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Περίληψη

Σ
την πτυχιακή αυτή εργασία παρουσιάζεται μια μεθοδολογία Στατικής Χρονικής Ανάλυσης για

ασύγχρονα κυκλώματα ελέγχου, ή γενικότερα, κυκλώματα με κύκλους συνδιαστικής λογι-

κής. Η μεθοδολογία αυτή υλοποιήθηκε και ενσωματώθηκε στο εργαλείο ASP, ένα εργαλείο
φυσικής σχεδίασης, και είναι βασισμένη στις θεμελιώδεις αρχές της Στατικής Χρονικής Ανάλυσης

ακολουθιακών κυκλωμάτων. Λαμβάνοντας ως είσοδο την κυκλωματική περιγραφή (netlist) και
το μοντέλο συμπεριφοράς (event model) του ασύγχρονου συστήματος, το εργαλείο μπορεί να
υπολογίσει την ελάχιστη επιτρεπτή περίοδο που το χαρακτηρίζει. Πιο συγκεκριμένα, η τιμή της

περιόδου υπολογίζεται από τους κύκλους ενός Χρονικού Γράφου Συμβάντων, που περιγράφει τις

χρονικές καθυστερήσεις των σημάτων του ασύγχρονου κυκλώματος, και δημιουργείται μέσω του

μοντέλου συμπεριφοράς. Οι χρονικές καθυστερήσεις των σημάτων εξάγονται από τα μονοπάτια του

κυκλώματος (netlist), δεδομένου ότι οι χρόνοι μεταβάσεων των σημάτων (transition times) έχουν
συγκλίνει στις τιμές ισορροπίας τους λόγω των κύκλων. Αξίζει να αναφερθεί ότι, η προτεινόμενη

μεθοδολογία, προκειμένου να υπολογίσει τις καθυστερήσεις των κυκλωματικών μονοπατιών, αντλεί

πληροφορίες για την τεχνολογία και τον χρονισμό των στοιχείων, που απαρτίζουν το κύκλωμα,

από βιομηχανικές βιβλιοθήκες (αρχεία LEF και LIB) . Στο τελευταίο κεφάλαιο της πτυχιακής,
παρουσιάζονται τα πειραματικά αποτελέσματα της στατικής χρονικής ανάλυσης μέσω της μεθοδο-

λογίας που υλοποιήθηκε, από 23 ασύγχρονα κυκλώματα ελέγχου. Επιπλέον, παρουσιάζοντας τα

αντίστοιχα αποτελέσματα μίας βιομηχανικής μηχανής Στατικής Χρονικής Ανάλυσης, δίνεται έμφα-

ση στο γεγονός ότι οι βιομηχανικές μηχανές βγάζουν λανθασμένα αποτελέσματα για ασύγχρονα

κυκλώματα λόγω της παρουσίας κυκλικών μονοπατιών.
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ABSTRACT

This work presents an Asynchronous Static Timing Analysis (ASTA) methodology for Asyn-
chronous Control Circuits which has been implemented and integrated on an Electronic
Design Automation (EDA) tool called ASP. Using the principles of Graph-Based Static Tim-

ing Analysis (STA), the developed ASTA engine, taking as inputs the netlist and the event model
that describe the connectivity and behaviour of the controller, is able to compute the circuit’s
minimum period. This is done through a polynomial complexity algorithm that locates the critical
cycles (i.e. the cycles that define the system’s periodicity) of a constructed Event Timing Graph
(ETG) based on the event model. However, to calculate the period, the netlist equilibrium slews
(or signal transition times) must be computed in order to extract and annotate the path delays
onto the ETG. It is worth mentioning that, the proposed ASTA flow uses the technology and cell
timing information from industrial file formats such as LEF and LIB. Eventually, we present
the experimental results, derived from 23 asynchronous controller benchmarks, and emphasize
on the inability of classic STA industrial tools to handle Asynchronous Circuits properly. More
specifically, classic STA engines are based on algorithms that are only applicable on Directed
Acyclic Graphs (i.e. acyclic circuits). Therefore, when given an asynchronous (and thus cyclic)
design they perform cycle cutting which leads to the loss of the cut arcs’ timing information.
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1
INTRODUCTION

W ith Moore’s law coming to an end the need for alternative circuit design materials

and/or techniques increases. Asynchronous systems are a candidate and might come

under the spotlight in the next few years, as they tend to be faster than sequential

systems, due to the lack of clock signals that define the worst-case delay upper bound of the circuit

paths. Additionally, such systems are characterised by significantly lower power consumption,

compared to sequential systems, because no transistor ever transitions unless it is performing

useful computation. Although, due to the complexity of asynchronous systems and the adaptation

of the industry in sequential circuits, there are not many people trained in this style of design.

Another core issue that is preventing the application of asynchronous techniques in state of the

art designs is the lack of Electronic Design Automation (EDA) tools.

The most important EDA tools up to date are Static Timing Analysis (STA) engines while

most steps in modern EDA flows are timing-driven or timing-aware. STA engines are responsible

for the timing verification of circuits as they can locate possible timing violations (i.e. scenarios

where signals propagate too slowly or too fast) and provide the designer with timing information

that can be used to further improve the circuit’s performance or as metrics to other flow-steps of

EDA tools, such as timing-driven detailed placement. It is worth mentioning that, the algorithms

that compose a STA engine are applicable only on Directed Acyclic Graphs (DAGs), which are

used to describe sequential paths. Therefore, such engines are not compatible with asynchronous

designs due to the presence of combinational cycles. In more detail, modern STA engines, in an

attempt to perform the timing analysis of an asynchronous circuit, will cut the graph arcs that

form cycles and thus the timing information of these arcs will be lost. Based on the above, we can

conclude that an Asynchronous Static Timing Analysis (ASTA) engine requires a new flow and

new algorithms.
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CHAPTER 1. INTRODUCTION

The presence of cycles in asynchronous circuits is not the only complexity factor of an ASTA

engine. The behavioral model of asynchronous systems is depicted by concurrent event models,

such as Free-Choice Petri Nets and Signal Transition Graphs (STGs), that view the circuit signal

transitions as events. ASTA heavily relies on such models, because the period of asynchronous

designs is extracted from the cycles formed by the events (known as critical cycles). Note that,

these cycles are not related to the previously mentioned cycles of the circuit. A further challenge

for ASTA is the complexity involved in correlating an asynchronous gate-level netlist to its

original event model.

In this thesis we present a general GBA flow for performing STA on asynchronous control

circuits. Our flow, inheriting the principles of classic STA, is based on industry-standard formats

(i.e. .lib file formats and Verilog netlists) supporting both worst-case and best-case analysis, and

can be distinguished into the following steps:

• Cyclic equilibrium slew (or transition times) computation.

• Event Timing Graph (ETG) construction.

• ETG transition-to-transition (T2T) delay derivation in netlist.

• ETG period and Critical Cycle(s) computation.

In more detail, having the netlist and the event model of an asynchronous controller, we are able

to generate a delay annotated STG, also called Event Timing Graph (ETG). The arc weights of this

graph correspond to gate-level path delays extracted from the netlist, based on cyclic equilibrium

transition times (i.e. transition times that need some time to converge to their final value due to

circuit combinational loops). After the ETG construction and delay annotation, the controller’s

period can be computed by Burns’ Polynomial Primal Dual Method Algorithm [1]. Note that,

in this work we also present multiple extensions to Burns’ algorithm, such as floating point

precision support, critical cycle(s) extraction and reporting, and event model missing marking

insertion. It is worth mentioning that, the ETG construction allows us perform ASTA on various

event model types, such as Free-Choice Petri Nets, that were not originally supported by Burns’

Period Computation Algorithm.

2
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2
STATIC TIMING ANALYSIS BACKGROUND

The timing validation of most digital circuits today is performed with Static Timing Anal-

ysis (STA) making it the cornerstone of modern industrial Electronic Design Automation

(EDA) flows. In this chapter we present the fundamentals and the terminology of STA

that are required for developing a timing engine. STA in general is considered to be one of the

most important EDA flow steps, as its results are crucial to the design’s correctness, and can also

provide the designer with timing information used as metrics to other EDA flow steps.

2.1 Static Timing Analysis Definition and Limitations

Static Timing Analysis (STA) is one of the many techniques available to verify the timing of a

digital design. An alternate approach of timing verification is timing simulation, which can also

verify the functionality of the design [6]. STA does not depend on the data values being applied

at the cell input pins.

However, the core algorithms that compose STA engines are only applicable on Directed

Acyclic Graphs (DAGs). Therefore the timing verification of circuits with combinational loops is

not possible. In more detail, STA engines, in order to handle cyclic circuits, perform cycle cutting

which leads to loss of the cut arc timing information. Additionally, the presence of cycles impacts

the signal transition times (or slews), of which the final equilibrium values cannot be computed

by a classic STA engine.

2.2 Setup and Hold Times

Given a user-defined clock, one of the goals of performing STA on a digital circuit is to verify that

no setup or hold time violations exist. In more detail, a flip-flop’s operation requires the logic

3



CHAPTER 2. STATIC TIMING ANALYSIS BACKGROUND

value of the input data pin to be stable for a specific period of time before the capturing clock edge.

This interval is the setup time (tsetup). Additionally, the logic value of the input data pin must

also be stable for a specific period of time after the capturing clock edge. This interval is the hold

time thold. Thus, we perform worst-case (max or late) delay timing analysis to validate setup

violations and best-case (min or early) delay timing analysis to validate hold time violations.

Figure 2.1 shows the setup and hold time intervals relative to the capturing edge of a D Flip-Flop.

Figure 2.1: Example of a combinational path between two Flip-Flops.

2.3 Timing Arcs and Unateness

Static Timing Analysis works on the concept of timing paths. Each timing path starts from a

primary input or a sequential component output and ends to a primary output or a sequential

component input. These paths consist of timing arcs. Given a cell or a net, a timing arc defines

the timing relationship between two related pins. Combinational cells such as AND, OR, NOT

gates have arcs from each input pin to each output pin. Sequential cells such as Flip-Flops and

Latches have arcs from their clock and data pins to the output pin(s). Timing arc startpoints and

endpoints are called source pins and sink pins respectively. Figure 2.2 shows the cell and net

timing arcs of two connected OR gates.

