velocity ξ′ will depart from the boundary with a
velocity ξ.

The most extensively used boundary conditions are the ones by Maxwell, combining
diffuse and specular reflection [42], [43]. In the diffuse reflection the gas molecules are
assumed to follow a Maxwellian distribution with parameters the wall temperature TW
and velocity uW . The diffuse scattering kernel is given by

WD (ξ′ → ξ) = 1
2πξ · n

(
m

kBTW

)2
exp

[
−m (ξ − uW )2

2kBTW

]
. (2.22)

In the specular reflection only the velocity component normal to the wall is altered
during a collision with the boundary and more specifically, its sign is changed, while
its magnitude remains the same. The specular scattering kernel is given by

WS (ξ′ → ξ) = δ [ξ′ − ξ + 2 (ξ · n) n] . (2.23)
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Combing the diffuse and specular scattering kernels, the so-called Maxwell (diffuse-
specular) scattering kernel is obtained and may be written as

WDS (ξ′ → ξ) = αWD (ξ′ → ξ) + (1 − α)WS (ξ′ → ξ) , (2.24)

where α and (1 − α) are the portions of molecules undergoing diffuse and specular reflec-
tion respectively. The quantity α is known as the tangential momentum accommodation
coefficient.

In the present work the Maxwell diffuse-specular boundary conditions are applied.
The scattering kernel in this type of boundary conditions, is independent of the
molecule velocity magnitude and direction. The Epstein scattering kernel overcomes
this drawback. However, it involves empirically chosen coefficients [44]. The Cercignani-
Lampis scattering kernel [45] and its extensions introduced by Lord [46], [47], distinguish
between the accommodation in the normal and tangential to the boundary directions
and are able to consider back-scattering. Both the Epstein and the Cercignani-
Lampis boundary conditions are physically superior to the Maxwellian boundary
conditions but computationally more demanding and they are applied only for specific
purposes. In general, the gas-surface interaction is a complicated task and its detailed
investigation requires the involvement of molecular dynamics, as well as comparison
with measurements [48]–[52].

2.4 Numerical methods

Several methods have been developed for the numerical solution of the Boltzmann
equation and of the kinetic model equations [53], [54]. The most reliable and widely
used ones are the discrete velocity and the direct simulation Monte Carlo methods.
The first one is deterministic and the second one is stochastic or probabilistic. These
are the two methods which are implemented and advanced in the present work and
therefore, the literature survey is focused only on these two approaches.

The discrete velocity method (DVM) [53] is probably the most prevailing deter-
ministic methodology for the solution of the Boltzmann or other kinetic equations.
According to this method, the continuous molecular velocity space is discretized and
a discrete set of molecular velocities is considered. The moments of the distribution
function are accurately computed by numerical integration using the values of the
distribution at the discrete velocity points.
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By applying the DVM the kinetic integrodifferential equations are reduced to
a system of differential equations, one for each discrete molecular velocity. These
ordinary or partial differential equations are solved using finite element or finite volume
approaches leading to large linear algebraic systems, which are solved using typical
schemes. To avoid implementing time-consuming algebraic system solvers, the so-called
marching schemes may be applied [55]. In these schemes, the solution propagates
in the physical space in the direction of the molecular velocity by considering the
nodes in the physical space in a particular order, which may differ for the different
molecular velocities. For this reason these marching schemes have been limited so far
to simple geometries, where the marching node sequence is easily obtained from the
node indexing. In the present work this limitation is circumvented by introducing
unstructured meshes and a methodology which still permits the marching approach
through the mesh to be applied. The detailed description of the development and
implementation of this methodology is presented in Chapter 4.

In most cases the source term driving the flow is in the boundary conditions and the
kinetic equation is homogeneous. There are rarefied gas flows however, such as flows of
charged particles in the presence of electric and magnetic fields, where the external
force term must be included in the kinetic equation. The computational solution of
kinetic equations with an external force term is not a trivial task because the source
term includes a derivative of the distribution function with respect to the molecular
velocity and its discretization is rather complicated. In [56], the external term is
initially included in the kinetic equation but it is next eliminated using a projection
procedure. An interesting approach is introduced in [57] for the lattice Boltzmann
method, where the external force term is incorporated in the equilibrium distribution
in the form of a sum of an infinite series. In the present work a numerical method,
based on the method of characteristics, is developed and implemented to solve kinetic
model equations with the force term included in the equation. This topic is covered in
the first part of Chapter 3.

It is well known that the typical iteration map of the DVM exhibits a slow con-
vergence rate in the slip and continuum regimes, limiting the application of kinetic
theory to moderate and large values of the Knudsen number. In order to overcome
this problem advanced synthetic iteration acceleration schemes have been developed
and successfully applied in linearized kinetic model equations [58]–[60] and in the
linearized Boltzmann equation [61] solving fully developed flows through capillaries.
The speed-up of the convergence rate is achieved by coupling the kinetic equations with
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a system of moment equations. Typically, these moment equations are constructed
using full-range orthogonal polynomials, where the orthogonality conditions are defined
in the whole range of the real numbers. However, these schemes accelerate the solution
only in the interior spatial nodes and therefore, they are successfully applied only
in fully developed flows, where there is no need to accelerate the quantities at the
boundary nodes. In the present work a more generalized synthetic type acceleration
approach is proposed, based on half-range polynomials. These acceleration schemes,
considered in Chapter 8, are able to speed-up the iterative solution even in flows where
the boundary conditions are part of the solution.

In the field of rarefied gas dynamics, particle methods and more specifically, stochas-
tic or probabilistic ones, have received great attention, with the most prevailing one
being the Direct Simulation Monte Carlo (DSMC) method. It was introduced by
Bird [62] and early contributions were made by Belotserkovsky and Yanitsky [63]–[65].
The DSMC method was initially utilized for high altitude aerodynamics and re-entry
flows. In this method, the large number of real particles is represented by a number
of discrete simulation particles and their evolution in time is considered in discrete
time steps. The free motion and collision of particles is decomposed at each time step,
with the free motion treated in a determinist manner and the collisions in a stochastic
manner. All macroscopic quantities are taken as sums of the microscopic properties
of the simulation particles. It has been proven, that as the number of computational
particles is increased, this method tends to the solution of the Boltzmann equation
[66]. In Chapter 6, a solution decomposition technique is introduced to the DSMC
method, in order to provide a physical insight and explanation in some interesting
non-equilibrium phenomena arising in rarefied gas flows, which have not been resolved.

2.5 Pressure and temperature driven flows

Rarefied gas flows through capillaries of arbitrary length driven by pressure and/or
temperature gradients are repeatedly considered in the present dissertation either as
prototype flows in order to benchmark, verify and demonstrate the validity and effec-
tiveness of introduced numerical schemes or either to investigate physical phenomena
and to simulate microscale devices. Over the years, both flow configurations have
been extensively explored resulting to a huge number of references, and therefore, the
presented literature survey is mostly focused on research work related to the present
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developments. The pressure driven flows are covered first, followed by the temperature
driven ones.

Pressure driven flows through capillaries of arbitrary length, in the whole range of
gas rarefaction are encountered in a number of technological fields, from small scale
devices in microfluidics [67], [68] up to large gas distribution systems operated under
vacuum conditions [7], [69]–[71] in fusion reactors and accelerators. Several researchers
have worked on this topic, both numerically and experimentally. In terms of numerical
calculations, both deterministic [23], [72]–[79] and stochastic approaches [80]–[82] have
been used to obtain the flow rate in terms of the involved parameters.

When the capillary is sufficiently long and the flow can be considered as fully
developed, the infinite capillary theory [23] may be applied. It is computationally the
most efficient approach yielding the so-called dimensionless kinetic coefficients, which
depend only on the local rarefaction parameter, the accommodation coefficient and
the cross section geometry. The kinetic coefficients have been calculated in the whole
range of the Knudsen number for a number of different cross-sections and they are
used in order to recover the mass flow rate and the pressure distribution along the
capillary by solving an ordinary differential equation derived from mass conservation
principals [23].

The infinite capillary theory may be also implemented to capillaries of moderate
length by introducing the so-called end effect correction [83]–[85]. According to the
end effect theory, the length of the capillary is corrected to some equivalent length
to take into account the inlet and outlet effects. The length increments depend on
the cross-section geometry and the local gas rarefaction parameter, while they are
independent of the capillary length, which makes this approach very useful.

When the capillary length is further reduced, then modeling should be based on the
non-linear kinetic equations or the DSMC method. Efficiently large regions upstream
and downstream of the capillary should be included in the computational domain to
properly recover the flow properties and characteristics. The size of these regions is
about one to two orders of magnitude larger than the capillary length [72], [86] in
order to correctly imply inlet Maxwellian distributions at the open boundaries, These
Maxwellians are given in terms of the local temperature and pressure (or density) with
zero bulk velocity (the gas is assumed to be at rest adequately far from the capillary
ends). The proper implementation of the inlet conditions at the open boundaries
drastically increases the computational domain and the corresponding computational
effort.
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Recently, the so-called implicit boundary conditions have been proposed in [87]–[91],
providing expressions for the distributions directly at the capillary inlet and outlet in
terms of the local values of the macroscopic quantities and the corresponding imposed
pressure and temperature. It is evident that the computational effort is drastically
decreased, as the vessels upstream and downstream of the channel are eliminated.
Although the implicit boundary conditions have been applied in flows well into the
transition regime [87]–[90], their accuracy has only been investigated, so far, in the
slip regime [90], [92]. Moreover, their formulation is based on the characteristic form
of the Euler equations and the validity of the assumptions made is questionable. For
this reason, a systematic investigation of the range of validity of the implicit boundary
conditions is performed in the second part of Chapter 3.

Temperature driven gas flows in the rarefied regime can be induced even in the
absence of gravity. A thorough description of the various types of thermal flows can be
found in [93]. Here, a relatively short survey on thermal creep and thermal stress slip
flows, as well as on thermally driven micropumps is discussed since these topics are all
covered in the present work.

Thermal creep is one of the cross effects arising in non-equilibrium flows and it is
due to the momentum transfer observed in the presence of a temperature gradient.
When a temperature gradient is imposed along a boundary, momentum is transferred
to the gas in a direction opposite to that of the temperature gradient, leading to a
flow from cold-to-hot. It is more easily observed in the absence of gravity, or when
gravitational forces are negligible (e.g. in rarefied flows), while in the continuum regime
it still exists but it becomes of secondary importance due to other more prevailing
effects.

The underlying mechanism that results to thermal creep flow is the following [93].
Assume a boundary with a temperature gradient and a differential area of this boundary.
Particles arriving to this wall area from the hot side have large thermal velocities and
after colliding with the surface their energy and consequently their thermal velocity
is decreased. On the contrary, particles arriving from the cold side are accelerated
and their energy is increased. Thus the molecules arriving to the boundary, exert a
net force to the boundary from hot-to-cold and simultaneously, the boundary acts on
them with a force from cold-to-hot. In the case of diffuse reflection on a stationary
boundary, the outgoing particles have no net momentum in the tangential direction.
It is concluded that a net momentum transfer from cold-to-hot is generated near a
boundary with a temperature gradient.
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Another type of thermally driven flow, considered here, is the thermal stress slip
flow [93]–[95]. When the temperature gradient of the gas, normal to the wall is not
uniform, the temperature isothermal is not parallel to the boundary and thermal stress
flow is induced. More specifically, when the temperature of the boundary is higher
than that of the adjacent gas, the flow is in the direction that the isothermal lines are
converging and in the opposite direction when the temperature of the boundary is
lower [96], [97]. Consider a differential element of the gas. The integral of the thermal
stress along the element boundaries vanishes and the gas is stationary, while if one
side of the element coincides with the boundary, then the balance is broken and a flow
is induced. A thorough explanation is provided in [93].

The Crooke’s radiometer presented in 1875 [98] was one of the first devices where
such flows were observed and for many years the nature of these flows was a topic of
scientific debate [99], [100]. Recently, temperature driven flows have been brought again
in the attention of the scientific community mainly due to the design of temperature
driven micro-pumps or micro-compressors. The main idea was introduced by Knudsen
[101], [102]. A cold and a hot reservoir are connected by a straight and constant cross
section tube with a temperature gradient along the wall and a thermal creep flow
is generated without imposing any external pressure gradients. Alternative designs
utilizing other phenomena, such as the thermal edge flow [103] and the thermal stress
slip flow [104] have been also proposed.

One of the main obstacles of the original design is the fact that the pump per-
formance, which is directly linked to the temperature gradient, is limited by the
temperature that materials can withstand. In order to overcome this problem, multi-
stage cascade-type designs with periodic temperature gradients have been introduced
[105], [106]. In these designs, each stage consists of two elements having opposite
temperature gradients. One is in the desired flow direction and the other one in
the opposite direction, providing however, a net effect in the desired direction. The
undesirable backflow may be reduced in various ways and several designs, such as
curved channels [107]–[110] or capillaries with changing cross section areas [111], [112]
have been proposed. However, mainly due to micro manufacturing constraints, only
recently, prototypes have been manufactured and tested with considerable success [6],
[113], [114]. In Chapter 5 an alternative design for the limitation of the backflow is
investigated by utilizing the diode effect created by the combination of diverging and
converging channels.
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2.6 Uncertainty propagation

Uncertainties are very common in experimental work due to various sources including
the uncertainty of the measurement instruments, the changing environmental conditions,
the flaws in the experimental setup, the definition of the measured quantity which
may involve certain approximations and therefore variations may be observed in
repeated measurements. Obviously, the introduced uncertainties reflect to the output
experimental results which are usually reported with the associated total uncertainties.
In addition, the detailed investigation of the effect that the introduced uncertainties
may have to the main measured quantities of interest may be very important in the
proper design of an experimental setup [115]–[117]. More specifically, this study will
clarify if an acceptable level of uncertainty is achieved and furthermore, it will indicate
the preferable conditions or corrected actions which must be taken in order to more
clearly observe the measured quantities. Uncertainties are also present in the input
data, parameters and models used in simulations and they certainly propagate through
the computational process to the final output quantities.

Several methodologies have been developed for the uncertainty propagation [118],
[119]. The most well-known ones include the interval analysis [120], the sensitivity
derivatives [121], the moment methods [122], the polynomial chaos [123] and the
Monte Carlo (MC) method [124]. Each one has its own benefits and drawbacks. The
interval analysis is easily implemented but is not very accurate, while the sensitivity
derivatives approach is accurate but not general enough. The moment methods are
computationally efficient, but they are limited to small input uncertainties and cannot
be applied when significant nonlinearities exist. The polynomial chaos method is,
in general, quite complicated to implement. Finally, the Monte Carlo method is
computationally demanding, providing however very accurate results without any
assumptions. It is widely used when the needed computer resources are available.
According to the MC method, a large number of trials is conducted, sampling the
values of the input quantities from their respective distributions and calculating the
quantity whose uncertainty is being extracted. Upon completing the large number of
trials, the distribution function of the quantity of interest is reconstructed and the
uncertainty is calculated from the constructed distribution.

Uncertainty propagation is important in many engineering fields. In metrology,
uncertainty is one of the main quantities of interest [13] since many times the accuracy
required is far beyond the one in typical applications [125]. Recently, the calculation of
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the uncertainty of the involved quantities has been reported in computational fluid dy-
namics studies [123], [126], [127] and in some cases in rarefied gas dynamics simulations
[128]–[130]. In Chapter 7, the MC method is used to introduce a methodology finding
the uncertainty of the main quantity of interest in terms of the input uncertainties in
rarefied gas flows.
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Pressure driven rarefied gas flows through
capillaries

3.1 Introduction

Pressure driven rarefied gas flows through capillaries in the whole range of the
Knudsen number are very common in various technological fields [68], [131], [7], [69]–
[71] and several simulation methodologies, depending on the capillary length, have
been developed. In linear fully developed flows, the computationally efficient infinite
capillary theory [23] is implemented. In capillaries of moderate length, the end effect
methodology may be introduced [83]–[85] to successfully extend the range of validity of
the infinite capillary theory. In short capillaries as well as nonlinear flows the infinity
capillary theory even coupled with the end effect methodology fails and modeling is
based on nonlinear kinetic model equations [72]–[78], [86] or on the DSMC method
[80]–[82]. The computational domain must include the capillary along with inlet and
outlet regions in order to properly impose at the kinetic level the incoming distributions
at the open boundaries. The two added computational domains, which are one to two
orders of magnitude larger than the volume of the capillary, yields very computationally
intensive simulations [72], [73], [82], [86], [74]–[81], which are required however, in order
to properly close the problem formulation.

In the first part of this chapter, a force driven nonlinear fully developed flow
between parallel plates is considered. The external force is introduced in the governing
nonlinear kinetic equation in the form of a pressure gradient term. Since the flow
is fully developed kinetic simulations are implemented in a single cross section of
the capillary. This flow setup has been studied in [56] on the basis of the nonlinear
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BGK model. The treatment of the external force term involves a suitable projection
procedure that eliminates the derivative with respect to the molecular velocity. The
formulation of this method is relatively simple and the involved computational cost
is not very high. However, it has a limited range of applicability, since a suitable
projection may not exist when the external force depends on the molecular velocity.
In the lattice Boltzmann method, a methodology has been introduced in [57] that
incorporates the external force term in the equilibrium distribution through an infinite
series sum in terms of Hermite polynomials. This methodology has been applied to
some problems [132]–[134], always in the framework of the lattice Boltzmann method
and extension to kinetic modeling has not been reported.

In the DSMC method, taking into account external force fields is relatively straight-
forward, due to the intuitive nature of the method. This is performed by accordingly
modifying the particle velocities at each time step [135]–[137]. The corresponding work
with force driven rarefied gas flows on the basis of deterministic modeling is limited
since the treatment of the external force term is not straightforward.

In Section 3.2, a numerical scheme is introduced, able to solve the kinetic equations
with the external force term included, in a deterministic manner. The proposed
approach is based on the method of characteristics and incorporates the external force
in the introduced variables that describe the characteristic curve. The methodology is
presented by solving the prototype problem of force driven nonlinear Poiseuille flow,
which has been also considered in [56]. The kinetic formulation is presented in Section
3.2.1 and the novel numerical scheme is developed in Section 3.2.2. A comparison
with corresponding results in [56] is performed in Section 3.2.3, demonstrating the
effectiveness and accuracy of the present approach. The anomalous form of the particle
distribution function due to the presence of the force term is discussed in Section 3.2.4.

Next, in the second part of this chapter, the so-called implicit boundary conditions
[87]–[91] are considered. This recently proposed boundary condition formulation
provides boundary expressions for the incoming distribution directly at the capillary
inlet and outlet, eliminating the need for large inlet and outlet vessels and significantly
reducing the computational effort. These boundary conditions have been extensively
studied in continuum computational fluid dynamics (CFD) in order to provide artificial
boundary conditions at the far field in unbounded flow domains [138]–[140]. Their
formulation assumes the flow to be locally one-dimensional, inviscid and adiabatic,
although modifications to take into account viscous effects have been also proposed
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[141]. They have been implemented with considerable success in various cases, such as
flows around objects [142].

The implicit boundary conditions have been also applied in rarefied gas flows in
the transition regime [87]–[91]. There has been however, no detailed investigation
about their range of validity in terms of the involved geometric and flow parameters,
as well as of the associated numerical error due to the elimination of the capillary
inlet (upstream) and outlet (downstream) regions. Some validation studies have been
performed only in the slip regime [90], [92] and the solution has been compared with
analytical slip solutions based on the hydrodynamic equations. In addition, since the
implicit boundary conditions are derived from the Euler equations describing inviscid
flow their successful implementation in rarefied flows, which in general are characterized
by low and moderate Reynolds numbers, must be carefully examined.

In Section 3.3, the range of validity of the implicit boundary conditions in nonlinear
pressure driven rarefied gas flows between parallel plates and through circular tubes of
arbitrary length is investigated. The formulation of the kinetic equations along with
the boundary conditions applied at the solid walls and the symmetry axis are presented
in Section 3.3.1. The boundary conditions at the open boundaries for the typical flow
setup (the one with the inlet and outlet regions) and the implicit boundary conditions
are given in Sections 3.3.2 and 3.3.3 respectively. The computed flow rates based on
the implicit boundary conditions formulation are compared with the corresponding
ones of the typical formulation, in a wide range of the gas rarefaction parameter
for flows through capillaries (parallel plates and tubes) of various lengths driven by
small, moderate and large pressure differences, in Section 3.3.4. Furthermore, the
concept of coupling the implicit boundary conditions with the end effect methodology
[83]–[85] in order to extend the applicability range of the implicit boundary conditions
is investigated in Section 3.3.5.

3.2 Nonlinear fully developed rarefied gas flow be-
tween parallel plates due to external force

3.2.1 Governing equations with external force term

Consider a rarefied monatomic gas confined between two infinite parallel plates
kept at distance H. The gas is in thermal equilibrium with the walls and a constant
external force is acting on the gas molecules in a direction parallel to the plates (y
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direction). Due to this external force a flow is induced in the y direction, with the
macroscopic velocity in the other two directions vanishing. The coordinate system
origin is located in the middle of the distance between the two plates and the direction
normal to the plates is the x direction.

The one dimensional nonlinear BGK equation with a constant external force in the
y direction is

ξx
∂f

∂x′ + Fy
m

∂f

∂ξy
= P

µ

(
fM − f

)
, (3.1)

where f is the distribution function, Fy denotes the external force magnitude, m is
the molecular mass and ξ is the molecular velocity vector. The local Maxwellian
distribution, denoted as fM , is defined as

fM = N

(2πRgT )3/2 exp
[
−ξ2

x + (ξy − Uy)2 + ξ2
z

2RgT

]
, (3.2)

with Rg being the specific gas constant, N and T denote the local density and temper-
ature and Uy the local velocity. The macroscopic quantities of interest are expressed
as moments of the distribution function f by the following expressions:
• Number density

N =
∫
R3
fdξxdξydξz (3.3)

• Velocity
Uy = 1

N

∫
R3
ξyfdξxdξydξz (3.4)

• Temperature

T = 1
3RN

∫
R3

[
ξ2
x + (ξy − Uy)2 + ξ2

z

]
fdξxdξydξz (3.5)

• Shear stress
P

′

xy = m
∫
R3
ξx (ξy − Uy) fdξxdξydξz (3.6)

• Heat flux vector

Qi = m

2

∫
R3

(ξi − Ui)
[
ξ2
x + (ξy − Uy)2 + ξ2

z

]
fdξxdξydξz, i = x′, y′ (3.7)

Diffuse boundary conditions are assumed at both plates, with the outgoing distribution
given by

f+ = Nw

(2πRgTw)3/2 exp
[
−
ξ2
x + ξ2

y + ξ2
z

2RgTw

]
, (3.8)
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for the bottom boundary atx′ = −H/2 with ξx > 0 and the top boundary at x′ = H/2
with ξx < 0. In Eq. (3.8), Tw is the wall temperature and Nw is a parameter used to
satisfy the impermeability condition, given in terms of the incoming distribution by

NW (±H/2) = ∓
(

2π
RgT2

)1/2 ∫
±ξx

ξxf
−dξxdξydξz. (3.9)

The following dimensionless quantities are defined:

x = x′

H
, ζi = ξi

υ0
, g = f

υ3
0

N0
, ρ = N

N0
, uy = Uy

υ0
, τ = T

T0
, pxy =

P
′
xy

P0
, qi = Qi

υ0P0
(3.10)

Here, υ0 =
√

2RgT0 is the most probable molecular velocity at reference temperature
T0 = Tw, P0 is the reference pressure and N0 the number density at reference conditions.
Introducing the dimensionless quantities of Eq. (3.10) into Eqs. (3.1)-(3.9), the kinetic
equation for the dimensionless distribution function g is

ζx
∂g

∂x
+ F

∂g

∂ζy
= δ0ρτ

1−ω
(
gM − g

)
, (3.11)

where F = 1
Fr2 = FyH

υ2
0

is the inverse of the square of the Froude number (Fr) and
δ0 = P0H

µ0υ0
is the gas rarefaction parameter at reference conditions, with µ0 being the

viscosity at T0. In the derivation of Eq. (3.11) the expression µ = µ0 (T/T0)ω for the
viscosity is used, with ω ∈ [0.5, 1] and the limiting values of ω = 0.5 and 1 correspond
to hard sphere and Maxwell molecules respectively. The dimensionless Maxwellian
distribution is given by

gM = ρ

(πτ)3/2 exp
[
−ζ2

x + (ζy − uy)2 + ζ2
z

τ

]
. (3.12)

The dimensionless macroscopic quantities are provided by the following expressions:
• Number density

ρ =
∫
R3
gdζxdζydζz (3.13)

• Velocity
uy = 1

n

∫
R3
ζygdζxdζydζz (3.14)

• Temperature
τ = 2

3ρ

∫
R3

[
ζ2
x + (ζy − uy)2 + ζ2

z

]
gdζxdζydζz (3.15)
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• Shear stress
pxy = 2

∫
R3
ζx (ζy − uy) gdζxdζydζz (3.16)

• Heat flux vector

qi =
∫
R3

(ζi − ui)
[
ζ2
x + (ζy − uy)2 + ζ2

z

]
gdζxdζydζz (3.17)

The boundary conditions for the dimensionless distribution function g are

g+ = ρw
π3/2 exp

[
−
(
ζ2
x + ζ2

y + ζ2
z

)]
(3.18)

for the bottom boundary at x = −1/2 with ζx > 0 and the top boundary at x = 1/2
with ζx < 0. The parameters ρw are given by

ρw = 2π1/2
∫
ξx>0

ζxg
−dζxdζydζz, (3.19)

and
ρw = −2π1/2

∫
ξx<0

ζxg
−dζxdζydζz (3.20)

for the top and bottom walls respectively.
At this point, the projection procedure in the y and z directions may be applied to

decrease the dimensionality of the problem in the molecular velocity space along with
the computational load. This projection approach, well explained in [56], eliminates
the derivative with respect to the molecular velocity. Since the aim is to develop a
numerical scheme able to tackle this term, a different projection approach is utilized
here and only the z component of the molecular velocity is projected. The following
reduced distribution functions are defined:

ϕ =
∫ ∞

−∞
gdζz (3.21)

ψ =
∫ ∞

−∞
ζ2
z gdζz (3.22)

The integral operators
∫∞

−∞ (·) dζz and
∫∞

−∞ ζ2
z (·) dζz are applied to Eq. (3.11) resulting

in a system of two coupled integrodifferential equations for the two reduced distribution
functions:

ζx
∂ϕ

∂x
+ F

∂ϕ

∂ζy
= δ0ρτ

1−ω
(
ϕM − ϕ

)
, (3.23)
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ζx
∂ψ

∂x
+ F

∂ψ

∂ζy
= δ0ρτ

1−ω
(
ψM − ψ

)
. (3.24)

The respective reduced Maxwellian distributions are given by

ϕM = ρ

πτ
exp

[
−ζ2

x + (ζy − uy)2

τ

]
, (3.25)

ψM = ρ

2π exp
[
−ζ2

x + (ζy − uy)2

τ

]
(3.26)

and the macroscopic quantities are given by the following expressions as moments of
the reduced distribution functions:
• Number density

ρ =
∫
R2
ϕdζxdζy (3.27)

• Velocity
uy = 1

n

∫
R2
ζyϕdζxdζy (3.28)

• Temperature
τ = 2

3ρ

∫
R2

([
ζ2
x + (ζy − uy)2

]
ϕ+ ψ

)
dζxdζy (3.29)

• Shear stress
pxy = 2

∫
R2
ζx (ζy − uy)ϕdζxdζy (3.30)

• Heat flux vector

qi =
∫
R2

(
(ζi − ui)

[
ζ2
x + (ζy − uy)2

])
ϕ+ ψdζxdζy, i = x, y (3.31)

The boundary conditions for the reduced distribution functions are given by

ϕ+ = ρw
π

exp
[
−
(
ζ2
x + ζ2

y

)]
, (3.32)

ψ+ = ρw
2π exp

[
−
(
ζ2
x + ζ2

y

)]
(3.33)

for the bottom boundary with atx = −1/2 with ζx > 0 and the top boundary at
x = 1/2 with ζx < 0. The parameters ρw are given by

ρw = 2π1/2
∫ +∞

0

∫ +∞

−∞
ζxϕ

−dζydζx (3.34)
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and
ρw = −2π1/2

∫ 0

−∞

∫ +∞

−∞
ζxϕ

−dζydζx (3.35)

for the top and bottom walls respectively.

3.2.2 Solution methodology based on the method of charac-
teristics

The system of kinetic equations (3.23) and (3.24) along with the moments (3.26)-
(3.31) and the associated boundary conditions (3.32)-(3.35) can be solved to provide
the values of the macroscopic quantities for different values of the reference rarefaction
parameter δ0 and the dimensionless external force magnitude F . The naive approach
for treating the external force term is to move it to the right hand side of the equation
and use the values of the distribution function of the previous iteration to calculate the
derivative with respect to the molecular velocity. This explicit approach works only for
small values of F , while the numerical scheme becomes unstable for large values of F
due to the explicit treatment of the force term.

In order to circumvent this pitfall a characteristic based method is introduced.
More specifically, Eqs. (3.23) and (3.24) are written as

∂ϕ

∂x
+ F

ζx

∂ϕ

∂ζy
= δ0ρτ

1−ω

ζx

(
ϕM − ϕ

)
, (3.36)

∂ψ

∂x
+ F

ζx

∂ψ

∂ζy
= δ0ρτ

1−ω

ζx

(
ψM − ψ

)
(3.37)

and the following two cases are distinguished, depending on the sign of ζx.
• Propagation from top to bottom (ζx < 0):

The boundary condition is applied at the top wall and the solution is propagating
from the top to the bottom wall. Two independent variables are introduced, s1 and s2

that are connected to x and ζy through the following ordinary differential equations

dx

ds1
= 1, x(1/2, s2) = 1/2, (3.38)

dζy
ds1

= F

ζx
, ζy (1/2, s2) = s2. (3.39)
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Solving Eqs (3.38) and (3.39), the characteristic line is found in terms of the two
introduced variables as

s1 = x, (3.40)

s2 = ζy − F

ζx
(s1 − 1/2) . (3.41)

Using the chain rule, the derivative with respect to s1 can be written as

d

ds1
= d

dx

dx

ds1
+ d

dζy

dζy
ds1

= d

dx
+ F

ζx

d

dζy
(3.42)

and the kinetic equations become

∂ϕ

∂s1
= δ0ρτ

1−ω

ζx

(
ϕM − ϕ

)
, (3.43)

∂ψ

∂s1
= δ0ρτ

1−ω

ζx

(
ψM − ψ

)
, (3.44)

with

ϕM = ρ

πτ
exp

−
ζ2
x +

(
(s1 − 1/2)F/ζx + s2 − uy

)2

τ

 , (3.45)

ψM = ρ

2π exp

−
ζ2
x +

(
(s1 − 1/2)F/ζx + s2 − uy

)2

τ

 . (3.46)

• Propagation from bottom to top (ζx > 0):
The boundary condition is applied at the bottom wall and the solution is propagating

form bottom towards the top wall. The ordinary differential equations for the two
introduced variables now become

dx

ds1
= 1, x(−1/2, s2) = −1/2, (3.47)

dζy
ds1

= F

ζx
, ζy (−1/2, s2) = s2. (3.48)

Solving Eqs. (3.47) and (3.48), the characteristic line is found in terms of the two
introduced variables

s1 = x, (3.49)

s2 = ζy − F

ζx
(s1 + 1/2) . (3.50)
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Using the chain rule, the kinetic equations now become

∂ϕ

∂s1
= δ0ρτ

1−ω

ζx

(
ϕM − ϕ

)
, (3.51)

∂ψ

∂s1
= δ0ρτ

1−ω

ζx

(
ψM − ψ

)
, (3.52)

with

ϕM = ρ

πτ
exp

−
ζ2
x +

(
(s1 + 1/2)F/ζx + s2 − uy

)2

τ

 , (3.53)

ψM = ρ

2π exp

−
ζ2
x +

(
(s1 + 1/2)F/ζx + s2 − uy

)2

τ

 . (3.54)

The macroscopic quantities now read as follows:
• Number density

ρ =
∫ 0

−∞

∫ +∞

−∞
ϕds2dζx +

∫ +∞

0

∫ +∞

−∞
ϕds2dζx (3.55)

• Velocity

uy = 1
ρ

∫ 0

−∞

∫ +∞

−∞

[
F

ζx
(s1 − 1/2) + s2

]
ϕds2dζx+

1
ρ

∫ +∞

0

∫ +∞

−∞

[
F

ζx
(s1 + 1/2) + s2

]
ϕds2dζx (3.56)

• Temperature

τ = 2
3ρ

∫ 0

−∞

∫ +∞

−∞

ζ2
x +

(
F

ζx
(s1 − 1/2) + s2 − uy

)2ϕ+ ψ

 ds2dζx+

2
3ρ

∫ +∞

0

∫ +∞

−∞

ζ2
x +

(
F

ζx
(s1 + 1/2) + s2 − uy

)2ϕ+ ψ

ϕds2dζx (3.57)

• Shear stress

pxy = 2
∫ 0

−∞

∫ +∞

−∞
ζx

[
F

ζx
(s1 − 1/2) + s2

]
ϕds2dζx+

2
∫ +∞

0

∫ +∞

−∞
ζx

[
F

ζx
(s1 + 1/2) + s2

]
ϕds2dζx (3.58)
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• Heat flux

qx =
∫ 0

−∞

∫ +∞

−∞
ζx

ζ2
x +

(
F

ζx
(s1 − 1/2) + s2 − uy

)2ϕ+ ψ

 ζxds2dζx+

∫ +∞

0

∫ +∞

−∞
ζx

ζ2
x +

(
F

ζx
(s1 + 1/2) + s2 − uy

)2ϕ+ ψ

ϕds2dζx (3.59)

qy =
∫ 0

−∞

∫ +∞

−∞

[
F

ζx
(s1 − 1/2) + s2

] ζ2
x +

(
F

ζx
(s1 − 1/2) + s2 − uy

)2ϕ+ ψ

 ζxds2dζx+

∫ +∞

0

∫ +∞

−∞

[
F

ζx
(s1 + 1/2) + s2

] ζ2
x +

(
F

ζx
(s1 + 1/2) + s2 − uy

)2ϕ+ ψ

ϕds2dζx

(3.60)
The boundary conditions for the top wall (s1 = 1/2 with ζx < 0) and the bottom

wall (s1 = −1/2 with ζx > 0) become

ϕ+ = ρw
π

exp
[
−
(
ζ2
x + s2

2

)]
, (3.61)

ψ+ = ρw
2π exp

[
−
(
ζ2
x + s2

2

)]
(3.62)

with the ρw parameters given by

ρw = 2π1/2
∫ +∞

0

∫ ∞

−∞
ζxϕ

−ds2dζx (3.63)

and
ρw = −2π1/2

∫ 0

−∞

∫ ∞

−∞
ζxϕ

−ds2dζx (3.64)

for the top and bottom walls respectively.
The system of kinetic equations (3.43), (3.44), (3.51) and (3.52) along with the equi-

librium distributions (3.45), (3.46), (3.53) and (3.54), the moments for the macroscopic
quantities (3.55)-(3.60) and the boundary conditions (3.61)-(3.64) is solved using the
discrete velocity method.

The physical space is discretized into NE equidistant intervals. Special care is taken
for the discretization of ζx and s2. The outgoing distributions at the boundaries are
unimodal distributions and more specifically, Maxwellians with a peak at ζx = s2 = 0.
The equilibrium distributions are also Maxwellians, however the peak location in the
s2 direction depends on the external force, the position in the physical space, the value
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of ζx and the local bulk velocity. These Maxwellian distributions can extend to large
values of s2, making a discretization based on the roots of orthogonal polynomials not
suitable. For this reason a uniform grid is used in the ζx and s2 directions. The bounds
of this grid should also be carefully chosen in order to capture the whole distribution
function. Actually, very large values of the bounds in the s2 direction are needed when
the external force is also large. The discretization of ζx is first performed. Then, based
on the discrete values of ζx and the values of the quantities appearing in the exponents
of the equilibrium distributions, given by Eqs. (3.45), (3.46), (3.53) and (3.54), an
appropriate set of discrete values of s2 is selected to spread along the whole distribution
function. For the simulations conducted here, the molecular velocity space bounds are
chosen to be ζx ∈ [−20, 20] and s2 ∈ [−200, 20]. The benefit of the proposed scheme is
that the discontinuity of the distribution function with respect to the molecular velocity
in the direction normal to the two plates is inherently treated as the solution propagates
along the characteristic and no differentiation of the discontinuous distribution function
with respect to the molecular velocity across the discontinuity is required.

The applicability and effectiveness of the proposed approach is connected to the
analytical solution of Eqs. (3.38), (3.39), (3.47) and (3.48) describing the characteristic
curves. In cases where the force field is a complex function of the molecular velocity,
such analytical solutions may not exist. Then, the implementation of the developed
approach becomes complicated since the corresponding ordinary differential equations
should be solved numerically to compute the characteristic curve as the distribution
propagates. The methodology becomes a kind of a deterministic Particle-In-Cell (PIC)
method, which actually has been used to accurately model rarefied gas flows [143].

3.2.3 Mass and heat flow rates along with macroscopic distri-
butions

Simulations are conducted for two values of the dimensionless external force, namely
F = 0.05 and 0.5, corresponding to small and large values of the external force
magnitude respectively. Since a comparison with the results presented in [56] is
performed, Maxwell molecules with ω = 1 are assumed and the reference Knudsen
number defined as

Kn0 = 2√
πδ0

, (3.65)
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is used, in order to be consistent with the notation used in [56]. The comparison is
performed in terms of the dimensionless mass and heat flow rates, defined as

Ṁ =
∫ 1/2

0
ρuydx (3.66)

and
Q̇ =

∫ 1/2

0
qydx. (3.67)

The mass flow rate is given in Table 3.1 for F̄ = 0.05, 0.5 and Kn0 = 0.1, 1, 10. The
relative deviation between the current results and the results presented in [56] is less
than 0.14%. The corresponding comparison for the heat flow rate is shown in Table
3.2, where the deviations are less than 1.5%.

Figure 3.1 presents the distributions of number density, temperature and velocity,
for three values of the reference Knudsen number (Kn0 = 0.1, 1, 10) and for two values
of the external force (F̄ = 0.05, 0.5). For F̄ = 0.05, the flow velocity is relatively small,
compared to the most probable molecular speed and the density and temperature
deviations with respect to the reference values are relatively small. For F̄ = 0.5
the external force is increased and the flow velocity can exceed the dimensionless
speed of sound which is

√
5/6 and the temperature and density profiles have high

deviations compared to the reference values. For both values of the external force
and for high values of Kn0, the temperature profile exhibits a well-known behavior,
having a minimum in the center of the flow field [144]. It is also noted, that the
distributions shown in Figure 3.1 are in good agreement with the respective ones in [56].
The very good agreement between the present results (mass and heat flow rates, as
well macroscopic distributions) with the corresponding ones in [56], proves, at certain
extend, the accuracy of the developed numerical scheme.

It is interesting to compare the present results obtained for the fully developed flow
with the non-linear form of the BGK model, with the corresponding ones of the infinite
capillary theory. The results for the reduced flow rate GP obtained by the solution of
the linearized BGK model, provided in [23] are compared to the present results, for
three values of the external force F = 0.01, 0.05, 0.5. The comparison is performed
on the basis of the reduced flow rate, which for the nonlinear case under the current
notation is calculated as

GP = 1
F

∫ 1/2

−1/2
ρuyds1. (3.68)
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Hard sphere molecules are assumed (ω = 1/2), in order to be consistent with the results
presented in [23] and the values of the rarefaction parameter are δ0 = 0.01, 0.1, 1, 5,
10. The comparison is shown in Table 3.3. It is seen that for F = 0.01 the infinite
capillary and the present approach are in excellent agreement, with relative deviations
less than or close to 0.3%, while for F = 0.05 the deviations are increased up to 2.8%.
Finally, for F = 0.5 the discrepancies are significantly increased up to 25%, indicating
that the infinite capillary theory fails to correctly model this nonlinear flow.

3.2.4 Molecular velocity distribution function

A detailed description of the molecular velocity distribution function is provided.
In all cases the distribution function is presented in terms of ζx and the introduced
variable s2, which surely poses some difficulty in the intuitive understanding of the
distribution form. The particles leaving the boundary follow a Maxwellian distribution
around s2 = 0, traveling either without or with intermolecular collisions. The former
ones will keep the Maxwellian distribution originated at the boundary, while the latter
ones relax to Maxwellian distributions, whose peaks can be in large values of s2. In
terms of ζy, the outgoing distribution from the boundary follow a Maxwellian that for
particles traveling without collisions (ballistic motion) is conveyed to high values of
ζy, while for particles experiencing collisions is relaxed to a Maxwellian distribution
around the local velocity. Combining the effects between particle collisions and particle
acceleration due to the external force leads to bimodal or multimodal distribution
functions with long tails. It is pointed out that far from the boundaries distributions
close to a Maxwellian in terms of s2 is characterized by long tails in terms of ζy, while
distributions with long tails in terms of s2 is close to a Maxwellian distribution in
terms of ζy.

Qualitative contours of the reduced distribution function ϕ are shown in Figure
3.2, for F = 0.5 and Kn0 = 1, at five locations along the distance between the parallel
plates and more specifically at s1 = 0, ± 1/4 and ±1/2, in terms of the two molecular
velocity variables ζx and s2. The distribution function has a discontinuity at ζx = 0,
separating the distribution coming from the bottom wall (s1 = −1/2 with ζx > 0) and
the one coming from the top wall (s1 = 1/2 with ζx < 0). At the bottom and top
walls the outgoing distributions are Maxwellians, while the incoming ones have long
tails extending to large absolute values of s2. Moving away from the boundaries, the
distribution has tails in the same direction for both positive and negative values of ζx.
In the center of the flow domain (s1 = 0), the distribution is, as expected, symmetrical
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with respect to ζx. Furthermore, there is a mirror symmetry in the physical space,
where the distribution at s1 for ζx is the same as the one at −s1 for −ζx and therefore
in the following description only half of the flow domain is considered. A detail of the
tails of the distribution function at the center of the flow domain is shown in Figure
3.2 (see bottom-right subfigure) for F = 0.5 and Kn0 = 1. It is clearly seen that as the
value of ζx becomes smaller, the distribution extends to larger values of s2, which is
clearly contributed to the expression of the relaxation distribution and more specifically
to the fact that the quantity

(
(s1 + 1/2)F/ζx + s2 − uy

)2
in the exponent increases

as ζx decreases.
Figure 3.3 presents the distribution function ϕ for F = 0.5 and Kn0 = 0.1, 10. For

the small value of the Knudsen number, where collisions are important, the distribution
function is far from the Maxwellian. On the contrary, for the large value of the Knudsen
number, where collisions are rare, the distribution function retains the shape of the
outgoing distributions and is close to a Maxwellian with weak tails. The corresponding
results for F = 0.05 and Kn0 = 0.1, 10 are shown in Figure 3.4. It is clearly seen
that due to the smaller magnitude of the external force, the tails of the distribution
function are much weaker.

In Figure 3.5, the reduced distribution function ϕ in terms of s2, at s1 = 0 for
F = 0.5 and Kn0 = 10 and for progressively decreasing, in magnitude, values of
ζx, is presented. For ζx = 0.08, the distribution has a peak close to zero, while its
shape is close to a Maxwellian. As the value of ζx decreases, a tail starts to form.
At ζx = 0.04 the distribution becomes bimodal while for ζx = 0.025 the tail has the
maximum value of the distribution. It is also noted, that as ζx decreases and strongly
non-equilibrium forms of the distribution function appear, the value of the distribution
function decreases. Finally, In Figure 3.6 a three-dimensional plot of the distribution
function ϕ at s1 = −1/2 for F = 0.5 and Kn0 = 1 is shown, providing a more clear
view of the discontinuity and the extension of the tails.

3.3 Implicit boundary conditions

3.3.1 Flow configuration and governing equations

Consider the pressure driven rarefied gas flow between two parallel plates separated
by distance H or through a tube of radius R. In both cases the length of the capillary
is L. The capillary walls are assumed to be isothermal at reference temperature T0.
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The flow is characterized by three dimensionless parameters [80], [85], namely the
ratio of the outlet over the inlet pressures Pout/Pin, the length over the characteristic
dimension L/χ , where χ = H, R for the channel and the tube respectively and the
reference gas rarefaction parameter defined at the inlet conditions, as

δin = Pinχ

µ0υ0
. (3.69)

In Eq. (3.69), µ0 is the viscosity at reference temperature T0 and υ0 =
√

2RgT0 is
the most probable molecular speed, with Rg denoting the gas constant. The flow
is in the z′−direction, while the lateral directions are denoted by y′ for the channel
flow and r′ for the tube flow. The macroscopic quantities to be computed include the
two-component velocity vector U (i, z′), as well as the number density N (i, z′), pressure
P (i, z′) and temperature T (i, z′)distributions, with i = y′, r′. The main quantities of
practical interest are the mass flows rates Ṁc and Ṁt for the channel and tube flows
respectively.

The kinetic formulation of the channel and tube flow problems are well described
in [79], [81], [82] and therefore, here, only the key issues related to the scope of the
present work are provided. The following dimensionless quantities are defined:

y = y′/χ, r = r′/χ, z = z′/χ,u = U/υ0, n = N/Nin, p = P/Pin, τ = T/T0. (3.70)

Here, (y, z) and (r, z) are the physical space coordinates for the channel and the tube
respectively (z denotes the flow direction), u (i, z) = [ui (i, z) , uz (i, z)], n (i, z), p (i, z)
and τ (i, z) are the dimensionless macroscopic velocity, number density, pressure and
temperature respectively, with i = y, r, while Nin = Pin/ (kBT0) is the number density
at inlet conditions with kB being the Boltzmann constant.

The computational domains with the coordinate system and its origin for the typical
flow configuration and the one with the implicit boundary conditions are shown in
Figure 3.7. In the former one the computational domain includes the capillary region
(A) plus the inlet and outlet regions denoted by (B) and (C) respectively. The inlet
and outlet boundary conditions are imposed far from the capillary ends along the
dotted lines. In the latter one the computational domain includes only the capillary
region (A) and the boundary conditions are imposed at the capillary ends along the
dashed lines. The detailed formulation and description of the conditions at the open
boundaries is given in Sections 3.3.2 and 3.3.3.
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In both flow configurations (with and without the inlet and outlet regions) the
governing equations are identical. The BGK kinetic model is applied since in spite of
its simplicity it has been proven to be accurate in the case of pressure driven flows
[72], [73], [75], [78]. The gas is assumed to be monatomic going through hard sphere
collisions with the viscosity varying as µ = µ0

√
T/T0. Simulations are independent of

the molecular mass and apply for any monatomic gas.
The channel flow is described by the coupled set of integrodifferential equations [75]

ζy
∂ϕ

∂y
+ ζz

∂ϕ

∂z
= δinn

√
τ
(
ϕM − ϕ

)
, (3.71)

ζy
∂ψ

∂y
+ ζz

∂ψ

∂z
= δinn

√
τ
(
ψM − ψ

)
, (3.72)

where ϕ = ϕ (y, z, ζy, ζz) and ψ = ψ (y, z, ζy, ζz) are the unknown reduced distribution
functions, with (ζy, ζz) denoting the two components of the molecular velocity vector,
while

ϕM = n

πτ
exp

[
−
(
(ζy − uy)2 + (ζz − uz)2

)
/τ
]
, (3.73)

ψM = n

2π exp
[
−
(
(ζy − uy)2 + (ζz − uz)2

)
/τ
]

(3.74)

are the equilibrium distribution functions. The macroscopic quantities are given by
the following moments of the reduced distribution functions:

n (y, z) =
∫
R2
ϕdζydζz (3.75)

uy (y, z) = 1
n

∫
R2
ζyϕdζydζz (3.76)

uz (y, z) = 1
n

∫
R2
ζzϕdζydζz (3.77)

τ (y, z) = 2
3n

∫
R2

[(
ζ2
y + ζ2

z

)
ϕ+ ψ

]
dζydζz − 2

3
(
u2
y + u2

z

)
(3.78)

The pressure is taken from the equation of state p (y, z) = n (y, z) τ (y, z).
The tube flow is described by the integrodifferential equation [75]

ζp cos θ∂g
∂r

− ζp sin θ
r

∂g

∂θ
+ ζz

∂g

∂z
= δinn

√
τ
(
gM − g

)
, (3.79)
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where g = g (r, z, ζp, θ, ζz) is the unknown distribution function, with (ζp, θ, ζz) denoting
the three components of the molecular velocity vector in cylindrical coordinates, while

gM = n

(πτ)3/2 exp
[
−
(
(ζp cos θ − ur)2 + (ζp sin θ)2 + (ζz − uz)2

)
/τ
]

(3.80)

is the equilibrium distribution. The macroscopic quantities are given by the moments
of the distribution as

n (r, z) =
∫
R3
gζpdζpdθdζz (3.81)

ur (r, z) = 1
n

∫
R3
ζ2
P cos θgdζpdθdζz (3.82)

uz (r, z) = 1
n

∫
R3
ζzgζpdζpdθdζz (3.83)

τ (r, z) = 2
3n

∫
R3

(
ζ2
p + ζ2

z

)
gζpdζpdθdζz − 2

3
(
u2
r + u2

z

)
(3.84)

p (r, z) = n (r, z) τ (r, z) (3.85)

Once the macroscopic distributions are computed, the dimensionless flow rates for
the channel and the tube flow problems can be calculated as

Wc = Ṁc

2H2Pin/υ0
= 2

∫ 1/2

0
nuzdy (3.86)

and
Wt = Ṁt√

πR2Pin/υ0
= 4

√
π
∫ 1

0
nuzrdr (3.87)

respectively. The flow rates remain constant at any cross section along the capillary.
Here, the computation is made at the capillary center (z = 0). The dimensionless flow
rate is used as the main quantity in order to estimate the deviation of the implicit
boundary formulation from the typical formulation and judge the accuracy of the
former one. The relative difference (error) is defined as

eimpliciti = W implicit
i −W typical

i

W typical
i

× 100%, (3.88)

where W typical
i and W implicit

i are the dimensionless flow rates of the typical and implicit
boundary formulations respectively, with i = c for the channel and i = t for the tube
flows.
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Proper closing of the channel and tube flow problems in both the typical formulation
and the one with the implicit boundaries, require imposing boundary conditions a)
along the symmetry axis, b) at the wall boundaries and c) at the open boundaries.

Specular boundary conditions are applied, due to symmetry, at the axes (y′ = 0;
r′ = 0) and diffuse boundary conditions at the capillary walls (y′ = H/2; r′ = R).
Also, the typical formulation includes diffuse boundary conditions at the lateral vessel
walls next to the capillary ends (z′ = −L/2 with y′, r′ ∈ [α,Lin] and z′ = L/2 with
y′, r′ ∈ [α,Lout]). The specular and diffuse wall boundary conditions are well known
and described in previous works [75], [80]–[82].

Finally, the open boundary conditions, which are of major importance in the present
work are provided for the typical flow configuration with the inlet and outlet regions,
as well as for the flow configuration with the implicit boundary conditions imposed at
the capillary ends in Sections 3.3.2 and 3.3.3 respectively.

