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Abstract 
The purpose of this work is to compare the performance between Hadoop 

and Spark on some demanding and modern applications, such as iterative 

computation, real-time data processing and machine learning with Google’s 

TensorFlow. The runtime architectures of both Spark and Hadoop will be 

compared to illustrate their differences, and the components of their 

ecosystems will be tabled to show their respective characteristics. In this case 

study, we will highlight the performance comparison between Spark and 

Hadoop as the growth of data size and iteration counts and show how to tune 

in Hadoop and Spark to achieve higher performance. In addition, there will be 

several appendixes which describes how to install and launch Hadoop and 

Spark, how to implement the three case studies using java and Scala 

programming, and how to verify the correctness of the running results. 
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1. Introduction 
 

The world is growing at an enormous speed every moment, and at the 

same speed is growing the overall data size across the globe, which 

technically constitutes the term known as ‘Big Data’ The amount of newly 

generated data per year is huge and keeps on growing tremendously: from 

about 150 Exabytes in 2005 (worldwide) to approximately 1200 Exabytes in 

2010. Nowadays, we create 2.5 quintillion bytes of data every day [0]. Twitter 

users generate over 500 million tweets every day, and a similar number of 

images is uploaded to Facebook. In 2016, the Facebook graph, which reflects 

the friendship relation between Facebook users, features more than a billion 

nodes and over hundreds of billions friendship edge5. And, the size of the 

indexed World Wide Web (estimated via the size of Googles index) is over 45 

billion web pages6, and Google alone performs several billion searches on it 

every day. 

A similar data explosion can be observed in the scientific world, for 

example in genetics, biology, or particle physics, as well as ever increasing 

digitized text collections. For instance, particles collide in the large hadron 

collider (LHC) detectors approximately 1 billion times per second, generating 

about one petabyte of collision data per second. Even though only the most 

“interesting” events can be stored and processed, CERN data center has 

already accumulated over 200 petabytes of filtered data. 

Apart from big data, a yet another technological revolution that is taking 

the world by storm these days is ‘Artificial Intelligence’ or AI and ‘Machine 

Learning. The field was founded on the claim that human intelligence "can be 

so precisely described that a machine can be made to simulate it".  In the 

twenty-first century, AI techniques have experienced a resurgence following 

concurrent advances in computer power, large amounts of data, and 

theoretical understanding; and AI techniques have become an essential part 

of the technology industry, helping to solve many challenging problems in 

computer science, software engineering and operations research.  
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1.1 TensorFlow 
 

 

This chapter demonstrates a brief anatomy and analysis of TensorFlow 

library, Apache Hadoop and Apache Spark frameworks.  

There will be a brief reference to their history and then we will analyze their 

functionality, their basic architecture and the substantial advantages of each 

technology separately 

 

TensorFlow is a machine-learning library that uses data flow graphs to 

build models [1]. The main purpose of the library is to create models to solve 

various NLP and image recognition tasks. Starting in 2011, Google Brain built 

DistBelief as a proprietary machine learning system based on deep 

learning neural networks. Its use grew rapidly across 

diverse Alphabet companies in both research and commercial applications. 

Google assigned multiple computer scientists, to simplify and refactor the 

codebase of DistBelief into a faster, more robust application-grade library, 

which became TensorFlow. The name TensorFlow derives from the 

operations that such neural networks perform on multidimensional data 

arrays. These arrays are referred to as "tensors". TensorFlow was released 

under the Apache 2.0 open source license on November 9, 2015 and crossed 

over in both research and industry AI development  

 

 

TensorFlow has been created for Deep Learning to let a user create a 

neural network architecture by himself (or herself, of course). Still, the library 

allows the user to work with statistical machine learning algorithms. However, 

it does not provide them out-of-the-box – user has to implement them on his 

own and TensorFlow provides only tools to do this. 

As we can see in Figure 1, all the computations are represented 

as directed graphs, where the computations themselves (and input/output 

data as well) are nodes. The edges of the graph are paths, by which the data 

flows from node to node.  
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Figure 1:TensorFlow directed graph (source: adtmag.com/articles/2015/12/01/machine-learning-donation) 

 

 

Data in TensorFlow are represented as tensors (multidimensional and 
dynamically sized data arrays) [2]. Tensors flow in the graph from node to 
node, thus making the name of the library sound logical. Simply speaking, a 
tensor is a 3D matrix (but it is not a strict mathematical definition, of course!). 
On a figure below, you may see a tensor in terms of vivisection. Comparing to 
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matrix it has more degrees of freedom regarding data selection and slicing. 
The following figure (Figure 2) demonstrates TensorFlow’s Fibers and Slices: 

 

 

 

 

Figure 2:TensorFlow Fibers and Slices (source: www.researchgate.net) 

 

 

Some of the main features and advantages of TensorFlow are: 

 

• Portability: TensorFlow has made it possible to play around an idea 

on your laptop without having any other hardware support. It runs on GPUs, 

CPUs, desktops, servers, and mobile computing platforms. You can deploy a 

trained model on your mobile as a part of your product, and that’s how it 

serves as a true portability feature. 
 

• Flexibility: You need to express your computation as a data flow 

graph to use TensorFlow. It is a highly flexible system which provides multiple 

models or multiple versions of the same model can be served simultaneously. 

The architecture of TensorFlow is highly modular, which means you can use 

some parts individually or can use all the parts together. Such flexibility 

facilitates non-automatic migration to new models/versions, A/B testing 

experimental models, and canarying new models. 
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• Performance: TensorFlow allows you to make the most of your 

available hardware with its advanced support for threads, asynchronous 

computation, and queues. Just assign compute elements of your TensorFlow 

graph to different devices and let it manage the copies itself. It also facilitates 

you with the language options to execute your computational graph. 

TensorFlow iPython notebook helps in keeping codes, notes, and 

visualization in a logically grouped and interactive style. 
 

