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Abstract

Emotions play an important role in human-to-human communication and inter-
action, allowing people to express themselves beyond the verbal domain. The
ability to understand human emotions is desirable for the computer as well, and
thus several applications of automatic emotion recognition can be found in dif-
ferent domains. In this Thesis, an attempt has been made to classify human
emotions from video recordings, based on the physical characteristics, into six
main categories: anger, fear, happiness, disgust, sadness, and surprise. In order
to create this emotion recognition system, ML methods such as transfer learn-
ing and Deep Neural Networks have been used. Initially, the required amount
of data had to be obtained, and preprocessing techniques were applied to the
videos in order to transform them into appropriate input for pretrained neural
network architectures. The research then focused on applying fine-tuning on well
known convolutional neural network architectures and making them capable of
classifying emotions effectively. Finally, several different implementations of the
developed framework were evaluated and the results were analyzed and examined
thoroughly.
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Περίληψη

Αδιαμφισβήτητα, τα συναισθήματα διαδραματίζουν κυρίαρχο ρόλο στην ανθρώπινη

επικοινωνία, καθώς επιτρέπουν στα άτομα να εκφράζονται εξωγλωσσικά. Η ικανότη-

τα αναγνώρισης των ανθρώπινων συναισθημάτων αποτελεί πρόκληση και στον τομέα

της επιστήμης των υπολογιστών, γ’ αυτό και σχετικές εφαρμογές χρησιμοποιούνται

σε πολλούς τομείς. Στην παρούσα διπλωματική εργασία, γίνεται μία προσπάθεια

για την κατηγοριοποίηση των συναισθημάτων ανθρώπων από βίντεο, βασισμένη στα

φυσικά τους χαρακτηριστικά σε 6 βασικές κατηγορίες: θυμός, φόβος, χαρά, αη-

δία, λύπη και έκπληξη. Για τον σκοπό αυτό χρησιμοποιήθηκαν τεχνικές μηχανικής

μάθησης όπως μεταφερόμενη μάθηση και βαθιά νευρωνικά δίκτυα. Αρχικά έπρε-

πε να συλλεχθεί ο απαιτούμενος όγκος δεδομένων και να εφαρμοστούν τεχνικές

προεπεξεργασίας στα βίντεο ώστε να μετατραπούν σε κατάλληλη είσοδο για αρχι-

τεκτονικές προεκπαιδευμένων νευρωνικών δικτύων. ΄Επειτα, η έρευνα εστιάστηκε

στην εφαρμογή ακριβούς προσαρμογής σε ευρέως γνωστές αρχιτεκτονικές συνελι-

κτικών νευρωνικών δίκτυων, ωστέ να μπορούν να αναγνωρίζουν συναισθήματα με

ακρίβεια. Τέλος, διαφορετικές υλοποιήσεις των εν λόγω συστημάτων εξετάστηκαν

και τα αποτελέσματα των πειραμάτων απεικονίστηκαν και αναλύθηκαν διεξοδικά.



Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Conventional FER Approaches . . . . . . . . . . . . . . . 2

1.1.2 Deep Learning Based FER Approaches . . . . . . . . . . . 3

1.2 Contribution and Outline . . . . . . . . . . . . . . . . . . . . . . 4

2 Databases 6

2.1 Categorizations of Databases . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Elicitation Methods . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Database Types . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Famous Databases for video FER . . . . . . . . . . . . . . . . . . 8

2.3 Dataset Construction . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Frame Selection . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Face Detection . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.3 Resizing and Linear Scaling . . . . . . . . . . . . . . . . . 14

2.4.4 Histogram Equalization . . . . . . . . . . . . . . . . . . . 14

2.4.5 Conversion to RGB and Normalization . . . . . . . . . . . 15

3 Theory of Neural Networks 16

3.1 How does a neural network work? . . . . . . . . . . . . . . . . . . 17

3.2 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iv



Contents v

3.4 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . 27

3.5.1 FC Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.2 Convolutional Layer . . . . . . . . . . . . . . . . . . . . . 28

3.5.3 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.4 Famous CNN architectures . . . . . . . . . . . . . . . . . . 30

3.6 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 Transfer Learning for CNNs . . . . . . . . . . . . . . . . . . . . . 35

4 Proposed Method 36

4.1 VGG16 architecture . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Fine-tuning VGG16 . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Testing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 1st Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 2nd Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 3rd Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 4th Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Evaluation and Discussion 51

Bibliography 53



List of Figures

2.1 Video frames from CK+ database [1]. . . . . . . . . . . . . . . . . 9

2.2 Video frame from the MUG database [2] before and after cropping
by Viola-Jones face detection. . . . . . . . . . . . . . . . . . . . . 12

2.3 Five Haar-like features. Image from [3] . . . . . . . . . . . . . . . 13

2.4 Video frame from the MUG database [2] before and after applying
Histogram Equalization. . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Schematic of a neuron model. Image from [4] . . . . . . . . . . . . 16

3.2 NN model with one hidden layer of three nodes, one output layer
with two nodes, and three inputs. . . . . . . . . . . . . . . . . . . 17

3.3 Sigmoid non-linearity squashes real numbers to the range [0,1] . . 19

3.4 The tanh non-linearity squashes real numbers to range between
[-1,1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Rectified Linear Unit (ReLU) activation function is zero when x <
0 and then linear with slope 1 when x > 0. . . . . . . . . . . . . 21

3.6 Schematic of gradient descent. . . . . . . . . . . . . . . . . . . . 24

3.7 A regular 3-layer NN on the left and on the right a CNN which
arranges its neurons in three dimensions (width, height, depth),
as visualized in one of the layers. Images from [4] . . . . . . . . . 27

3.8 Schematic convolutional layer. Image from [4] . . . . . . . . . . . 29

3.9 Left: The input volume of size 224× 224× 64 is pooled with filter
size 2 and stride 2 into output volume of size 112×112×64. Note
that the volume depth is preserved. Right: Max pooling, here
shown with a stride of 2. Each max is taken over 4 numbers (little
2× 2 square regions). Image from [4] . . . . . . . . . . . . . . . . 30

3.10 AlexNet architecture (distributed in 2 GPUs). Image from [5] . . 31

3.11 GoogLeNet architecture. Image from [6] . . . . . . . . . . . . . . 32

3.12 VGG16 architecture. Image from [7] . . . . . . . . . . . . . . . . 32

3.13 Overfitting occurence. Image from [4] . . . . . . . . . . . . . . . 34

vi



LIST OF FIGURES vii

4.1 Pre-processing steps . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Loss value through epochs . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Model accuracy on the training and validation sets through the
epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 (a) Confusion matrix using the majority voting algorithm with
average accuracy 75.05 %. (b) Confusion matrix using mean scores
with average accuracy 80.48 %. . . . . . . . . . . . . . . . . . . . 43

4.5 Loss value through epochs . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Model accuracy on the training and validation sets through the
epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7 (a) Confusion matrix using the majority voting algorithm with
average accuracy 79.10%. (b) Confusion matrix using mean scores
with average accuracy 83.20% . . . . . . . . . . . . . . . . . . . . 45

4.8 Loss value through epochs . . . . . . . . . . . . . . . . . . . . . . 47

4.9 Model accuracy on the training and validation sets through the
epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.10 (a) Confusion matrix using the majority voting algorithm with
average accuracy 78.9% (b) Confusion matrix using mean scores
with average accuracy 80.61%. . . . . . . . . . . . . . . . . . . . 48

4.11 Loss value through epochs . . . . . . . . . . . . . . . . . . . . . . 49

4.12 Model accuracy on the training and validation sets through the
epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.13 (a) Confusion matrix using the majority voting algorithm with
average accuracy 80.37%. (b) Confusion matrix using mean scores
with average accuracy 84.2% . . . . . . . . . . . . . . . . . . . . 50



List of Tables

2.1 Summary of the databases . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Number of videos in every class . . . . . . . . . . . . . . . . . . . 11

4.1 VGG16 architecture . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Number of frames for every class in the training set . . . . . . . . 46

viii



List of Acronyms
ML Machine Learning

DNN Deep Neural Networks

RNN Recurrent Neural Networks

CNN Convolutional Neural Networks

NN Neural Networks

HCI Human Computer Interaction

FER Facial Emotion Recognition

SVM Support Vector Machine

AAM Active Appearance Model

LSTM Long Short-Term Memory

BP Backpropagation

ReLU Rectified Linear Unit

Adam Adaptive Moment Estimation

cdf Cumulative Distributed Function

RMS Root Mean Squared

FC Fully Connected



Chapter 1

Introduction

One of the greatest abilities of human beings is their ability to feel. Emotions
are of primary importance in social interaction, perception, and human intelli-
gence [8]. Basically, emotions can be expressed through several social behaviors,
including facial expressions, speech, text, gestures, etc. Since perception and
experience of emotions are vital for communication in the social environment,
understanding emotions becomes essential for humans in everyday life.

Over recent decades automated recognition of emotions by computers has
become a challenging task for both academia and industry, since emotional in-
telligence is an important part of artificial intelligence. Emotion-aware systems
greatly empower human computer interaction (HCI) and they have already been
a revolutionizing computer vision research topic [9] [10] [11]. Such systems have
an interesting and wide variety of applications, including monitoring driver state
(e.g. fatigue state), measuring player’s emotional experience in gaming, detect-
ing depression in individuals or diagnosing developmental disorders of children
through monitoring their facial expressions. Emotion-sensitive machines are also
used to improve automatic tutoring by providing valuable information about
whether the user is finding examples boring or irritating [12].

Inspired by the recent success of deep learning, emotion analysis tasks have
also been enhanced by the adoption of deep learning algorithms, such as con-
volutional neural networks (CNN), recurrent neural networks (RNN), as well as
hybrid methods that combine both [9] [10]. Furthermore, automated recogni-
tion of emotions has been addressed using different modalities: audio, visual,
physiological measurements, and their combinations [13] [14].

Among nonverbal components, visual information is the main information
channel in interpersonal communication. Especially facial expressions are re-
sponsible for a huge proportion of nonverbal communication. Therefore, in this
work we focus on the visual modality of the data by extracting spatio-temporal
information from video recordings of human faces and use it for emotion recog-
nition based on fine-tuned pretrained CNN models.