3.3.2 Inlet and outlet boundary conditions in the typical flow
configuration

The computational domain in the typical flow configuration, as shown in Figure
3.7, consists of the capillary region (A) and the inlet and outlet regions (B) and (C)
respectively. Therefore, the incoming distributions along the dotted lines must be
defined. Following common practice, it is assumed that the incoming distributions are
Maxwellians with zero bulk velocity [75], [80]–[82] characterized by the given inlet and
outlet pressure and reference temperature. This is theoretically justified by taking the
size of the inlet and outlet vessels adequately large and applying the open boundary
conditions in a region where the gas is at rest far enough from the capillary ends. In
the present work these conditions are fulfilled by taking Lin/H = Lout/H = 20 for
the channel and Lin/R = Lout/R = 15 for the tube flow configurations. Then, the
boundary conditions at the fictional boundaries of the inlet and outlet vessels in the
typical flow setup become as follows [75]:
• Channel flow:

Upstream vessel
ϕ+
u = 1

π
exp[−ζ2

y − ζ2
z ], (3.89)

ψ+
u = 1

2π exp[−ζ2
y − ζ2

z ] (3.90)
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Downstream vessel
ϕ+
d = Pout/Pin

π
exp[−ζ2

y − ζ2
z ], (3.91)

ψ+
d = Pout/Pin

2π exp[−ζ2
y − ζ2

z ] (3.92)

• Tube flow:
Upstream vessel

g+
u = 1

π3/2 exp[−ζ2
p − ζ2

z ] (3.93)

Downstream vessel
g+
d = Pout/Pin

π3/2 exp[−ζ2
p − ζ2

z ] (3.94)

The subscripts (u) and (d) refer to the boundary conditions at the upstream and
downstream vessels respectively, while the superscript (+) always refers to the incoming
distributions.

The governing equations (3.71)-(3.78) with the boundary conditions (3.89)-(3.92)
are numerically solved to compute the flow rate W typical

c for the channel flow. Similarly,
the governing equations (3.79)-(3.85) with the boundary conditions (3.93), (3.94) are
numerically solved to compute the flow rate W typical

t for the tube flow. The solution
of the integrodifferential equations is performed by the well-known discrete velocity
method. It is noted that the channel flow problem is four-dimensional (2D in the
physical space plus 2D in the velocity space), while the tube flow problem is five-
dimensional (2D in the physical space and 3D in the velocity space) and therefore, the
latter one is much more computational demanding. Since these typical flow set ups
are used as benchmarks, the flow rates are recalculated and tabulated in Table 3.4 for
various pressure ratios Pout/Pin and capillary length L/χ , with χ = H,R, in a wide
range of the reference gas rarefaction parameter δin.

3.3.3 Inlet and outlet boundary conditions in the implicit for-
mulation

The computational domain in the flow configuration with implicit boundary con-
ditions, as shown in Figure 3.7, consists only of the capillary region (A). Now, the
incoming distributions at the capillary ends, located at z = ±L/ (2χ) = ±l along
the dashed lines, must be defined. It is assumed that the incoming distributions are
local Maxwellians, where the parameters of the Maxwellian distributions are obtained
following the characteristic theory, which has been implemented in classical CFD
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simulations in unbounded flow domains [138]–[140] assuming locally one-dimensional,
inviscid and adiabatic flow. More specifically, the incoming distributions at the inlet
and outlet of the channel and the tube are as follows:
• Channel flow:

ϕ+
in (−l, y, ζz, ζy) = nin (y)

πτin (y) exp
[
−
(
(ζy − uy,in (y))2 + (ζz − uz,in (y))2

)
/τin (y)

]
,

(3.95)

ψ+
in (−l, y, ζz, ζy) = nin (y)

2π exp
[
−
(
(ζy − uy,in (y))2 + (ζz − uz,in (y))2

)
/τin (y)

]
,

(3.96)

ϕ+
out (l, y, ζz, ζy) = nout (y)

πτout (y) exp
[
−
(
(ζy − uy,out (y))2 + (ζz − uz,out (y))2

)
/τout (y)

]
,

(3.97)

ψ+
out (l, y, ζz, ζy) = nout (y)

2π exp
[
−
(
(ζy − uy,out (y))2 + (ζz − uz,out (y))2

)
/τout (y)

]
,

(3.98)
with the following parameters [89]

nin (y) = 1, (3.99)

τin (y) = 1, (3.100)

uz,in (y) = uz (−l, y) + 1 − p (−l, y)
n (−l, y)

√
2γτ (−l, y)

, (3.101)

uy,in (y) = uy (−l, y) , (3.102)

nout (y) = n (l, y) + Pout/Pin − p (l, y)
γτ (l, y) , (3.103)

τout (y) = Pout/Pin
nout (y) , (3.104)

uz,out (y) = uz (l, y) + p (l, y) − Pout/Pin

n (l, y)
√

2γτ (l, y)
, (3.105)

uy,out (y) = uy (l, y) (3.106)
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• Tube flow:

g+
in (r,−l, ζp, θ, ζz) =
nin (r)

(πτin (r))3/2 exp
[
−
(
(ζp cos θ − ur,in (r))2 + (ζp sin θ)2 + (ζz − uz,in (r))2

)
/τin (r)

]
,

(3.107)
g+
out (r, l, ζp, θ, ζz) =
nout (r)

(πτout (r))3/2 exp
[
−
(
(ζp cos θ − ur,out (r))2 + (ζp cos θ)2 + (ζz − uz,out (r))2

)
/τout (r)

]
,

(3.108)
with the following parameters [89]

nin (r) = 1, (3.109)

τin (r) = 1, (3.110)

uz,in (r) = uz (r,−l) + 1 − p (r,−l)
n (r,−l)

√
2γτ (r,−l)

, (3.111)

ur,in (r) = ur (r,−l) (3.112)

nout (r) = n (r, l) + Pout/Pin − p (r, l)
γτ (r, l) , (3.113)

τout (r) = Pout/Pin
nout (r)

, (3.114)

uz,out (r) = uz (r, l) + p (r, l) − Pout/Pin

n (r, l)
√

2γτ (r, l)
, (3.115)

ur,out (r) = ur (r, l) . (3.116)

Again, the superscript (+) always refers to incoming distributions, while γ is denoting
the ratio of specific heats that is equal to 5/3 for a monatomic gas. The macroscopic
quantities of velocity, density, pressure and temperature at the right hand side of
Eqs. (3.99)-(3.106) and (3.109)-(3.116) are calculated via the moments of the reduced
distribution functions of the previous iteration at each boundary node according to Eqs.
(3.75)-(3.78) and (3.81)-(3.85). Therefore, the input parameters in the Maxwellian
expressions, Eqs. (3.95)-(3.98) and (3.107), (3.108), differ at each boundary node and
are calculated in each iteration. The detailed derivation of the expressions for all
parameters is given in Appendix A.
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The governing equations (3.71)-(3.78) with the boundary conditions (3.95)-(3.106)
and the governing equations (3.79)-(3.85) with the boundary conditions (3.107)-(3.116)
are numerically solved to compute the flow rate W implicit

c for the channel flow and
W implicit
t for the tube flow. As in the typical configuration, a DVM scheme is used

for the solution of the involved equations. It is obvious, due to the small size of the
computational domain, that the computational effort is greatly decreased compared to
the corresponding one for the typical flow configuration. For example, in a channel
with L/H = 20 the dimensionless computational area when the implicit boundary
conditions are introduced is equal to 10 (considering the symmetry condition). On the
contrary, for the same channel when the typical approach is applied the dimensionless
computational area is 2 (10 × 20) + 10 = 410 (inlet plus outlet vessels plus channel).
Therefore, in the former compared to the latter case, the CPU time reduction is at
least one order of magnitude. However, the implementation of the implicit boundary
conditions is not theoretically justified, since the assumptions that the flow at the
capillary ends may be approximated by local Maxwellians as well as that the parameters
of the Maxwellians are estimated based on Euler equations describing inviscid and
adiabatic flow are, in general, not valid. In the next section a comparison between
the flow rates obtained by the typical flow configuration and the one with the implicit
boundary conditions is presented.

3.3.4 Comparison between the flow rates of the typical and
the implicit boundary conditions formulations

The validity of the implicit boundary conditions is computationally investigated by
comparing the computed flow rates for the channel and tube flow problems with the
corresponding ones obtained by the typical formulation.

The values of the three parameters characterizing the flow, considered in the
computational investigation, are as follows:

• Channel flow: Pout/Pin = [0.1, 0.3, 0.5, 0.7, 0.9], δin = [1, 5, 10], L/H = [1, 2, 5, 10, 20]

• Tube flow: Pout/Pin = [0.1, 0.5, 0.9], δin = [1, 2, 5, 10], L/R = [1, 5, 10, 20]

These input values allow a complete comparison for flows in the transition and slip
regimes through short up to long capillaries driven by small, moderate and large
pressure differences.
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The relative difference eimpliciti , defined by Eq. (3.88), between the flow rate of the
typical formulation and the corresponding one of the formulation with the implicit
boundary conditions are tabulated in Table 3.5 for both channel (i = c) and tube (i = t)
flows with Pout/Pin = [0.1, 0.5, 0.9], δin = [1, 5, 10], L/χ = [1, 5, 10, 20], χ = H, R. The
relative difference (error) depends strongly on the dimensionless length L/χ, which is
the most important parameter affecting the error. It is clearly observed that as L/χ is
increased the error is decreased. It is also seen that the relative errors of the flow rates
based on the formulation with the implicit boundary conditions for L/χ = 1 are larger
than 40% (even up to 100% and 200%), for L/χ = 5 from 20-40%, for L/χ = 10 from
10-20% and for L/χ = 20 less or about 10%. The pressure ratio Pout/Pin has a strong
effect on the error in capillaries with L/χ ≤ 5, while it becomes less significant in long
capillaries. For short capillaries, the error generally increases as the pressure ratio
increases. For longer capillaries, where the pressure ratio effect quickly diminishes, the
error can either increase or decrease with the pressure ratio. Finally, the error weakly
depends on the reference rarefaction parameter δin. At any dimensionless length it is
decreased as δin is increased. The error behavior in terms of all three parameters is
easily justified since as L/χ and δin are increased and Pout/Pin is decreased, end effects
are not as pronounced, while the flow is characterized by larger Reynolds numbers,
which are in accordance to the theoretical basis of the implicit boundary conditions.
Based on the above, it may be stated that considering as acceptable an error of
≤ 20%, the formulation with the implicit boundary conditions may be implemented
only to capillaries with L/χ ≥ 10. Furthermore, since the difference is positive in all
cases it is deduced that the formulation with the implicit boundary conditions always
overestimates the flow rate compared to the typical one.

A more compact picture of the error dependency on all parameters is provided
in Figure 3.8, where the relative error eimplicitc,t is plotted in terms of the quantity
Z = δin (χ/L) (∆P/Pin), where ∆P = Pin − Pout. It is observed that for L/χ = 20 the
dependency of the error on the quantityZ remains almost constant, while as L/χ is
reduced the error starts gradually to decrease as Z is increased. This trend simply
indicates that as L/χ is reduced the effect of δin and ∆P on the error becomes more
important, which is in accordance to the tabulated results in Table 3.5. Overall, it
may be stated that the performance of the implicit boundary condition approach in
rarefied gas flows is not as good as the one observed in continuum [138]–[141] and slip
[87]–[91] gas flows.
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3.3.5 Comparison between the flow rates of the typical and
the implicit boundary conditions plus the end effect cor-
rection formulations

Based on the effective length concept, an end effect correction methodology has
been recently proposed to extend the range of validity of the infinite capillary theory
describing fully developed flows through long capillaries to capillaries of moderate
length [83]–[85]. The actual length L/χ of the capillary is increased at its two ends by
the length increments ∆Lin/χ and ∆Lout/χ, which are independent of the capillary
length and solely depend on the inlet and outlet gas rarefaction parameters δin and
δout respectively, with δout = δinPout/Pin. The length increments ∆L/χ have been
tabulated in terms of the gas rarefaction parameter δ for channel flow in [84] and for
tube flow in [83], and they are as follows:

δ 0.1 0.2 0.4 0.6 0.8 1 2 4 6 8 10
∆L/H 2.45 2.15 1.55 1.05 0.827 0.654 0.574 0.556
∆L/R 1.52 1.33 1.16 1.07 1.01 0.964 0.841 0.735 0.704 0.688 0.682

In general, the length increment decreases as δ increases approaching a constant
value as δ → ∞. At the other end, as δ → 0 the length increment ∆L/χ → ∞. This
methodology has been applied to fully developed flows with remarkable success even
for relatively short capillaries (∆L/χ = 5) and the interested reader may refer for all
the details in [83]–[85].

Here, it is proposed to implement the implicit boundary conditions coupled with
the end effect methodology. The computational domain, the governing equations and
the boundary conditions remain the same as described in Sections 3.3.1 and 3.3.3 for
the formulation with the implicit boundary conditions and the only difference is the
length of the capillary which now is extended by adding to its actual length ∆L/χ the
two increments ∆Lin/χ and ∆Lout/χ, obtained from the end correction theory based
on the corresponding values of δin and δout.

The relative difference between the flow rates of the proposed methodology (implicit
boundaries plus end effect) and the corresponding ones of the typical formulation,
defined as

eimplicit+EEi =

∣∣∣W implicit+EE
i −W typical

i

∣∣∣
W typical
i

× 100%, (3.117)
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is tabulated in Table 3.6, for both channel (i = c) and tube (i = t) flows with
Pout/Pin = [0.1, 0.5, 0.9], δin = [1, 5, 10] and L/χ = [1, 5, 10, 20], χ = H, R . It is
clearly observed that, compared to Table 3.5, the introduced error has been significantly
reduced in all cases. Now, the relative error of the flow rates based on the formulation
with the implicit boundary conditions plus the end effect correction are for L/χ = 1,
5, 10 and 20 less or about 40%, 20%, 10% and 5% respectively. The error trend with
regard to L/χ remains the same, i.e., it is always decreased as L/χ is increased. With
regard to δin and Pout/Pin, when either of these quantities is small (i.e. δin = 1 or
Pout/Pin = 0.1) the error is steadily decreased as the other quantity is increased. For
moderate and large values of δin and Pout/Pin (i.e. δin > 1 and Pout/Pin > 0.1) the error
takes small values (less than 5%) and in that case, as these quantities are increased the
error does not have a monotonic behavior. Although not shown in Table 3.6, where the
absolute values are tabulated, it is noted that the error without the absolute value, in
most cases, is negative, while for large δin and Pout/Pin becomes positive. The behavior
with respect to Pout/Pin is attributed to the end effect correction that is formulated
based on small pressure gradients.

The relative difference (error) eimplicit+EEi , i = c, t, is also plotted in Figure 3.9 in
terms of the quantity Z = δin (χ/L) (∆P/Pin). It is observed that the relative errors
are much smaller compared to the formulation with the implicit boundary conditions
without the end effect correction (Figure 3.8). In fact now the error remains < 15%
for almost all cases with L/χ = 5, 10 and 20.

The corresponding results comparing the typical and the infinite capillary theory
[23] with end correction are shown in Table 3.7, where the relative deviation is defined
as

efd+ee
c,t =

∣∣∣W FD+EE
c,t −W typical

c,t

∣∣∣
W typical
c,t

× 100%. (3.118)

It is seen that the deviations for this case are smaller compared to the respective
deviations for the implicit boundary plus end correction approach (Figure 3.9 and
Table 3.6). In fact, in the range of parameters where the implicit boundary with end
correction provides accurate values for the mass flow rate, the infinite capillary theory
with end correction is also able to accurately estimate the flow rate, with a much lower
computational effort.

Based on the above it is seen that adding the end effect correction to the formulation
with the implicit boundary conditions greatly increases the range of its applicability
with regard to the three parameters governing the pressure driven rarefied gas flow
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through channels and tubes. It should be stated however, that this improvement is
mainly contributed to the effectiveness of the end effect theory. It is noted that, in
general, in the same range of parameters, the accuracy of the mass flow rate results
obtained by the implicit boundary conditions plus the end correction approach is very
close to the one obtained by the infinite capillary theory with the end effect correction
[85]. The implementation of the former approach compared to the latter one is much
more computationally demanding. However, it may be applied in flow configurations,
where the assumptions of the infinite capillary theory are not valid, i.e. in non fully
developed and non-isothermal flows.

3.4 Concluding remarks

Pressure driven flows through capillaries are of major importance and therefore
have been extensively investigated. However, due to the complexity of the kinetic
equations and of the associated computational schemes, there are still open issues,
which must be resolved in an efficient manner. Such issues include the treatment of
the external force term, which may be present in the kinetic equations, as well as the
implementation of proper inlet and outlet conditions at the capillary ends. In this
chapter both issues are tackled.

A force driven nonlinear fully developed Poiseuille flow is simulated based on
the non-linear BGK equation with the external force term retained in the equation.
A numerical scheme is developed, using the method of characteristics, obtaining the
numerical solution of the kinetic equation in a deterministic manner. In particular, upon
introducing the variables describing the characteristic curve, the derivative with respect
to the molecular velocity vanishes and the external force term is incorporated into
the equilibrium distribution and the expressions for the macroscopic quantities. The
results include the mass and the heat flow rates, as well all macroscopic distributions
of practical interest and they are in excellent agreement with corresponding published
results for this flow configuration [56]. In addition, the form of the distribution function
is of specific interest, as the external force acting on the gas molecules can give rise
to interesting multimodal distribution functions. It is believed that the methodology
presented here can be utilized for more complicated flows under external field forces,
such as the flows of charged particles in the presence of electric and magnetic fields.

The range of validity of the so-called implicit boundary conditions [87]–[91] has been
computationally investigated by simulating the pressure driven rarefied gas flow through
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capillaries. More specifically, the nonlinear rarefied gas flow through a plane channel
and a tube has been solved in a wide range of the three parameters characterizing the
flow, namely the ratio of the outlet over the inlet pressure Pout/Pin, the dimensionless
length L/χ and the reference gas rarefaction parameter at the inlet δin, by imposing
the implicit boundary conditions for the incoming distributions at the capillary ends.

The computed flow rates have been compared to the corresponding ones obtained
based on the so-called typical formulation, i.e., by including in the computational
domain adequately large inlet and outlet regions and properly imposing the boundary
conditions far from the capillary ends. It is evident that the motivation of the implicit
boundary conditions formulation is to significantly reduce the computational effort
due to the reduced size of the computational domain which includes only the capillary.
It has been found however, that the implicit boundary formulation may introduce
significant discrepancies. In general, the introduced error is increased as L/χ and
δin are decreased since end effects become more important, as well as Pout/Pin is
increased (∆P is decreased) and the flow speed is reduced. The dimensionless length
is the most important parameter affecting the error. The introduced relative error
for L/χ = 20 and 10 is less or about 10% and 20% respectively, while for L/χ < 10
becomes unacceptably large. These findings are justified by the fact that the derivation
of the implicit boundary conditions is based on the method of characteristics assuming
one-dimensional, inviscid and adiabatic flow.

The range of validity of the implicit boundary conditions is extended by introducing
in the formulation the end effect theory [83]–[85], where the actual capillary length
has been increased to include the correction due to the end effects at the two capillary
ends. This way the computational domain does not require the computationally costly
addition of the inlet and outlet regions and the computational cost remains small, while
the introduced error in the flow rates is less than 15% for L/χ ≥ 5. This improvement
is due to the effectiveness of the end effect theory, which as it has been demonstrated
performs exceptionally well even in flows through short capillaries. When the infinite
capillary and the implicit boundary condition approaches are both coupled with the
end effect theory, they are valid approximately in the same range of parameters, with
the latter one requiring more computational time but being able to simulate phenomena
beyond the fully developed flow limit. It is hoped that the present work may serve
as a guideline in the implementation of the implicit boundary conditions formulation,
which must be always performed with caution, considering the effect on the accuracy
of the results.
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Table 3.1 Mass flow rate for various values of the reference Knudsen number Kn0 and
of the external force F .

Kn0
F = 0.05 F = 0.5

Current Ref. [53] Current Ref. [53]
0.1 7.384(-2) 7.374(-2) 5.286(-1) 5.280(-1)
1 3.842(-2) 3.841(-2) 3.492(-1) 3.492(-1)
10 4.960(-2) 4.961(-2) 4.400(-1) 4.400(-1)

Table 3.2 Heat flow rate for various values of the reference Knudsen number Kn0 and
of the external force F .

Kn0
F = 0.05 F = 0.5

Current Ref. [53] Current Ref. [53]
0.1 -1.444(-3) -1.445(-3) 6.702(-3) 6.680(-3)
1 -6.865(-3) -6.875(-3) 1.188(-2) 1.206(-2)
10 -9.335(-3) -9.317(-3) 5.483 5.509

Table 3.3 Reduced flow rate for various values of the reference rarefaction parameter
δ0 and external force F , for the force driven nonlinear Poiseuille flow and the infinite
capillary theory.

δ0
GP

F = 0.5 F = 0.05 F = 0.01 Ref. [21]
0.01 2.260 2.963 3.039 3.049
0.1 1.697 2.019 2.028 2.031
1 1.394 1.533 1.535 1.539
5 1.708 1.981 1.986 1.988
10 2.160 2.748 2.761 2.764
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Table 3.4 Dimensionless flow rate for channel and tube flows based on the typical
formulation.

W typical
c W typical

t

L/H = 1 L/R = 1
Pout

Pin

δin Pout

Pin

δin
1 5 10 1 2 5 10

0.1 0.202 0.258 0.292 0.1 0.713 0.788 0.931 1.06
0.5 0.121 0.184 0.239 0.5 0.428 0.505 0.692 0.888
0.9 0.0254 0.0431 0.0633 0.9 0.0908 0.112 0.170 0.264

L/H = 5 L/R = 5
Pout

Pin

δin Pout

Pin

δin
1 5 10 1 2 5 10

0.1 0.0926 0.111 0.1359 0.1 0.312 0.341 0.423 0.537
0.5 0.0529 0.0708 0.0945 0.5 0.182 0.207 0.280 0.398
0.9 0.0108 0.0156 0.0220 0.9 0.0378 0.0444 0.0641 0.0976

L/H = 10 L/R = 10
Pout

Pin

δin Pout

Pin

δin
1 5 10 1 2 5 10

0.1 0.0562 0.0646 0.0798 0.1 0.185 0.200 0.249 0.328
0.5 0.0315 0.0398 0.0528 0.5 0.106 0.119 0.160 0.229
0.9 0.00635 0.00870 0.0121 0.9 0.0219 0.0253 0.0359 0.0543

L/H = 20 L/R = 20
Pout

Pin

δin Pout

Pin

δin
1 5 10 1 2 5 10

0.1 0.0317 0.0351 0.0433 0.1 0.0999 0.107 0.134 0.181
0.5 0.0174 0.0212 0.0280 0.5 0.0569 0.0632 0.0844 0.122
0.9 0.00348 0.00460 0.00637 0.9 0.0117 0.0134 0.0189 0.0286
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Table 3.5 Relative (%) difference (error) of the flow rates between the typical and the
implicit boundary formulations for channel and tube flows

eimplicitc eimplicitt

L/H = 1 L/R = 1
Pout

Pin

δin Pout

Pin

δin
1 5 10 1 2 5 10

0.1 77.78 50.43 42.38 0.1 90.94 77.27 58.14 46.12
0.5 149.31 86.62 59.48 0.5 171.20 140.98 91.82 61.17
0.9 194.80 138.58 115.78 0.9 232.48 205.58 167.12 124.99

L/H = 5 L/R = 5
Pout

Pin

δin Pout

Pin

δin
1 5 10 1 2 5 10

0.1 27.70 18.12 14.89 0.1 27.09 23.93 19.69 17.77
0.5 40.09 26.65 22.02 0.5 38.17 34.03 29.11 24.27
0.9 39.84 26.83 23.69 0.9 38.61 34.18 29.92 27.53

L/H = 10 L/R = 10
Pout

Pin

δin Pout

Pin

δin
1 5 10 1 2 5 10

0.1 17.65 11.92 9.70 0.1 15.17 13.58 11.46 10.53
0.5 21.09 14.07 12.09 0.5 18.69 16.37 14.11 13.12
0.9 20.19 13.16 11.97 0.9 18.11 15.80 14.14 13.31

L/H = 20 L/R = 20
Pout

Pin

δin Pout

Pin

δin
1 5 10 1 2 5 10

0.1 10.60 7.33 6.09 0.1 10.10 8.97 7.52 6.66
0.5 10.84 7.21 6.29 0.5 10.61 9.34 8.07 7.19
0.9 10.11 6.73 6.09 0.9 10.00 8.78 7.57 6.92
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Table 3.6 Relative (%) difference (error) of the flow rates between the typical and the
implicit boundary plus the end effect correction formulations for the channel and tube
flows.

eimplicit+EEc eimplicit+EEt

L/H = 1 L/R = 1
Pout

Pin

δin Pout

Pin

δin
1 5 10 1 2 5 10

0.1 36.02 25.87 14.53 0.1 25.13 22.59 15.43 8.39
0.5 14.16 4.01 1.72 0.5 5.75 2.90 1.38 1.08
0.9 6.56 2.96 2.77 0.9 2.07 1.24 5.14 0.66

L/H = 5 L/R = 5
Pout

Pin

δin Pout

Pin

δin
1 5 10 1 2 5 10

0.1 17.56 11.92 8.04 0.1 11.06 9.97 7.54 4.69
0.5 4.90 0.48 0.10 0.5 2.62 1.45 0.02 0.54
0.9 1.93 0.92 0.95 0.9 1.71 0.70 0.85 0.77

L/H = 10 L/R = 10
Pout

Pin

δin Pout

Pin

δin
1 5 10 1 2 5 10

0.1 10.08 6.05 4.10 0.1 6.64 5.81 4.34 2.98
0.5 2.8 0.01 0.28 0.5 1.93 1.46 0.77 0.45
0.9 1.09 0.30 0.56 0.9 1.78 1.29 0.10 0.88

L/H = 20 L/R = 20
Pout

Pin

δin Pout

Pin

δin
1 5 10 1 2 5 10

0.1 5.01 2.53 1.53 0.1 1.79 1.55 1.10 0.87
0.5 1.44 0.08 0.21 0.5 0.15 0.32 0.53 0.22
0.9 0.71 0.24 0.31 0.9 0.01 0.26 0.51 0.10
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Table 3.7 Relative (%) difference (error) of the flow rates between the typical and the
infinite capillary plus the end effect correction formulations for the channel and tube
flows.

eFD+EE
c eFD+EE

t

L/H = 1 L/R = 1
Pout

Pin

δin Pout

Pin

δin
1 5 10 1 2 5 10

0.1 18.24 2.78 24.42 0.1 9.83 4.95 11.03 41.10
0.5 7.24 2.75 1.72 0.5 4.49 2.67 3.96 22.78
0.9 3.69 0.38 0.55 0.9 4.08 4.30 2.45 2.37

L/H = 5 L/R = 5
Pout

Pin

δin Pout

Pin

δin
1 5 10 1 2 5 10

0.1 5.53 1.72 5.39 0.1 4.07 2.87 1.35 10.89
0.5 1.17 0.78 2.09 0.5 2.30 2.13 0.36 2.77
0.9 0.02 0.45 0.30 0.9 2.18 2.57 1.81 1.83

L/H = 10 L/R = 10
Pout

Pin

δin Pout

Pin

δin
1 5 10 1 2 5 10

0.1 2.01 0.64 2.19 0.1 3.01 2.43 0.57 3.60
0.5 0.16 0.75 1.04 0.5 1.69 1.86 1.22 0.28
0.9 0.46 0.36 0.36 0.9 1.80 2.05 1.26 1.16

L/H = 20 L/R = 20
Pout

Pin

δin Pout

Pin

δin
1 5 10 1 2 5 10

0.1 0.04 0.15 1.04 0.1 0.28 0.28 0.14 1.24
0.5 0.35 0.76 0.64 0.5 0.19 0.06 0.30 0.28
0.9 0.60 0.62 0.40 0.9 0.07 0.03 0.11 0.18
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Chapter 3 Figures

Figure 3.1 Distributions of density (top), temperature (middle) and velocity (bottom)
for F = 0.05 (left) and F = 0.5 (right).
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Chapter 3 Figures

Figure 3.2 Reduced distribution function ϕ at five locations along the distance between
the plates, with a tail region detail at the center of the flow domain (bottom right
subfigure) for F = 0.5 and Kn0 = 1.
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Figure 3.3 Reduced distribution function ϕ at three locations along the distance between
the plates, for F = 0.5 and Kn0 = 1 and 10.
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Figure 3.4 Reduced distribution function ϕ at three locations along the distance between
the plates for F = 0.05 and Kn0 = 0.1, 1.
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Figure 3.5 Reduced distribution function ϕ at the center of the distance between the
plates for F = 0.5 and Kn0 = 10 in terms of s2, for various values of ζx.
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Figure 3.6 3D plot of the reduced distribution function ϕ at s1 = −1/2 for F = 0.5
and Kn0 = 1.
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Chapter 3 Figures

Figure 3.7 View of the computational domains with the coordinate system and its
origin for the typical flow configuration (regions (A), (B) and (C)) and the one with
the implicit boundary conditions (only region (A)), with α = H/2 or R for the channel
and tube respectively.
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Chapter 3 Figures

Figure 3.8 Relative difference (error) of the flow rates between the typical approach
and the one with implicit boundary conditions in terms of δin (χ/L) (∆P/Pin) for the
channel (left) and tube (right) flows.

Figure 3.9 Relative difference (error) of the flow rates between the typical approach
and the one with implicit boundary conditions plus the end effect correction in terms
of δin (χ/L) (∆P/Pin) for the channel (left) and tube (right) flows.
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Chapter 4

Marching DVM algorithm on unstructured
meshes

4.1 Introduction

The Discrete Velocity Method (DVM) is probably the most prevailing deterministic
computational methodology for the solution of the Boltzmann and kinetic model
equations [53], [54]. In discrete velocity algorithms the continuous molecular velocity
spectrum is replaced by a set of discrete velocities. The choice of the discrete velocities
depends on the peculiarities and characteristics of each problem, although general
rules can be developed. In steady-state flows an iteration scheme between the solution
of the kinetic equations and the computed moments of the distribution function is
introduced, until convergence is reached. Once the kinetic equations are discretized in
the velocity space they are reduced to ordinary or partial differential equations, which
are solved by finite difference or volume schemes, while the moments are obtained by
numerical integration. The values of the distribution function in each iteration may
be obtained either by solving a system of linear algebraic equations or alternatively
using a marching scheme through the physical space for each discrete velocity. The
latter methodology, compared to the former one, provides considerable computational
benefits in both CPU time and memory requirements. However, so far, marching
schemes have been adopted only on structured grids, where the proper marching from
node to node may be easily specified via the node indexation.

In recent years several methodologies have been proposed in order to solve the
kinetic equations on arbitrary geometries. In [145], a parallel solver for rarefied gas
flows through porous media is developed, able to simulate geometries of arbitrary
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complexity using a marching scheme. The grid however, is structured and the solution
sequence is obtained directly from the node indexing. Flows with moving boundaries
have been simulated using the DVM with Cartesian grids and the cut cell method has
been applied to capture the irregularities of the boundaries [146]. Both approaches in
[145] and [146] result in a “staircase” representation of the boundary when it is fitted
to the grid lines. Furthermore, the recently introduced Unified Gas Kinetic scheme
[147] and the open source dugksFoam code [148] available on the OpenFOAM platform,
may be run on unstructured meshes. In addition, finite element approaches using the
discontinuous Galerkin method have been applied [149]–[151] and three dimensional
DVM solvers based on finite volume approaches, able to simulate geometries of arbitrary
complexity with boundary fitted meshes [152]–[154], have been developed. In all cited
works [147]–[154] however, the solution of large linear systems in each iteration is
needed. It is clear that the extension of the DVM to arbitrary geometries is an active
area of research.

Based on the above, in the present chapter of the dissertation, a marching DVM
algorithm on unstructured grids is developed and implemented. The main concern is
the identification of the proper marching path through the unstructured grid in order
to properly compute for each discrete velocity the distribution function at some node in
terms of the already computed distributions at the adjacent nodes. Obviously, following
an erroneous path will result to the collapse of the algorithm. Furthermore, the proper
path for each discrete molecular velocity may be different. Here, the calculation of
the node sequence is achieved in two different ways. The first one is a backtracking
algorithm, which may be considered as a special case of exhaustive (or brute force)
algorithms [155]. This algorithm is robust but computationally intensive. The second
one is based on purely geometrical arguments. It is computationally efficient but,
as it will be shown, is not always conclusive. Overall, it is proposed to implement
the geometrical methodology and only when it fails, to be replaced for the specific
velocity by the backtracking algorithm. It is important to point out that always
the marching path through the proper node sequence is obtained for each discrete
velocity only once before the iterative procedure starts and remains the same during
the iterative solution. Thus, the additional computational effort is small compared to
the overall computational effort. In order to demonstrate the ability of the developed
marching DVM algorithm on unstructured meshes to accurately solve the kinetic
model equations, some two-dimensional rarefied gas flows are solved and the results
are compared to corresponding ones available in the literature. The considered test
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cases include fully developed flows and boundary driven configurations modeled using
linear and non-linear kinetic model equations. Unstructured meshes are used in all
cases, even if a structured mesh can be used.

The unstructured mesh geometry and the implemented numerical scheme to dis-
cretize the kinetic equation on unstructured grids are described in Section 4.2. The
two methodologies, namely the backtracking and geometric algorithms, identifying
the proper marching path through the mesh for each discrete velocity, along with a
comparison between the two methodologies, are presented in Section 4.3. The structure
of the developed marching DVM algorithm is given in Section 4.4. To demonstrate the
validity and the effectiveness of the algorithm, benchmark results are obtained for fully
developed flows, linear boundary driven flow in a cavity and nonlinear temperature
driven flow in a cavity in Sections 4.5, 4.6 and 4.7 respectively. Finally, some concluding
remarks are made in Section 4.8.

4.2 Unstructured mesh geometry and discretiza-
tion scheme

Any steady nonlinear two-dimensional kinetic model equation, in the absence of
external forces, may be written in a general form as

ξx
∂f

∂x
+ ξy

∂f

∂y
= (f eq − f)

τ
, (4.1)

where (x, y) are the physical coordinates, (ξx, ξy) are the two-components of the
molecular velocity vector, f = f (x, y, ξx, ξy) is the velocity distribution function, f eq

is the equilibrium distribution function of the kinetic model and τ is the corresponding
relaxation time. The kinetic equation is coupled with the moment of f providing the
macroscopic quantities, which are present in the expression of f eq. The solution of f
is obtained in an iterative manner between the kinetic equation and the moment of
f and is concluded when the macroscopic quantities are converged. Here, the aim is
to discretize Eq.(4.1) in a way to be solvable by a marching DVM algorithm on an
unstructured grid.

The molecular velocity space is transformed from Cartesian to polar coordinates,
according to ξx = ξ cos θ and ξy = ξ sin θ, where ξ is the magnitude and θ is the
polar angle of the molecular velocity vector. Equation (4.1) is rewritten in the more
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convenient form
ξ · ∂f

∂s
= (f eq − f)

τ
, (4.2)

where s = s (x, y, θ) denotes the characteristic, passing from some point node (x, y)
with polar angle θ.

Then, the molecular velocity space is discretized. The discrete values of the
magnitude ξm, m = 1, ...,M , are taken as the roots of a polynomial, usually the
Legendre polynomial, accordingly mapped from (−1, 1) to (0,+∞), while the discrete
values of the polar angle θk, k = 1, ..., K, are uniformly distributed in [0, 2π]. The
polar representation of the molecular velocity space, as it will be shown, decreases the
memory requirements and the computational overhead of the developed method. Also,
using the roots of an orthogonal polynomial as the discrete values of the molecular
velocity magnitude allows the application of Gaussian quadrature for the numerical
calculation of the moments of the distribution function increasing numerical accuracy.
For the integration with respect to the polar angle the trapezoidal rule is used.

The physical space is discretized by an unstructured mesh with j = 1, ..., NE

elements and i = 1, ..., NN nodes with coordinates (xi, yi). The nodes are divided into
two sets, namely the interior nodes I and the boundary nodesB. Elements of any
number of nodes may be introduced. For simplicity purposes, the methodology is
presented assuming triangular grid elements. Extension to more complex elements is
straightforward since any element can be represented using triangles and only a brief
discussion for more complex elements is made in a later stage.

To clearly demonstrate the discretization process, consider, as shown in Figure 4.1,
a tiny detail of the unstructured mesh consisting of some node i and all triangular
elements having a common vertex, which happens to be the node i, as well as some
molecular velocity vector ξ = (ξm, θk) having its origin at node i. The trace of ξ,
i.e., the half line that has the same slope θk as the molecular velocity vector and
spans in the direction opposite to that of the molecular velocity vector, defines the
characteristic along which information is propagated through the mesh to reach node
i. The characteristic is indicated in Figure 4.1 with the dashed line. The triangular
element in which the characteristic lies in, is the one between all elements having the
common vertex i, which should be involved in the computation of the distribution
function at node i with discrete molecular velocity ξ = (ξm, θk) based on the values of
the corresponding distributions at the other two vertexes of this element. Obviously,
different elements may be used, depending on the specific node i = 1, ..., NN and polar
angle k = 1, ..., K and they are specified as Ei,k, with the first and second indexes
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referring to the node and the polar angle respectively. Similarly, the two vertexes of
the each element defining the edge which is crossed by the characteristic, denoted by
n1 and n2 in Figure 4.1, are also specified as n1,i,k and n2,i,k. In addition, the distances
between the crossing point C and the vertexes n1, n2 and i, denoted by l1, l2 and ∆s
in Figure 4.1, shall also be needed and they are specified in the general case with the
same indexes, characterizing a specific node and polar angle, as l1,i,k, l2,i,k and ∆si,k. It
is important to note that the nodes and elements which correspond to n1,i,k, n2,i,k and
Ei,k, as well as the distances which correspond to l1,i,k, l2,i,k and ∆si,k, are found only
once well before the initiation of the iterative map and they are introduced as input
data, which do not alter throughout the algorithm. Furthermore, the fact that these
quantities depend only on the polar angle and not on the magnitude of the molecular
velocity is the main reason of choosing a polar representation of the velocity space.
Obviously, they should be specified in a proper way allowing the implementation of
the marching DVM algorithm. This important issue is addressed in the next section,
while now the discetization scheme is described.

Equation (4.2) is discretized in the molecular velocity space and the resulting system
of ordinary differential equations is approximated by finite differencing at the midpoint
of the characteristic line segment inside the element. In Figure 4.1, the midpoint is
denoted by D and the discrete form of the equation is

ξm
fi,m,k − fC,m,k

∆si,k
=
f eqD,m,k − fD,m,k

τD,m,k
, (4.3)

with i = 1, ..., NN , m = 1, ...,M and k = 1, ..., K. The discretized distributions fD,m,k
and f eqD,m,k, as well as the discrete relaxation time τD,m,k, all at point D, are averaged
using the corresponding values at adjacent grid point i and point C as

f eqD,m,k =
(
f eqi,m,k + f eqC,m,k

)
/2, (4.4)

fD,m,k = (fi,m,k + fC,m,k) /2 (4.5)

and
τD,m,k = (τi,m,k + τC,m,k) /2. (4.6)

Substituting Eqs. (4.4), (4.5) and (4.6) into Eq. (4.3), yields

fi,m,k =
f eqi,m,k + f eqC,m,k + fC,m,k

(
−1 + ξm

∆si,k
(τi,m,k + τC,m,k)

)
1 + ξm

∆si,k
(τi,m,k + τC,m,k)

, (4.7)
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where the distribution functions and the relaxation time at point C are obtained as a
linear interpolation of the corresponding values at nodes n1 and n2 according to

fC,m,k = (fn1,m,kl2,i,k + fn2,m,kl1,i,k) / (l1,i,k + l2,i,k) , (4.8)

f eqC,m,k =
(
f eqn1,m,kl2,i,k + f eqn2,m,kl1,i,k

)
/ (l1,i,k + l2,i,k) (4.9)

and
τC,m,k = (τn1,m,kl2,i,k + τn2,m,kl1,i,k) / (l1,i,k + l2,i,k) . (4.10)

Equation (4.7) with the associated expressions (4.8), (4.9) and (4.10) may be used
in each iteration to march through the mesh and compute the discrete distribution
function fi,m,k, provided that the corresponding distributions fn1,m,k and fn2,m,k have
already been computed, the equilibrium distributions are known from the previous
iteration and of course all distances have been estimated.

The key issue is the prompt computation of fn1,m,k and fn2,m,k, which must be
available in order to realize the marching expression (4.7) and this is achieved by
identifying the proper node path. The sequence, according to which the nodes must be
considered, depends on the polar angle of the molecular velocity and is independent of
the molecular velocity magnitude. Two methodologies are proposed in the next section.
The discretization scheme presented here for the nonlinear form of kinetic model
equations, is applicable in a straightforward manner to linearized kinetic equations
simulating linear and fully developed flows. This is easily seen since in all cases the
streaming part of the kinetic equations remains the same.

4.3 Identification of the marching path in unstruc-
tured grids

Two methodologies are proposed in order to identify the correct marching path
through unstructured meshes. The first one is called the backtracking approach and it
is an exhaustive type algorithm. The second one is called the geometrical approach
and it is a generic and intuitive approach based on simple geometrical arguments.

In both methodologies some information about the boundary nodes group, denoted
as B, is needed. For each polar angle θk, the boundary nodes group is divided into two
subgroups. One subgroup includes only the boundary nodes with outgoing distributions
and the other group the remaining boundary nodes with purely incoming distributions.
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If ei is the unit normal vector on some boundary node i, facing towards the inside of
the computational domain, while ek is the unit normal vector in the direction of the
molecular velocity for polar angle θk, then the group of boundary nodes with outgoing
distributions is B+

k : [i ∈ B ∩ ei · ek > 0], while the group with incoming distributions
is B−

k : [i ∈ B ∩ ei · ek < 0]. The identification of the two groups of boundary nodes
for each polar angle θk is done before the initialization of the iterative map. Next, the
two developed methodologies able to obtain the proper solution sequence are described.
This sequence is denoted as Ok (n) indicating the n−th node to be considered for the
polar angle θk.

4.3.1 Backtracking algorithm

The backtracking algorithms are considered as a special case of the exhaustive or
brute force algorithms. An exhaustive algorithm will identify the desired one by going
through the whole set of possible solutions. When the solution must satisfy a criterion
and it is possible to check if the criterion is violated without obtaining the whole solution,
then backtracking algorithms can be applied. A backtracking algorithm, incrementally
builds candidates to the solution and will abandon a candidate (backtrack), if the
candidate in question, will give a solution violating the criterion.

The reasoning behind these algorithms can be explained using the famous puzzle
with the eight queens. The objective of this puzzle is to place eight chess queen pieces
on a chessboard so that no queen threatens any other. If an exhaustive algorithm is
used, all the possible arrangements, which are 4.426.165.368, are identified one by one,
until a solution satisfying the imposed criterion is obtained. A backtracking algorithm,
at some stage of the solution, will place a queen at an empty square and if this queen
threatens any other, i.e., violates the criterion, it will be removed from this square
(backtracking) and will be placed on a different square. The criterion is checked again
and the procedure is repeated until a valid solution is obtained.

A backtracking algorithm is used in order to find the solution sequence Ok (n). A
flowchart of this method is shown in Figure 4.2. The NBC

k nodes that belong to B+
k are

placed in the first NBC
k positions of the Ok array. The rest

(
NN −NBC

k

)
nodes of the

computational grid that are unsorted and have not been yet added in Ok, are placed
into an array (AN). The number of sorted nodes is initialized as NS = NBC

k and then,
the next node (NS = NS + 1) to be placed in the next empty position of the solution
sequence array Ok (NS) is sought. In order to find this node, all the nodes of the
unsorted nodes array (AN) are examined until a node i is found that is connected to
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the two nodes needed to propagate the distribution, namely the n1,i,k and n2,i,k nodes,
which already have been placed in the Ok array. Once such a node is found, it is placed
in the solution sequence array (Ok (NS) = i) and is removed from the AN array. It is
noted that a lookup table is constructed indicating if a node had been already placed
in the Ok array and this table is used when checking if a node is already in the array.
The procedure is repeated until all the NN positions of Ok are filled and of course it is
applied for each discrete angle θk. The number of operations required by this method
scales quadratically with the number of physical nodes and linearly with the number
of discrete angles.

The backtracking algorithm is robust and will always provide a correct solution
sequence, even when the mesh is of bad quality. Also, since the method is not directly
affected by the mesh geometry, elements of any kind are handled in the same manner.
Its only drawback is that it is computationally intensive.

4.3.2 Geometrical algorithm

Consider the coordinate system (x, y) with its origin O, a two dimensional arbitrary
computational domain Ω and a circle with its center in O, enclosing the whole com-
putational domain Ω, as shown in Figure 4.3. The unstructured mesh of Ω consists
of acute triangular elements. Consider next, some molecular velocity vector ξ with
arbitrary polar angle θk. A line ε normal to the molecular velocity vector and tangent
to the circle is drawn. There are two such lines. The one which is sweeping through
the computational domain Ω, as it is moving in the direction of the molecular velocity
direction, is chosen. Both the velocity vector ξ and the line ε are also shown in Figure
4.3.

It is argued that as line ε is sweeping the computational domain and reaching at
some arbitrary node i, the propagation of the distribution function with polar angle θk
to this node, based on the marching expression (4.7), is feasible and may be realized.
This implies that line εhas already scanned nodes n1,i,k, n2,i,k and the corresponding
distributions at these two nodes have been computed. Therefore, the n−th node
encountered by line ε, will be the n−th node to be solved for the current value of
θk. To further demonstrate and prove that based on this methodology a node path
allowing the consistent propagation of the distribution function through the mesh for
each polar angle may be identified, the following arguments are made:
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1. Line ε sweeps through the mesh, in the direction of some velocity ξ with arbitrary
polar angle θk and reaches an arbitrary node i.

2. All nodes behind the line, in the direction opposite of the molecular velocity,
have been scanned and have known distributions.

3. The distribution functions with polar angle θk at node i are computed based on
the known corresponding distributions at two nodes which are behind line ε.

4. The first two nodes swept by line ε belong in the boundary subgroup of nodes
B+
k and their outgoing distributions with polar angle θk are known.

Argument 1, simply refers to the position of line ε with regard to node i. Arguments 2-3
ensure the proper computation sequence of the distribution function through the mesh
following a compatible node path. Finally, argument 4 ensures the proper initialization
via the given outgoing distributions at the boundaries.

To prove arguments 2 and 3 consider, in Figure 4.4, an acute triangular element
with vertices i, n1 and n2, containing the characteristic (dashed) line of molecular
velocity ξ = (ξm, θk) and the line ε normal to ξ passing through node i. The objective is
to prove that both n1 and n2 are behind line ε. Obviously, since the characteristic has
the same slope as ξ, it is also normal to line ε sweeping the mesh. The characteristic
divides the space into two half spaces, with each of the nodes n1 and n2 being at
different half spaces. If both were at the same half space the characteristic would be
outside the element. Furthermore, for the same reasoning, at least one of the two nodes
has to be behind line ε. Without loss of generality it is assumed that n2 is behind line
ε, while n1 can be in either side of it. The angle α at node i is divided into two angles
α1 and α2, as shown in Figure 4.4. Since the characteristic and line ε are normal to
each other, in order of n1 to be in front of line ε, angle α1 should be obtuse (α1 > π/2),
which is not, since a triangle with acute angles is considered. As a result both n1 and
n2 are behind line ε.

To prove argument 4 consider, in Figure 4.5, the acute triangular element ABC.
Without loss of generality it is assumed that nodes A and B belong in the group of
boundary nodes B, with A being the first boundary node swept by line ε, which always
is normal to ξ and moves in its direction. The objectives are to prove that A and B

belong in the subgroup of boundary nodes with outgoing distributions
(
B+
k

)
and that

B is swept by line ε before C. The unit vector ei at node A pointing towards the
flow domain has the same direction with ξ, because there is no flow domain behind
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line ε and therefore, ξ · n1 > 0, which is the condition proving that a boundary node
belongs in the subgroup B+

k . Similarly, it is proven that B also belongs in B+
k . Then,

it is shown that since angle ACB < π/2, line ε reaches B before reaching C, i.e., that
the distance dBB′ of node B from ε is smaller than the corresponding distance dCC′

(dBB′ < dCC′). In order to be the other way around, i.e., dCC′ < dBB′ , node C should
be located between lines ε and ε′, where ε′ is parallel to ε and goes through node B.
In the limiting case dCC′ = dBB′ , the node C is on line ε′ and this auxiliary node is
denoted as C1. The quadrangle C ′

1C1BB
′ is a rectangle with its angle C ′

1C1B = π/2.
Two cases are distinguished: a) Node A is not between points C ′

1 and B′ (shown in
Figure 4.5). Then, angle AC1B > π/2, which cannot happen since the triangle is
acute; b) Node A is between points C ′

1 and B′. Then, C1C
′
1, which is the characteristic

going through C1 lies outside of the triangular element and another element should
be considered. Thus, node C1 cannot be on line ε′. Also, if node C1 is moved closer
to AB′, then it follows from simple trigonometry that the angle AC1B will be further
increased. In conclusion, the distance of node C1 is smaller than the distance of B
from line ε, only when the triangle is obtuse, which is not. As a result node B will be
swept before C.

Based on the above it is shown that the proposed methodology based on purely
geometrical principles may constitute a suitable node path to march through the
unstructured mesh. The methodology of finding a consistent node marching through
the mesh has been presented for some molecular velocity vector ξ with arbitrary polar
angle θk and it may generalized to any polar angle. To implement the methodology
the following simple steps for each value of θk are taken:

1. Define line ε.

2. Calculate the distance of each node from line ε.

3. Sort the nodes in ascending order with regard to their distance from line ε.

Sorting the nodes based on their distance from line ε is equivalent to considering
the solution sequence Ok (n) according to which line ε sweeps the nodes as it moves
through the mesh. This is much more practical in the application of the algorithm.
Of course sorting can be a time consuming process, especially when the number of
items to be shorted is large. In the present approach the number of items to be sorted
is equal to the number of nodes. Furthermore, sorting is required for each discrete
polar angle. Since consecutive values of discrete polar angle θk are very close to each
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other, the solution sequence for some polar angle θk is expected to be close to that
of the next angle θk+1. For this reason the sorting starts placing the distances for
θk+1 according to the sequence Ok (n) of θk. This way the array is nearly sorted with
only few elements out of order and the computational cost of sorting is drastically
decreased. Using the modified Bubble sort algorithm for a nearly sorted array, the
number of operations required scales linearly with the number of items to be sorted. In
the current case the number of operations is a linear function of the number of nodes
O (NN). For the first polar angle θ1 where the distances are roughly in random order,
a more efficient algorithm, such as the Quick sort can be used. Although in the current
implementation the modified Bubble sort is applied even for the first angle. In any
case as it is shown in the next subsection increasing the number of discrete angles does
not have a considerable effect on the computational time required by this method.

The main restriction of the proposed geometrical methodology is the assumption of
acute triangular mesh elements. In case of obtuse triangles the geometrical approach
may fail to identify the proper node path. Consider an obtuse triangular element, as
shown in Figure 4.6, along with the characteristic (dashed) line and the line normal to
the molecular velocity vector crossing node i. It is readily seen that when α > π/2,
while both nodes n1 and n2 must be behind line ε, it happens that only n2 is behind
line ε. This situation may only arise if obtuse elements exist and even then, it will not
always be the case, but it may occur. In practice, a triangular mesh is considered of
high quality when the elements are equilateral. Having obtuse triangles is undesirable
and thus in most mesh generators they are omitted or limited in a very small number
of elements compared to the total one. In any case the proper way to implement the
geometrical approach is to check for obtuse elements and if needed use for this specific
polar angle θk the backtracking algorithm.