 

• Research and Production: It can be used to train and serve models in 

live mode to real customers. To put it simply, rewriting codes is not required 

and the industrial researchers can apply their ideas to products faster. Also, 

academic researchers can share codes directly with greater reproducibility. In 

this way it helps to carry out research and production processes faster. 
 

 

• Auto Differentiation: It has automatic differentiation capabilities which 

benefits gradient based machine learning algorithms. You can define the 

computational architecture of your predictive model, combine it with your 

objective function and add data to it- TensorFlow manages derivatives 

computing processes automatically. You can compute the derivatives of some 

values with respect to some other values results in graph extension and you 

can see exactly what’s happening. 
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1.2 Hadoop 
 

Apache Hadoop is a collection of open-source software utilities that 

facilitate using a network of many computers to solve problems involving 

massive amounts of data and computation [3]. It provides a software 

framework for distributed storage and processing of big data using 

the MapReduce programming model, designed to run on commodity 

hardware, it has also found use on clusters of higher-end hardware. 

According to its co-founders, Doug Cutting and Mike Cafarella, the genesis of 

Hadoop was the "Google File System" paper that was published in October 

2003.[4] This paper spawned another one from Google – "MapReduce: 

Simplified Data Processing on Large Clusters".[5] Development started on 

the Apache Nutch project, but was moved to the new Hadoop 

subproject. Doug Cutting, who was working at Yahoo at the time, named it 

after his son's toy elephant.  

The core of Apache Hadoop consists of a storage part, known as Hadoop 

Distributed File System (HDFS), and a processing part which is a MapReduce 

programming model. Hadoop splits files into large blocks and distributes them 

across nodes in a cluster. It then transfers packaged code into nodes to 

process the data in parallel. This approach takes advantage of data 

locality, where nodes manipulate the data they have access to. This allows 

the dataset to be processed faster and more efficiently than it would be in a 

more conventional supercomputer architecture that relies on a parallel file 

system where computation and data are distributed via high-speed 

networking. HDFS has many similarities with existing distributed file systems. 

However, the differences from other distributed file systems are significant. 

HDFS is highly fault-tolerant and is designed to be deployed on low-cost 

hardware. HDFS provides high throughput access to application data and is 

suitable for applications that have large data sets. HDFS relaxes a few POSIX 

requirements to enable streaming access to file system data.  
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The base Apache Hadoop framework is composed of the following 
modules: 

• Hadoop Common – contains libraries and utilities needed by other 
Hadoop modules; 

• Hadoop Distributed File System (HDFS) – a distributed file-system that 
stores data on commodity machines, providing very high aggregate bandwidth 
across the cluster; 

• Hadoop YARN – introduced in 2012 is a platform responsible for 
managing computing resources in clusters and using them for scheduling 
users' applications 

• Hadoop MapReduce – an implementation of the MapReduce 
programming model for large-scale data processing. 

Hadoop consists of the Hadoop Common package, which provides file 
system and operating system level abstractions, a MapReduce engine (either 
MapReduce or YARN) and the Hadoop Distributed File System (HDFS). The 
Hadoop Common package contains the Java Archive (JAR) files and scripts 
needed to start Hadoop. 

For effective scheduling of work, every Hadoop-compatible file system 
should provide location awareness – the name of the rack (or, more precisely, 
of the network switch) where a worker node is. Hadoop applications can use 
this information to execute code on the node where the data is, and, failing 
that, on the same rack/switch to reduce backbone traffic. HDFS uses this 
method when replicating data for data redundancy across multiple racks. This 
approach reduces the impact of a rack power outage or switch failure; if any 
of these hardware failures occurs, the data will remain available.  

A small Hadoop cluster includes a single master and multiple worker 
nodes. The master node consists of a Job Tracker, Task Tracker, NameNode, 
and DataNode. A slave or worker node acts as both a DataNode and 
TaskTracker, though it is possible to have data-only and compute-only worker 
nodes. These are normally used only in nonstandard applications. In a larger 
cluster, HDFS nodes are managed through a dedicated NameNode server to 
host the file system index, and a secondary NameNode that can generate 
snapshots of the namenode's memory structures, thereby preventing file-
system corruption and loss of data. Similarly, a standalone JobTracker server 
can manage job scheduling across nodes. When Hadoop MapReduce is used 
with an alternate file system, the NameNode, secondary NameNode, and 
DataNode architecture of HDFS are replaced by the file-system-specific 
equivalents. The following figures (Figure 3, Figure 4 and Figure 5) shows 
HDFS architecture, a MapReduce sequence diagram and a Hadoop 
ecosystem respectively:    
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Figure 4:Map Reduce Sequence Diagram source: http://broadwaycomputers.us) 

 

Figure 3:HDFS Architecture source: http://spmarchitecture.com) 
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Figure 5:Hadoop ecosystem example (source: wr.informatik.uni-hamburg.de) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some of the main features and advantages of Apache Hadoop are [6]: 

 

 

• Scalable 

Hadoop is a highly scalable storage platform, because it can store and 
distribute very large data sets across hundreds of inexpensive servers that 
operate in parallel. Unlike traditional relational database systems (RDBMS) 
that can't scale to process large amounts of data, Hadoop enables businesses 
to run applications on thousands of nodes involving thousands of terabytes of 
data. 

• Cost effective 

Hadoop also offers a cost effective storage solution for businesses' 
exploding data sets. The problem with traditional relational database 
management systems is that it is extremely cost prohibitive to scale to such a 
degree in order to process such massive volumes of data. In an effort to 
reduce costs, many companies in the past would have had to down-sample 
data and classify it based on certain assumptions as to which data was the 
most valuable. The raw data would be deleted, as it would be too cost-
prohibitive to keep. While this approach may have worked in the short term, 
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this meant that when business priorities changed, the complete raw data set 
was not available, as it was too expensive to store. The cost savings are 
staggering: instead of costing thousands to tens of thousands of pounds per 
terabyte, Hadoop offers computing and storage capabilities for hundreds of 
pounds per terabyte. 