1



1. Introduction 2

Although as human beings we experience a plethora of different types of
emotions in our lifetime, for automatic recognition it is necessary to declare a set
of discrete emotional classes in order to simplify machine learning (ML) problems.
In the early 1970s, Ekman indicated that humans perceive certain basic emotions
with respect to facial expressions in the same way, regardless of culture [15].
According to his studies, humans share six basic emotions: happiness, sadness,
fear, anger, disgust, and surprise. Ekman’s theory has been widely accepted and
inspired many researchers for future work. Therefore, we will focus on those six
emotional classes for this thesis project.

1.1 Related Work

Within the last few years, interest in automatic facial emotion recognition (FER)
has been increasing with the rapid development of artificial intelligence, and
several different approaches of FER systems have been proposed during the past
decades.

1.1.1 Conventional FER Approaches

In conventional FER approaches, the FER pipeline is composed of 3 major steps:
(1) face or facial component detection, (2) feature extraction, and (3) emotion
classification. First, a face image is detected from an input image, and facial
components (e.g., eyes and nose) or landmarks are detected from the face re-
gion. Second, various spatial and temporal features are extracted from the facial
components. Third, classification algorithms, such as a support vector machines
(SVM), AdaBoost, and random forests, produce the recognition results using the
extracted features [16] [17].

Shan et al. [18] utilized local binary patterns for feature extraction and clas-
sified various facial expressions from static images using an SVM. Other image
approaches use an active appearance model (AAM) to extract facial feature points
and combine useful local shape features to form a classifier [19]. The role of the
AAM, which is built during the training procedure, is to match a statistical model
of object shape and appearance to a new unseen image.

For video FER, many systems have been used to measure the geometrical
displacement of facial landmarks between the current frame and previous frames
as temporal features. The main difference between FER for static images and for
video sequences is that the landmarks in the latter are tracked frame-by-frame
and the system generates new dynamic features through displacement between
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the previous and current frames. Polikovsky et al. [20] presented facial micro-
expressions recognition in video sequences by dividing face regions and then gen-
erating 3D-Gradients orientation histogram from the motion in each region.

1.1.2 Deep Learning Based FER Approaches

In contrast to traditional approaches using handcrafted features, deep learning
has emerged as a general approach to ML, yielding state-of-the-art results in many
computer vision studies with the availability of big data. Such emotion recogni-
tion approaches highly reduce the dependence on face-physics-based models and
other pre-processing techniques by enabling learning directly from the input im-
ages. However, the amount of annotated training data has a great impact on
deep neural network (DNN) models’ performance, since deep learning algorithms
require large datasets to achieve state-of-the-art results, and this is considered to
be their main limitation.

Deep learning algorithms, including CNN and RNN, have been used for fea-
ture extraction and classification of emotions from video recordings. In 2015,
Jung et al. [21] used two different types of CNN: the first extracted temporal
appearance features from the image sequences, whereas the second extracted
temporal geometry features from temporal facial landmark points. These two
models were combined using a new integration method to boost the performance
of facial expression recognition. In the 2016 Emotion Recognition in the Wild
(EmotiW) Challenge, Bragal et al. [22] proposed a deep learning system for emo-
tion recognition. Deep CNNs such as VGG and ResNet were used as feature
extractors. Overall, the system consisted of the following pipelined modules:
face detection, frames pre-processing, deep feature extraction, feature encoding
through the video frames and, finally, an SVM classifier.

Many approaches have adopted a CNN directly for emotion recognition. How-
ever, due to the fact that CNN-based methods cannot reflect temporal variations
in the facial components, several hybrid approaches combining a CNN for the spa-
tial features of individual frames, and long short-term memory (LSTM) for the
temporal features of consecutive frames, have been developed. LSTM is a special
type of RNN capable of learning long-term dependencies in the data. Kahou et
al. [23] proposed a hybrid RNN-CNN framework for propagating information over
a sequence using a continuously valued hidden-layer representation. In this work,
the authors presented a complete system for the 2015 Emotion Recognition in
the Wild (EmotiW) Challenge, and proved that a hybrid CNN-RNN architecture
for a facial expression analysis can outperform a CNN approach using temporal
averaging for aggregation.
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Another recently proposed architecture that made great progress in deal-
ing with various video analysis tasks is that of deep 3-dimensional CNNs (eg.
C3D [24]). 2-dimensional CNNs have a major limitation that they just handle
spatial information while neglecting important temporal video information. On
the contrary, C3D can simultaneously model appearance and motion information.
Fan et al. [10] attempt to hybridize C3D with CNN-LSTM models. According
to the proposed system, an RNN takes appearance features extracted by a CNN
over individual video frames as input and encodes motion later, while a C3D
models appearance and motion of video simultaneously. As a result, this hybrid
network gives competitive results for emotion classification.

1.2 Contribution and Outline

Facial expressions play a vital role in social communications between humans. It
is therefore unsurprising that automatic FER has become a subject of much recent
research. For this Thesis, we present a method for classifying facial expressions
from video recordings. Our approach leverages on the recent success of deep
CNNs in several recognition problems.

Although effective, deep architectures require massive amounts of labeled data
to be trained, and this is not yet available in the emotion recognition literature,
especially for video data. Another issue related to data limitations is that existing
databases often contain posed expressions, recorded into closed lab environments.
As a result, a model trained using these data has very low performance when
tested on real-world data. To overcome the above limitations of other FER
approaches, in our experiments we make use of transfer learning techniques, using
pre-trained CNN architectures. The pre-trained model is then fine-tuned with
limited emotion labeled training data to obtain final classification models.

Given the fact that the network has already learned basic information about
edges, curves, and shapes from a very large dataset with millions of images and
can relate them to a new smaller dataset, fine-tuning can be beneficial for our
approach. Moreover, for the construction of our emotion database we combined
three different databases including some spontaneous facial expressions in one of
them.

The remainder of this paper is organized as follows.

• Chapter 2. In the 2nd chapter all information about emotion recognition
databases is provided including many different categories of them. Also,
the construction of our dataset as well as the preprocessing steps applied
are described.
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• Chapter 3. Here we analyze in detail the theory of Neural Networks (NNs).
Then, we focus on describing CNNs as a special type of NN used successfully
in many recognition tasks.

• Chapter 4. This chapter presents four different versions of the proposed
approach as well as the experimental results.

• Chapter 5. Finally in the last chapter we draw some conclusions from the
experiments.



Chapter 2

Databases

Despite the powerful feature learning ability of deep learning, problems remain
when applied to emotion recognition tasks. Having sufficient labeled training data
that include as many variations of the populations and environments as possible
is crucial for the design of a deep emotion recognition system. Considering that
DNNs require a large amount of training data in order to avoid over-fitting,
collecting appropriate data is very important to begin with the construction of
a deep learning emotion classifier. However, in the existing facial expression
databases there is not sufficient amount of annotated video data to train well-
known NNs with deep architectures that achieved the most promising results in
other recognition tasks, such as object recognition.

A database gives a consistent platform in order to test and evaluate classifica-
tion algorithms. The algorithms are usually examined against particular image or
video databases. These databases consist of samples and their respective ground
truths. There could be some variations in the content of images like different
subjects, age, illumination, gender, ethnicities, and textures due to uncontrolled
and varying circumstances.

Nevertheless, using a single FER database to construct a classifier is usually
not enough to model real-world data variability. In order to prevent bias, one
could combine multiple databases or measure cross-dataset performance of the
developed framework.

2.1 Categorizations of Databases

Even though there are several collected databases in the literature that fit many
specific criteria [25], it is important to note that there are many different aspects
that affect the content of the database. The selection of the participants, the
elicitation method, and the format of the data, all have a great impact on the
performance of the final model [26]. The cultural and social background of par-

6
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ticipants as well as their mood during the recordings can also sway the results of
the database to be specific to a particular group of people.

2.1.1 Elicitation Methods

An important choice to make in gathering data for emotion recognition databases
is how to elicit different emotions from the participants. Audiovisual databases
reported in the literature can be classified into three major categories: (a) posed,
(b) induced, and (c) spontaneous (occurring during an interaction).

With regard to the posed databases, participants are usually professional
actors who are asked to correctly express each emotion. Most facial emotion
databases, especially the early ones, consist purely of posed facial expressions,
as it is the easiest to gather. Some well-known posed databases are CK+ and
MMI [1] [27]. However, this kind of databases is the least representative of real
world authentic emotions, because forced emotions are often over-exaggerated. In
addition, since the emotions are invoked in a lab environment with the supervision
of authoritative figures, the subjects might subconsciously keep their expressions
in check. For these reasons, human expression analysis models, created through
the use of posed databases, often have very poor results when tested with real
world data.

In terms of the induced databases, a subject’s emotional responses are com-
monly evoked by films, stories or music. This method of elicitation displays more
genuine emotions as the participants are usually subjected to audiovisual media in
order to invoke real emotions [2]. Induced emotion databases have become more
common due to the limitations of posed databases. The performance of the mod-
els in real life is greatly improved, since they are more natural and not hindered
by over-emphasised and fake expressions. Nevertheless, as in posed databases,
the process of filming the participants is still taking place in an organized lab
environment.

Spontaneous emotion datasets are considered to be the closest to actual real-
life scenarios [28]. The main drawback of this elicitation method is that the au-
diovisual data with spontaneous emotions is difficult to collect and label because
the emotion expressions are relatively rare, short-lived, and often associated with
a complex contextual structure. In addition, true emotions can only be observed,
when the person is not aware of being recorded.
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2.1.2 Database Types

Emotion recognition databases may come in many different forms, depending
on how the data was collected. Existing facial expression databases could be
classified into two broad categories:

1. static databases, including static face images along with their labels

2. video databases, consisting of video sequences allowing to consider the tem-
poral information through the video frames.