All arguments made above consider triangular elements. Extension to more general
elements is straightforward, as always two nodes will be used for the distribution
propagation, resulting to the same arguments. In cases where more general elements
are used however, obtuse angles are much more commonly present and the backtracking
algorithm can be proved superior.
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4.3.3 Comparison between the backtracking and geometrical
algorithms

The two developed methodologies are compared in terms of the computational
time required to find the solution sequence. The CPU times are shown in Table 4.1
for various values of the number of discrete angles and number of physical nodes.
For both methodologies the required computational time scales with the square of
the number of physical nodes. However, the computational time with respect to the
number of discrete polar angles scales linearly for the backtracking algorithm, while it
is almost unaffected for the geometrical method. This big advantage which makes the
geometrical method much faster, particularly, in dense velocity grids, is contributed to
the sorting approach, where the sequence array is initialized as nearly sorted for all
angles after the first one.

It is noted that the comparison between the two algorithms is based on acute
triangular elements. This is an advantage for the purely geometrical method since
there has been no need to look up for the combined approach, which would increase
the time required for the geometrical method. Finally, it is worth mentioning that the
computational time required for the calculation of the solution sequence, even for the
backtracking algorithm, is relatively small compared to the total simulation time to
solve the kinetic equations.

In general, it is proposed to define the node marching path based on the geometrical
method and apply the backtracking algorithm only when the former one provides an
erroneous sequence.

4.4 Structure of the marching DVM algorithm

The main structure of the code is presented, in a flow chart, in Figure 4.7. Following
the initialization step, an iterative scheme is used for the solution of the kinetic equations.
More specifically, the old values of the macroscopic quantities are stored and the solution
procedure is carried out for each value of the molecular velocity in order to update
the values of the distribution function. Then, the updated distribution is integrated
in order to update the values of the macroscopic quantities and boundary condition
parameters for the next iteration. These steps are repeated upon convergence of the
macroscopic quantities.
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As it is seen the overall methodology remains the same as in the case of structured
grids. The main difference exists in the initiation step where the detailed geometry of
the unstructured grid along with the marching node path are specified. The proposed
marching DVM algorithm is realized using an object oriented programing (OOP)
approach in Fortran 2008. The mesh information is consisting of the node coordinates,
the element information and more specifically the number and ID of the nodes that
form each element, as well as the group of nodes that form the boundary of the
computational domain. They are all provided as input to the code through an I-DEAS
Universal file (UNV file). These files are plain text files and are supported by a variety
of mesh generators. In all cases where the developed code is used in the present
dissertation, the SALOME mesh tool is used. A view of the initialization step is given
in the flowchart shown in Figure 4.8.

Thus, in the initialization step the mesh information and simulation parameters
provided to the code and the data structure storing the mesh information are also
formed. The data required for the solution procedure, such as the boundary nodes B±

k ,
the nodes n1,i,k, n2,i,k, the lengths l1,i,k, l2,i,k and ∆si,k including the consistent marching
path through the unstructured mesh for each node and polar angle are all specified.
Furthermore, in order to decrease the computational load of each iteration, any
weighting factors or parameters used throughout the simulation are also pre-calculated
and stored. At each iteration, the solution starts by applying the boundary conditions
to all nodes belonging in B+

k and the equilibrium distributions are calculated. Then,
following the solution sequence obtained during the initialization step, the distribution
is propagated to each node based on Eq. (4.7) using all pre-calculated geometric and
mesh parameters.

These calculations in the initialization step obviously pose a computational overhead
to the overall computational effort, which does not exist in tailor made codes for specific
geometries, where most of the introduced data, including the marching path, are trivially
found through the node indexing. However, this extra effort is done only once and the
involved computational time is small compared to the computational time required
for all kinetic simulations, which are needed in order to completely investigate the
flow problem under consideration, in terms of all involved geometrical and operational
parameters.

To demonstrate the effectiveness of the marching DVM algorithm in unstructured
grids, the pressure driven flow around UTH (initials of University of Thessaly) is
simulated and velocity streamlines are plotted in Figure 4.9. A block structured
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quadrilateral mesh has been used, with some triangular elements utilized to connect
the different blocks. A detail of the mesh around the lower part of the letter U is shown
in Figure 4.10.

4.5 Test case I: Fully developed flows in channels
with circular, ellipsoidal and Sierpinski carpet
cross sections

Fully developed flows through long capillaries are considered based on the proposed
algorithm and the computed results are compared with existing ones. Three different
configurations are examined, namely a) the pressure and temperature driven flow
through a tube of elliptical cross section, b) the pressure driven flow through a
circular tube with partial wall accommodation and c) the pressure driven flow through
capillaries of Sierpinski carpet cross sections of various levels. The kinetic formulation
of fully developed flows, which is implemented in the present test cases, is given for
completeness purposes in Appendix B1.

The fully developed ellipsoidal tube configuration is examined in [156] and modeling
is based on the linear Shakhov model. In [156] several ellipses are considered. Here,
the comparison is performed for one geometry, more specifically for an ellipse of aspect
ratio equal to 2 and for values of the gas rarefaction parameter δ ∈ [0, 20].

The fully developed circular tube flow configuration is based on the linear BGK
model and results are reported in [23]. For this case three values of the accommodation
coefficient are considered, namelyα = 0.8, 0.9 and 1 and for values of the gas rarefaction
parameter δ ∈ [10−2, 10].

The fully developed flow through capillaries of Sierpinski carpets cross sections
is considered in [61] on the basis of the linearized Boltzmann equation. Here, the
linearized BGK model is used. Concerning the Sierpinski carpet, the first three levels
along with the degenerate level 0 are shown in Figure 4.11. Starting from a square (or
level 0), the domain is divided into 9 squares using a 3 × 3 grid and the central square
is removed in order to obtain the level 1. For each subsequent level, the remaining
squares of the grid constructed in the previous level are divided each with a 3 × 3 grid
and again each central square is removed. The levels 0-3 are considered for values of
the gas rarefaction parameter δ ∈ [0, 150].
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In all cases the rarefaction parameter is defined as

δ = PL

µυ0
, (4.11)

with P , µ and υ0 denoting the pressure, viscosity and most probable molecular speed at
reference conditions. The reference length L for the circular tube is the radius, for the
ellipsoidal tube is the length of the semi-minor axis and for the Sierpinski carpets the
side length of the largest square. Unstructured mesh consisting of triangular elements
is always used. Parts of the meshes of the cross sections of the ellipsoidal tube, the
circular tube and the Sierpinski carpets tube are shown in Figures 4.12, 4.13 and 4.14
respectively.

The comparison is based on the calculated reduced flow rates for the pressure (GP )
and temperature (GT ) driven flows defined as

GP = − 1
A

∫
R2
uz,PdA (4.12)

and
GT = 1

A

∫
R2
uz,TdA, (4.13)

where A is the dimensionless cross section area. This comparison is presented in Table
4.2 for the elliptical tube and in Table 4.3 for the circular tube. The relative difference
is less than or close to 1% for all cases considered. The comparison between the present
results and the results of [61] for the flows through Sierpinski carpets is shown in Figure
4.15. The results are in good agreement, with some discrepancies at large values of δ
for the level 0 carpet, that are attributed to the mesh size.

In Figure 4.15 the results obtained from the solution of the Stokes equation with
slip boundary conditions are also shown. The solution is performed on the same mesh,
using a recently developed in-house unstructured finite volume code. It is interesting
that for the level zero carpet the slip solution is close to the kinetic one for δ > 50 ,
while for levels 1, 2 and 3 the slip solution becomes valid for much larger values of
δ. This is because δ is defined using the length of the largest side, but for the levels
different than 0, the flow has smaller scales due to the smaller squares inside the flow
domain. This fact should be carefully considered when simulating fractal geometries
and porous media and indicates that a kinetic approach should be preferred, even at
relatively high values of the reference rarefaction parameter.
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4.6 Test case II: Linear lid driven cavity flow

The linear lid driven cavity flow is next considered. A monatomic rarefied gas
is confined in a square enclosure with three stationary walls and one wall moving
along its axis with velocity UW << υ0. The linear BGK model is used and the small
parameter for the linearization is defined as ε = UW/υ0. This configuration has been
studied in [157]. Due to the wall motion a main vortex is formed with its center along
the vertical centerline of the cavity. A part of the mesh used is shown in Figure 4.16.
The rarefaction parameter is defined using the side length of the cavity as a reference
length.

A comparison is performed for values of the rarefaction parameter δ ∈ [10−3, 10],
based on three quantities of interest, mainly the drag coefficient of the moving wall, the
location of the center of the vortex along the vertical axis and the flow rate between
the center of the vortex and the moving wall. All quantities are reported in [157]. The
flow rate between the center of the main vortex and the top wall is given by

M = 2
∫ 1

yloc

ux (1/2, y) dy, (4.14)

where yloc is the location along the vertical axis of the center of the main vortex and
the drag coefficient of the moving wall is given by

D = −2
∫ 1

0
pxy (x, 1) dx. (4.15)

The values of the flow rate between the center of the vortex and the moving wall,
for the different values of the rarefaction parameter are shown in Table 4.4. The
mass flow rate is almost constant for small values of δ and is steadily increased as δ
increases beyond the transition regime. The drag coefficient in terms of the rarefaction
parameter is shown in Table 4.5, with its values decreasing as δ increases. Table 4.6
shows the location along the vertical axis of the center of the main vortex, which is
squeezed towards the moving wall as δ increases. The present results are in very good
agreement with corresponding one in [157].

Velocity streamlines and vertical velocity contours are shown in Figure 4.18 for
δ = 0.1, 1, 5 and 10. The characteristics of the flow are in good agreement with the
ones shown in [157]. The vertical velocity component is anti-symmetrical with respect
to the centerline of the cavity and although the number of physical nodes used is

80

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Section 4.8

around 16000, the contours are smooth and no ray effect from the discontinuity of the
boundary conditions is produced. It is noted, that for the values of the rarefaction
parameter considered only the main vortex is formed, and secondary vortices will
appear at the bottom corners moving further into the slip regime.

4.7 Test case III: Nonlinear thermally driven cav-
ity flow

The thermally driven flow in a cavity with the bottom and top walls kept at
different but constant temperatures and a linear temperature distribution imposed
along the lateral walls is considered. This setup is studied in Section 6.2 of the present
dissertation [158], where the detailed kinetic formulation and solution are presented.
Here, only a comparison between the present results obtained with an unstructured
mesh with the corresponding ones in Section 6.2 obtained with a structured grid is
made.

The nonlinear Shakhov kinetic model is applied, assuming hard sphere molecules
and purely diffuse boundary conditions. The configuration is characterized by the
reference Knudsen number

Kn0 =
√
πµυ0

2P0H
(4.16)

and the ratio of the hot over the cold wall temperatures, TC/TH . A comparison is
performed for reference Knudsen number Kn0 = 0.1, 1 and 10 and temperature ratio
TC/TH = 0.1, 0.5 and 0.9. A part of the mesh used is shown in Figure 4.17. The heat
flux departing from the bottom (heated) wall of the cavity is used for the comparison,
which is defined as

Qout =
∫ 1

0
qy (x, 0) dx. (4.17)

The values of the heat flux in terms of the reference Knudsen number and the temper-
ature ratio are presented in Table 4.7 and they are in very good agreement with the
ones in [158].

Velocity streamlines and temperature contours have been also computed for Kn0 =
0.1, 1, 10 and TC/TH = 0.1, 0.5, 0.9. The temperature distribution is relatively
simple, with a stratified temperature profile observed in all cases, while the flow
structure however is more complicated. There is always an excellent agreement with
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the corresponding contours presented and further analyzed in Chapter 6 (see Figures
6.2 and 6.3) [158].

4.8 Concluding remarks

The DVM has been proven to be, over the years, the most general and reliable
deterministic numerical method for the solution of the Boltzmann and kinetic model
equations. It has been applied with considerable success in both structured and
unstructured meshes. However, in most available solvers the implementation of the
method requires the solution of large algebraic systems. It is stressed out that in kinetic
modeling, discretization is performed in the physical and molecular velocity spaces.

An alternative computationally efficient methodology has been applied to compute
the distribution function via a marching scheme without requiring the implementation
of time consuming solvers of huge linear algebraic systems. However, this scheme has
been limited so far only on structured meshes, while there is a demand for unstructured
meshes in order to simulate devices and apparatus with complex geometries.

Here, two methodologies are developed to solve kinetic equations based on the
marching approach on unstructured meshes. Always the key issue is the specification
of a consistent marching node path through the mesh allowing the computation of the
distribution function in the direction of each discrete velocity. One methodology is the
backtracking approach, which it is an exhaustive type algorithm and the other one is
the geometrical approach, which is a generic and intuitive approach based on simple
geometrical arguments. The latter one is computationally very efficient but in some
cases, when the mesh in the physical space contains elements with obtuse angles, may
deduce an erroneous marching path. The former one is robust but computationally
more intensive.

It is proposed to use both approaches staring with the geometrical method and
apply the backtracking approach, only when the former one fails. A marching DVM
code on unstructured meshes has been developed to implement the proposed algorithm
and it has been successfully benchmarked in several rarefied gas flows and heat transfer
configurations in convex and non-convex computational domains. The test cases include
fully developed flows through capillaries of circular, ellipsoidal and fractal geometry
cross sections, as well as linear and nonlinear lid driven and temperature driven flows
in cavities.
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The developed marching DVM algorithm on unstructured meshes has a lot of
potential and opens new possibilities of deterministic kinetic modeling in complex
geometries. Future work includes the extension of the code to three dimensional flows
as well as the application of higher order schemes for the solution propagation in the
physical space to allow accurate simulations with a smaller number of nodes.
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Table 4.1 Time (sec) required to find the marching node path by the backtracking
(BTA) and geometrical (GM) schemes for various numbers of velocity polar angles and
physical nodes

Number of
physical
nodes

Number of polar angles
40 80 120 160 200

BTA GM BTA GM BTA GM BTA GM BTA GM
8140 3.88 3.34 9.03 3.38 15.14 3.40 20.8 3.42 27.21 3.43
16128 14.14 13.18 37.35 13.39 68.86 13.42 95.09 13.48 126.4 13.48
32283 68.16 52.5 157.1 53.12 261.0 53.34 361.2 54.57 468.7 55.94
65576 352.4 216.7 733.8 219.1 1248 220.0 1689 220.3 2293 220.7

Table 4.2 Flow rates GP and GT for various values of δ for flow through an elliptical
tube.

δ
GP GT

Ref. [156] Present Ref. [156] Present
0 2.0655 2.0612 1.0327 1.0306

0.01 2.016 2.0110 0.9770 0.974
0.1 1.9015 1.8978 0.8081 0.8066
1 2.0323 2.0273 0.4676 0.4667
5 3.4901 3.4619 0.1856 0.1848
10 5.4423 5.4060 0.1044 0.1044
20 9.41 9.2961 0.05528 0.05500

Table 4.3 Flow rate GP for various values of δ and accommodation coefficient α for
flow through a circular tube.

δ
α = 0.8 α = 0.9 α = 1

Ref. [23] Present Ref. [23] Present Ref. [23] Present
0.01 2.187 2.171 1.791 1.788 1.477 1.474
0.1 1.992 1.987 1.668 1.667 1.404 1.399
1 1.93 1.924 1.668 1.664 1.459 1.454
5 2.803 2.787 2.548 2.536 2.358 2.333
10 4.019 3.981 3.761 3.731 3.582 3.547
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Table 4.4 Flow rate M between the center of the vortex and the moving plate of a lid
driven cavity for various values of δ.

δ 0.001 0.01 0.1 1 5 10
Ref. [157] 9.7(-2) 9.7(-2) 9.7(-2) 1.0(-1) 1.3(-1) 1.4(-1)
Present 9.6(-2) 9.6(-2) 9.7(-2) 1.0(-1) 1.3(-1) 1.4(-1)

Table 4.5 Drag coefficient D of the moving plate of a lid driven cavity for various values
of δ.

δ 0.001 0.01 0.1 1 5 10
Ref. [157] 0.69 0.68 0.68 0.63 0.51 0.42
Present 0.68 0.68 0.67 0.63 0.50 0.41

Table 4.6 Location of the center of the vortex yloc in a lid driven cavity for various
values of δ.

δ 0.001 0.01 0.1 1 5 10
Ref. [157] 0.69 0.69 0.69 0.7 0.73 0.74
Present 0.68 0.68 0.68 0.7 0.73 0.74

Table 4.7 Heat flux departing from the bottom plate Qout of a cavity with non-isothermal
walls for TC/TH = 0.1, 0.5, 0.9 and Kn0 = 0.1, 1, 10.

Kn0
TC/TH = 0.1 TC/TH = 0.5 TC/TH = 0.9

Ref. [158] Present Ref. [158] Present Ref. [158] Present
0.1 7.20(-2) 6.98(-2) 5.18(-2) 5.16(-2) 1.19(-2) 1.19(-2)
1 1.47(-1) 1.47(-1) 1.23(-1) 1.23(-1) 2.88(-2) 2.87(-2)
10 1.78(-1) 1.78(-1) 1.50(-1) 1.49(-1) 3.47(-2) 3.46(-2)
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Figure 4.1 Detail of the unstructured mesh with some elements having a common node
(i) and a molecular velocity vector ξ with its origin at node i.
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Figure 4.2 Flowchart of the backtracking algorithm for the solution sequence.
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Figure 4.3 Arbitrary computational domain, along with a bounding circle and a tangent
line.

Figure 4.4 Acute triangular element with the characteristic line and a line normal to
the molecular velocity vector.
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Figure 4.5 Boundary element along with the line sweeping through the flow domain.

Figure 4.6 Obtuse triangular element with the characteristic line and a line normal to
the molecular velocity vector.
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Figure 4.7 Flow chart of the main steps of the marching DVM algorithm.

Figure 4.8 Flow chart of the initialization step in a marching DVM algorithm.
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Figure 4.9 Velocity streamlines for a flow around the letters UTH based on the marching
DVM algorithm on unstructured meshes.

Figure 4.10 Section of the unstructured mesh around the lower part of the letter U.
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Figure 4.11 Computational domain of Sierpinski carpets of levels 0, 1, 2, 3.
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Figure 4.12 Section of unstructured mesh in the fully developed flow through an
elliptical tube.

Figure 4.13 Section of unstructured mesh in the fully developed flow through a circular
tube.
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Figure 4.14 Sections of unstructured meshes in fully developed flow through Sierpinski
carpets.
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Figure 4.15 Reduced flow rate GP in terms of δ for the pressure driven fully developed
flow through capillaries of Shirpinski carpet cross sections.

95

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Chapter 4 Figures

Figure 4.16 Section of unstructured mesh in the lid driven flow.

Figure 4.17 Section of unstructured mesh in the thermally driven flow in a cavity.
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Figure 4.18 Streamlines and vertical velocity contours for a lid driven flow in a cavity
in terms of δ.
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Pumping due to thermal transpiration in
channels of various configurations

5.1 Introduction

Thermally driven flows are recently gaining attention due to their implementation
in thermally driven micro pumps (i.e., pumps without moving parts), which operate
based on various non-equilibrium thermally induced phenomena. Most of the proposed
thermally driven pumps follow the desirable characteristics of the original design by
Knudsen [101], [102], where a cold and a hot reservoir are connected by a straight
constant cross section tube with a temperature gradient along the tube wall. Pumps
based on other phenomena, such as the thermal edge flow [103] and the thermal stress
slip flow [104] have also been proposed.

One of the main obstacles in the original Knudsen pump design is that the large
temperature differences needed to enhance the flow are limited by the maximum
temperature that the tube material can withstand. To circumvent this pitfall, multistage
cascade-type designs with periodic temperature differences have been proposed and
the effective operation conditions have been specified by carrying out the associated
cascade mechanism analysis [105], [106]. Each pumping stage contains two channels:
the first one, having a positive temperature gradient along its wall, connects a cold and
a hot reservoir and the second one, with a negative temperature gradient, connects
the hot and the next cold reservoir. The second channel is much wider than the first
one in order to reduce the reverse undesirable thermal creep flow and achieve nonzero
net mass flow rates. However, mainly due to manufacturing constraints, only recently,
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prototypes have been manufactured and tested with considerable success [6], [113],
[114].

More recent alternative multistage pump designs include the replacement of the
narrow channels by curved channels [106]–[110], as well as setups with periodic ratchet-
type walls [104]. However, all designs suffer certain constraints either related to
microfabrication issues (combination of narrow/wide channels) or to wall temperature
control limitations (straight/curved and ratchet channels). In this chapter different
configurations are examined, identifying the advantages and limitations of each one,
in an effort to provide some general guidelines for the design of thermally driven
micropumps.

The first configuration to be examined is pumping through a saw tooth like chan-
nel utilizing the thermal stress slip flow to generate gas motion. In this setup the
temperature gradient is normal to the wall and no temperature gradient needs to be
maintained along the boundaries, which is an advantage since controlling temperature
variation along the boundary is not trivial. The saw tooth design has been recently
considered in [159] using a continuum approach and in [104] using the DSMC method.
In the present chapter this formulation is reconsidered utilizing the general purpose
deterministic kinetic solver developed in Chapter 4 to solve the nonlinear Shakhov
kinetic model equation. Rarefied temperature driven gas flows are characterized by
high Knudsen numbers and very low Mach numbers. The former renders continuum
approaches unable to accurately model such flows, while the latter makes the DSMC
an unsuitable choice as it leads to a low signal to noise ratio requiring a large number
of samples to decrease statistical scattering and long computational times. On the
contrary, deterministic methods are more suitable for such flows.

The second configuration considered here, is related to pumping through tapered
channels. The pressure driven flow of a rarefied gas through channels of converging
or diverging cross sections has recently been an active area of research, mainly due
to its presence in various technological applications including vacuum technology and
pumping [10], [160], leak detection [161], lubrication [162] and gas microfluidics [163].
Based on experimental [164], [165] and computational [67], [166], [167] investigations,
it has been confirmed, that for the same inlet and outlet pressure, the mass flow rate is
larger when the flow is in the converging direction compared to the corresponding one in
the diverging direction [164]. This interesting phenomenon, known as the diode effect,
has been phenomenologically justified [165] and may be useful in the development of
novel micro devices.
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The corresponding work in temperature driven rarefied gas flows through channels
of converging or diverging cross sections, due to the well-known thermal transpiration
(or thermal creep) phenomenon [93], [168], is very limited. The only available works are
related to the computation of the dimensionless flow rates through variable cross section
tubes [160] and rectangular ducts [169], without however, providing a parametrization
study, addressing the diode effect and exploring the pumping potential in terms of the
involved geometrical and operational data. Of course, thermal creep flows through
channels of constant cross section have been extensively studied. Computational results
have been reported for flows between parallel plates [23], [170], through long and short
circular and elliptic tubes [69], [156], [171], [172], as well as through long rectangular,
triangular and trapezoidal ducts [173], [174]. The latter ones are of main practical
interest as they are easily built by standard microfabrication techniques. Experimental
measurements have been also reported in [175]–[177] providing good agreement with
computations.

The possibility of replacing, at each pumping stage, the narrow and wide channels
that are typically used by tapered channels, i.e., channels whose width varies linearly
with their length, is investigated. The channels are identical, while the flow, depending
on the positive or negative temperature gradient, may be in the diverging or the
converging direction respectively. Although the magnitude of the temperature gradient
is the same, the flow conditions between the diverging and converging flows vary and
therefore a net mass flow rate with the associated pressure difference may be obtained.
This is the so-called diode effect and it could make, from a theoretical point of view, a
Knudsen-type cascade pump feasible. This multistage tapered design does not suffer
certain fabrication and temperature control constraints, since reservoirs and channels
have dimensions of the same order and the reservoir temperatures (either hot or cold)
are uniform.

The third (and final) configuration studied in this chapter includes a combination
of straight and curved channels. Utilizing curved channels for this purpose has been
previously investigated [107], [108], [110], [178]. In [107] the concept of a serpentine
channel with straight and curved segments is analyzed and in [108] is further investigated
using typical CFD methods with the appropriate boundary conditions. The serpentine
channel is also considered, conducting detailed simulations via a kinetic approach and
the concept of varying channel width is examined [110]. The potential of using curved
channels for the flow in the desired direction and the backflow stage is considered with
the channels in the two stages having different curvatures [178].
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This design has been studied in depth and it is included here for completeness and
comparison purposes. Simulations are based on linear kinetic theory, as in the case of
long tapered channels. The formulation of the auxiliary problems for the extraction of
the kinetic coefficients is not trivial and has only been shown in [107] and therefore,
is presented here in detail. Upon obtaining the kinetic coefficients, simulations are
conducted only for the limiting cases of zero net mass flow rate and zero pressure
difference comparing the performance of the curved channels to straight channels.

The following of the chapter is structured as follows. In Section 5.2 the saw tooth
surface channel is considered, and parametric analysis of the obtained mass flow rate
is performed. The potential of utilizing tapered channel in the design of a thermally
driven micropump is examined in Section 5.3. The investigation considers single
converging and diverging channels and a parametric analysis is performed examining
their performance including typical cascades of channels. In Section 5.4 the curved
channel design is presented and its performance is analyzed. The concluding remarks
of the chapter are made in Section 5.5.

5.2 Saw tooth surface channels

5.2.1 Flow configuration and modeling

The flow configuration consists of a monatomic gas confined between two surfaces
with a saw-tooth like periodic pattern, kept at different but uniform and constant
temperatures. One stage of the channel is shown in Figure 5.1. Due to the saw
tooth pattern and the misalignment of the pattern on the two opposing surfaces, a
temperature profile is formed when the temperature contours are not parallel to the
boundaries. This leads to the formation of a macroscopic velocity in the gas side due
to the thermal stress slip flow [179]. The advantage of this design is that it does not
rely on the thermal creep phenomenon and temperature gradients are not needed along
the boundaries, which are kept at constant temperatures.

Due to the periodic pattern only one stage of the configuration is simulated. It
is shown, along with the geometric parameters characterizing the flow, in Figure 5.1.
The geometrical parameters are the step height d, the channel height h0, the stage
length L and the misalignment distance Lm. The physical parameters characterizing
the flow are the cold and hot wall temperatures TC and TH respectively, as well as the
reference pressure P0. The working gas is considered to be argon with gas constant

102

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Section 5.2

Rg = 208J/kg/K. The values of the geometric parameters for the considered case are
as follows:

d h0 L Lm

1µm 1.5µm 4µm 2µm

The cold and hot wall temperatures are chosen to be 225K and 375K respectively.
Purely diffuse boundary conditions are assumed at the two surfaces, while a periodic
boundary condition is applied at the lateral walls of the stage. The rarefaction
parameter characterizing the flow regime is defined as

δ = P0d

µ
√

2RgTC
. (5.1)

The simulations are carried out using the deterministic DVM solver on unstructured
meshes developed in Chapter 4 to solve the nonlinear Shakhov model equation. The
need for nonlinear simulations arises as the temperature difference is not small and
the main driving force (i.e. thermal stress slip flow) is a second order phenomenon,
as well as other phenomena such as the nonlinear thermal stress flow [179], can be
captured only by nonlinear modeling since they are beyond the range of linear kinetic
theory. An unstructured triangular mesh is generated with around 300.000 and 600.000
elements for the small and large values of pressure, respectively, while 40 discrete
velocity magnitudes and 100 polar angles are used. Part of a typical mesh is shown in
Figure 5.2.

5.2.2 Parametric analysis of the mass flow rate

The induced mass flow rate is of major importance. It is noted that no pressure
difference exists between the inlet and outlet of each stage. Moreover the effect that
the stage length and temperature difference have on the mass flow rate is analyzed.
Results are presented for various values of the reference pressure, covering the early
slip, transition and free molecular flow regimes.

Figure 5.3 (left) shows the mass flow rate for P0 ∈ [102, 105] Pa. For small values of
P0 the mass flow rate takes very small values, while its magnitude increases moving
to higher values of P0. In Figure 5.3 (right), a more detailed view of the mass flow
rate for small values of P0 is given. It is observed that the mass flow rate is initially
negative, indicating a right to left net mass flow rate and becomes positive for higher
values of P0 indicating a left to right net flow.
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Figure 5.4 presents the behavior of the mass flow rate when the stage length L

changes, for P0 = 7451Pa (left) and 37255Pa (right), corresponding to the transition
and early slip regimes respectively. All other geometrical parameters remain the same,
except of the misalignment length that is kept at a constant ratio with respect to the
stage length (Lm = L/2). In the first case, as the stage length is increased the mass
flow rate increases, maintaining however the small magnitudes that appear in this
regime. The situation is changed in the early slip regime, where an increase in the
stage length results to a decrease of the net mass flow rate.

In Figure 5.5, the effect of the temperature difference to the mass flow rate is shown
for P0 = 7451Pa. The cold wall temperature is maintained at TC = 225K, while the
hot wall temperature is changed to produce the desired temperature difference. The
mass flow rate has a linear behavior with respect to the temperature difference, in the
range of temperature differences examined.

5.2.3 Velocity and temperature fields

Figure 5.6 shows the temperature profile and streamline patterns for various values
of the reference pressure. The temperature profile is relatively simple and is qualitatively
similar for all cases considered. The velocity profile is more complicated. In all cases,
two counter rotating vortices are formed, one close to each boundary. Apart from the
two vortices, a net mass flow rate exists, from the one vertical boundary to the other.
The path that the net mass flow rate follows, is shown with a red line in Figure 5.6.
For small values of pressure, when the flow is in the early transition regime (Figure 5.6
a and b) the net mass flow rate follows a path from the right vertical boundary, around
the top vortex, close to the cold wall, through the region between the two vortices
and then, around the bottom vortex, close to the hot wall and exiting from the left
vertical boundary. In these cases the net mass flow rate is from right to left. When the
pressure is increased and the flow is in the late transition or early slip regimes, the net
mass flow rate enters from the left wall, follows the wavy pattern shown in Figure 5.6d
between the two vortices and exits from the right wall.

In the design and manufacturing of such devices, the surface temperature is impor-
tant. An analysis of the temperature gradients on the surfaces of the walls is given
here. The temperature gradients along the inclined walls of the stage, in the directions
shown by the arrows in the sketch and along the vertical walls are plotted in Figures
5.7 and 5.8 respectively. In both cases the temperature gradients take very large values,
of the order of 107 and 108K/m for the inclined and vertical walls respectively. This
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leads to very large heat fluxes from the gas side along the walls and imposes a major
design restriction as materials with thermal properties able to maintain a constant
temperature under those conditions should be utilized.

It is concluded that although this design is able to produce a mass flow rate, it
has several drawbacks. The direction of the mass flow rate changes depending on the
gas rarefaction and the geometrical parameters affect the mass flow rate in a different
way in different rarefaction regimes. More important, the heat flux on the gas side,
in the vicinity of the channel walls takes very large values, making the temperature
control a very difficult task. For this reason multistage assemblies of this type are not
considered and alternative designs are investigated.

5.3 Tapered channels

5.3.1 Geometry and flow configuration

Multistage thermally driven pumps consisting of tapered channels are next con-
sidered. One pumping stage is shown in Figure 5.9. The channels are connected to
reservoirs with alternating hot and cold temperatures. The temperature gradient has
the same magnitude for both converging and diverging channels, however due to the
diodicity effect a net flow is induced. The investigation is mainly focused on single
channels and a brief discussion on multistage systems is later made.

Consider the thermal creep flow of a rarefied monatomic hard sphere gas between
two reservoirs maintained at temperatures Tin and Tout, with Tin < Tout, connected
by a long converging or diverging channel of length L. The channels consists of two
inclined plates and the distance H (z) between the plates (z denotes the flow direction),
varies linearly along the tapered-shape channel between the inlet and outlet distances
Hin and Hout respectively. The characteristic length is defined as the average distance
Hm = 0.5 (Hin +Hout). Furthermore, it is assumed that the temperature of the plates
varies linearly between the inlet Tin and outlet Tout temperatures. The pressures at
the cold and hot reservoirs are denoted by Pin and Pout respectively. A view of the
channel geometry along with the inlet and outlet conditions is shown in Figure 5.10.

In addition, a very important input parameter for the purposes of the present work
is the inclination of the channel walls, which is always defined, independently of the
flow direction, as the ratio α of the largest over the smallest distance between the
plates. The corresponding inclination ratios are as follows:
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Converging channels:
αcon = Hin/Hout (5.2)

Diverging channels:
αdiv = Hout/Hin (5.3)

The definition of α in this manner, where always α ≥ 1, facilitates, as it is later
seen, the direct comparison between corresponding converging and diverging flows in
channels having the same inclination ratio, i.e., αcon = αdiv = α. Obviously the case of
α = 1 corresponds to thermal creep flow between parallel plates.

In general, the maintained temperature difference between the two reservoirs results
in a temperature driven flow from the cold towards the hot reservoir, while the increased
pressure in the hot reservoir results in a pressure driven flow in the opposite direction.
To have a comprehensive and complete description, the following three flow setups are
considered:

The investigation is initially focused on single tapered (converging and diverging)
channels, where the flow is engendered by the imposed temperature difference between
the inlet and outlet reservoirs. The following two limit flow configurations may be
considered [23], [160], [169]:

• A maximum pressure difference is created for an imposed temperature gradient
when the net mass flow rate at every section of the channel is equal to zero. In
this flow setup the pressure at the hot side is higher than the pressure at the
cold side and the thermal transpiration flow is counterbalanced by a Poiseuille
flow engendered by the pressure difference obtained by the imposed temperature
gradient itself.

• A maximum net mass flow rate is obtained for an imposed temperature gradient
when the inlet and outlet pressures are equal. In this flow setup the temperature
driven flow creates a non-uniform pressure distribution along the channel, which
should be taken into account in order to properly estimate the thermally driven
flow.

Both limit scenarios, as well as all intermediate flow setups with the associated
characteristic curves, are numerically considered in this section. The formulation is
based on kinetic modeling in order to have a reliable solution in the whole range of gas
rarefaction. A detailed investigation and parametrization of the pumping process, in
terms of all involved geometric and flow parameters, is performed. In addition, the
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corresponding results between converging and diverging flows are compared to deduce
the diodicity in terms of mass flow rates and pressure differences. The main incentive
is the potential future implementation of tapered channels in the development of novel
micro pumps utilizing the thermal creep phenomenon, and thus some typical results
for cascades of converging and diverging channels are also presented.

The first flow setup, consisting of the two reservoirs and the tapered channel,
is considered as closed and therefore the net mass flow rate ṁ = 0. This is the
so-called thermo-molecular pressure difference (TPD) phenomenon [23], [101], [102].
The diodicity coefficient EP is defined as the ratio of the pressure difference ∆P of
the diverging channel over the converging one. The second flow set up is open and
therefore there is a net flow (ṁ ̸= 0), while the pressures in the two reservoirs are
equal. It is noted that, although Pin = Pout , a pressure variation along the channel is
present and, even in this case, there is a pressure driven flow due to the local pressure
gradient. Now, the diodicity coefficient Eṁ is defined as the ratio of the mass flow rate
ṁ of the diverging channel over the converging one. Finally, in the third flow setup,
the net mass flow rate is again nonzero and there is also a difference between the inlet
and outlet pressures. The diodicity coefficient is defined as the ratio of the pressure
difference ∆P of the diverging channel over the converging one for a given mass flow
rate ṁ and it is denoted by EP |ṁ.

Summarizing, the three flow scenarios are as follows:
A.

ṁ = 0, Pout > Pin, EP = ∆P (div)

∆P (con) (closed system) (5.4)

B.
ṁ ̸= 0, Pout = Pin, Em = ṁ(div)

ṁ(con) (open system) (5.5)

C.
ṁ ̸= 0, Pout > Pin, EP |ṁ = ∆P (div)

∆P (con)

∣∣∣∣∣
ṁ

(open system) (5.6)

It is clarified that the diode effect vanishes when the prescribed inclination ratio is
equal to one and it is increased as the ratio departs from one, either for values larger
or smaller than one.

The objective here is to obtain the net mass flow rate ṁ and the associated pressure
distribution P (z), z ∈ [0, L], in terms of the input parameters, which include the
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channel geometry (L, Hm, α), the inlet and outlet temperatures (Tin, Tout) and the
corresponding pressures (Pin, Pout). Furthermore, comparing the results between the
corresponding converging and diverging flows, the corresponding diodicity coefficient is
computed.

It is seen that the third scenario is the most general one and demonstrates the
coupled pumping effect. The first and second flow setups may be considered as the limit
cases of the third one, i.e., it is expected to obtain the maximum pressure difference
∆P when ṁ = 0 and to obtain the maximum mass flow rate ṁ when Pout = Pin

(∆P = 0), while all other intermediate cases are covered in the third flow setup.

5.3.2 Modeling of mass flow rate and pressure difference

The fully developed rarefied gas flow between parallel plates driven by pressure
and temperature gradients is a classical problem in the field of rarefied gas dynamics
and has been extensively investigated based on linearized kinetic model equations
[23]. Due to linearity the pressure and temperature driven flows are solved separately
to deduce the corresponding dimensionless flow rates in terms of the gas rarefaction
parameter and then, the overall solution of the combined flow may be obtained by a
linear superposition of the two flows. Furthermore, based on the mass conservation
principle, the net mass flow rate may be obtained in a straightforward manner by
accordingly combining the dimensionless flow rates providing that the channel geometry
and the inlet and outlet conditions are known [23], [156], [171]. Since all above analysis
is well-described in the literature it is not presented here and it is just applied in
the present tapered flow configuration. Although the channels investigated are not
very long, the assumptions made by the fully developed theory are met, as shown in
Appendix C where the thermally driven flow through tapered channels is considered
using non-linear kinetic theory.

The net mass flow rate ṁ of the rarefied gas flow through the tapered channel
driven by the imposed temperature and pressure gradients can be computed using the
following ordinary differential equation [23], [156], [171], [173], [174]:

ṁ = H (z)P (z)
υ (z)

[
−GP (δ) H (z)

P (z)
dP

dz
+GT (δ) H (z)

T (z)
dT

dz

]
(5.7)

Here, z ∈ [0, L], υ (z) =
√

2RT (z), with R representing the specific gas constant, is the
most probable velocity, P (z) and T (z) are the pressure and temperature distributions
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along the channel, while dP/dz and dT/dz denote the corresponding local gradients.
The temperature distribution, T (z), is considered as known. On the contrary, the
pressure distribution P (z) inside the channel, is part of the solution. Also, GP (δ) and
GT (δ) are the dimensionless flow rates, also known as kinetic coefficients [180], for the
pressure and temperature driven flows respectively and they both depend on the local
gas rarefaction parameter

δ (z) = P (z)H (z)
µ (z) υ (z) (5.8)

with µ (z) denoting the local dynamic viscosity at temperature T (z). Once δ is specified,
the corresponding GP and GT may be obtained from a kinetic data base providing the
flow rates in the whole range of the gas rarefaction parameter. It is clear that δ = δ (z)
is a function of the local pressure, temperature and height. For a hard sphere gas, the
local δ along the channel may be defined in terms of the inlet rarefaction parameter
δin as

δ (z) = δin

(
H (z)
Hin

)(
P (z)
Pin

)(
Tin
T (z)

)
. (5.9)

Equation (5.7) is valid at any cross section z ∈ [0, L] with the unknown net mass
flow rate ṁ being constant. Since both ṁ and P (z) are unknowns, it is convenient to
rewrite Eq.(5.7) in the form

dP

dz
= − υ (z)

H2 (z)GP (δ)ṁ+ GT (δ)
GP (δ)

P (z)
T (z)

dT

dz
(5.10)

with boundary conditions P (0) = Pin and P (L) = Pout.
The problem is well posed only when two out of the three quantities, namely Pin,

Pout and ṁ, are specified. When both Pin and Pout are specified the mass flow rate is
solved using a shooting method. More specifically, an initial value for the mass flow
rate is assumed and then, Eq. (5.10) is integrated with initial condition P (0) = Pin

along z ∈ [0, L]. The computed outlet pressure P (L) is compared to the specified Pout
and then, the mass flow rate is accordingly corrected depending upon the difference
between the computed and specified outlet pressures. This procedure is repeated until
convergence. When the mass flow rate ṁ with either Pin or Pout are specified, Eq.
(5.10) is trivially integrated along the channel to find the unknown pressure distribution
P (z) including the pressure at one of the two channel ends.

The kinetic coefficients GP and GT , required in Eq. (5.10), are taken from the
solution of the linearized Shakhov kinetic model equation for flow between parallel

109

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Chapter 5

plates subject to purely diffuse boundary conditions [23], [181]. These values are
available in the literature, but in order to have a complete and dense kinetic data base,
within the range of δ ∈ [δin, δout] needed in the present work, they are recomputed and
provided for completeness purposes in Appendix D.

The methodology described is introduced to investigate all three flow scenarios
defined by Eqs. (5.4), (5.5) and (5.6) in a wide range of the input parameters. More
specifically, the reference distance between the plates is set at Hm = 10m and 20 m and
the length of the channel is taken equal to L/Hm = 20 and 50 (the restriction of the
fully developed flow is then fulfilled considering also the very small induced pressure
differences [85]). The inclination ratio takes various values α ∈ [1, 6]. The inlet and
outlet temperatures are fixed at Tin = 273K and Tin = 546K (Tout/Tin = 2), while the
inlet pressure Pin varies between 5 × 102 and 105Pa. The outlet pressure Pout is in
the range of Pin depending upon the computed mass flow rate ṁ. It is seen that the
investigation covers the effect of the channel geometry, focusing on the inclination ratio
and of the inlet pressure. The effect of the temperature ratio is not considered since it
is easily predictable. The values of the parameters have been chosen in a range where a
conclusive description of their impact is permissible, meeting in parallel manufacturing
and operational constraints. In all cases the working gas is argon (R = 208J/kg/K).

5.3.3 Zero net mass flow rate (Flow scenario A)

The inlet and outlet boundaries are closed and the net mass flow rate is zero
(ṁ = 0). In this case Eq. (5.10) is simplified and is written as

dP

dT
= GT

GP

P

T
(5.11)

with P = Pin at Tin. Then, Eq. (5.11) is readily integrated with regard to temperature
to compute the pressure distribution P (z) including the outlet pressure Pout. It is seen
from Eq. (5.11) that in this flow scenario, where the net mass flow rate is set equal
to zero, the outlet pressure Pout is independent of the channel length L [156]. This
remark has been also numerically confirmed.

Figure 5.11 shows the pressure difference ∆P = Pout − Pin for converging (left) and
diverging (right) channels with Hm = 10m, in terms of the inlet pressure Pin for various
values of the inclination ratio α. The inlet pressure varies from 5 × 102Pa up to 105Pa.
In all cases, as Pin is increased the pressure difference ∆P = Pout−Pin is also increased
up to a maximum value and then, it is decreased as Pin keeps increasing. The largest
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values of ∆P are moving to slightly higher values of Pin, as α is increased, always being
in the range of Pin = (5 − 10) × 103Pa. The largest values of the developed pressure
differences ∆P are about 300 − 350Pa and they are slightly higher in the diverging
channel flow. Also, in all cases the pressure difference ∆P increases monotonically
with α.

The pressure diodicity coefficient EP = ∆P (div)/∆P (con), also defined in Eq. (5.4),
is plotted in Figure 5.12, in terms of the inlet pressure Pin for all values of α under
consideration. It is seen that for Pin ∈ [104 − 2 × 104]Pa the diode effect is negligible
since EP ≈ 1. On the contrary, for Pin < 104Pa and Pin > 2 × 104Pa, the pressure
diodicity coefficient takes values larger and smaller than unity respectively and therefore
for these inlet pressures the diode effect is present. In this range of inlet pressures,
which are of practical interest since EP ≠ 1, the diode effect is always increased wit
α. For Pin < 104Pa the largest value of the coefficient is around EP = 1.1 and it is
taken at about Pin ≈ 3 × 103Pa with α = 6. For Pin > 2 × 104Pa, EP is monotonically
decreased from unity (i.e. the diode effect becomes stronger) as the inlet pressure in
increased up to Pin = 105. However, in these relatively high pressures the values of the
corresponding pressure differences ∆P are small.

The corresponding results for the pressure difference ∆P and the pressure diodicity
coefficient EP , for converging (left) and diverging (right) channels with Hm = 20m, are
shown in Figures 5.13 and 5.14 respectively. It is seen in Figure 5.13 that, as expected,
the qualitative dependence of ∆Pon Pin and α remains the same. It is also seen,
however, that now the produced largest pressure differences are between 150 − 180Pa
and they are much smaller than the corresponding ones in channels with Hm = 10m.
This is justified since now the flow is less rarefied (closer to the slip regime) and the
pressure driven flow becomes more dominant and therefore, the zero net mass flow rate
condition is reached in a lower outlet pressure. The largest differences are occurring
at about Pin = (3 − 6) × 103Pa. The results of EP with Hm = 20 m, shown in Figure
5.14, are close to the ones obtained for Hm = 10m (Figure 5.12).

Based on the above it may be stated that for the systems with closed boundaries and
zero net mass flow rates considered here, the optimum operation scenario is obtained
with Hm = 10m at inlet pressures around 4 × 103Pa, where both the developed
pressure difference is large and the diode effect is significant. It is also noted that the
results correspond to the specific temperature ratio Tout/Tin = 2 and obviously, as the
temperature ratio is increased the pressure difference will also be increased.
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5.3.4 Equal inlet and outlet pressures (Flow scenario B)

Now, the inlet and outlet boundaries are open and there is a nonzero mass flow rate
(ṁ ̸= 0), while the inlet pressure is set equal to the outlet pressure (Pin = Pout and thus
∆P = 0). Equation (5.10) is solved in an iterative manner as described above. The
computed mass flow rate depends on the inlet (and outlet) pressures, the inclination
ratio as well as on the length of the channel, while the diodicity coefficient is defined
as the ratio of the mass flow rates of the diverging flow over the converging one.

Figure 5.15 shows the mass flow rate ṁ per unit width (kg/m/s) in terms of the
inlet pressure Pin for converging (left) and diverging (right) channels with Hm = 10m
for L/Hm = 20, 50 and for various inclination ratios α. With the inlet pressure varying
from 5 × 102Pa up to 105Pa the mass flow rate is in the order of 10−6 − 10−7kg/m/s.
The mass flow rates in the diverging channels are always larger than the corresponding
ones in the converging channels (on the contrary, in pressure driven flows the mass
flow rates in converging channels are the largest ones [165]). In both diverging and
converging channels, ṁ increases quite rapidly with Pin up to about Pin ≈ 2 × 104

and then it keeps increasing but with a much slower pace tending to a constant value
in the hydrodynamic regime [174], [175]. Also, in both cases, as the inclination α is
increased, the mass flow rate ṁ is decreased. Thus, in this flow scenario the effect
of tapering is in the opposite direction compared to the zero net mass flow scenario,
where ∆P increases wit α. In addition, as expected, the mass flow rate is reduced
when the channel length is increased.

The mass diodicity coefficient Eṁ = ṁ(div)/ṁ(con), also defined in Eq.(5.5), is
plotted in Figure 5.16, in terms of inlet pressure for L/Hm = 20, 50 and for all values
of α under consideration. As Pin is increased, the mass diodicity coefficient Eṁ is
initially increased until it reaches an absolute maximum and then it is decreased until
it reaches a local minimum, tending finally in an oscillatory manner to a constant value,
which is the ratio of the corresponding constant mass flow rates at the hydrodynamic
limit. In all cases the largest values of mass diodicity occur at about Pin ≈ 1.5 × 104.
As α is increased, Eṁ is monotonically increased. It is seen that although the mass
flow rates depend on L/Hm, Eṁ is independent of this ratio.

In Figures 5.17 and 5.18, the distributions of pressure P (z) and gas rarefaction
parameter δ (z) are plotted along the channel for converging and diverging channels
respectively, with L/Hm = [20, 50], Hm = 10m, Pin = [103, 104, 0.5 × 105]Pa and
α = [2, 3, 4]. In the converging channel flow (Figure 5.17), the pressure increases along
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the channel until a maximum value Pmax and then, decreases to match the outlet
pressure Pout = Pin. The pressure difference Pmax − Pin takes its largest value at about
Pin = 104Pa and, in general, its location along the channel moves closer to the channel
exit, as Pin and α are increased. Also, the variation of P (z) along the channel is more
evident as α is increased. In the diverging channel case (Figure 5.18), the pressure
distribution initially decreases until a minimum value Pmin and then increases to match
the outlet pressure. The pressure difference Pin − Pmin takes its largest value again
at about Pin = 104Pa, while its location along the channel moves now closer to the
channel inlet as Pin and α are increased. Overall, the maximum deviation of the
pressure inside the channel from the inlet pressure is about 5 − 80Pa.

Concerning the variation of δ (z) along the channels, since the pressure variation
with regard to the inlet pressure is small, it is mainly affected by the temperature and
height variations, as it is seen by Eq. (5.9). Therefore, as expected for the converging
flow (Figure 5.17), δ (z) is monotonically reduced along the channel, since both the
height H (z) /Hin and temperature Tin/T (z) ratios are decreased. For the diverging
case (Figure 5.18), where H (z) /Hin is increased and Tin/T (z) is decreased, δ (z)
remains almost constant for α = 2 (the rate of change for temperature and height
cancel each other) and increases for α > 2. Finally, the length over height ratio L/Hm

does not affect qualitatively the pressure and rarefaction parameter distributions. The
values of the gas rarefaction parameter, for the presented inlet pressures, vary about
three orders of magnitude from 0.5 up to 100, indicating that the flow for the present
setups is in the transition and slip regimes.

Corresponding results for the mass flow rate ṁ and the mass diodicity coefficient
Eṁ, for converging and diverging channels with Hm = 20m, have also been obtained.
It turns out that now both ṁ and Eṁ are very close to the corresponding ones with
Hm = 10m shown in Figures 5.15 and 5.16 respectively. Due to this qualitative and
quantitative resemblance these results are not presented.

Closing this subsection, it is stated that in systems with open boundaries and zero
pressure difference the optimum operation range is at inlet pressures around 1.5×104Pa,
where both the mass flow rate is large and the diode effect is significant. The produced
mass flow rates are expected to increase with the temperature ratio Tout/Tin.
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5.3.5 Nonzero mass flow rate and unequal inlet and outlet
pressures (Flow scenario C)

The more general case of flow through a channel with ∆P = Pout − Pin > 0 and
ṁ ̸= 0 is considered. In this flow scenario, the pumping effect which may be delivered
by a converging and a diverging flow is more clearly demonstrated, since a nonzero net
mass flow rate is coupled with a nonzero pressure difference. This is an open system
and Eq. (5.10) is solved through an iterative process as described in above and, as
in the previous open system, the computed mass flow rate depends on the inlet and
outlet pressures, on the inclination ratio, as well as on the length of the channel.