Timing arcs may be categorised based on their timing sense (or unateness) that describes

the polarity relationship of the related pins. Timing arcs may be positive unate, negative unate,

or non-unate (also known as binate). More specifically:

• Positive Unate Timing Arc: An arc is called positive unate, if the source pin rise tran-

sition causes a sink pin rise transition (if at all) and vice-versa. Gates such as AND, OR

and BUF have positive unate arcs and can be also called positive unate gates. It is worth

mentioning that all net arcs are possitive unate arcs.

4



2.4. NON-LINEAR DELAY MODEL LOOK-UP TABLES

• Negative Unate Timing Arc: An arc is called negative unate, if the source pin rise

transition causes a sink pin fall transition (if at all) and vice-versa. Gates such as NAND,

NOR and INV have negative unate arcs and can be also called negative unate gates.

• Non-unate Timing Arc: An arc is called non-unate, if the source pin rise transition causes

a sink pin rise or fall transition (if at all) and vice-versa. Gates like XOR and XNOR have

non-unate timing arcs and can be also called non-unate gates.

In practice, most combinational cells are unate (positive or negative), thus their timing arc sense

for an output is independent of multiple input state. However various gates, e.g. XOR, XNOR,

MUX, are binate. Binate gates are state-dependent, as their timing arc behavior, from an input

to output, is dependent on the state of other inputs. For example, a XOR gate is positive unate for

one input when the other is at Logic 0, but negative unate, when the other input is at Logic 1.

A

B

A

BZ

Z
G1

G2

Figure 2.2: Cell and Net Timing Arcs

2.4 Non-Linear Delay Model Look-Up Tables

Static Timing Analysis uses the concept of timing libraries, e.g. LIBERTY (.lib) format, where

combinational and sequential cells are described using Non-Linear Delay Model (NLDM) 2D

Look-Up Tables (LUTs). NLDM LUTs describe timing arcs between a gate’s input and output pins,

where input slew and output capacitance (driving load) values (tr in,Cout) produce output slew

and delay values (trout,dout). More specifically, input slew and output capacitance (or driving

load) values are used as LUT indexes. However, in most cases they do not correspond exactly

to index values, therefore delay and output slew values are extracted by performing bi-linear

interpolation/extrapolation. In NLDM LUTs, binate gates are described using multiple LUTs,

one per related input pin. Sequential cell LUTs are similar and also include input to input timing

checks.

2.5 Graph-Based and Path-Based Analysis

Two commonly used STA methodologies are Graph-Based Analysis (GBA) and Path-Based
Analysis (PBA). Unless stated, when talking about STA the GBA methodology is assumed

by default. In a Graph-Based methodology, while performing a late mode (setup) analysis, i.e.

5



CHAPTER 2. STATIC TIMING ANALYSIS BACKGROUND

computing the worst case delays and the longest paths, the output slew and delay of a cell is a

function of the output capacitance and the worst input slew. Accordingly, in a early mode (hold)

timing analysis the output delay and slew of a cell are computed assuming the output capacitance

and the best input slew. For example, in Figure 2.3, assuming a worst case (setup) analysis, the

delay of the NAND gate (in blue) will be computed considering the worst case slew, i.e. the slew

at pin A.

In Path-Based Analysis, we take into consideration the actual slew of the encountered arcs

while traversing any particular timing path. For instance, given the path from FF1 to FF2

shown in Figure 2.3, the input slews of each gate, that are used to compute the output slews and

delays, are: pin A slew for the OR gate; pin B slew for the NAND gate; pin B slew for the XOR

gate; pin A slew for the inverted AND gate. Note that in PBA, for a specific path, the best-case

and worst-case slews are extracted from the same gate pins. The pros and cons of each STA

methodology are:

• Graph Based Analysis:

– Pros:

1. Polynomial algorithmic complexity.

– Cons:

1. Pessimistic, due to the slews.

2. Not every path is sensitisable.

• Path Based Analysis:

– Pros:

1. Accurate.

2. No pessimism.

– Cons:

1. Exponential complexity, as the number of paths is usually exponential to the

number of nodes.

2.6 Timing Propagation

One key feature of STA is delay and transition propagation across multiple input combinational

cell timing arcs. The complete set of timing arcs compose the timing graph. Delay propagation

depends on the STA mode (max or min), corresponding to maximum or minimum timing arc delay

respectively. For transition (or slew) propagation, the worst (max) and best (min) slew timing

6



2.6. TIMING PROPAGATION

Figure 2.3: Example of a combinational path between two Flip-Flops.

arcs are propagated independently from timing arc delays. Therefore, at each cell output pin, the

slew and delay timing arcs are independent.

For a combinational path, starting from its startpoint which can be either a primary input

or a flip-flop output pin, we quantify the instant that a signal reaches a pin of a circuit element

as the Arrival Time (at). Arrival times are computed by adding the delays across the path.

For a specific pin, in late mode analysis, the arrival time will be equal to the maximum sum of

predecessor arrival time and timing arc delay. Accordingly, in early mode analysis, arrival times

are computed by taking the minimum predecessor arrival time and arc delay sum. Given the

pins u and v, where u is a predecessor of v, and du→v is the timing arc delay, the mathematical

definition of arrival times is:

atearl y
v =

0, if v is a path startpoint

min
{

atearl y
u + dearl y

u→v
} | ∃ u → v

atlate
v =

0, if v is a path startpoint

max
{

atlate
u + dlate

u→v
} | ∃ u → v

In the same manner, starting from path endpoints and traversing backwards, we compute the

Required Arrival Times (rat) for each pin, that quantify the bounds of actual arrival times.

More specifically, in late mode analysis, the required arrival time of a pin is equal to the minimum

required arrival time of its successor pins subtracted by the arc delay. The application of the

min operation is necessary, as in this way we are constraining late mode actual arrival times

to the least upper bound (LUB). Early mode required arrival times are computed by taking the

maximum successor arrival times subtracted by the timing arc delay. In this way, we compute the

greatest lower bound (GLB) for the early mode actual arrival times. Given pins u and v, where u

is a predecessor of v, and du→v is the timing arc delay, the mathematical definition of required

arrival times is:

7



CHAPTER 2. STATIC TIMING ANALYSIS BACKGROUND

ratearl y
u =

thold, if v is a path endpoint

max
{

ratearl y
v − dearl y

u→v
} | ∃ u → v

ratlate
u =

Tclk − tsetup, if v is a path endpoint

min
{

ratlate
v − dlate

u→v
} | ∃ u → v

To guarantee proper circuit operation, for every pin v in the timing graph, the following conditions

must hold:

atearl y
v ≥ ratearl y

v

atlate
v ≤ ratlate

v

The quantification of how well these timing constraints are met is defined by the notion of

slack. In early mode, slack represents the distance from arrival time lower bound while in late

mode the distance from the upper bound. In late mode analysis, the path endpoints’ slack is

a useful indicator of how much we are allowed to reduce the user-defined clock period value.

Mathematically, for a pin v:

slackearl y
v = atearl y

v − ratearl y
v

slacklate
v = ratlate

v −atlate
v

It is worth mentioning that timing propagation is performed only for valid transitions,

following the unateness of the cells participating in the path. For instance, in the previously

presented Figure 2.2, knowing that OR gates are positive unate, if we consider that G1 arc B → Z

has the worst delay with pin B rising, then while performing late mode STA, G1 pin Z and G2 pin

B will also rise (or stay risen). Note that, when performing STA for a given path, the startpoint

transition (rise or fall) is unknown. Therefore, STA must be performed for both cases, as different

startpoint transitions give us different results.
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3
PERFORMANCE ANALYSIS OF ASYNCHRONOUS CIRCUITS

Asynchronous (or self-timed) circuits are digital logic circuits not synchronized to a clock.

The synchronization and communication of such circuits is mainly implemented with

handshake protocols, whereas for synchronous circuits, changes of edge signal values

are triggered by a repetitive clock pulse. Asynchronous circuits have the potential to be faster

and may also have advantages in power consumption. However, due to their complexity, there

are not many people trained in this field and there is a lack of dedicated EDA tools. Although,

with Moore’s law coming to an end, the importance and need of asynchronous systems in the

industry increases. One of the most important and challenging problems in this field that needs

to be solved is the static timing analysis of such systems.

3.1 Event Models

3.1.1 Petri Nets

A Petri net, or Place/Transition Net (PTnet) [9], [10] is one of the most popular mathematical

models used for the representation and the analysis of asynchronous circuits. In general, a

Petrinet in its most basic form is nothing more than a directed graph that consists of nodes

(places and transitions) and arcs. Arcs connect places to transitions and vice versa, but are not

allowed between nodes of the same type. Graphically, transition nodes (i.e. events that may

occur) are visualized as bars and place nodes (i.e. conditions) as circles. Additionally, places might

contain a discrete number of markings called tokens.

A transition is considered enabled, when there is at least one token in all of its input places,

i.e. the places from which an arc runs to the transition. An enabled transition might fire, which

means that it will consume exactly one token from every input place and will increment the

9
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tokens of each output place. In Figure 3.1(a) the displayed transition is ready to fire, as each

input has at least one token. In Figure 3.1(b) the transition has fired consuming the tokens from

its input places and incrementing the tokens of the output places. The Petri net execution is

nondeterministic because, when multiple transitions are enabled at the same time they can

fire in any order. Since firing is nondeterministic, and multiple tokens may be present anywhere

in the Petri net (even in the same place), Petri nets are well suited for modeling the concurrent
behavior of distributed systems.

(a) (b)

FIGURE 3.1. (a) The transition is ready to fire. (b) The transition has fired.

3.1.1.1 Petri Net Mathematical Definition

Formally, a petrinet is a 3-tuple PN = (N, M, W) where:

1. N = (P, T, F) where:

a) P and T are disjoint finite sets of places and transitions respectively.

b) F ⊂ (P × T) ∪ (T × P) is a set of arcs

2. M : P → Z is a place multiset, where Z is a countable set ({1,2, ...,k}). M describes the

marking of the petrinet, as each element’s index corresponds to a place and each element’s

value to the number of tokens at that place.

3. W : F → Z is an arc multiset, so that the count (or weight) for each arc is a measure of the

arc multiplicity. In other words the arc weight describes the number of tokens subtracted

from the input place of a firing transition or the number of tokens added to the output place

of the firing transition (depending on whether the arc connects a place to a transition or a

transition to a place).