• Flexible 

Hadoop enables businesses to easily access new data sources and tap 
into different types of data (both structured and unstructured) to generate 
value from that data. This means businesses can use Hadoop to derive 
valuable business insights from data sources such as social media, email 
conversations or clickstream data. In addition, Hadoop can be used for a wide 
variety of purposes, such as log processing, recommendation systems, data 
warehousing, market campaign analysis and fraud detection. 

• Fast 

Hadoop's unique storage method is based on a distributed file system that 
basically 'maps' data wherever it is located on a cluster. The tools for data 
processing are often on the same servers where the data is located, resulting 
in much faster data processing. If you're dealing with large volumes of 
unstructured data, Hadoop is able to efficiently process terabytes of data in 
just minutes, and petabytes in hours. 

• Resilient to failure 

A key advantage of using Hadoop is its fault tolerance. When data is sent 
to an individual node, that data is also replicated to other nodes in the cluster, 
which means that in the event of failure, there is another copy available for 
use. 

The MapReduce distribution goes beyond that by eliminating the 
NameNode and replacing it with a distributed No NameNode architecture that 
provides true high availability. Our architecture provides protection from both 
single and multiple failures. 
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1.3 Spark 
 

Spark is a cluster computing framework and an engine for large-scale 

data processing. It constructs a distributed collections of objects, resilient 

distributed datasets (RDDs) in memory, and then performs a variety of 

operations in parallel on these datasets. Spark greatly outperforms Hadoop 

MapReduce by 10x in iterative machine learning tasks [7] and is up to20x 

faster for iterative applications [8] Apache Spark is considered as a powerful 

complement to Hadoop. Big data’s original technology of choice Spark is a 

general-purpose data processing engine that is suitable for use in a wide 

range of circumstances. Application developers and data scientists 

incorporate Spark into their applications to rapidly query, analyze, and 

transform data at scale. Tasks most frequently associated with Spark include 

interactive queries across large data sets, processing of streaming data from 

sensors or financial systems, and machine learning tasks. 

Spark began life in 2009 as a project within the AMPLab at the University 

of California, Berkeley. More specifically, it was born out of the necessity to 

prove out the concept of Mesos, which was also created in the AMPLab. 

Spark was first discussed in the Mesos white paper Mesos: A Platform for 

Fine-Grained Resource Sharing in the Data Center, written most notably by 

Benjamin Hindman and Matei Zaharia [5]. 

Spark became an incubated project of the Apache Software Foundation in 

2013, and it was promoted early in 2014 to become one of the Foundation’s 

top-level projects [9]. Spark is currently one of the most active projects 

managed by the Foundation, and the community that has grown up around 

the project includes both prolific individual contributors and well-funded 

corporate backers such as Databricks, IBM, and China’s Huawei. 

Spark can handle several petabytes of data at a time, distributed across a 

cluster of thousands of cooperating physical or virtual servers. It has an 

extensive set of developer libraries and APIs and supports languages such as 

Java, Python, R, and Scala; its flexibility makes it well-suited for a range 

of use cases. Spark is often used alongside Hadoop’s data storage module—

HDFS—but it can integrate equally well with other popular data storage 
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subsystems such as HBase, Cassandra, Map-DB, MongoDB and Amazon’s 

S3. 

Apache Spark has a well-defined and layered architecture where all 

the spark components and layers are loosely coupled and integrated with 

various extensions and libraries. Apache Spark Architecture is based on two 

main abstractions: Resilient Distributed Datasets (RDD) and Directed Acyclic 

Graph (DAG) 

Resilient Distributed Datasets 

RDD’s are collection of data items that are split into partitions and can be 

stored in-memory on workers nodes of the spark cluster. In terms of datasets, 

apache spark supports two types of RDD’s – Hadoop Datasets which are 

created from the files stored on HDFS and parallelized collections which are 

based on existing Scala collections. Spark RDD’s support two different types 

of operations – Transformations and Actions [10].   

Directed Acyclic Graph 

Direct - Transformation is an action which transitions data partition state 

from A to B. Acyclic -Transformation cannot return to the older partition 

DAG is a sequence of computations performed on data where each node 

is an RDD partition and edge is a transformation on top of data.  The DAG 

abstraction helps eliminate the Hadoop MapReduce multi0stage execution 

model and provides performance enhancements over Hadoop. 

Apache Spark (as you can see in Figure 6)follows a master/slave 

architecture with two main daemons and a cluster manager: 

    i.  Master Daemon – (Master/Driver Process) 

    ii. Worker Daemon –(Slave Process) 

A spark cluster has a single Master and any number of Slaves/Workers. 

The driver and the executors run their individual Java processes and users 

can run them on the same horizontal spark cluster or on separate machines 

i.e. in a vertical spark cluster or in mixed machine configuration(Figure 7). 
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Figure 6:Spark Architecture (source: siliconangle.com) 

 

Figure 7:Spark Architecture (clusters) (source: databricks.com) 
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Role of Spark driver: 

Spark Driver – Master Node of a Spark Application is the central point and 

the entry point of the Spark Shell (Scala, Python, and R). The driver program 

runs the main () function of the application and is the place where the Spark 

Context is created. Spark Driver contains various components – 

DAGScheduler, TaskScheduler, BackendScheduler and BlockManager 

responsible for the translation of spark user code into actual spark jobs 

executed on the cluster. 

• The driver program that runs on the master node of the spark 
cluster schedules the job execution and negotiates with the cluster manager. 

• It translates the RDD’s into the execution graph and splits the 
graph into multiple stages. 

• Driver stores the metadata about all the Resilient Distributed 
Databases and their partitions. 

• Cockpits of Jobs and Tasks Execution -Driver program converts 
a user application into smaller execution units known as tasks. Tasks are then 
executed by the executors i.e. the worker processes which run individual 
tasks. 