In Figures 5.19 and 5.20, the pressure difference ∆P = Pout − Pin is plotted in
terms of the mass flow rate ṁ for converging and diverging channels respectively with
Hm = 10m, L/H = [20, 50], Pin = [103, 104, 105]Pa and α = [2, 3, 4, 5, 6]. As it is seen
in all cases, as ṁ is increased, ∆P is decreased and there is a nearly linear relation
between the two quantities. These lines with a negative slope provide a complete
picture of the pumping effect in terms of the achieved mass flow rate and pressure
difference and they may be considered as the characteristic (or performance) curves
of converging and diverging channels. In the limiting cases of ṁ = 0 and ∆P = 0,
the corresponding flow scenarios A and B are recovered. It is also seen that the
characteristic curves for the various values of α are always crossing each other at some
point which depends on the flow parameters. This is easily explained by considering
that at ∆P = 0 larger values of α correspond to smaller mass flow rates, while at
ṁ = 0 larger values of α correspond to larger pressure differences.

In Figure 5.21, the pressure diodicity coefficient EP |ṁ = ∆P (div)/∆P (con) for a
given mass flow rate ṁ is plotted in terms of the mass flow rate for Hm = 10m,
L/H = [20, 50], Pin = [103, 104, 105]Pa and α = [2, 3, 4, 5, 6]. The pressure diodicity
coefficient is always increased as the mass flow rate is increased. The reason is that
the mass flow rate in diverging channels is always larger than in the corresponding
converging ones and therefore, the pressure difference in the converging channels is
decreased faster than in the diverging ones. For inlet pressure Pin = 103Pa, EP |ṁ is
always larger than unity, while for Pin = 104 and 105Pa, EP |ṁ may be larger or smaller
than unity depending on the mass flow rate. Also, with respect to the inclination ratio,
as α is increased, for Pin = 103 and 104Pa, EP |ṁ is monotonically increased, while for
Pin = 105Pa this behavior remains the same at large mass flow rates, while at small
ones EP |ṁ is decreased.
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It is evident that the characteristic curves along with the diodicity plots are
very useful in deciding on the suitability of a channel flow to meet some provided
specifications. Furthermore, these results illustrate how it would be possible to fully
characterize a Knudsen pump by just investigating the flow scenarios A and B since
the pump characteristic curves may be readily deduced from a linear variation between
these two limit cases.

5.3.6 Cascades of tapered channels

The pressure difference generated by a cascade of converging and diverging channels
is considered. A typical cascade is shown in Figure 5.22, along with a typical tempera-
ture distribution (red line). Each stage consists of a diverging followed by a converging
channel, while the cascade always ends with a single diverging channel. Thus the
cascade shown in Figure 5.22 consists of 3.5 stages. To demonstrate the pumping
performance of such a cascade only the limiting case where ṁ = 0 is considered (closed
system). The modeling approach utilized in the single channels case and described in
Section 5.3.2 is used. Simulations are conducted for a temperature ratio TH/TC = 2
with TC = 273K, the mean channel height is Hm = 10m and the working gas is
Argon. In this case, the pressure difference is independent of the channel length, as
discussed in Section 5.3.3. The pressure distributions are obtained considering channels
of L/Hm = 20.

Figure 5.23 shows the pressure difference between the two ends of the cascade in
terms of the number of stages for α = 3,4,5 and 6 and various values of the inlet
pressure Pin ∈ [103, 105]. As the number of stages increases, the pressure difference also
increases. Increasing the inclination parameter α leads to an increase of the pressure
difference. The behavior in terms of the inlet pressure is more complicated. Depending
on the inlet pressure, the pressure difference can be either positive or negative. This is
to be expected, as the pressure diodicity coefficient EP for single channels can take
values either larger or smaller than 1, depending on the inlet pressure. The pressure
difference takes positive values for Pin < 104Pa and becomes negative for higher values
of the inlet pressure. Using 200 stages, considerable pressure difference are obtained.
For α = 6 and Pin = 103Pa the pressure difference can be up to 5 × 103Pa.

In Figure 5.24 the pressure variation through a cascade of 100 stages, with α = 6
is presented for various values of the inlet pressure. In all cases the pressure has
an oscillating profile, as the two channels of each stage create pressure differences
in opposing directions. Each stage contributes a small net pressure difference, and
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using a large number of stages a considerable pressure difference is generated. This
indicative simulation of a cascade of tapered channels, clearly demonstrates that a
thermally driven micro-pump based on the diodicity effect created by tapered channels
is possible.

5.4 Curved channels

The potential implementation of curved channels in the design of temperature
driven micropumps is finally, considered. The combination of straight and curved
channels, arranged as shown in Figure 5.25 (left), forming a serpentine like channel, is
investigated.

5.4.1 Formulation

Consider a rarefied gas enclosed between two infinitely long curved surfaces with a
constant distance between them, as shown in Figure 5.25 (right). The pressure driven
flow due to a pressure gradient in the direction denoted by s and the temperature
driven flow due to a temperature gradient on the walls are considered. The formulation
of the pressure driven flow is shown in detail, while the temperature driven case is
formulated in a similar manner. The steady 2D nonlinear BGK equation is

ξx
∂f

∂x′ + ξy
∂f

∂y′ = P

µ

(
fM − f

)
, (5.12)

where f is the unknown velocity distribution function, ξ is the molecular velocity
vector, x′, y′ are the physical space coordinates, P and µ are the local values of the
pressure and viscosity respectively and

fM = N

(2πRgT )3/2 exp
[
−(ξx − Ux)2 + (ξy − Uy)2 + ξ2

z

2RgT

]
(5.13)

is the local Maxwellian distribution, with N , T , U being the local number density,
temperature and macroscopic velocity vector respectively (Rg is the gas constant). The
coordinate system is transformed from the Cartesian (x, y) to a curvilinear system
(s, r), where s is along the channel median curve and r is perpendicular to the channel
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walls, as shown in Figure 5.25 (right). Then, Eqs. (5.12) and (5.13) become [107]:

1
1 − κ′r′ ξs

∂f

∂s′ + ξr
∂f

∂r′ + κ′

1 − κ′r′ ξrξs
∂f

∂ξs
− κ′

1 − κ′r′ ξ
2
s

∂f

∂ξr
= P

µ

(
fM − f

)
(5.14)

fM = N

(2πRT )3/2 exp
[
−(ξr − Ur)2 + (ξs − Us)2 + ξ2

z

2RgT

]
(5.15)

Here, κ′ = 1/r′
k denotes the curvature with r′

k being the radius of curvature. The
dimensionless pressure gradient along the channel is XP = D

P0
dP
ds′ and it is assumed

that XP << 1. Since the pressure gradient is small and assuming that the pressure
distribution along the channel is linear, the distribution function can be expressed as

f (s′, r′, ξ) = f 0 (1 +XPhP (r′, ξ) +XP s
′/D) , (5.16)

where hP (r′, ξ) is the perturbed distribution function indicating the departure of the
local distribution from the reference distribution function

f 0 = N0

(2πRT0)3/2 exp
[
− ξ2

2RT0

]
. (5.17)

Expanding the local Maxwellian distribution fM around the reference distribution
function f 0 using Taylor series and keeping terms up to first order the following
expression is obtained:

fM = f 0
[
1 + N −N0

N0
+ 2ξ · U

2RT0
+
(

ξ2

2RT0
− 3

2

)
T − T0

T0

]
(5.18)

Since the pressure distribution along the channel is assumed to be linear, it can
be expressed as P = P0 + dP

ds′ s
′. Rearranging the terms and using the ideal gas law

P = NkT the following expression is obtained:

N −N0

N0

1
XP

− s′

D
= 0 (5.19)

The following dimensionless quantities are introduced:

r = r′/D,u = U/ (υ0XP ) , ζ = ξ/υ0, κ = κ′D, us,P = Us,P
υ0XP

(5.20)
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The quantity υ0 =
√

2RgT0 is the most probable molecular speed. Substituting
Eqs. (5.18) and (5.19) along with the dimensionless quantities of Eq. (5.20) and the
expression of the distribution function (5.16) into Eq. (5.14), while assuming that
Ur = 0 and the temperature is constant, the following equation for the perturbed
distribution function is derived

ζr
∂hP
∂r

+ κ

1 − κr
ζrζs

∂hP
∂ζs

− κ

1 − κr
ζ2
s

∂hP
∂ζr

= δ (2ζsus,P − hP ) − 1
1 − κr

ζs, (5.21)

where
δ = PD

µυ0
(5.22)

is the gas rarefaction parameter.
In order to reduce the computational load, the projection procedure is introduced,

eliminating the z-component of the molecular velocity. The reduced distribution
function is defined as

ϕP = 1√
π

∫ ∞

−∞
hP e

−ζ2
zdζz (5.23)

and the integral operator 1√
π

∞∫
−∞

(·) e−ζ2
zdζz is applied to Eq. (5.21) to yield

ζr
∂ϕP
∂r

+ κ

1 − κr
ζrζs

∂ϕP
∂ζs

− κ

1 − κr
ζ2
s

∂ϕP
∂ζr

= δ (2ζsus,P − ϕP ) − 1
1 − κr

ζs. (5.24)

It is convenient to transform the molecular velocity space from Cartesian to a
polar coordinate system according to ζr = ζ cos θ and ζs = ζ sin θ, where ζ is the
magnitude and θ is the polar angle. The derivatives of the distribution with respect to
the molecular velocity then become:

∂ϕP
∂ζs

= sin θ∂ϕP
∂ζ

+ cos θ
ζ

∂ϕP
∂θ

(5.25)

∂ϕP
∂ζr

= cos θ∂ϕP
∂ζ

− sin θ
ζ

∂ϕP
∂θ

(5.26)

Introducing this transformation to Eq. (5.24) yields:

ζ cos θ∂ϕP
∂r

+ κ

1 − κr
ζ sin θ∂ϕP

∂θ
+ δϕP = 2δζ sin θus,P − 1

1 − κr
ζ sin θ (5.27)

The velocity in the flow direction is defined as
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Us = 1
N

∫
R3

ξsfdξ. (5.28)

Expanding the term 1/N around the reference value 1/N0, using Taylor series, while
keeping terms up to first order and utilizing Eq. (5.19) results to

N0

N
= 1 −XP

s′

D
(5.29)

Expression (5.29) along with the linearization of Eq. (5.16) and the projection (5.23)
are introduced into Eq. (5.28) and neglecting second order terms of XP , since XP << 1,
the following expression for the velocity in the flow direction is obtained:

us,P = Us,P
υ0XP

= 1
π

2π∫
0

∞∫
0

ζ sin θϕP e−ζ2
ζdζdθ (5.30)

When the temperature driven flow is considered, the formulation follows the same
steps, as for the pressure driven case, with small adjustments that are briefly discussed
below. The dimensionless temperature gradient along the channel walls is XT = D

T0
dT
ds′

with XT << 1. Since the temperature gradient is small the distribution function can
be expressed as

f (s′, r′, ξ) = f 0
(
1 +XThT (r′, ξ) +

(
ζ2 − 5/2

)
XT s

′/D
)
. (5.31)

Working in the same manner as in the pressure driven case, based on the expression
(5.31) for the linearization of the distribution function and assuming constant density
and temperature at each cross section the kinetic equation for the temperature driven
flow becomes

ζ cos θ∂ϕT
∂r

+ κ

1 − κr
ζ sin θ∂ϕT

∂θ
+ δϕT = 2δζ sin θus,T − 1

1 − κr
ζ sin θ

(
ζ2 − 2

)
, (5.32)

where

us,T = Us,T
υ0XT

= 1
π

2π∫
0

∞∫
0

ζ sin θϕT e−ζ2
ζdζdθ. (5.33)

In both pressure and temperature driven flows, utilizing the impermeability condi-
tion, the following boundary conditions are obtained [182]:
Outer wall (r = 1/2) with cos θ < 0:
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ϕ+
i = 2√

π

∞∫
0

∫
cos θ>0

ϕ−
i ζ cos θe−ζ2

ζdθdζ (5.34)

Inner wall (r = 1/2) with cos θ > 0:

ϕ+
i = − 2√

π

∞∫
0

∫
cos θ<0

ϕ−
i ζ cos θe−ζ2

ζdθdζ (5.35)

Here, i = P, T refers to the pressure and temperature driven flow.
For the pressure driven flow Eq. (5.27) is solved subject to boundary conditions

(5.34) and (5.35), using Eq. (5.30) for the macroscopic velocity. For the temperature
driven flow Eq. (5.32) is solved, subject to the same boundary conditions (5.34) and
(5.35), using Eq. (5.33) for the macroscopic velocity.

5.4.2 Kinetic coefficients

Upon solving the kinetic equations, the reduced flow rates or kinetic coefficients
are obtained in terms of the rarefaction parameter δ and curvature κ. The kinetic
coefficient for the pressure driven flow is given by

MP (δ, κ) = −2
1/2∫

−1/2

us,Pdr (5.36)

and for the temperature driven flow by

MT (δ, κ) = 2
1/2∫

−1/2

us,Tdr. (5.37)

The kinetic coefficients are tabulated in Tables 5.1 and 5.2 for the pressure and
temperature driven flows respetively, in a wide range of the rarefaction parameter
δ ∈ [10−2, 102] and for various values of the curvature κ = 0.2, 0.5, 0.8,1 and 1.2. The
respective results for the straight channel (κ = 0) are also included for comparison
purposes. It is noted, that under the current notation the limiting value of the curvature
is κ = 2, where the inner wall coincides with the center of curvature and the channel is
reduced to a circle.

For the pressure driven flow, when δ ≥ 5 increasing the curvature leads to small
changes in the kinetic coefficient and the curvature becomes significant for κ > 0.8.
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The curvature has a greater effect in highly rarefied flows where even small values
of curvature have a significant effect on MP . When the channel is straight, as δ is
decreased MP is constantly increased, while for curved channels it reaches a constant
value as δ → 0. As the curvature increases, the Knudsen minimum moves to smaller
values of δ and finally, for κ ≥ 0.5 vanishes. The reason is that the channel curvature
provides a geometrical limit to the long trajectories of ballistic particles, resulting to a
smoother decrease of the ballistic flow rate as δ increases, while the rate of increase of
the collision part of the flow rate is only slightly altered. The rate of increase of the
collision part is always larger in magnitude than the rate of decrease of the ballistic
part, so the Knudsen minimum does not appear. It is also interesting that increasing
the curvature, leads to a decrease of the flow rate for small δ, while for δ ≥ 50 it
initially decreases until a minimum is reached and then is increased as the curvature is
further increased.

The behavior of the kinetic coefficient for the temperature driven flow (MT ) with
respect to the rarefaction parameter (δ) is relatively simple, with MT decreasing
monotonically when δ increases. For δ ≤ 0.2 increasing the curvature leads to a
decrease of MT until it reaches a minimum and then increases again, while for large
values of δ increasing the curvature always increases MT .

5.4.3 Simulation of thermally driven flows through curved
channels

Upon obtaining the databases for the kinetic coefficients, the following ordinary
differential equation is solved

dP

ds
= − υ (s)

D2MP (δ, κ)ṁ+ MT (δ, κ)
MP (δ, κ)

P (s)
T (s)

dT

ds
. (5.38)

This equation is equivalent to Eq. (5.10) for straight channels. However, now the
kinetic coefficients are also a function of the local channel curvature. In order to solve
Eq. (5.38) the temperature T (s) and curvature κ (s) profiles should be specified along
with the inlet and outlet pressure or alternatively, the mass flow rate with one of the
end pressures. When one end pressure and the mass flow rate are specified, Eq. (5.38)
is trivially integrated to give the pressure distribution along the channel, while when
the two pressures are given then a shooting method is used to solve Eq. (5.38) and
obtain the pressure distribution and mass flow rate.
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Following the analysis of tapered channels, two limiting cases are considered, that
of a closed channel (ṁ = 0) and that of equal inlet and outlet pressures (Pin = Pout).
In the former case the induced pressure difference is of interest and it is compared to
that of the straight channel, based on the ratio

RP = ∆P curved

∆P straight
. (5.39)

In the latter case the mass flow rate is of interest and it is compared to that of the
straight channel, based on the ratio

Rṁ = ṁcurved

ṁstraight
. (5.40)

It is expected that all intermediate cases can be derived from the two limiting ones, as
shown for the tapered channels. The two ratios correspond to the diodicity coefficients
used in tapered channels.

Simulations are conducted for single straight and curved channels with width
D = 10µm. The length of the straight channel is set to LS/D = 20. Concerning the
curved channel length, two cases are considered. In the first one, the curved channel has
the same length as the straight one (LC/D = LS/D = 20) and it is used to compare
straight and curved channels on the same basis. In the second one, the curved channel
length is connected to the construction of a serpentine like pump and therefore it is
restricted as it should cover an arch of π radians and it is taken to be LC/D = π/κ.
The dimensionless length of the curved channel covering π radians for the different
values of curvature examined is given the table below.

κ 0.2 0.5 0.8 1 1.2
LS/D = π/κ 15.70796 6.28319 3.92699 3.14159 2.61799

The temperature distribution along the channel walls is assumed to be linear and the
inlet and outlet temperatures are Tin = 273K and Tout = 546K. The curvatures for the
examined curved channels examined are κ = 0.2, 0.5, 0.8, 1 and 1.2. The inlet pressure
in in a wide range as Pin ∈ [20, 0.4 × 105]Pa. Segments of the curved channels of
various curvatures are plotted in Figure 5.26 to help understanding the corresponding
serpentine shapes (in all cases an arch of π/6 radians is shown).
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5.4.4 Zero net mass flow rate

In the limiting case of zero net mass flow rate the two ends of the channel are
assumed to be closed and the net mass flow rate vanishes. Due to the temperature
gradient a pressure difference is generated between the two ends of the channel. In
Figure 5.27 (left), the pressure difference is shown in terms of the inlet pressure
for the straight channel, as well as for the curved channels with different values of
curvature and length equal to the straight channel (LC = LS). It is observed that the
curved channels generate a higher pressure difference than the straight channel and
the pressure difference increases as the curvature is increased. As the inlet pressure
initially increases, the pressure difference generated is increased until a maximum value
is reached around Pin ≈ 4 × 103Pa and increasing the inlet pressure further, leads to
a decrease of the pressure difference. The maximum pressure difference ranges from
240Pa for the straight channel up to 360Pa for a channel with κ = 1.2. It is noted
that the results for the straight channel are not identical as the respective results given
in the tapered channel investigation as the BGK model is used here, instead of the
Shakhov.

The pressure difference ratio RP , as shown in Figure 5.27 (right), is always larger
than one, as the pressure difference of the curved channels is always larger than the
straight one. In the tapered channels the pressure diodicity could take values either
larger or smaller than one and certainly this an advantage of the tapered design. The
pressure difference ratio is close to one for small values of the inlet pressure, then, it
increases and can reach up to 1.6 for κ = 1.2 and finally, decreases again. The pressure
difference ratio is also increased as the curvature is increased. The optimum range
of the inlet pressure for this design is Pin ≈ 2 − 5 × 103Pa, where both the pressure
difference and the pressure difference ratio take high values.

In Figure 5.28 the respective results are provided, with the length of the curved
channel now being restricted by the serpentine channel design. The results are iden-
tical with the ones for equal lengths, as in the thermo-molecular pressure difference
phenomenon the generated pressure difference is independent of the channel length.

5.4.5 Equal inlet and outlet pressures

In the limiting case of zero pressure difference the inlet and outlet pressures are
equal. Although the overall pressure difference is zero, local pressure gradients exist
inside the channel so Poiseuille type flow cannot be neglected. In Figure 5.29 (left) the
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mass flow rate per unit depth is shown for the straight and the curved channels with
LS = LC . The straight channel has a larger mass flow rate compared to the curved
channels for Pin < 103Pa, while the situation is reversed for larger values of Pin.

The mass flow rate ratio Rṁ is shown in Figure 5.29 (right) for LS = LC . Following
the mass flow rate behavior, the mass flow rate ratio may take values either smaller or
larger than one for small and large values of Pin respectively. In the tapered channels
the mass diodicity coefficient was always larger than one.

It is more interesting to consider the case where the length of the curved channel is
LC = πD/κ, following the design restrictions. The mass flow rate and mass flow rate
ratio Rṁ are shown in Figure 5.30. In this case the curved channels produce larger
mass flow rates than the straight one (with the exception of κ = 0.2 and Pin ≤ 50Pa).
This is due to the length of channel which has a strong effect in the mass flow rate
generated. Thus the mass flow rate ratio takes quite high values, up to 9 for κ = 1.2,
since higher curvature means shorter curved channel.

5.5 Concluding remarks

Three thermally driven flow configurations have been examined and the design
of the corresponding thermally driven micropumps has been considered. The first
configuration consists of a channel with saw tooth surfaces, which are kept at constant
but different temperatures and the flow is driven by the thermal stress slip flow
mechanism. The other two configurations are based on thermal transpiration. The
concepts of creating multistage assembles of tapered channels, as well as serpentine
type channels, are investigated. In all cases, the main advantages or drawbacks of each
configuration are discussed and guidelines on their implementation are provided.

The flow configuration in a saw tooth surface channel is first considered. Since the
temperature along the channel walls remain constant, temperature control becomes
simpler. Simulations are conducted on unstructured meshes built via the geometrical
approach by solving the nonlinear Shakhov kinetic model equation. The ability of this
configuration to create a mass flow rate is demonstrated and the effect of the pressure,
temperature and of the main geometrical parameters on the mass flow rate is examined.
The mass flow rate is very sensitive to the different parameters characterizing the flow
and can even change direction depending on the value of the reference pressure. The
temperature gradients close to the channel walls have been computed and found to
be very high, imposing certain restrictions on the materials utilized. Thus, although
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the constant wall temperature is appealing, maintaining such high temperatures and
ensuring proper thermal insulation raise serious drawbacks in the realization of such
devices.

Next, the thermally driven flow along with the associated pressure difference
obtained through long converging and diverging channels has been computationally
investigated. The analysis is performed by accordingly integrating the dimensionless
flow rate obtained by the linear kinetic modeling into a simple algorithm based on the
mass conservation principle. The computed net mass flow rate through the tapered
channel from the low toward the high temperature reservoir and the associated pressure
differences are computed and parametrized, in terms of the channel geometry focusing
on the channel inclination ratio and on the inlet pressure covering a wide range of gas
rarefaction. By comparing the corresponding converging and diverging flows, the diode
effect is also examined.

In systems with closed boundaries (zero net mass flow rate), the optimum operation
scenario is obtained at inlet pressures around 4 × 103Pa, where both the developed
pressure difference is large and the diode effect is significant. The pressure difference
is always increased with the inclination ratio, and depending on the inlet pressure, it
may be larger for either the diverging or converging channel. In systems with open
boundaries (nonzero net mass flow rate) and zero pressure difference (inlet pressure
equal to outlet pressure), the optimum operation range is at inlet pressures around
1.5 × 104Pa where both the mas flow rate is large and the diode effect is significant.
The mass flow rate is always decreased with the inclination ratio and it is always
larger for the diverging channel. In open systems with nonzero net mass flow rate
and pressure difference, the computed performance curves show that in all cases the
pressure difference decreases almost linearly as the mass flow rate increases and provides
a complete picture of the pumping effect in converging and diverging channels. The
negative slope of these lines depends strongly on the inlet pressure and the inclination
ratio.

In order to fully demonstrate the ability of multistage designs based on tapered
channels, indicative results are presented for cascades of diverging and converging
channels with up to 200 stages. The pressure can either increase or decrease along the
cascade, depending on the inlet pressure, as the pressure diodicity coefficient can be
either smaller or larger than one.

Finally, a combination of straight and curved channels is also considered, and the
simulation of this case is performed in a similar manner as in the tapered channels.
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It is deduced that the combination of curved and straight channels can indeed be
used for the design of thermally driven pumps based on the thermal transpiration
phenomenon. The curved channels always produce larger pressure differences than the
straight channel when the mass flow rate is zero. Furthermore, the pressure difference
ratio takes relatively high values in the same range of pressures where the pressure
difference is also large (Pin ≈ 2 − 5 × 103Pa for the present geometry). In terms of
the mass flow rate, although the effect of the curvature alone can be either beneficial
or detrimental, if the different lengths are taken into account, the curved channels
produce much higher mass flow rates compared to the straight ones. It is believed
that this design could potentially be implemented, if associated manufacturing and
temperature control issues are overcome.

In recent years, there have been targeted attempts to build thermally driven
pumping devices, without moving parts, in gaseous microfluidics based on various
configurations. In this context the results presented in this chapter may be very useful
in deciding on the suitability of a tentative design for developing Knudsen type pumps.
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Table 5.1 Kinetic coefficient MP in terms of δ and curvature κ for pressure driven flow
through curved channels.

δ
κ

0 0.2 0.5 0.8 1 1.2
0.01 3.05 1.44 1.17 1.05 1.00 9.80(-1)
0.02 2.71 1.44 1.17 1.05 1.00 9.82(-1)
0.05 2.30 1.43 1.18 1.05 1.01 9.85(-1)
0.08 2.12 1.43 1.18 1.06 1.01 9.89(-1)
0.1 2.03 1.43 1.18 1.06 1.01 9.92(-1)
0.2 1.81 1.43 1.20 1.08 1.03 1.01
0.5 1.60 1.43 1.24 1.13 1.08 1.05
0.8 1.55 1.45 1.29 1.18 1.13 1.10
1 1.54 1.47 1.32 1.21 1.16 1.13
2 1.60 1.57 1.49 1.39 1.34 1.30
5 1.99 1.99 1.96 1.90 1.86 1.83
8 2.45 2.45 2.43 2.40 2.38 2.35
10 2.77 2.77 2.76 2.73 2.71 2.69
20 4.40 4.40 4.39 4.39 4.38 4.38
50 9.36 9.35 9.35 9.35 9.36 9.39
80 1.44(+1) 1.22(+1) 1.22(+1) 1.22(+1) 1.22(+1) 1.22(+1)
100 1.77(+1) 1.77(+1) 1.77(+1) 1.78(+1) 1.78(+1) 1.78(+1)
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Table 5.2 Kinetic coefficient MT in terms of δ and curvature κ for temperature driven
flow through curved channels.

δ
κ

0 0.2 0.5 0.8 1 1.2
0.01 1.24 7.09(-1) 5.80(-1) 5.19(-1) 4.97(-1) 4.87(-1)
0.02 1.06 6.98(-1) 5.74(-1) 5.16(-1) 4.94(-1) 4.84(-1)
0.05 8.45(-1) 6.67(-1) 5.59(-1) 5.05(-1) 4.85(-1) 4.76(-1)
0.08 7.42(-1) 6.40(-1) 5.44(-1) 4.95(-1) 4.76(-1) 4.68(-1)
0.1 6.95(-1) 6.23(-1) 5.35(-1) 4.88(-1) 4.71(-1) 4.63(-1)
0.2 5.58(-1) 5.54(-1) 4.95(-1) 4.59(-1) 4.46(-1) 4.40(-1)
0.5 3.99(-1) 4.22(-1) 4.09(-1) 3.93(-1) 3.87(-1) 3.86(-1)
0.8 3.27(-1) 3.46(-1) 3.49(-1) 3.45(-1) 3.43(-1) 3.45(-1)
1 2.95(-1) 3.10(-1) 3.19(-1) 3.19(-1) 3.20(-1) 3.23(-1)
2 2.06(-1) 2.11(-1) 2.23(-1) 2.31(-1) 2.37(-1) 2.43(-1)
5 1.14(-1) 1.15(-1) 1.19(-1) 1.25(-1) 1.30(-1) 1.35(-1)
8 7.95(-2) 7.98(-2) 8.15(-2) 8.48(-2) 8.78(-2) 9.14(-2)
10 6.61(-2) 6.63(-2) 6.74(-2) 6.98(-2) 7.20(-2) 7.48(-2)
20 3.57(-2) 3.57(-2) 3.61(-2) 3.69(-2) 3.77(-2) 3.86(-2)
50 1.49(-2) 1.49(-2) 1.50(-2) 1.52(-2) 1.54(-2) 1.56(-2)
80 9.41(-3) 9.26(-3) 9.33(-3) 9.47(-3) 9.58(-3) 9.68(-3)
100 7.55(-3) 7.31(-3) 7.61(-3) 7.71(-3) 7.79(-3) 7.64(-3)
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Figure 5.1 One stage of the saw-tooth channel along with the dimensions.

Figure 5.2 Section of typical mesh used for the simulation of the saw tooth surface
channel.
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Figure 5.3 Mass flow rate for a saw-tooth channel in terms of pressure for P0 ∈
[102, 105] Pa (left) and P0 ∈ [102, 104] Pa (right).

Figure 5.4 Mass flow rate for a saw-tooth channel in terms of stage length L for
P0 = 7451Pa (left) and P0 = 37255Pa (right).
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Figure 5.5 Mass flow rate for a saw-tooth channel in terms of ∆T for P0 = 7451Pa.

131

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Chapter 5 Figures

Figure 5.6 Streamlines and temperature contours for a saw-tooth channel for various
values of P0.
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Figure 5.7 Temperature gradient along the inclined walls of a saw-tooth channel with
P0 = 7451Pa.

Figure 5.8 Temperature gradient along the vertical walls of a saw-tooth channel with
P0 = 7451Pa.
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Figure 5.9 View of a pumping stage of a tapered Knudsen-type cascade pump with TC
and TH denoting the cold and hot reservoir temperature, respectively.

Figure 5.10 Diverging (left) and converging (right) channels with inclination ratio
αcon = αdiv = α.
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Figure 5.11 Pressure difference ∆P = Pout − Pin in terms of Pin for various values of α
in a closed system with zero net mass flow rate and Hm = 10µm.

Figure 5.12 Pressure diodicity coefficient EP in terms of Pin for various values αin a
closed system with zero net mass flow rate and Hm = 10µm.
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Figure 5.13 Pressure difference ∆P = Pout − Pin in terms of Pin for various values α in
a closed system with zero net mass flow rate and Hm = 20µm.

Figure 5.14 Pressure diodicity coefficient EP in terms of Pin for various values of α in
a closed system with zero net mass flow rate and Hm = 20µm.
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Figure 5.15 Mass flow rate ṁ in terms of Pin for L/Hm = 20, 50 with Hm = 10µm and
various values of α in an open system with zero pressure difference.
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Figure 5.16 Mass diodicity coefficient Eṁ in terms of Pin for L/Hm = 20, 50 with
Hm = 10µm and various values of α in an open system with zero pressure difference.
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Figure 5.17 Pressure and gas rarefaction parameter distributions along a converging
channel with L/Hm = 20, 50, Hm = 10µm, Pin = 103, 0.5 × 105Pa and α = 2, 3, 4 in
an open system with zero pressure difference.
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Figure 5.18 Pressure and gas rarefaction parameter distributions along a diverging
channel with L/Hm = 20, 50, Hm = 10µm, Pin = 103, 0.5 × 105Pa and α = 2, 3, 4 in
an open system with zero pressure difference.

140

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Chapter 5 Figures

Figure 5.19 Pressure difference ∆P = Pout − Pin in terms of the mass flow rate ṁ in
a converging channel with L/Hm = 20, 50, Hm = 10µm, Pin = 103, 104, 105Pa and
α = 2, 3, 4, 5, 6.
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Figure 5.20 Pressure difference ∆P = Pout − Pin in terms of the mass flow rate ṁ in
a diverging channel with L/Hm = 20, 50, Hm = 10µm, Pin = 103, 104, 105Pa and
α = 2, 3, 4, 5, 6.
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Figure 5.21 Pressure diodicity coefficient for a given mass flow rate in terms of the
mass flow rate with L/Hm = 20, 50, Hm = 10µm, Pin = 103, 104, 105Pa and α =
2, 3, 4, 5, 6.
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Figure 5.22 Typical cascade along with the temperature variation (red line).
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Figure 5.23 Pressure difference ∆P in terms of the number of stages of multistage
tapered channel assembly for various values of α and Pin.
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Figure 5.24 Pressure distribution along a multistage tapered channel assembly with
α = 6 for various values of Pin.
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Figure 5.25 View of a serpentine channel consisting of straight and curved segments
(left) and a curved channel along with the median curve (dashed line) with the Cartesian
and curvilinear coordinate systems (right).

Figure 5.26 An arch of π/6 radians of curved channels with different curvatures.
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Figure 5.27 Pressure difference ∆P (left) and pressure ratio Rp (right) for straight and
curved channels with LC/D = LS/D = 20 in terms of inlet pressure.

Figure 5.28 Pressure difference ∆P (left) and pressure ratio Rp (right) for straight
channel with LS/D = 20 and curved channels with LC/D = π/κ, in terms of inlet
pressure.
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Figure 5.29 Mass flow rate ṁ (left) and mass flow rate ratio Rṁ (right) for straight
and curved channels with LC/D = LS/D = 20 in terms of inlet pressure.

Figure 5.30 Mass flow rate ṁ (left) and mass flow rate ratio Rṁ (right) for straight
channel with LS/D = 20 and curved channels with LC/D = π/κ, in terms of inlet
pressure.
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Chapter 6

Decomposition of the DSMC solution into
ballistic and collision parts and its imple-
mentation in non-equilibrium phenomena
in cavities and capillaries

6.1 Introduction

Rarefied gas flows are characterized by long mean free paths, compared to the
problem characteristic length, leading to moderate and high Knudsen numbers. Due
to the long mean free paths, the particle distribution function at some location in the
flow domain is composed of particles arriving directly from the boundaries without
interacting with other particles and of particles arriving after an arbitrary number
of collisions. Decomposing the distribution into those two parts namely the ballistic
and collision parts and computing the corresponding parts of the solution may provide
physical information, interpretation and justification of appearing non-equilibrium
phenomena. The DSMC method, as a particle method, may be used in introducing the
concept of decomposing the distribution function into its ballistic and collision parts
and investigate separately the contribution of each part.

In this chapter a methodology is developed for the decomposition of the DSMC
method by introducing a tag on each particle indicating whether it belongs to the
ballistic or collision part and adjusting accordingly the sampling procedure. In addition,
this methodology is implemented to investigate some interesting non-equilibrium flow
and heat transfer phenomena in cavities and capillaries. More specifically, two cavity
thermally driven flows are considered. In the first one the flow is due to a temperature
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distribution imposed along the lateral walls and in the second one due a uniformly
heated wall. In addition, the well-known Knudsen paradox in capillaries of various
cross sections is investigated.

Thermally induced non-equilibrium gas flows in cavities have received considerable
attention and, at some extent, this is due to their implementation in the emerging
field of microfluidics [183] and more specifically, in vacuum packaged MEMS [5], [184],
micropumps [105], [172] and microactuators/microsensors [185], [186]. In addition,
temperature driven flows in cavities have been commonly applied in rarefied gas
dynamics to investigate theoretically interesting physical phenomena [137], [187]–[190],
as well as to benchmark and validate novel numerical schemes [191]–[193]. The literature
survey on rarefied gas flows driven by temperature differences on the basis of kinetic
theory is very extensive. A thorough description of various types of thermal flows,
including thermal creep flow, thermal stress slip flow, and nonlinear thermal stress flow
in various configurations may be found in the book by Sone [93]. In this chapter, the
investigation is focused on rarefied gas flows in enclosures driven by non-isothermal
walls with no synergetic contributions from external force fields.

The flow generated by thermal creep in a rectangular enclosure for zero-gravity
conditions was investigated by the Direct Simulation Monte Carlo (DSMC) method in
[194]. The top and bottom walls were kept at different temperatures and along the side
walls a linear temperature profile was assumed. Two main counter-rotating vortices
have been observed with mass flow, as expected, from cold to hot in the vicinity of the
side walls. The gas flow in a square container, where the left and right halves of the
container wall were maintained at uniform but different temperature, has been also
considered [187] by numerically solving the BGK equation. In this discontinuous wall
temperature setup, the basic flow mechanism is the same as in the thermal creep flow
but this flow in the continuum limit, contrary to the thermal creep flow, vanishes in a
non-uniform manner. A more recent study on the importance of the imposed boundary
conditions in steady highly rarefied gas flows induced by non-uniform wall temperature
has been recently carried out based on the Boltzmann equation and the DSMC method
[195]. It has been deduced that by applying the Cercignani-Lampis (CL) gas-surface
interaction model [196] a steady flow is induced even in the free molecular limit, while
as it is known from earlier theoretical investigations in this limit and for Maxwell-type
boundary conditions the flow velocity is vanishing [189]. Complimentary work with
the Lord model [46] has shown that no steady flow is induced as in the case of the
Maxwell model.
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Next, in order to model vacuum packaged MEMS, the flow and heat transfer in an
enclosure with a hot surface in the bottom has been simulated by the DSMC method
in [5]. The effect of the temperature gradient and of the temperature discontinuities
is examined and it is deduced that when the bottom temperature is partly uniform
only close to the center of the bottom plate, the gas flow is enhanced due to thermal
creep and as a result the heat transfer in the hot chip bottom surface is also enhanced.
The reported rarefied flow close to the wall is according to the typical thermal creep
mechanism from cold to hot [93].

Similar studies of the heat transfer through rarefied gases confined in microcavities
have been reported in [192] and [193]. In [192] it has been demonstrated that the
regularized-13 (R13) equations [197] result to a numerical method, which is applicable
in the slip and early transition regime capturing flow characteristics and features which
are well beyond the Navier-Stokes-Fourier (NSF) range. In [193] it has been shown
that the unified gas-kinetic scheme [198] is indeed a reliable and accurate flow solver
for low-speed non-equilibrium flows. Interestingly, in both works it has been observed
that the gas flow close to the wall is not necessarily going from the cold to the hot wall
region. Depending on the flow parameters the flow along the boundary may move from
hot to cold regions as well. In both works this unexpected flow pattern has been also
confirmed by DSMC simulations. According to [192] this flow behavior is due to the
opposite contribution of the viscous and transpirational parts of the tangential velocity
at the side walls, which are caused by the shear stress and the tangential heat flux,
respectively.

Recently the thermally driven gas flow in a microcavity with one wall maintained
at high temperature and the other three walls at the same low temperature has
been investigated in [199] based on the NSF equations with slip and jump boundary
conditions and the regularized 13 moment (R13) equations [200]. The results have
been compared with corresponding DSMC results clearly indicating the limitations
of the NSF and the R13 approaches. For this specific configuration, the former one
cannot capture typical flow patterns even in the slip regime, while the latter one gives
satisfying results in the transition regime but only up to Kn ≤ 0.3.

Based on all above it is evident that thermally induced rarefied gas flows in
enclosures, although geometrically are relatively simple flow configurations, they still
are rich in non-equilibrium physical phenomena. Therefore, despite the work performed
and the progress achieved, it still remains a topic of major theoretical, computational,
and practical importance and further investigation is valuable.
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The two cavity problems, considered in this chapter, are thermally induced flows
and they are investigated in a wide range of the Knudsen number covering the slip
and transitions regimes and for small, moderate, and large temperature differences.
In the first configuration [158] the bottom and top walls were kept at constant and
different temperatures while a linear temperature distribution between the top and
bottom temperatures is applied to the lateral walls. It is observed that a flow near the
lateral boundaries is formed, having a velocity from hot-to-cold regions, contrary to the
thermal creep flow. In the second configuration three walls are kept at a constant low
temperature and the other at a higher temperature [201]. A very interesting finding
is that the heat flux departing from the hot wall, for some given Knudsen number
had a non-monotonic behavior with respect to the temperature ratio and a maximum
heat flux appeared at some intermediate ratio. It is noted that in both problems the
DSMC decomposition procedure is introduced to split the solution into the ballistic
and collision parts and the contribution of each part to the macroscopic quantities
is studied to explain the interesting phenomena arising in these flows. Modeling is
based on the numerical solution of the Shakhov kinetic model [29], [202] and the
DSMC method [62]. Solving the problem both deterministically and stochastically
allows a systematic comparison and verification of the results and more important the
exploitation of the advantages of each approach in the numerical investigation of the
flow and heat transfer patterns

Furthermore, capillary flows are also considered. Internal rarefied gas flow in a
wide range of the Knudsen number was first studied experimentally and theoretically
by Knudsen, who examined the dependence of the conductance at different pressure
and geometrical parameters [203]. Considering a tube much longer than its radius,
he developed an expression for the tube conductance and observed a conductance
minimum at Kn ≈ 1, well known as the Knudsen minimum or the Knudsen paradox.
Over the years these preliminary results have been improved, extended, and generalized.
The steady isothermal pressure driven gas flow through long capillaries still remains an
active research topic and a subject of many investigations [10], [50], [210]–[215], [170],
[185], [204]–[209]. Recently, simple closed-form expressions for the reduced flow rate
in long tubes in all flow regimes were deduced in [216] and [217], based on the direct
simulation Monte Carlo (DSMC) and kinetic simulations, respectively. These formulas,
as the one in [203], produce the Knudsen minimum, indicating that the conductance
(or the reduced flow rate) lies below the corresponding free-molecular values over a
range of pressures in the transition regime.
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A qualitative explanation for the conductance minimum in a long capillary has
been suggested by Polland and Present [218]. They considered two groups of molecules
flowing across a differential cross section of the capillary. The first one consists of
particles which arrived from the boundaries with no collisions and the second one of
particles which experienced at least one collision. At zero pressure the total flow comes
from particles only of the first group, while as the pressure is increased to small values
the flow of the first group particles is decreased because of the obstruction of the long
particle paths by the added molecules. In parallel, the flow of the second group of
particles is increased through the development of a drift transport due to intermolecular
collisions. The authors claim that at small pressures the rate of reduction of the first
flow is larger than the rate of increase of the second one and therefore, the total flow
must initially decrease with pressure. A further increase in pressure stimulates the
overall drift velocity that in turn, from that point on, monotonically increases the
entire flow through the tube.

The concept of decomposing the DSMC solution into two parts, is also implemented
here to investigate the Knudsen paradox in a precise manner with quantitative ar-
guments. The flow through long channels of various cross sections is simulated and
through the decomposition technique an interpretation to the Knudsen minimum is
obtained in a quantitative manner, confirming previous qualitative results [218].

The thermally driven flow in a cavity with a temperature gradient along the lateral
walls is presented in Section 6.2, the heat transfer in a cavity with one heated wall
in Section 6.3 and the Knudsen minimum appearing in long capillaries in Section 6.4.
Finally, some concluding remarks are made in Section 6.5.

6.2 Rarefied gas flow in cavities due to non-isothermal
lateral walls

6.2.1 Flow configuration and parameters definition

A monatomic rarefied gas is contained in a two-dimensional enclosure with rectan-
gular cross section W ×H. The orthogonal cross section of the enclosure and the origin
of the coordinate system are shown in Figure 6.1. The bottom and top boundaries
at y = 0 and y = H are kept isothermal at temperatures TH and TC with TC < TH ,
while along the side boundaries at x = ±W/2 a linear temperature profile is assumed
according to TS = TH − (TH − TC)y′/H. The enclosure is considered as unbounded in

155

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Chapter 6

the third direction and end effects in that direction are neglected, while radiation and
gravity effects are also assumed to be negligible. The gas-surface interaction is taken
to be purely diffusive to all four boundaries.

In view of the above set-up, a symmetric about x = 0 thermal creep type flow
of the rarefied gas is expected. In the vicinity of the two lateral walls at x = ±W/2
there will be a mass flow in the negative y direction from cold to hot and due to mass
conservation a mass flow of comparable magnitude does arise near the symmetry axis
x = 0. The presence of the non-isothermal side walls forces the thermal creep driven
gas into a circulatory motion creating two counter-rotating vortices. This flow pattern,
shown in Figure 6.1(a), has been captured in [194] for a square enclosure and for small
Knudsen numbers. The vortices of this flow pattern are named Vortex-type I.

Recent work [219] however, has revealed that in the same set-up, with the specific
temperature ratio of TC/TH = 0.1, when the Knudsen number is adequately large
additional vortices in the two bottom corners may appear and as the Knudsen number
is increased they are further increased. These vortices are counter rotating to the main
ones, i.e., the gas flows from hot-to-cold along the lateral walls. Now, the flow pattern,
shown in Figure 6.1(b), consists of four eddies, namely, two eddies of type I, which
are squeezed towards the center and the top of the cavity and two additional vortices
named, Vortex-type II, which are rotating along the lateral walls in the cold-to-hot
direction. It is noted that we refer to these two types of vortices as I and II, instead of
using the typical terminology of primary and secondary vortices, because as it will be
seen, depending upon the flow parameters may both occupy small or large regions of
the flow domain and may both become important in the characterization of the flow
pattern. As it has been pointed in the introduction, similar observations in enclosures
with a slightly different non-isothermal wall set-up have been reported in [192] and
[193].

Here, the flow configuration described above (Figure 6.1) is computationally inves-
tigated in a detailed and systematic manner based on kinetic theory principles. The
macroscopic quantities of interest include the number density distribution N (x′, y′),
the two component velocity vector U = [Ux (x′, y′) , Uy (x′, y′)], the shear stress tensor
Pxy (x′, y′), the temperature distribution T (x′, y′), and the two component heat flux
vector Q = [Qx (x′, y′) , Qy (x′, y′)], while the gas pressure is given by P = NkBT .

The solution is determined by three main dimensionless parameters, namely, the
reference Knudsen number defined as
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Kn0 =
√
π

2
µ0υ0

P0W
, (6.1)

the temperature ratio TC/TH , and the aspect ratio of the two-dimensional cavity
H/W . In Eq. (6.1), P0 is a reference pressure, W is the width of the cavity, which
is taken as the characteristic length, µ0 is the gas viscosity at reference temperature
T0 = TH , and υ0 =

√
2kBT0/m, with kB and m denoting the Boltzmann constant and

the gas molecular mass, respectively, is the most probable molecular speed, which is
taken as the characteristic velocity. The reference number density N0 is related to the
reference pressure and temperature according to P0 = N0kBT0. Then, it is convenient
to introduce the dimensionless quantities:

x = x′/W,y = y′/W, n = N/N0, ux = Ux/υ0, uy = Uy/υ0, p = P/P0,

τ = T/T0, qx = Qx/ (P0υ0) , qy = Qy/ (P0υ0)
(6.2)

It is noted that x ∈ [−0.5, 0.5] and y ∈ [0, H/W ] are the space variables, n,(ux, uy),p,τ ,
with p = n× τ and (qx, qy) are the two-dimensional distributions of the number density,
the two components of the velocity vector, the gas pressure and temperature and the
two components of the heat flux vector, respectively. The Inverse Power Law (IPL)
interaction, [62] is introduced yielding a viscosity of the form µ = µ0τ

ω, with the
parameterω ∈ [0.5, 1]. The values of ω = 0.5 and ω = 1 correspond to the limiting
cases of hard sphere and Maxwell molecules.

The solution of the problem described above is obtained in a deterministic manner
by numerically solving the nonlinear Shakhov model equations and in a stochastic
manner by the DSMC method presented in Sections 6.2.2 and 6.2.3, respectively.

6.2.2 Deterministic kinetic modeling

In kinetic modeling the main unknown is the distribution function, which for this
flow configuration is a function of five independent variables: the two space variables
(x′, y′) and the three components of the molecular velocity vector ξ = (ξx, ξy, ξz), i.e.,
f = f (x′, y′, ξ). The flow is simulated by the nonlinear Shakhov kinetic model [29],
[202], which has been proved to be a reliable model for non-isothermal flows [74], [77],
[152], [220], [221], subject to purely diffuse boundary conditions. In the course of this
work the deterministic solution has been proved always very reliable including the
cases of small temperature differences and large Knudsen numbers, both characterized
by very low speeds.
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The nonlinear Shakhov model for the steady-state two-dimensional flow under
consideration takes the form

ξx
∂f

∂x′ + ξy
∂f

∂y′ = P

µ

(
fS − f

)
, (6.3)

where P is the local pressure, µ = µ (T ) is the viscosity at local temperature T . The
Shakhov relaxation distribution is

fS = fM
[
1 + 2

15
m

N(kBT )2 [Qx (ξx − Ux) +Qy (ξy − Uy)] ×(
m

2kBT
[
(ξx − Ux)2 + (ξy − Uy)2 + ξ2

z

]
− 5

2

)]
,

(6.4)

with

fM = N

(2πRT )3/2 exp
[
− m

2kBT
[
(ξx − Ux)2 + (ξy − Uy)2 + ξ2

z

]]
(6.5)

being the local Maxwellian. The dimensionless distribution function g = fυ3
0/N0 and

molecular velocity ζ = ξ/υ0, along with the reference Knudsen number defined by
Eq. (6.1), the dimensionless quantities defined by Eq. (6.2) and the expression for the
viscosity given by the IPL molecular interaction, are introduced into Eqs. (6.3), (6.4)
and (6.5) to yield after some straightforward manipulation the corresponding equations
in dimensionless form:

ζx
∂g

∂x
+ ζy

∂g

∂y
= 1
Kn0

√
π

2 nτ 1−ω
(
gS − g

)
(6.6)

gS = gM [1 + 4
15

1
nτ 2 [qx (ζx − ux) + qy (ζy − uy)] ×[

(ζx − ux)2 + (ζy − uy)2 + ζ2
z

τ
− 5

2

] (6.7)

gM = n

(πτ)3/2 exp
[
−(ζx − ux)2 + (ζy − uy)2 + ζ2

z

τ

]
(6.8)

Furthermore, taking advantage of the two-dimensionality of the problem, the z
component of the molecular velocity can be eliminated by introducing the reduced
distribution functions ϕ =

∫∞
−∞ gdζz and ψ =

∫∞
−∞ ζ2

z gdζz. By operating accordingly on
Eqs. (6.6), (6.7) and (6.8) the following two coupled integrodifferential equations for
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the unknown reduced distribution functions ϕ = ϕ [x, y, ζx, ζy] and ψ = ψ [x, y, ζx, ζy]
are obtained:

ζx
∂ϕ

∂x
+ ζy

∂ϕ

∂y
= 1
Kn0

√
π

2 n
√
τ
(
ϕS − ϕ

)
(6.9)

ζx
∂ψ

∂x
+ ζy

∂ψ

∂y
= 1
Kn0

√
π

2 n
√
τ
(
ψS − ψ

)
(6.10)

Here,

ϕS = ϕM (1+ 4
15

1
nτ 2 [qx (ζx − ux) + qy (ζy − uy)] ×[

(ζx − ux)2 + (ζy − uy)2

τ
− 2

] (6.11)

and

ψS = ψM (1+ 4
15

1
nτ 2 [qx (ζx − ux) + qy (ζy − uy)] ×[

(ζx − ux)2 + (ζy − uy)2

τ
− 1

]
,

(6.12)

with the reduced local Maxwellians

ϕM = n

πτ
exp

[
−(ζx − ux)2 + (ζy − uy)2

τ

]
, (6.13)

ψM = n

2π exp
[
−(ζx − ux)2 + (ζy − uy)2

τ

]
, (6.14)

The macroscopic quantities in Eqs. (6.9), (6.10), (6.11), (6.12), (6.13) and (6.14) are
readily deduced by applying the same nondimensionalization and projection procedures
to the moments of f and finally they are expressed, in terms of ϕ and ψ, according to
the following double integrals:
Number density:

n (x, y) =
∞∫

−∞

∞∫
−∞

ϕdζxdζy (6.15)
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Velocity:

ux (x, y) = 1
n

∞∫
−∞

∞∫
−∞

ζxϕdζxdζy, uy (x, y) = 1
n

∞∫
−∞

∞∫
−∞

ζyϕdζxdζy (6.16)

Temperature:

τ (x, y) = 2
3n

∞∫
−∞

∞∫
−∞

[(
ζ2
x + ζ2

y

)
ϕ+ ψ

]
dζxdζy − 2

3
(
u2
x + u2

y

)
(6.17)

Heat flux:

qx (x, y) =
∞∫

−∞

∞∫
−∞

[[
(ζx − ux)2 + (ζy − uy)2

]
ϕ+ ψ

]
(ζx − ux) dζxdζy (6.18)

qy (x, y) =
∞∫

−∞

∞∫
−∞

[[
(ζx − ux)2 + (ζy − uy)2

]
ϕ+ ψ

]
(ζy − uy) dζxdζy (6.19)

At the boundaries, the reduced distribution functions representing outgoing particles
are denoted by ϕ+, ψ+ and they are expressed by the Maxwell purely diffuse reflection
as [222]

ϕ+ = nw
πτw

exp
[
−
(
ζ2
x + ζ2

y

)
/τw

]
(6.20)

ψ+ = nw
2π exp

[
−
(
ζ2
x + ζ2

y

)
/τw

]
, (6.21)

where τwis the dimensionless local wall temperature and nwis a parameter given in
terms of the ingoing distributions satisfying the impermeability wall conditions.