In general, the firing rule of a transition can be characterised by subtracting a number of tokens

from its input places equal to the multiplicity of the respective input arcs and accumulating a

new number of tokens at the output places equal to the multiplicity of the respective output arcs.

10
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However, in most cases arcs have their multiplicity set to 1, which makes F identical to W. In

Figure 3.1 all arcs have weight equal to 1, as the firing transition consumes one token from each

input place, and adds one token to every output place. An alternative definition of Petri nets is

the following 4-tuple:

PN = (S, T, W , M0) or

PN = (S, T, F, M0) if W(x, y) = 1 ∧ (x, y) ∈ (S × T) ∪ (T × S)

where (S, T, W) = N is a Petri net graph and M0 is the initial marking. From this point on we

assume that every Petri net’s arcs have weight equal to 1.

3.1.1.2 Petri Net Classes

Multiple types of Petri nets can be obtained by restricting their formalism. Each restriction leads

us to a new Petri net class. Figure 3.2 displays the Petri net types graphically which are briefly

described below:

• In a State Machine (SM) every transition has one incoming arc, and one outgoing arc,

and all markings have exactly one token.

• In a Marked Graph (MG) every place has one incoming and one outgoing arc.

• In a Free-Choice PTnet (FC) every arc from a place to a transition is either the only arc

from the place or the only arc to that transition.

• Extended Free-Choice PTnet (EFC) is a Petri net that can be transformed into a FC.

• In an Asymmetric Choice PTnet (AC), concurrency and conflict (i.e. non-determinism)

may occur, but not symmetrically

If the transitions of a Marked Graph correspond to the signal transitions of a specific circuit, then

we have a Signal Transition Graph (STG). Additionally, the places of a MG or STG can be

removed as the marking information can be modelled as labels to transition-to-transition (T2T)

arcs. Figure 3.3 depicts the STG of an asynchronous controller. Each signal has two possible

transitions (rise or fall).

11
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Petri Net

Extended Free Choice

Free Choice

Asymmetric Confusion

State
Machine

Marked
Graph

Figure 3.2: Petrinet types graphically.

Figure 3.3: half Asynchronous Benchmark Signal Transition Graph (STG). Red (or blue) colored
transitions correspond to the primary inputs (or outputs) of the controller.

3.1.1.3 Behavioral Properties

Petri nets are characterized by the following three behavioral properties:

• Reachability: Given a Petri net (N, M0) and a marking M, the reachability problem for

Petri nets is to decide whether M ∈ R(N), where R(N) is the set of all possible valid

marking configurations. In other words, a marking configuration M is called reachable iff

there is at least one transition-firing sequence that can lead us to M starting from M0.

• Boundedness: A Petri net is said to be k-bounded or simply bounded if the number of

tokens in each place does not exceed a finite number k for any marking reachable from M0.

A 1-bounded Petri nai is also called safe.

• Liveness: A transition t ∈ T is live if from every reachable marking M there is a marking

M′ such that t is enabled. A Petri net is live (or deadlock-free) if every transition t ∈ T is

live. Petri net can be described as having different degrees of liveness L1 − L4. A petri net

(N, M0) is called Lk-live iff all of its transitions are Lk-live, where a transition is:

12
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1. L0-live (dead) if it can never fire.

2. L1-live, when it can fire at least once in some firing sequences.

3. L2-live, when it can fire k times in some firing sequences (for any k).

4. L3-live, when it can fire infinitely often in some firing sequences.

5. L4-live (live), if it may always fire, i.e. it is L1-live in every reachable marking.

3.1.2 Event Rule Systems and Event Graphs

Event-Rule Systems (ER Systems) is another mathematical model that can be used for repre-

senting asynchronous circuits. This model is suitable for the determination of the circuit’s timing

performance due to its event occurrence constraints and has been adopted by Burns [1] in his

work regarding the performance analysis of asynchronous designs.

A general Event-Rule System is a pair < E,R > where:

E is a set of events, and

R is a set of rules defining timed constrains between events.

Each r ∈ R is written s a−→ t, where

s ∈ E is the source of r,

t ∈ E is the target of r, and

a ∈ [0,+∞) is the delay of r.

A Repetitive Event-Rule System < E′,R′ > is the ER System where events periodically re-

occur. In more detail, each repetitive ER System is associated with a period value, which

describes the amount of time that is required for an event u to occur again.

The elements of E′ are formally called transitions and the events of E = E′×N are now

represented as < u, i > tuples, where u ∈ E′ is the event’s transition, and i ∈N is a number called

occurrence index, a variable denoting how many times a transition has occurred. It is worth

mentioning that, there is an infinite number of events, due to the occurrence index, but a finite

number of transitions.

The elements of R′ (r′ ∈ R′) are now written:

r′ =< u, i−ε> a−→< v, i > or r′ = u
(a, ε)−−−→ v, or r′ = u

(a − εp)−−−−−→ v, where

a ∈ [0,+∞) is the delay of r′,
u ∈ E′ and v ∈ E′ is the source and target of r′ respectively,

i ∈ [max(0,ε), +∞) ∈ N is the occurrence index of the events u and v, and

p ∈ [0,+∞) is the period that describes the repetition of the events in E’.

ε ∈N is the occurrence-index offset of r′ which indicates repetition every ε period cycles.
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Pseudo-repetitive ER Systems is a broader class of ER Systems and a combination of the

aforementioned general and repetitive classes. A pseudo-repetitive ER System consists of a fi-

nite set of initial events, an infinite set of repeated events, a finite set of initial transitions, a

finite set of repeated transitions, a finite set of initial rules and a finite set of repeated rules.

As there are only finitely many initial events, after a period of time, only the repeated events occur.

Example: Figure 3.4 displays a ring oscillator of 3 inverters and its respective ER System. Note

that E′ has six transitions (two transitions per inverter), as an inverter’s output signal will either

rise or fall. In general, the ER system of a n-output boolean function will have 2n transitions.

Starting from the transition of x rising from zero to one (x ↑), y will fall (y ↓) which leads to z

rising (z ↑). Afterwards, due to the rise of z, x falls which makes y rise and eventually, z falls. The

transition of z falling (z ↓) will lead us to the transition we started from (x ↑). Thus, the rule from

z ↓ to x ↑ will have its occurrence-index offset ε set to 1.

FIGURE 3.4. Repetitive ER System of a Ring Oscillator with 3 Inverters.

Each ER System can be represented graphically as a Collapsed-constraint Graph (or

Event Graph). Figure 3.5(a) displays the ring oscillator of the previous example as an event

graph. Note that in this Figure the unfolded version of the graph is presented. A more compact

event graph notation is shown in Figure 3.5(b) in which the edge connecting z ↓ with x ↑ has label

ax↑− p, where ax↑ is the delay between the edge’s events and p is the period of the event graph.

More specifically the notation z ↓ ax↓−p−−−−→ x ↑ corresponds to the rule r =< z ↓, i−1> a−→< x ↑, i > of

the equivalent ER system and denotes the periodicity of the system.

In general, the edges of an event graph are associated with labels in the notation a−εp or

(a,εp), where ε is the edge occurrence index offset. In most designs, the maximum value of ε is

equal to 1 and is visualized as an edge marking (similar to STG markings or MG tokens) instead

of being present at edge labels. To avoid creating confusion, it is worth mentioning that the use of

such labeling is only applicable when all of the events share the same period. A more in-depth

look will be presented in the next subsection.
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(a)

(b)

Figure 3.5: (a) Ring Oscillator Unfolded Collapsed-Constraint Graph (b) Ring Oscillator Collapsed-
Constraint Graph

3.1.3 Event Graph Constraints

The core constraints of the collapsed-constraint graph is that an event may only occur when all

of its predecessor events have occurred. Consider t̄(u, i) the timing simulation function which

indicates the i’th (i ≥ 0) occurrence of the event u. The function can be expressed as:

t̄(u, i)= xu + pu i, where

pu is the period of the event’s occurrence and

xu is the occurrence offset of u (i.e. the amount of time needed for the event to occur after

the start of a new period cycle)

Let the events u and v and the rule r =< u, i− ε > a−→< v, i >. In order for v to occur for a given

index (i), the event u must have already occurred for the same i value. Taking advantage of the

timing simulation function t̄ definition the events’ constraint can be mathematically written as:

t̄(v, i) ≥ t̄(u, i − ε) + a, for each i ≥ max(0,ε) ⇒

xv + pv i ≥ xu + pu(i − ε) + a ⇒

xv ≥ xu − puε + a + (pu − pv)i

xv ≥ xu − puε + a + (pu − pv) max(0,ε) (3.1)

If pu > pv, the constraint equation will never be satisfied for all i values, since i can be arbitrarily

large. Thus, as a part of the constraint we also consider that pv ≤ pu.

Going back the ring oscillator’s event graph, presented in the previous subsection (Figure 3.5),

we observe that the period p is the same across all nodes. In general, all nodes in the same

15



CHAPTER 3. PERFORMANCE ANALYSIS OF ASYNCHRONOUS CIRCUITS

strongly-connected component of the event graph have the same period, as there is a path between

all pairs of nodes, i.e. each pair of nodes exists in at least one event graph cycle. In this case,

the previously computed constraint Equation 3.1, given that the nodes now belong to the same

strongly-connected component, will be transformed to:

xv ≥ xu +a−εp (3.2)

From now on, unless stated, each event graph is assumed to be strongly connected, as most

asynchronous design event models are. Therefore, all nodes share the same period and the

constraint between two connected nodes (u → v) is given by Equation 3.2.

3.2 Event Graph Minimum Period Computation

3.2.1 Event Graph Period

As aforementioned, an event graph can be associated with a period value, as long as the event

constraints of Equation 3.2 are not violated. Computing the minimum period poses a big challenge,

as this value is strictly defined by the maximum delay/occurrence-index-offset sum ratio, derived

from the graph cycles’ edges. More specifically, given an event graph G = (E′,R′), let −→a and −→ε
being vectors containing the event graph’s edge delays and edge occurrence indexes respectively:

−→a = (a0,a1,a2, ...,a|R′|−1), −→ε = (ε0,ε1,ε2, ...,ε|R′|−1)

Let Uk being a vector of zeros and ones where each index corresponds to a specific edge. Variable

k can take values from 0 to 2|R′|−1 as Uk can contain any combination of edges.