Static databases are the oldest and most common type. They usually have
a large number of participants and a considerably big sample size. While it
is relatively easy to find a database suited for the task at hand, categories of
emotions are quite limited, as static databases only focus on six primary emotions
or smile/neutral detection. Most early facial expression databases only consist
of frontal portrait images taken with simple RGB cameras. Newer databases try
to design collection methods that incorporate data closer to real life scenarios
by using different angles and occlusion (hats, glasses). Good examples are the
MMI [27] and Multi-PIE [29] databases, which were some of the first well-known
ones using multiple view angles.

In the case of video databases, scientists have tried to benefit from move-
ments, vocal context, or any other type of body language features for emotion
recognition. Besides, many video databases have tried to gather subtle emotional
changes known as micro-expressions, since they do not show up in still images or
are harder to catch. In addition, video is the most convenient format for captur-
ing induced and spontaneous emotions. This is due to a lack of clear start and
end points for non-posed emotions. However, video databases tend to be quite
small in the number of participants and this is an obstacle when training DNN
models.

2.2 Famous Databases for video FER

Some of the most well-known publicly available facial expression databases are
described below:

• CK+: The Extended Cohn-Kanade (CK+) [1] database is among the most
widely used databases for developing and evaluating algorithms for facial
expression analysis. It was presented in 2010 as an extension to the first
CK database. It includes 593 posed grayscale video sequences recorded



2. Databases 9

(a) Surprise (b) Anger (c) Happiness (d) Fear

Figure 2.1: Video frames from CK+ database [1].

from 123 subjects ranging from 18 to 30 years old. Each of the sequences
contains images from onset (neutral frame) to peak expression (last frame)
and varies in duration from 10 to 60 frames. However only 327 of the
593 sequences are finally annotated considering seven discrete emotional
categories which are the six basic emotions and ’contempt’.

• MMI: The MMI database [27] contains more than 1500 samples of both
static images and video sequences of faces in frontal and in profile view
displaying various facial expressions of emotion. It has been developed as a
web-based direct-manipulation application, allowing easy access and easy
search of the available images. The database includes 19 subjects of both
genders ranging in age from 19 to 62, having either a European, Asian,
or South American ethnicity. The subjects were asked to display 79 se-
quences of expressions, including the six prototypical emotions. They were
instructed by an expert on how to display the required facial expressions,
and they were asked to include a short neutral state at the beginning and
at the end of each expression. The static facial expression images are all
true color (24-bit) images of 720×576 pixels. There are approximately 600
frontal and 140 dual-view images. Dual-view images combine the frontal
and profile views of the face, recorded using a mirror. All video sequences
have been recorded at a rate of 24 frames per second. There are approxi-
mately 30 profile-view and 750 dual-view facial-expression video sequences.
The sequences are of variable length, lasting between 40 and 520 frames [30].

• MUG: The MUG Facial Expression Database consists of RGB videos of 86
subjects performing facial expressions. The database contains 35 women
and 51 men, all of Caucasian origin, between 20 and 35 years of age. The
subjects were sitting in a chair in front of one camera which records videos
at a rate of 19 frames per second. Each image was saved in jpeg format and
a size of 896 × 896 pixels. The MUG database consists of two parts. The
first part includes posed facial expressions since the subjects were asked to
perform the six basic emotions. Each sequence starts and ends at the neu-
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tral state and contains 50 to 160 frames. The goal was to imitate correctly
the basic expressions, and, in order to accomplish this, prior to the record-
ings, a short tutorial about the basic emotions was given to the subjects.
The sequences with correct imitation of the expressions were selected to be
part of the database. As a result, the number of the available sequences of
the first part is 1462. In the second part of the database, the subjects were
recorded while they were watching a video that was created in order to
induce emotions. The subjects were aware that they were being recorded.
The goal of this part of the database was to elicit authentic expressions in
the laboratory environment in contrast to the posed ones. The subjects
display various emotions and emotional attitudes apart from the six basic
emotions. However these image sequences are not labeled yet.

• ISED: The Indian Spontaneous Expression Database for Emotion Recog-
nition (ISED) consists of spontaneous expressions of both male and female
participants of Indian origin. The database includes 428 segmented video
clips of 50 participants. All the video clips included in the database vary
from 1 to 10 seconds in length. The emotions were elicited through pas-
sive elicitation by watching emotion inducing videos. Subjects were left
alone in the experimental room and a hidden camera recorded their facial
expressions. In order to elicit natural emotions, the participants were not
informed about the purpose of the experiment beforehand and they were
allowed to watch the videos alone in the experimental room. Additionally,
in order to avoid suspicion, subjects were allowed to sit at their own ease
without any other restrictions. Finally, all videos were annotated by four
trained decoding machines to tag the six basic emotional expressions as
well as the corresponding emotional intensity for each video on a six-point
scale (from 0 to 5).

Table 2.1: Summary of the databases

Database Elicitation Emotion Classes Format Participants
CK+ posed 6 basic emotions & contempt video 123
MMI posed 6 basic emotions static, video 19
MUG posed, induced 6 basic emotions video 86
ISED spontaneous Hap, Disg, Sad & Sur video 50
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2.3 Dataset Construction

For this Thesis the CK+, ISED and MUG databases were combined in order
to create training, testing, and validation sets with sufficient amount of data.
Samples of all three databases can be found in the training, testing, and validation
set, but the same participant does not appear in any two of them to avoid bias.

All videos were properly modified so that they all have the following for-
mat: every video sequence starts with the frame of neutral facial expression and
ends at the most intense frame, in terms of emotion. They were also converted
into grayscale videos because of the fact that the CK+ database contains only
grayscale data. The structure of the dataset is described in Table 2.2

Table 2.2: Number of videos in every class

No of Videos Anger Disgust Fear Happiness Sadness Surprise Total
Training Set 82 118 76 164 95 143 678
Testing Set 27 34 27 69 34 40 231

Validation Set 5 4 4 4 4 6 27

As might be seen at the above table, some classes’ samples significantly out-
number the samples of others (eg. Happiness vs Fear). This phenomenon is
known as class imbalance problem and it appears frequently in practice.

2.4 Data Pre-processing

Various explanations could be given for the role of data pre-processing and its
importance, especially in the case of NN input data [31]. Although in a lot of
cases, the pre-processing of the data is not needed from the mathematical point of
view, it has a significant effect on the performance of NN models, since it improves
network training. Moreover, the form of pre-processing applied to the data is a
very important factor in determining the success of a practical application using
NNs. Hence, choosing the right pre-processing steps for the input data is critical
for increasing the network’s ability to learn the association between inputs and
outputs.

The developed FER framework for this Thesis is based on pre-trained CNN
architectures. Particularly our database was used to fine-tune them and make
them capable of classifying emotions. The usage of pre-trained architectures
requires a specific format for the data in order to meet the standards of the
database that was used for the pre-training. This is the reason for applying
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some of the pre-processing steps below like resizing, conversion to RGB, and
normalization.

In order to prepare the database for our CNN model, the following pre-
processing steps with this exact order were applied to the videos.

2.4.1 Frame Selection

As mentioned before, all videos of the database have a specific format. According
to this format the neutral facial expressions appear in the first frame of every
video, while the last frame shows the most intense, in terms of emotion, facial ex-
pression. Considering this, not all frames are suitable for the training procedure.
Therefore, only the last half frames of every video are chosen to be included in
our database.

2.4.2 Face Detection

When an image sequence is presented to a FER system, it is necessary to detect
the facial regions as a preliminary preprocessing step. The purpose is to keep
only the pixels of the face while disposing of any background pixels. Removing
irrelevant information from the frames, helps us to reduce the dimensionality of
the input data while keeping the important part of information for training.

There are several methods which can be used to achieve this task. One of the
most popular, also used in this work, is the so-called Viola–Jones face detector
[32]. The algorithm consists of 3 major steps, the image integral, the classifier
learning with AdaBoost, and the attentional cascade structure.

(a) (b)

Figure 2.2: Video frame from the MUG database [2] before and after cropping
by Viola-Jones face detection.
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The first step of the Viola-Jones face detection algorithm is to turn the input
image into an integral image. The integral image, also known as a summed
area table, is a way for quickly and efficiently computing the sum of values in a
rectangle subset of a pixel grid. The integral image at location x, y contains the
sum of the pixels above and to the left of x, y as seen in (2.1) :

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′) (2.1)

where i(x, y) is the pixel value of the original image and ii(x, y) is the correspond-
ing image integral value. In this way, the sum of pixels of any image region can
be calculated with only four values from integral images A(x, y), B(x, y), C(x, y),
D(x, y): ∑

(x,y)∈ABCD

i(x, y) = ii(D) + ii(A)− ii(B)− ii(C) (2.2)

Then, for feature extraction Haar-like features are used (Figure 2.3). A Haar-
like feature value is calculated by the pixel sum of the darker rectangle minus the
pixel sum of the lighter rectangle.

Figure 2.3: Five Haar-like features. Image from [3]

Given a feature set and a training set of positive and negative images, an ML
approach could be used to learn a classification function. The Viola Jones uses a
variant of AdaBoost to both select a small set of features and train the classifier.
A single AdaBoost classifier consists of a weighted sum of many weak classifiers,
where each weak classifier is a threshold on a single Haar-like rectangular feature.

Finally, the cascaded classifier is composed of stages each containing a strong
classifier from AdaBoost. The job of each stage is to determine whether a given
sub-window is definitely "not a face" or "maybe a face". When a sub-window
is classified to be a non-face by a given stage it is immediately discarded. Con-
versely, a sub-window classified as "a maybe face" is passed on to the next stage
in the cascade. It follows that the more stages a given sub-window passes, the
higher the chance the sub-window contains a face.
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2.4.3 Resizing and Linear Scaling

The architecture of the pre-trained model which was used in this Thesis requires
a fixed input size of 224× 224 features. Therefore, after face cropping, all frames
were resized to 224× 224 pixels. Moreover, grayscale image pixels are commonly
integers in a range from 0 to 255 where 0 corresponds to black and 255 to white.
However, in NN architectures data must be scaled into the range used by the
input neurons of the NN. This is typically the range of -1 to 1 or 0 to 1. For
that reason, a simple linear scaling was applied to the frames’ pixels in order to
convert them into a range of 0 to 1.

