
1

Master Thesis

__

Parameterization and Optimization

of Neural Networks for Distributed

Systems Hadoop-like
__

By

Kotoulas Nikolaos

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

2

UNIVERSITY OF THESSALY

DEPARTEMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

Parameterization and Optimization of neural

networks for Distributed Systems Hadoop-

like

 (Παραμετροποίηση και Βελτιστοποήση Νευρωνικών Δικτύων σε

Κατανεμημένα Συστήματα τύπου Hadoop)

Master Thesis

Kotoulas Nikolaos

Supervising Professors: Katsaros Dimitrios

 Assistant Professor

 Stamoulis Georgios

 Professor

 Tsoukalas Eleutherios

 Professor

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

3

Contents
Acknowledgements ... 4

Abstract ... 5

1. Introduction .. 6

1.1 TensorFlow .. 7

1.2 Hadoop .. 11

1.3 Spark .. 16

2. Hadoop Vs Spark: A head to head comparison ... 24

2.0 Setup and Prerequisites of an HPC Cluster ... 24

2.1 Evaluation and Results .. 38

2.1.1 TeraSort .. 39

2.1.2 Naive Bayes .. 44

2.1.3 K-means .. 51

3. Verdicts analysis and future Work .. 58

References ... 59

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

4

Acknowledgements
At this point, I would like to thank all those who have contributed to the

completion of this work. First of all, I would like to thank my supervisor

Dimitrios Katsaros who inspired me and gave me the opportunity to work in

such an interesting project. I am grateful to Certh’s system and networks

administrator Filimon Georgiou for his valuable knowledge and the help

throughout the project. Finally, I would like to thank my family and my friends

for their support over the years.

Ευχαριστίες

Στο σημείο αυτό ́θα ήθελα να ευχαριστήσω όλους εκείνους που

συνέβαλαν στην ολοκλήρωση της εκπόνησης αυτής της εργασίας. Αρχικά θα

ήθελα να ευχαριστήσω το επιβλέποντα καθηγητή μου Δημήτριο Κατσαρό που

με ενέπνευσε και μου έδωσε την ευκαιρία να ασχοληθώ́ με μια πολύ ́

ενδιαφέρουσα διπλωματική́ εργασία. Είμαι ευγνώμων στον Φιλήμων

Γεωργίου, κύριο διαχειρηστή συστημάτων στο Εθνικό Κέντρο Έρευνας και

Τεχνολογικής Ανάπτυξης για την πολύτιμη γνώση και βοήθειά του κατά την

υλοποήση της εργασίας . Τέλος θα ήθελα να ευχαριστήσω την οικογένεια μου

και τους φίλους μου για την στήριξη τους όλα αυτά ́τα χρόνια.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

5

Abstract
The purpose of this work is to compare the performance between Hadoop

and Spark on some demanding and modern applications, such as iterative

computation, real-time data processing and machine learning with Google’s

TensorFlow. The runtime architectures of both Spark and Hadoop will be

compared to illustrate their differences, and the components of their

ecosystems will be tabled to show their respective characteristics. In this case

study, we will highlight the performance comparison between Spark and

Hadoop as the growth of data size and iteration counts and show how to tune

in Hadoop and Spark to achieve higher performance. In addition, there will be

several appendixes which describes how to install and launch Hadoop and

Spark, how to implement the three case studies using java and Scala

programming, and how to verify the correctness of the running results.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

6

1. Introduction

The world is growing at an enormous speed every moment, and at the

same speed is growing the overall data size across the globe, which

technically constitutes the term known as ‘Big Data’ The amount of newly

generated data per year is huge and keeps on growing tremendously: from

about 150 Exabytes in 2005 (worldwide) to approximately 1200 Exabytes in

2010. Nowadays, we create 2.5 quintillion bytes of data every day [0]. Twitter

users generate over 500 million tweets every day, and a similar number of

images is uploaded to Facebook. In 2016, the Facebook graph, which reflects

the friendship relation between Facebook users, features more than a billion

nodes and over hundreds of billions friendship edge5. And, the size of the

indexed World Wide Web (estimated via the size of Googles index) is over 45

billion web pages6, and Google alone performs several billion searches on it

every day.

A similar data explosion can be observed in the scientific world, for

example in genetics, biology, or particle physics, as well as ever increasing

digitized text collections. For instance, particles collide in the large hadron

collider (LHC) detectors approximately 1 billion times per second, generating

about one petabyte of collision data per second. Even though only the most

“interesting” events can be stored and processed, CERN data center has

already accumulated over 200 petabytes of filtered data.

Apart from big data, a yet another technological revolution that is taking

the world by storm these days is ‘Artificial Intelligence’ or AI and ‘Machine

Learning. The field was founded on the claim that human intelligence "can be

so precisely described that a machine can be made to simulate it". In the

twenty-first century, AI techniques have experienced a resurgence following

concurrent advances in computer power, large amounts of data, and

theoretical understanding; and AI techniques have become an essential part

of the technology industry, helping to solve many challenging problems in

computer science, software engineering and operations research.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

https://link.springer.com/article/10.1007/s13218-017-0523-7#Fn5
https://link.springer.com/article/10.1007/s13218-017-0523-7#Fn6
https://en.wikipedia.org/wiki/Human_intelligence
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/Technology_industry
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Operations_research

7

1.1 TensorFlow

This chapter demonstrates a brief anatomy and analysis of TensorFlow

library, Apache Hadoop and Apache Spark frameworks.

There will be a brief reference to their history and then we will analyze their

functionality, their basic architecture and the substantial advantages of each

technology separately

TensorFlow is a machine-learning library that uses data flow graphs to

build models [1]. The main purpose of the library is to create models to solve

various NLP and image recognition tasks. Starting in 2011, Google Brain built

DistBelief as a proprietary machine learning system based on deep

learning neural networks. Its use grew rapidly across

diverse Alphabet companies in both research and commercial applications.

Google assigned multiple computer scientists, to simplify and refactor the

codebase of DistBelief into a faster, more robust application-grade library,

which became TensorFlow. The name TensorFlow derives from the

operations that such neural networks perform on multidimensional data

arrays. These arrays are referred to as "tensors". TensorFlow was released

under the Apache 2.0 open source license on November 9, 2015 and crossed

over in both research and industry AI development

TensorFlow has been created for Deep Learning to let a user create a

neural network architecture by himself (or herself, of course). Still, the library

allows the user to work with statistical machine learning algorithms. However,

it does not provide them out-of-the-box – user has to implement them on his

own and TensorFlow provides only tools to do this.