Uk = (e0, e1, e2, ..., e|R′|−1), for e i = {0,1}

Note that, the multiplication of Uk with −→a or −→ε gives us the sum of the delays or occurrence

indexes of the edges present in Uk (i.e. elements with value 1). Vectors that contain only edges

that form an event graph cycle are called cycle vectors. Based on the definitions above, the

minimum period value can be mathematically defined as:

p = max
{UT

k
−→a

UT
k
−→e

∣∣∣∣Uk is a cycle vector
}

(3.3)

if UT
k
−→e > 0 for all cycle vectors Uk
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Example: Consider the event graph shown in figure 3.6 where in fig 3.6(a), we see the standard

labeling and in fig 3.6(b) the labels denote the numbered arcs (or the indexing of the vectors).

(a) (b)

Figure 3.6: (a) Event-graph with standard labeling (b) Event-graph with numbered arcs

The three cycles of the graph can be presented by the cycle-vector matrix:

UT =


0 1 1 0 1 1 1 0 0 1

1 0 1 0 0 0 1 1 0 0

0 0 0 1 0 1 0 0 1 1



Given the equation 3.2 the period is computed:
1

1

1

 p ≥


alo↑ + alo↓ + aro↑ + aro↓ + al i↑ + ari↓

alo↑ + alo↓ + al i↑ + al i↓
aro↑ + aro↓ + ari↑ + ari↓

=


acycle0

acycle1

acycle2



Thus, the minimum p is max(acycle0,acycle1,acycle2).
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3.2.2 Burns’ Primal-Dual Method Algorithm

One way to compute the event graph’s minimum period value is by exhaustively exploring all

graph cycles and computing the max delay/occurrence-index sum ratio. Although, this method is

computational too expensive as the number of cycles in in an arbitrary graph can be exponential

in the number of its arcs.

For this reason, various methodologies have been proposed in literature that aim to compute

the event model period in non-exponential complexity. In more detail, Ramamoorty and Ho

proposed a matrix based algorithm [13], whereas Maggot proposed and LP-based approach [11].

Burns [1] has presented both an LP based algorithm as well as a Primal-Dual Method Algo-

rithm [12]. The algorithm is iterative and can compute the minimum period of a given event

graph G′ = (E′,R′) in polynomial time complexity (see algorithm 1). The algorithm is constructed

by applying the primal-dual method, a general technique for constructing special-case algorithms

for solving linear programs. In the next section, we will have an in-depth look at Burn’s algorithm

and the intuition behind each step through examples, as well as a complete view of its applications

in real asynchronous systems.
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1. Form the initial feasible solution x(0), p(0)

a) Temporarily remove all arcs with ε> 0 in G′

b) Topologically sort the resulting acyclic graph

c) Using the topological order, set

x(0)
v =

0, if v is a root

max
{

x(0)
u + a

∣∣ 〈
u, i−ε

〉 a−→ 〈
v, i

〉 ∈ R ∧ ε≤ 0
}

, otherwise

d) Set

p(0) = max
{

x(0)
v − x(0)

u −a
−ε

∣∣∣ 〈
u, i−ε

〉 a−→ 〈
v, i

〉 ∈ R ∧ ε> 0
}

2. For each arc
〈
u, i−ε

〉 a−→ 〈
v, i

〉
, if x(k)

v = x(k)
u +a−εp(k), then the arc is marked

as a critical arc.

3. If the graph of critical arcs is cyclic or p(k) = 0, then set p̂(k) = 0 and exit with

the optimal solution x(k), p(k). Else,

a) Topologically sort the graph of critical arcs.

b) Set p̂(k) = 1

c) Using the topological order, set

x̂(k)
v =

0, if v is a root

min
{

x̂(k)
u −ε p̂(k) ∣∣ 〈

u, i−ε
〉 a−→ 〈

v, i
〉

is critical
}

, otherwise

d) Set

θ(k) = min
{

x(k)
v − x(k)

u + εp(k) −a

x̂(k)
v − x̂(k)

u + ε p̂(k)

∣∣∣ x̂(k)
v − x̂(k)

u + ε p̂(k) > 0
}

e) Set

x(k+1) = x(k) − θ(k) x̂(k), p(k+1) = p(k) − θ(k) p̂(k)

4. Increment k and go to step two.

Algorithm 1: Burns’ Algorithm, a polynomial-complexity algorithm which finds the cycle
period of a given event-graph
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4
BURNS’ ALGORITHM ANALYSIS

In this chapter, we take a deeper look at Burns’ algorithm by explaining the intuition behind

each of its steps through detailed examples. We elaborate on the period relaxation and how

it impacts the occurrence offsets of event graph nodes. The fact that no cycles are explored

throughout the period computation process, is key for the polynomial complexity of the algorithm.

4.1 Computing the Initial Feasible Solution

In this section we present a complete example on Burns’ algorithm, as shown in Figure 4.5. Let

the event graph shown in Fig 4.5(a). The first step of the algorithm is to form the initial feasible

solution x(0), p(0). All arcs with positive occurrence index offsets (ε> 0) are temporarily removed

in order to compute the longest path to each node using the topological sort order of the resulting

acyclic graph. Recall that:

x(0)
v =

0, if v is a root

max
{

x(0)
u + a

∣∣ 〈
u, i−ε

〉 a−→ 〈
v, i

〉 ∈ R ∧ ε≤ 0
}

, otherwise

In Figure 4.5(b), the initial occurrence offsets (x-values) are computed for each node. After

removing positive occurrence index offset edges, one of the valid topological orderings is: {B, C,

D, E, F, G, H, I, J, K, A}. Due to this ordering, when we visit a node v to compute its x-value, we

know that the x-values of its predecessors have already been computed as they are positioned

before v in the topological sort list. For instance x(0)
h will be equal to max(x(0)

g +1, x(0)
c +1) where

x(0)
g and x(0)

c have already been computed as nodes G and C are before B topologically.

With the initial event graph occurrence offsets, we may compute the initial feasible period

value. The period is derived from arcs with positive occurrence index offsets ε> 0, which makes

sense, as these arcs define the periodicity of the system forming cycles. In more detail, let nodes u
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and v, where < u, i−ε> a−→< v, i > (or alternatively u
a−εp−−−→ v) and ε> 0. The event graph constraint

xv ≥ xu + a−εp which was presented in the previous section can easily lead us to the formula of

the period:

xv ≥ xu + a−εp ⇒

−εp ≤ xv − xu −a ⇒

p ≥ xv − xu −a
−ε , for ε> 0 (4.1)

Equation 4.1, can be viewed as the event graph period constraint, when all event occurrence

offsets are known. For each pair of connected nodes (u,v), this constraint introduces a new local

lower bound to the period which is only relevant to the connection of the aforementioned pair.

Therefore, the minimum acceptable period value is the greatest lower bound of the constraints.

Revisiting Burns’ algorithm, the initial period is indeed equal to:

p(0) = max
{

x(0)
v − x(0)

u −a
−ε

∣∣∣ 〈
u, i−ε

〉 a−→ 〈
v, i

〉 ∈ R ∧ ε> 0
}

Going back to our example, there are five edges with positive occurrence index offsets where each

one introduces a new period lower bound. The period will be assigned to the maximum computed

value. For instance, from edge A → B we have p1 = (x(0)
b − x(0)

a −aab) / (−εab)= 7, from A → F we

have p5 = 11 e.t.c. Eventually, p(0) = max(p1, p2, p3 , p4 , p5) = 11 which makes sense as the

longest path to node A is 6 time units and in order to reach F we need 5 additional time units.

4.2 Critical-Arc Graph Formation and Termination Condition

The second step of the algorithm is the formation of the critical-arc graph. For each arc〈
u, i− ε

〉 a−→ 〈
v, i

〉
, if x(k)

v = x(k)
u +a− εp(k) the arc is considered critical. This means that xv and

xu cannot take lower and higher values respectively, for a specific period. In other words, event

v occurs after u delayed exactly by the edge’sa time units. Note that a node can be present in

multiple critical arcs. Figure 4.5(c) shows the critical-arc graph of our example, with greyed-out

arcs being the non-critical ones. For instance, if we take edge A → F we have, x f = xa + aaf −εaf p,

or 0= 6+5−11. Bear in mind that, in most cases, arcs that have their occurrence index offset

equal to zero (for example G → H) are all critical. Although, this cannot be generalized as a

critical arc might become non-critical at later iterations of the algorithm.

In the third step, we initially check whether the critical-arc graph contains at least one cycle.

If this is the case, the algorithm terminates with the optimal solution. Recall Equation 3.3 which

states that the minimum period is equal to the maximum delay/occurrence-index-offset ratio of

the graph cycles. The formation of a cycle in the critical-arc graph indicates that the maximum

(a / ε) ratio has been achieved and any further period relaxation will violate the event graph
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constraints. It is important to clarify that, if we increase the x-value of a node belonging to a

critical cycle, we also increase the x-values of the remaining cycle nodes by the same amount. For

the constraint xv ≥ xu + a−εp of two connected nodes (u → v), it might be a common mistake to

think that we can increase xv indefinitely without causing violations. However, if v belongs to a

critical cycle, it participates in another critical arc as its startpoint, which means that there will

be a second constraint that will not allow us to increase its offset x.

4.3 x̂-Values Intuition

After the formation of the acyclic critical-arc graph, a topological sort is performed, and a new

variable p̂ is set to 1. This new variable has little to no significance in the algorithm, as it is used

as a flag to indicate if the critical-arc graph is acyclic with nonzero period. Using the topological

sort order of the acyclic graph the x̂-values are computed for each node. Recall the formula:

x̂(k)
v =

0, if v is a root

min
{

x̂(k)
u −ε p̂(k) ∣∣ 〈

u, i−ε
〉 a−→ 〈

v, i
〉

is critical
}

, otherwise

Intuitively, the x̂-value of a node represents the critical arc period distance from the furthest root

node. Having in mind that p̂ is equal to 1 and occurrence-index offsets (ε) are greater or equal

to zero, all x̂ values will be non-positive. The application of the min operation to non-positive

numbers is similar to the application of the max operation to positive numbers. In other words, x̂

values represent the ε-value longest path to each node. Note that the computation is performed

on the critical-arc graph.