2.4.4 Histogram Equalization

The Histogram Equalization algorithm enhances the contrast of images by trans-
forming the intensity values in an image. Through this adjustment, the intensities
can be better distributed on the histogram. This allows for areas of lower local
contrast to gain a higher contrast. Histogram equalization accomplishes this by
effectively spreading out the most frequent intensity values.

(a) (b)

Figure 2.4: Video frame from the MUG database [2] before and after applying
Histogram Equalization.

Here are the steps for implementing the Histogram Equalization algorithm.

1. Create the histogram for the image. Consider a discrete grayscale image x
and let ni be the number of occurrences of gray level i. The probability of
an occurrence of a pixel of level i in the image is

px(i) =
number of pixels with intensity i

total number of pixels
=
ni

n
, 0 ≤ i < L
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with L being the total number of gray levels in the image (typically 256),
n being the total number of pixels in the image, and px(i) being in fact the
image histogram for pixel value i, normalized to [0, 1].

2. Calculate the cumulative distribution function (cdf) histogram. Let us
define the cdf corresponding to px as:

cdfx(i) =
i∑

j=0

px(j)

which is also the image accumulated normalized histogram.

3. Calculate the cdf of the new image y. We would like to create a trans-
formation of the form y = T (x) to produce the new image, with a flat
histogram. Such an image would have a linearized cdf across the value
range, i.e. cdfy(i) = iK for some constant K. The properties of the cdf
allow us to perform such a transform which is defined as:
cdfy(y) = cdfy(T (k)) = cdfx(k) where k is in the range [0, L].

4. Assign new values for each gray value in the image. Notice that T maps
the levels into the range [0, 1], since we used a normalized histogram of
x. In order to map the values back into their original range, the following
simple transformation needs to be applied on the result to get the final
image version y′:
y′ = y · (max{x} −min{x}) + min{x}

2.4.5 Conversion to RGB and Normalization

The selected CNN architecture expects 3-channel RGB images. Therefore, after
applying all previous pre-processing steps to grayscale video frames, it is neces-
sary to convert them into 3-channel RGB format. This is obviously not possible,
so the only simple solution found was to copy the value of every pixel into the
other two channels in order to create ’fake’ RGB images.

In addition, when using pre-trained CNN architectures, the data should be
normalized in the same way as the data used for pre-training the network. Each
image channel is normalized using the mean and standard deviation as described
below.

input(channel) =
input(channel)−mean(channel)

std(channel)
(2.3)

where mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225].



Chapter 3

Theory of Neural Networks

The field of NNs was originally inspired by the goal of modeling biological neu-
ral systems, but has since diverged and become a matter of engineering while
achieving good results in ML tasks. The basic unit of the brain is a neuron.
Approximately 86 billion neurons can be found in the human nervous system
and they are connected with approximately 1014 − 1015 synapses. Each neuron
receives input signals from its dendrites and produces output signals along its
single axon. The axon connects, via the synapses, the output of one neuron to
dendrites of other neurons.

In the computational model of an artificial neuron, observed in Figure 3.1,
the signals that travel along the axons (xi) interact multiplicatively (wi ∗ xi)
with the dendrites of the other neuron based on the synaptic strength at that
synapse (weight wi). In the basic model, every neuron creates a weighted sum∑

iwixi + b where b is the bias value of that neuron. NN technology started by
the idea that the synaptic strengths, in other words the weights w and the biases
b, are learnable and control the strength of influence of one neuron on another.
If the final sum is above a certain threshold, the neuron can fire, sending a spike

Figure 3.1: Schematic of a neuron model. Image from [4]

16
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along its axon. In the computational model, we assume that the precise timings of
the spikes do not matter, and that only the frequency of the firing communicates
information. Based on this, we need to model the firing rate of the neuron with
an activation function, which represents the frequency of the spikes along the
axon.

Each neuron, which from now on will be referred as node, performs a dot
product with the input and its weights, adds the bias and applies the activation
function.

3.1 How does a neural network work?

NNs are typically organized in layers. Layers are made up of a number of inter-
connected nodes which contain an activation function that is also referred to as
’non-linearity’. Patterns are presented to the network via the input layer, which
communicates to one or more hidden layers where the actual processing is done
by a system of weighted connections. Unlike all layers in an NN, the output layer
nodes most commonly do not have an activation function. This is because the
last output layer usually represents the class scores in classification problems,
which are arbitrary real-valued numbers, or some kind of real-valued target in
regression problems.

Figure 3.2: NN model with one hidden layer of three nodes, one output layer
with two nodes, and three inputs.

Information flows through an NN in two ways. When the network is learning
(training phase) or operating normally (testing phase), patterns of information
are fed into the network via the input nodes, which trigger the layers of hidden
nodes, and these in turn arrive at the output layer. This is the common design
of a feedforward network. Not all nodes ’fire’ all the time. Each node receives
inputs from the nodes to its left, and the inputs are multiplied by the weights of
the connections while travelling along the network. Every node adds up all the
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inputs it receives in this way and (in the simplest type of network) if the sum is
more than a certain threshold value, the node ’fires’ and triggers the units it is
connected to, on its right.

For an NN to learn, there has to be an element of feedback involved, just
as children learn by being told what they are doing right or wrong. As humans,
after an action we compare the outcome we wanted with what actually happened,
figure out the difference between the two, and use that to change our action next
time. NNs learn things in exactly the same way, typically by a feedback process
called backpropagation (BP). This involves comparing the output a network pro-
duces with the output it was meant to produce, and using the difference between
them to modify the weights of the connections between the nodes in the network.
To achieve this, we work backwards, from the output through the hidden nodes to
the input nodes. In time, BP causes the network to learn, reducing the difference
between actual and intended output.

During the training process, the entire training set is passed forwards and
backwards through the network several times. A complete pass over the whole
training set is called an epoch. Considering the large memory requirements of
forward and backward propagation of the entire dataset at once, we divide the
data into smaller batches to feed the network. Note that the training phase
completes after many epochs.

Once the network has been trained with enough learning examples, it reaches
a point where we can present it with an entirely new set of inputs it has never seen
before and see how it responds. This process is called testing phase. Depending
on how the network is trained, it will attempt to categorize new unseen samples
in one of the classes, generalizing on the basis of its past experience.

3.2 Activation functions

Every activation function, also known as non-linearity, takes a single number
and performs a certain fixed mathematical operation on it. Some of the most
commonly used activation functions are the sigmoid, tanh, and ReLU activation
functions, and they are described below:

• Sigmoid

The sigmoid activation function has the mathematical form:

σ(x) =
1

1 + e−x
(3.1)
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The function takes a real-valued number and ’squashes’ it into the range
between 0 and 1. In particular, large negative numbers become 0 and large
positive numbers become 1. The sigmoid function has seen frequent use
historically since it has a nice interpretation as the firing rate of a neuron:
from not firing at all (0) to fully-saturated firing at an assumed maximum
frequency (1). In practice, the sigmoid non-linearity has recently fallen out
of favor and it is rarely ever used since it has two major drawbacks.

Figure 3.3: Sigmoid non-linearity squashes real numbers to the range [0,1]

The first undesirable property of the sigmoid neuron is that when the neu-
ron’s activation saturates at either tail of 0 or 1, the gradient at these
regions is almost zero. Considering that during BP, this local gradient will
be multiplied to the gradient of this gate’s output for the whole objective,
if the local gradient is very small, it will effectively “kill” the gradient and
almost no signal will flow through the neuron to its weights and recursively
to its data. Additionally, one must pay extra caution when initializing the
weights of sigmoid neurons to prevent saturation. For example, if the initial
weights are too large then most neurons would become saturated and the
network will barely learn.

Moreover, sigmoid outputs are not zero-centered. This is also an undesir-
able feature since neurons in later layers of processing in an NN would be
receiving data that is not zero-centered. This has implications on the dy-
namics during gradient descent, because if the data coming into a neuron is
always positive (e.g. x > 0 elementwise in f = wTx+ b), then the gradient
on the weights w will during BP become either all positive, or all negative
(depending on the gradient of the whole expression f). This could introduce
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undesirable zig-zagging dynamics in the gradient updates for the weights.
However, note that data are fed into the network grouped in batches. Once
these gradients are added up across a batch of data the final update for the
weights can have variable signs, somewhat mitigating this issue. Therefore,
this is an inconvenience but it has less severe consequences compared to
the saturated activation problem above.

• Tanh
The tanh non-linearity, which is shown in Figure 3.4, squashes a real-valued
number to the range [-1, 1]. Like the sigmoid neuron, its activations satu-
rate, but unlike the sigmoid neuron its output is zero-centered. Therefore,
in practice the tanh non-linearity is always preferred to the sigmoid non-
linearity.

Figure 3.4: The tanh non-linearity squashes real numbers to range between [-1,1].

Also note that the tanh neuron is simply a scaled sigmoid neuron, in par-
ticular: tanh(x) = 2σ(2x)− 1.

• ReLU

The Rectified Linear Unit (ReLU) has become very popular in the last few
years [33]. It computes the function f(x) = max(0, x), so the activation is
simply thresholded at zero. ReLU was found to greatly accelerate the con-
vergence in the training phase compared to the sigmoid and tanh functions.
It is argued that this is due to its linear, non-saturating form. In addition,
compared to tanh or sigmoid neurons that involve expensive operations,
e.g. exponentials, the ReLU can be implemented by simply thresholding a
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Figure 3.5: Rectified Linear Unit (ReLU) activation function is zero when x < 0
and then linear with slope 1 when x > 0.

matrix of activations at zero. The major drawback of ReLU is that units
can be fragile during training and can ’die’. If this happens, then the gra-
dient flowing through the specific neuron will forever be zero from that
point on. For example, a large gradient flowing through a ReLU neuron
could cause the weights to update in such a way that the neuron will never
activate again. If this happens, then the gradient flowing through the unit
will forever be zero from that point on.