• Driver exposes the information about the running spark 
application through a Web UI at port 4040 
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Figure 8:Spark Driver with services(source:stackoverflow.com) 

 

 

Role of Executor in Spark: 

 

Executor is a distributed agent responsible for the execution of tasks. 

Every spark applications have its own executor process. Executors usually 

run for the entire lifetime of a Spark application and this phenomenon is 

known as “Static Allocation of Executors”. However, users can also opt for 

dynamic allocations of executors wherein they can add or remove spark 

executors dynamically to match with the overall workload. 

As shown in Figure 9: 

• Executor performs all the data processing. 
• Reads from and Writes data to external sources. 
• Executor stores the computation results data in-memory, cache 

or on hard disk drives. 
• Interacts with the storage systems. 
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Figure 9:Spark architecture(executors)(source:databricks.com) 

 

 

Role of Cluster Manager in Spark Architecture 

Cluster Manager (as shown in Figure 10)is an external service 
responsible for acquiring resources on the spark cluster and allocating them 
to a spark job. There are 3 different types of cluster managers a Spark 
application can leverage for the allocation and deallocation of various physical 
resources such as memory for client spark jobs, CPU memory, etc. Hadoop 
YARN, Apache Mesos or the simple standalone spark cluster manager either 
of them can be launched on-premise or in the cloud for a spark application to 
run. 

Choosing a cluster manager for any spark application depends on the 
goals of the application because all cluster managers provide different set of 
scheduling capabilities. Specifically, to run on a cluster, the SparkContext can 
connect to several types of cluster managers (either Spark’s own standalone 
cluster manager, Mesos or YARN), which allocate resources across 
applications. Once connected, Spark acquires executors on nodes in the 
cluster, which are processes that run computations and store data for your 
application. Next, it sends your application code (defined by JAR or Python 
files passed to SparkContext) to the executors. Finally, SparkContext 
sends tasks to the executors to run. 
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Figure 10:Spark Architecture (Cluster managers)(source:dzone.com) 

 

 

 

 

 

Some of the key features and advantages Apache Hadoop are: 

 

 

• Simplicity 

Spark’s capabilities are accessible via a set of rich APIs, all designed 

specifically for interacting quickly and easily with data at scale. These APIs 

are well documented and structured in a way that makes it straightforward for 

data scientists and application developers to quickly put Spark to work. 

• Speed 

Spark is designed for speed, operating both in memory and on disk. Using 

Spark, a team of people from Databricks tied for first place with a team from 

University of California, San Diego in the 2014 Daytona Gray Sort 100TB 

Benchmark challenge. The challenge involves processing a static data set; 
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the Databricks team was able to process 100 terabytes of data stored on 

solid-state drives in just 23 minutes, and the previous winner took 72 minutes 

by using Hadoop and a different cluster configuration. Spark can perform 

even better when supporting interactive queries of data stored in memory. In 

those situations, there are claims that Spark can be 100 times faster than 

Hadoop’s MapReduce. 

• Support 

Spark supports a range of programming languages, including Java, 

Python, R, and Scala. Although often closely associated with HDFS, Spark 

includes native support for tight integration with a number of leading storage 

solutions in the Hadoop ecosystem and beyond. Furthermore, the Apache 

Spark community is large, active, and international. A growing set of 

commercial providers including Databricks, IBM, and all of the main Hadoop 

vendors deliver comprehensive support for Spark-based solutions. 
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2. Hadoop Vs Spark: A head to head 

comparison 
    

2.0 Setup and Prerequisites of an HPC Cluster  
              

The experimental cluster used consists of five computer systems. One of 

them serves as a manager (both a master and a slave node but with no 

acceleration capabilities). The other four are designed to be slave nodes. The 

hardware information for the cluster is shown as following: 

• 4 nodes interconnected by Each node 10G-Ethernet. 

• Each node has 2 Intel Xeon CPU E5-2620v4 running at 2.10GHz 

• Each CPU has 8 cores, each core has 2 threads (hyper-threading). 

• Each node has 128GB of memory. 

• The configured capacity for HDFS is 6 TB with 1.4 TB per node. 

 

We use the CentOS 7.4 operating system and JAVA 1.8.0 version for all 

the nodes. We use Hadoop 2.8.2 (stable) Spark 2.2 and YARN 1.3.0 for the 

resource management layer of Hadoop. The version for Hadoop and Spark 

are stable released and the version for Yarn is the latest release.  

The following guide demonstrates all the necessary commands to install 

Spark and Hadoop for usage with multiple clusters in a high-performance 

system. 

For Hadoop, we use Apache Hadoop YARN. Apache Yarn – “Yet Another 

Resource Negotiator” is the resource management layer of Hadoop [11] . The 

Yarn was introduced in Hadoop 2.x. versions Yarn allows different data 

processing engines like graph processing, interactive processing, stream 

processing as well as batch processing to run and process data stored 

in HDFS (Hadoop Distributed File System). Apart from resource management, 

Yarn is also used for job Scheduling. Yarn extends the power of Hadoop to 
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other evolving technologies, so they can take the advantages of HDFS (most 

reliable and popular storage system on the planet) and economic cluster. 

Apache Yarn is also considered as the data operating system for Hadoop 

2. x. versions. The yarn-based architecture of Hadoop 2.x provides a general-

purpose data processing platform which is not just limited to the MapReduce. 

It enables Hadoop to process other purpose-built data processing system 

other than MapReduce. It allows running several different frameworks on the 

same hardware where Hadoop is deployed. 

To install Yarn use Debian package repositories but firstly you need to 

configure the repository: 

 

curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add - 

echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee 

/etc/apt/sources.list.d/yarn.list 

 

Then you can simply: 

sudo apt-get update && sudo apt-get install yarn 

 

Test that Yarn is installed by running:  

yarn --version 

 

For Hadoop 2.8.2 version: 

Before you proceed to the installation, create a normal user for the install, 
and a user called hadoop for any Hadoop daemons. Do not create SSH keys 
for hadoop users. SSH keys will be addressed in a later section. 