As we can see in Figure 1, all the computations are represented

as directed graphs, where the computations themselves (and input/output

data as well) are nodes. The edges of the graph are paths, by which the data

flows from node to node.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Alphabet_Inc.
https://en.wikipedia.org/wiki/Code_refactoring
https://en.wikipedia.org/wiki/Tensor
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Directed_graph

8

Figure 1:TensorFlow directed graph (source: adtmag.com/articles/2015/12/01/machine-learning-donation)

Data in TensorFlow are represented as tensors (multidimensional and
dynamically sized data arrays) [2]. Tensors flow in the graph from node to
node, thus making the name of the library sound logical. Simply speaking, a
tensor is a 3D matrix (but it is not a strict mathematical definition, of course!).
On a figure below, you may see a tensor in terms of vivisection. Comparing to

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

9

matrix it has more degrees of freedom regarding data selection and slicing.
The following figure (Figure 2) demonstrates TensorFlow’s Fibers and Slices:

Figure 2:TensorFlow Fibers and Slices (source: www.researchgate.net)

Some of the main features and advantages of TensorFlow are:

• Portability: TensorFlow has made it possible to play around an idea

on your laptop without having any other hardware support. It runs on GPUs,

CPUs, desktops, servers, and mobile computing platforms. You can deploy a

trained model on your mobile as a part of your product, and that’s how it

serves as a true portability feature.

• Flexibility: You need to express your computation as a data flow

graph to use TensorFlow. It is a highly flexible system which provides multiple

models or multiple versions of the same model can be served simultaneously.

The architecture of TensorFlow is highly modular, which means you can use

some parts individually or can use all the parts together. Such flexibility

facilitates non-automatic migration to new models/versions, A/B testing

experimental models, and canarying new models.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

10

• Performance: TensorFlow allows you to make the most of your

available hardware with its advanced support for threads, asynchronous

computation, and queues. Just assign compute elements of your TensorFlow

graph to different devices and let it manage the copies itself. It also facilitates

you with the language options to execute your computational graph.

TensorFlow iPython notebook helps in keeping codes, notes, and

visualization in a logically grouped and interactive style.

• Research and Production: It can be used to train and serve models in

live mode to real customers. To put it simply, rewriting codes is not required

and the industrial researchers can apply their ideas to products faster. Also,

academic researchers can share codes directly with greater reproducibility. In

this way it helps to carry out research and production processes faster.

• Auto Differentiation: It has automatic differentiation capabilities which

benefits gradient based machine learning algorithms. You can define the

computational architecture of your predictive model, combine it with your

objective function and add data to it- TensorFlow manages derivatives

computing processes automatically. You can compute the derivatives of some

values with respect to some other values results in graph extension and you

can see exactly what’s happening.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

11

1.2 Hadoop

Apache Hadoop is a collection of open-source software utilities that

facilitate using a network of many computers to solve problems involving

massive amounts of data and computation [3]. It provides a software

framework for distributed storage and processing of big data using

the MapReduce programming model, designed to run on commodity

hardware, it has also found use on clusters of higher-end hardware.

According to its co-founders, Doug Cutting and Mike Cafarella, the genesis of

Hadoop was the "Google File System" paper that was published in October

2003.[4] This paper spawned another one from Google – "MapReduce:

Simplified Data Processing on Large Clusters".[5] Development started on

the Apache Nutch project, but was moved to the new Hadoop

subproject. Doug Cutting, who was working at Yahoo at the time, named it

after his son's toy elephant.

The core of Apache Hadoop consists of a storage part, known as Hadoop

Distributed File System (HDFS), and a processing part which is a MapReduce

programming model. Hadoop splits files into large blocks and distributes them

across nodes in a cluster. It then transfers packaged code into nodes to

process the data in parallel. This approach takes advantage of data

locality, where nodes manipulate the data they have access to. This allows

the dataset to be processed faster and more efficiently than it would be in a

more conventional supercomputer architecture that relies on a parallel file

system where computation and data are distributed via high-speed

networking. HDFS has many similarities with existing distributed file systems.

However, the differences from other distributed file systems are significant.

HDFS is highly fault-tolerant and is designed to be deployed on low-cost

hardware. HDFS provides high throughput access to application data and is

suitable for applications that have large data sets. HDFS relaxes a few POSIX

requirements to enable streaming access to file system data.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Clustered_file_system
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/Doug_Cutting
https://en.wikipedia.org/wiki/Mike_Cafarella
https://en.wikipedia.org/wiki/Apache_Hadoop#cite_note-17
https://en.wikipedia.org/wiki/Apache_Nutch
https://en.wikipedia.org/wiki/Doug_Cutting
https://en.wikipedia.org/wiki/JAR_(file_format)
https://en.wikipedia.org/wiki/Data_locality
https://en.wikipedia.org/wiki/Data_locality
https://en.wikipedia.org/wiki/Distributed_processing
https://en.wikipedia.org/wiki/Supercomputer_architecture
https://en.wikipedia.org/wiki/Parallel_file_system
https://en.wikipedia.org/wiki/Parallel_file_system

12

The base Apache Hadoop framework is composed of the following
modules:

• Hadoop Common – contains libraries and utilities needed by other
Hadoop modules;

• Hadoop Distributed File System (HDFS) – a distributed file-system that
stores data on commodity machines, providing very high aggregate bandwidth
across the cluster;

• Hadoop YARN – introduced in 2012 is a platform responsible for
managing computing resources in clusters and using them for scheduling
users' applications

• Hadoop MapReduce – an implementation of the MapReduce
programming model for large-scale data processing.

Hadoop consists of the Hadoop Common package, which provides file
system and operating system level abstractions, a MapReduce engine (either
MapReduce or YARN) and the Hadoop Distributed File System (HDFS). The
Hadoop Common package contains the Java Archive (JAR) files and scripts
needed to start Hadoop.

For effective scheduling of work, every Hadoop-compatible file system
should provide location awareness – the name of the rack (or, more precisely,
of the network switch) where a worker node is. Hadoop applications can use
this information to execute code on the node where the data is, and, failing
that, on the same rack/switch to reduce backbone traffic. HDFS uses this
method when replicating data for data redundancy across multiple racks. This
approach reduces the impact of a rack power outage or switch failure; if any
of these hardware failures occurs, the data will remain available.

A small Hadoop cluster includes a single master and multiple worker
nodes. The master node consists of a Job Tracker, Task Tracker, NameNode,
and DataNode. A slave or worker node acts as both a DataNode and
TaskTracker, though it is possible to have data-only and compute-only worker
nodes. These are normally used only in nonstandard applications. In a larger
cluster, HDFS nodes are managed through a dedicated NameNode server to
host the file system index, and a secondary NameNode that can generate
snapshots of the namenode's memory structures, thereby preventing file-
system corruption and loss of data. Similarly, a standalone JobTracker server
can manage job scheduling across nodes. When Hadoop MapReduce is used
with an alternate file system, the NameNode, secondary NameNode, and
DataNode architecture of HDFS are replaced by the file-system-specific
equivalents. The following figures (Figure 3, Figure 4 and Figure 5) shows
HDFS architecture, a MapReduce sequence diagram and a Hadoop
ecosystem respectively:

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

https://en.wikipedia.org/wiki/Apache_Hadoop#Hadoop_distributed_file_system
https://en.wikipedia.org/wiki/JAR_(file_format)

13

Figure 4:Map Reduce Sequence Diagram source: http://broadwaycomputers.us)

Figure 3:HDFS Architecture source: http://spmarchitecture.com)

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

14

Figure 5:Hadoop ecosystem example (source: wr.informatik.uni-hamburg.de)

Some of the main features and advantages of Apache Hadoop are [6]:

• Scalable

Hadoop is a highly scalable storage platform, because it can store and
distribute very large data sets across hundreds of inexpensive servers that
operate in parallel. Unlike traditional relational database systems (RDBMS)
that can't scale to process large amounts of data, Hadoop enables businesses
to run applications on thousands of nodes involving thousands of terabytes of
data.