Example: Consider the critical arc-graph shown in Figure 4.1. The topological sort ordering of

the nodes is {v, x, y, z, w, }. Initially, roots v and x have their x̂ set to 0. Afterwards, node y will

be assigned with x̂ equal to -1 as the ε-distance of the furthest root node (v) is 1. In the same

manner, node z will have its x̂ value set to -2 as the furthest root node is v, with a period distance

of 2. Eventually, node w will have x̂ equal to -3 as its distance from the furthest root is 3.
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Topological Order: {v, x, y, z. w}

x̂v = 0

x̂x = 0

x̂y = x̂v −ε p̂ = 0−1 = −1

x̂z;= min{x̂x−εxz p̂, x̂y−εyz p̂}= min{−1, −2}=−2

x̂w = x̂z −εzw p̂ = −3

FIGURE 4.1. A critical-arc graph with the x̂ values annotated

Figure 4.5(d) displays the annotated x̂ values on the critical-arc graph of our complete example.

Notice that, all x̂ values except x̂ f are equal to 0 as the critical-arc graph, at this point, has only

one edge with positive occurrence-index offset (A
5−p−−−→ F).

4.4 Intuition behind θ value

The next step of Burn’s Algorithm (step 3d) is to compute the value θ which can be viewed as the

minimum excess period delay. It also represents the amount of the period reduction at the end of

each iteration. The computation of θ is performed accross the whole graph. To fully understand

the meaning of θ we must take a look at its denominator and numerator separately. The value of

θ is determined by the following formula:

θ(k) = min
{

x(k)
v − x(k)

u + εp(k) −a

x̂(k)
v − x̂(k)

u + ε p̂(k)

∣∣∣ x̂(k)
v − x̂(k)

u + ε p̂(k) > 0
}

, where u
a−εp−−−→ v

The numerator of this formula may be viewed as the excess delay between u and v, or in

other words, it shows how much delay we must add to edge u → v in order for it to be critical.

Note that, if the arc connecting u to v is critical, the nominator of θ will be equal to zero, as the

occurrence offset xv is at its minimum possible value and strictly defined by xu.

Regarding the denominator, the difference x̂(k)
v − x̂(k)

u represents how many more period

cycles node v needs in order to occur, in relation to u, starting from the furthest root node in

the critical-arc graph. Product ε p̂(k) is equal to the occurrence index offset of the edge (ε), as

p̂(k) is set to 1, and displays the period distance between u and v through their arc. A more
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clear way of viewing the denominator is by examining the difference (x̂(k)
u − ε p̂). This value

represents the furthest root period distance of v (x̂′v), if edge u → v was critical. Therefore,

the denominator x̂(k)
v − (x̂(k)

u − ε p̂(k)) shows how much more period distance would v have, if arc

u → v was critical. The meaning of the denominator will be more clear with the following example:

Example: Consider u and v, where u
1−3p−−−→ v. As shown in Figure 4.2, the x̂-value of u has been

computed to -1, by the longest critical-arc path starting from root s1, and the x̂-value of v is set

to -3, due to the critical-arc path starting from root node s2. The denominator of θ is equal to 1

which means that, for the current current period, if event v was to occur through edge u → v,

its period distance would be bigger by 1.

The period distance of v’s occurrence through edge
u → v is equal to:

x̂(k)
u −ε p̂(k) = −4

The theta denominator is equal to:

x̂(k)
v − (x̂(k)

u −ε p̂(k)) = −3− (−4) = 1

FIGURE 4.2.

Lemma 4.1 There are no valid θ values extracted from critical arcs as they produce non-positive

theta denominators.

Proof. Let nodes {u1,u2, ...,un} being the predecessors of v where each arc ui → v is critical.

Starting from the formula of the x̂-values:

x̂(k)
v = min{x̂ui −εuiv p̂}, for i ∈ {1,n}

Without loss of generality, let x̂(k)
u1 −εu1v p̂(k) being the minimum value. Therefore:

x̂(k)
v = x̂(k)

u1 −εu1v p̂(k) ⇒ x̂(k)
v − x̂(k)

u1 +εuiv p̂(k) = 0 (4.2)

x̂(k)
u1 −εu1v p̂(k) < x̂(k)

ui −εuiv p̂(k) ⇒ −x̂(k)
u1 + εu1v p̂(k) > −x̂(k)

ui + εuiv p̂(k), for i 6= 1 (4.3)

Adding x̂(k)
v to equation 4.3 we construct the denominator of θ:

x̂(k)
v − x̂(k)

u1 + εu1v p̂(k) > x̂(k)
v − x̂(k)

ui + εuiv p̂(k) (4.2)==⇒ x̂(k)
v − x̂(k)

ui + εuiv p̂(k) < 0

�
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After examining the intuition behind the θ numerator and denominator separately, we can

now state that the θ value of a specific edge can be viewed as excess delay, i.e. the amount of

delay needed for the edge to become critical, evenly distributed among the excess edge cycles. A

reduction to the period by that amount will cause the edge to become critical. Thus, in order to

avoid creating constraint violations, the chosen global θ value must be the minimum of individual

thetas.

Going back to our complete example in Figure 4.5(d), we have the following valid theta values:

Edge A → B: θ1 = xb−xa+εab p−aab
x̂b−x̂a+εab p̂ = 0−6+11−1

0−0+1 = 4

Edge A → C: θ2 = xc−xa+εac p−aac
x̂c−x̂a+εac p̂ = 0−6+11−2

0−0+1 = 3

Edge A → D: θ3 = xd−xa+εad p−aad
x̂d−x̂a+εad p̂ = 0−6+11−3

0−0+1 = 2

Edge A → E: θ4 = xe−xa+εae p−aae
x̂e−x̂a+εae p̂ = 0−6+11−4

0−0+1 = 1

Edge F → K : θ5 = xk−x f +ε f k p−a f k
x̂k−x̂ f +ε f k p̂ = 5−0+0−1

0−(−1)+0 = 4

Therefore: θ = min{θ1, θ2, θ3, θ4, θ5} = 1

4.5 Updating occurrence offsets x and period p

The last step in Burns’ algorithm before proceeding to its next iteration, is the period and

occurrence offset update. Having computed the θ value, the period is reduced by that amount.

For instance, the period of the example shown in Figure 4.5 will be reduced from 11 to 10, as θ

has been set to 1. The occurrence offsets of the nodes are updated accordingly:

x(k+1) = x(k) − θ(k) x̂(k), p(k+1) = p(k) − θ(k) p̂(k)

Note that nodes with x̂ value equal to 0 will have no changes in their occurrence offsets as they are

not affected by period updates. These nodes often belong to paths where no edges with non-zero

occurrence index offsets exist. On the other hand, nodes with x̂ values smaller than -1, will have

their occurrence offsets incremented by θ multiple times (|x̂|θ). For example, a node which has a

period cycle distance of 2 from the furthest root, will have its occurrence offset incremented two

times by θ. It is a common misconception to assume that the updated occurrence offsets always

impact the actual occurrence of the events. Occurrence offsets are no more than time offsets,

relative to the current period value. A visual explanation of the previous statement is provided

by the following example:

Example: Figure 4.3 shows an example of how the occurrence offsets of nodes u, v, w, y and z

update after the period reduction. Above the nodes, their x̂ value is displayed, which indicates

the period distance from u affecting the x values. For instance, we know that the offset xz will be

incremented 2 times by θ = 1 as there are two period intervals between z and u (|x̂z| = 2). Note

that, after the period update, the events still occur the same time as before.
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u v w y z
4  2 ­ p  3  1 ­ p 

x̂ = 0  x̂ = 0  x̂ = ­1  x̂ = ­1  x̂ = ­2 

0     1     2     3     4     0     1      2      3      4     0     1     2     3     4    0 

0     1     2     3     0     1     2      3      0      1     2     3     0     1     2    3 

xu = 0 

xu = 0 

xv = 4 

xv = 4 

xw = 1 

xw = 2 

xy = 4  xz = 0 

xy = 5  xz = 2 

p = 5 

p = 4 

Iteration k 

Iteration k+1 

FIGURE 4.3. Visual representation of occurrence offset values (x) between subsequent
iterations. The difference between the old and new period value gives us θ, thus
θ = 5−4= 1.

Lemma 4.2 The fact that occurrence offsets are updated to be relative to the new period value

means that formula x(k+1) = x(k) −θ(k) p̂(k) can be derived from p(k+1) = p(k) −θ(k) p̂(k).

Proof. It is obvious that the occurrence of the nodes that have no critical arcs in their in-degree

should not be affected by the period update. For the rest of the nodes, starting from the formula

of x̂ we have:

x̂(k)
v = min{x̂(k)

u −ε p̂(k)} ⇒ x̂(k)
v ≤ x̂(k)

u −ε p̂(k) ⇒ −ε p̂(k) ≥ x̂(k)
v − x̂(k)

u (4.4)

From the period update formula:

p(k+1) = p(k) −θ p̂(k) ⇒ p(k) = p(k+1) + θ p̂(k) (4.5)

Taking the event graph constraint equation:

x(k)
v ≥ x(k)

u + a−εp(k) (4.5)==⇒ x(k)
v ≥ x(k)

u + a−ε (p(k+1) + θ p̂(k)) ⇒

x(k)
v ≥ x(k)

u + a−εp(k+1) −θεp̂(k) (4.4)≥ x(k)
u + a−εp(k+1) + θ (x̂(k)

v − x̂(k)
u ) ⇒

x(k)
v ≥ x(k)

u + a−εp(k+1) + θ x̂(k)
v −θ x̂(k)

u ⇒
(x(k)

v −θ x̂(k)
v ) ≥ (x(k)

u −θ x̂(k)
u ) + a−εp(k+1) (4.6)

Equation 4.6 indicates that, if we update x(k+1) values to x(k) −θ x̂(k), there will be no constraints

violated. Therefore, the occurrence offset update formula is: x(k+1) = x(k) − θ x̂(k). It is worth

mentioning that this formula also provides valid x values to the nodes that have no critical arcs

in their in-degree, as for these nodes x̂(k) = 0. �
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4.6 Continuing with Burns’ Example

In the previous sections, we delved into the intuition behind each step of the algorithm, presenting

an example at the end of each step (Figures 4.5(a) to 4.5(d)). The last step of each iteration updates

the period as well as the occurrence offsets for the next iteration.