First, make your network adapter as Bridge or Host-Only depending upon 
your requirements. You can use virtual machines (using each machine’s  
respectively) but in our case ( physical machine cluster ) we have created a 
cluster with 4 nodes. For each node to communicate with its names, edit 
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the /etc/hosts file to add the IP address of the servers (in case you have 
multiple machines) 

The master node will use an ssh-connection to connect to other nodes 

with key-pair authentication, to manage the cluster. Login to node-master as 

the hadoop user, and generate an ssh-key: 

ssh-keygen -b 4096 

 

Copy the key to the other nodes. It’s good practice to also copy the key to 

the node-master itself, so that you can also use it as a DataNode if needed. 

Type the following commands, and enter the hadoop user’s password when 

asked. If you are prompted whether or not to add the key to known hosts, 

enter yes: 

ssh-copy-id -i $HOME/.ssh/id_rsa.pub hadoop@node-master 

ssh-copy-id -i $HOME/.ssh/id_rsa.pub hadoop@node1 

ssh-copy-id -i $HOME/.ssh/id_rsa.pub hadoop@node2 

ssh-copy-id -i $HOME/.ssh/id_rsa.pub hadoop@node3 

ssh-copy-id -i $HOME/.ssh/id_rsa.pub hadoop@node4 

 

 

 

Login to node-master as the hadoop user, download the Hadoop tarball 

from Hadoop project page, and unzip it: 

 

cd <desired folder> 

wget http://apache.mindstudios.com/hadoop/common/hadoop-

2.8.1/hadoop-2.8.1.tar.gz 
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tar -xzf hadoop-2.8.1.tar.gz 

mv hadoop-2.8.1 hadoop 

 

Add Hadoop binaries to your PATH. Edit /home/hadoop/.profile and 

add the following line: 

PATH=/home/hadoop/hadoop/bin:/home/hadoop/hadoop/sbin:$PATH 

 

Configure the Master Node. Configuration will be done on node-

master and replicated to other nodes: 

Get your Java installation path. If you installed open-jdk from your 

package manager, you can get the path with the command: 

 

update-alternatives --display java 

 

 

Take the value of the current link and remove the trailing /bin/java. For 

example, on Debian, the link is /usr/lib/jvm/java-8-openjdk-

amd64/jre/bin/java, so JAVA_HOME should be /usr/lib/jvm/java-8-

openjdk-amd64/jre. 

If you installed java from Oracle, JAVA_HOME is the path where you 

unzipped the java archive. 

Edit ~/hadoop/etc/hadoop/hadoop-env.sh and replace this line: 

 

export JAVA_HOME=${JAVA_HOME} 
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with your actual java installation path. For example, on a Debian with 

open-jdk-8: 

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/jre 

 

Set NameNode Location: 

On each node update ~/hadoop/etc/hadoop/core-site.xml you want 

to set the NameNode location to node-master on port 9000: 

 

<?xml version="1.0" encoding="UTF-8"?> 

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 

    <configuration> 

        <property> 

            <name>fs.default.name</name> 

            <value>hdfs://node-master:9000</value> 

        </property> 

    </configuration> 

Set path for HDFS: Edit hdfs-site.conf: 

<configuration> 

    <property> 

            <name>dfs.namenode.name.dir</name> 

            <value>/home/hadoop/data/nameNode</value> 

    </property> 
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    <property> 

            <name>dfs.datanode.data.dir</name> 

            <value>/home/hadoop/data/dataNode</value> 

    </property> 

 

    <property> 

            <name>dfs.replication</name> 

            <value>1</value> 

    </property> 

</configuration> 

 

The last property, dfs.replication, indicates how many times data is 

replicated in the cluster. You can set 4 to have all the data duplicated on the 

four nodes. Don’t enter a value higher than the actual number of slave nodes. 

 

Set Yarn as Job Scheduler: 

In ~/hadoop/etc/hadoop/, rename mapred-

site.xml.template to mapred-site.xml: 

 

cd ~/hadoop/etc/hadoop 

mv mapred-site.xml.template mapred-site.xml 

Edit the file, setting yarn as the default framework for MapReduce 

operations: 
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<configuration> 

    <property> 

            <name>mapreduce.framework.name</name> 

            <value>yarn</value> 

    </property> 

</configuration> 

 

 

 Configure Yarn: 

 Edit yarn-site.xml: 

  

<configuration> 

    <property> 

            <name>yarn.acl.enable</name> 

            <value>0</value> 

    </property> 

 

    <property> 

            <name>yarn.resourcemanager.hostname</name> 

            <value>node-master</value> 

    </property> 
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    <property> 

            <name>yarn.nodemanager.aux-services</name> 

            <value>mapreduce_shuffle</value> 

    </property> 

</configuration> 

 Configure Slaves 

The file slaves is used by startup scripts to start required daemons on all 

nodes. Edit ~/hadoop/etc/hadoop/slaves to be: 

node1 

node2 

node3 

node4 

 

For Spark 2.2 version: 

 

 

Install Spark on Master: 

Add entries in host files 

sudo nano /etc/hosts 

 Add entries of master and slaves: 

MASTER -<Corresponding IP> 

SLAVE01-<Corresponding IP> 
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SLAVE01-<Corresponding IP> 

 

Install Scala 

sudo apt-get install scala 

Configure SSH 

Install Open SSH Server-Client 

sudo apt-get install openssh-server openssh-client 

Generate Key pairs 

ssh-keygen -t rsa -P "" 

Configure passwordless SSH 

Copy the content of .ssh/id_rsa.pub (of master) to .ssh/authorized_keys 

(of all the slaves as well as master) 

Check by SSH to all the Slaves 

ssh slave01 

ssh slave02 

ssh slave03 

ssh slave04 

 

Download Spark from the official site and unrar tarball. 