• Cost effective

Hadoop also offers a cost effective storage solution for businesses'
exploding data sets. The problem with traditional relational database
management systems is that it is extremely cost prohibitive to scale to such a
degree in order to process such massive volumes of data. In an effort to
reduce costs, many companies in the past would have had to down-sample
data and classify it based on certain assumptions as to which data was the
most valuable. The raw data would be deleted, as it would be too cost-
prohibitive to keep. While this approach may have worked in the short term,

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

15

this meant that when business priorities changed, the complete raw data set
was not available, as it was too expensive to store. The cost savings are
staggering: instead of costing thousands to tens of thousands of pounds per
terabyte, Hadoop offers computing and storage capabilities for hundreds of
pounds per terabyte.

• Flexible

Hadoop enables businesses to easily access new data sources and tap
into different types of data (both structured and unstructured) to generate
value from that data. This means businesses can use Hadoop to derive
valuable business insights from data sources such as social media, email
conversations or clickstream data. In addition, Hadoop can be used for a wide
variety of purposes, such as log processing, recommendation systems, data
warehousing, market campaign analysis and fraud detection.

• Fast

Hadoop's unique storage method is based on a distributed file system that
basically 'maps' data wherever it is located on a cluster. The tools for data
processing are often on the same servers where the data is located, resulting
in much faster data processing. If you're dealing with large volumes of
unstructured data, Hadoop is able to efficiently process terabytes of data in
just minutes, and petabytes in hours.

• Resilient to failure

A key advantage of using Hadoop is its fault tolerance. When data is sent
to an individual node, that data is also replicated to other nodes in the cluster,
which means that in the event of failure, there is another copy available for
use.

The MapReduce distribution goes beyond that by eliminating the
NameNode and replacing it with a distributed No NameNode architecture that
provides true high availability. Our architecture provides protection from both
single and multiple failures.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

http://www.mapr.com/products/apache-hadoop
http://www.mapr.com/products/apache-hadoop

16

1.3 Spark

Spark is a cluster computing framework and an engine for large-scale

data processing. It constructs a distributed collections of objects, resilient

distributed datasets (RDDs) in memory, and then performs a variety of

operations in parallel on these datasets. Spark greatly outperforms Hadoop

MapReduce by 10x in iterative machine learning tasks [7] and is up to20x

faster for iterative applications [8] Apache Spark is considered as a powerful

complement to Hadoop. Big data’s original technology of choice Spark is a

general-purpose data processing engine that is suitable for use in a wide

range of circumstances. Application developers and data scientists

incorporate Spark into their applications to rapidly query, analyze, and

transform data at scale. Tasks most frequently associated with Spark include

interactive queries across large data sets, processing of streaming data from

sensors or financial systems, and machine learning tasks.

Spark began life in 2009 as a project within the AMPLab at the University

of California, Berkeley. More specifically, it was born out of the necessity to

prove out the concept of Mesos, which was also created in the AMPLab.

Spark was first discussed in the Mesos white paper Mesos: A Platform for

Fine-Grained Resource Sharing in the Data Center, written most notably by

Benjamin Hindman and Matei Zaharia [5].

Spark became an incubated project of the Apache Software Foundation in

2013, and it was promoted early in 2014 to become one of the Foundation’s

top-level projects [9]. Spark is currently one of the most active projects

managed by the Foundation, and the community that has grown up around

the project includes both prolific individual contributors and well-funded

corporate backers such as Databricks, IBM, and China’s Huawei.

Spark can handle several petabytes of data at a time, distributed across a

cluster of thousands of cooperating physical or virtual servers. It has an

extensive set of developer libraries and APIs and supports languages such as

Java, Python, R, and Scala; its flexibility makes it well-suited for a range

of use cases. Spark is often used alongside Hadoop’s data storage module—

HDFS—but it can integrate equally well with other popular data storage

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

https://mapr.com/solutions/enterprise-big-data-and-hadoop-use-cases
https://mapr.com/why-hadoop/why-mapr/architecture-matters

17

subsystems such as HBase, Cassandra, Map-DB, MongoDB and Amazon’s

S3.

Apache Spark has a well-defined and layered architecture where all

the spark components and layers are loosely coupled and integrated with

various extensions and libraries. Apache Spark Architecture is based on two

main abstractions: Resilient Distributed Datasets (RDD) and Directed Acyclic

Graph (DAG)

Resilient Distributed Datasets

RDD’s are collection of data items that are split into partitions and can be

stored in-memory on workers nodes of the spark cluster. In terms of datasets,

apache spark supports two types of RDD’s – Hadoop Datasets which are

created from the files stored on HDFS and parallelized collections which are

based on existing Scala collections. Spark RDD’s support two different types

of operations – Transformations and Actions [10].

Directed Acyclic Graph

Direct - Transformation is an action which transitions data partition state

from A to B. Acyclic -Transformation cannot return to the older partition

DAG is a sequence of computations performed on data where each node

is an RDD partition and edge is a transformation on top of data. The DAG

abstraction helps eliminate the Hadoop MapReduce multi0stage execution

model and provides performance enhancements over Hadoop.

Apache Spark (as you can see in Figure 6)follows a master/slave

architecture with two main daemons and a cluster manager:

 i. Master Daemon – (Master/Driver Process)

 ii. Worker Daemon –(Slave Process)

A spark cluster has a single Master and any number of Slaves/Workers.

The driver and the executors run their individual Java processes and users

can run them on the same horizontal spark cluster or on separate machines

i.e. in a vertical spark cluster or in mixed machine configuration(Figure 7).

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

https://mapr.com/blog/spark-streaming-hbase
https://mapr.com/products/mapr-db-in-hadoop-nosql
https://www.dezyre.com/article/apache-spark-ecosystem-and-spark-components/219

18

Figure 6:Spark Architecture (source: siliconangle.com)

Figure 7:Spark Architecture (clusters) (source: databricks.com)

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

19

Role of Spark driver:

Spark Driver – Master Node of a Spark Application is the central point and

the entry point of the Spark Shell (Scala, Python, and R). The driver program

runs the main () function of the application and is the place where the Spark

Context is created. Spark Driver contains various components –

DAGScheduler, TaskScheduler, BackendScheduler and BlockManager

responsible for the translation of spark user code into actual spark jobs

executed on the cluster.

• The driver program that runs on the master node of the spark
cluster schedules the job execution and negotiates with the cluster manager.