Equations (6.9) and (6.10), subject to the boundary conditions (6.20) and (6.21)
along with the associated expressions (6.11)-(6.19) provide a complete description of
the problem and constitute the basic set of equations to be numerically solved.

The implemented deterministic algorithm has been repeatedly applied to solve
nonlinear flows and heat transfer problems with considerable success [69], [75], [223].
A brief description is provided here mainly for completeness purposes.

The problem is solved by discretizing the molecular velocity and physical spaces. In
the velocity space it is computationally efficient to present the velocity vector in polar

160

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Section 6.2

coordinates, according to ζx = ζ cos θ and ζy = ζ sin θ. Then, the continuum velocity
spectrum (ζ, θ) is replaced by a set of discrete velocities (ζm, θk), where ζm ∈ (0,+∞),
m = 1, 2, ...,M and θn ∈ (0, 2π), n = 1, 2, ..., N . The magnitudes ζm are taken to be
the roots of the Legendre polynomial of order M accordingly mapped from (−1, 1)
to (0,+∞), while the polar angles are θn = π (2n− 1) /N . The number of discrete
velocity vectors is M ×N . In the physical space the flow domain is divided into I × J

rectangular elements, with i = 1, 2, ..., I and j = 1, 2, ..., J . The number of points in
the physical space is (I + 1) × (J + 1).

The integro-differential equations (6.9) and (6.10) are first discretized in the molec-
ular velocity space and the deduced set of partial differential equations are integrated
over each space element defined by the intervals

[
xi−1/2, xi+1/2

]
and

[
yi−1/2, yi+1/2

]
following a typical second order control volume approach. The moments (6.15)-(6.19)
are numerically integrated by applying the trapezoidal rule and Gauss-Legendre quadra-
ture in the polar angle θ and the velocity magnitude ζ, respectively, of the molecular
velocity vector. The resulting discretized equations for ϕ and ψ with the associated
discretized moments are solved in an iterative manner which is concluded when the
convergence criteria given by

ε(k) = max
i,j

{∣∣∣n(k)
i,j − n

(k−1)
i,j

∣∣∣+ ∣∣∣ux(k)
i,j − ux

(k−1)
i,j

∣∣∣+ ∣∣∣uy(k)
i,j − uy

(k−1)
i,j

∣∣∣+ ∣∣∣τ (k)
i,j − τ

(k−1)
i,j

∣∣∣} ≤ 10−10

(6.22)
is fulfilled. Here, k denotes the iteration index and ε(k) the error after k iterations.
It is noted that upon convergence all conservation principles are accordingly fulfilled.
The results presented in Sections 6.2.5 and 6.2.6 have been obtained with M = 80,
N = 400, I = 400, and J = 400 × (H/W ).

It may be useful to note that the implemented discrete velocity algorithm suffers
a breakdown of the positivity of the distribution function which is inherent in the
Shakhov model. However, in all cases tested the ratio of the weighted sums of the
negative over the positive distributions is at least less than 10−4 and therefore its effect
on the implementation of the algorithm and the accuracy of the results is negligible.

6.2.3 Stochastic DSMC modeling

Stochastic modeling is based on the DSMC method proposed by Bird [62]. The
typical DSMC approach is implemented. The gas is represented by a discrete number
of model particles, which are evolved in time to statistically mimic the behavior of real
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molecules. The physical space and time domains are discretized and the real motion
of the particles is split into the free motion step, where all particles are traveling a
distance proportional to their velocities and the collision step, where particles are
interacting, while keeping their positions unchanged. In the first step the particle
motion is purely deterministic, while in the second particle collisions are carried out in
a stochastic manner.

The collision technique that is employed here is the No Time Counter (NTC) scheme
suggested by Bird [62]. A slight modification is introduced in the calculation of the
maximum number of collisions NC in each cell, which is estimated according to [224]

NC = 1
2
N (N − 1)FN(σT cr)max∆t

VC
, (6.23)

where N is the actual number of particles in cell, FN is the number of real particles
represented by a simulator, (σT cr)max is the maximum value of the product of the colli-
sion cross section and the relative velocity of the particles in the collision (this quantity
is updated throughout the simulation), ∆tisthetimestep, andVCisthevolumeofthecell.

The space domain has been discretized by using squared cells (∆x = ∆y = 0.01),
i.e., 100 cells have been taken in the x-direction, while the number of cells in the
y-direction depends on the aspect ratio (H/W ) and it is equal to nC = 100 × (H/W ).
The number of particles per cell on the NTC scheme is fixed to 25 and the time step
is chosen to be sufficiently smaller (about 1/3) than the cell traversal time, defined
as W/ (nCυ0). The macroscopic quantities, defined by Eq. (6.2), are volume based
calculated by averaging the microscopic values of the particles at a given cell and are
given by the following summations:
Number density:

n =

S∑
k=1

N (tk)

SVC
(6.24)

Velocity:

ux = 1
NT

S∑
k=1

N(tk)∑
i=1

ζx,i (tk), uy = 1
NT

S∑
k=1

N(tk)∑
i=1

ζx,i (tk) (6.25)

Temperature:

τα = 1
NT

S∑
k=1

N(tk)∑
i=1

ζ2
α,i −

 1
NT

S∑
k=1

N(tk)∑
i=1

ζα,i

2

, α = {x, y, z} , τ = 2 (τx + τy + τz) /3

(6.26)
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Shear Stress:

pxy = 1
NT

S∑
k=1

N(tk)∑
i=1

(
ζx,iζy,i

)
− uxuy (6.27)

Heat flux:

qx
2 = 1

NT

S∑
k=1

N(tk)∑
i=1

ζx,i
(
ζ2
x,i + ζ2

y,i + ζ2
z,i

)
− 2ux

1
NT

S∑
k=1

N(tk)∑
i=1

(
ζ2
x,i − u2

x

)

− 2uy
1
NT

S∑
k=1

N(tk)∑
i=1

(
ζx,iζy,i − uxuy

)
− ux

1
NT

S∑
k=1

N(tk)∑
i=1

(
ζ2
x,i + ζ2

y,i + ζ2
z,i

) (6.28)

qy
2 = 1

NT

S∑
k=1

N(tk)∑
i=1

ζy,i
(
ζ2
x,i + ζ2

y,i + ζ2
z,i

)
− 2ux

1
NT

S∑
k=1

N(tk)∑
i=1

(
ζx,iζy,i − uxuy

)

− 2uy
1
NT

S∑
k=1

N(tk)∑
i=1

(
ζ2
y,i − u2

y

)
− uy

1
NT

S∑
k=1

N(tk)∑
i=1

(
ζ2
x,i + ζ2

y,i + ζ2
z,i

) (6.29)

In Eqs. (6.24)-(6.29), NT is the total number of sampled particles, S denotes
the number of samples, tk indicates the different times over which the sampling is
performed, and N (tk) is the number of particles in the cell at time tk. It is noted that
the macroscopic properties are obtained by time averaging over S = 5 × 105 time steps
after the steady-state regime has been recovered.

6.2.4 DSMC decomposition methodology into ballistic and
collision parts

In general, a kinetic solution at some point in a flow domain consists of two parts,
namely, the ballistic and the collision parts. The former one is due to particles arriving
at this point from the boundaries with no collisions, while the latter one is due to
particles arriving at this point after an arbitrary number of collisions (at least one).

The ballistic and collision parts of the solution of the thermally induced flow in
the enclosure are computed separately and the contribution of each part to the overall
solution is analyzed. The dimensionless distribution function g = g (x, y, ζ) at a local
point (x, y), defined in Section 6.2.2, is decomposed as

g (x, y, ζ) = g(b) (x, y, ζ) + g(c) (x, y, ζ) , (6.30)
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where g(b) and g(c) denote the ballistic and collision parts of the distribution function,
respectively. It is noted that particles contributing to the ballistic part of the solution at
point (x, y) may collide to other particles in their movement after that point. Therefore,
the two parts of the solution are named ballistic and collision in order to distinguish
this splitting from the typical free molecular and collisional decomposition, as well as
from other decompositions of the distribution function, which have been previously
introduced to treat boundary induced discontinuities [157], [225], [226].

The prescribed decomposition of the particle distribution in a given cell of the
computational grid with center point (x, y) can be implemented in the basic DSMC
algorithm by making some additions in the indexing stage. More specifically, all model
particles j = 1, . . . , NT taking place in the simulation are tagged by introducing the
indicator Ij, which has the value of 0 or 1 indicating if a particle contributes to the
ballistic or the collision part of the distribution, respectively. A particle passes into
the ballistic part when it is reflected from a wall and goes into the collision part
when interacts with another particle. The indicator is set to 0 each time that a
particle is reflected from the bounding walls of the enclosure, while in the stage of
particle free motion the indicators are not changed. In the stage of binary collisions
the indicators (Ij, Ik) of any pair of particles (j, k) involved in a collision are set to
1. During the simulation process the particle indicators may change their values all
the time. In the sampling stage of the macroscopic properties at given time tm all
particles with indicators Ij = 0, are considered belonging to the ballistic part of the
particle distribution and all particles with indicators Ij = 1 to the collision part. As
a result, the total number of all particles accumulated in a cell is divided into two
groups NT = N (b) + N (c) and the macroscopic quantities are sampled into the two
corresponding parts.

In this chapter we are mainly interested to the distributions of number density,
velocity and heat flux components which are decomposed according to

n (x, y) = n(b) (x, y) + n(c) (x, y) , (6.31)

ux (x, y) = u(b)
x (x, y) + u(c)

x (x, y) , (6.32)

uy (x, y) = u(b)
y (x, y) + u(c)

y (x, y) , (6.33)
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qx (x, y) = q(b)
x (x, y) + q(c)

x (x, y) , (6.34)

qy (x, y) = q(b)
y (x, y) + q(c)

y (x, y) , (6.35)

where the superscripts (b) and (c) denote the ballistic and collision parts of the distri-
butions, respectively. They are computed by accordingly integrating the distribution
function. For example the ballistic and collision contributions to the horizontal part of
the macroscopic velocity (ux) can be obtained as

ux (x, y) = 1
n

∫
ζxgdζ = 1

n

∫
ζxg

(b)dζ + 1
n

∫
ζxg

(c)dζ = u(b)
x (x, y) + u(c)

x (x, y) . (6.36)

In this notation, the distribution function, as well as its ballistic and collision parts
can be written as

g (x, y, ζ) = 1
SVCell

S∑
k=1

N(tk)∑
i=1

δ (ζ − ζi (tk)), (6.37)

g(b) (x, y, ζ) = 1
SVCell

S∑
k=1

N(tk)∑
i=1

[1 − Ii (tk)] δ (ζ − ζi (tk)), (6.38)

g(c) (x, y, ζ) = 1
SVCell

S∑
k=1

N(tk)∑
i=1

Ii (tk) δ (ζ − ζi (tk)), (6.39)

where δ (ζ − ζi (tk)) denotes the Dirac function. Thus the ballistic and collision parts
of the macroscopic quantities can be calculated in the same manner as shown in (6.36)
when the expressions (6.38) and (6.39) for the distribution function are substituted in
the integrals. After some algebraic manipulation the following expressions are derived:
Number density:

n(b) =

S∑
k=1

[1 − Ii (tk)]N (tk)

SVC
, n(c) =

S∑
k=1

Ii (tk)N (tk)

SVC
(6.40)
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Velocity:

u(b)
x = 1

NT

S∑
k=1

N(tk)∑
i=1

[1 − Ii (tk)] ζx,i (tk), u(c)
x = 1

NT

S∑
k=1

N(tk)∑
i=1

Ii (tk) ζx,i (tk) (6.41)

u(b)
y = 1

NT

S∑
k=1

N(tk)∑
i=1

[1 − Ii (tk)] ζy,i (tk), u(c)
y = 1

NT

S∑
k=1

N(tk)∑
i=1

Ii (tk) ζy,i (tk) (6.42)

Shear stress:

p
(b)
lm = 1

NT

S∑
k=1

N(tk)∑
i=1

[1 − Ii (tk)]
(
ζl,iζm,i

)
− u

(b)
l um − u(b)

m ul + n(b)ulum (6.43)

p
(c)
lm = 1

NT

S∑
k=1

N(tk)∑
i=1

Ii (tk)
(
ζl,iζm,i

)
− u

(c)
l um − u(c)

m ul + n
(c)
ulum (6.44)

Temperature:

τ (b)
α = 1

NT

S∑
k=1

N(tk)∑
i=1

[1 − Ii (tk)]ζ2
α,i − 2u(b)uα + n(b)u2

α, α = {x, y, z},

τ (b) = 2
(
τ (b)
x + τ (b)

y + τ (b)
z

)
/3

(6.45)

τ (c)
α = 1

NT

S∑
k=1

N(tk)∑
i=1

Ii (tk)ζ2
α,i − 2u(c)uα + n(c)u2

α, α = {x, y, z},

τ (c) = 2
(
τ (c)
x + τ (c)

y + τ (c)
z

)
/3

(6.46)
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Heat Flux:
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Based on the above description it is deduced that for the ballistic part of the particle
distribution the boundaries act as a source, while the bulk flow acts as a sink. The
situation is reversed for the collision part of the particle distribution, where the bulk
flow acts as a distributed source and the walls as a sink.

The macroscopic description of the whole flow domain of the enclosure in terms of
the flow parameters is given in Section 6.2.5 and then, in Section 6.2.6 the discussion is
focused on the behavior of the macroscopic quantities along the enclosure walls. Finally,
in Section 6.2.7, the solution is split into the ballistic and collision parts, based on the
methodology presented, and the flow behavior along the lateral walls is explained. All
results are in dimensionless form.

6.2.5 Macroscopic distributions in the flow domain

Results are provided for all macroscopic quantities of theoretical importance and
practical interest in a wide range of the Knudsen number (0.1 ≤ Kn0 ≤ 10) covering
the whole transition regime as well as parts of the slip and free molecular regimes and
for temperature ratios TC/TH = 0.1, 0.5, and 0.9 corresponding to large, moderate,
and small temperatures differences between the top and bottom plates, respectively.
Enclosures with aspect ratios H/W = 0.5, 1, 2 are considered. Most of the results are
for hard sphere molecules (ω = 0.5), while some results for Maxwell molecules (ω = 1)
are provided as well.

In the case of the large temperature difference TC/TH = 0.1, simulations have been
performed for all Knudsen numbers and aspect ratios by both the deterministic solver
of the Shakhov model equation and the DSMC solver. The agreement between the
corresponding results produced by these two completely different approaches is always
very good as it is indicatively demonstrated for some cases. In the cases of TC/TH = 0.5
and 0.9 simulations have been performed mainly by the deterministic solver.

The effect of the degree of the gas rarefaction on the patterns of the flow field is
shown in Figure 6.2, where the velocity streamlines superimposed on the temperature
contours for Kn0 = 0.01, 0.1, 0.2, 0.5, 1, and 10 in a square enclosure with TC/TH = 0.1
are presented. The flow is symmetric about x = 0. It is seen that for Kn0 = 0.01 only
the two Vortex-type I are observed and the gas flows next to the lateral walls from
the colder towards the hotter region (from top to bottom). At Kn0 = 0.1, at the two
bottom corners of the enclosure, Vortex-type II start to appear counter rotating to the
other ones. As the Knudsen number is increased, they are gradually increased as well,
and for Kn0 =0.5, 1, and 10 these eddies of type II are well developed and cover large
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portions of the flow domain with the gas flowing along the whole length of the side
walls from the hotter to the colder region (from bottom to top). The two Vortex-type
I have been squeezed towards the top and the center of the cavity. The temperature
contours indicate that the flow domain is thermally stratified and as expected, the
temperature jump at the walls becomes larger as the Knudsen number is increased. In
general, as the flow becomes more rarefied the hot-to-cold motion next to the lateral
walls is enhanced and the structure of the flow pattern becomes more complex. Of
course as the Knudsen number tends to infinity the gas velocity vanishes.

It may be interesting to note that while in the classical lid driven cavity problem as
we are approaching the hydrodynamic regime (i.e., as the Knudsen number is decreased)
the flow becomes more complex with secondary vortices added to the main ones, here
on the contrary, the interesting flow patterns with the Vortex-type II eddies, start to
appear as we are moving into the transition regime (i.e., as the Knudsen number is
increased). Overall, the degree of gas rarefaction significantly influences the thermally
driven flow in the enclosure.

Figure 6.3 shows also streamlines and temperature contours in a square cavity for
the cases of moderate and small temperature differences, namely, TC/TH = 0.5and
0.9, respectively, and for the typical values of Kn0 = 0.1, 1, and 10. These results
along with the corresponding ones in Figure 6.2 are helpful to describe the effect
of the temperature ratio on the flow pattern. In general, for the same Kn0, as the
temperature difference between the bottom and top plates, as well as the temperature
gradient along the lateral walls, are decreased, the Vortex-type II with the hot-to-cold
flow in the vicinity of the walls become thinner covering a smaller portion of the flow
domain. For the small temperature difference of TC/TH = 0.9 at Kn0 = 1 these eddies
are very thin but still cover the whole length of the non-isothermal side walls and then
as the temperature difference is increased they are grown pushing the Vortex-type I
towards the center.

A more quantitative description of the flow is provided in Figure 6.4, where the
x and y components of the macroscopic velocity on vertical and horizontal planes,
respectively, passing through the centers of the Vortex-type I are plotted. The results
are for a square enclosure with TC/TH = 0.1 with Kn0 = 0.01, 0.1, and 1. The uy
profiles are plotted versus x ∈ [−0.5, 0.5] and the ux profiles are plotted versus y ∈ [0, 1].
Both deterministic and stochastic results are shown and it is seen that the agreement
is always very good. The distributions of uy are symmetric about x = 0 and the points
where uy changes sign correspond to the x coordinate of the center of the two eddies of
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type I. The distributions of ux are changing sign in the case of Kn0 = 0.01and 0.1 only
once, which implies that only the two Vortex-type I are present (actually for Kn0 = 0.1
the Vortex-type II has been created but it is not extended up to horizontal axis passing
through the centers of the Vortex-type I). In the case of Kn0 = 1 the distributions of
ux are changing sign several times, which indicates that both Vortex-type I and II are
present. These observations are in accordance to the flow patterns shown in Figure
6.2 for the corresponding Knudsen numbers. In all cases the maximum absolute value
of the velocities is small, approximately in the order of 10−2 or even less (the local
Mach is about 10% higher than the reported velocity magnitudes), which is typical in
rarefied thermally driven flows. Comparing between the absolute values of the velocity
for various Knudsen numbers it is seen that the maximum values are at Kn0 = 0.1.
Also, as the Knudsen number is increased the magnitude of the velocities ux related to
Vortex-type II, in Figure 6.4(b), is increased and may become even larger than that of
Vortex-type I.

These latter remarks are confirmed by the dimensionless flow rates of the Vortex-
type I and II presented in Tables 6.1 and 6.2 respectively, for various temperature
ratios and reference Knudsen numbers. The former ones are computed by integrating
the dimensionless flux nux in the y direction from the center of the Vortex-type I to
the top wall and the latter ones by integrating the flux nuy in the x direction from the
center of Vortex-type II to the side wall. The tabulated results have been obtained
by the deterministic solution of the Shakhov model equation. Also, flow rates have
been obtained by the DSMC approach for the case of TC/TH = 0.1 and they are in
very good agreement with the corresponding tabulated ones. It is seen in Table 6.1
that starting from Kn0 = 0.01 as the Knudsen number is increased and for the same
temperature ratio, the flow rate of Vortex-type I is increased obtaining a maximum
value around Kn0 = 0.07 and then is constantly decreased as the Knudsen number
keeps increasing. This is valid for all three temperature ratios. The corresponding
flow rates of Vortex-type II, shown in Table 6.2, indicate a maximum flow rate around
Kn0 = 1.2. The exact physical reasoning for these maximum flow rates with regard
to the reference Knudsen number is contributed to the number of collisions between
particles and between particles and boundaries as the gas rarefaction is changing.
In addition, while for Kn0 < 0.1 the flow rate of Vortex-type II is several orders
of magnitudes smaller compared to the corresponding ones of Vortex-type I, as the
Knudsen number is increased the two flow rates become of the same order and in some
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cases the former ones are even larger. Also, for the same Knudsen number as the
temperature difference is increased the flow rate, as expected, is also increased.

The effect of the lateral walls on the flow pattern may be seen in Figure 6.5, where
the streamlines and temperature contours for two rectangular enclosures, namely,
H/W = 0.5 and 2 for the specific case of TC/TH = 0.1 and Kn0 = 1 are plotted.
Observing these flow fields along with the corresponding one for a square cavity
(H/W = 1) in Figure 6.2, it is seen that as the aspect ratio is increased the presence of
the Vortex-type II becomes more dominant covering a larger part of the flow domain.
Obviously, as the aspect ratio is increased, i.e., as the depth prevails over the width of
the cavity, the importance of the non-isothermal side walls compared to the bottom
and top walls is also increased. The computed dimensionless flow rates of the Vortex
type I and II are also changing significantly with the aspect ratio. It is concluded that
the aspect ratio is a very important factor in this flow configuration.

Since this is a thermally induced flow it is reasonable to investigate the effect of the
intermolecular collision model and this is done by including in Figure 6.6, some results
for Maxwell molecules for the specific cases of TC/TH = 0.1, with Kn0 = 0.1 and 1.
Comparing the plotted streamlines and temperature contours with the corresponding
ones for hard spheres in Figure 6.2, it is observed that for Kn0 = 0.1 there is actually
no effect, while for Kn0 = 1 there are differences. This remark is also confirmed by the
computed dimensionless flow rates of Vortex type I and II. It may be stated that as the
intermolecular interaction becomes softer the region occupied by the Vortex-type II is
reduced and the cold-to-hot flow becomes less intensive. However, again the hot-to-cold
motion appears as the Knudsen number is increased.

6.2.6 Macroscopic distributions adjacent to the non-isothermal
cavity walls

Here, a more thorough description of the macroscopic quantities in the vicinity
of the boundaries of the enclosure is provided. This includes the y components of
the velocity and heat flux as well as the shear stress along the lateral walls and the
average heat flux from the bottom wall. Some comments on the range of validity of
the mechanism explaining the formation of Vortex-type II, as described in [192], are
included.

In Table 6.3, the tangential velocity uy along the lateral walls of a square enclosure
for small, moderate, and large temperature differences in a wide range of the reference
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Knudsen number are provided. Due to symmetry these results correspond to x = ±0.5.
When uy < 0, the flow is from the top to bottom and corresponds to the expected
thermal type flow as described by the Vortex-type I pattern, while when uy > 0 the flow
is the other way around and corresponds to the unexpected flow pattern as described by
Vortex-type II. It is observed that when Kn0 = 0.01 the values of uy are negative and
only very close to y = 0 and 1 very small positive values may appear. The Vortex-type
I flow covers the whole flow domain. When Kn0 = 1 and 10 the values of uy are
always positive, which implies that the Vortex-type II flow covers the whole length of
the lateral walls. Finally, for Kn0 = 0.1 both positive and negative values of uy are
observed. The positive values are close to the two ends and the negative values in the
middle part of the wall. That implies that although the Vortex-type I flow still covers
most of the whole flow field, counter rotating vortices at the bottom and top corners
have been created, which, as the Knudsen number is increased, grow and merge into a
Vortex-type II along the whole length of the side wall. These observations qualitatively
hold for all three temperature ratios. Combining these results with the previous ones in
Section 6.2.5 it is concluded that in small Knudsen numbers the expected thermal creep
flow prevails and then for Kn0 ≥ 0.5 the importance of the unexpected hot-to-cold
flow is gradually increased and its presence significantly effects both qualitatively and
quantitatively the flow configuration.

According to the R13 approach in [192], the formation of the Vortex-type II is
explained by the opposite contribution of the two different terms of the tangential
velocity at the wall, which in the present notation, is written as

uR13
y = − 1

(τn+ 0.5pyy)

(√
πτ

2 pxy + 1
5qy

)
. (6.51)

The superscript R13 has been added here, in order to distinguish in our discussion the
tangential velocity obtained by Eq. (6.51) from the one (uy) obtained by the kinetic
solution. The first term in the parenthesis corresponds to the viscous part of the
tangential wall velocity and the second one to the transpirational part, caused by the
shear stress and the tangential heat flux, respectively. The respective magnitude of
these terms determines the sign of the tangential velocity and the local direction of the
flow along the side walls. In order to examine the validity of this theory, the kinetic
results of pxy and qy are introduced to compute, according to Eq. (6.51), the viscous
and transpirational parts of the wall tangential velocity and the whole velocity as well.
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The shear stress pxy and the tangential heat flux qy along the lateral wall at
x = −1/2 of a square enclosure for various Knudsen numbers and temperature ratios
are provided in Tables 6.4 and 6.5, respectively. It is seen that always pxy < 0 and
qy > 0, i.e., they indeed have an opposite contribution to the tangential velocity. Since,
however, as the Knudsen number is increased, both the values of the heat flux and the
absolute values of the shear stresses are increased, it is necessary to further compute
the contribution of each part separately.

In Figure 6.7, the tangential velocities obtained by kinetic theory and according to
Eq. (6.51) denoted by uy and uR13

y , respectively, for Kn0 = 0.01, 0.05, 0.1, and 1, are
plotted. When the velocity distributions are negative the transpirational part of the
solution dominates and the flow along the lateral walls is from cold-to-hot (Vortex-type
I), while when they are positive the viscous part dominates and the flow is from
hot-to-cold (Vortex-type II). The agreement between the kinetic and R13 theory in
small Knudsen numbers is very good and then, as the flow becomes more rarefied, the
discrepancies, as expected, are increased. In general, the good qualitative agreement
for Kn0 ≤ 0.1 indicates that the theory developed in [192] in order to explain the
formation of the hot-to-cold flow in the vicinity of the walls is valid in the slip regime
and fails as the Knudsen number is increased. In Section 6.2.7 a reasonable explanation
for this type of flow in the whole range of the Knudsen number is provided.

It has been pointed in the introduction that the aspect ratio of the enclosure effects
significantly the flow configuration and quantities. To further demonstrate the effect
of the lateral walls, the tangential velocity and heat flux along the lateral walls of
enclosures with H/W = 0.5, 1, 2 for TC/TH = 0.1 and Kn0 = 1 are plotted in Figure
6.8. For the specific Knudsen number and temperature ratio the velocities are positive
for all three aspect ratios and approximately of the same magnitude resulting to
stiffer velocity gradients as H/W is decreased. The tangential heat flux is significantly
increased as H/W is decreased, i.e., as the effect of the side walls is decreased.

Closing this subsection the average dimensionless heat flux directed from the
bottom plate into the enclosure is estimated by integrating the heat flux qy (x, 0)over
the distance x ∈ [−0.5, 0.5]. In Table 6.6, the average dimensionless heat flux, denoted
by qav is given in terms of the reference Knudsen number Kn0 for TC/TH = 0.1, 0.5,
and 0.9. The corresponding results obtained by the DSMC method, using 400 cells in
each direction and 100 particles per cell, are also included for comparison purposes.
The agreement between the corresponding Shakhov and the DSMC results is excellent.
As it is seen when the temperature difference between the top and bottom plates
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is increased the average heat flux for the same Kn0, as expected, is also increased.
Although not shown in the table it is noted that as H/W is increased the average
heat flux is decreased, e.g., the computed values of qav in the case of TC/TH = 0.1 for
H/W = 0.5, 1, and 2 are 0.35, 0.14, and 0.057, respectively. Concerning the effect of
the collision parameter ω on qav it turns out that it is small since the values of the
computed average heat fluxes for hard sphere and Maxwell molecules are close.

6.2.7 Ballistic and collision contributions

The decomposition of the DSMC solution into the ballistic and collision parts, as
described in Section 6.2.4, is applied in a square enclosure for Kn0 = 0.05, 2, with
TC/TH = 0.1. The two values of the reference Knudsen numbers have been chosen as
representatives to demonstrate the contribution of the ballistic and collision parts to
the overall solution in the slip and transition regimes. In addition, the corresponding
results are typical for analyzing the thermal effects on the flow configuration in small
and large Knudsen numbers.

The streamlines and the contours of the vertical velocities of the ballistic and
collision parts of the solutions, denoted by u(b)

y and u(c)
y , respectively, as well as the

overall solutions are given for Kn0 = 0.05 and 2 in Figure 6.9. More specifically, Figure
6.9(a) and (b) show the ballistic parts and Figure 6.9(c) and (d) the collision parts,
while the overall solutions which are the summation of the two corresponding parts
are shown in Figure 6.9(e) and (f). It is seen that the streamlines of the ballistic parts
(Figure 6.9(a) and (b)) are directed from the boundaries toward the interior of the bulk
flow, while the streamlines of the collision parts (Figure 6.9(c) and (d)) are directed
from the interior of the bulk flow toward the walls. These qualitative observations are
well expected from the physical point of view since as it has been pointed before, in the
ballistic part the walls act as source and the bulk flow as sink, while it is the other way
around in the collision part. The streamlines along with the vertical velocities contours
clearly indicate when the flow is in the positive or negative direction corresponding
to hot-to-cold and cold-to-hot flow, respectively. The summation of these flow fields
deduce the overall solutions shown in Figure 6.9(e) and (f), which are in excellent
agreement with the corresponding deterministic ones. It is seen that for Kn0 = 0.05
only the Vortex-type I are present, while for Kn0 = 2 the Vortex-type II are also well
developed, with the gas flowing along the lateral walls in the first case from cold-to-hot
and in the second one from hot-to-cold.
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The streamlines in Figure 6.9 may be further analyzed. Starting withKn0 = 2,
where the flow patterns are simpler, the streamlines of the ballistic and collision parts
are directed to and originated from single points, with total velocity equal to zero.
The slight displacement between the two focal points and the small differences in
the velocity magnitudes of the collision and ballistic parts, lead to the creation of
Vortex-type II, shown in Figure 6.9(f). Continuing with Kn0 = 0.05 it is seen that the
streamline patterns of the ballistic and collision parts are quite different. The ballistic
part has some resemblance with the corresponding one forKn0 = 2, showing one single
point towards which the streamlines are directed. The collision part however is different
indicating two single points from which the streamlines are originated. These points
are symmetrically located about x = 0 and are centers of two symmetric spiral swirls
caused by flow vorticity at this low Knudsen number. Also, at some extent streamlines
are concentrated along a curve where the vertical velocities are zero. In addition, there
is one point along x = 0 where the total velocity is zero and this point is transformed
to a saddle point separating the streamline patterns into two branches directed to the
hot and cold walls. The slope of the streamlines with respect to the vertical walls is
another important element in the present analysis. It is seen that at Kn0 = 0.05 the
negative slope of the streamlines of the collision part is larger than the positive slope
of the streamlines of the ballistic part and this is a clear sign for a cold-to-hot gas
motion along the vertical walls. At Kn0 = 2 the two slopes are about the same with
the ballistic one appearing to be larger, which is an indication for a hot-to-cold gas
motion.

A more detailed view of the flow along the lateral walls is presented in Figure 6.10,
where the tangential velocities and number densities are presented. In Figure 6.10(a)
the tangential velocities of the ballistic and collision parts, u(b)

y and u(c)
y , respectively,

are plotted along y ∈ [0, 1] for Kn0 = 0.05 and 2, while the corresponding overall
tangential velocities uy are given in Figure 6.10(b). It is seen in Figure 6.10(a), that for
Kn0 = 0.05, the tangential velocities u(b)

y and u(c)
y are positive and negative, respectively,

along almost the whole length of the side walls and only very close to the top corners
(y = 1) their signs are interchanged. In parallel, the overall tangential velocity uy, in
Figure 6.10(b), is negative.

In the case of Kn0 = 2, the tangential velocities u(b)
y and u(c)

y in Figure 6.10(a),
are positive and negative, respectively, up to about y = 0.65 and then their signs are
interchanged. The overall velocity uy, in Figure 6.10(b), is positive up to about y = 0.7
and then its value becomes negative taking very small values close to zero. From the

175

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Chapter 6

above it is deduced that the negative or positive values of uy, corresponding to cold-to-
hot or hot-to-cold flow along the walls depends on which part of the solution, either
the ballistic or the collision part prevails with respect to the other. At Kn0 = 0.05 the
contribution of the collision part is more significant and only the Vortex-type I flow is
observed, while at Kn0 = 2 the magnitude of the ballistic part has been increased and
becomes respectively more significant and therefore the Vortex-type II flow shows up.

These arguments are also supported by the ballistic and collision number density
profiles denoted by n(b) and n(c), in Figure 6.10(c). It is seen that along the walls
forKn0 = 0.05, n(b) < n(c) and for Kn0 = 2, n(b) > n(c), which also indicate that in
the overall solution the contribution of the collision part dominates at small Knudsen
numbers, while at large Knudsen numbers the contribution of the ballistic part becomes
more significant. In Figure 6.10(d) the overall density profiles n, computed as the
summations of the two parts are provided for Kn0 = 0.05 and 2.

Based on both Figures 6.9 and 6.10 and the previous discussion some more general
comments on the ballistic and collision contributions in the overall solution may be
stated. In the free molecular limit, the flow is perfectly balanced by pressure and
temperature distributions and both collision and ballistic velocities are equal to zero.
Increasing the gas density and respectively decreasing the Knudsen number, collisions
between molecules destroy this balance and from thermodynamic viewpoint, the gas
reaction is a weak motion in the enclosure with streamline patterns depending on the
Knudsen number, the wall temperature distribution, and the enclosure geometry. At
very large Knudsen numbers, the ballistic part is dominating. At moderate values
there is interplay between the ballistic and collision parts and the behavior of the
overall solution is very subtle particularly in the transition regime. Finally, at very
small Knudsen numbers the collision part is dominating. In this latter case, the classic
thermal creep theory works and predicts correctly the cold-to-hot direction of the
streamlines along the vertical walls. As the Knudsen number increases the impact
of the ballistic part also increases and the convective vortices start to rotate in the
hot-to-cold direction along the lateral walls.
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6.3 Non-equilibrium heat transfer in cavities due
to uniformly heated walls

6.3.1 Flow configuration

The flow configuration is identical as the one presented in Section 6.2, while the
boundary conditions are slightly altered. One wall, namely the bottom one, without loss
of generality, is at temperature TH , while the other three walls are kept at temperature
TC , with TC < TH . To avoid discontinuities at the two bottom corners, the temperature
of the hot wall close to the two corners (5% of the total length W ) is linearly decreased
from TH to match the temperature of the side walls TC .

Due to thermal creep a flow is expected near the side walls directed from cold-to-hot
regions and to ensure mass conservation a flow near the symmetry axis (x′ = 0) is
expected in the opposite direction. This would create two counter rotating vortices
in the enclosure. Due to the same mechanism described in Section 6.2, in addition to
these vortices, even at small Knudsen numbers, two more vortices appear in the upper
part of the enclosure, with a flow along the lateral walls from hot-to-cold regions [158],
[192], [199]. All four vortices are shown in Figure 6.11, with the former ones denoted by
the symbol I and the latter unexpected ones by II. The detailed flow pattern depends
on the gas rarefaction and the temperature ratio of the cold over the hot walls.

Another parameter of the flow field of practical interest is the local Mach number
defined as Ma = |U/c0|, where U =

√
U2
x + U2

y is the magnitude of the bulk velocity
and c0 =

√
γkBT0/m, with γ = 5/3 being the ratio of the specific heats of monatomic

gases, is the speed of sound. It is readily shown that the local Mach number in terms
of the dimensionless bulk velocity is given by Ma = |u|

√
6/5.

6.3.2 Deterministic and stochastic modeling

The problem is solved both in a deterministic and stochastic manner. The determin-
istic modeling is based on the direct solution of the nonlinear Shakhov kinetic model
and the stochastic modeling on the DSMC method. Modeling of this flow configuration
is identical as the one presented in Section 6.2 and thus a detailed description is
omitted here. Furthermore, the solution of the thermally induced flow in the enclosure
is decomposed into the ballistic and collision parts, focusing however on the heat flux
departing from the hot wall, instead of the velocity field.
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6.3.3 Flow field and macroscopic quantities

The flow in the square cavity was simulated in a wide range of the Knudsen number,
namely for 0.1 ≤ Kn0 ≤ 102 and various temperature ratios 0.05 ≤ TC/TH ≤ 0.9.
Simulations have been conducted both by the deterministic and stochastic methods,
and a very good agreement between corresponding results has been obtained.

In Figure 6.12 a view of the flow field in terms of the involved parameters is provided.
The streamlines and the temperature contours are plotted for Kn0 = [0.1, 1, 10] and
TC/TH = [0.1, 0.9]. At Kn0 = 0.1 and for both temperature ratios the largest part of
the cavity is covered by the typical thermal creep type vortices I and vortices II are
restricted near the side walls of the cavity. As the gas rarefaction is increased vortices
II start to expand squeezing the vortices I towards the bottom part of the cavity. As it
is seen at Kn0 = 1, vortices II are already well developed covering large areas of the
square cavity. The flow configuration is similar at Kn0 = 10, with vortices I further
squeezed towards the bottom of the cavity. These observations are valid for both
temperature ratios TC/TH = 0.1 and 0.9 corresponding to large and small temperature
differences respectively, while in general at the same Kn0 the dependency of the flow
pattern on the temperature ratio TC/TH is qualitatively weak. In all the cases tested,
the vertical velocity along the lateral walls is positive for the biggest part of the wall,
leading to a flow directed from hot-to-cold regions.

The agreement between the Shakhov and corresponding DSMC results is very good
and this is demonstrated in Figures 6.13 and 6.14. In Figure 6.13, DSMC streamlines
and temperature contours are plotted for Kn0 = 1 and TC/TH = 0.1. In addition, in
Figure 6.14 the computed temperatures based on the DSMC method and the Shakhov
kinetic model along the axis x = 0 are plotted for various values of Kn0 and TC/TH .
It is seen that in all cases very good agreement is achieved.

The y component of the velocity distribution along the lateral walls uy (∓1/2, y)
is shown in Figure 6.15. Due to symmetry these results correspond to x = ∓1/2.
Results are provided TC/TH = [0.1, 0.5, 0.9] corresponding to large, moderate and
small temperature differences and in each case for Kn0 = [0.1, 1, 10]. The negative
values of the velocity are related to the well-known thermal creep flow from cold-to-hot,
whereas the positive ones to a non-equilibrium flow from hot-to-cold. We observe
that even for small Knudsen numbers, and for all temperature ratios, in the biggest
part of the two vertical walls the velocity is positive, leading to a mass flow rate from
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hot-to-cold. This is in accordance with the results presented in Section 6.2.5 and the
same explanation given in Section 6.2.7 holds.

The local Mach number may be calculated based on the relation Ma = |u|
√

6/5,
defined in Section 6.3.1. To have some information of the velocity field the maximum
Mach number is tabulated in Table 6.7. It is seen that it is increased as the reference
Knudsen number is decreased and the temperature difference between the hot and
cold plates is increased. Also, in Figure 6.16, typical contours of the Mach number are
plotted for Kn0 = 1 and TC/TH = [0.1, 0.9]. In general, as expected for flows induced
by temperature differences the Mach number is very small.

6.3.4 Ballistic, collision and total heat fluxes

An overall quantity of great practical interest for this specific heat flow configuration
is the average dimensionless heat flux qave departing from the hot plate, which is
estimated by integrating the heat flux qy (x, 0) over x ∈ [−0.5, 0.5]. This quantity
is plotted in Figure 6.17 in terms of Kn0 for various temperature ratios TC/TH =
[0.05, 0.1, 0.3, 0.5, 0.9]. Results obtained both by the kinetic modeling and the DSMC
approaches are provided for comparison purposes. As it is seen the agreement is
excellent in all cases. For all temperature ratios the average dimensionless heat flux
increases as Kn0 increases from 0.1 to 1 and then for TC/TH = [0.3, 0.5, 0.9] keeps
slowly increasing, while for TC/TH = [0.05, 0.1] is slightly decreasing. In all cases as
Kn0 → ∞, qave tends to an asymptotic value. A very interesting result is the variation
of qave in terms of TC/TH at a given Kn0. It is clearly seen, that qave is not steadily
increased as the temperature difference between the hot and cold plates becomes
greater, i.e. as TC/TH is decreased. For example at Kn0 = 1, as the temperature ratio
TC/TH is decreased from 0.9 to 0.3 the average heat flux is, as expected, increased,
while as TC/TH is further decreased from 0.3 to 0.05 the average heat flux is decreased.
The behavior of qave can be seen more clearly in Figure 6.18 where it is given in terms
of the temperature ratio for various values of the Knudsen number. This observation is
valid in a whole range of the reference Knudsen number tested and it is found that the
maximum average heat flux emitted from the hot wall occurs at about TC/TH = 0.3.
This behavior has been captured individually by both modeling approaches.

To further investigate this finding in Figure 6.19, the ballistic and collision parts of
the average heat flux at the hot wall, denoted as q(b)

ave and q(c)
ave respectively are plotted

in terms of the temperature ratio TC/TH for Kn0 = 0.1, 1 and 10. The total average
heat flux qave = q(b)

ave + q(c)
ave is plotted as well. The ballistic and collision parts of the
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heat flux are opposed with q(b)
ave > 0 and q(c)

ave < 0, while their summation, i.e., the total
average heat flux, is always, as expected, larger than zero (qave > 0). It is seen that as
TC/TH is increasing, initially q(b)

ave is increasing with a pace which is faster than the one
that q(c)

ave is decreasing and therefore the total heat flux qave is initially increasing with
TC/TH . Then, as TC/TH is further increasing q(b)

ave is increasing with a slower pace and
finally for large values of TC/TH and Kn0 ≥ 1 is even decreasing, while in parallel q(c)

ave

always keeps decresing and therefore after some critical value of TC/TH the total heat
flux qave is decreasing. Consequently, the non-monotonic behavior and the maximum
qave at TC/TH = 0.3 may be explained by analyzing the overall solution to its ballistic
and collision parts. Also, as TC/TH → 1 the ballistic and collision parts have the same
magnitude and due to their opposite sign the total heat flux qave vanishes.

Some indicative dimensional results are shown in Figure 6.20, where the dimensional
average heat flux Qave[W/m2] is plotted in terms of the reference pressure P0[Pa] for
various values of TC/TH = [0.05, 0.1, 0.3, 0.5, 0.9]. The results are for a square cavity
with a side length of W = 50µm and the hot wall temperature equal to TH = 103K
filled with Argon (m = 39.95kgr/kmol). The corresponding Kn0 is also shown in
Figure 6.20. It is seen that Qave is steadily increased as P0 is increased, i.e. as the
gas becomes less rarefied. It is also seen that for the same P0, as TC/TH is decreased
from 0.9 to 0.3, Qave is increased and then as TC/TH is further decreased to 0.1, Qave

is decreased. Thus, as in the dimensionless results, there is a maximum value of Qave

at TC/TH = 0.3. It may be stated that in order to maximize cooling a temperature
ratio close to 0.3 is to be used, while to optimize operation stability (and probably
efficiency) a temperature ratio close to 0.1 − 0.4, depending on Kn0, can be used.

6.4 Prediction of the Knudsen minimum in long
capillaries

6.4.1 Flow configuration

Consider the classical pressure driven isothermal flow of a rarefied gas at a reference
temperature T0 through a capillary of length L with the pressure at the inlet and outlet
of the capillary maintained at P1 and P2, respectively (P1 > P2). The area and the
perimeter of the capillary cross section are denoted by A′ and Γ′, respectively. The
z′ axis is taken along the capillary and the cross section is on the (x, y) plane. The
characteristic length of the cross section, denoted by H, is assumed to be much smaller

180

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Section 6.4

than its length (H/L << 1) . In this case, as rigorously proved in [106], the pressure
(and density) is constant on each cross section and varies only along the capillary in the
flow direction, i.e., P = P (z′) ∈ [P1, P2] and the flow is considered as fully developed
in the z’ direction.

The basic flow parameter is the Knudsen number (Kn) or alternatively the rarefac-
tion parameter (δ), defined as

δ = HP0

µ0υ0
˜ 1
Kn

= λ

H
, (6.52)

where P0 = (P1 + P2) /2 is the reference pressure, H is the characteristic length, µ0 is
the gas viscosity at T0, υ0 =

√
2kBT0/m is the most probable molecular velocity (kB is

the Boltzmann constant and m the molecular mass), and λ denotes the mean free path.
It is convenient to introduce the dimensionless variables x = x′/H, y = y′/H, z = z′/H,
the dimensionless cross section A = A′/H2 and perimeter Γ = Γ′/H, as well as the
dimensionless bulk velocity in the z′ direction u (x, y) = u′ (x′, y′) / (υ0XP ) (the other
two velocity components are zero) and shear stresses ταz (x, y) = τ ′

αz (x′, y′) / (2XPP0),
α = x, y, where XP = (dP/dz) /P0 is the local pressure gradient.

A quantity of major importance is the kinetic coefficient (or reduced flow rate) G,
which is defined according to

G = 2
A

∫
A

u (x, y) dA. (6.53)

The variation of G in terms of δ for gas flows through long capillaries of various
cross sections has been a focal point of investigation and tabulated results are available
in the literature [23], [170], [204], [206], [207], [209], [227]–[229]. The Knudsen minimum
always appears in the transition regime and the exact value of δ where the minimum
occurs depends on the capillary cross section and the gas-surface accommodation
coefficient.

The average shear stress at the wall is also introduced to be later used for bench-
marking purposes. Since the flow is fully developed and there is no net momen-
tum flux in the flow direction. The net pressure and the wall shear stress are
equated to yield τ̄ ′

w = (A′/Γ′) (dP/dz′), which may be nondimensionalized to find
τ̄w = τ̄ ′

w/ (2P0XP ) = A/ (2Γ) = 0.25 [208], [229]. This result is always valid indepen-
dent of the channel cross section and the rarefaction parameter δ and it may be used
as a benchmark to test the accuracy of the DSMC calculations.

181

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Chapter 6

6.4.2 Stochastic modeling and decomposition

The flow is simulated based on the Boltzmann equation which is solved via the
DSMC method subject to the no time counter (NTC) scheme proposed by Bird [62].
The flow is simulated only on the capillary cross section pushed by a uniform force
in the flow direction resulting in a dimensionless acceleration equal to XP acting on
each gas molecule. It is noted that XP is a constant taking sufficiently small values to
ensure the linearity of the flow.

As described in Section 6.2.4 an index Ii (tk) is attached to each particle i =
1, ..., N (tk) indicated whether it belongs to the ballistic (Ii (tk) = 0) or collision
(Ii (tk) = 0) part of the distribution. The total number of all particles accumulated
in a cell is divided into the ballistic and collision groups as NT = N

(b)
T + N

(c)
T . The

macroscopic quantities are decomposed into the ballistic and collision parts as:
Number density:

n(b) (x, y) = N
(b)
T

SVCell
(6.54)

n(c) (x, y) = N
(c)
T

SVCell
(6.55)

Velocity:

u(b) = 1
XPNT

S∑
k=1

N(tk)∑
i=1

[1 − Ii (tk)] ζz,i (tk) (6.56)

u(c) = 1
XPNT

S∑
k=1

N(tk)∑
i=1

Ii (tk) ζz,i (tk) (6.57)

Shear stress:

τ (b)
αz = 1

XPNT

S∑
k=1

N(tk)∑
i=1

[1 − Ii (tk)] ζα,i (tk) ζz,i (tk) − u(b)
α uz (6.58)

τ (c)
αz = 1

XPNT

S∑
k=1

N(tk)∑
i=1

Ii (tk) ζα,i (tk) ζz,i (tk) − u(c)
α uz (6.59)

Similarly the reduced flow rate is decomposed as G = G(b) +G(c) where G(b) and G(c)

are the reduced ballistic and collision flow rates, respectively.
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Applying this methodology, four rarefied gas flows through long capillaries, namely
the flow between parallel plates (channel flow), through orthogonal ducts with two
aspect ratios H/W = 0.1 and 1 (duct flow), and through long circular tubes (tube flow)
are explored. Purely diffuse boundary conditions are considered and the hard sphere
model was used. The physical space domain is discretized using 100 cells per unit
length with about 1000 simulator particles per cell. Such a large number of simulator
particles is utilized as the acceleration acting on each particle takes very small values.
The time step is chosen close to 1/3 of the cell transversal time, defined as ∆x′/υ0. The
macroscopic quantities are obtained by time averaging over more than S = 107 time
steps after the steady state has been recovered. By setting the acceleration parameter
XP/2 = 0.01 the deduced DSMC solution has the well-known linear characteristics
(i.e., the solution is directly proportional to the source term) and nonlinear phenomena
are absent. The results presented here are accurate up to at least two significant figures
which is adequate for the objectives of the present work.

6.4.3 Explanation of the Knudsen minimum

The flow rates G(b), G(c), and G are plotted in terms of δ in Figure 6.21 for the
channel, the duct (H/W = 0.1 and 1), and the tube flows. The well-known behavior
of G with a minimum in the transition regime is observed [23], [170], [207], [227]. The
values of δ where the Knudsen minimum occurs, denoted by δmin, are indicated in
Figure 6.21 and in tabulated form in Table 6.8.

For the channel flow, a detailed comparison between the results in Figure 6.21(a)
with the corresponding ones in Table V of [170] has been performed. To achieve that δ
has been related to the parameter k of [170] according to δ = 1/ (αk) with α = 5/4
and also the present flow rates have been divided by 2. For all values of δ ∈ [0.1, 10]
the agreement is excellent with the relative error being less than 0.5%. Based on this
comparison and on the previously described formulation it is quantitatively verified
that the present “linear” DSMC solution corresponds to the one obtained by solving
the same flow configurations based on the linear Boltzmann equation for hard sphere
molecules.

In Figure 6.21, the ballistic and collision flow rates always have a monotonous
behavior with respect to δ. As δ is increased G(b) constantly decreases and finally
diminishes as δ → ∞, while G(c) initially at δ = 0 is zero and then constantly increases.
Thus, at δ = 0 and δ → ∞ the overall flow rate is G = G(b) and G = G(c) respectively.
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In the free-molecular and early transition regimes the reduction rate of G(b) is larger
than the increase rate of G(c) resulting to the Knudsen minimum of the overall flow G.