Setup Configuration: 

Edit .bashrc 

Edit .bashrc file located in user’s home directory and add following 

environment variables: 
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export JAVA_HOME=<path-of-Java-installation> (eg: /usr/lib/jvm/java-8-

oracle/) 

export SPARK_HOME=<path-to-the-root-of-your-spark-installation> (eg: 

/home/dataflair/spark-2.2.0-bin-hadoop2.8.2/) 

export PATH=$PATH:$SPARK_HOME/bin 

 

Edit spark-env.sh: 

Now edit configuration file spark-env.sh (in $SPARK_HOME/conf/) and 

set following parameters: 

Note: Create a copy of template of spark-env.sh and rename it: 

cp spark-env.sh.template spark-env.sh 

export JAVA_HOME=<path-of-Java-installation> (eg: /usr/lib/jvm/java-8-

oracle/) 

export SPARK_WORKER_CORES=8 

 

Add Slaves 

Create configuration file slaves (in $SPARK_HOME/conf/) and add 

following entries: 

slave01 

slave02 

 

Setup Prequisites on all the slaves 

Run following steps on all the slaves (or worker nodes): 
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1. Add Entries in hosts file 

2. Install Java 8 

3. Install Scala 

 

Start Spark Cluster: 

Start Spark Services 

sbin/start-all.sh 

 

Check whether services have been started 

Check daemons on Master 

jps 

Worker 

 

Check daemons on Slaves 

jps 

Worker 

 

 

 

 

The following Pictures are indicative instances of our experimental 

machine’s setup: 
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Figure 11:Cluster's Dashboard 
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     Figure 12:Cluster's Summary and Metrics for each Node 
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Figure 13:Manger node's Services and Metrics monitor 
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2.1 Evaluation and Results 

We set up Hadoop and Spark clusters to run three demanding 

benchmarks including TeraSort, Naive Bayes and K-means[12][13][14][15]. 

These benchmarks are classified into two categories that are micro 

benchmark and machine learning. Both distributed systems are built on a five 

(1 manager-master/slave and 4 slaves) nodes cluster. We measured the 

running time, speedup, throughput, maximum and average memory and CPU 

usage for all the benchmarks on both platforms of Hadoop and Spark. Finally, 

we compared the performance differences among these two platforms based 

on the characteristics of the benchmarks. Also, the experimental results are 

shown in following chapters and analyzed separately for different 

benchmarks. We compared the performances between Hadoop and Spark on 

TeraSort, Naive Bayes and K-means. The experimental results showed that 

Spark is faster than Hadoop. Specifically, Spark has a outstanding 

performance on machine learning applications including K-means and Naïve 

Bayes since these applications apply a function repeatedly to the same 

dataset. For TeraSort, Spark runs faster with large input. However, Spark 

consumes more memory capacity and the performance for Spark is restricted 

by the memory. 
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2.1.1 TeraSort 
 

 

 Before proceeding to a ML benchmark, we wanted to measure and 

compare the sorting times between the two platforms. To achieve this, we 

selected to test TeraSort benchmark [15]. TeraSort is a popular benchmark 

that measures the amount of time to sort one terabyte of randomly distributed 

data on a given computer system. It is commonly used to measure 

MapReduce performance of an Apache™ Hadoop® cluster and in addition a 

reliable and dependable TeraSort version for Spark is disposable. It is written 

by Owen O’Malley at Yahoo Inc. and won the annual general-purpose 

terabyte sort benchmark in 2008 and 2009. The TeraSort package includes 

three applications: Teragen which is a MapReduce program and can be used 

to generate input data, TeraSort which can be used to sorts the input data, 

and TeraValidata which can be used to check the output. 

 

The following Graph represents a running time performance comparison 

for running Sort between Apache Hadoop and Apache Spark. 
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Figure 14: TeraSort Running Time Comparison for Hadoop and Spark 

 

 

 

The input sizes range from 10 million to 2560 million records and the 

sizes range from 1 Gb to 2560 Gb with 100 bytes for each record. 

 

Input 10M 40Gb 80Gb 320Gb 640Gb 1280Gb 2560Gb 

Hadoop 17 32 73 430 1035 2867 9491 

Spark 19 34 74 273 549 1785 5756 

Speedup 0.90 0.94 0.98 1.58 1.88 1.61 1.65 

 

     Figure 15:Spark's Speedup in comparison to Hadoop on running TeraSort 

Spark and Hadoop have same performance when the input is small sized 

(1 to 8 Gb).However Spark executes faster when the input is larger than 320 

million records. The advantage is more obvious with large input size. The 
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maximum speedup is observed when the input is 640 million records which is 

1.88x faster than Hadoop. 

 

Figure 16:Maximum Memory Usage Comparison for running TeraSort on Hadoop and Spark 

 

As shown in Figures 16 and 17, both systems have roughly same memory 

utilization. Spark is by far more CPU efficient (Figure 19). Hadoop has 4x 

more CPU consumption than Spark with input size 256 GB. Spark also has 

high throughput when the input is larger than 8 Gb as shown in Figure 18. 

Spark gives the maximum throughput with 100 MB per second when the input 

equals 320MB (Figure 18) 
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Figure 17:Average Memory Usage Comparison for running TeraSort on Hadoop and Spark 

 

  

                         

 

     Figure 18: Throughput Comparison for running TeraSort on Hadoop and Spark 
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Figure 19: Average CPU Usage Comparison for running TeraSort on Hadoop and Spark 

 

 

 

                                  Figure 20:Maximum CPU Usage Comparison for running TeraSort on Hadoop and Spark 
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2.1.2 Naive Bayes 
 

Naive Bayes classifiers is a perfect match of Machine Learning and big 

data as one of the simplest and fastest algorithms for classification [13]. The 

textbook application of Naive Bayes (NB) classifiers is spam filtering, where 

word frequency counts are used to classify whether a given message is spam 

or not. The Naive Bayes Classifier algorithm is based on Bayes’ theorem with 

independence assumptions between the features to categorize text. There are 

two steps in Naive Bayes: training and testing. In the training step, the 

classifier is trained by the sample text file and get a model. In the testing step, 

the classifier processes the input data based on the model. 