• It translates the RDD’s into the execution graph and splits the
graph into multiple stages.

• Driver stores the metadata about all the Resilient Distributed
Databases and their partitions.

• Cockpits of Jobs and Tasks Execution -Driver program converts
a user application into smaller execution units known as tasks. Tasks are then
executed by the executors i.e. the worker processes which run individual
tasks.

• Driver exposes the information about the running spark
application through a Web UI at port 4040

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

20

Figure 8:Spark Driver with services(source:stackoverflow.com)

Role of Executor in Spark:

Executor is a distributed agent responsible for the execution of tasks.

Every spark applications have its own executor process. Executors usually

run for the entire lifetime of a Spark application and this phenomenon is

known as “Static Allocation of Executors”. However, users can also opt for

dynamic allocations of executors wherein they can add or remove spark

executors dynamically to match with the overall workload.

As shown in Figure 9:

• Executor performs all the data processing.
• Reads from and Writes data to external sources.
• Executor stores the computation results data in-memory, cache

or on hard disk drives.
• Interacts with the storage systems.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

21

Figure 9:Spark architecture(executors)(source:databricks.com)

Role of Cluster Manager in Spark Architecture

Cluster Manager (as shown in Figure 10)is an external service
responsible for acquiring resources on the spark cluster and allocating them
to a spark job. There are 3 different types of cluster managers a Spark
application can leverage for the allocation and deallocation of various physical
resources such as memory for client spark jobs, CPU memory, etc. Hadoop
YARN, Apache Mesos or the simple standalone spark cluster manager either
of them can be launched on-premise or in the cloud for a spark application to
run.

Choosing a cluster manager for any spark application depends on the
goals of the application because all cluster managers provide different set of
scheduling capabilities. Specifically, to run on a cluster, the SparkContext can
connect to several types of cluster managers (either Spark’s own standalone
cluster manager, Mesos or YARN), which allocate resources across
applications. Once connected, Spark acquires executors on nodes in the
cluster, which are processes that run computations and store data for your
application. Next, it sends your application code (defined by JAR or Python
files passed to SparkContext) to the executors. Finally, SparkContext
sends tasks to the executors to run.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

22

Figure 10:Spark Architecture (Cluster managers)(source:dzone.com)

Some of the key features and advantages Apache Hadoop are:

• Simplicity

Spark’s capabilities are accessible via a set of rich APIs, all designed

specifically for interacting quickly and easily with data at scale. These APIs

are well documented and structured in a way that makes it straightforward for

data scientists and application developers to quickly put Spark to work.

• Speed

Spark is designed for speed, operating both in memory and on disk. Using

Spark, a team of people from Databricks tied for first place with a team from

University of California, San Diego in the 2014 Daytona Gray Sort 100TB

Benchmark challenge. The challenge involves processing a static data set;

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

23

the Databricks team was able to process 100 terabytes of data stored on

solid-state drives in just 23 minutes, and the previous winner took 72 minutes

by using Hadoop and a different cluster configuration. Spark can perform

even better when supporting interactive queries of data stored in memory. In

those situations, there are claims that Spark can be 100 times faster than

Hadoop’s MapReduce.

• Support

Spark supports a range of programming languages, including Java,

Python, R, and Scala. Although often closely associated with HDFS, Spark

includes native support for tight integration with a number of leading storage

solutions in the Hadoop ecosystem and beyond. Furthermore, the Apache

Spark community is large, active, and international. A growing set of

commercial providers including Databricks, IBM, and all of the main Hadoop

vendors deliver comprehensive support for Spark-based solutions.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

24

2. Hadoop Vs Spark: A head to head

comparison

2.0 Setup and Prerequisites of an HPC Cluster

The experimental cluster used consists of five computer systems. One of

them serves as a manager (both a master and a slave node but with no

acceleration capabilities). The other four are designed to be slave nodes. The

hardware information for the cluster is shown as following:

• 4 nodes interconnected by Each node 10G-Ethernet.

• Each node has 2 Intel Xeon CPU E5-2620v4 running at 2.10GHz

• Each CPU has 8 cores, each core has 2 threads (hyper-threading).

• Each node has 128GB of memory.

• The configured capacity for HDFS is 6 TB with 1.4 TB per node.

We use the CentOS 7.4 operating system and JAVA 1.8.0 version for all

the nodes. We use Hadoop 2.8.2 (stable) Spark 2.2 and YARN 1.3.0 for the

resource management layer of Hadoop. The version for Hadoop and Spark

are stable released and the version for Yarn is the latest release.

The following guide demonstrates all the necessary commands to install

Spark and Hadoop for usage with multiple clusters in a high-performance

system.

For Hadoop, we use Apache Hadoop YARN. Apache Yarn – “Yet Another

Resource Negotiator” is the resource management layer of Hadoop [11] . The

Yarn was introduced in Hadoop 2.x. versions Yarn allows different data

processing engines like graph processing, interactive processing, stream

processing as well as batch processing to run and process data stored

in HDFS (Hadoop Distributed File System). Apart from resource management,

Yarn is also used for job Scheduling. Yarn extends the power of Hadoop to

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

https://goo.gl/0SzffV
https://goo.gl/0SzffV
http://data-flair.training/blogs/comprehensive-hdfs-guide-introduction-architecture-data-read-write-tutorial/
https://goo.gl/Hjyft3

25

other evolving technologies, so they can take the advantages of HDFS (most

reliable and popular storage system on the planet) and economic cluster.

Apache Yarn is also considered as the data operating system for Hadoop

2. x. versions. The yarn-based architecture of Hadoop 2.x provides a general-

purpose data processing platform which is not just limited to the MapReduce.

It enables Hadoop to process other purpose-built data processing system

other than MapReduce. It allows running several different frameworks on the

same hardware where Hadoop is deployed.

To install Yarn use Debian package repositories but firstly you need to

configure the repository:

curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -

echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee

/etc/apt/sources.list.d/yarn.list

Then you can simply:

sudo apt-get update && sudo apt-get install yarn

Test that Yarn is installed by running:

yarn --version

For Hadoop 2.8.2 version:

Before you proceed to the installation, create a normal user for the install,
and a user called hadoop for any Hadoop daemons. Do not create SSH keys
for hadoop users. SSH keys will be addressed in a later section.

First, make your network adapter as Bridge or Host-Only depending upon
your requirements. You can use virtual machines (using each machine’s
respectively) but in our case (physical machine cluster) we have created a
cluster with 4 nodes. For each node to communicate with its names, edit

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

http://data-flair.training/blogs/hadoop-mapreduce-tutorial-comprehensive-guide-beginners/

26

the /etc/hosts file to add the IP address of the servers (in case you have
multiple machines)

The master node will use an ssh-connection to connect to other nodes

with key-pair authentication, to manage the cluster. Login to node-master as

the hadoop user, and generate an ssh-key:

ssh-keygen -b 4096

Copy the key to the other nodes. It’s good practice to also copy the key to

the node-master itself, so that you can also use it as a DataNode if needed.