Figure 4.6 displays the next iterations of Burns’ Algorithm example. Notice that each iteration

introduces a new critical arc in the event graph. More specifically, as shown in fig 4.6(a), the

period p has been reduced at the end of the previous iteration to 10, making arc A → E critical.

Given the annotated x and x̂ values, θ is computed equal to 1. Figure 4.5(c) shows the critical-arc

graph after the second period reduction (p = 9) introducing a new critical arc A → D. Eventually,

all arcs are marked as critical, and critical cycles are formed (Figure 4.6(d)), leading to the

termination of the algorithm, with optimal period equal to 7 time units. Figure 4.4 summarises

Burns’ Primal Dual Method Algorithm by presenting a brief description of its variables and steps.

Burns’ Algorithm
- Compute initial x values
- Compute initial period
- L: Construct critical arc graph
- if critical arc graph is cyclic, then exit
- Compute x̂ values
- Compute θ

- Reduce period and x values
- Go to L

FIGURE 4.4. Burns’ Primal Dual Method Algorithm Summary
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4.6. CONTINUING WITH BURNS’ EXAMPLE

(a)
(b)

(c)
(d)

FIGURE 4.5. (a) The initial event graph before performing Burns’ algorithm. (b) The
event graph without the positive-occurrence-index arcs. Event occurrence offsets x
have been initialized and the period has been computed to be equal to 11. (c) The
critical-arc graph of the first iteration. Arcs with grey color are non-critical. (d) The
event graph with the x̂ values annotated.

29



CHAPTER 4. BURNS’ ALGORITHM ANALYSIS

(a) (b)

(c) (d)

FIGURE 4.6. (a) Second iteration (p = 10) (b) Third iteration (p = 9) (c) Fourth iteration
(p = 8) (d) Fifth iteration (p = 7). The algorithm terminates as critical cycles have
formed. Note that the delay/occurrence-index-offset ratio of each cycle is equal to 7.
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5
PETRINET TIMING SIMULATION

As presented in previous sections, Burns’ algorithm is applied on Collapsed-constraint Graphs
(event graphs) which correspond to STGs and actually stem from Event Rule Systems. However,

if the timing model is described by a Petrinet or a Free-Choice Petrinet, a graph transformation is

necessary in order to create an event graph compatible with Burns’ Algorithm. Note that an event

graph can be also viewed as a Marked Graph (i.e. a petrinet where each place has exactly one

incoming arc and one outgoing arc), with the difference that place tokens/markings are included

in the transition-to-transition edge weights as occurence index offsets (ε).

5.1 Initial Petrinet to Event Graph Transformation

The main issue that makes Burns’ algorithm not applicable to petrinets is the presence of place

nodes in the graph. The procedure of removing such nodes is straightfoward but might impact the

correctness of the event graph. For each place, each predecessor transition is connected directly

to every successor transition. If the place has a token then each transition-to-transition edge

will have its occurrence index offset (ε) set to 1. Note that, each place might be associated with

more than one predecessor/successor transition which is usually the case for systems described

by Free-Choise Petrinets. In figure 5.1 the aforementioned transformation is displayed.

It is worth mentioning that the transformation might alter the graph to the point where new

traps and sinks are introduced. According to commoner’s theorem [3], a free-choice system [8]

is live if and only if every proper siphon includes an initially marked trap. The same applies to

marked graphs as they are a Free-Choice Petrinet sub-type. Therefore, the resulting event graph

(viewed as a marked graph) must be live and 1-bounded. In other words, we must guarantee that

each graph cycle contains at least one edge with non-zero occurrence index offset (ε).
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Figure 5.1: This figure shows the initial transformation where all of the predecessors and
successors of a given place are connected with each other. Each transition-to-transition edge is
associated with a delay (a = d) and the occurrence index offset (ε) which can be either one on zero
depending on whether the place has a token or not.

The initial PTnet marking plays a crucial role to the correctness of the event graph after

the transformation. Figure 5.2(c) shows the event graph derived from the PTnet in fig. 5.2(a).

Transitions t0 and t1 have an arc towards t2 as they are connected with the same place in the

initial PTnet. Arc t3→ t0 inherits the place’s marking which translates to an occurrence index

offset equal to 1. However, the generated event graph contains a cycle ({t2, t1}) without positive

occurrence index offsets, thus Burns’ Algorithm will fail as, after the removal of arcs with positive

occurrence index offsets, it considers the graph acyclic.

Figure 5.2(b) displays an alternative PTnet initial marking. In this case, the event graph

after the transformation (fig. 5.2(d)) will have two marked edges (t0→ t2 and t1→ t2) with each

cycle having at least one arc with positive occurrence index offset (ε). At this point it is obvious

that propagating tokens to the places with the highest degree will lead to more marked edges

in the final event graph. However, this should not be considered a solution as there might still

be cycles with no marked edges. Additionally, this might also lead us to scenarios where cycles

contain multiple edges with positive ε-values, possibly affecting the final period.
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(a) (b)

(c) (d)

FIGURE 5.2. This figure shows how, different PTnet initial token placements affect the
correctness of the generated event graphs. The event graph in (c) is constructed
from PTnet (a) and the one in (d) from PTnet (b). The different token placement in
(b) will lead to a marked edge at each graph cycle.

5.2 Ensuring the Event Graph’s Correctness

In this section we will show the transformation step that takes place after the removal of places

and leads us to an event graph compatible with Burns’ algorithm. Let the PTnet shown in

figure 5.3(a). The place removal step of the transformation will lead us to the event graph in

fig. 5.3(b) where two cycles have no marked edges ({t1, t2}, {t4, t5}). Note that, propagating the

token to another place does not solve the issue as we will still have one unmarked cycle. For

instance, if we mark the place connecting {t0, t2} to {t1, t3} in the initial PTnet, the resulting

event graph will have cycle {t4, t5} completely unmarked. Additionally, the cycle consisting of

{t0, t1, t2, t3, t6} will have two marked edges (t0→ t1 and t2→ t3) as the new marked place in the

PTnet will set all of the related transition-to-transition arcs’ occurrence index offsets to 1.

After removing the PTnet places, in order to mark the remaining unmarked event graph

cycles without exhaustively exploring them, we disable all edges with positive occurrence index

offsets and perform a Depth-First-Search (DFS) traversal on the resulting graph. This traversal

allows us to extract the back-edges (or feedback-edges) of a graph at runtime in O(|V |+ |E|) time

complexity. Such edges are always part of at least one cycle, thus, when located, we set their

occurrence index offset (ε) to 1. It is worth mentioning that the DFS traversal does not locate

all cycles but only one per back-edge as each edge might be associated with multiple cycles.

Figure 5.3(c) shows the final event graph after performing a DFS traversal on fig 5.3(b) and

marking the back-edges.
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(a)

(b) (c)

FIGURE 5.3. Complete Petrinet-to-Eventgraph Transformation. (a) The initial PTnet.
(b) The resulting event graph after the PTnet’s places removal (c) The final event
graph after performing a DFS traversal and marking the unmarked back-edges.
The DFS is performed after the initially marked edges are temporarily removed.

5.3 Complete Petrinet to Event Graph Transformation

The complete graph transformation is presented in algorithm 2 below. The algorithm takes a

PTnet as an input and outputs the equivalent event graph (or STG) that is compatible with

Burns’ Algorithm. Note that the term ETG (Event Timing Graph) is used throughout the

pseudo-code. This term is used to emphasize that the resultant event graph does not describe

the behaviour a system (like PTnets) but the timing relationship between its transitions. It is a

common misconception to assume that a marked edge in an event graph is similar to a marked

place in a PTnet. Edges in event graphs correspond to timing arcs and markings define the

system’s periodicity. In more detail, lines 3-6 show that STGs can be converted to event graph

with a simple removal of places. Lines 6-16 show the first step of the transformation where, for a

given place, each predecessor transition is connected to every successor transition with their arc

inheriting the place’s marking. Line 17 disables the marked arcs of the generated ETG in order

to perform a DFS traversal and extract the graph’s back-edges. Eventually, in lines 22-26 the

back-edges are marked and the final ETG is generated.

It is clear up to this point that the initial FCPTnet marking impacts the liveness of the

constructed ETG. The same stands for boundedness. There are certain FCPTnet markings that

can violate the boundedness of the resultant ETG, meaning that the ETG is k-bounded with

k > 1 while the original FCPTnet was 1-bounded. This usually occurs when the initial petrinet

token is placed on a choice or return-from-choice place (or in general a place with more than
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one successor or predecessor transition). In this special case, the marking of the ETG must be

recomputed. To achieve this without searching for a new petrinet initial marking equivalent to

the original, we remove all markings and rerun Algorithm 2. The DFS traversal will mark all of

the back-edges which guarantees us a live and 1-bounded ETG.

Algorithm 2: Construct Event Timing Graph
1 Input: FCPTnet P = (N, M), where N = (S,T,F)
2 Output: STG N′ = (T′,F ′), with marking M′
3 if (P is STG) then
4 N′, M′ = make_STG(P, M); // P is STG, simply remove places //
5 return;
6 end
7 for (each place p in S) do
8 for (each transition u = •p in T) do
9 for (each transition v = p• in T) do

10 new_edge = add_ETG_edge(u,v,F ′); // Add ETG edge //
11 if (has_token(p)) then
12 mark_STG_edge(new_edge, M′); // Mark edge //
13 end
14 end
15 end
16 end
17 disable_marked_STG_edges(F ′, M′); // Disable marked ETG edges //
18
19 // get all ETG backedges //
20 backedges_set = DFS_get_backedges(F ′, M′);
21
22 for (each edge e in backedges_set) do
23 if (is_marked(e) == 0) then
24 mark_STG_edge(e, M′); // Mark ETG backedge //
25 end
26 end
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6
COMPLETE ASYNCHRONOUS STA FLOW

In this chapter, we present a complete Asynchronous Static Timing Analysis (ASTA) method-

ology that can be used to perform the timing verification of asynchronous controllers. Taking

as inputs the event model and the netlist that describe the controller, the proposed flow

extracts the transition-to-transition (T2T) delays from the netlist and annotates them onto the

event graph in order to compute the minimum period. Additionally, several extensions to Burns’

period computation algorithm have been implemented, such as double precision support, missing

marking insertion and critical cycle reporting. The ASTA engine has been imported in a tool

called ASP and was developed with the contribution of Stavros Simoglou who implemented the

equilibrium slews computation and the ETG arc delay derivation algorithms.