To further elaborate on this issue, in Figure 6.22, the derivatives dG(b)/dδ, dG(c)/dδ,
and dG/dδ are plotted in terms of δ. They are computed numerically based on
the results of G(b) and G(c). It is seen that dG(b)/dδ is always negative and as δ is
increased it tends to zero since G(b) itself is zero. Actually, for δ > 5 there is no
contribution of G(b) to G. In parallel dG(c)/dδ is always positive and as δ → ∞, the
lim
δ→∞

(
dG(c)/dδ

)
= lim

δ→∞
(dG/dδ) = c. In the hydrodynamic limit, solving the Stokes

equation (with or without slip boundary conditions) it is readily deduced that c = 1/6
in the channel flow and c = 0.25 in the tube flow [23]. The corresponding values in
Figure 6.22 at δ = 10 are very close to these ones. Furthermore, it is computationally
confirmed that

∣∣∣∣∣dG(b)

dδ

∣∣∣∣∣ ≷ dG(c)

dδ
for δ ≶ δmin. (6.60)

Clearly, this behavior of the derivatives of the two parts leads to a single root of the
derivative of the overall reduced flow rate, which is crossing the δ−axis from negative
to possitive values, indicating the existance of a minimum. Obviously, the value of
δ = δmin where dG/dδ = 0 is where the Knudsen minimum occurs. This description
quantitatively explains the appearance of the Knudsen minimum and verifies the
qualitative physical arguments presented in [218].

In Figure 6.21 only the case of purely diffuse accommodation is presented. The
DSMC decomposition may also be applied in the case of Maxwell boundary conditions.
In this latter case the indicator of the particles following a specular reflection at the
wall is not set equal to 0 (as is done with the diffuse reflection) and on the contrary
remains the same as before the specular reflection. Beyond that the methodology
is identical and the values of δ where the Knudsen minimum occurs for α < 1 are
accordingly obtained and justified.

The behavior of the ballistic and collision velocity distributions, shown for the
channel case in Figure 6.23 (left), is according to the corresponding flow rate results,
i.e., as δ is increased, u(b) is decreased, while u(c) is increased. It is noted that at
δ = 0.1, u(b) (x) is larger than u(c) (x), then at δ = 1 is smaller but remains large
enough compared to u(c), while at δ = 5 becomes negligibly small.

More interesting is the partition of the number density into its ballistic and collision
segments which are plotted, scaled to the average sampled initial density, in Figure
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6.23 (right) for channel flow with δ = [0.1, 1, 5]. The overall number density n (x) =
n(b) + n(c) = 1 is always constant. The ballistic number density n(b) (x) for all δ has
its largest values at the walls (x = 0 and x = 1) and it decreases moving towards the
center of the channel, taking its lowest values at x = 0.5. The collision number density
n(c) (x) = 1 − n(b) behaves in an exactly opposite manner. For the ballistic particle
distribution the boundaries act as a source, while the bulk flow acts as a sink and the
situation is reversed for the collision particle distribution, where the bulk flow acts as
a distributed source and the walls as a sink. The overall behavior of the ballistic and
collision number densities in terms of δ is similar to the one of the velocities. Note that
even at δ = 5, although at the center of the channel n(b) is negligible small compared
to n(c), close to the boundaries is lower but still close to n(c). The region next to the
boundaries where n(b) is nonzero corresponds to the Knudsen layer.

Tabulated results of the dimensionless average wall shear stress and the associated
ballistic and collision parts are given in Table 6.9 for the channel and tube flows. The
overall stresses τ̄αz are independent of δ and they are slightly lower than the analytical
result of 0.25, since they are calculated, as all macroscopic quantities, at the center
of each cell. Once again, as δ is increased τ̄ (b)

αz decreases and τ̄ (c)
αz increases, with τ̄ (b)

αz

remaining important as a wall quantity even at δ = 5, i.e., even close to the slip regime.
It is noted that the contribution of τ̄ (b)

αz to τ̄αz far from the wall at large values of δ
rapidly vanishes.

6.5 Concluding remarks

A stochastic solution decomposition methodology has been developed, decomposing
the distribution function into its ballistic and collision parts. The ballistic part is
composed of particles that have not collided with other particles after they were
emitted from the boundaries, while the collision part is composed of particles that
have undergone an arbitrary number of collisions. This decomposition technique has
been implemented to the typical DSMC algorithm and applied in two thermally driven
flows in cavities and in pressure driven fully developed flows in capillaries. In all cases,
the contributions of the ballistic and collision parts of the distribution function have
been separately computed, providing a thorough understanding of non-equilibrium
interesting phenomena appearing in these flows.

The thermally induced rarefied gas flow in a rectangular enclosure, with different
temperatures at the bottom and top walls and linear temperature distributions at
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the two lateral walls, has been simulated. The solution is given in terms of the
three parameters characterizing the flow, namely, the reference Knudsen number, the
temperature ratio of the top over the bottom plates, and the aspect ratio of the
enclosure. Both deterministic and stochastic simulations have been performed based
on the numerical solution of the Shakhov kinetic equation and the DSMC method,
respectively. Results have been obtained for enclosures with various aspect ratios in the
whole range of the Knudsen number and for small, moderate, and large temperature
differences.

Confirming previous results in similar non-isothermal set-ups, it has been found
that in the vicinity of the lateral walls the gas is not necessarily going from cold-to-hot.
Actually, even for relatively small Knudsen numbers in the slip or early transition
regime a hot-to-cold flow along the non-isothermal side walls is observed, which is
enhanced as the Knudsen number and the temperature difference are increased. The
cavity aspect ratio is also an important factor and the hot-to-cold flow is becoming
more dominant as the depth compared to the width of the cavity is increased. The
effect of these parameters on the flow configuration and bulk quantities has been
thoroughly examined. Furthermore, the introduced novel decomposition of the DSMC
solution into the ballistic and collision parts illuminates, at the particle level, important
details of the flow. It has been found that at small Knudsen numbers the collision part
dominates and the classic thermal creep theory works, while at large Knudsen numbers
the ballistic part prevails and then the gas along the wall flows from hot-to-cold.

The non-equilibrium gas flow and heat transfer in a two-dimensional square cavity
with one wall maintained at high temperature and the other three at low temperature
has been numerically investigated. Simulations have been conducted for the two
parameters characterizing the problem namely the temperature ratio and the reference
Knudsen number based on the Shakhov kinetic model and the DSMC method deducing
excellent agreement between the two methodologies.

It has been found that the flow along the lateral walls is directed form hot-to-cold
even for small temperature differences and small Knudsen numbers, confirming previous
findings in similar set-ups [192], [199]. As the temperature difference and the Knudsen
number are increased this non-equilibrium flow pattern becomes more dominant. Also,
the average heat flux departing from the hot plate exhibits a non-monotonic dependency
with regard to the temperature ratio in a wide range of the Knudsen number. More
specifically, a maximum dimensionless heat flux occurs at TC/TH = 0.3. This behavior
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is explained by computing the ballistic and collision parts of the total heat flux and by
investigating the contribution of each part to the overall solution.

The well-known Knudsen paradox has been also investigated by decomposing
the particle distribution function into its ballistic and collision parts and examining
the effect of each part to the overall solution. Fully developed flows through long
capillaries of various cross sections have been considered. It has been shown in a precise
quantitative manner that the difference in the rate of change of the corresponding
ballistic and collision flow rates with respect to the rarefaction parameter yields the
Knudsen minimum of the overall reduced flow rate or conductance.

The stochastic solution decomposition technique has provided physical arguments
and justifications to three interesting non-equilibrium phenomena. It is believed that
this methodology can be further applied to a broader range of configurations in order
to increase our understanding of the flow microstructure and provide physical intuition
on the mechanism behind a number of phenomena.
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Table 6.1 Dimensionless flow rate of Vortex-type I in a square enclosure for various
Kn0 and TC/TH .

TC/TH
Kn0

0.01 0.06 0.07 0.08 0.1 1 10
0.1 6.34(-4) 1.70(-3) 1.72(-3) 1.71(-3) 1.67(-3) 2.89(-4) 2.76(-5)
0.5 2.87(-4) 7.51(-4) 7.53(-4) 7.44(-4) 7.08(-4) 8.60(-5) 6.38(-6)
0.9 5.07(-5) 1.31(-4) 1.31(-4) 1.30(-4) 1.23(-4) 1.21(-5) 6.99(-7)

Table 6.2 Dimensionless flow rate of Vortex-type II in a square enclosure for various
Kn0 and TC/TH .

TC/TH
Kn0

0.1 1 1.1 1.2 1.3 10

0.1 2.55(-6) 1.18(-4) 1.198(-4) 1.204(-4) 1.202(-4) 3.99(-5)

0.5 6.98(-7) 2.46(-5) 2.504(-5) 2.513(-5) 2.512(-5) 8.70(-6)

0.9 8.41(-8) 2.85(-6) 2.902(-6) 2.936(-6) 2.942(-6) 1.08(-6)
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Table 6.3 Tangential velocity uy along the lateral walls of a square enclosure for various
Kn0 and TC/TH .

TC

TH
Kn0

y
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0.1

0.01 -5.1(-4) -1.5(-3) -1.9(-3) -2.0(-3) -2.0(-3) -1.9(-3) -1.8(-3) -1.6(-3) -1.3(-3) -8.4(-4)
0.1 1.7(-3) 8.8(-4) -1.5(-4) -1.1(-3) -1.8(-3) -2.5(-3) -2.8(-3) -2.8(-3) -2.0(-3) -5.9(-5)
1 5.4(-3) 5.8(-3) 5.6(-3) 5.0(-3) 4.4(-3) 3.6(-3) 2.8(-3) 1.9(-3) 1.2(-3) 7.7(-4)
10 1.3(-3) 1.3(-3) 1.2(-3) 1.1(-3) 9.2(-4) 7.4(-4) 5.7(-4) 3.9(-4) 2.5(-4) 1.3(-4)

0.5

0.01 -2.8(-4) -6.5(-4) -7.7(-4) -8.0(-4) -8.1(-4) -7.9(-4) -7.6(-4) -7.1(-4) -6.1(-4) -3.5(-4)
0.1 5.6(-4) -2.2(-5) -5.2(-4) -8.6(-4) -1.1(-3) -1.2(-3) -1.1(-3) -9.1(-4) -4.4(-4) 3.2(-4)
1 1.5(-3) 1.6(-3) 1.5(-3) 1.4(-3) 1.2(-3) 1.1(-3) 1.0(-3) 9.4(-4) 9.2(-4) 8.7(-4)
10 3.4(-4) 3.5(-4) 3.2(-4) 2.9(-4) 2.6(-4) 2.3(-4) 2.2(-4) 2.0(-4) 1.9(-4) 1.8(-4)

0.9

0.01 -5.5(-5) -1.1(-4) -1.3(-4) -1.4(-4) -1.4(-4) -1.4(-4) -1.4(-4) -1.3(-4) -1.1(-4) -5.7(-5)
0.1 8.2(-5) -3.5(-5) -1.2(-4) -1.7(-4) -2.0(-4) -2.0(-4) -1.8(-4) -1.3(-4) -4.6(-5) 7.6(-5)
1 2.2(-4) 2.3(-4) 2.1(-4) 2.0(-4) 1.9(-4) 1.9(-4) 1.9(-4) 2.0(-4) 2.1(-4) 2.0(-4)
10 4.6(-5) 4.8(-5) 4.6(-5) 4.3(-5) 4.2(-5) 4.1(-5) 4.1(-5) 4.3(-5) 4.4(-5) 4.2(-5)

Table 6.4 Lateral wall shear stress (−pxy) at x = −0.5 of a square enclosure for various
Kn0 and TC/TH .

TC

TH
Kn0

y
0 0.2 0.4 0.6 0.8 1.0

0.1

0.01 1.4(-3) 7.7(-4) 5.1(-4) 4.1(-4) 4.3(-4) 2.1(-3)
0.1 1.0(-2) 1.2(-2) 1.3(-2) 1.3(-2) 1.5(-2) 2.1(-2)
1 3.1(-2) 3.8(-2) 4.3(-2) 4.5(-2) 4.6(-2) 4.5(-2)
10 4.3(-2) 4.9(-2) 5.3(-2) 5.5(-2) 5.4(-2) 5.0(-2)

0.5

0.01 9.1(-4) 3.5(-4) 2.4(-4) 2.2(-4) 2.8(-4) 1.0(-3)
0.1 7.0(-3) 7.5(-3) 7.5(-3) 7.6(-3) 8.1(-3) 8.7(-3)
1 2.2(-2) 2.6(-2) 2.8(-2) 2.8(-2) 2.8(-2) 2.5(-2)
10 2.9(-2) 3.3(-2) 3.5(-2) 3.5(-2) 3.4(-2) 3.1(-2)

0.9

0.01 1.9(-4) 6.4(-5) 4.5(-5) 4.4(-5) 6.2(-5) 2.0(-4)
0.1 1.5(-3) 1.6(-3) 1.5(-3) 1.5(-3) 1.6(-3) 1.6(-3)
1 4.7(-3) 5.4(-3) 5.7(-3) 5.7(-3) 5.4(-3) 4.8(-3)
10 6.0(-3) 6.7(-3) 7.1(-3) 7.1(-3) 6.8(-3) 6.1(-3)
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Table 6.5 Lateral wall heat flux qy at x = −0.5 of a square enclosure for various Kn0
and TC/TH .

TC

TH
Kn0

y
0 0.2 0.4 0.6 0.8 1.0

0.1

0.01 5.5(-3) 7.2(-3) 6.7(-3) 5.8(-3) 4.6(-3) 2.1(-3)
0.1 3.5(-2) 4.1(-2) 4.5(-2) 4.5(-2) 4.2(-2) 3.3(-2)
1 8.9(-2) 9.9(-2) 1.1(-1) 1.1(-1) 1.1(-1) 1.0(-1)
10 1.2(-1) 1.3(-1) 1.3(-1) 1.3(-1) 1.3(-1) 1.2(-1)

0.5

0.01 3.2(-3) 4.4(-3) 4.2(-3) 3.9(-3) 3.7(-3) 2.4(-3)
0.1 2.5(-2) 3.0(-2) 3.2(-2) 3.2(-2) 3.0(-2) 2.4(-2)
1 7.7(-2) 8.3(-2) 8.7(-2) 8.8(-2) 8.6(-2) 8.0(-2)
10 1.0(-1) 1.1(-1) 1.1(-1) 1.1(-1) 1.1(-1) 1.0(-1)

0.9

0.01 6.5(-4) 9.2(-3) 9.1(-4) 9.1(-4) 8.9(-4) 6.2(-4)
0.1 5.7(-3) 6.9(-3) 7.3(-3) 7.3(-3) 6.9(-3) 5.6(-3)
1 1.8(-2) 2.0(-2) 2.0(-2) 2.0(-2) 2.0(-2) 1.8(-2)
10 2.3(-2) 2.5(-2) 2.6(-2) 2.6(-2) 2.5(-2) 2.3(-2)

Table 6.6 Average heat flux qav departing from the bottom plate of a square enclosure
for various Kn0 and TC/TH .

Kn0
TC/TH = 0.1 TC/TH = 0.5 TC/TH = 0.9

Shakhov DSMC Shakhov DSMC Shakhov DSMC
0.01 1.33(-2) 1.38(-2) 8.55(-3) 8.60(-3) 1.87(-3) 1.80(-3)
0.1 7.20(-2) 7.16(-2) 5.18(-2) 5.32(-2) 1.19(-2) 1.22(-2)
1 1.48(-1) 1.49(-1) 1.23(-1) 1.27(-1) 2.88(-2) 2.94(-2)
10 1.78(-1) 1.79(-1) 1.50(-1) 1.51(-1) 3.47(-2) 3.50(-2)

Table 6.7 Maximum value of the Mach number in the field for various Kn0 and TC/TH .

TC

TH

Kn0
0.1 1 10

0.1 9.19(-3) 3.99(-3) 9.21(-4)
0.5 3.69(-3) 2.45(-3) 4.62(-4)
0.9 7.21(-4) 4.83(-4) 9.54(-5)
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Table 6.8 Values of δmin for flows through long capillaries of various cross sections.

Capillary Channel Duct Duct Tube
(H/W → 0) (H/W → 0.1) (H/W → 1)

δmin 1.1 0.93 0.61 0.31

Table 6.9 Dimensionless average wall shear stress along with the ballistic and collision
parts for the channel and tube flows in terms of δ.

δ
Channel Tube

τ̄xz τ̄ (b)
xz τ̄ (c)

xz τ̄rz τ̄ (b)
rz τ̄ (c)

rz

0.01 2.47(-1) 2.40(-1) 7.00(-3) 2.49(-1) 2.45(-1) 4.83(-3)
0.1 2.48(-1) 2.13(-1) 3.48(-2) 2.49(-1) 2.13(-1) 3.71(-2)
1 2.47(-1) 1.45(-1) 1.03(-1) 2.49(-1) 1.25(-1) 1.25(-1)
5 2.47(-1) 1.13(-1) 1.34(-1) 2.48(-1) 1.06(-1) 1.42(-1)
10 2.46(-1) 1.08(-1) 1.39(-1) 2.48(-1) 1.03(-1) 1.42(-1)
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Figure 6.1 View of the non-isothermal wall enclosure and flow pattern with (a) Vortex-
type I and (b) with Vortex-types I and II
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Figure 6.2 Streamlines and temperature contours in a square enclosure for TC/TH = 0.1
and various Kn0.
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Figure 6.3 Streamlines and temperature contours in a square enclosure for various Kn0
and TC/TH .
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Figure 6.4 Distributions of the (a) y and (b) x components of the velocity on vertical
and horizontal planes respectively, passing through the centers of the two Vortex-type
I for a square enclosure with TC/TH = 0.1 and Kn0.

Figure 6.5 Streamlines and temperature contours in rectangular enclosures of (a)
H/W = 0.5 and (b) H/W = 2, for TC/TH = 0.1 and Kn0 = 1.
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Figure 6.6 Streamlines and temperature contours in a square enclosure with (a) Kn0 =
0.1 and (b) Kn0 = 1 for Maxwell molecules (ω = 1).

Figure 6.7 Tangential velocity uy along the lateral walls of a square enclosure for
TC/TH = 0.1 and various Kn0 computed by the present kinetic approach and by Eq.
(6.51) based on the R13 approach.
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Figure 6.8 Distributions of the tangential (a) velocity uy and (b) heat flux qy along the
lateral walls of rectangular enclosures with various aspect ratios for TC/TH = 0.1 and
Kn0 = 1.
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Figure 6.9 Streamlines and vertical velocity contours of the ballistic and collision
parts as well as of the overall solution in a square enclosure for Kn0 = 0.05, 2, with
TC/TH = 0.1.
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Figure 6.10 Tangential velocity and density of the ballistic and collision parts as well
as of the overall solution along the lateral walls of a square enclosure for Kn0 = 0.05,
2 with TC/TH = 0.1.
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Figure 6.11 View of the square microcavity with the flow pattern of vortices I and II.
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Figure 6.12 Streamlines and temperature contours for TC/TH = 0.1 (left) and TC/TH =
0.9 (right) and various Kn0.
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Figure 6.13 Streamlines and temperature contours for Kn0 = 1 and TC/TH = 0.1
obtained by the DSMC method.

Figure 6.14 Temperature distribution along the axis x = 0 for various Kn0 and TC/TH
obtained by the DSMC method (open symbols) and the Shakhov kinetic model (filled
symbols).
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Figure 6.15 Distribution of the tangential velocity uy (±1/2, y) along the lateral walls
of the cavity for various TC/TH and Kn0.
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Figure 6.16 Typical contours of the Mach number in the flow field for Kn0 = 1 and
TC/TH = 0.1, 0.9.

Figure 6.17 Average heat flux qave departing from the hot plate of the cavity in terms
of Kn0 for various TC/TH .
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Figure 6.18 Average heat flux qave departing from the hot plate of the cavity in terms
of TC/TH for various Kn0.
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Figure 6.19 Average heat flux qave along with its ballistic and collision parts q(b)
ave and

q(c)
ave, respectively, departing from the hot plate of the cavity in terms of TC/TH for
Kn0 = 0.1, 1, 10.
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Figure 6.20 Average heat flux Qave (W/m2) departing from the hot plate of the cavity
in terms of the reference pressure P0 for various TC/TH .

207

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Chapter 6 Figures

Figure 6.21 Ballistic, collision, and overall reduced flow rates in terms of δ for (a)
channel flow, (b) duct flow (H/W = 0.1), (c) duct flow (H/W = 1), and (d) tube flow.
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Figure 6.22 Derivatives with respect to δ of the ballistic, collision, and overall reduced
flow rates in terms of δ for (a) channel flow, (b) duct flow (H/W = 0.1), (c) duct flow
(H/W = 1), and (d) tube flow.
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Figure 6.23 Velocity (left) and number density (right) distributions for channel flow
and various values of δ.
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Chapter 7

Uncertainty propagation in rarefied gas flows
and heat transfer

7.1 Introduction

Uncertainties are always present both in experimental and computational work.
They may be introduced through the input data or generated during the development of
the task. Commonly, they propagate along the implemented process reaching finally the
output. In experimental work, they are introduced due to various sources, such as the
uncertainty of the measurement instruments, the changing environmental conditions,
the definition of the measured quantities which may involve approximations, the flaws
in the experimental setup and measurements, resulting to significant variations in
repeated measurements. Monitoring and reporting the uncertainty of the output
measured quantities is very valuable in order to judge their expected validity and
accuracy. In addition, the information of the expected uncertainty of the output
quantities in terms of the uncertainties of the involved input parameters can be crucial
for the proper design of the experimental setup [115]–[117]. Estimating the overall
uncertainty will clarify if the output reults are acceptable and it will indicate the
preferable conditions for the measurements. In computational work, uncertainties are
introduced due to the assumptions and simplifications in the physical and mathematical
modeling, the discretization of the problem, the boundary conditions, the floating point
operations and others. Concerning modeling and simulations in rarefied gas dynamics,
uncertainties are introduced due to all above causes, as well as due to a simplified
geometrical representation to measurement uncertainties defining the geometry and to
gas surface interaction modeling. In general, the effect of the uncertainties of the input
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quantities or of the uncertainties generated during the task implementation, on the
uncertainty of the output quantity is called uncertainty propagation.

Uncertainties and uncertainty propagation is important in several engineering and
technological fields. In metrology, the very accurate estimation of uncertainty in
measurements and in the associated computations supporting the experimental results
is of major importance in order to classify measurement devices and processes [13],
[125]. The calculation of the uncertainty of the involved quantities has been also
reported in computational fluid dynamics studies [123], [126], [127] and in some cases
in rarefied gas dynamics simulations [128]–[130].

In the literature several methods have been reported for uncertainty propagation
[118], [119]. Interval analysis [120] accounts for the overall uncertainty by calculating the
output of the simulation for the values bounding the domain of the input quantities. It is
a relatively simple method, with small computational requirements and no sophisticated
algorithms. It has however, several drawbacks as it can only provide a range for the
output quantities, without any more statistical information. Sensitivity derivatives
[121] can also be used and since they are of some interest in the present work, they
will be briefly discussed in Section 7.2. In this method the model through which the
uncertainty propagates should be analytical and differentiable. A computationally
efficient method frequently utilized is the Moment methods [122], which is based on
expanding all input quantities with uncertainty around the mean value using Taylor
series. This methodology is subject to certain approximations and it is limited to small
values of input uncertainties. It is not applicable when significant nonlinearities exist.
The Polynomial Chaos decomposition [123] is a spectral method, where each quantity
with uncertainty is decomposed into a product of deterministic and stochastic basis
functions. Finally, a very accurate method, that can be utilized almost universally and
can propagate the uncertainty through complicated models is the Monte Carlo Method
(MCM) [118], [124]. It is a stochastic methodology and the basic scheme involves a
large number of trials. In each trial the values of the input parameters are sampled
from their respective distributions and the distribution function of the model output is
constructed. This methodology has a board range of application with no assumptions
on the model and is able to simulate cases where the model involves the solution of
differential equations. It is a general, robust and accurate approach, requiring however
high computational cost.

In this chapter, the MCM is implemented to develop and implement a methodology
to investigate the uncertainty propagation in the numerical solution of some benchmark
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problems of rarefied gas dynamics. In Sections 7.2 and 7.3, the description of the
sensitivity derivatives method and the MCM, are presented. In Section 7.4, pressure
and temperature driven flows through tubes are considered, where the uncertainty of
the mass flow rate in pressure and temperature driven flows, as well as the uncertainty
of the pressure difference in the thermomolecular pressure difference flow are calculated.
In Section 7.5, the corresponding work is performed for the uncertainty of the heat flux
in the heat transfer flow between parallel plates. The concluding remarks are stated in
Section 7.6. In all cases, the uncertainty of the main quantity of interest is calculated
in terms of the uncertainties of the main parameters characterizing the configuration.
The notation and methodologies used in this chapter are according to the GUM [230],
which is a standard adopted by the majority of measurement institutes, according to
the ISO/IEC 17025.

7.2 General notation and the sensitivity derivatives
method

In the current framework, the nominal value of some input quantity xi is denoted
by the subscript n as xi,n, while the uncertainty associated with this parameter is
denoted as u (xi). Thus, any quantity can be presented as xi = xi,n ± u (xi). The
distribution of some input quantity xi is denoted as gxi

, while the output quantity
y = f (x1, x2, ...., xN) is given as a function of the input quantities xi and follows a
distribution gy. The aim is to estimate how the uncertainties of the input quantities xi
propagate through the model f (x1, x2, ..., xN) to the output quantity y.

When the model is linear or the non-linearity of the model is not significant the
uncertainty of the output uxi

(y) due to the uncertainty of some input quantity xi can
be calculated using the sensitivity derivatives [121], [230] by the following expression:

uxi
(y) = ∂f

∂xi
u (xi) (7.1)

The derivative in Eq. (7.1) is often called sensitivity coefficient ci = ∂f/∂xi. The
combined uncertainty uc (y) due to the uncertainties of all the input quantities when
these input quantities are uncorrelated can be calculated as

u2
c (y) =

N∑
i=1

(ciu (xi))2 =
N∑
i=1

(uxi
(y))2 . (7.2)
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When the input quantities are correlated, the covariance u (xi, xj) should be taken into
account and the combined uncertainty becomes

u2
c (y) =

N∑
i=1

(ciu (xi))2 + 2
N−1∑
i−1

N∑
j=i+1

cicju (xi, xj) . (7.3)

The sensitivity derivatives method is limited to small values of the input uncertainty
in non-linear models or marginally to models with no significant nonlinearities. In
addition, the method depends on the ability of calculating the sensitivity coefficients.
When the model requires the solution of differential equations an estimation of the
sensitivity coefficients is not always possible and more advanced methodologies must
be applied.

7.3 The Monte Carlo Method

One methodology that overcomes the limitations of the sensitivity derivatives and
is implemented in a straightforward manner is the Monte Carlo Method (MCM) [231].
The MCM is a stochastic method, according to which a large number of trials (Nt)
is carried out. For each trial, the values of the input quantities are sampled from
their respective distributions and a value for the output quantity is found. After the
required number of trials is carried out, the distribution function of the output quantity
is reconstructed and the uncertainty associated with it can be calculated.

In this framework, the uncertainty of the output quantity is usually defined as the
95% or 99% coverage interval. When a sufficient amount of trials (Nt ≥ 106) is carried
out, it is possible to use the discrete form of the output quantity distribution function in
order to find the uncertainty. In this case, the uncertainty is simply the shortest interval
covering the required percentile of the distribution. In other cases however, when the
calculation of the output quantity through the model y = f (x1, x2, ..., xN) requires the
solution of differential equations such a large number of trials is prohibitively expensive.
Then, the uncertainty can be estimated using the standard deviation of the output
quantity distribution function. The output quantity is given as the mean value along
with the uncertainty

y = y ± u (y) , (7.4)

where the mean value is
y = 1

Nt

Nt∑
i=1

yi, (7.5)
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with yi denoting the output of the i-th trial. Also, the associated uncertainty is

u (y) = kσy, (7.6)

with the standard deviation given by

σy =

√√√√ 1
Nt − 1

Nt∑
i=1

(yi − y)2. (7.7)

The coefficient k in Eq. (7.6) is the coverage factor and common values are k = 2 and
k = 3 for the 95% and 99% coverage intervals respectively. These values are used when
a sufficient number of trials is performed (e.g., Nt > 103), while for smaller number
of trials the coefficient k is taken from the Student distribution with Nt degrees of
freedom. It is noted that using Eq. (7.6) along with the aforementioned values of k is
a conservative approach that slightly overestimates the output uncertainty compared
to finding the uncertainty from the discrete form of the output cumulative distribution
function. This is done in order to account for the relatively small number of trials
conducted.

The input quantities are usually reported along with their uncertainty as xi =
xi,n ± u (xi), but the distribution of the input quantities is not always known. In
cases where the form of the distribution is known, the value of xi for each trial
is sampled from this distribution. In the general case, where this distribution is
not known, according to the supplement 1 of the GUM, a uniform distribution is
assumed xi ∈ [xi,n − u (xi) , xi,n + u (xi)] and the value of each trial is sampled from
this distribution as xi = xi,n+u (xi) (1 − 2Rf ), where Rf is a random number between 0
and 1. In this chapter, all input quantities are assumed to follow a uniform distribution.
Also, all uncertainties are reported as relative uncertainties defined as

u (x)
x

× 100. (7.8)

The above described methodology is applied to the pressure and temperature driven
flows through long tubes, as well as to the heat transfer flow between parallel plates.
The formulation of the pressure and temperature driven flows is presented in Section
7.4.1 and the associated uncertainties of the kinetic coefficients are analyzed in Section
7.4.2. The results concerning the pressure driven flow are given in Section 7.4.3 and
the temperature driven flows in Sections 7.4.4 and 7.4.5. The formulation for the heat
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transfer flow is given in Section 7.5.1, followed by the analysis and discussion of the
results in Section 7.5.2. The concluding remarks are presented in Section 7.6.

7.4 Pressure and temperature driven flows through
long tubes

7.4.1 Formulation

Consider a long tube connecting two vessels kept, in the general case, at different
pressures and temperatures. A linear temperature distribution, defined between the
temperatures of the two vessels, is applied along the tube wall. The ODE describing
the pressure distribution along the tube is [23], [156], [171], [174], [227]

dP (z)
dz

= − υ0

πR3GP (δ, α)ṁ+ P

T

GT (δ, α)
GP (δ, α)

dT (z)
dz

, (7.9)

where P (z), T (z) are the pressure and temperature distributions with z being the
axial tube direction, R is the tube radius, ṁ the mass flow rate and υ0 =

√
2RgT is the

most probably molecular speed at temperature T with Rg denoting the gas constant.
The reduced flow rates GP for the pressure driven flow and GT for the temperature
driven one are taken from the solution of the linearized Shakhov model equation [23]
and are tabulated in Tables 7.1 and 7.2 respectively. The rarefaction parameter is
defined as

δ = PR

µυ0
, (7.10)

with µ denoting the viscosity and is given in terms of the inlet rarefaction parameter as

δ (z) = δin
P (z)
Pin

Tin
T (z) . (7.11)

Diffuse-specular Maxwell boundary conditions are applied with the accommodation
coefficient α ∈ [0, 1] denoting the percentage of particles undergoing diffuse reflection.
The limiting values of α = 0 and α = 1, correspond to specular and purely diffuse
reflection respectively.

Three different cases are considered, namely Poiseuille flow, thermomolecular
pressure difference flow and purely thermal creep flow. For the Poiseuille flow, the
tube walls are assumed to be isothermal (T (z) = Tin) and the pressure gradient drives
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the flow. In this flow the second term in the right hand side of Eq. (7.9) vanishes and
the inlet and outlet pressures are specified in order to calculate the mass flow rate.
The main output of the simulation is the mass flow rate (ṁ) and its uncertainty is
calculated.

When a temperature gradient is applied on the tube walls and the two ends of
the tube are closed (ṁ = 0), a pressure difference is obtained. This phenomenon is
well known as thermomolecular pressure difference. In the thermomolecular pressure
difference the inlet pressure, as well as the vanishing mass flow rate, are specified. The
main output is the pressure difference (∆P = P (L) − P (0)) and its uncertainty is
calculated.

In the thermal creep flow, the temperature gradient along the tube is imposed,
while the inlet and outlet pressure are kept constant (Pin = Pout). In this flow the
uncertainty of the mass flow rate is the main quantity of interest and its uncertainty is
calculated. The temperature driven flows (thermomolecular pressure difference and
thermal creep) are considered as the limiting cases of temperature driven flows and
the characteristics of the intermediate cases, where neither the mass flow rate, nor the
pressure difference are zero, can be obtained through them [232].

When the inlet and outlet pressures (Pin, Pout) are given, Eq. (7.9) is solved using
a shooting method in order to find the pressure distribution and the mass flow rate.
When the mass flow rate ṁ and one of the two pressures is provided Eq. (7.9) is
integrated in a straightforward manner to obtain the pressure distribution.

In all cases the uncertainties of the main quantity of interest due to uncertainties in
pressure u (P ), temperature u (T ), radius u (R) and accommodation coefficient u (α)
are considered. The uncertainty of the rarefaction parameter due to uncertainties in
pressure (uP (δ)), temperature (uT (δ)) and radius (uR (δ)) can be obtained using Eq.
(7.1) and they are expressed in terms of the corresponding quantity uncertainty by the
following expressions

uR (δ)
δ

= u (R)
R

,
uP (δ)
δ

= u (P )
P

,
uT (δ)
δ

= u (T )
T

. (7.12)

The uncertainties due to pressure, temperature and radius are introduced to Eq. (7.9)
directly, as those quantities appear in the equation. Furthermore, the uncertainties of
these quantities are also introduced through the boundary conditions and the kinetic
coefficients, while the uncertainty of the accommodation coefficient is introduced only
through the kinetic coefficients.
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7.4.2 Uncertainty of kinetic coefficients in Poiseuille and ther-
mal creep flows

The uncertainty of the kinetic coefficients due to the uncertainties in the rarefaction
parameter δ and accommodation coefficient α are calculated using the MCM. For each
simulation Nt = 106 trials are conducted. More specifically, a database of kinetic
coefficients is constructed and then for each trial an interpolation is used to find the
kinetic coefficient for the required values.

Figure 7.1 shows the uncertainty of GP in terms of the rarefaction parameter
δ for uncertainties in the rarefaction parameter and accommodation coefficient for
purely diffuse reflection. In both cases the values of the input relative uncertainty are
u(x)/x = 0.1, 1, 2 and 5%. The uncertainty of δ has a small effect on GP for small
values of δ, while it increases after the transition regime. This is easily explained since
in the free molecular up to the early transition regimes, GP has an almost constant
value and starts increasing after δ ≈ 1. The situation is reversed for uncertainties in
the accommodation coefficient. In this case the uncertainty of the accommodation
coefficient has a large effect on GP when the flow is in the free molecular regime and
constantly decreases as δ increases taking very small values in the slip and hydrodynamic
regimes.

The corresponding results for GT are given in Figure 7.2, where the behavior
for the relative uncertainty of GT for uncertainties in the rarefaction parameter δ is
qualitatively similar as in GP . The uncertainties are small for small values of δ and
are increased as δ is increased. In this case however, the uncertainty decreases for very
large δ. This is happening because in this region GT approaches zero. The situation is
different when uncertainties in the accommodation coefficient are considered. Again
the uncertainty of the accommodation coefficient is important for small values of δ and
its significance is decreased as δ is initially increased. It reaches a minimum around
δ = 5 and then, increases again, while decreasing for very large values of δ. The reason
for the minimum is the behavior of GT with respect to α. For δ < 5 increasing α

decreases GT , while for δ ≥ 5 GT increases as α is increased. This change of behavior
means that dGT/dα = 0 for some value of δ [2, 5], leading to this minimum. For very
large value of δ, the uncertainty decreases, because GT approaches zero.

In both kinetic coefficients the output uncertainty is close to or lower than the
input uncertainty, concluding that the uncertainties are not magnified. Of course the
kinetic coefficients are not the only source of uncertainty, since the input quantities
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also appear in Eq. (7.9) meaning that the simulation of each specific case is required
in order to perform the uncertainty propagation.

7.4.3 Uncertainty of mass flow rate in Poiseuille flow

The purely pressure driven Poiseuille flow is here considered. Simulations are
conducted for various values of the inlet rarefaction parameter δin ranging from the
free molecular up to the continuum regime. The effect of the uncertainties in pressure,
temperature, radius and accommodation coefficient on the uncertainty of the mass
flow rate is analyzed. Furthermore, the effect of the pressure ratio and of specular wall
reflection on the mass flow uncertainties is analyzed. For each case Nt = 103 trials are
conducted.

In this purely pressure driven flow, Eq. (7.9) is rewritten as

dP (z)
dz

= − υ0

πR3GP (δ, α)ṁ. (7.13)

Considering Eq. (7.13) and utilizing the sensitivity derivatives approach, the following
expression for the uncertainty of the mass flow rate for uncertainties in the length is
obtained:

u (ṁ)
ṁ

= u (L)
L

(7.14)

In long channels however, the length measurement is associated with relatively very
small uncertainties.

Figure 7.3 presents the relative uncertainty of the mass flow rate in terms of δin
for four values of the input relative uncertainty, namely 0.1, 1, 2 and 5%, in pressure,
temperature, radius and accommodating coefficient, for a tube with L/Rn = 20,
pressure ratio Pout,n/Pin,n = 0.5 and accommodation coefficient αn = 1. As expected,
in all cases, larger input uncertainties lead to larger output uncertainties. The radius,
temperature and pressure uncertainties are important for all values of δin and have
a slight increase at large values of δin. The accommodation coefficient uncertainty is
important for small values of δin and its effect becomes negligible in the continuum
regime. The behavior with respect to the accommodation coefficient, closely resembles
the effect that the accommodation coefficient has on GP , since it is introduced only by
the kinetic coefficient. The effect of pressure, temperature and radius is qualitatively
similar with the effect of δ on GP . Quantitatively however, the uncertainties are
enlarged, because these quantities, apart from affecting GP through δ, also appear
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in Eq. (7.9). For all values of the input uncertainty, the qualitative behavior of the
output uncertainty is the same. In all flow regimes, the radius uncertainty is the most
important one. The pressure and temperature uncertainties are of equal importance
but less important than the radius. It is interesting to note that the accommodation
coefficient uncertainty, when αn = 1, has a smaller effect compared to all other ones in
all flow regimes.

In Figure 7.4 the effect of the pressure uncertainty is plotted for different values
of the pressure ratio, namely Pout,n/Pin,n = 0.3, 0.5, 0.7 and 0.9, while keeping the
length L/Rn = 20 and accommodation coefficient αn = 1. As the pressure ratio
increases (pressure difference decreases) the uncertainty of the mass flow rate due to
the uncertainty of the pressure is increased. In fact for very small pressure differences
the pressure uncertainty becomes the major factor of the output uncertainty. Also, as
the pressure ratio increases, the uncertainty due to the pressure uncertainty becomes
independent of δ.

In Figure 7.5 results are presented for different values of the accommodation
coefficient, namely αn = 0.7, 0.8, 0.9 and 1, for the same pressure ratio and length as
in Figure 7.3. When αn < 1 the output uncertainties are roughly doubled compared to
the corresponding ones for αn = 1. This is expected, as for the case of purely diffuse
accommodation, where α = 1 ± u (α), the uncertainty is de facto decreased, since α
cannot be larger than one. This is a common feature in all cases examined and for this
reason this discussion is omitted in the rest of the result sections.

7.4.4 Uncertainty of pressure difference in thermomolecular
pressure difference

The thermomolecular pressure difference phenomenon is considered in this subsec-
tion. Simulations are conducted for various values of the inlet rarefaction parameter δin
ranging from the free molecular up to the continuum regime. The pressure difference
generated is independent of the tube length and Eq. (7.9) can be written as

dP

dT
= P

T

GT (δ, α)
GP (δ, α) . (7.15)

The effect of the uncertainties in pressure, temperature, radius and accommodation
coefficient on the uncertainty of the generated pressure difference (∆P ) is analyzed.
Also, the effect that the temperature ratio and of specular wall reflection on the pressure
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difference uncertainties is analyzed. For each case Nt = 103 trials are conducted. In this
case the uncertainties of the input quantities are introduced directly in the differential
equations and through the two kinetic coefficients. Since both kinetic coefficients are
introduced, the behavior of the pressure difference is more complicated.

Figure 7.6 presents the relative uncertainty of the generated pressure difference
in terms of δin for four values of the input relative uncertainty of each parameter,
namely 0.1, 1, 2 and 5% for a temperature ratio Th,n/Tc,n = 1.5 and accommodation
coefficient αn = 1. Now, contrary to the previous results, the accommodation coefficient
uncertainty is not important for small values of δin and its effect increases as δin increases,
reaching some maximum and then decreasing again. This behavior is attributed to
the fact, that although for small values of δin the accommodation coefficient has a
large effect on GP and GT individually, their ratio remains almost constant. The effect
for large δin is expected as in this regime the uncertainty of the kinetic coefficients
becomes small. For intermediate cases, the accommodation coefficient has a different
effect on the kinetic coefficients, leading to an increased uncertainty in this regime. The
uncertainty due to pressure uncertainty initially decreases as δin increases, reaching a
minimum, then, increases again to a maximum and finally, decreases again for very
large values of δin. This complicated behavior is due to the different effect that the
pressure has on the rarefaction parameter that is introduced to the kinetic coefficients
and to Eq. (7.15). Its magnitude however, does not change considerably for the
different values of δin. The effect of the radius uncertainty increases as δin increases,
reaching some maximum and then decreases as δin is going towards the hydrodynamic
regime where this phenomenon vanishes. Temperature uncertainties are very important
for this temperature driven flow and the effect of this uncertainty is important for all
values of δin. For all values of the input uncertainty the qualitative behavior of the
output uncertainty is the same. In all flow regimes, the temperature uncertainty is the
most important one. For small δin the pressure uncertainty is second in importance,
while for large δin it is overtaken by the radius uncertainty. It is interesting to note
that the accommodation coefficient uncertainty, when αn = 1, has a smaller effect
compared to all others in all flow regimes.

In Figure 7.7 the effect of the temperature uncertainty is plotted for different values of
the temperature ratio, namely Th,n/Tc,n = 1.2, 1.3, 1.5 and 2. As the temperature ratio
decreases (temperature difference decreases) the uncertainty of the pressure difference
due to the temperature uncertainty is increased. The uncertainty of the pressure
difference can take values as high as 85%, 48%, 28%, 15% for Th,n/Tc,n = 1.2, 1.3, 1.5
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and 2 respectively for an input uncertainty of the temperature of 5%. Furthermore, as
the temperature ratio decreases, the uncertainty due to the temperature uncertainty
becomes independent of δ.

In the case of αn < 1, the uncertainty of the pressure difference due to accommoda-
tion coefficient uncertainty will be roughly double than that in Figure 7.6, as discussed
before for the pressure driven flow.

7.4.5 Uncertainty of mass flow rate in thermal creep flow

The thermally driven flow through a tube connecting two vessels kept at the
same pressure is considered and corresponding results are presented. Simulations are
conducted for various values of the inlet parameter δin = δout ranging from the free
molecular up to the continuum regime. In this flow the Eq. (7.9) is solved using a
shooting method in order to provide the mass flow rate. The same way as in pressure
driven flow, using sensitivity derivatives in Eq. (7.9), the uncertainty of the mass flow
rate due to length uncertainty can be readily obtained as

u (ṁ)
ṁ

= u (L)
L

. (7.16)

The effect of the uncertainties in pressure, temperature, radius and accommodation
coefficient on the uncertainty of the mass flow rate is analyzed. The effect that the
temperature ratio and specular wall reflection on the uncertainties is analyzed. For
each case Nt = 103 trials are conducted. The uncertainties of the input quantities
are introduced directly in the differential equations and through the two kinetic
coefficients. As in the thermomolecular pressure difference flow, both kinetic coefficients
are introduced and the behavior of the mass flow rate uncertainty may be complicated.

Figure 7.8 shows the relative uncertainty of the mass flow rate in terms of δin for four
values of the input relative uncertainty of each parameter, namely 0.1, 1, 2 and 5% for
a tube with L/Rn = 20, with a temperature ratio Th,n/Tc,n = 1.5 and accommodation
coefficient αn = 1. The uncertainty of the mass flow rate due to uncertainty of the
accommodation coefficient closely resembles the behavior of u (GT ) /GT for uncertainties
in the accommodation coefficient. The accommodation coefficient uncertainty is
important only at small values of δin. As δin is increased, the uncertainty due to the
accommodation coefficient decreases, reaching a minimum and then increases again
to a maximum. Finally, it decreases again tending to zero for very large δin, since
the effect of the accommodation coefficient diminishes when the flow is close to the
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hydrodynamic regime. The effect of the pressure uncertainty on the mass flow rate
is qualitatively similar to its effect on the pressure difference in the thermomolecular
pressure difference flow. The effect of the radius uncertainty is important in this case
in the whole range of δin, with the uncertainty of the mass flow rate taking values
between 10% and 17% for radius uncertainty 5%. Temperature uncertainties are very
important for temperature driven flows and the effect of this uncertainty is important
for all values of δin. For all values of the input uncertainty the qualitative behavior of
the output uncertainty is the same. In all flow regimes, the temperature uncertainty is
the most important one, followed by the radius uncertainty. The uncertainties due to
pressure and accommodation coefficient (αn = 1) are of lesser importance.

In Figure 7.9 the effect of the temperature uncertainty is plotted for different values
of the temperature ratio, namely Th,n/Tc,n = 1.2, 1.3, 1.5 and 2. As the temperature
ratio decreases (temperature difference decreases) the uncertainty of the mass flow rate
due to the uncertainty of the temperature is increased. In fact, for a 5% temperature
uncertainty the mass flow rate uncertainty takes values close to 85%, 47%, 26% and
14% for Th,n/Tc,n = 1.2, 1.3, 1.5 and 2, respectively.

7.5 Nonlinear heat transfer between parallel plates

7.5.1 Formulation

The heat transfer flow between parallel plates is considered. The effect of the input
uncertainty of pressure, temperature and thermal accommodation coefficient on the
output uncertainty of the heat flux is considered. A monatomic gas is confined between
two parallel plates that are at a distance H and kept at different temperatures TH and
TC for the bottom and top plates respectively with TH > TC .

Kinetic modeling is based on the nonlinear Shakhov kinetic model equation. The
following dimensionless parameters are introduced

y = y′/H, ζy = ξy/υ0, g = fυ3
0/N0, ρ = N/N0, τ = T/T0, q = Q/ (P0υ0) (7.17)

where y is the physical space coordinate normal to the plates, ζy the molecular velocity
in the y direction, g denotes the distribution function, while ρ, τ and q are the
dimensionless density, temperature and heat flux respectively. The reference value of
the temperature is T0 = TH , while the reference number density N0 is taken from the

223

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Chapter 7

equation of state P0 = N0kBT0 with kB denoting the Boltzmann constant and the most
probable molecular speed is defined as υ0 =

√
2RgT0 with Rg being the gas constant.

The following reduced distribution functions are introduced:

ϕ =
+∞∫

−∞

+∞∫
−∞

ge−ζ2
x−ζ2

zdζxdζz (7.18)

ψ =
+∞∫

−∞

+∞∫
−∞

(
ζ2
x + ζ2

z

)
gdζxdζz (7.19)

The projection procedure is applied and the governing set of coupled integro-differential
equations is derived as

ζy
∂ϕ

∂y
= δρτ 1−ω

(
ϕS − ϕ

)
, (7.20)

ζy
∂ψ

∂y
= δρτ 1−ω

(
ψS − ψ

)
, (7.21)

where

ϕS = ϕM
[
1 + 4

15ρτ 2 qζ

(
ζ2
y

τ
− 3

2

)]
, (7.22)

ψS = ψM
[
1 + 4

15ρτ 2 qζ

(
ζ2
y

τ
− 1

2

)]
, (7.23)

with

ϕM = ρ√
πτ

exp
[
−ζ2

y/τ
]
, (7.24)

ψM = ρ√
π/τ

exp
[
−ζ2

y/τ
]
. (7.25)

In the above expressions, ϕ, ψ are the reduced distribution functions, ϕM , ψM are
the corresponding Maxwellian distributions while ϕS, ψSare the Shakhov equilibrium
distributions. The rarefaction parameter is defined as

δ = P0H

µ0υ0
, (7.26)
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where µ0 is the viscosity at reference temperature. It is noted that in Eq. (7.20) and
(7.21) the expression µ = µ0(T/T0)ω is used for the viscosity, where ω ∈ [0.5, 1] with
the limiting values corresponding to hard sphere and Maxwell molecules respectively.
In the present section hard sphere gas has been assumed.

The boundary conditions for the bottom wall are

ϕ+ = ρw,b√
πτα,b

exp
[
−ζ2

y/τα,b
]
, ζy > 0, y = −1/2, (7.27)

ψ+ = ρw,b√
π/τα,b

exp
[
−ζ2

y/τα,b
]
, ζy > 0, y = −1/2, (7.28)

while for the top

ϕ+ = ρw,t√
πτα,t

exp
[
−ζ2

y/τα,t
]
, ζy < 0, y = 1/2, (7.29)

ψ+ = ρw,t√
π/τα,t

exp
[
−ζ2

y/τα,t
]
, ζy < 0, y = 1/2. (7.30)

In the boundary conditions the wall densities ρw,b and ρw,t for the bottom and top
walls respectively, as well as the corresponding temperatures τα,b and τα,t are specified.
Temperature (τα) is an equivalent temperature, taking into account the thermal
accommodation of the wall. The boundary condition parameters for each wall are
coupled and calculated using the impermeability condition along with the definition of
the thermal accommodation coefficient, which is defined as [233]

α = E ′− − E ′+

E ′− − E ′
W

+ . (7.31)

In the definition of the thermal accommodation coefficient, E ′− is the incident energy
flux to the wall, E ′+ is the reflected one and E ′

W
+ is the reflected energy flux if the

gas is fully accommodated. Combining the impermeability condition with Eq. (7.31)
the following expressions for the boundary condition parameters are derived:

ρw,b = 2
√

π

τα,b
J−
b (7.32)

ρw,t = 2
√

π

τα,t
J−
t (7.33)
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τα,b = τbα + (1 − α) E
−
b

2J−
b

(7.34)

τα,t = τtα + (1 − α) E
−
t

2J−
t

(7.35)

Here, τb = 1 and τt = TC/TH . The dimensionless energy fluxes (E = E ′/ (P0υ0)) and
particle fluxes are [233]:

J−
b = −

0∫
−∞

ϕ−ζydζy (7.36)

J−
t =

+∞∫
0

ϕ−ζydζy (7.37)

E−
b = −

0∫
−∞

(
ϕ−ζ2

y + ψ−
)
ζydζy (7.38)

E−
t =

+∞∫
0

(
ϕ−ζ2

y + ψ−
)
ζydζy (7.39)

The macroscopic quantities are given as moments of the reduced distribution functions:
Number density

ρ =
+∞∫

−∞

ϕdζy (7.40)

Temperature

τ = 2
3ρ

+∞∫
−∞

(
ϕζ2

y + ψ
)
dζy (7.41)

Heat flux

q =
+∞∫

−∞

(
ϕζ2

y + ψ
)
ζydζy (7.42)

Upon specifying the accommodation coefficient α, the rarefaction parameter δ
and the temperature ratio τt = TC/TH , equations (7.20) and (7.21) are solved, under
boundary conditions (7.27)-(7.30), along with the expressions (7.32)-(7.39) for the
boundary conditions parameters and (7.40)-(7.42) for the macroscopic quantities, using
the DVM scheme. The heat computed heat flux values are tabulated and used for the
uncertainty propagation.

226

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Section 7.6

In the heat transfer flow is not computationally efficient to solve the kinetic equations
for each MCM trial. Instead, a dense database of the heat flux values in terms of the
involved parameters is created and then for each trial an interpolation is performed
providing the heat flux values at the random values of the input quantities. A part of
this database is shown in Tables 7.3 and 7.4. The methodology described in Section
7.2 is used to find the uncertainty, performing Nt = 106 trials in each case.