Type the following commands, and enter the hadoop user’s password when

asked. If you are prompted whether or not to add the key to known hosts,

enter yes:

ssh-copy-id -i $HOME/.ssh/id_rsa.pub hadoop@node-master

ssh-copy-id -i $HOME/.ssh/id_rsa.pub hadoop@node1

ssh-copy-id -i $HOME/.ssh/id_rsa.pub hadoop@node2

ssh-copy-id -i $HOME/.ssh/id_rsa.pub hadoop@node3

ssh-copy-id -i $HOME/.ssh/id_rsa.pub hadoop@node4

Login to node-master as the hadoop user, download the Hadoop tarball

from Hadoop project page, and unzip it:

cd <desired folder>

wget http://apache.mindstudios.com/hadoop/common/hadoop-

2.8.1/hadoop-2.8.1.tar.gz

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

https://hadoop.apache.org/

27

tar -xzf hadoop-2.8.1.tar.gz

mv hadoop-2.8.1 hadoop

Add Hadoop binaries to your PATH. Edit /home/hadoop/.profile and

add the following line:

PATH=/home/hadoop/hadoop/bin:/home/hadoop/hadoop/sbin:$PATH

Configure the Master Node. Configuration will be done on node-

master and replicated to other nodes:

Get your Java installation path. If you installed open-jdk from your

package manager, you can get the path with the command:

update-alternatives --display java

Take the value of the current link and remove the trailing /bin/java. For

example, on Debian, the link is /usr/lib/jvm/java-8-openjdk-

amd64/jre/bin/java, so JAVA_HOME should be /usr/lib/jvm/java-8-

openjdk-amd64/jre.

If you installed java from Oracle, JAVA_HOME is the path where you

unzipped the java archive.

Edit ~/hadoop/etc/hadoop/hadoop-env.sh and replace this line:

export JAVA_HOME=${JAVA_HOME}

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

28

with your actual java installation path. For example, on a Debian with

open-jdk-8:

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/jre

Set NameNode Location:

On each node update ~/hadoop/etc/hadoop/core-site.xml you want

to set the NameNode location to node-master on port 9000:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

 <configuration>

 <property>

 <name>fs.default.name</name>

 <value>hdfs://node-master:9000</value>

 </property>

 </configuration>

Set path for HDFS: Edit hdfs-site.conf:

<configuration>

 <property>

 <name>dfs.namenode.name.dir</name>

 <value>/home/hadoop/data/nameNode</value>

 </property>

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

29

 <property>

 <name>dfs.datanode.data.dir</name>

 <value>/home/hadoop/data/dataNode</value>

 </property>

 <property>

 <name>dfs.replication</name>

 <value>1</value>

 </property>

</configuration>

The last property, dfs.replication, indicates how many times data is

replicated in the cluster. You can set 4 to have all the data duplicated on the

four nodes. Don’t enter a value higher than the actual number of slave nodes.

Set Yarn as Job Scheduler:

In ~/hadoop/etc/hadoop/, rename mapred-

site.xml.template to mapred-site.xml:

cd ~/hadoop/etc/hadoop

mv mapred-site.xml.template mapred-site.xml

Edit the file, setting yarn as the default framework for MapReduce

operations:

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

30

<configuration>

 <property>

 <name>mapreduce.framework.name</name>

 <value>yarn</value>

 </property>

</configuration>

 Configure Yarn:

 Edit yarn-site.xml:

<configuration>

 <property>

 <name>yarn.acl.enable</name>

 <value>0</value>

 </property>

 <property>

 <name>yarn.resourcemanager.hostname</name>

 <value>node-master</value>

 </property>

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

31

 <property>

 <name>yarn.nodemanager.aux-services</name>

 <value>mapreduce_shuffle</value>

 </property>

</configuration>

 Configure Slaves

The file slaves is used by startup scripts to start required daemons on all

nodes. Edit ~/hadoop/etc/hadoop/slaves to be:

node1

node2

node3

node4

For Spark 2.2 version:

Install Spark on Master:

Add entries in host files

sudo nano /etc/hosts

 Add entries of master and slaves:

MASTER -<Corresponding IP>

SLAVE01-<Corresponding IP>

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

32

SLAVE01-<Corresponding IP>

Install Scala

sudo apt-get install scala

Configure SSH

Install Open SSH Server-Client

sudo apt-get install openssh-server openssh-client

Generate Key pairs

ssh-keygen -t rsa -P ""

Configure passwordless SSH

Copy the content of .ssh/id_rsa.pub (of master) to .ssh/authorized_keys

(of all the slaves as well as master)

Check by SSH to all the Slaves

ssh slave01

ssh slave02

ssh slave03

ssh slave04

Download Spark from the official site and unrar tarball.

Setup Configuration:

Edit .bashrc

Edit .bashrc file located in user’s home directory and add following

environment variables:

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

33

export JAVA_HOME=<path-of-Java-installation> (eg: /usr/lib/jvm/java-8-

oracle/)

export SPARK_HOME=<path-to-the-root-of-your-spark-installation> (eg:

/home/dataflair/spark-2.2.0-bin-hadoop2.8.2/)

export PATH=$PATH:$SPARK_HOME/bin

Edit spark-env.sh:

Now edit configuration file spark-env.sh (in $SPARK_HOME/conf/) and

set following parameters:

Note: Create a copy of template of spark-env.sh and rename it:

cp spark-env.sh.template spark-env.sh

export JAVA_HOME=<path-of-Java-installation> (eg: /usr/lib/jvm/java-8-

oracle/)

export SPARK_WORKER_CORES=8

Add Slaves

Create configuration file slaves (in $SPARK_HOME/conf/) and add

following entries:

slave01

slave02

Setup Prequisites on all the slaves

Run following steps on all the slaves (or worker nodes):

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

34

1. Add Entries in hosts file

2. Install Java 8

3. Install Scala

Start Spark Cluster:

Start Spark Services

sbin/start-all.sh

Check whether services have been started

Check daemons on Master

jps

Worker

Check daemons on Slaves

jps

Worker

The following Pictures are indicative instances of our experimental

machine’s setup:

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

35

Figure 11:Cluster's Dashboard

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

36

 Figure 12:Cluster's Summary and Metrics for each Node

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

37

Figure 13:Manger node's Services and Metrics monitor

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

38

2.1 Evaluation and Results

We set up Hadoop and Spark clusters to run three demanding

benchmarks including TeraSort, Naive Bayes and K-means[12][13][14][15].