3.3 Backpropagation

This numerical method has been used by different research communities in differ-
ent contexts. The algorithm of BP was first published in 1970 by Seppo Linnain-
maa, although important concepts of it were known even earlier. Later, in 1986
David Rumelhart showed experimentally that this method can generate useful
internal representations of incoming data in hidden layers of NNs [34]. During
the 2000s the algorithm fell out of favour, but returned in the 2010s, benefitting
from the development of cheap and powerful GPU-based computing systems. It
has been one of the most studied and used algorithms for NN learning ever since.

The algorithm of BP can be decomposed and briefly described in the following
four steps:

1. Feed-forward computation
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2. Back propagation to the output layer

3. Back propagation to the hidden layer

4. Weight updates

The process stops when the value of the error function in the output layer has
become sufficiently small. The algorithm of BP is described in detail below.

Given a feed-forward network with n input and m output units, it can consist
of any number of hidden units and can exhibit any desired feed-forward connec-
tion pattern. We are also given a training set (x1, t1), · · · , (xp, tp) consisting of
p ordered pairs of n and m-dimensional vectors, which are the input and output
patterns. When the input pattern xi from the training set is presented to this
network, it produces an output oi different in general from the target ti. The
goal is to make oi and ti identical for i = 1, · · · , p , by using a learning algorithm.
More precisely, we want to minimize the error function of the network, defined
as:

E =
1

2

p∑
i=1

‖oi − ti‖2 (3.2)

The BP algorithm is used along with an optimizer to find a local minimum of
the error function or in other words the combination of weight values that mini-
mize the error function of the network. The network is initialized with randomly
chosen weights. Moreover the gradient of the error function is computed and used
to correct the initial weights. Our task is to compute this gradient recursively.

The first step of the minimization process consists of extending the network, so
that it computes the error function automatically. Every one of the j output units
of the network is connected to a node which evaluates the function E = 1

2
‖oi−ti‖2,

where oij and tij denote the jth component of the output vector oi and of the
target ti. The outputs of the additional m nodes are collected at a node which
adds them up and gives the sum Ei as its output. The same network extension
has to be built for each pattern ti. A computing unit collects all quadratic errors
and outputs their sum E1 + · · · + Ep. The output of this extended network is
the error function E. So the network is capable of calculating the total error
for a given training set. The weights in the network are the only parameters
that can be modified to make the quadratic error E as low as possible. Because
E is calculated by the extended network exclusively through composition of the
node functions, it is a continuous and differentiable function of the ` weights
w1, w2, · · · , w` in the network. We can thus minimize E by using an iterative
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process of gradient descent, for which we need to calculate the gradient:

∇E = (
∂E

∂w1

,
∂E

∂w2

, · · · , ∂E
∂wl

) (3.3)

Each weight is updated using the increment

∆wi = −γ ∂E
∂wi

, for i = 1, · · · , ` (3.4)

where γ represents the learning rate, a proportionality parameter which defines
the step length of each iteration in the negative gradient direction.

With this extension of the original network the whole learning problem now
reduces to the question of calculating the gradient of a network function with
respect to its weights. Once we calculate the gradient, we can adjust the network
weights iteratively. In this way we expect to find a minimum of the error function,
where ∇E = 0.

Obviously we can use any optimization technique that modifies the internal
weights of the network in order to minimize the total error function that we
previously defined. Some of the most well-known optimization algorithms are
described in the next section.

3.4 Optimization Algorithms

Optimization algorithms help us to minimize (or maximize) the error function
E(x) which is also called ’objective function’. The weights w and the bias b values
of the NN are its internal learnable parameters which are used in computing the
output values and are learned and updated in the direction of optimal solution.
The internal parameters of a model are vital for efficiently and effectively train-
ing it and producing accurate results. This is why we use various optimization
strategies and algorithms to update and calculate appropriate and optimum val-
ues of such model parameters. The selection of optimization algorithm greatly
influences our model’s learning process and outputs. Some of the most common
optimization algorithms are described below.

• Gradient Descent

Gradient Descent is the most important technique and the foundation of
NN optimization theory. The formula of the parameter updates is

θ = θ − γ∇J(θ) (3.5)
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where γ represents the learning rate and ∇J(θ) is the gradient of loss func-
tion J(θ) with respect to the parameters θ.

It is the most popular optimization algorithm used for training an NN,
update and tune the model’s parameters in a direction so that the loss
function gets minimized.

Considering the training procedure, during BP we first propagate forwards,
calculate the dot product of input signals and their corresponding weights
and then apply an activation function, which enables the model to learn
arbitrary functional mappings. After this, we propagate backwards in the
network. At this step an optimizer, in this case gradient descent, has to be
used. Particularly, error terms are carried backwards and the weight values
are updated using gradient descent.

Figure 3.6: Schematic of gradient descent.

Figure 3.6 shows the process of weight updates in the opposite direction of
the gradient. The U-shaped curve is the gradient slope. As one can notice,
if the weight values are too small or too large then the errors increase
significantly. Therefore the updates should be neither too small nor too
large , in order to descent downwards opposite to the gradient until we find
a local minima.

Apart from the simple version of the gradient descent algorithm, several
variations of it appeared later on. Stochastic gradient descent (SGD), mini-
batch gradient descent and Nesterov accelerated gradient are some of them.
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• Adagrad

The Adagrad optimizer allows the learning rate γ to adapt based on the
parameters. In fact, it applies large updates for infrequent parameters and
small updates for frequent parameters. For this reason, it is a well-suited
optimizer for dealing with sparse data.

According to Adagrad, a different learning rate is used for every parameter θ
at every time step based on the past gradients which were computed for that
parameter. In gradient descent there was an update for all parameters θ at
once as every parameter θi used the same learning rate, whereas Adagrad
uses a different learning rate for every parameter θt,i at every time step t.
The formula of Adagrad for parameter updates is given below,

θt+1,i = θt,i −
γ√

Gt,ii + e
gt,i (3.6)

where γ represents the learning rate and gt,i is the gradient of the loss
function with respect to the parameter θi at time step t. Gt is a diagonal
matrix where each diagonal element at the (i, i) position is the sum of the
squares of the gradients with respect to θi up to time step t and ε is a
smoothing term that avoids division by zero.

One of Adagrad’s main benefits is that it eliminates the need to manually
tune the learning rate. Most implementations use a default value of 0.01
and leave it at that. However its main weakness is its accumulation of the
squared gradients in the denominator. Since every added term is positive,
the accumulated sum keeps growing during training. This in turn causes the
learning rate to shrink and eventually become significantly small, at which
point the algorithm is no longer able to acquire additional knowledge. The
following algorithms aim to resolve this flaw.

• Adadelta

Adadelta [35] is an extension of Adagrad that seeks to reduce its aggres-
sive, monotonically decreasing learning rate. Instead of accumulating all
past squared gradients, Adadelta restricts the window of accumulated past
gradients to a fixed size.

Instead of inefficiently storing previous squared gradients, the sum of gra-
dients is recursively defined as a decaying average of all past squared gradi-
ents. The running average E(g2)t at time step t then depends only on the
previous average and the current gradient.

E(g2)t = aE(g2)t−1 + (1− a)g2t (3.7)
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A typical value for a is around 0.9. For clarity, gradient descent update is
written in terms of the parameter update vector.

∆θt = −γgt,i (3.8)

θt+1 = θt + ∆θt (3.9)

The parameter update vector of Adagrad that we derived previously thus
takes the form:

∆θt = − γ√
Gt + ε

� gt (3.10)

where � is the symbol of the symmetric product [36].

We now simply replace the diagonal matrix Gt with the decaying average
over past squared gradients E(g2)t

∆θt = − γ√
E(g2)t + ε

gt (3.11)

• Adam

Adaptive Moment Estimation (Adam) [37] is another optimizing method
that computes adaptive learning rates for each parameter. In addition
to storing an exponentially decaying average of past squared gradients υt
like Adadelta, Adam also keeps an exponentially decaying average of past
gradients mt, similar to momentum. Whereas momentum can be seen as
a ball running down a slope, Adam behaves like a heavy ball with friction,
which thus prefers flat minima in the error surface. In 3.12 and 3.13 mt and
υt are estimates of the first moment (the mean) and the second moment (the
uncentered variance) of the gradients respectively and they are calculated
as follows:

mt = β1mt−1 + (1− β1)gt (3.12)

υt = β2υt−1 + (1− β2)g2t (3.13)

As mt and υt are initialized as vectors of zeros, the authors of Adam ob-
served that the algorithm is biased towards zero, especially during the initial
time steps, and especially when the decay rates are small (β1 and β2 are
close to 1).

They counteracted these biases by computing bias-corrected first and sec-
ond moment estimates:

m̂t =
mt

1− βt
1

(3.14)
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υ̂t =
υt

1− βt
2

(3.15)

They then use these to update the parameters just like in Adadelta, which
yields the Adam update rule:

θt+1 = θt −
γ√
υ̂t + ε

(3.16)

The authors propose default values of 0.9 for β1, 0.999 for β2 and 10−8 for
ε. It has been empirically proved that Adam works well in practice and
compares favorably to other adaptive learning algorithms.

3.5 Convolutional Neural Networks

CNNs are very similar to ordinary NNs as they are made up of neurons that
have learnable weights and biases. Each neuron receives some inputs, performs
a dot product and optionally follows it with a non-linearity. The whole network
still expresses a single differentiable score function: from the raw image pixels
on one end to class scores at the other. CNNs usually contain some ordinary
fully connected (FC) layers at the end of the model. They also still have a loss
function on the last FC layer. The main difference is that rather than learning
unstructured weights, CNN architectures apply filters using convolution where
the internal values of the filters are the weights to be learned. In the case of 2D
convolutional filters, there is the explicit assumption that the inputs are images,
which allows us to encode certain properties into the architecture.

(a) NN (b) CNN

Figure 3.7: A regular 3-layer NN on the left and on the right a CNN which
arranges its neurons in three dimensions (width, height, depth), as visualized in
one of the layers. Images from [4]

CNNs take advantage of the fact that the input consists of images and they
constrain the architecture in a more sensible way. In particular, unlike a regular
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NN, the layers of a CNN have neurons arranged in 3 dimensions: width, height
and depth (Figure 3.7). Note that the word depth here refers to the third dimen-
sion of an activation volume, not to the depth of a full NN, which is the total
number of layers in a network. The neurons in a convolutional layer are only
connected to a small region of the layer before it, instead of all of the neurons in
an FC layer. Moreover, by the end of a CNN architecture the full image will be
reduced into a single vector of class scores, arranged along the depth dimension.