6.1 Asynchronous STA Flow Overview

The complete flow of the ASTA engine is shown in figure 6.1. In order to perform the timing

verification of an asynchronous controller, the designer must provide the engine with, the con-

troller netlist, the event model, the technology timing library as well as additional technology

information regarding the components used. A brief description of the required files and the

related file formats is presented below:

• The netlist is given in Verilog format (.v) and describes the connectivity of the electronic

circuit, i.e. the connections between the components that compose the design.

• The event model specification is given in Petrify [7] File Format (.g), which can describe

any type of Petri net, or in Graphviz [5] file format (.dot) which is a graph description

language.
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• The technology timing library, given in Liberty File Format (.lib), contains the timing

information of the components used in the design as well as the NLDM LUTs, originally

presented in Section ??.

• Library Exchange Format [2] (.lef), is a specification for representing the physical

layout of an integrated circuit in an ASCII format. It includes design rules and abstract

information about the cells.

In the following sections we will present in more detail each step of the flow, starting from the

equilibrium slew (or transition times) computation and proceeding with the delay-annotated

Event Timing Graph (ETG) until eventually the minimum period computation.

Netlist (Verilog) 
Event Model 

Technology Info (LEF) 
Timing Info (LIB) 

Cyclic Equilibrium Slew Computation

Event Timing Graph Construction

ETG T2T Delay Derivation in Netlist

ETG Period and Critical Cycle(s) Computation

Environment Delays
(SDC) 

ASP   Tool

FIGURE 6.1. Asynchronous STA flow.

6.2 Computing Worst Case Slews across Cycles

The first step of the ASTA flow is the computation of cyclic equilibrium slews (or transition times)

for all circuit gate pins. In the same manner as classic STA, in late-mode and early-mode analysis

we compute the worst-case and best-case slews respectively. In more detail, the presence of cycles

makes this process iterative which stops until all slews have reached a steady state across the

entire cyclic netlist. It is worth mentioning that this flow step does not worsen the complexity of

our engine as, in general, the steady state is reached after the first few iterations.

The slew propagation starts from Primary Input (PI) pins, or a random pin if there are no

PIs, and continues through the timing arcs of the circuit. Note that, cycle back-edges impact the
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transition times of already visited nodes. The process continues until the slew difference of each

pin between subsequent propagation iterations becomes close to zero. Figure 6.2 shows a ring

oscillator with the equilibrium slew values annotated. Pin INV2/ZN, being connected to NAND1/A2,

indirectly impacts the slews of the rest gate pins in the same cycle.

Enable

Out

0.037 0.059

0.041 0.027

0.127

0.057

FIGURE 6.2. Three-Stage Ring Oscillator with enable and annotated Cyclic Equilibrium
rise and fall Slews.

Note that, most industrial STA engines perform cycle cutting, when at least one combinational

loop is encountered in the circuit. Therefore, the disabled arc will have 0 slew and will not impact

other gate pin slews, due to the absence of cycles in the resulting gate pin graph. This leads to

over-optimistic results which are also timing errors.

Algorithm 3 displays the aforementioned procedure, taking as input the cyclic gate pin timing

graph and the slew threshold (slew_delta), i.e. the minimum allowable slew difference between

subsequent iterations. The 4-tuple graph notation G = (V , E, Load(V ), Slew(V ) is used to

denote that each node (or gate pin) in V is characterised by its load (capacitance) and slew

(transition time). Initially, as shown in lines 4-11, all slews are initialised to 0 and all PI gate

pins are added to a First-In-First-Out (FIFO) queue. In lines 12-19 we extract the first available

pin from the queue and compute its new slew value before eventually comparing it with the value

of the previous iteration. When pin slews from subsequent computations are not identical (their

difference is less than slew_delta), the pin’s slew is updated and its successors are added into

the FIFO, as the update impacts them (lines 21-27). Note that, this algorithm does not require

the event model and is performed solely on the netlist.
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Algorithm 3: Cyclic Equilibrium Slew Computation
1 Input: Gate Pin Timing Graph G = (V ,E,Load(V ),Slew(V )), Slew Threshold slew_delta
2 Output: Slew Annotated Timing Gate Pin Graph G
3 Slew(V ) = 0; // Initialise Gate Pin Pin Slews to 0 //
4 Q = ;; // FIFO Queue Q //
5 for (each Primary Input Gate Pin pi in V) do
6 set_slew(pi, pi_slew_constraint); // Set PI Slew (user-defined) //
7
8 for (each Successor Gate Pin s in pi →) do
9 enqueue(Q, s); // Add pi Successor Gate Pins to Queue //

10 end
11 end
12 while (Q != ;) do
13 q = dequeue(Q); // next Gate Pin for Slew Computation //
14
15 slew = calculate_slew(q, get_slew(→ q), get_load(q →));
16 // Compute q Slew, based on input Slew and output Load //
17 if (| slew - get_slew(q) | < slew_delta) then
18 continue; // Continue to Another Gate Pin from Queue //
19 end;
20
21 prev_slew = get_slew(q);
22 new_slew = max(prev_slew, slew);
23 set_slew(q,new_slew); // Update Slew Value //
24
25 for (each Successor Gate Pin s in q →) do
26 enqueue(Q, s); // Add q Successor Gate Pins to Queue //
27 end
28 end

6.3 Event Timing Graph Construction and Delay Annotation

After computing the equilibrium slew values, we construct the Event Timing Graph (ETG) in

order to annotate the signal transition-to-transition (T2T) delays. The ETG construction has been

presented in Chapter 5 Algorithm 2, where all places are removed and the timing arcs between

transitions are created. Recall that, an ETG is nothing more than an annotated STG with T2T

delays, identical to Burns’ collapsed constraint graph [1]. Therefore, if the event model is already

an STG there is no conversion required.

Figure 6.3 shows the ETG construction of the alloc-outbound benchmark. The initially

given Petri net, shown in Fig. 6.3(a), contains one choice and one return-from-choice place. The

ETG in Fig. 6.3(b), after the PTnet place removal, is not live and therefore not compatible with

Burns’ Algorithm, due to the creation of a new cycle with no marked edges. As shown in chapter 5,

in order to have a live ETG, we disable all marked arcs and perform a DFS traversal to mark

the located back-edges. Fig. 6.3(c) displays the final alloc-outbound ETG after the back-edge

marking insertion. The temporary removal of arc req+→ ack- caused the DFS to start from req+

and locate the back-edge busctl+→ ackctl+. In other scenarios we might have no marked arcs

to disable before the traversal. In this case, the DFS will start from the first located root or a

random node when there are no roots.

With the ETG constructed and the equilibrium slews computed, the T2T delays can be

computed and annotated. Similar to classic STA, their computation is based on the gates that
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(a)

(b) (c)

FIGURE 6.3. Conversion of a FCPTnet to a live ETG. (a) alloc-outbound benchmark
FCPTnet. (b) The initial non-live ETG after the place removal. (c) The live ETG
after marking the unmarked back-edges.

compose the transition-to-transition paths and their timing library information. The procedure

will be more clear through the example shown in Figure 6.4. In Fig. 6.4(a), there are two paths

starting from primary input (PI) b that lead to primary output (PO) y. The red coloured path

contains one negative unate gate, thus for a rising transition of b, y will fall and for a falling

transition of b, y will rise. Therefore, the delay of this path describes the delays of b+→ y- and

b-→ y+ T2T arcs. Although, in the ETG depicted in Fig. 6.4(b), only b-→ y+ T2T arc is present.

In general ETGs might not contain all possible T2T arcs, as in reality some cannot be sensitisable.

Analogously, the blue coloured path contains two negative unate gates, therefore for a rising

transition of b, y will rise and vice versa. This path provides us the delay for b+→ y+ ETG T2T

arc. It is worth mentioning that, there might be multiple paths matching to a specific ETG T2T

arc. In this case, we annotate the worst-case or best-case delay, depending on whether we are

performing max or min analysis. Another scenario that was not presented in Figure 6.4, is the

handling of binate gates during the delay extraction. In paths with binate gates we always take

the worst-case (for max analysis) or the best-case (for min analysis) delay regardless of side input

transitions (rise or fall). This adds pessimism, as the resultant path may not be sensitisable. Note

that, PO-to-PI and PI-to-PI arc delays cannot be extracted from the netlist, as there are no such

paths, and are derived from the environment or, at this point, defined by the designer.
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(a)

(b)

Figure 6.4: (a) The unfolded collapsed-constraint graph of the ring oscillator (b) The collapsed-
constraint graph of the ring oscillator

Algorithm 4 presents the delay extraction and annotation procedure. Taking as input the

Gate Pin Timing Graph G = (V , E) and the Event Timing Graph (ETG) N ′ = (T ′, F ′), with

T ′ being the set of transitions and F ′ the set of T2T arcs, the algorithm performs the delay

annotation after their extraction from the netlist. More specifically, for each T2T arc, in lines 5-6

we extract the source and destination transitions which are used to identify the respective netlist

gate pins (lines 8-10). In line 13 we extract the acyclic paths between the extracted gate pins.

Possible internal loops are ignored, as they were only useful in the equilibrium slew computation.

Eventually, lines 15-19 compute the GBA STA critical path delay, based on the converged slew

values. Similar to classic STA, the delay computation is performed on transitions that exist

following the unateness of the cells. Note that the use of max in line 17, indicates that we are

performing a worst-case analysis.