These benchmarks are classified into two categories that are micro

benchmark and machine learning. Both distributed systems are built on a five

(1 manager-master/slave and 4 slaves) nodes cluster. We measured the

running time, speedup, throughput, maximum and average memory and CPU

usage for all the benchmarks on both platforms of Hadoop and Spark. Finally,

we compared the performance differences among these two platforms based

on the characteristics of the benchmarks. Also, the experimental results are

shown in following chapters and analyzed separately for different

benchmarks. We compared the performances between Hadoop and Spark on

TeraSort, Naive Bayes and K-means. The experimental results showed that

Spark is faster than Hadoop. Specifically, Spark has a outstanding

performance on machine learning applications including K-means and Naïve

Bayes since these applications apply a function repeatedly to the same

dataset. For TeraSort, Spark runs faster with large input. However, Spark

consumes more memory capacity and the performance for Spark is restricted

by the memory.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

39

2.1.1 TeraSort

 Before proceeding to a ML benchmark, we wanted to measure and

compare the sorting times between the two platforms. To achieve this, we

selected to test TeraSort benchmark [15]. TeraSort is a popular benchmark

that measures the amount of time to sort one terabyte of randomly distributed

data on a given computer system. It is commonly used to measure

MapReduce performance of an Apache™ Hadoop® cluster and in addition a

reliable and dependable TeraSort version for Spark is disposable. It is written

by Owen O’Malley at Yahoo Inc. and won the annual general-purpose

terabyte sort benchmark in 2008 and 2009. The TeraSort package includes

three applications: Teragen which is a MapReduce program and can be used

to generate input data, TeraSort which can be used to sorts the input data,

and TeraValidata which can be used to check the output.

The following Graph represents a running time performance comparison

for running Sort between Apache Hadoop and Apache Spark.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

40

Figure 14: TeraSort Running Time Comparison for Hadoop and Spark

The input sizes range from 10 million to 2560 million records and the

sizes range from 1 Gb to 2560 Gb with 100 bytes for each record.

Input 10M 40Gb 80Gb 320Gb 640Gb 1280Gb 2560Gb

Hadoop 17 32 73 430 1035 2867 9491

Spark 19 34 74 273 549 1785 5756

Speedup 0.90 0.94 0.98 1.58 1.88 1.61 1.65

 Figure 15:Spark's Speedup in comparison to Hadoop on running TeraSort

Spark and Hadoop have same performance when the input is small sized

(1 to 8 Gb).However Spark executes faster when the input is larger than 320

million records. The advantage is more obvious with large input size. The

17 32 72
430

1035

2867

9491

19 34 74 273
549

1785

5756

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 40 80 320 640 1280 2560

TeraSort Running Time (sec)

Hadoop Spark

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

41

maximum speedup is observed when the input is 640 million records which is

1.88x faster than Hadoop.

Figure 16:Maximum Memory Usage Comparison for running TeraSort on Hadoop and Spark

As shown in Figures 16 and 17, both systems have roughly same memory

utilization. Spark is by far more CPU efficient (Figure 19). Hadoop has 4x

more CPU consumption than Spark with input size 256 GB. Spark also has

high throughput when the input is larger than 8 Gb as shown in Figure 18.

Spark gives the maximum throughput with 100 MB per second when the input

equals 320MB (Figure 18)

0%

20%

40%

60%

80%

100%

120%

1 4 8 32 64 128 256

Maximum Memory Usage

Hadoop Spark

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

42

Figure 17:Average Memory Usage Comparison for running TeraSort on Hadoop and Spark

 Figure 18: Throughput Comparison for running TeraSort on Hadoop and Spark

0%

10%

20%

30%

40%

50%

60%

70%

80%

1M 4M 8M 32M 64M 128M 256M

Average Memory Usage

Hadoop Spark

0

20000000

40000000

60000000

80000000

100000000

120000000

10M 40M 80M 320M 640M 1280M 2560M

Throughput (bytes/s)

Hadoop Spark

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

43

Figure 19: Average CPU Usage Comparison for running TeraSort on Hadoop and Spark

 Figure 20:Maximum CPU Usage Comparison for running TeraSort on Hadoop and Spark

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

1M 4M 8M 32M 64M 128M 256M

Average CPU Usage

Hadoop Spark

0%

10%

20%

30%

40%

50%

60%

70%

1M 4M 8M 32M 64M 128M 256M

Maximum CPU Usage

Hadoop Spark

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

44

2.1.2 Naive Bayes

Naive Bayes classifiers is a perfect match of Machine Learning and big

data as one of the simplest and fastest algorithms for classification [13]. The

textbook application of Naive Bayes (NB) classifiers is spam filtering, where

word frequency counts are used to classify whether a given message is spam

or not. The Naive Bayes Classifier algorithm is based on Bayes’ theorem with

independence assumptions between the features to categorize text. There are

two steps in Naive Bayes: training and testing. In the training step, the

classifier is trained by the sample text file and get a model. In the testing step,

the classifier processes the input data based on the model.

In this example, however, we're going to be using continuous data

instead. More specifically, we'll be classifying flowers based on

measurements of their petals size.

As with any classifier, the training data is a set of training examples 𝑥,

each of which is composed of 𝑛 features 𝑥𝑖 = (𝑥1 , 𝑥2 , … , 𝑥𝑛) and their

corresponding class 𝐶𝑖 where ⅈ is one of k classes. The goal is to learn a

conditional probability model:

𝑝(𝐶𝑘|𝑥1 , 𝑥2 , … , 𝑥𝑘)

for each of the 𝑘 classes in the dataset.Intuitively, learning this

multivariate distribution will require a lot of data as the number of features

grows. However, we can simplify the task if we assume that features are

conditionally independent given the class. While this assumption never holds

on real data, it results in a single but surprisingly simple classifier.

TensorFlow Implementation:

We start by grouping the training samples based on their labeled class

and get a (nb_classes * nb_samples * nb_features) array.

Based on the above, we can fit individual Gaussian distributions to each

combination of labeled class and feature. It's important to point out that, even

if we're feeding the data in one go, we are fitting a series

of univariate distributions, rather than a multivariate one:

mean, var = tf.nn.moments(tf.constant(points_by_class), axes=[1])

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

45

 In this trivial example, we're using tf.constant to get the training data inside

the TensorFlow graph. In real life, you probably want to use tf.placeholder or even

more performing alternatives like tf.Data.We take advantage of

TensorFlow's tf.distributions module to create a Gaussian distribution with the

estimated mean and variance:

self.dist = tf.distributions.Normal(loc=mean, scale=tf.sqrt(var))

This distribution is the only thing we need to keep around for inference,
and it's luckily pretty compact, since the mean and variance are

only (nb_classes, nb_features).