7.5.2 Uncertainty of heat flux in heat transfer between par-
allel plates

The relative uncertainty of the heat flux is presented for a wide range of the
rarefaction parameter covering the free molecular up to the slip regimes. The effect
of uncertainties of the wall temperatures, gas rarefaction parameter and thermal
accommodation coefficient on the uncertainty of the heat flux is investigated. It is
noted that in this setup, the uncertainties of the temperature also lead to uncertainties
in the rarefaction parameter. Since the uncertainty of the rarefaction parameter is
used, uncertainties in pressure or distance between the plates can be translated into
rarefaction parameter uncertainties using Eqs. (7.12) and (7.2).

Figure 7.10 presents the relative uncertainty of the heat flux in terms of the rar-
efaction parameter for different values of the uncertainty of the input quantities for
a temperature ratio TC,n/TH,n = 0.5 and thermal accommodation coefficient αn = 1.
For all four values of the input uncertainty investigated, namely 0.1, 1, 2 and 5%, the
qualitative behavior is the same. The temperature uncertainty is the leading source of
uncertainty in the whole range of the gas rarefaction examined. The thermal accom-
modation coefficient is equally important for small values of δ, while its significance
decreases as δ is increased. The uncertainty associated with the rarefaction parameter
is negligible for small values of δ, increases reaching a maximum around δ = 10 and
then decreases again

Figure 7.11 shows the relative uncertainty of the heat flux in terms of the input
uncertainty of the temperature for temperature ratio TC,n/TH,n = 0.3, 0.5, 0.7 and
0.9. As the temperature ratio increases and the temperature difference decreases, the
uncertainties associated with the temperature are increased. In fact for a relative
uncertainty of the temperature ratio of 5%, the heat flux uncertainty which is of the
order of 2% for TC,n/TH,n = 0.3 is increased up to 70% for TC,n/TH,n = 0.9. Also,
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for large temperature ratios, the uncertainty becomes independent of the rarefaction
parameter.

7.6 Concluding remarks

The uncertainty propagation in prototype flow and heat transfer configurations of
rarefied gas dynamics is investigated. More specifically, the pressure and temperature
driven flows through long tubes and the heat transfer between parallel plates are
considered. In the Poiseuille and thermal creep flows, the effect of the uncertainties
in the pressure, temperature, length, radius and accommodation coefficient on the
mass flow rate is computed. In the thermomolecular pressure difference flow, the
corresponding effect on the generated pressure difference is also found. Furthermore,
in the heat transfer flow, the effect of the uncertainties in the rarefaction parameter,
temperature ratio and thermal accommodation coefficient on the produced heat flux is
computed. The uncertainty propagation is performed using the Monte Carlo Method
that is applicable and accurate in all these setups.

In the Poiseuille flow, the radius uncertainty is the most important one, in most
cases, while the temperature and pressure uncertainties are of lesser importance, in the
whole gas rarefaction regime. The accommodation coefficient uncertainty is important
for highly rarefied flows, while its effect diminishes as the flow moves to the continuum
regime. Considering a 5% uncertainty in all input parameters, the typical values of
the relative uncertainty of the output mass flow rate are 20% for the radius, 10% for
temperature and pressure and 5% for the accommodation coefficient. The pressure
uncertainty becomes the predominant factor of uncertainty for small pressure differences
and the uncertainty of the mass flow rate may reach up to 40% for 5% uncertainty in
pressure and pressure ratio of 0.9.

In the thermomolecular pressure difference flow, the temperature uncertainty is
the most important, in most cases, while the radius and pressure uncertainties are of
lesser importance, in the whole gas rarefaction regime. The accommodation coefficient
uncertainty is the least important for all flow regimes when αn = 1 and it is interesting
that its effect is negligible in the free molecular regime, increases in the transition
regime and finally, decreases in the continuum regime. Typical values of the uncertainty
of the pressure difference are 27% for the temperature, 10% for the radius, 5% for the
pressure and 3% for the accommodation coefficient, with 5% uncertainty introduced
to the corresponding quantities. The effect of the temperature uncertainty is further
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magnified in small temperature differences and may result to an output uncertainty of
the pressure difference up to 85% with 5% uncertainty in temperature and temperature
ratio equal to 1.2.

In the thermal creep flow, the temperature uncertainty is the most important,
in most cases, while it is overtaken by the radius uncertainty for large temperature
differences and small values of the rarefaction parameter. The radius uncertainty
is the second largest source of uncertainty, in most cases, while the accommodation
coefficient and pressure uncertainties are of lesser importance. Typical values of the
uncertainty of the mass flow rate, with 5% uncertainty in the respective quantities,
are 25% for the temperature, 15% for the radius and less than 5% for the pressure
and accommodation coefficient. The temperature uncertainty is further magnified
and becomes the predominant factor of uncertainty for small temperature differences,
reaching up to 80% for temperature uncertainty of 5% and temperature ratio equal to
1.2.

In the heat transfer cases, the uncertainties of the input parameters do not lead
to much larger uncertainties of the heat flux when the temperature difference is
relatively large. For small temperature differences however, temperature uncertainties
are magnified and can lead to very large uncertainties in the heat flux, reaching up to
70% for temperature uncertainty 5% and temperature ratio 0.9.

It may be concluded that in most cases, the uncertainty of the quantity driving the
phenomenon, i.e., the pressure for the Poiseuille flow and the temperature for thermally
driven flows, is the most important source of uncertainty, especially for small driving
forces.

The methodology for the uncertainty propagation implemented in the present
work can be implemented in a straightforward manner in a broader range of rarefied
gas flows. Furthermore, the implementation of more efficient methodologies is an
expected future step and the results presented here can be used to judge the accuracy
of these more advanced methodologies. The results presented in the present chapter
for the benchmark configurations of rarefied flows through tubes and heat transfer
between plates, can aid researchers and engineers engaged in the design of systems
with miniaturized sizes and/or operating in low pressure conditions.
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Table 7.1 Kinetic coefficient GP in terms of the rarefaction parameter δ and accommo-
dation coefficient α for pressure driven flow in a plane channel.

δ
GP

α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 0.92 α = 0.95 α = 0.98 α = 1
0 3.51 2.79 2.26 1.84 1.77 1.66 1.57 1.50

0.001 3.48 2.77 2.24 1.83 1.76 1.66 1.56 1.50
0.01 3.34 2.68 2.18 1.79 1.72 1.63 1.53 1.48
0.1 2.95 2.41 2.00 1.67 1.61 1.53 1.45 1.40
0.2 2.82 2.31 1.93 1.63 1.57 1.50 1.43 1.38
0.5 2.70 2.24 1.89 1.61 1.56 1.49 1.43 1.39
0.8 2.69 2.24 1.91 1.64 1.59 1.53 1.46 1.43
1 2.71 2.27 1.93 1.67 1.62 1.56 1.50 1.46
2 2.88 2.45 2.12 1.86 1.82 1.76 1.70 1.66
5 3.57 3.13 2.81 2.55 2.51 2.45 2.39 2.35
8 4.30 3.86 3.54 3.28 3.24 3.17 3.11 3.07
10 4.79 4.36 4.03 3.77 3.73 3.66 3.60 3.56
20 7.27 6.84 6.51 6.25 6.21 6.14 6.08 6.04
50 1.48(+1) 1.43(+1) 1.40(+1) 1.37(+1) 1.37(+1) 1.36(+1) 1.36(+1) 1.35(+1)
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Table 7.2 Kinetic coefficient GT in terms of the rarefaction parameter δ and accommo-
dation coefficient α for temperature driven flow in a plane channel.

δ
GT

α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 0.92 α = 0.95 α = 0.98 α = 1
0 1.76 1.40 1.13 9.19(-1) 8.83(-1) 8.31(-1) 7.83(-1) 7.52(-1)

0.001 1.72 1.38 1.11 9.11(-1) 8.75(-1) 8.24(-1) 7.77(-1) 7.47(-1)
0.01 1.58 1.28 1.05 8.69(-1) 8.37(-1) 7.91(-1) 7.48(-1) 7.21(-1)
0.1 1.14 9.67(-1) 8.30(-1) 7.17(-1) 6.97(-1) 6.67(-1) 6.39(-1) 6.21(-1)
0.2 9.44(-1) 8.24(-1) 7.25(-1) 6.40(-1) 6.25(-1) 6.03(-1) 5.81(-1) 5.67(-1)
0.5 6.78(-1) 6.18(-1) 5.66(-1) 5.20(-1) 5.11(-1) 4.99(-1) 4.87(-1) 4.79(-1)
0.8 5.46(-1) 5.11(-1) 4.79(-1) 4.51(-1) 4.45(-1) 4.38(-1) 4.30(-1) 4.25(-1)
1 4.87(-1) 4.61(-1) 4.38(-1) 4.17(-1) 4.13(-1) 4.07(-1) 4.01(-1) 3.97(-1)
2 3.23(-1) 3.18(-1) 3.13(-1) 3.08(-1) 3.07(-1) 3.05(-1) 3.04(-1) 3.03(-1)
5 1.64(-1) 1.67(-1) 1.70(-1) 1.73(-1) 1.73(-1) 1.74(-1) 1.75(-1) 1.76(-1)
8 1.09(-1) 1.12(-1) 1.16(-1) 1.19(-1) 1.19(-1) 1.20(-1) 1.21(-1) 1.22(-1)
10 8.82(-2) 9.16(-2) 9.48(-2) 9.78(-2) 9.84(-2) 9.92(-2) 1.00(-1) 1.01(-1)
20 4.40(-2) 4.65(-2) 4.88(-2) 5.09(-2) 5.13(-2) 5.19(-2) 5.25(-2) 5.29(-2)
50 1.51(-2) 1.65(-2) 1.78(-2) 1.90(-2) 1.92(-2) 1.95(-2) 1.99(-2) 2.01(-2)
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Table 7.3 Heat flux in terms of temperature ratio TC/TH and rarefaction paramter δ
for α=0.1, 0.3, 0.5 for heat transfer between parallel plates.

Q
α=0.1

δ TC/TH=0.1 TC/TH=0.3 TC/TH=0.5 TC/TH=0.7 TC/TH=0.9 TC/TH=0.99
0.01 1.98(-2) 1.67(-2) 1.29(-2) 8.21(-3) 2.89(-3) 2.96(-4)
0.1 1.97(-2) 1.67(-2) 1.28(-2) 8.19(-3) 2.89(-3) 2.95(-4)
1 1.93(-2) 1.64(-2) 1.26(-2) 8.04(-3) 2.83(-3) 2.90(-4)
5 1.80(-2) 1.53(-2) 1.18(-2) 7.54(-3) 2.66(-3) 2.72(-4)
10 1.66(-2) 1.42(-2) 1.10(-2) 7.03(-3) 2.48(-3) 2.54(-4)
15 1.54(-2) 1.33(-2) 1.03(-2) 6.58(-3) 2.32(-3) 2.38(-4)
20 1.44(-2) 1.24(-2) 9.64(-3) 6.18(-3) 2.18(-3) 2.23(-4)

α=0.3
δ TC/TH=0.1 TC/TH=0.3 TC/TH=0.5 TC/TH=0.7 TC/TH=0.9 TC/TH=0.99

0.01 6.59(-2) 5.59(-2) 4.30(-2) 2.75(-2) 9.69(-3) 9.92(-4)
0.1 6.52(-2) 5.54(-2) 4.26(-2) 2.73(-2) 9.61(-3) 9.84(-4)
1 6.08(-2) 5.20(-2) 4.01(-2) 2.57(-2) 9.05(-3) 9.26(-4)
5 4.91(-2) 4.26(-2) 3.31(-2) 2.12(-2) 7.49(-3) 7.67(-4)
10 4.01(-2) 3.52(-2) 2.74(-2) 1.76(-2) 6.21(-3) 6.36(-4)
15 3.41(-2) 3.00(-2) 2.34(-2) 1.50(-2) 5.31(-3) 5.43(-4)
20 2.97(-2) 2.62(-2) 2.04(-2) 1.31(-2) 4.64(-3) 4.74(-4)

α=0.5
δ TC/TH=0.1 TC/TH=0.3 TC/TH=0.5 TC/TH=0.7 TC/TH=0.9 TC/TH=0.99

0.01 1.22(-1) 1.05(-1) 8.09(-2) 5.18(-2) 1.83(-2) 1.87(-3)
0.5 1.12(-1) 9.71(-2) 7.53(-2) 4.83(-2) 1.70(-2) 1.74(-3)
1 1.05(-1) 9.16(-2) 7.11(-2) 4.57(-2) 1.61(-2) 1.65(-3)
5 7.48(-2) 6.62(-2) 5.17(-2) 3.33(-2) 1.18(-2) 1.20(-3)
10 5.62(-2) 5.00(-2) 3.91(-2) 2.52(-2) 8.89(-3) 9.10(-4)
15 4.53(-2) 4.02(-2) 3.14(-2) 2.02(-2) 7.15(-3) 7.32(-4)
20 3.80(-2) 3.37(-2) 2.63(-2) 1.69(-2) 5.98(-3) 6.12(-4)
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Table 7.4 Heat flux in terms of temperature ratio TC/TH and rarefaction paramter δ
for α=0.7, 0.8, 0.9 for heat transfer between parallel plates.

Q
α=0.7

δ TC/TH=0.1 TC/TH=0.3 TC/TH=0.5 TC/TH=0.7 TC/TH=0.9 TC/TH=0.99
0.01 1.86(-1) 1.65(-1) 1.30(-1) 8.35(-2) 2.95(-2) 3.02(-3)
0.1 1.81(-1) 1.61(-1) 1.26(-1) 8.14(-2) 2.88(-2) 2.94(-3)
1 1.51(-1) 1.35(-1) 1.06(-1) 6.86(-2) 2.42(-2) 2.48(-3)
5 9.57(-2) 8.67(-2) 6.82(-2) 4.40(-2) 1.56(-2) 1.59(-3)
10 6.79(-2) 6.11(-2) 4.79(-2) 3.09(-2) 1.09(-2) 1.12(-3)
15 5.30(-2) 4.72(-2) 3.69(-2) 2.38(-2) 8.40(-3) 8.60(-4)
20 4.34(-2) 3.85(-2) 3.01(-2) 1.93(-2) 6.83(-3) 6.99(-4)

α=0.8
δ TC/TH=0.1 TC/TH=0.3 TC/TH=0.5 TC/TH=0.7 TC/TH=0.9 TC/TH=0.99

0.01 2.45(-1) 2.39(-1) 1.93(-1) 1.26(-1) 4.47(-2) 4.58(-3)
0.1 2.37(-1) 2.31(-1) 1.86(-1) 1.21(-1) 4.31(-2) 4.41(-3)
1 1.89(-1) 1.82(-1) 1.46(-1) 9.50(-2) 3.37(-2) 3.45(-3)
5 1.13(-1) 1.05(-1) 8.29(-2) 5.36(-2) 1.90(-2) 1.94(-3)
10 7.71(-2) 6.97(-2) 5.47(-2) 3.53(-2) 1.25(-2) 1.28(-3)
15 5.86(-2) 5.23(-2) 4.09(-2) 2.63(-2) 9.30(-3) 9.52(-4)
20 4.73(-2) 4.19(-2) 3.26(-2) 2.10(-2) 7.41(-3) 7.59(-4)

α=0.9
δ TC/TH=0.1 TC/TH=0.3 TC/TH=0.5 TC/TH=0.7 TC/TH=0.9 TC/TH=0.99

0.01 2.44(-1) 2.78(-1) 2.32(-1) 1.53(-1) 5.46(-2) 5.59(-3)
0.1 2.40(-1) 2.68(-1) 2.22(-1) 1.46(-1) 5.21(-2) 5.34(-3)
1 1.99(-1) 2.06(-1) 1.68(-1) 1.10(-1) 3.90(-2) 3.99(-3)
5 1.20(-1) 1.13(-1) 8.96(-2) 5.81(-2) 2.06(-2) 2.11(-3)
10 8.09(-2) 7.33(-2) 5.76(-2) 3.72(-2) 1.31(-2) 1.35(-3)
15 6.09(-2) 5.44(-2) 4.25(-2) 2.74(-2) 9.66(-3) 9.89(-4)
20 4.88(-2) 4.32(-2) 3.37(-2) 2.16(-2) 7.64(-3) 7.82(-4)
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Chapter 7 Figures

Figure 7.1 Relative uncertainty of GP in terms of δ for uncertainty in δ (left) and α
(right) for αn = 1.

Figure 7.2 Relative uncertainty of GT in terms of δ for uncertainty in δ (left) and α
(right) for αn = 1.
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Figure 7.3 Relative uncertainty of mass flow rate in the Poiseuille flow, in terms of δin
for relative uncertainty of each input parameter equal to 0.1%, 1%, 2% and 5%.
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Figure 7.4 Relative uncertainty of mass flow rate in the Poiseuille flow, in terms of δin
for various values u (P ) /P and Pout,n/Pin,n = 0.3, 0.5, 0.7 and 0.9.
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Figure 7.5 Relative uncertainty of mass flow rate in the Poiseuille flow, in terms of δin
for various values u (α) /α and αn = 0.7, 0.8, 0.9 and 1.
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Figure 7.6 Relative uncertainty of the pressure difference in the thermomolecular
pressure difference case, in terms of δin for relative uncertainty of each input parameter
equal to 0.1%, 1%, 2% and 5%.
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Figure 7.7 Relative uncertainty of the pressure difference in the thermomolecular
pressure difference case, in terms of δin for various values u (T ) /T and Th,n/Tc,n =
1.2, 1.3, 1.5 and 2.
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Figure 7.8 Relative uncertainty of mass flow rate in the thermal creep flow, in terms of
δin for relative uncertainty of each input parameter equal to 0.1%, 1%, 2% and 5%.
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Figure 7.9 Relative uncertainty of mass flow rate in the thermal creep flow, in terms of
δin for various values u (T ) /T and TH,n/TC,n = 1.2, 1.3, 1.5 and 2.
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Figure 7.10 Relative uncertainty of heat flux in terms of δ for relative uncertainty of
each input parameter equal to 0.1%, 1%, 2% and 5%.
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Figure 7.11 Relative uncertainty of heat flux in terms of δ for various values u (T ) /T
and TC,n/TH,n = 0.3, 0.5, 0.7 and 0.9.
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Chapter 8

Synthetic acceleration schemes of the dis-
crete velocity algorithm

8.1 Introduction

The deterministic solution of the Boltzmann equation or suitable kinetic model
equations has been extensively applied with considerable success to solve rarefied gas
flows and heat transfer problems in the whole range of the Knudsen number [54].
The molecular velocity space is discretized by a finite set of molecular velocities and
the physical space by typical finite difference or control volume scheme, while the
macroscopic quantities are computed by numerically integrating the moments of the
distribution function. The resulting system of discretized equations is solved in an
iterative manner between the kinetic equation and the moments of the distribution
function. This numerical approach is widely known as the discrete velocity (or ordinates)
method. Researchers implementing the Discrete Velocity Method (DVM) are well aware
however, of the slow convergence rate of this simple iteration map as the flow approaches
the slip and continuum regimes [58], [59]. To speed-up convergence, synthetic iteration
acceleration schemes have been developed [234].

Synthetic acceleration schemes couple the kinetic equation with a system of moment
equations, derived by accordingly operating on the kinetic equation. The moments
needed to close the system of moment equations are taken from the calculated dis-
tribution function. The updated values of the accelerated macroscopic quantities are
obtained by the solution of the moment equations and not directly as moments of
the distribution function. This advanced iteration map exhibits rapid convergence
especially close to the continuum regime.
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Such schemes have been applied to kinetic model equations [60] and to the linearized
Boltzmann equation [61] to model fully developed flows through various capillaries.
The implemented acceleration schemes are applied only to the interior nodes and not
to the boundary ones. This is of no great importance in fully developed flows, where
the outgoing distribution function at the boundary nodes is known a priori. In more
general cases however, where the outgoing distribution as the boundaries are expressed
in terms of the unknown incoming distributions, not including the corresponding
acceleration moment equations at the boundary nodes severely decreases the efficiency
of the acceleration scheme.

In the present chapter, a synthetic iterative acceleration scheme able to accelerate
the macroscopic quantities as the boundary nodes is proposed. It is constructed taking
the half-range moments of the involved distribution functions, leading to a set of
hyperbolic ordinary or partial differential equations involving these moments. The
system of moments is closed by calculating the associated higher order moments from
the distribution function. This acceleration strategy allows the acceleration of the
appropriate moments at the boundary nodes and provides a considerable speedup,
compared to the typical acceleration schemes, extending the applicability of the
synthetic acceleration schemes to more general flows. Still however, the analysis is
limited to linear kinetic equations.

The proposed methodology and the deduced convergence speed-up are demonstrated
by solving the one-dimensional problems of Poiseuille flow and heat transfer between
parallel plates. The former one is a fully developed flow and the outgoing distributions
boundary conditions are known. Since both the full-range and the half-range acceler-
ation schemes work fine a systematic comparison between the existing and the new
speed-up schemes is performed. The latter one is more complicated and the outgoing
distributions are part of the solution. It is shown that in the heat transfer configuration
the performance of the full-range acceleration scheme is very low, while on the contrary
the proposed acceleration scheme provides a very good speed-up of the convergence
rate of the iteration map. In both problems the number of iterations required by the
DVM with no acceleration (NA), the DVM with the typical full-range acceleration
(FRA) and the proposed DVM with half-range acceleration (HRA), able to accelerate
the proper quantities at the boundaries, are compared. The obtained results clearly
demonstrate the importance of accelerating the boundary nodes in flow setups where
the boundary conditions are part of the solution.
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In Section 8.2, the well-known full-range acceleration scheme is reviewed. In Section
8.3 the half-range Hermite polynomials, which are used in the formulation of the
half-range accelerated schemes, are constructed. The novel half-range acceleration
scheme is developed in Sections 8.4 and 8.5 solving the Poiseuille flow and the heat
transfer between plates problems respectively. A brief discussion on the performance
of the half-range moment method is included. Finally, some concluding remarks are
made in Section 8.7.

8.2 Synthetic acceleration based on full-range Her-
mite polynomials

The construction of the full-range acceleration scheme, although is well known, it
is reviewed here for the two problems under consideration, mainly for completeness
purposes.

The fully developed pressure driven flow between parallel plates is modeled by the
linearized BGK model equation written as [235]

ζ
∂h

∂y
+ δh = δu− 1

2 , (8.1)

where ζ ∈ (−∞,+∞) is the dimensionless molecular velocity, y ∈ [0, 1]is the physical
space variable in the direction normal to the plates, h is the local perturbation of the
distribution function from the reference Maxwellian distribution. Also, the rarefaction
parameter is defined as

δ = PH

µυ0
, (8.2)

with P, H, µ denoting the pressure, the distance between the plates and the viscosity at
reference temperature respectively, while υ0 =

√
2RgT0 is the most probable molecular

speed at the reference temperature T0, with Rg denoting the specific gas constant. The
macroscopic velocity is expressed as the zeroth moment of the distribution function as

u = 1√
π

+∞∫
−∞

he−ζ2
dζ. (8.3)

The purely diffuse boundary conditions are given by
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h+ = 0, at y = 0 with ζ > 0 and at y = 1 with ζ < 0. (8.4)

In order to construct the full-range acceleration scheme, the following moments of
the distribution function are defined

Mm = 1√
π

+∞∫
−∞

hHm (ζ)e−ζ2
dζ, (8.5)

where Hm denotes the full-range Hermite polynomial of order m, satisfying the orthog-
onality condition

+∞∫
−∞

HmHne
−x2

dx =
√
π2mm!δmn, (8.6)

where δmn is the Kronecker delta. The first five full-range Hermite polynomials are:

H0 = 1, H1 = 2x,H2 = 4x2 − 2, H3 = 8x3 − 12x,H4 = 16x4 − 48x2 + 12. (8.7)

Applying the integral operator 1√
π

+∞∫
−∞

(·)ζne−ζ2
dζ with n = 0, 1 to Eq. (8.1) and

using the definition of the full-range Hermite moments (8.5), after some mathematical
manipulation, the following 2nd order ordinary differential equation is derived:

d2M0

dy2 = −δ − 1
2
d2M2

dy2 (8.8)

The zeroth moment is the unknown macroscopic velocity (M0 = u) and the high order
moment is calculated directly from the distribution function using Eq. (8.5). It is
interesting to note that Stokes equation for the current case, using the present notation
is written as

d2u

dy2 = −δ. (8.9)

It turns out that the moment equation (8.8) is the Stokes equation with a correction
term.

Using k as the iteration index, the iterative map of the DVM scheme with no
acceleration (NA) is written as:

ζ
∂h(k+1/2)

∂y
+ δh(k+1/2) = δu(k) − 1

2 (8.10)
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u(k+1) = 1√
π

+∞∫
−∞

h(k+1/2)e−ζ2
dζ (8.11)

The iterative procedure starts with an initial guess of the macroscopic velocity u(0)

and then, Eq. (8.10) is solved to provide the value of the distribution function. Next,
Eq. (8.11) is utilized to provide an updated value of the macroscopic velocity, which
is substituted back into the kinetic equation (8.10). This procedure is repeated until
convergence is reached.

The iteration map of the DVM with the typical full-range acceleration (FRA) is
written as:

ζ
∂h(k+1/2)

∂y
+ δh(k+1/2) = δu(k) − 1

2 (8.12)

M
(k+1/2)

2 = 1√
π

+∞∫
−∞

h(k+1/2)H2e
−ζ2

dζ (8.13)

d2M
(k+1)
0

dy2 = −δ − 1
2
d2M

(k+1/2)
2
dy2 (8.14)

The solution starts with an initial guess of the macroscopic velocity and then, Eq. (8.12)
is solved to provide the value of the distribution function. Next, Eq. (8.13) is used to
compute the 2nd order moment of the distribution function, which is introduced into
the moment ordinary differential equation (8.14) to compute the updated accelerated
value of the macroscopic velocity u(k+1) = M

(k+1)
0 . This value is substituted back into

the kinetic equation (8.12) to continue the iterative procedure upon convergence. It is
obvious that the computational effort per iteration is increased when the acceleration
scheme is used. However, due to the reduced number of iterations required, the overall
computational effort is drastically reduced. In one-dimensional problems, the linear
system approximating Eq. (8.14) has a banded tridiagonal coefficient matrix, which
his solved very efficiently by the Thomas algorithm (so the additional computational
cost per iteration is small).

To solve Eq. (8.14), boundary conditions at y = 0 and y = 1 should be supplied.
The boundary values of the macroscopic velocity at the boundaries are the values
given by Eq. (8.5) using the values of the distribution function of the current iteration.
In the pressure driven fully developed flow, the outgoing distributions at the two
boundary nodes are known (see Eq. (8.4)) and not including the boundary nodes in the
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acceleration scheme, which accelerates the zeroth moment only at the interior nodes, is
not very detrimental to the speed-up of the synthetic acceleration method which, as
shown in the results section, works really well.

The linearized heat transfer between parallel plates is next considered, demonstrating
the importance of deriving acceleration moment equations for the interior, as well as
for the boundary nodes. The heat transfer flow is modeled by the linearized BGK
equation written as a system of coupled integrodifferential equations [236]:

ζ
∂ϕ

∂y
+ δϕ = δ

[
ρ+ τ

(
ζ2 − 1/2

)]
(8.15)

ζ
∂ψ

∂y
+ δψ = δτ (8.16)

The perturbations of the number density and temperature are given by

ρ = 1√
π

+∞∫
−∞

ϕe−ζ2
dζ (8.17)

and

τ = 2
3
√
π

+∞∫
−∞

[
ψ + ϕ

(
ζ2 − 1/2

)]
e−ζ2

dζ (8.18)

respectively, while the heat flux is given by

q = 1√
π

+∞∫
−∞

[
ψ + ϕ

(
ζ2 − 3/2

)]
ζe−ζ2

dζ. (8.19)

The boundary conditions at the top wall (y = 1/2) with ζ < 0 are given by

ϕ+ = 1 − ζ2

2 + 2ρTW , (8.20)

ψ+ = −1
2 (8.21)

and at the bottom wall (y = −1/2) with ζ > 0 by

ϕ+ = −1 − ζ2

2 + 2ρBW , (8.22)
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ψ+ = 1
2 . (8.23)

Here, the boundary condition parameters ρTW and ρBW used to satisfy the impermeability
condition are given by

ρTW =
+∞∫
0

ζϕe−ζ2
dζ, (8.24)

ρBW = −
0∫

−∞

ζϕe−ζ2
dζ. (8.25)

It is noted that the impermeability parameters are computed in each iteration using
the distribution function at the boundary nodes and thus are not accelerated by the
full-range acceleration scheme.

The full-range acceleration methodology is implemented. Using the Hermite poly-
nomials, the following moments of the two reduced distribution function are defined:

Mm = 1√
π

+∞∫
−∞

Hm (ζ)ϕe−ζ2
dζ (8.26)

Nm = 1√
π

+∞∫
−∞

Hm (ζ)ψe−ζ2
dζ (8.27)

The macroscopic quantities involved in the kinetic equations are written in terms of
these moments as

ρ = M0, (8.28)

τ = 2
3N0 + 1

6M2. (8.29)

Applying the integral operator 1√
π

+∞∫
−∞

(·)ζne−ζ2
dζ to the Eq. (8.15) for ϕ, with n =

0, 1, 2, 3 and to Eq. (8.16) for ψ, with n = 0, 1 and after some algebraic manipulation
of the resulting expressions, the following system of moment equations is obtained:

1
4
d2M2

dy2 + 1
2
d2M0

dy2 = 0 (8.30)
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3
4
d2M2

dy2 + 3
4
d2M0

dy2 + δ2

3 N0 − δ2

6 M2 = − 1
16
d2M4

dy2 (8.31)

1
2
d2N0

dy2 − δ2

3 N0 + δ2

6 M2 = −1
4
d2N2

dy2 (8.32)

The boundary conditions for the above system of moment equations, as well as the
high order moments in the right hand side are obtained directly from the distribution
function, based on the Eqs. (8.26) and (8.27). The linear system obtained discretizing
the system of moment equations (8.30), (8.31) and (8.32) is solved in an iterative
manner by using a static iterative method such as Gauss Seidel or SOR.

It is clearly seen that this system does not accelerate the quantities at the boundary
nodes, including the impermeability parameters. The iteration map is the same as the
one presented for the Poiseuille flow. At each iteration, the system of kinetic equations
is solved, then the high order moments are computed directly from the distribution
function are computed and finally, the low order moments (the ones which are needed
in the kinetic equation) are found from the moment equations and updated in the
kinetic equations to continue with the next iteration.

8.3 Definition of the half-range Hermite polynomi-
als

The key point in the proposed synthetic acceleration methodology is the derivation
of a set of half-range moment equations at the interior as well as at the boundary nodes
of the physical grid. Since half-range moments are required, the utilized polynomials
should be orthogonal in the corresponding half-space range where the respective moment
is defined. Half-range moments and expansions in half-range polynomials have been
used before in solving rarefied gas flows, based on moment methods [237], [238] and in
CFD simulations, based on lattice Boltzmann schemes [239]–[241].

In the present work the half-range Hermite polynomials are applied and can be
written as

H+
n = xn +

n−1∑
i=0

a+
n,ix

i, (8.33)
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H−
n = xn +

n−1∑
i=0

a−
n,ix

i, (8.34)

with the polynomial H+
n and H−

n defined for x > 0 for x < 0 respectively. The
orthogonality conditions are

〈
H+
m, H

+
n

〉+
= δmnc

+
m, (8.35)

〈
H−
m, H

−
n

〉−
= δmnc

−
m, (8.36)

where c±
m are constants, with

⟨f, g⟩+ =
∞∫

0

fge−x2
dx, (8.37)

⟨f, g⟩− =
0∫

−∞

fge−x2
dx. (8.38)

The coefficients a±
n,i of the xi term for the polynomial of order n are obtained using the

Gram-Schmidt process and the polynomials are obtained using the recursion relations

H+
n = xn −

n−1∑
i=0

〈
xn, H+

i

〉+

〈
H+
i , H

+
i

〉+H
+
i (8.39)

H−
n = xn −

n−1∑
i=0

〈
xn, H−

i

〉−

〈
H−
i , H

−
i

〉−H
−
i (8.40)

It is also convenient to solve Eqs. (8.34) for the highest order term (xn), resulting to

xn = H+
n +

n−1∑
i=0

β+
n,iH

+
i ,x > 0 (8.41)

xn = H−
n +

n−1∑
i=0

β−
n,iH

−
i , x < 0. (8.42)

The coefficients a±
n,i and β±

n,i for polynomials up to the 4th order, are given in Appendix
E. Next, using the above half-range polynomials, boundary including acceleration
schemes are constructed.
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8.4 Synthetic acceleration based on the half-range
Hermite polynomials: Fully developed flow be-
tween parallel plates

The formulation of the fully developed flow, presented in Section 8.2, may be
summarized by providing the kinetic equation

ζ
∂h

∂y
+ δh = δu− 1

2 (8.43)

and the macroscopic velocity

u = 1√
π

+∞∫
−∞

he−ζ2
dζ, (8.44)

along with the boundary conditions at y = 0 with ζ > 0 and at y = 1 with ζ < 0,

h+ = 0 (8.45)

To construct the half-range acceleration scheme, the integral operators 1√
π

0∫
−∞

(·) ζne−ζ2
dζ

and 1√
π

+∞∫
0

(·) ζne−ζ2
dζ with n = 0, 1 are applied to Eq. (8.43) and the half-range

moments

M+
n = 1√

π

∞∫
0

H+
n he

−ζ2
dζ, (8.46)

M−
n = 1√

π

0∫
−∞

H−
n he

−ζ2
dζ (8.47)

are defined with the macroscopic velocity given in terms of the two zeroth order
half-range moments as u = M−

0 +M+
0 . Upon applying the integral operators to the

kinetic equation and algebraically manipulating the resulting expressions, the following
system is derived:

dM+
0

dy
= g+

0
dM+

2
dy

+ δp+−
0,0 M

−
0 + δp++

0,0 M
+
0 + δp++

0,1 M
+
1 + s+

0 (8.48)

dM+
1

dy
= g+

1
dM+

2
dy

+ δp+−
1,0 M

−
0 + δp++

1,0 M
+
0 + δp++

1,1 M
+
1 + s+

1 (8.49)
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dM−
0

dy
= g−

0
dM−

2
dy

+ δp−−
0,0 M

−
0 + δp−+

0,0 M
+
0 + δp−−

0,1 M
−
1 + s−

0 (8.50)

dM−
1

dy
= g−

1
dM−

2
dy

+ δp−−
1,0 M

−
0 + δp−+

1,0 M
+
0 + δp−−

1,1 M
−
1 + s−

1 (8.51)

The coefficients g+
n , s+

n and p±±
n,i , n, i = 0, 1 involved in the above system of ordinary

differential equations (ODE) are given in Appendix E.
Furthermore, the initial conditions for this system of ODEs are obtained applying

the integral operators defined above to the expressions for the boundary conditions
(8.45). Then, the initial conditions are at the bottom wall (y = 0)

M+
0 = M+

1 = 0 (8.52)

and at the top wall (y = 1)

M−
0 = M−

1 = 0. (8.53)

The iteration map of the half-range acceleration scheme (HRA) consists of the
solution of the kinetic equation (8.43), followed by the calculation of the high order
moments based on the direct integration of the distribution function, using Eqs. (8.47).
Then, the moment equations (8.48)-(8.51) are solved to yield the macroscopic velocity,
which is substituted back into the kinetic equation for the next iteration.

It is noted that if the high order moments M±
2 are set to zero, then the system of

equations (8.48)-(8.51) with boundary conditions (8.53) is a closed system of equations
and can be solved by itself without any coupling with the kinetic equations. The
half-range moment methodology (HRMM) is also examined.

In Section 8.6 comparative results in terms of accuracy, number of iterations and
computational time are provided for solving the Poiseuille flow based on the DVM
with no acceleration (NA), the DVM with the typical full-range acceleration (FRA),
the DVM with the proposed half-range acceleration (HRA) and the half-range moment
method (HRMM).
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8.5 Synthetic acceleration based on the half-range
Hermite polynomials: Heat transfer between
parallel plates

The formulation of the heat transfer flow between parallel plates, presented in
Section 8.2, may be summarized by providing the kinetic equations

ζ
∂ϕ

∂y
+ δϕ = δ

[
ρ+ τ

(
ζ2 − 1/2

)]
, (8.54)

ζ
∂ϕ

∂y
+ δψ = δτ, (8.55)

and the density, temperature and heat flux distributions given by

ρ = 1√
π

+∞∫
−∞

ϕe−ζ2
dζ, (8.56)

τ = 2
3
√
π

+∞∫
−∞

[
ψ + ϕ

(
ζ2 − 1/2

)]
e−ζ2

dζ, (8.57)

q = 1√
π

+∞∫
−∞

[
ψ + ϕ

(
ζ2 − 3/2

)]
ζe−ζ2

dζ (8.58)

respectively, along with the boundary conditions at the top wall (y = 1/2) with ζ < 0

ϕ+ = 1 − ζ2

2 + 2ρTW , (8.59)

ψ+ = −1
2 (8.60)

and at the bottom wall (y = −1/2) with ζ > 0

ϕ+ = −1 − ζ2

2 + 2ρBW , (8.61)

ψ+ = 1
2 , (8.62)

where the parameters
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ρTW =
+∞∫
0

ζϕe−ζ2
dζ, (8.63)

ρBW = −
0∫

−∞

ζϕe−ζ2
dζ. (8.64)

The following half-range moments of the two reduced distribution functions, using
the half-range Hermite polynomials are defined:

M+
n = 1√

π

∞∫
0

H+
n ϕe

−ζ2
dζ (8.65)

M−
n = 1√

π

0∫
−∞

H−
n ϕe

−ζ2
dζ (8.66)

N+
n = 1√

π

∞∫
0

H+
n ψe

−ζ2
dζ (8.67)

M−
n = 1√

π

0∫
−∞

H−
n ψe

−ζ2
dζ (8.68)

The macroscopic quantities of interest, are given in terms of the half-range moments
through the following expressions:

ρ = M−
0 +M+

0 (8.69)

τ = 2
3
(
M−

2 + β−
2,1M

−
1 +N−

0

)
+ 2

3
(
M+

2 + β+
2,1M

+
1 +N+

0

)
(8.70)

q = N−
1 + β−

1,0N
−
0 +M−

3 + β−
3,2M

−
2 + β−

3,1M
−
1 + β−

3,0M
−
0 − 3

2
(
M−

1 + β−
1,0M

−
0

)
+

+N+
1 + β+

1,0N
+
0 +M+

3 + β+
3,2M

+
2 + β+

3,1M
+
1 + β+

3,0M
+
0 − 3

2
(
M+

1 + β+
1,0M

+
0

)
(8.71)

The boundary conditions are also given in terms of the half-range moments at the top
wall (y = 1/2) with ζ > 0, as
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ϕ+ = 1 − ζ2

2 + 2
√
π
(
M+

1 + β+
1,0M

+
0

)
, (8.72)

ψ+ = −1
2 (8.73)

and at the bottom wall (y = −1/2) with ζ > 0, as

ϕ+ = −1 − ζ2

2 − 2
√
π
(
M−

1 + β−
1,0M

−
0

)
, (8.74)

ψ+ = 1
2 . (8.75)

The integral operators 1√
π

0∫
−∞

(·) ζne−ζ2
dζ and 1√

π

+∞∫
0

(·) ζne−ζ2
dζ are applied to the

kinetic equation (8.54) for ϕ with n = 0, 1, 2, 3 and to (8.55) for ψ with n = 0, 1
and after some long algebraic manipulation of the resulting expressions, the following
system of ODEs is obtained:

dM+
n

dy
= g+

n

dM+
4

dy
+ δ

3∑
i=0

M+
i q

++
n,i + δ

3∑
i=0

M−
i q

+−
n,i + δ

1∑
i=0

N+
i p

++
n,i + δ

1∑
i=0

N−
i p

+−
n,i

n = 0, 1, 2, 3
(8.76)

dM−
n

dy
= g−

n

dM−
4

dy
+ δ

3∑
i=0

M+
i q

−+
n,i + δ

3∑
i=0

M−
i q

−−
n,i + δ

1∑
i=0

N+
i p

−+
n,i + δ

1∑
i=0

N−
i p

−−
n,i

n = 0, 1, 2, 3
(8.77)

dN+
n

dy
= f+

n

dN+
2

dy
+ δ

3∑
i=0

M+
i r

++
n,i + δ

3∑
i=0

M−
i r

+−
n,i + δ

1∑
i=0

N+
i s

++
n,i + δ

1∑
i=0

N−
i s

+−
n,i

n = 0, 1
(8.78)

dN−
n

dy
= f−

n

dN−
2

dy
+ δ

3∑
i=0

M+
i r

−+
n,i + δ

3∑
i=0

M−
i r

−−
n,i + δ

1∑
i=0

N+
i s

−+
n,i + δ

1∑
i=0

N−
i s

−−
n,i

n = 0, 1
(8.79)
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This is a set of 12 initial value ODEs. The high order moments M±
4 and N±

2 are
calculated integrating the distribution function. The coefficients involved in the above
system are given in Appendix E. The initial conditions for this system of ODEs, are
obtained by applied the integral operators defined above, to Eqs. (8.72)-(8.75) resulting
to the following expressions at the top wall (y = 1)

M−
n = v−

n,1M
+
1 + v−

n,0M
+
0 + w−

n , n = 0, 1, 2, 3, (8.80)

N−
n = z−

n , n = 0, 1 (8.81)

and at the bottom wall (y = 0)

M+
n = v+

n,1M
−
1 + v+

n,0M
−
0 + w+

n , n = 0, 1, 2, 3, (8.82)

N+
n = z+

n , n = 0, 1, (8.83)

with the involved coefficients given in Appendix E. The initial conditions at the bottom
boundary for the “positive” moments are given in terms of the values of the “negative”
moments at the same point and the other way around at the top boundary.

It is noted that for the system of kinetic equations the boundary conditions at the
top boundary (Eqs. (8.72) and (8.73)) are given in terms of the “positive” moments at
this node and the boundary conditions for the bottom boundary (Eqs. (8.74) and (8.75))
are given in terms of the respective “negative” moments. The most important aspect
of the half-range acceleration scheme is that the accelerated values of the moments
are obtained solving the system of moment equations including the corresponding
quantities at the boundary nodes. This is the cornerstone of the efficiency of such
half-range moment equations when they are used to accelerate the iterative solution of
kinetic equations.

The iteration map for this half-range acceleration (HRA) scheme consists of solving
the kinetic equations, followed by the computation of the high order moments and the
moments involved in the boundary conditions of the moment equations. Then, the
system of moment equations is solved in an iterative manner, where the “positive” and
“negative” moments are solved separately and the values of the moments in the right
hand side of the ODEs are updated, repeating this process until convergence. It is
noted, that when the system of moment equations is used for acceleration, the initial
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conditions are not updated during the solution of the system and the values obtained
from the kinetic step are used. Once the system of moment equations is solved and
the macroscopic quantities are obtained they are substituted back into the kinetic
equations.

If the high order moments in the right hand side of the ODEs (8.76)-(8.79) are set to
zero, then a closed system of equations is obtained, under the initial conditions (8.80)-
(8.83). When the system of half-range moment equations is used for the simulation,
decoupled from the kinetic equation, due to the half-range nature of the involved
moments, the discontinuity of the distribution in the Knudsen layers is inherently
treated, increasing the range of application of such schemes, as it will be demonstrated
in the next section. This is the so-called HRMM. Another benefit compared to systems
of full-range moment equations is that the initial values of the moments are obtained
in the same manner as the system itself, i.e., by taking the corresponding moments
of the boundary conditions. Thus, although in the full-range moment method the
derivation of boundary conditions corresponding to the high order moment equations
is problematic, in the half-range moment scheme the initial conditions are obtained in
a systematic manner.

8.6 Computational efficiency and accuracy of the
developed half-range schemes

The developed half-range schemes HRA and HRMM are compared in terms of
computational efficiency and accuracy to the typical DVM without acceleration (NA)
and with full-range acceleration scheme (FRA) as well as to the full-range moment
method (FRMM).

The computational accuracy is judged by computing for the Poiseuille flow and the
heat transfer problems the reduced flow rate and heat flux given by G = −2

∫ 1
0 udy

and Q = q (y) = ct respectively. The computational efficiency is compared in terms of
the number of iterations and the computational time required for convergence by the
different schemes.

Table 8.1 presents the reduced flow rate for the Poiseuille flow for various values of
the rarefaction parameter, from the free molecular up to the slip regime, for the Non
Accelerated (NA), Full-Range Acceleration (FRA) and Half-Range Acceleration (HRA)
schemes. The results of all three approaches are in excellent agreement, which is a
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clear indication of the correct implementation of the HRA scheme. The corresponding
number of iterations required for convergence of each approach is also presented in
Table 8.1. In the free molecular regime (small values of δ), the number of iterations
required by all three numerical schemes is very small and more or less the same. As δ
is increased the required number of iterations for the NA scheme is rapidly increased,
which clearly indicates the very slow convergence rate of the DVM with no acceleration
particularly for δ > 10. On the contrary the required number of iterations of the
FRA and the HRA schemes is initially increased but then for δ ≥ 1 it is constant
and practically independent of δ. The speed-up of the convergence rate of the two
acceleration schemes is significant. It is interesting to note that the HRA scheme
performs better than the FRA scheme. The respective computational time required by
the three approaches is also shown in Table 8.1. For small values of δ, the computational
effort required by all three methods is similar. As δ is increased both the FRA and
HRA schemes are much superior compared to the NA scheme. Comparing the required
computational time for convergence between FRA and HRA it is about the same for
δ < 100 but for δ = 100 the HRA requires considerable more computational time than
the FRA although it requires a smaller number of iterations. This is due to the system
of HRA moment equations, that becomes stiff for large values of δ and a more advanced
numerical method to solve this system should be used. Overall, it may be stated that
for fully developed flows, where the FRA performs really well, the implementation of
the HRA does not provide any benefits. This is contributed to the numerical solution
of the FRA moment equations which is obtained by the efficient Thomas algorithm
and to the boundary conditions which are known a priori and therefore, the main
advantage of the HRA is irrelevant for this case.

Next, moving to the heat transfer problem and before perform the comparative study
between the approaches, a numerical experiment is performed in order to demonstrate
the importance of accelerating the moments at the boundary points, when the outgoing
distributions are part of the solution. In this task the NA and FRA schemes are
used and the number of iterations required is shown in Table 8.2, along with the
corresponding number of iterations required by the two schemes assuming that the
boundary condition parameters are known and provided as input. These complimentary
schemes are denoted by NA* and FRA*. Starting with the FRA performance, it is
clearly seen that although the number of iterations required by the FRA is reduced
compared to the NA is reduced, the acceleration is not as substantial as it was in the
Poiseuille case. More specifically, for δ = 100 in the Poiseuille flow problem the number
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of iterations is reduced by three orders of magnitude, while is the heat transfer problem
only by one order. Next, examining the performance of the NA* and the FRA* schemes,
it is seen that even in the former one, which involves no acceleration the number of
iterations are significantly reduced, while in the latter one, the number of iterations
is drastically decreased and its performance is very similar to the FRA performance
in the Poiseuille flow. The present numerical experiment proves the importance of
accelerating the boundary nodes, which however cannot be done by a purely FRA
scheme and this exactly is the motivation for the HRA schemes.

The accuracy of the FRA and HRA schemes for the heat transfer problem is
demonstrated in Table 8.3, where an excellent agreement between the computed heat
fluxes is observed. Concerning the number of required iterations the effectiveness of
the HRA approach compared to the other two is clearly demonstrated in the whole
range of δ from the free molecular up to the slip regimes. More specifically, the number
of iterations required by the HRA scheme compared to the NA and FRA is reduced up
to three and two orders of magnitude respectively. The superiority of the HRA scheme
is due to the acceleration of the boundary parameters. The respective computational
time required is also tabulated in Table 8.3. Now, the FRA computational time is
always larger than that of the NA. The FRA is slower because the number of iterations
has not been adequately reduced to counterbalance the increased computational time
per iteration and therefore, the overall computational time for convergence of the
FRA scheme is larger than that of the NA scheme. On the other hand, the HRA is
faster than the NA (except for δ = 0, which is of minor importance). However, the
reduction in computational time is by no means comparable to the significant reduction
in the number of iterations, which is clearly contributed to the increased computational
time per iteration needed to solve the half-range moment system. This becomes more
evident for δ = 100, where an increased number of physical nodes is used for the HRA,
due to the stiffness of the system. Overall, it may be stated that for the heat transfer
problem, where the boundary conditions are part of the solution, the HRA proves to
be more efficient than the NA and FRA schemes and it is important to develop more
efficient algorithms for the solution of the system of moment equations.

It has been pointed out that the system of moment equations that are used for the
acceleration of the iterative map can be solved decoupled from the kinetic equation,
closing the system by setting the high order moments equal to zero. It is interesting to
study the range of applicability and the accuracy of these moment methods, namely the
Full-Range Moment Method (FRMM) and the Half-Range Moment Method (HRMM).
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It is noted that for the HRMM the boundary conditions are constructed in a systematic
manner, while for the FRMM they are imposed using the macroscopic quantity values
at the boundaries. For the Poiseuille flow the boundary conditions for the FRMM
are the values of the macroscopic velocity at the boundaries. For the heat transfer
problem, three quantities (M0 ,M2, N0) must be specified at each boundary. However,
only the temperature and density are known and it is not straightforward to introduce
boundary conditions for this system of moment equations.

A comparison in terms of the flow rate and between the typical non-accelerated,
the FRMM and the HRMM is shown in Table 8.4. As expected, the moment methods
are not accurate for small values of δ, with the FRMM getting close to the NA for
δ = 100, while the HRMM is accurate for δ > 1. It is noted that if slip boundary
conditions were used for the FRMM, the accuracy would improve. It is unexpected
and rather surprising however, that the HRMM produces accurate results even in the
transition regime. The comparison between the heat flux given by the NA and HRMM
is shown in Table 8.5 for the heat transfer problem. Now, the HRMM turns to be
accurate in the whole range of gas rarefaction, which again is not expected. The ability
of half-range moment methods to simulate gas flows in the whole range of the Knudsen
number observed here, has been also reported in [237] and it is field where further
research is needed.

Since the half-range moment methods can be used decoupled from the kinetic
equations starting from the transition regime, it is reasonable to wonder why the
half-range acceleration schemes are considered. One of the reasons is that for more
general cases, the half-range moment methods could prove to be less accurate, while
the accuracy of the acceleration scheme is guaranteed since the kinetic equation is
solved. Furthermore, the acceleration of the boundary nodes is a first step towards the
acceleration of the nonlinear kinetic equations.

8.7 Concluding remarks

Synthetic acceleration schemes to speed-up the iterative solution of linearized kinetic
equations have been developed in recent years based on the full-range moments of the
distribution function. Such schemes have been successfully applied to fully developed
flows through capillaries, providing a considerable acceleration of the convergence rate
of the iteration map. However, their implementation is limited by the fact that the
moments at the boundary nodes are not accelerated, which is especially detrimental
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in cases where the boundary condition parameters are part of the solution. Here, the
acceleration of the boundary nodes is achieved utilizing half-range moments of the
distribution function and the corresponding half-range schemes are developed and
implemented. Operating accordingly on the kinetic equations a system of moment
equations is obtained for the interior as well as for the boundary nodes of the physical
grid. The boundary conditions of the moment equations are derived in a consistent
manner similar to the one for the moment equations. The iterative map includes the
kinetic equations, the higher order moments computed by accordingly integrating the
distribution function and the system differential equations for the accelerated moments.