A simple CNN is a sequence of layers, where every layer transforms one volume
of activations to another through a differentiable function. Three types of layers
are mainly used to build a CNN architecture: convolutional layers, pooling layers,
and FC layers, and they are analyzed below.

3.5.1 FC Layer

Neurons in a FC layer have full connections to all activations in the previous
layer, as seen in regular NNs. It is the most simple layer type, and it is usually
seen at the last layers of CNN architectures, in order to perform the intended
classification or regression task.

3.5.2 Convolutional Layer

The convolutional layer is the core building block of a CNN that does most of
the computational heavy lifting. The convolutional layer parameters consist of a
set of learnable filters. Every filter is small spatially (along width and height),
but extends through the full depth of the input volume. For example, a typical
filter on a first layer of a CNN might have size 5x5x3 (i.e. 5 pixels width and
height, and 3 for RGB input images with 3 color channels). During the forward
pass, we slide (more precisely, convolve) each filter across the width and height
of the input volume and compute dot products between the entries of the filter
and the input at any position. As we slide the filter over the width and height
of the input volume, a 2-dimensional activation map that gives the responses of
that filter at every spatial position is produced. Intuitively, the network will learn
filters that activate when they see some type of visual feature, such as an edge of
some orientation, or a blotch of some color on the first layer, or eventually entire
honeycomb or wheel-like patterns on higher layers of the network. Now, we will
have an entire set of filters in each convolutional layer, and each of them will
produce a separate 2-dimensional activation map. We will stack these activation
maps along the depth dimension and produce the output volume.

In order to control how many nodes there are in the output volume of a
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Figure 3.8: Schematic convolutional layer. Image from [4]

convolutional layer, three hyperparameters have to be defined: the depth, stride
and zero-padding.

First, the depth of the output volume corresponds to the number of filters
we would like to use, each learning to look for something different in the input.
For example, if the first convolutional layer takes as input the raw image, then
different neurons along the depth dimension may activate in presence of various
oriented edges, or blobs of color. We will refer to a set of neurons that are all
looking at the same region of the input as a depth column.

Second, we must specify the stride with which we slide the filter. When the
stride is 1 then we move the filters one pixel at a time during convolution. When
the stride is 2 (or uncommonly 3 or more) then the filters jump 2 pixels at a
time as we slide them around. Bigger strides produce smaller output volumes
spatially.

Sometimes it is convenient to pad the input volume with zeros around the
border. The size of this zero-padding is a hyperparameter. The purpose of
applying zero padding is to better control the spatial size of the output volumes.
In this way we can exactly preserve the spatial size of the input volume so that
the input and output width and height are the same.

We can compute the spatial size of the output volume (O) as a function of the
input volume size (W ), the receptive field size of the convolutional layer neurons
(F ), the stride with which they are applied (S), and the amount of zero padding
used (P ) on the border.

O =
W − F + 2P

S
+ 1 (3.17)

For example for a 7× 7 pixel input image and a 3× 3 filter with stride 1 and
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pad 0 we would get a 5× 5 output. With stride 2 we would get a 3× 3 output.

3.5.3 Pooling Layer

When constructing a CNN architecture, it is common to periodically insert a
pooling layer in-between successive convolutional layers. Its function is to pro-
gressively reduce the spatial size of the representation, to reduce the amount of
parameters and computation in the network, and hence to also control overfit-
ting. A pooling layer operates independently on every depth slice of the input
and resizes it spatially, using (in the case of max-pooling) the MAX operation.
The most common form is a pooling layer with filters of size 2× 2 applied with a
stride of 2. It downsamples every depth slice in the input by 2 along both width
and height, discarding 75% of the activations. Every MAX operation would in
this case be taking a max over 4 numbers (little 2×2 region in some depth slice).
The depth dimension remains unchanged.

Figure 3.9: Left: The input volume of size 224×224×64 is pooled with filter size
2 and stride 2 into output volume of size 112× 112× 64. Note that the volume
depth is preserved. Right: Max pooling, here shown with a stride of 2. Each
max is taken over 4 numbers (little 2× 2 square regions). Image from [4]

In addition to max pooling, the pooling units can also perform other functions,
such as average pooling or even L2-norm pooling. However max-pooling is most
commonly used.

3.5.4 Famous CNN architectures

Over recent decades, various CNN architectures have been developed and achieved
great results for recognition tasks, and specifically for the ImageNet. The Ima-
geNet project is a large visual database consisting of 1.4M images, designed for
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use in visual object recognition research. This project also runs an annual con-
test, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where
different systems compete to correctly classify and detect objects and scenes.
Some of the most popular CNN architectures of ILSVRC top competitors and
their descriptions are summarized below.

• AlexNet. The first work that popularized CNNs in Computer Vision was
AlexNet, developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hin-
ton [5]. AlexNet was submitted to the ILSVRC challenge in 2012 and sig-
nificantly outperformed the second runner-up (top 5 error of 16% compared
to runner-up with 26% error). The network had a very similar architecture
to LeNet [38], but was deeper, bigger, and featured convolutional layers
stacked on top of each other. It consisted of 11× 11, 5× 5, and 3× 3 con-
volutional filters, max pooling, dropout, data augmentation and SGD with
momentum. It also attached ReLU activations after every convolutional
and FC layer.

Figure 3.10: AlexNet architecture (distributed in 2 GPUs). Image from [5]

• ZFNet. The ILSVRC 2013 winner was a CNN architecture from Matthew
Zeiler and Rob Fergus which is known as the ZFNet [39]. ZFNet was an
improvement on AlexNet by tweaking the architecture hyperparameters,
in particular by expanding the size of the middle convolutional layers and
making the stride and filter size on the first layer smaller.

• GoogLeNet. The ILSVRC 2014 winner was an architecture proposed by
Szegedy et al. from Google [6]. Its main contribution was the development
of a model with 22 layers that dramatically reduced the number of param-
eters in the network to 4 million, compared to AlexNet with 60 million.
Additionally, this paper uses average pooling instead of FC layers at the
top of the CNN, eliminating a large amount of parameters that do not seem
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Figure 3.11: GoogLeNet architecture. Image from [6]

to matter much. There are also several followup versions to the GoogLeNet,
most recently Inception-v4. [40].

• VGGNet. The runner-up in ILSVRC 2014 was the network from Karen
Simonyan and Andrew Zisserman that became known as the VGGNet [41].
Its main contribution was in showing that the depth of the network is a

Figure 3.12: VGG16 architecture. Image from [7]

critical component for good performance. They developed several versions
of VGGNet with different depth sizes. Their final best network contains
16 convolutional and FC layers and features an extremely homogeneous
architecture that only performs 3× 3 convolutions and 2× 2 pooling from
the beginning to the end (Figure 3.12). The model of VGG16 is also used
for this Thesis experiments. A downside of the VGGNet is that it is more
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expensive to evaluate and uses a lot of memory and 140 million of param-
eters.

• ResNet. Residual Network (ResNet) developed by Kaiming He et al. was
the winner of ILSVRC 2015. They introduced a new architecture with
’skip connections’ and featured heavy use of batch normalization. Such
skip connections are also known as gated recurrent units and have a strong
similarity to elements used in RNNs. The architecture is also missing FC
layers at the end of the network. Thanks to this technique they were able
to train an NN with 152 layers while still having lower complexity than
VGGNet.

3.6 Overfitting

Generalization is a very important attribute in ML problems. The goal of a good
ML model is to generalize well from the training data to any unseen data from
the problem domain. This allows us to make predictions on data the model has
never seen before.

Overfitting is the main cause for poor performance of ML algorithms. It refers
to a model that models the training data too well. In other words, the model
learns the detail and noise in the training data to the extent that it negatively
impacts its performance on new data. This means that noise or random fluctu-
ations in the training data are picked up and learned as concepts by the model.
The problem is that these concepts do not apply to new data and negatively
impact the model’s ability to generalize.

A good way to measure the appearance of overfitting to our model is to use
a small group of unseen data, named ’validation set’, in order to test the model
during the training procedure. The gap between the training and validation accu-
racy indicates the amount of overfitting (Figure 3.13). The blue validation error
curve shows very small validation accuracy compared to the training accuracy,
indicating strong overfitting. Note that, it is possible for the validation accuracy
to even start to decrease after some point.

The main steps for reducing overfitting are:

• More data - Data augmentation: The first step is of course to collect more
data. However, in most cases this is not possible. So the next step is data
augmentation, something that is always recommended to use. Data aug-
mentation includes methods like random rotation of the image, cropping,
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Figure 3.13: Overfitting occurence. Image from [4]

flipping, adding a color filter, etc. These techniques are only applied to the
training data and not on the validation or testing set.

• Regularization (Dropout): Another important technique is regularization.
Dropout is a common method for regularization. It ignores a randomly
chosen sample of the activations (makes them zero) during each training
epoch. In the VGG model this is only applied to the FC layers at the end
of the model. However, it can also be applied to the convolutional layers.
With dropout, only a part of the network is allowed to learn during every
epoch. By randomly dropping out neurons, the procedure prevents any
neuron from relying excessively on the output of any other neuron, forcing
it instead to rely on the population behavior of its inputs. This method
helps the model to generalize better to unseen data and prevents overfitting
since it reduces interdependent learning amongst the neurons.