For inference, it's important to work in the log probability space to avoid
numerical errors due to repeated multiplication of small probabilities. We
have:

log 𝑝(𝐶𝑘|𝑥) = 𝑙𝑜𝑔𝑝(𝐶𝑘) + ∑ 𝑃(𝑥|𝐶𝑘)

𝑛

𝑖=1

To take care of the first term, we can assume that all classes are equally
likely (i.e. uniform prior):

priors = np.log (np.array([1. / nb_classes] * nb_classes))

To compute the sum in the second term, we duplicate (tile) the feature
vectors along a new "class" dimension, so that we can get probabilities from
the distribution in a single run:

(nb_samples, nb_classes, nb_features) all_log_probs

= self.dist.lob_prob(tf.reshape(tf.tile(X, [1,nb_classes]), [-1,

nb_classes, nb_features]))

The next step is to add up the contributions of each feature to the
likelihood of each class. In TensorFlow lingo, this is a reduce operation over
the features axis:

(nb_samples, nb_classes)

cond_probs = tf.reduce_sum(all_log_probs, axis=2)

We can then add up the priors and the conditional probabilities to get the
posterior distribution of the class label given the features:

joint_likelihood = tf.add(priors, cond_probs)

In the derivation, we ignored the normalization factor, so the expression
above is not a proper probability distribution because it doesn't add up to 1.
We fix that by subtracting a normalization factor in log space using
TensorFlow's reduce_logsumexp. Naively computing log(sum(exp(..)))

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

https://www.tensorflow.org/api_docs/python/tf/distributions
https://www.tensorflow.org/api_docs/python/tf/reduce_logsumexp

46

norm_factor = tf.reduce_logsumexp(

joint_likelihood, axis=1, keep_dims=True) log_prob =

joint_likelihood - norm_factor

Finally, we exponentiate to get actual probabilities:

probs = tf.exp(log_prob)

By feeding in a grid of points and drawing the contour lines at 0.5
probability, we get a nice plot:

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

47

The following graph (figure 21) represents a running time performance

comparison for Naïve Bayes between Hadoop and Spark.

Figure 21:Running Time Comparison for Naive Bayes Running on Hadoop and Spark

Input 100k 200k 400k 800k 1.6M

Hadoop 541 917 1650 3537 10946

Spark 37 48 60 75 126

Speedup 14.62 19.1 27.5 47.16 86.87

Figure 22:Spark's Speedup over Hadoop on Running Naive Bayes

The input sets range from 100K to 1.6M and the input sizes range from

0.4 Gb to 7 Gb. Naive Bayes is a machine learning benchmark. Spark is

designed for iterative jobs which reuse the same data set to optimize a

parameter that it supposes to have a better performance than Hadoop on

machine learning algorithms. As shown in Figure 21, Spark has a big

0

2000

4000

6000

8000

10000

12000

14000

100k 200k 400k 800k 1,6M

Naive Bayes Running Time (sec)

Hadoop Spark

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

48

advantage on running Naïve Bayes workload especially with large input data

sizes. As we can see in Figure 22, the speedup goes from 14.62x to 86.87x

as the input changes. In addition, Spark has little improvements on average

CPU utilization (Figure 26 and Figure 27) and concerning memory, both Spark

and Hadoop use memory practically in the same way (Figure 23 and Figure

24). Spark has higher throughput than Hadoop and the throughput increases

as the input size goes larger according to Figure 25.

Figure 23:Maximum Memory Usage Percentage running Naive Bayes

0%

10%

20%

30%

40%

50%

60%

70%

80%

100k 200k 400k 800k 1.6M

Maximum Memory Usage

Hadoop Spark

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

49

Figure 24:Average Memory Usage Percentage for Naive Bayes running on Hadoop and Spark

Figure 25:Throughput Comparison for Naive Bayes running on Hadoop and Spark

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

100k 200k 400k 800k 1.6M

Average Memory Usage

Hadoop Spark

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

50000000

100k 200k 400k 800k 1,6M

Throughput (bytes/s)

Hadoop Spark

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

50

Figure 26:Average CPU Usage Percentage for Naive Bayes running on Hadoop and Spark

Figure 27:Maximum CPU Usage Percentage for Naive Bayes running on Hadoop and Spark

0%

2%

4%

6%

8%

10%

12%

100K 200K 400K 800K 1,6M

Average CPU Usage

Hadoop Spark

0%

10%

20%

30%

40%

50%

60%

100K 200K 400K 800K 1,6M

Maximum CPU Usage

Hadoop Spark

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

51

2.1.3 K-means

We implemented and used a TensorFlow K-means algorithm for grouping

data into clusters with similar characteristics. When working with k-means, the

data in a training set does not need labels. As an unsupervised learning

method, the algorithm builds clusters based on the data itself.

First, we generated random data points with a uniform distribution and

assign them to a 2D tensor constant. Then, we randomly chose initial

centroids from the set of data points.

points = tf.constant(np.random.uniform(0, 10, (points_n, 2)))

centroids = tf.Variable(tf.slice(tf.random_shuffle(points), [0,

0], [clusters_n, -1]))

For the next step, we want to be able to do element-wise subtraction

of points and centroids that are 2D tensors. Because the tensors have

different shape, let’s expand points and centroids into 3 dimensions, which

allows us to use the broadcasting feature of subtraction operation.

points_expanded = tf.expand_dims(points, 0)

centroids_expanded = tf.expand_dims(centroids, 1)

Then, calculate the distances between points and centroids and

determine the cluster assignments.

distances = tf.reduce_sum(tf.square(tf.sub(points_expanded,

centroids_expanded)), 2)

assignments = tf.argmin(distances, 0)

Next, we can compare each cluster with a cluster assignments vector, get

points assigned to each cluster, and calculate mean values. These mean

values are refined centroids, so let’s update the centroids variable with the

new values.

means = []

for c in xrange(clusters_n):

 means.append(tf.reduce_mean(

 tf.gather(points,

 tf.reshape(

 tf.where(

 tf.equal(assignments, c)

),[1,-1])

),reduction_indices=[1]))

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

52

new_centroids = tf.concat(0, means)

update_centroids = tf.assign(centroids, new_centroids)

it’s time to run the graph. For each iteration, we update the centroids and

return their values along with the cluster assignments values.

with tf.Session() as sess:

 sess.run(init)

 for step in xrange(iteration_n):

 [_, centroid_values, points_values, assignment_values] =

sess.run([update_centroids, centroids, points, assignments])

Lastly, we display the coordinates of the final centroids and a multi-

colored scatter plot showing how the data points have been clustered.

print "centroids" + "\n", centroid_values

plt.scatter(points_values[:, 0], points_values[:, 1],

c=assignment_values, s=50, alpha=0.5)

plt.plot(centroid_values[:, 0], centroid_values[:, 1], 'kx',

markersize=15)

plt.show()

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

53

The following graph (Figure 28)represents a running time performance
comparison for K-means between Hadoop and Spark:

 Figure 28:Running Time Comparison for K-means Running on Hadoop and Spark

0

1000

2000

3000

4000

5000

6000

7000

50M 100M 200M 400M 800M

K-means Running Time (sec)