The channel Poiseuille flow and the heat transfer between two plates are applied in
order to indicate the computational accuracy and efficiency of the developed schemes.
In the Poiseuille flow, where the boundary conditions are known a priori the half-range
acceleration schemes do not provide a considerable benefit compared to the full-range
ones. However, in the heat transfer problem, where the boundary conditions are part of
the solution, the half-range acceleration scheme proves to be superior to the full-range
one, both in terms of the number of iterations and the computational time required.

Finally, solving the half-range moment equations decoupled from the kinetic equa-
tions provides accurate results for the heat transfer case in the whole range of gas
rarefaction and for the Poiseuille case from the transition up to the slip regimes. The
accuracy of the half-range moment method in a range of the Knudsen number, much
wider than expected, is attributed to the ability of the half-range moments to incorpo-
rate the discontinuity of the distribution function. In the Poiseuille flow the half-range
moment method is not accurate from the transition down to the free molecular regimes,
because the moment method does not inherit the degenerate nature of the kinetic
equation for this flow, that predicts an infinite flow rate in the free molecular limit.

Accelerating the boundary nodes makes acceleration schemes applicable to a larger
range of rarefied gas flow and heat transfer configurations. However, the analysis is
still limited to problems where the kinetic equation can be linearized. Accelerating the
boundary nodes is an important step towards acceleration schemes for the nonlinear
kinetic equations although a number of obstacles towards this goal exists. As mentioned
the involved system of equations for the half-range acceleration is a stiff system and a
suitable numerical scheme should be introduced. A limitation of this kind of schemes
is that the range of integration for the moments is directed by the configuration
boundaries, so although it is straightforward to construct such schemes when the
boundaries are aligned with the coordinate system axes it can be cumbersome for
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arbitrary geometries. A promising next step of this work is to introduce a hybrid
scheme, where half-range moments are used in the Knudsen layer and full-range ones
in the rest of the flow field, and since the half-range scheme is used locally, application
to arbitrary geometries would be easier to tackle.
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Table 8.1 Reduced flow rate, number of iterations and computational time in seconds for
the Non-Accelerated (NA), Full-Range Acceleration (FRA) and Half-Range Acceleration
(HRA) schemes (Poiseuille flow).

δ
Flow Rate Number of iterations Computational time (s)

NA FRA HRA NA FRA HRA NA FRA HRA
0.01 3.0496 3.0496 3.0499 6 6 5 0.25 0.26 0.28
0.1 2.0327 2.0327 2.0332 9 9 6 0.37 0.36 0.31
1 1.5387 1.5387 1.5392 27 22 6 1.08 0.91 0.33
10 2.7686 2.7686 2.7696 342 27 6 13.5 1.12 0.55
100 17.6905 17.6933 17.7899 18498 27 6 779 1.11 8.17

Table 8.2 Number of iterations required by the (NA) and (FRA) and the respective
values when the boundary condition parameters are given (NA*) and (FRA*) (heat
transfer)

δ
Number of iterations

NA FRA NA* FRA*
0.1 75 75 6 6
1 19 17 17 15
10 321 111 166 29
100 19296 888 7183 31

Table 8.3 Reduced flow rate, number of iterations and computational time in seconds for
the Non-Accelerated (NA), Full-Range Acceleration (FRA) and Half-Range Acceleration
(HRA) schemes (Poiseuille flow).

δ
Heat flux Number of iterations Computational time (s)

NA FRA HRA NA FRA HRA NA FRA HRA
0 0.5642 0.5642 0.5642 2 2 2 0.0007 0.03 0.015

0.01 0.5599 0.5599 0.5599 546 546 4 0.19 6.1 0.031
0.1 0.5276 0.5276 0.5276 75 75 5 0.03 0.86 0.031
1 0.3616 0.3616 0.3616 19 17 6 0.015 0.19 0.031
10 0.09918 0.09918 0.09911 321 111 6 0.12 1.26 0.031
100 0.01218 0.01218 0.01218 16296 888 10 5.44 9.81 1.83
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Table 8.4 Flow rate for the Non Accelerated (NA), Full-Range Moment Method (FRMM)
and Half-Range Moment Method (HRMM) (Poiseuille flow).

δ
Flow Rate

NA FRMM HRMM
0.01 3.0496 1.6667(-3) 1.3181
0.1 2.0327 1.6667(-2) 1.3488
1 1.5387 1.6667(-1) 1.5374
10 2.7686 1.6667 2.7874
100 17.6905 16.6667 17.7997

Table 8.5 Heat flux for the Non Accelerated (NA) and Half-Range Moment Method
(HRMM) (heat transfer).

δ
Heat flux

NA HRMM
0 0.5642 0.5642

0.01 0.5599 0.5599
0.1 0.5276 0.5259
1 0.3616 0.3588
10 0.09918 0.09912
100 0.01218 0.01218
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Chapter 9

Concluding remarks

9.1 Summary and contributions

The context of this dissertation includes the development and implementation of
advanced deterministic and stochastic kinetic modeling in solving non-equilibrium
gaseous transport phenomena at microscale level. The proposed numerical schemes
are related to certain advancements of the well-known discrete velocity (DVM) and
direct simulation Monte Carlo (DSMC) methods. The effectiveness and validity of
the introduced methodologies has been demonstrated by solving prototype problems
in rarefied gas dynamics and then, these new approaches have been implemented to
investigate and understand the underlying physics of unexpected phenomena observed
in gas flows and heat transfer far from local equilibrium. In addition, based on computa-
tionally efficient and advanced modeling, various flow and heat transfer configurations,
encountered in the design of various devices with miniaturized sizes and/or operating
under low pressure (or density) conditions, have been simulated.

Pressure driven rarefied gas flows are modeled in Chapter 3. Kinetic equations with
an acceleration term, modeling flows in the presence of an external force, are numerically
solved, based on the method of characteristics. Upon introducing the characteristic
variables the force term is eliminated from the streaming part of the equation and
is incorporated into the collision term and in the expressions for the macroscopic
quantities. This semi analytical – computational methodology is implemented in the
solution of the nonlinear BGK model equation modeling the force driven fully developed
Poiseuille flow between parallel plates. The obtained mass and heat flow rates, as well
as the distributions of macroscopic quantities, are in very good agreement with the
corresponding published results for this configuration. A comparison of the reduced
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flow rate with the corresponding results provided by the infinite capillary theory
is performed, finding out that the later methodology being accurate even for large
values of the external force. Another interesting finding is the form of the distribution
function, since the external force acting on the gas molecules may result to strongly
non-equilibrium multimodal distribution functions with long tails. Next, in the same
chapter, the range of validity of the so-called implicit boundary conditions has been
investigated. The nonlinear BGK model is used to simulate the pressure driven flow
rarefied gas flow through a plane channel and a tube using the typical configuration
with the inlet and outlet regions and the one with the implicit boundary conditions
omitting the two regions at the capillary ends. A comparison is performed based on
the computed flow rates of the two configurations in a wide range of the parameters
characterizing the flow, namely the ratio of the outlet over the inlet pressures, the
dimensionless capillary length and the reference rarefaction parameter. It is found
that the dimensionless length is the most important parameter affecting the error.
For capillaries of small length the relative error may be unacceptable large droping
below 20% only for capillaries with dimensionless length larger than ten. The range of
validity is increased introducing the end effect theory, where the actual capillary length
is corrected to account for the end effects. In this case the deviation of the flow rates is
less than 15% for capillaries with dimensionless length larger than five. It is concluded
that the range of validity of the implicit boundary conditions is limited. Furthermore,
the infinite capillary theory is valid in the same range of parameters as the implicit
boundary condition formulation when they are both coupled with the end effect theory
with the latter one requiring larger computational effort but being able to simulate a
boarder range of phenomena.

The extension of the Discrete Velocity Method to unstructured grids is performed
in Chapter 4. The proposed methodology utilizes the so-called marching schemes
which are typically implemented on structured grids and yields the solution without
requiring the solution of a system of algebraic equations. The main obstacle is obtaining
the proper node marching sequence through the mesh, since following an erroneous
path will lead to collapse of the algorithm. Two methodologies are developed able
to obtain the correct marching sequence. The first one relies on generic geometrical
arguments and the second one on a backtracking algorithm. The former one is more
computationally efficient but in a limited number of cases may provide an erroneous
sequence, while the latter one is more robust but computationally demanding. In the
present implementation both methodologies are used, with the geometrical method
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always being the first choice and introducing the backtracking algorithm as the second
choice only when the geometrical approach fails. The developed marching DVM code
on unstructured meshes is successfully benchmarked in several rarefied gas flows and
heat transfer configurations in convex and non-convex domains using both linear and
nonlinear kinetic models.

Thermally driven flow configurations with application in the design of micro pumps
are examined in Chapter 5. The configurations include channels with saw-tooth
surfaces, tapered channels and curved channels. The saw-tooth channel configuration
is appealing as the walls are kept at constant temperatures and the flow is driven by
the thermal stress slip flow phenomenon. Although the ability of this configuration
to produce a mass flow rate is demonstrated, the mass flow rate is very sensitive to
the flow parameters and can even change direction by altering the reference pressure.
More importantly, the heat flux close to the boundaries in the gas side takes very
large values, making temperature control a daunting task. The concept of utilizing the
diodicity effect created by tapered channels in the design of a multistage assembly is
next examined. Simulations are conducted for single converging and diverging channels
for the limiting cases for zero pressure difference and zero net mass flow rate, as well
as the intermediate cases, for a wide range of the involved parameters, providing, a
detailed study for the channel inclination ratio and the working pressure parameters.
In the limiting case of vanishing net mass flow rate, the pressure difference is always
increased with the inclination ratio and depending on the inlet pressure it may be
larger for either converging or diverging channels. In the liming case of vanishing
pressure difference, the mass flow rate is always decreased with the inclination ratio
being always higher for the diverging channel. The performance characteristic curves
are extracted providing a complete picture of the pumping effect of this configuration
and the optimal working conditions are identified.Cascades of tapered channels are
also considered and the potential implementation of such configurations in multistage
assemblies is demonstrated. For completeness purposes, the potential design of pumping
stages consisting of straight and curved channels is examined, considering only single
channel elements. A parametric analysis is performed for the two limiting cases and
the potential of this configuration is reaffirmed.

In the framework of the DSMC method, a novel methodology decomposing the
DSMC solution into its ballistic and collision parts is developed, in Chapter 6, providing
insight information about the microstructure of the flow. The ballistic part refers to
particles arriving at some point of the flow domain directly from the boundaries with no
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collisions, while the collision part refers to particles arriving after an arbitrary number
of collisions with other particles. This technique is applied to interpret non-equilibrium
phenomena arising in thermally induced flow and heat transfer configurations in
cavities, explaining the presence of unexpected non-equilibrium flow adjacent to the
non-isothermal wall. The decomposition methodology has been also applied to pressure
driven fully developed flows through long capillaries to provide a complete quantitative
description of the celebrated Knudsen minimum appearing in the transition regime. In
all cases based on the decomposition technique a physical explanation to the interesting
transport phenomena observed is provided.

The uncertainty propagation in some typical rarefied gas dynamics configurations
is considered in Chapter 7. More specifically, the examined configurations include
pressure and temperature driven flow through long tubes and heat transfer between
parallel plates. In all problems the effect of the uncertainties of the input parameters
(geometry, pressure, temperature, pipe roughness) on the uncertainty of the output
quantities (flow rate, pressure difference, heat flux) is thoroughly analyzed. In pressure
and thermally driven flows the analysis is focused on the produced mass flow rate
and in the thermomolecular pressure difference phenomenon on the generated pressure
difference. In the heat transfer flow the uncertainty analysis is focused on the heat flux.
The uncertainty propagation analysis is performed using the Monte Carlo method.
In general, it may be stated that in the pressure driven flow the radius uncertainty
is the most important one, while in the temperature driven and heat transfer flows
the temperature uncertainty is the predominant one. Furthermore, the uncertainty
of the driving force (pressure or temperature difference) leads to very large values of
uncertainty when the driving force takes small values.

The extension of synthetic acceleration schemes of the slow convergence of the
iterative map of the DVM, is investigated in Chapter 8. So far, the available synthetic
acceleration schemes are based on full-range Hermite polynomials deriving a set of
moment equations accelerating the macroscopic quantities only in the interior nodes
of the physical domain. It is computationally demonstrated that accelerating the
boundary nodes is crucial in the general case, where the boundary conditions are part
of the solution. The proposed methodology is based on half-range Hermite polynomials
and the derived system of half-range moment equations are accelerating the macroscopic
quantities in the interior as well as in the boundary nodes of the physical domain. The
developed half-range synthetic acceleration schemes are applied to one-dimensional
flow and heat transfer configurations clearly indicating their computational efficiency.
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Overall, in the course of the present work both theoretical and computational
advancements have been achieved. Novel numerical schemes have been developed,
existing ones have been extended, interesting and counterintuitive phenomena have
been analyzed in a systematic manner and flow and heat transfer configurations of
interest in the design of various devices are simulated. To sum up, the most important
contributions of this dissertation may be outlined as follows:

Computational advancements:

• Development and implementation of an analytical - numerical scheme simulating
kinetic model equations with external force term.

• Development and implementation of a geometric type methodology enabling the
extension of the efficient marching schemes in DVM algorithms to unstructured
meshes.

• Development and implementation of a computational methodology decomposing
the DSMC solution into ballistic and collision parts.

• Development and implementation of a half-range synthetic acceleration scheme
speeding-up the slow convergence of the iterative map of the DVM algorithm.

Theoretical advancements:

• Observation of multimodal distribution functions with long tails in the presence
of external force fields

• Physical explanation and quantitative justification of unexpected non-equilibrium
phenomena appearing in boundary heated cavities, based on the DSMC solution
decomposition methodology.

• Physical explanation and quantitative justification of the Knudsen minimum,
based on the DSMC solution decomposition methodology.

Technological advancements:

• Specification of the range of validity of the so-called implicit boundary conditions
with respect to the flow parameters in pressure driven flows.

• Parametric investigation of thermally driven micropumps using various geometri-
cal configurations.
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• Uncertainty propagation analysis in rarefied gas flow and heat transfer configura-
tions based on the Monte Carlo method.

9.2 Future work

The present work covers a broad range of topics in the field of rarefied gas dynamics
and non-equilibrium transport phenomena. Most of the material presented here, may
be further advanced or it may be implemented to model and simulate other phenomena.
Some indicative areas of future work are outlined.

In pressure driven flows the numerical – computational methodology introduced to
tackle the external force term which may be present in the governing kinetic equations
may be implemented to more complex configurations, such as flows of charged particles
in the presence of electric and magnetic fields. It could also be interesting to investigate
the implementation of relative approaches in the Lattice Boltzmann Method, in kinetic
simulations based on the DVM. Furthermore, the range of applicability of the implicit
boundary conditions may be investigated in pressure driven flows of polyatomic gases,
as well as of mixtures of gases.

The implementation of DVM algorithms on unstructured meshes has a lot of po-
tential and should be further investigated. Consistent higher order schemes may be
introduced for the distribution propagation in the physical space. A hybrid paralleliza-
tion approach (MPI+OpenMP) should be also applied in order to tackle larger domains
and more complex flow configurations. The extension of the developed methodology to
three dimensions in the physical space may be also considered. Another feature that is
already under development is the implementation of adaptive mesh refinement in the
physical space.

The design of thermally driven micropumps is a promising and emerging technolog-
ical field. The present modeling which is based on parallel plates could be extended to
orthogonal ducts. A larger range of configurations can be considered, with combina-
tions of converging or diverging and uniform channels. Furthermore, configurations
where the channel geometry is varying along the cascade could be investigated, so
that in combination with the varying pressure, the optimal operational conditions
serving the specific needs are maintained. Also, in order to increase the mass flow rate,
configurations with pumping stages consisting of multiple parallel channels, could be
introduced.
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The decomposition of the DSMC into ballistic and collision parts is a powerful
methodology capable of providing a better insight and thorough understanding of
many non-equilibrium phenomena and paradoxes, such as the well-known inverted
velocity profile in the cylindrical Couette flow with partial wall accommodation and
the anomalous temperature profile in the Poiseuille flow. Extension of this approach
to binary gas mixtures may help better understand gas separation and mixing. In
addition, the implementation of this methodology to deterministic modeling remains
an open and very challenging issue.

The uncertainty propagation in rarefied gas modeling is an important topic and
the proposed methodology could be applied to many configurations with practical
interest. It is recommended to always perform such an uncertainty analysis in comparing
numerical and experimental results. A possible extension includes flow and heat transfer
configurations with gas mixtures where the effect of the concentration uncertainty may
play a significant role. Furthermore, the application of more advanced methodologies
such as the polynomial chaos can be considered in order to apply the uncertainty
propagation in problems, where the Monte Carlo method is very time consuming.

The developed half-range synthetic acceleration scheme is still in a preliminary
stage. Certain steps must be taken to ensure its applicability and effectiveness in more
realistic multi-imensional problems. The main issue under future investigation should
include the implementation of fast solvers of the systems on moment equations, as well
as the extension of the whole approach in more comlex geometries. Furthermore, full
and half-range acceleration schemes could be coupled, with the half-range applied in
the Knudsen layer close to the boundaries and the full-range in the rest of the flow
domain. Another future challenging step is the formulation of acceleration schemes for
the nonlinear kinetic equations.

Overall, it is hoped that the present work will prove useful to the scientific communi-
ties in rarefied gas dynamics, vacuum science and technology and gaseous microfluidics,
as well as that the developed numerical schemes, methodologies and approaches will
generate more research.
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Appendix A

Formulation of the implicit boundary con-
ditions

The one-dimensional characteristic form of the Euler equations is [242]

dU

a
= ±dρ

ρ
, (A.1)

where U is the velocity in the characteristic direction, ρ is the gas mass density and
a =

√
γRT =

√
dP/dρ is the local speed of sound, with

dU

a
= ± dP

a2ρ
, (A.2)

where the definition of the speed of sound has been used. Introducing the dimensionless
variables of Eq. (3.70), as well as ρ/ρin = P/Pin into Eq. (A.2) yields

du = ± dp

n
√

2γτ . (A.3)

In Eq. (A.3) the plus sign corresponds to a forward moving wave, i.e., a wave that
moves in the positive direction along the characteristic line and the minus sign in the
opposite direction. In both cases is the characteristic direction. Thus, the plus sign
denotes a wave entering from the capillary inlet at z = −L/ (2χ), while the minus sign
denotes a wave entering from the capillary outlet at z = L/ (2χ).

For some arbitrary node j, across the two ends of the capillary, Eq. (A.3) can be
written as uj − uin,j = pj−pin,j

nj

√
2γτj

for the inlet and uout,j − uj = −pout,j−pj

nj

√
2γτj

for the outlet.
Rearranging the terms and substituting pin = 1 and pout = Pout/Pin the boundary
conditions for the inlet and outlet velocities are found to be

277

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Appendix A

uin,j = uj + 1 − pj
nj

√2γτj
, (A.4)

and

uout,j = uj + pj − Pout/Pin
nj

√2γτj
(A.5)

respectively. For the number density and temperature at the inlet, the reference values
are taken

nin,j = 1 and τin,j = 1. (A.6)

Furthermore, the definition of the speed of sound, using the dimensionless variables
of Eq. (3.70), becomes dn = dp/(γτ ). Then, for some arbitrary node j at the capillary
outlet it becomes nout,j − nj = pout,j−pj

γτj
and re-arranging the terms the boundary

conditions for the number density at the capillary outlet is found to be

nout,j = nj + Pout/Pin − pj
γτj

. (A.7)

Finally, the temperature at the outlet is given by the equation of state

τout,j = Pout/Pin
nout,j

. (A.8)

Two sets of equations are formed giving the boundary condition parameters. The
set of equations (A.4) and (A.6) are applied at the inlet and Eqs. (A.5), (A.7) and
(A.8) at the outlet.
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Formulation of fully developed, linear and
non-linear flows solved based on the march-
ing DVM algorithm on unstructured meshes

Simulations conducted by the marching DVM algorithm on unstructured meshes
developed in Chapter 4 are separated into three categories, fully developed flows, linear
cases and non-linear cases. The formulation of the considered cases is presented here.
The solution methodology remains the same for each type of simulation, even if the
equations involved are different. It is also noted that simulations are performed using
the dimensionless form of the equations. In all cases the dimensionless molecular
velocity is defined as ζ = ξ/υ0, where υ0 =

√
2RgT0 is the most probable molecular

velocity, with Rg and T0 denoting the gas constant and the reference temperature
respectively.

B.1 Fully developed flows

In fully developed flows the linearized BGK kinetic model equation is written as
[23], [182], [228]

ζx
∂hi
∂x

+ ζy
∂hi
∂y

= δ (uz,i − hi) + Si (B.1)

where i = P, T refers to the pressure and temperature driven flows, respectively and hi
is the perturbation of the distribution function. The macroscopic velocity is given by
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uz,i = u′
z,i

υ0Xi

=
∫
R2

hie
−ζ2

dζ (B.2)

where u′
z is the dimensional velocity. The dimensionless gradients are denoted asXi

and defined as XP = H
P0

dP
dz

and XT = H
T0

dT
dz

, where H is the characteristic length of
the configuration. The source terms are SP = −1

2 and ST = −ζ2−1
2 for the pressure

and temperature driven flows respectively. The rarefaction parameter is defined as

δ = P0H

µυ0
(B.3)

where where µ is the viscosity at temperature T0.
In fully developed flows the linearized Shakhov kinetic model equation is written as

[23], [156], [174], [180]

ζx
∂ϕi
∂x

+ ζy
∂ϕi
∂y

+ = δ
[
uz,i + 2

15qz,i
(
ζ2 − 1

)
− ϕi

]
+ Shi (B.4)

ζx
∂ψi
∂x

+ ζy
∂ψi
∂y

+ = δ
[3
2uz,i + 1

5qz,iζ
2 − ψi

]
+ Spi (B.5)

where the source terms for the pressure driven flow are SϕP = −1
2 , SψP = −3

4 while for
the temperature driven flow they become SϕT = −1

2

(
ζ2 − 1

)
, SψT = −3

4ζ2. The velocity
and heat flux in this case are given by

uz,i = u′
z,i

υ0Xi

=
∫
R2

ϕie
−ζ2

dζ (B.6)

qz,i = Qz,i

P0υ0Xi

=
∫
R2

[(
ζ2 − 5/2

)
ϕi + ψi

]
e−ζ2

dζ (B.7)

The outgoing distributions for Maxwell diffuse-specular boundary conditions are
for the BGK model h+

i = (1 −α)h−
i while for the Shakhov model ϕ+

i = (1 − α)ϕ−
i and

ψ+
i = (1 − α)ψ−

i . The superscripts (+) and (−) denote the outgoing and incoming
distributions respectively.

B.2 Linear flows

Linear kinetic theory can be applied in the cases where the driving force is relatively
small. For example in the case of a flow driven by a moving wall or due to a temperature
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difference, this small parameter can be the ratio of the wall velocity over the most
probable molecular velocity ε = UW/υ0 or the ratio of the small temperature difference
over the characteristic temperature ε = ∆T/T0, respectively. The formulation of the
kinetic equations is independent of the driving force and the small parameter ε, which
is only used in the dimensionalization process.

An expansion of the distribution function f around a reference value f 0 using
f = f 0 (1 + εg) is performed. Introducing this expansion the kinetic equation for the
perturbed distribution function g is obtained and it may be written as [55], [157], [188],
[243]

ζx
∂g

∂x
+ ζy

∂g

∂y
= δ [geq − g] , (B.8)

where the equilibrium distributions for the BGK and Shakhov models are as follows:
BGK:

geq = ρ+ 2ζ · u + τ
(

ζ2 − 3
2

)
(B.9)

Shakhov:
geq = ρ+ 2ζ · u + τ

(
ζ2 − 3

2

)
+ 4

15ζ · q
(
ζ2 − 5/2

)
(B.10)

Upon applying the projection procedure, Eq. (B.8) results to the following system of
equations:

ζx
∂ϕ

∂x
+ ζy

∂ϕ

∂y
= δ [ϕeq − ϕ] (B.11)

ζx
∂ψ

∂x
+ ζy

∂ψ

∂y
= δ [ψeq − ψ] (B.12)

The equilibrium distributions for the BGK and Shakhov models are:

ϕeq = ρ+ 2ζ · u + τ
(
ζ2 − 1

)
, ψeq = τ

2 (B.13)

ϕeq = ρ+ 2ζ · u + τ
(
ζ2 − 1

)
+ 4

15ζ · q
(
ζ2 − 2

)
, ψeq = τ

2 + 2
15ζ · q (B.14)

The reduced distribution functions are defined as

ϕ = 1√
π

+∞∫
−∞

ge−ζ2
zdζz (B.15)
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ψ = 1√
π

+∞∫
−∞

(
ζ2
z − 1

2

)
ge−ζ2

zdζz (B.16)

The macroscopic quantities in terms of the reduced distribution functions are given by
the following expressions:
Number density:

ρ = N −N0

N0ε
= 1
π

∫
R2

ϕe−ζ2
dζ (B.17)

Velocity vector:
ui = Ui

υ0ε
= 1
π

∫
R2

ζiϕe
−ζ2

dζ (B.18)

Temperature:
τ = T − T0

T0ε
= 2

3π

∫
R2

[(
ζ2 − 1

)
ϕ+ ψ

]
e−ζ2

dζ (B.19)

Stress tensor:
pi,j = Pi,j

2P0ε
= 1
π

∫
R2

ζiζjϕe
−ζ2

dζ, i ̸= j (B.20)

Heat flux vector:

qi = Qi

P0υ0ε
= 1
π

∫
R2

ζi
[(

ζ2 − 2
)
ϕ+ ψ

]
e−ζ2

dζ (B.21)

Pressure perturbation:
p = P − P0

P0ε
= ρ+ τ (B.22)

The boundary conditions at some node i that belongs in B+
k for the polar angle θk

and for the molecular velocity magnitude ζm, for the different cases, are formulated as
follows:

• Diffuse:

ϕ+
i = ρW,i + 2ζ · uW,i + τW,i

(
ζ2 − 1

)
, ψ+

i = τW,i/2 (B.23)

whereρW is a quantity used to satisfy the impermeability condition and is calculated as

282

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Appendix B

ρW,i = −

∫
ni·ζ<0

(ni · ζ)ϕ−
i e

−ζ2
dζ +

∫
ni·ζ>0

(ni · ζ)
[
2ζ · uW,i + τW,i

(
ζ2 − 1

)]
e−ζ2

dζ∫
ni·ζ>0

(ni · ζ) e−ζ2
dζ

(B.24)
with uW = UW / (υ0ε) and τW = (TW − T0) / (T0ε).

• Specular:

The outgoing distribution is given in terms of the incoming distribution as ϕ+
i = ϕRi

and ψ+
i = ψRi where ϕRi and ψRi for some molecular velocity ζ are connected to the

incoming distribution through the expressions ϕRi (ζ) = ϕ−
i (ζ − 2 (ni · ζ) · ni) and

ϕRi (ζ) = ϕ−
i (ζ − 2 (ni · ζ) · ni).

• Diffuse-Specular:

The outgoing distributions are:

ϕ+
i = (1 − α)ϕRi + α

[
ρW,i + 2ζ · uW,i + τW,i

(
ζ2 − 1

)]
, ψ+

i = (1 − α)ψRi + α (τW,i/2)
(B.25)

The accommodation coefficient α ∈ (0, 1) is denoting the percentage of particles
undergoing purely diffusive emission and the parameter ρW is now given by

ρW,i = − 1
α

∫
ni·ζ>0

(ni · ζ) e−ζ2
dζ

 ∫
ni·ζ<0

(ni · ζ)ϕ−
i e

−ζ2
dζ+

α
∫

ni·ζ>0

(ni · ζ)
[
2ζ · uW,i + τW,i

(
ζ2 − 1

)]
e−ζ2

dζ + (1 − α)
∫

ni·ζ>0

(ni · ζ)ϕRi e−ζ2
dζ


(B.26)

• Open:

In open boundaries, the incoming distributions are given by Eq. (B.23), while the
quantity ρW is replaced by the number density perturbation of the incoming gas stream
as

ρi = (Ni −N0) / (N0ε) (B.27)
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• Periodic:

In the case of periodic boundaries, the distribution arriving at some position of one
boundary is the outgoing distribution at the corresponding point at the other boundary.
When those boundaries are not parallel, the appropriate rotation of the molecular
velocity is performed.

B.3 Nonlinear flows

Nonlinear kinetic modeling is the most general approach and is applied when no
assumptions or simplifications can be made. The kinetic equation, on the basis of the
dimensionless distribution function g=fυ3

0/N0canbewrittenas[75], [158], [201], [223]

ζx
∂g

∂x
+ ζy

∂g

∂y
= δ0nτ

1−ω [geq − g] . (B.28)

The equilibrium distribution for the BGK model is geq = gM , where

gM = ρ

(πτ)3/2 exp
[
−(ζ − u)2

τ

]
(B.29)

is the local Maxwellian distribution and for the Shakhov model

geq = gM
(

1 + 4
15

q · (ζ − u)
ρτ 2

[
(ζ − u)2

τ
− 5

2

])
(B.30)

Upon applying the projection procedure, Eq. (B.28) results to the following system of
equations:

ζx
∂ϕ

∂x
+ ζy

∂ϕ

∂y
= δ0nτ

1−ω [ϕeq − ϕ] (B.31)

ζx
∂ψ

∂x
+ ζy

∂ψ

∂y
= δ0nτ

1−ω [ψeq − ψ] (B.32)

The equilibrium distributions for the BGK model are the respective Maxwellian
distributions

ϕM = ρ

πτ
exp

[
−(ζ − u)2

τ

]
(B.33)
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ψM = ρ

2π exp
[
−(ζ − u)2

τ

]
(B.34)

while for the Shakhov model they become

ϕeq = ϕM
(

1 + 4
15

q · (ζ − u)
ρτ 2

[
(ζ − u)2

τ
− 2

])
(B.35)

ψeq = ψM
(

1 + 4
15

q · (ζ − u)
ρτ 2

[
(ζ − u)2

τ
− 1

])
. (B.36)

The reduced distribution functions are defined as

ϕ = 1√
π

+∞∫
−∞

gdζz (B.37)

ψ = 1√
π

+∞∫
−∞

ζ2
z gdζz. (B.38)

The macroscopic quantities in terms of the reduced distribution functions are given by
the following moments:
Number density:

ρ = N

N0
=
∫
R2

ϕdζ (B.39)

Velocity vector:
ui = Ui

υ0
= 1
ρ

∫
R2

ζiϕdζ (B.40)

Temperature:
τ = T

T0
= 2

3ρ

∫
R2

[
ζ2ϕ+ ψ

]
dζ − 2

3u2 (B.41)

Stress tensor:
pi,j = Pi,j

P0
= 2

∫
R2

(ζi − ui) (ζj − uj)ϕdζ (B.42)

Heat flux vector:

qi = Qi

P0υ0
=
∫
R2

(ζi − ui)
[
(ζ − u)2ϕ+ ψ

]
dζ (B.43)
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Pressure:
p = ρτ (B.44)

The boundary conditions at some node i that belongs in B+
k for the polar angle θk

and for the molecular velocity magnitude ζm, for the different cases, are formulated as
follows:

• Diffuse:

The outgoing distributions are

ϕ+
i = ρW,i

πτW,i
exp

[
−(ζ − uW,i)2

τW,i

]
(B.45)

ψ+
i = ρW,i

2π exp
[
−(ζ − uW,i)2

τW,i

]
, (B.46)

where ρW is a quantity used to satisfy the impermeability condition and is calculated
as

ρW,i = −πτW,i

∫
ni·ζ<0(ni·ζ)ϕ−

i dζ∫
ni·ζ>0

(ni · ζ) exp
[
−(ζ−uW,i)2

τW,i

]
dζ

, (B.47)

with uW = UW /υ0 and τW = TW/T0.

• Specular:

The outgoing distribution is given in terms of the incoming distribution as ϕ+
i = ϕRi ,

ψ+
i = ψRi , where ϕRi and ψRi for some molecular velocity ζ are connected to the

incoming distribution through the expressions ϕRi (ζ) = ϕ−
i (ζ − 2 (ni · ζ) · ni) and

ψRi (ζ) = ψ−
i (ζ − 2 (ni · ζ) · ni).

• Diffuse-Specular:

ϕ+
i = (1 − α)ϕRi + α

ρW,i
πτW,i

exp
[
−(ζ − uW,i)2

τW,i

]
(B.48)

ψ+
i = (1 − α)ψRi + α

ρW,i
2π exp

[
−(ζ − uW,i)2

τW,i

]
(B.49)

286

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Appendix B

The accommodation coefficient α ∈ (0, 1) is denoting the percentage of particles
undergoing purely diffusive emission and the parameter ρW is now given by

ρW,i = −πτW,i

∫
ni·ζ<0(ni·ζ)ϕ−

i dζ+(1−α)
∫

ni·ζ>0(ni·ζ)ϕR
i

dζ

α
∫

ni·ζ>0
(ni · ζ) exp

[
−(ζ−uW,i)2

τW,i

]
dζ

(B.50)

• Open:

In the case of open boundaries, the incoming distributions are given by Eqs. (B.45)
and (B.46), however the quantity ρW is replaced by the number density of the incoming
gas stream ρi = Ni/N0.

• Periodic:

The periodic boundary conditions are treated in the same manner as for the linear
cases.
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Nonlinear thermally driven flow through short
tapered channels

The thermally driven flow through short tapered channels is considered on the basis
of the non-linear Shakhov model equation using the DVM algorithm on unstructured
meshes developed in Chapter 4. The nonlinear simulations are conducted in order to
investigate the validity of the assumptions of the the infinite capillary approach used
in Section 5.3. The configuration consists of short converging/diverging channels along
with upstream and downstream vessels. The two limiting cases (zero net mass flow
rate and zero pressure difference) are considered, where the boundaries of the vessels
are either closed or open, while purely diffusive boundary conditions are assumed at
the other boundaries. In the case of open boundaries upstream and downstream of
the channel the same pressure P0 is assumed for both. The vessel boundaries are kept
at different temperatures TC and TH with a linear temperature distribution along the
channel walls. For the converging channel, the low temperature (TC) is applied at the
left vessel boundary, while the high temperature (TH) at the right vessel boundary.
In the divergent channel, those temperatures are reversed. The need for non-linear
simulations arises from the fact that the channel is relatively short and the temperature
differences assumed are large. The simulation parameters are given in the table bellow

Tout/Tin Tin L/Hm Lv/Hm Hv/Hm a = Hmax/Hmin Hm

2 273K 10 5 5 1, 2, 4 10−5m

The following dimensionless quantities are introduced

x = x′/Hm, y = y′/Hm, τ = T/Tin,u = U/υ0 and ρ = N/N0 (C.1)
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where υ0 =
√

2RTin is the most probably molecular speed with R denoting the gas
constant, N0 = P0/ (kBTin) is the reference number density with kB denoting the
Boltzmann constant. In the open configuration the reference pressure (P0) is the
pressure imposed at the open boundaries while in the closed configuration N0 is the
average number density. The reference rarefaction parameter is

δ = P0H

µυ0
, (C.2)

where µ is the viscosity at the reference temperature Tin. The two limiting cases are
considered where either the net mass flow rate or the pressure difference is zero.

C.1 Zero net mass flow rate (Flow scenario A)

The vessel walls are assumed to be solid boundaries and the channel plus vessels
configuration is closed. Due to the temperature gradient, a flow is induced from cold
to hot regions. However, since the inlet and outlet are closed the net mass flow rate
in every cross section necessarily vanishes. This leads to the creation of a pressure
difference, with the pressure in the hot side increasing and with that of the cold side
decreasing, leading to a pressure driven flow from hot to cold vessels that counteracts
the thermally driven flow. More specifically the effect of the diodicity created by
the tapered channels is investigated, comparing the pressure difference generated by
converging and diverging channels.

Simulations are conducted for the parameters given in the table above and values
of the reference rarefaction parameter δ = 0.1, 1, 10, 20, for converging and diverging
channels with α = 2 and 4 as well as for straight channels. In all cases a triangular
mesh is used, with approximately 2.2 × 105 triangular elements.

The dimensional values of the pressure difference are shown in Table C.1. As the
reference pressure is increased, the dimensional pressure difference is also increased,
however the ratio of the pressure difference to the reference pressure (∆P/P0) is
decreasing. For small values of δ, the inclination ratio α has a small effect on the
pressure difference, while for larger values higher inclination ratios lead to higher
pressure differences. Comparing the diverging and converging channels, for small
values of δ the diverging channels produce higher pressure differences and the situation
is reversed moving to larger δ. This can also be seen from the pressure diodicity

290

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 15:12:43 EEST - 3.134.98.15



Appendix C

coefficient EP , that is initially larger than one, although very close to it, and then
becomes smaller.

C.2 Equal inlet and outlet pressures (Flow scenario
B)

The vessel walls are assumed to be open. Both open boundaries are kept at the
same pressure P0, but at different temperatures while the macroscopic velocity of
the incoming distribution is assumed to be zero. Due to the temperature gradient a
thermally driven flow is formed from cold to hot regions through the channel.

Simulations are conducted for reference rarefaction parameter δ ∈ [0.1, 20], for
converging and diverging channels with α = 2 and 4 as well as for straight channels.
The reference pressure for each value of the rarefaction parameter examined is given in
the table below.

δ 0.1 1 5 8 10 15 20
P0 (Pa) 74.51037 745.1037 3725.519 5960.83 7451.037 11176.56 14902.07

The mass flow rate per unit length is given in Table C.2, along with the mass
diodicity coefficient. The mass flow rate increases as the pressure increases, and tends
to an asymptotic value when δ → ∞. Increasing the channel inclination α reduces the
mass flow rate, as the constriction at the small end of the channel acts as a bottleneck
to the flow. Moreover, the straight channel always has the highest mass flow rate
out of all three followed by the diverging channels. The mass diodicity coefficient Eṁ
increases as α is increased. For low values of pressure, Eṁ is close to unity, while it
increases as the pressure is increased, reaching a maximum and then decreases with
further increase of the pressure. In contrast to the pressure diodicity coefficient that
takes values both smaller and larger than one, the mass diodicity coefficient for this
limiting case is always larger than one.

Density and temperature distributions are shown in Figures C.1 and C.2 at three
cross sections along the channel, namely x = 5.5, 10, 14.5, corresponding to the center
and close to the two ends of the channel for converging and diverging channels with
α = 4 and δ = 0.1, 1, 20. The interesting observation about those distributions is that
both temperature and density are almost uniform at each cross-section for small values
of δ, while they slightly deviate from uniform for δ = 20. Although the height to length
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ratio H/L = 0.1 is not very small, the infinite capillary theory can be applied, due to
the uniformity of density and temperature along the cross section. The infinite capillary
approach, compared to extensive 4D non-linear simulations, is very computationally
efficient and allows for a far more detailed parametric analysis of this flow setup.
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Table C.1 Pressure difference and pressure diodicity coefficient (EP ) for the closed
configuration (ṁ = 0).

δ P0 (Pa) Converging Diverging EP
α = 2 α = 4 α = 2 α = 4 α = 2 α = 4

0.1 74.477 31.84 31.48 32.08 31.99 1.007 1.016
1 744.77 188.96 187.67 190.81 216.32 1.01 1.153
10 7447.7 365.61 402.03 359.35 394.58 0.983 0.981
20 14895.4 363.89 476.50 332.02 393.83 0.912 0.827

Table C.2 Mass flow rate (kg/m/s) and mass diodicity coefficient Eṁ for the open
configuration (∆P = 0)

δ P0 (Pa) Straight Converging Diverging Eṁ
α = 2 α = 4 α = 2 α = 4 α = 2 α = 4

0.1 74.51037 7.49E-08 6.59E-08 4.74E-08 6.78E-08 5.00E-08 1.03 1.06
1 745.1037 4.46E-07 3.81E-07 2.67E-07 4.15E-07 3.12E-07 1.09 1.17
5 3725.519 1.09E-06 8.94E-07 6.01E-07 1.05E-06 7.98E-07 1.17 1.33
8 5960.83 1.29E-06 1.05E-06 7.02E-07 1.25E-06 9.55E-07 1.19 1.36
10 7451.037 1.37E-06 1.12E-06 7.43E-07 1.33E-06 1.02E-06 1.19 1.37
15 11176.56 1.49E-06 1.21E-06 8.11E-07 1.44E-06 1.11E-06 1.18 1.37
20 14902.07 1.54E-06 1.26E-06 8.48E-07 1.48E-06 1.15E-06 1.17 1.36
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Figure C.1 Density (left) and temperature (right) distributions, at various cross sections
along a converging channel with α = 4 for δ = 0.1, 1, 20.
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Figure C.2 Density (left) and temperature (right) distributions, at various cross sections
along a diverging channel with α = 4 for δ = 0.1, 1, 20.
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Computation of the kinetic coefficients used
in the modeling of tapered channels

The kinetic coefficients presented here are used in the modeling of the tapered
channel design in Section 5.3. The linearized Shakhov model equation for the pressure
and temperature driven flow between two plates is given in dimensionless form by [235]:

cy
∂ϕj
∂y

+ δϕj = δ
[
uj + 2

15qj
(
c2
y − 1

2

)]
− Sϕj (D.1)

cy
∂ψj
∂y

+ δψj = δ
4
15qj − Sψj (D.2)

Here, the subscripts j = P, T denote the pressure and temperature driven cases
respectively, y is the space variable normal to the two plates, cy the molecular velocity
in the y-direction, ϕj (y, cy) and ψj (y, cy) are the reduced linearized distribution
functions, δ the gas rarefaction parameter, uj and qj the axial components of the bulk
velocity and heat flux given by

uj = 1√
π

∞∫
−∞

ϕje
−c2

ydcy, (D.3)

qj = 1√
π

∞∫
−∞

[
ψj +

(
c2
y − 1

2

)
ϕj

]
e−c2

ydcy, (D.4)

while the source terms are

SϕP = 1
2 , S

ϕ
T = 1

2

(
c2
y − 1

2

)
, SψP = 0, SψT = 1. (D.5)
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The associated boundary conditions can be written as

ϕj (1/2, cy) = 0, cy < 0 and ϕj (−1/2, cy) = 0, cy > 0 (D.6)

ψj (1/2, cy) = 0, cy < 0 and ψj (−1/2, cy) = 0, cy > 0 (D.7)

The system of Eqs. (D.1) and (D.2) coupled with the expressions (D.3), (D.4) and
(D.5) subject to the boundary conditions (D.6) and (D.7) is solved numerically to yield
the dimensionless flow rates, also known as kinetic coefficients,

GP = −2
1/2∫

−1/2

updy, (D.8)

GT = 2
1/2∫

−1/2

uTdy. (D.9)

Tabulated values of the flow rates GP and GT are provided in Table D.1 for δ ∈ [10−2, 50]
and they are used in the solution of Eq. (5.10). For values of δ > 50 the analytical slip
expressions Gslip

P = δ
6 + σP , Gslip

T = σT

δ
where σP = 1.018 and σT = 1.175 are applied

[23].

Table D.1 Kinetic coefficients GP and GT in terms of the gas rarefaction parameter δ
for pressure and temperature driven flows through a plane channel.

δ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
GP 3.052 2.714 2.528 2.401 2.307 2.233 2.172 2.121
GT 1.247 1.078 9.846(-1) 9.207(-1) 8.726(-1) 8.344(-1) 8.029(-1) 7.761(-1)
δ 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7
GP 2.078 2.040 1.817 1.713 1.653 1.614 1.589 1.573
GT 7.530(-1) 7.327(-1) 6.075(-1) 5.408(-1) 4.962(-1) 4.629(-1) 4.365(-1) 4.146(-1)
δ 0.8 0.9 1 2 3 4 5 6
GP 1.563 1.556 1.554 1.611 1.727 1.861 2.005 2.155
GT 3.960(-1) 3.798(-1) 3.655(-1) 2.741(-1) 2.233(-1) 1.890(-1) 1.640(-1) 1.448(-1)
δ 7 8 9 10 20 30 40 50
GP 2.308 2.464 2.621 2.779 4.406 6.053 7.710 9.363
GT 1.295(-1) 1.171(-1) 1.068(-1) 9.814(-2) 5.386(-2) 3.697(-2) 2.814(-2) 2.269(-2)
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Tables of coefficients used for half-range ac-
celeration schemes

The coefficients required in the formulation of the half-range acceleration schemes
developed in Chapter 8 are given in the current Appendix. More specifically, the
coefficients of the half-range Hermite polynomials for order up to 4 are given in
Table E.1, while in Table E.2 the corresponding coeffiecients multiplying the Hermite
polynomials in order to obtain monomials are given. Tables E.3 and E.4 present the
coefficients of the moment equations for the Poiseuille flow. Finally, for the heat
transfer configuration Tables E.5 - E.9 present the coefficients of the moment equations,
while Tables E.10 and E.11 coefficients of the initial conditions.

Table E.1 Coefficients a+
n,i and a−

n,i for up to 4th order.

n
a+
n,i

i = 0 i = 1 i = 2 i = 3 i = 4
0 1 0 0 0 0
1 -0.5641895835477563 1 0 0 0
2 0.3759691969420544 -1.552614976394557 1 0 0
3 -0.2909121307837363 2.031256652965526 -2.838582595758498 1 0
4 0.2537095744566917 -2.603999687995054 5.854340551373520 -4.363303439838602 1

a−
n,i

0 1 0 0 0 0
1 0.5641895835477563 1 0 0 0
2 0.3759691969420544 1.552614976394557 1 0 0
3 0.2909121307837363 2.031256652965526 2.838582595758498 1 0
4 0.2537095744566917 2.603999687995054 5.854340551373520 4.363303439838602 1
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Table E.2 Coefficients β+
n,i and β−

n,i for up to 4th order.

n
β+
n,i

i = 0 i = 1 i = 2 i = 3 i = 4
0 1 0 0 0 0
1 0.5641895835477563 1 0 0 0
2 0.5 1.552614976394557 1 0 0
3 0.5641895835477564 2.375969196942055 2.838582595758498 1 0
4 0.75 3.881537440986388 6.531256652965524 4.363303439838602 1

β−
n,i

0 1 0 0 0 0
1 -0.5641895835477563 1 0 0 0
2 0.5 -1.552614976394557 1 0 0
3 -0.5641895835477564 2.375969196942055 -2.838582595758498 1 0
4 0.75 -3.881537440986388 6.531256652965524 -4.363303439838602 1

Table E.3 Coefficients g± and s± for Poiseuille flow.

n g+ g− s+ s−

0 2.65979236632549 2.65979236632549 0.657251578644048 -0.657251578644048
1 -1.50062714748068 1.50062714748068 -0.120814494441291 -0.120814494441291

Table E.4 Coefficients p±± for Poiseuille flow.

n
p++ p+−

i = 0 i = 1 i = 0 i = 1
0 -1.31450315728810 2.569792366325488 1.31450315728810 0
1 0.241628988882581 -1.500627147480680 -0.241628988882581 0

p−+ p−−

0 -1.31450315728810 0 1.31450315728810 2.569792366325488
1 -0.241628988882581 0 0.241628988882581 1.500627147480680
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Table E.5 Coefficients g±and f± for heat transfer between parallel plates.

n g+ g− f+ f−

0 3.94151463200184 3.94151463200184 2.65979236632549 2.65979236632549
1 -2.22376149877651 2.22376149877651 -1.50062714748068 1.50062714748068
2 1.48188809092909 1.48188809092909 - -
3 -1.14663442011093 1.14663442011093 - -

Table E.6 Coefficients q±± for heat transfer between parallel plates.

n
q++

i = 0 i = 1 i = 2 i = 3
0 -1.81014821515383 5.09314478179876 -6.42502906052862 3.94151463200184
1 0.52126676766736 -2.87349923339147 3.62493446994188 -2.22376149877651
2 -0.18634727437408 1.06086041967950 -2.32158141895835 1.48188809092909
3 0.06171511410546 -0.35133930491015 0.76886910558464 -1.14663442011093

q+−

0 1.81014821515383 0.64483134379989 -0.41531954386869 0
1 -0.52126676766735 -0.36380712731700 0.23431896049452 0
2 0.18634727437408 0.09644185633450 -0.06211575812469 0
3 -0.06171511410546 -0.03193993681001 0.02057170470182 0

q−+

0 -1.81014821515383 0.64483134379989 0.41531954386869 0
1 -0.52126676766735 0.36380712731700 0.23431896049452 0
2 -0.18634727437408 0.09644185633450 0.06211575812469 0
3 -0.06171511410546 0.03193993681001 0.02057170470182 0

q−−

0 1.81014821515383 5.09314478179876 6.42502906052862 3.94151463200184
1 0.52126676766735 2.87349923339147 3.62493446994187 2.22376149877650
2 0.18634727437408 1.06086041967950 2.32158141895834 1.48188809092909
3 0.06171511410546 0.35133930491015 0.76886910558464 1.14663442011093
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Appendix E

Table E.7 Coefficients p±± for heat transfer between parallel plates.

n
p++ p+−

i = 0 i = 1 i = 0 i = 1
0 -0.41531954386869 0 -0.41531954386869 0
1 0.23431896049452 0 0.23431896049452 0
2 -0.06211575812469 0 -0.06211575812469 0
3 0.02057170470182 0 0.02057170470182 0

p−+ p−−

0 0.41531954386869 0 0.41531954386869 0
1 0.23431896049452 0 0.23431896049452 0
2 0.06211575812469 0 0.06211575812469 0
3 0.02057170470182 0 0.02057170470182 0

Table E.8 Coefficients r±± for heat transfer between parallel plates.

n
r++

i = 0 i = 1 i = 2 i = 3
0 0 1.36061152568228 0.87633543819206 0
1 0 -0.25010452458011 -0.16108599258839 0

r+−

0 0 -1.36061152568228 0.87633543819206 0
1 0 0.25010452458011 -0.16108599258839 0

r−+

0 0 -1.36061152568228 -0.87633543819206 0
1 0 -0.25010452458011 -0.16108599258839 0

r−−

0 0 1.36061152568228 -0.87633543819206 0
1 0 0.25010452458011 -0.16108599258839 0
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Appendix E

Table E.9 Coefficients s±± for heat transfer between parallel plates.

n
s++ s+−

i = 0 i = 1 i = 0 i = 1
0 -1.75267087638413 2.65979236632549 0.87633543819206 0
1 0.32217198517678 -1.50062714748068 -0.16108599258838 0

s−+ s−−

0 -0.87633543819206 0 1.75267087638413 2.65979236632549
1 -0.16108599258838 0 0.32217198517678 1.50062714748068

Table E.10 Coefficients v± for heat transfer between parallel plates.

n
v+ v−

i = 0 i = 1 i = 0 i = 1
0 1 1.77245385090552 1 -1.77245385090552
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0

Table E.11 Coefficients w±and z± for heat transfer between parallel plates.

n w+ w− z+ z−

0 0.125 -0.125 -0.25 0.25
1 0.07052369794347 0.07052369794347 0 0
2 -0.01550385038224 0.01550385038224 - -
3 0 0 - -
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