6.4 Computing Period and Reporting Critical Cycles

In the final step of our flow, we provide the delay-annotated ETG to Burns’ Primal-Dual Method

Algorithm. As stated in previous chapters, Burns’ Algorithm computes the minimum allowable

period of asynchronous designs described by the provided collapsed constraint graph (or in our

case, ETG). The period is equal to the minimum delay/markings ratio of the graph cycles and its

computation is performed by iterative relaxation, which makes the whole process polynomial in

complexity. Recall that, exhaustively exploring all cycles is not feasible, as the number of cycles

in an arbitrary graph can be exponential in the number of its arcs.
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Algorithm 4: Annotate ETG Delays
1 Input: Gatepin Timing Graph G = (V ,E), Event Timing Graph N′ = (T′,F ′)
2 Output: Delay(E′), for each edge (i, j) of N′ ∈ F ′
3 for (each edge e in F ′) do
4 max_delay = −∞;
5 s = source(e); // Get Source node s of Edge e //
6 d = destination(e); // Get Destination node d of Edge e //
7
8 // Gate pins of ETG transitions are unique //
9 gs = get_gate_pins(G, s); // Get Gate Pin of Source //

10 gd = get_gate_pins(G,d); // Get Gate Pin of Destination //
11
12 // Examine all Paths from gate pin gs to gate pin gd //
13 paths = get_acyclic_paths(G, gs, gd);
14
15 for (each path p in paths) do
16 path_delay = compute_path_delay(p);
17 max_delay = max(max_delay, path_delay);
18 end
19 set_delay(e,max_delay);
20 end

Our Burns’ Algorithm implementation includes multiple improvements and extensions. The

first step of the algorithm has been extended to insert possible missing markings, if the graph

after the marked-edge removal is still cyclic. This process is done through a DFS traversal and is

similar to lines 17-26 of Algorithm 2 shown in Chapter 5. Additionally, the algorithm has been

tuned to support floating precision numbers, due to the annotated ETG delays. Another extension

allows the designer to view critical arc cycles after Burns’ Algorithm execution. This is achieved

by performing a DFS traversal on the critical-arc graph where, with the help of a stack, the paths

that form cycles are reported whenever a back-edge is found. It is worth mentioning that the

DFS traversal does locate all cycles as multiple cycles might have common back-edges.

Figure 6.5 displays the nowick benchmark ETG with the T2T delays (fig. 6.5(a)) and critical

cycle annotated (fig. 6.5(b)). Note that, all output-to-input and input-to-input arcs have 0 delay,

as such paths do not exist in the netlist (Fig. 6.4(a)). The computed period is equal to 2.24ns and

can be verified by dividing the sum of the critical cycle delays by the number of critical cycle

markings (in our case we have only one marked arc: y-→ b+
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FIGURE 6.5. nowick Benchmark ETG with Delays and Critical Cycle annotated.
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6.5 Experimental Results

Our ASTA flow has been tested using a set of 23 asynchronous control circuit benchmarks, which

have been synthesised and technology mapped by Petrify Tool [7]. The timing library used is a

0.25 µm standard-cell library (.lib). Our engine is also capable of performing classic STA and

we have validated that it produces the same results as other industrial STA tools. The tests

have been run with no RC wire delays. However, this can be possible by using technology-library

wireload tables or by computing the lumped or distributed RC Elmore wire delays [4].

Table 6.1 shows the results of all 23 benchmarks. Recall that, classic STA engines cut

combinational circuit loops which leads to missing timing information and over-optimism in the

results. Additionally, the fact that classic STA is not applicable on cyclic circuits, makes the signal

slews over-optimistic for every asynchronous circuit by default, as there is no equilibrium slew

computation performed. In the fist three columns of table 6.1 we present the benchmarks, as well

as the number of cells and gate pins that constitute them. The next six columns consist of our

ASTA engine results and the next six present the Industrial STA Tool results. In the first two

columns of our results, we show the delay of the critical cycles (i.e. the benchmarks’ period) and

the number of ETG nodes (i.e. transitions) that form the first critical cycle extracted (as multiple

might exist). In the fourth and fifth columns of our results, we display the mean delay and slew

values of the critical cycle arcs, and in the last two, the delay and slew deviation across all timing

arcs through their 3σ values. On the other hand, the first two columns of the industrial STA

engine results, contain the critical path delays after the cycle cutting, as well as the number

of arcs cut. Analogously to our tool’s results, the rest of the columns show and delay and slew

mean values of the critical path arcs, as well as the derivation of all timing arcs (3σvalues).

Note that, there is no correlation between the critical cycles of our tool and the critical paths

of the industrial STA engine. However we display the values to reflect on their difference and

emphasise on how over-optimistic classic STA engines are on cyclic circuits. The last column

illustrates the percentage difference between the critical cycle delays or our tool and the critical

path delays of the industrial STA engine. The average difference is approximately 50% meaning

that the industrial tool is 50% more optimistic.

One considerable benchmark is chu150, as its netlist is acyclic and there are no cut arcs

by the industrial tool. However, as seen in the benchmark’s ETG shown in figure 6.4(b), the

critical cycle contains multiple Output-to-Input arcs, i.e. arcs that do not correspond to any

netlist path (e.g. x-→ y-). In other words the cycles of chu150 are between circuit signals and

the environment. Another benchmark worth mentioning is mr0, as it poses the smallest delay

percentage difference between ASTA and industrial STA (16.69%). Here the industrial tool

happens to cut mr0 arcs, which present minimum slew impact. Additionally, the cut arcs are not

critical, thus the benchmark’s period is not much affected.
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Table 6.1: ASTA Experimental Results and Comparison to Industrial STA Tool

Design Cells Gate
Pins

ASP Tool (this work) Industrial STA Tool
Critical
Cycle

Critical
Cycle Arcs Delay

3σ
(ns)

Slew
3σ
(ns)

Critical
Path
Delay

(ns)

Cut
Arcs

Delay
Mean
(ns)

Slew
Mean
(ns)

Delay
3σ
(ns)

Slew
3σ
(ns)

%∆
DelayDelay

(ns)
ETG

Nodes

Delay
Mean
(ns)

Slew
Mean
(ns)

dff 2 14 1.845 16 0.115 0.091 0.392 0.229 0.477 2 0.238 0.130 0.148 0.179 74.14%
ring 3 11 0.557 6 0.278 0.092 0.048 0.148 0.247 1 0.082 0.058 0.219 0.179 55.55%

ebergen 5 22 2.931 12 0.244 0.122 0.542 0.400 1.258 2 0.251 0.197 0.582 0.403 57.07%
c3dec2 9 34 1.865 6 0.310 0.060 0.750 0.127 1.060 4 0.132 0.141 0.185 0.223 43.14%
half 9 32 1.784 5 0.356 0.087 0.812 0.089 1.050 5 0.150 0.130 0.343 0.264 41.16%

chu150 10 35 2.196 10 0.219 0.057 0.652 0.098 0.874 0 0.145 0.086 0.156 0.059 60.17%
vbe5b 10 37 2.707 8 0.338 0.054 1.013 0.119 1.275 1 0.141 0.095 0.193 0.118 52.88%
nowick 11 40 2.239 12 0.186 0.058 0.534 0.178 0.818 1 0.163 0.107 0.198 0.181 63.44%
vbe5c 11 37 1.455 9 0.161 0.048 0.373 0.079 0.984 2 0.123 0.101 0.166 0.202 32.39%
ccc_p 13 45 2.381 15 0.158 0.112 0.371 0.243 1.249 3 0.156 0.135 0.225 0.293 47.51%

sbuf-read-ctl 13 46 2.364 13 0.181 0.044 0.535 0.108 1.071 2 0.153 0.132 0.387 0.326 54.70%
seq4 14 46 3.332 16 0.208 0.017 1.023 0.051 1.086 2 0.155 0.103 0.195 0.180 67.41%

mp-forward-pkt 15 50 1.767 10 0.176 0.041 0.494 0.141 0.791 1 0.131 0.086 0.228 0.203 55.22%
alloc-outbound 15 52 1.781 14 0.127 0.037 0.388 0.113 0.755 2 0.151 0.095 0.117 0.148 57.62%

chu133 15 48 2.315 11 0.210 0.089 0.426 0.274 1.342 3 0.134 0.110 0.205 0.283 42.03%
converta 16 55 3.586 12 0.298 0.135 0.703 0.347 1.494 6 0.213 0.191 0.287 0.421 58.34%
nak-pa 18 60 2.076 14 0.148 0.033 0.550 0.081 0.965 1 0.193 0.147 0.554 0.416 53.52%

sbuf-ram-write 20 69 3.577 16 0.223 0.088 0.647 0.395 1.831 2 0.166 0.113 0.250 0.219 48.80%
ram-read-sbuf 23 75 3.140 16 0.196 0.059 0.686 0.288 1.419 1 0.177 0.138 0.465 0.377 54.81%
trimos-send 27 90 5.695 8 0.711 0.231 0.628 0.427 3.360 14 0.186 0.139 0.313 0.259 41.00%

mmu 29 91 5.415 8 0.676 0.061 2.819 0.187 3.361 11 0.168 0.130 0.334 0.269 37.93%
mr1 34 105 6.665 11 0.605 0.072 2.843 0.218 3.058 13 0.218 0.189 0.499 0.449 54.11%
mr0 56 178 6.545 17 0.385 0.118 0.866 0.262 5.453 21 0.194 0.141 0.321 0.261 16.69%

AVERAGE - - - - - - - - - - - - - - 50.85%
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CONCLUSIONS AND FUTURE WORK

It is clear that the necessity of an Asynchronous Static Timing Analysis (ASTA) engine is crucial

to the application and future of asynchronous systems. The proposed methodology, performs

ASTA of asynchronous controllers in polynomial time complexity by utilising both the event

model (PTnet, STG e.t.c) as well as the Verilog netlist. Our flow is fully automated, as long as

all necessary files are provided, and computes the equilibrium slews across all cycles before

proceeding to the extraction and annotation of the delays onto the constructed Event Timing

Graph (ETG). The final step of our flow includes the design’s period computation, which is done

through Burns’ Polynomial Primal-Dual Algorithm, and the critical cycles’ extraction which

is optional. Additionally, we have presented a way to convert multiple event models, such as

Free-Choice Petrinets (FCPTnets), into an ETG that is compatible with Burns’ Algorithm.

As future work we consider the complete handling of Bundled-Data circuits where the design

is separated into Control (asynchronous) and Datapath (synchronous) sections. Furthermore, the

application of Burns’ algorithm can be extended by formulating more problems into the collapsed-

constraint graph notation. An application worth considering is the STA of Latch designs, which

can be easily performed through Burns’ algorithm as the signal arrival and departure times of

latches can be viewed as events.
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