Hadoop Spark

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

54

Input 50M 100M 200M 400M 800M

Hadoop 220 758 1152 2250 6191

Spark 45 118 280 1802 2840

Speedup 4.9 6.3 4.1 1.24 2.17

Figure 29:Spark's Speedup over Hadoop on Running K-means

Figure 28 summarizes Spark’s speedup over Hadoop on the same data

sets. K-means is a machine learning algorithm which should be suitable for
Spark: The input data points are assigned to clusters with a closest centroid
and new centroids are created by these points assigned in the clusters. These
steps are repeated until it converges. For each time, Hadoop need to store
the intermediate results back to the disk. In contrast, Spark keeps them in
Memory. The input sets range from 100K samples to 1.6M samples and the
input sizes range from 10Gb to 160 Gb. Figure 29 shows that Spark has
better performance than Hadoop -speedup is up to 6.3 times. However, the
advantage is clearly bounded by the memory. The speedup goes down when
the input is more than 100 million samples and has the minimum value 1.21x
when the input is 400M. As shown in Figure 30 the maximum memory usage
for Spark is almost 100 percent with 400M and 800M input Spark cannot
create more RDD’s at this point. Spark saves more CPU resources compared
to Hadoop especially when talking for small data inputs. With inputs of 50M
and 100M Spark’s maximum CPU consumption is half of Hadoop’s. When the
input is smaller than 200 million samples, Spark shows improvements on
throughput than Hadoop- up to 6.3x-. For inputs greater than 200 million
samples, the throughput for Spark has an obvious decrement as seen by
Figure 32

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

55

 Figure 30:Maximum Memory Usage Percentage running K-means

 Figure 31:Average Memory Usage Percentage running K-means

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50M 100M 200M 400M 800M

Maximum Memory Usage

Hadoop Spark

0%

10%

20%

30%

40%

50%

60%

70%

80%

50M 100M 200M 400M 800M

Average Memory Usage

Hadoop Spark

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

56

 Figure 32:Throughput Comparison for k-MEANS running on Hadoop and Spark

Figure 33: Average CPU Usage Percentage for K-means running on Hadoop and Spark

0%

5%

10%

15%

20%

25%

50M 100M 200M 400M 800M

Average CPU Usage

Hadoop Spark

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

50M 100M 200M 400M 800M

Throughput (bytes/s)

Hadoop Spark

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

57

Figure 34:Maximum CPU Usage Percentage for K-means running on Hadoop and Spark

0%

10%

20%

30%

40%

50%

60%

70%

80%

50M 100M 200M 400M 800M

Maximum CPU Usage

Hadoop Spark

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

58

3. Verdicts analysis and future Work
From the benchmarking and evaluating work, we can conclude that Spark

totally overshadows Hadoop on performance in all of case studies, especially

those involved in iterative algorithms. We conclude that several factors can

give a rise to a significant performance difference. First, Spark pipelines

RDDs transformations and keeps persistent RDDs in memory by default, but

Hadoop mainly concentrates on high throughput of data rather than on job

execution performance such that MapReduce results in overheads due to

data replication, disk I/O, and serialization, which can dominate application

execution times. Also, in order to achieve fault-tolerance efficiently, RDDs

provide a coarse-grained transformation rather than fine-grained updates to

shared state or data replication across cluster [10], which means Spark builds

the lineage of RDDs through transformations rather than the actual data. For

example, if a partition of an RDD is missing, the RDD can retrieve the

information about how it was originated from other RDDs. Last but not least,

Spark has more optimizations, such as the number of disk accesses per

second, memory bandwidth utilization and IPC rate, than Hadoop, so that it

provides a better performance. Spark is generally faster than Hadoop

because it is at the expense of significant memory consumption. But Spark is

not a good fit for applications that make asynchronous fine-grained updates to

shared state [10]. Also, if we do not have sufficient memory and the speed is

not a demanding requirement, Hadoop is a better choice. For those

applications which are time sensitive or involved in iterative algorithms and

there is abundant memory available, Spark is sure to be the best fit.

As our future work, we plan to set up Hadoop and Spark on a bigger
cluster to test the scalability of each platform. Also, we want to increase the
memory capacity of the clusters and in order to explore the influence of
memory restriction on running time of Spark we would like to use active fiber
connection between nodes.

Finally, there is a big desire to design an intelligent system that can help
us to choose a platform and the configuration parameters based on the
applications and the input data sizes to get the optimized performance.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

59

 References

[0] Josh James. How much data is created every minute.
 https://www.domo.com/blog/2012/06/how-much-data-is-created-every-
 minute/

[1] TensorFlow documentation, https://www.tensorflow.org/

[2] Itay Lieder, Tom Hope, and Yehezkel S. Resheff: Learning

TensorFlow: A Guide to Building Deep Learning Systems, CA: O'Reilly
Media, 2017

[3] Apache Hadoop documentation, https://hadoop.apache.org/

[4] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google,
” The Google File System”, Proceedings of the 19th ACM Symposium on

Operating Systems Principles, ACM, Bolton Landing, NY (2003), pp. 20-
43

[5] Dean, Jeffrey; Ghemawat, Sanjay, MapReduce: “Simplified Data

Processing on Large Clusters”, OSDI'04: Sixth Symposium on Operating
System Design and Implementation, San Francisco, CA (2004), pp. 137-
150

[6] T. White, Hadoop: The Definitive Guide (Fourth edition). Sebastopol,

 CA: O'Reilly Media, 2015.

[7] Spark Overview, 2018, http://spark.apache.org/.

[8] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.

 J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: a
fault-tolerant abstraction for inmemory cluster computing,” in
Proceedings of the 9th USENIX Conference on Networked Systems
 Design and Implementation (NSDI'12), USENIX Association,
Berkeley,2012, p2

[9] Holden Karau and Rachel Warren : High Performance Spark: Best

Practices for Scaling and Optimizing Apache Spark, CA: O'Reilly Media,
2017

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

https://www.domo.com/blog/2012/06/how-much-data-is-created-every-
https://www.domo.com/blog/2012/06/how-much-data-is-created-every-
https://www.tensorflow.org/
https://hadoop.apache.org/
http://spark.apache.org/

60

[10] N. Islam, S. Sharmin, M. Wasi-ur-Rahman, X. Lu, D. Shankar, D. K.
Panda, “Performance characterization and acceleration of in-memory
file systems for Hadoop and Spark applications on HPC clusters,” in
2015 IEEE International Conference on Big Data (Big Data), October
29, 2015-November 1, 2015, pp. 243-252.

[11] Yarn overview and documentation, https://yarnpkg.com/lang/en/docs/

[12] Lei Gu and Huan Li. Memory or time: “Performance evaluation for

iterative operation on hadoop and spark.” ,IEEE International
Conference, 2013.

[13] Naïve Bayes for Machine Learning article :

https://towardsdatascience.com/naive-bayes-in-machine-learning-/

[14] Satish Gopalani and Rohan Arora.”Comparing apache spark and map

reduce with performance analysis using k-means “. International
Journal of Computer Applications, 113(1), March 2015.

[15] TeraSort benchmark , https://mapr.com/resources/terasort-benchmark-

comparison-yarn/

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188

https://yarnpkg.com/lang/en/docs/
https://towardsdatascience.com/naive-bayes-in-machine-learning-/
https://mapr.com/resources/terasort-benchmark-comparison-yarn/
https://mapr.com/resources/terasort-benchmark-comparison-yarn/