• Reduction of architecture complexity: The third and final option is to re-
duce the network’s complexity, by decreasing the number of the network’s
parameters. This can be achieved by reducing either the number of layers
or the layer size. Using a large number of parameters, while having a lim-
ited training data size, may force the model to map undesired properties of
the data (noise). On the other extreme, if we have a significant small num-
ber of parameters, the model will possibly not be able to model complex
problems. Actually, the more parameters we have, the more data we will
need for training properly. So under limited data, decreasing the number
of parameters can significantly improve the ability of the model to learn
and generalize to unseen data.
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3.7 Transfer Learning for CNNs

In practice, it is not common to train an entire CNN from scratch (with random
weights initialization), because it is relatively rare to have a dataset of sufficient
size. Instead, it is common to pretrain a CNN on a very large dataset (e.g.
ImageNet, which contains 1.2 million images with 1000 categories), and then use
it either as an initialization or a fixed feature extractor for the task of interest.
The two major transfer learning scenarios look as follows:

• CNN as fixed feature extractor

One can use a pre-trained CNN as a feature extractor by removing the last
FC layer (this layer’s output size is equal to the number of classes), and
then treating the rest of the network as a fixed feature extractor for the new
dataset. In an AlexNet, this would compute a 4096-D feature vector for
every image that contains the activations of the hidden layer immediately
before the classifier. Once we extract the 4096-D feature vectors for all
images, any linear classifier can be used (e.g. Linear SVM) for the new
dataset.

• Fine-tuning a CNN

The second strategy is to not only replace and retrain the classifier on
top of the CNN on the new dataset, but to also fine-tune the weights of
the pre-trained network by continuing the BP. It is possible to fine-tune
all the layers, or to keep some of the earlier layers fixed (due to overfitting
concerns) and only fine-tune some higher-level portion of the network. This
is motivated by the observation that the earlier features of a CNN contain
more generic features (e.g. edge detectors or color blob detectors) that
should be useful to many tasks, but later layers of the architecture become
progressively more specific to the details of the classes contained in the
original dataset.

The most important factors for deciding what type of transfer learning to
use are the size of the new dataset, its similarity to the original dataset and the
complexity of the problem.



Chapter 4

Proposed Method

In this chapter we present our framework for automatic FER from video record-
ings. The proposed framework is based on applying transfer learning (fine-tuning)
to a pretrained CNN architecture and combining per frame predictions for clas-
sifying the predominant emotion in a video sequence. Transfer learning is the
concept of transferring the weights of an already trained model (pre-trained) to
another problem set on a different dataset. In other words, after loading weights
of an architecture trained on a very large dataset, we can initialize the model with
those trained weights and then fine-tune the network on a new smaller dataset,
in our case: the emotion recognition dataset. The fine-tuned model provides in-
formation for the facial expression of each video frame. Then, during the testing
procedure, per-frame information of all frames is combined in order to obtain
the final prediction for the whole video. Several different implementations of the
framework are presented and compared in the next sections.

The dataset used for creating the training, testing and validation sets is a
combination of the CK+, ISED, and MUG databases. More information about
the dataset and the preprocessing steps can be found in Chapter 2.

The open source deep learning platform of PyTorch was utilized for the de-
velopment of this framework. On a system equipped with an NVIDIA GeForce
GTX 950 GPU, training process lasted approximately 2 days, depending on the
architecture. Note that as the pretained CNN, we use the VGG16 architecture.
VGG16 was selected because of its simple architecture and the fact that its pre-
trained version is publicly available.

4.1 VGG16 architecture

VGG16 architecture (Figure 3.12) is mainly composed of a sequence of convo-
lutional, max-pooling, and FC layers, and it was first trained to classify objects

36
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among 1000 classes. A stack of convolutional layers is followed by three FC lay-
ers: the first two have 4096 nodes each, the third performs 1000-way classification
and thus contains 1000 nodes (one for each class). The final layer is the soft-max
layer which gives the probability of each class to be predicted.

The image is passed through a stack of convolutional layers, with filters of
small receptive field: 3×3. The stride is fixed to 1 pixel and the spatial padding of
each convolutional layer input is 1 pixel so that the spatial resolution is preserved
after applying 3×3 convolutional filters. Moreover, spatial pooling is carried out
by five max-pooling layers, which follow some of the convolutional layers. Max-
pooling is performed over a 2 × 2 pixel window, with a stride of 2. All hidden
layers are equipped with the ReLU non-linearity.

4.2 Fine-tuning VGG16

The model has been first trained on the large public image repository of Ima-
geNet. This database was created for object recognition challenges. It includes
images of 1000 classes, and it is split into three sets: training (1.3M images), val-
idation (50K images), and testing set (100K images). Hence, rather than using
randomly initialized weights, we use the pre-trained model as a base model for
our training. This is a better starting point than the random weights since it al-
lows us to reuse low-level visual information that the network has already learned
in the initial task. The key concept is that after fine-tuning on our dataset, the
model will be able to classify emotions from facial expressions, accurately.

After loading the pre-trained model, we first need to change the size of the
last FC layer from 1000 to 6, since this is the number of emotion classes in our
problem (Table 4.1). This last FC layer is then initialized with random weights.
It should be noted that the fine-tuning step is not applied to the whole network.
Generally in CNNs, the first few layers learn mostly about the edges and sharp
corners, while the next layers combine these edges to learn a bit more complex
figures. Considering that the first few layers are actually learning about the entire
ImageNet dataset (millions of images with 1000 different classes containing cars,
flowers, cats, dogs, etc.), these layers have the most information about the very
basic shapes, figures, and artifacts. Therefore, in our experiments only the last
3 FC layers are updated during the fine-tuning epochs, since the first group of
layers hold information about basic shapes that could be useful for our challenge
of recognizing emotions. In addition, since not all layers are being trained during
the fine-tuning process, the computational cost required is considerably less.
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Table 4.1: VGG16 architecture

input (224× 224× 3)
conv3 - 64
conv3 - 64
maxpool

conv3 - 128
conv3 - 128
maxpool

conv3 - 256
conv3 - 256
conv3 - 256
maxpool

conv3 - 512
conv3 - 512
conv3 - 512
maxpool

conv3 - 512
conv3 - 512
conv3 - 512
maxpool
FC - 4096
FC - 4096
FC - 6
softmax

4.2.1 Hyperparameters

Setting the hyperparameters before starting training is a crucial task in ML prob-
lems. Hyperparameters are the variables which determine the network structure
and the variables which determine how the network is trained. In our case the
variables related to the network structure are predefined by the creators of VGG16
(e.g. activation function: ReLU). Table 4.2 shows the values of the main network
hyperparameters. After using several combinations for setting the learning rate,
the batch size and the kind of optimization method, the following combination
was the most effective.
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learning rate 0.001
batch size 30
optimizer Adam

Table 4.2: Hyperparameters

The learning rate defines how quickly a network updates its parameters. A low
learning rate slows down the learning process but converges smoothly, whereas a
larger learning rate speeds up the learning but may not converge. For the Adam
optimizer, the initial recommended learning rate is equal to 10−3, and this is the
value that we use for our training.

In addition, it would be inconvenient to pass the entire dataset into the CNN
at once, therefore we divide it into batches. The batch size, which is set to 30
frames, is the number of samples given to the network, after which a parameter
update happens. The pre-processing steps applied to the data are explained
in detail in Section 2.4, and they are also summarized in the following block
diagram.

Moreover, the choice of loss function also plays an essential role in producing
optimum and faster results. The loss function is a measure of how good a predic-
tion model operates in terms of being able to predict the expected outcome. For
this Thesis experiments, the cross-entropy loss function was utilized to measure
the performance of the classification model during the training epochs. The loss
according to the cross-entropy algorithm can be described as:

loss(x, class) = − log
exp (x[class])∑

j=0 J − 1 exp (x[j])
= −x[class]+log

∑
j=0

J − 1 exp (x[j])

(4.1)
where class is an index variable that indicates the ground truth for a specific
input, x is a vector which contains the scores for each class and J is the number
of classes.

In the next sections, we present the four main implementations of our ap-
proach. For the confusion matrices in the following pages the open source scikit-
learn [42] software tool was utilized.
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Figure 4.1: Pre-processing steps

4.3 Testing Methods

The participants of the testing videos are not the same with the ones used for
training the model, in order to avoid bias. Every testing video, like all videos
of our dataset, start with a frame of neutral facial expression and ends at the
most intense, in terms of emotion, frame. So for testing our model we are mostly
interested in the frames that show facial expressions rather than the ones with
neutral faces.

The fine-tuned model gives per-frame class scores:

s =


s1
s2
...
s6

 (4.2)

Per-video predictions are then calculated by using two different methods.
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• Majority Vote

First, a prediction for each frame is made by selecting the emotion with the
maximum score at the output of the softmax layer (s1, s2, . . . , s6). Given
the frame predictions p1, p2, . . . , pn where n is the number of frames for that
video, we apply majority voting to pdn/2e, . . . , pn to find which emotion has
more occurrences. We use only the second half of each video sequence since
these frames show facial expressions.

• Mean Scores

For the second method, the class scores of each frame are used to find
the video prediction. In particular, we calculate the means of the emotion
scores across the last half frames (dp/2e to p) of the video:

meanscores =


mean(s1)
mean(s2)

...
mean(s6)

 (4.3)

Then, we select the emotion class with the maximum mean value to find
the final emotion prediction for each video.

4.4 1st Implementation

In the 1st implementation an attempt has been made to fine-tune the last three
FC layers of the VGG16 model, using the hyperparameters mentioned above. At
the end of every epoch the average loss of all batches is calculated to check its
convergence (Figure 4.2). It can be observed that the loss decreases significantly
during the first epochs and then it seems to converge.

At the end of every epoch the model was evaluated on the training and valida-
tion sets in order to observe the occurence of over-fitting during training (Figure
4.3). Note that the validation and training sets are evaluated by frame and not by
video classification at this stage. The goal is to stop the training process earlier
at a point when the model shows high accuracy on the unseen data of validation
set but before it largely overfits on the training set, which will be represented by
a drop in validation accuracy and an increase in training accuracy. Therefore,
we stopped training at the end of the 170th epoch to evaluate the model on the
testing set.
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Figure 4.2: Loss value through epochs

Figure 4.3: Model accuracy on the training and validation sets through the
epochs.

The results of both evaluation methods are shown in Figure 4.4. As can be
seen, the second method of mean scores provides more accurate results, compared
to the majority voting method.
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Figure 4.4: (a) Confusion matrix using the majority voting algorithm with av-
erage accuracy 75.05 %. (b) Confusion matrix using mean scores with average
accuracy 80.48 %.