In this example, however, we're going to be using continuous data 

instead. More specifically, we'll be classifying flowers based on 

measurements of their petals size. 

 

As with any classifier, the training data is a set of training examples 𝑥, 

each of which is composed of 𝑛 features 𝑥𝑖 = (𝑥1 , 𝑥2 , … , 𝑥𝑛 )   and their 

corresponding class 𝐶𝑖 where ⅈ is one of k classes. The goal is to learn a 

conditional probability model: 

𝑝(𝐶𝑘|𝑥1 , 𝑥2 , … , 𝑥𝑘 ) 

for each of the 𝑘 classes in the dataset.Intuitively, learning this 

multivariate distribution will require a lot of data as the number of features 

grows. However, we can simplify the task if we assume that features are 

conditionally independent given the class. While this assumption never holds 

on real data, it results in a single but surprisingly simple classifier. 

TensorFlow Implementation: 

We start by grouping the training samples based on their labeled class 

and get a (nb_classes * nb_samples * nb_features) array. 

Based on the above, we can fit individual Gaussian distributions to each 

combination of labeled class and feature. It's important to point out that, even 

if we're feeding the data in one go, we are fitting a series 

of univariate distributions, rather than a multivariate one: 

mean, var = tf.nn.moments(tf.constant(points_by_class), axes=[1]) 
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 In this trivial example, we're using tf.constant to get the training data inside    

the TensorFlow graph. In real life, you probably want to use tf.placeholder or even 

more performing alternatives like tf.Data.We take advantage of 

TensorFlow's tf.distributions module to create a Gaussian distribution with the 

estimated mean and variance: 

self.dist = tf.distributions.Normal(loc=mean, scale=tf.sqrt(var)) 

This distribution is the only thing we need to keep around for inference,     
and    it's luckily pretty compact, since the mean and variance are  

only (nb_classes, nb_features). 

For inference, it's important to work in the log probability space to avoid 
numerical errors due to repeated multiplication of small probabilities. We 
have: 

log 𝑝(𝐶𝑘|𝑥) = 𝑙𝑜𝑔𝑝( 𝐶𝑘 ) + ∑ 𝑃(𝑥|𝐶𝑘)

𝑛

𝑖=1

 

To take care of the first term, we can assume that all classes are equally   
likely (i.e. uniform prior): 

priors = np.log (np.array([1. / nb_classes] * nb_classes)) 

To compute the sum in the second term, we duplicate (tile) the feature 
vectors along a new "class" dimension, so that we can get probabilities from 
the distribution in a single run: 

# (nb_samples, nb_classes, nb_features)             all_log_probs 

= self.dist.lob_prob(tf.reshape(tf.tile(X, [1,nb_classes]), [-1, 

nb_classes, nb_features])) 

The next step is to add up the contributions of each feature to the 
likelihood of each class. In TensorFlow lingo, this is a reduce operation over 
the features axis: 

# (nb_samples, nb_classes)                              

cond_probs = tf.reduce_sum(all_log_probs, axis=2) 

We can then add up the priors and the conditional probabilities to get the 
posterior distribution of the class label given the features: 

joint_likelihood = tf.add(priors, cond_probs) 

In the derivation, we ignored the normalization factor, so the expression 
above is not a proper probability distribution because it doesn't add up to 1. 
We fix that by subtracting a normalization factor in log space using 
TensorFlow's reduce_logsumexp. Naively computing log(sum(exp(..)))  
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norm_factor = tf.reduce_logsumexp(                  

joint_likelihood, axis=1, keep_dims=True)                  log_prob = 

joint_likelihood - norm_factor 

Finally, we exponentiate to get actual probabilities: 

probs = tf.exp(log_prob) 

By feeding in a grid of points and drawing the contour lines at 0.5 
probability, we get a nice plot: 
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The following graph (figure 21) represents a running time performance 

comparison for Naïve Bayes between Hadoop and Spark. 

 

Figure 21:Running Time Comparison for Naive Bayes Running on Hadoop and Spark 

 

Input 100k 200k 400k 800k 1.6M 

Hadoop 541 917 1650 3537 10946 

Spark 37 48 60 75 126 

Speedup 14.62 19.1 27.5 47.16 86.87 

 

Figure 22:Spark's Speedup over Hadoop on Running Naive Bayes 

 

The input sets range from 100K to 1.6M and the input sizes range from 

0.4 Gb to 7 Gb. Naive Bayes is a machine learning benchmark. Spark is 

designed for iterative jobs which reuse the same data set to optimize a 

parameter that it supposes to have a better performance than Hadoop on 

machine learning algorithms. As shown in Figure 21, Spark has a big 
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advantage on running Naïve Bayes workload especially with large input data 

sizes. As we can see in Figure 22, the speedup goes from 14.62x to 86.87x 

as the input changes. In addition, Spark has little improvements on average 

CPU utilization (Figure 26 and Figure 27) and concerning memory, both Spark 

and Hadoop use memory practically in the same way (Figure 23 and Figure 

24). Spark has higher throughput than Hadoop and the throughput increases 

as the input size goes larger according to Figure 25. 

 

 

 

Figure 23:Maximum Memory Usage Percentage running Naive Bayes 
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Figure 24:Average Memory Usage Percentage for Naive Bayes running on Hadoop and Spark 

 

 

 

 

Figure 25:Throughput Comparison for Naive Bayes running on Hadoop and Spark 
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Figure 26:Average CPU Usage Percentage for Naive Bayes running on Hadoop and Spark 

 

 

 

 

 

Figure 27:Maximum CPU Usage Percentage for Naive Bayes running on Hadoop and Spark 
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2.1.3 K-means 
 

We implemented and used a TensorFlow K-means algorithm for grouping 

data into clusters with similar characteristics. When working with k-means, the 

data in a training set does not need labels. As an unsupervised learning 

method, the algorithm builds clusters based on the data itself. 