We can observe that some classes show significantly higher accuracy than
others. "Happiness", "Surprise" and "Disgust" all perform better compared to
"Fear". This observation can be attributed to the fact that some emotions are
more distinctive than others and also some emotions share similar facial expres-
sions [1].

4.5 2nd Implementation

As previously mentioned, using a large number of parameters, while having a
limited amount of training data, may force the model to map undesired properties
of the data (noise). Therefore in the 2nd implementation we apply a change in
the architecture of VGG16. We reduce the network complexity, by decreasing the
number of parameters in the second FC layer. Parameter reduction is expected
to help the model generalize better on unseen data while avoiding over-fitting.

Fine-tuning is applied to the last three FC layers of the model, while keeping
all hyperparameters the same as in 1st implementation. Again we can can observe
the loss convergence at Figure 4.5.

At the end of every epoch the model was evaluated on the training and vali-
dation sets in order to check the occurence of over-fitting during training (Figure
4.6). It can be seen that the vertical distance between the 2 graphs increases
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Figure 4.5: Loss value through epochs

significantly after the 200th epoch. Therefore the training process stops earlier at
the end of 170th epoch to evaluate the model on the testing set.

Figure 4.6: Model accuracy on the training and validation sets through the
epochs.
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After the evaluation process we can see how the model behaves on the data
of the testing set (Figure 4.7) using both evaluation methods described in the
previous section.
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Figure 4.7: (a) Confusion matrix using the majority voting algorithm with av-
erage accuracy 79.10%. (b) Confusion matrix using mean scores with average
accuracy 83.20%

As can be seen, parameter reduction provides improved results compared to
the initial network architecture of the previous implementation.

It can be also seen that some classes show higher accuracy than others. "Hap-
piness" and "Surprise" both perform better compared to "Fear" and "Sadness".
As mentioned before, this observation is intuitive as some emotions are more
distinctive. Especially "Fear" presents a low hit-rate and this can be attributed
to the fact that this emotion is quite subtle and it gets easily confused with
"Surprise".

Additionally, another explanation could be given for the low accuracy of some
classes. If we focus on the structure of the training set, we can see that classes
do not share equal portions of training samples, and this leads to worse accuracy
for weaker classes. In the next implementations we attempt to address this issue.

4.6 3rd Implementation

Most real-world classification problems display some level of class imbalance. The
problem of class imbalance occurs when the instances of one (or more) classes
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outnumber the instances of other classes in the training set. Imbalanced datasets
degrade the performance of ML techniques as the overall accuracy and decision
making is biased to the majority classes, which leads to misclassifying the weaker
classes samples or furthermore to treating them as noise.

Several methods have been proposed to face the effects of class imbalance in-
cluding oversampling instances of the minority class, undersampling instances of
the majority class, and cost-sensitive learning. After applying all these methods,
we focused on cost-sensitive learning since it was the most effective.

Cost-sensitive learning techniques take the misclassification cost into account
by assigning higher cost of misclassification when the training samples belong to
weaker classes [43]. In regular learning, all misclassifications are equally treated,
but this causes issues in imbalanced classification problems, since there is no extra
reward for identifying the minority class over the majority class. Cost-sensitive
learning changes this, and uses a function C(i) that specifies the cost of misclas-
sifying an instance of class i. This allows us to penalize misclassifications of the
minority class more heavily than we do with misclassifications of the majority
class, in hopes that this increases the accuracy rate. This change is applied to
the loss function of our network.

The structure of our training set is presented in Table 4.3. As can be seen,
"Happiness" has more samples of all the other emotions, whereas "Fear" and
"Anger" are the weakest classes as well as "Disgust".

Anger Disgust Fear Happiness Sadness Surprise Total
No of frames 1252 1549 1186 2908 1887 1989 10774

Table 4.3: Number of frames for every class in the training set

So, we use the weighted version of cross entropy loss function to calculate the
loss value during the training phase for the same network architecture as the one
of the 1st implementation.

loss(x, class) = weight[class](−x[class] + log
∑
j=0

J − 1 exp (x[j])) (4.4)

The weights for each class are determined by the following formula:

weight[class] =
nmax

nclass

(4.5)

where nclass is the number of frames of that specific class and nmax is the number
of frames of the majority class, in our case "Happiness". In this way, the penal-
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ization increases as the class size decreases, and thus the weakest classes have
larger weights.

At the end of every epoch the average loss of all batches is calculated to check
its convergence (Figure 4.8).

Figure 4.8: Loss value through epochs

Also the model was evaluated on the training and validation sets through the
epochs and the training process stopped at the 270th epoch (Figure 4.9)

Figure 4.9: Model accuracy on the training and validation sets through the
epochs.
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Looking at the confusion matrices (a) and (b) of the 1st implementation (Fig-
ure 4.4), we can see that "Fear" shows the lowest accuracy rate: 48.15% and
51.85% respectively. Also "Anger" has a low accuracy rate of 51.85% in (a) and
62.96% in confusion matrix (b) at the same figure. Nevertheless, "Disgust", has a
very high accuracy, 97.06%, despite the fact that it is one of the minority classes.
Below we can see the results of cost-sensitive learning in the accuracy of the
model on the testing set.
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Figure 4.10: (a) Confusion matrix using the majority voting algorithm with
average accuracy 78.9% (b) Confusion matrix using mean scores with average
accuracy 80.61%.

Whilst the class of "Fear" does not improve and is still strongly misclassified
as "Surprise", the "Anger" accuracy increases to 77.78% in both (a) and (b)
confusion matrices of Figure 4.10. Moreover the "Disgust" accuracy remains at
the same high level. It is also noticeable that the average accuracy of the system
improves compared to the 1st implementation.

4.7 4th Implementation

In the 4th and last version of the proposed framework we apply cost sensitive
learning tecniques to train the simplified network architecture of the 2nd Imple-
mentation. Below we can see the loss convergence after some epochs in figure
4.11.
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Figure 4.11: Loss value through epochs

In Figure 4.12 it can be observed that for the first 250 epochs the accuracy
on the validation set stays above 80% in most epochs. This indicates that there
is not a strong overfitting effect.

Figure 4.12: Model accuracy on the training and validation sets through the
epochs.
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Finally, the training process stopped at the 170th epoch, and the evaluation
results are illustrated in the following confusion matrices.
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Figure 4.13: (a) Confusion matrix using the majority voting algorithm with
average accuracy 80.37%. (b) Confusion matrix using mean scores with average
accuracy 84.2%

Recalling the results of the 2nd Implementation in Figure 4.7 of the previous
section, we can see that "Fear" which is the weakest class, in terms of training
samples number, has 40.74 % and 48.15 % accuracy on the testing set for the
(a) and (b) evaluation methods respectively. Furthermore, in the same confusion
matrices the "Anger" class has a high accuracy (88.89 % in both matrices) as well
as "Disgust" (with 88.24% and 91.18 % for the (a) and (b) confusion matrices).

Comparing those results with the ones shown in Figure 4.13, it is noticeable
that "Fear", which had the worst accuracy, improves significantly, and the ac-
curacy of the new version is equal to 59.26% in both confusion matrices. The
"Disgust" accuracy also increases to 97.06%. However, we see that "Anger" does
not improve as its accuracy decreases. The network average accuracy is higher
compared to the 2nd implementation, where we do not use cost-sensitive learning,
but also compared to all previous implementations. In conclusion, parameter re-
duction along with the use of a weighted loss function produced optimum results
in the testing procedure.



Chapter 5

Evaluation and Discussion

Facial expression analysis and recognition has become an active research topic
in recent decades due to its potential contribution to a wide range of HCI appli-
cations. In this Thesis we present a deep learning approach to perform emotion
recognition from video recordings. Inspired by the recent success of deep CNNs
in image recognition tasks, we created a FER system based on applying transfer
learning tecniques to the well-known VGG16 architecture.

Deep learning algorithms, including deep CNNs, require large amount of train-
ing data to achieve state-of-the-art results, and this is considered to be their main
limitation. However there is not sufficient amount of labeled data for video emo-
tion recognition in the existing literature. We overcame this issue by loading the
pre-trained weights of the model which have been calculated after training the
model on the very large dataset of ImageNet (1.2M images for object recogni-
tion). Despite the fact that our training dataset is significantly smaller ('11K
frames), it was proved to be enough for fine-tuning the initialized model and
making it capable of classifying emotions.

We found that by reducing the number of network parameters, overfitting
decreases, and the classifier’s accuracy improves. However, there is still a note-
worthy difference in the individual accuracies of the classes. "Happiness" and
"Surprise" perform in general better than the other classes, whereas "Fear" has
the lowest accuracy. Considering that this happens due to class imbalance in our
training set, we applied cost-sensitive learning to train the model. We used a
weighted cost function that penalizes more strictly misclassifications of samples
that belong to weaker classes. The cost sensitive method was applied to both
initial and "reduced" architectures. We found it difficult to draw conclusions for
the cost-sensitive learning effectiveness, since it seems effective and it increases
the model accuracy but not in all cases. For example, the "Fear" misclassifi-
cation as "Surprise" stays at a high rate. This can be attributed to the fact
that these two emotions share similar facial expressions, with "Surprise" being
more distinctive (as it can be seen, "Surprise" is not misclassified as "Fear"). In

51
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conclusion, cost-sensitive learning helps the model to perform better under the
limitations of psychological factors of the data.

Furthermore, we explore two testing methods, majority voting and score aver-
aging, for calculating video predictions from frame predictions. Our experiments
in Chapter 4 show that score averaging method outperforms majority voting in
all confusion matrices, since it keeps more information from the class scores of
all frames.

Finally, all implementations investigated in this work are static frameworks.
This means that the training samples are video frames and the models produce
per-frame predictions, based on 2D convolutional architectures. Nevertheless,
they do not model the dynamic of the videos and avoid temporal information
which may help to produce more accurate video predictions. A 3D CNN, in
which each training sample is a video and the model gives per-video predictions
was a potential approach for video emotion recognition. However this solution is
computationally expensive with prohibitively high memory requirements.
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