First, we generated random data points with a uniform distribution and 

assign them to a 2D tensor constant. Then, we randomly chose initial 

centroids from the set of data points. 

 

points = tf.constant(np.random.uniform(0, 10, (points_n, 2))) 

centroids = tf.Variable(tf.slice(tf.random_shuffle(points), [0, 

0], [clusters_n, -1])) 

 

For the next step, we want to be able to do element-wise subtraction 

of points and centroids that are 2D tensors. Because the tensors have 

different shape, let’s expand points and centroids into 3 dimensions, which 

allows us to use the broadcasting feature of subtraction operation. 

points_expanded = tf.expand_dims(points, 0) 

centroids_expanded = tf.expand_dims(centroids, 1) 

 

Then, calculate the distances between points and centroids and 

determine the cluster assignments. 

 

distances = tf.reduce_sum(tf.square(tf.sub(points_expanded, 

centroids_expanded)), 2) 

assignments = tf.argmin(distances, 0) 

 

Next, we can compare each cluster with a cluster assignments vector, get 

points assigned to each cluster, and calculate mean values. These mean 

values are refined centroids, so let’s update the centroids variable with the 

new values. 

 

means = [] 

for c in xrange(clusters_n): 

    means.append(tf.reduce_mean( 

      tf.gather(points,  

                tf.reshape( 

                  tf.where( 

                    tf.equal(assignments, c) 

                  ),[1,-1]) 

               ),reduction_indices=[1])) 

 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:52:42 EEST - 18.191.255.188



52 
 

new_centroids = tf.concat(0, means) 

update_centroids = tf.assign(centroids, new_centroids) 

 

it’s time to run the graph. For each iteration, we update the centroids and 

return their values along with the cluster assignments values. 

 

with tf.Session() as sess: 

  sess.run(init) 

  for step in xrange(iteration_n): 

    [_, centroid_values, points_values, assignment_values] = 

sess.run([update_centroids, centroids, points, assignments]) 

 

 

Lastly, we display the coordinates of the final centroids and a multi-

colored scatter plot showing how the data points have been clustered. 

 

 

 

 

 

print "centroids" + "\n", centroid_values 

 

plt.scatter(points_values[:, 0], points_values[:, 1], 

c=assignment_values, s=50, alpha=0.5) 

plt.plot(centroid_values[:, 0], centroid_values[:, 1], 'kx', 

markersize=15) 

plt.show() 
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The following graph (Figure 28)represents a running time performance 
comparison for K-means between Hadoop and Spark: 

 
 

 

  

             Figure 28:Running Time Comparison for K-means Running on Hadoop and Spark 
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Input 50M 100M 200M 400M 800M 

Hadoop 220 758 1152 2250 6191 

Spark 45 118 280 1802 2840 

Speedup 4.9 6.3 4.1 1.24 2.17 

 

Figure 29:Spark's Speedup over Hadoop on Running K-means 

 
 
Figure 28 summarizes Spark’s speedup over Hadoop on the same data 

sets. K-means is a machine learning algorithm which should be suitable for 
Spark: The input data points are assigned to clusters with a closest centroid 
and new centroids are created by these points assigned in the clusters. These 
steps are repeated until it converges. For each time, Hadoop need to store 
the intermediate results back to the disk. In contrast, Spark keeps them in 
Memory. The input sets range from 100K samples to 1.6M samples and the 
input sizes range from 10Gb to 160 Gb. Figure 29 shows that Spark has 
better performance than Hadoop -speedup is up to 6.3 times. However, the 
advantage is clearly bounded by the memory. The speedup goes down when 
the input is more than 100 million samples and has the minimum value 1.21x 
when the input is 400M. As shown in Figure 30 the maximum memory usage 
for Spark is almost 100 percent with 400M and 800M input Spark cannot 
create more RDD’s at this point. Spark saves more CPU resources compared 
to Hadoop especially when talking for small data inputs. With inputs of 50M 
and 100M Spark’s maximum CPU consumption is half of Hadoop’s. When the 
input is smaller than 200 million samples, Spark shows improvements on 
throughput than Hadoop- up to 6.3x-. For inputs greater than 200 million 
samples, the throughput for Spark has an obvious decrement as seen by 
Figure 32 
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  Figure 30:Maximum Memory Usage Percentage running K-means 

 

 

  Figure 31:Average Memory Usage Percentage running K-means 
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 Figure 32:Throughput Comparison for k-MEANS running on Hadoop and Spark 

 

 

 

 

Figure 33: Average CPU Usage Percentage for K-means running on Hadoop and Spark 
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Figure 34:Maximum CPU Usage Percentage for K-means running on Hadoop and Spark 
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3. Verdicts analysis and future Work  
From the benchmarking and evaluating work, we can conclude that Spark 

totally overshadows Hadoop on performance in all of case studies, especially 

those involved in iterative algorithms. We conclude that several factors can 

give a rise to a significant performance difference. First, Spark pipelines 

RDDs transformations and keeps persistent RDDs in memory by default, but 

Hadoop mainly concentrates on high throughput of data rather than on job 

execution performance such that MapReduce results in overheads due to 

data replication, disk I/O, and serialization, which can dominate application 

execution times. Also, in order to achieve fault-tolerance efficiently, RDDs 

provide a coarse-grained transformation rather than fine-grained updates to 

shared state or data replication across cluster [10], which means Spark builds 

the lineage of RDDs through transformations rather than the actual data. For 

example, if a partition of an RDD is missing, the RDD can retrieve the 

information about how it was originated from other RDDs. Last but not least, 

Spark has more optimizations, such as the number of disk accesses per 

second, memory bandwidth utilization and IPC rate, than Hadoop, so that it 

provides a better performance. Spark is generally faster than Hadoop 

because it is at the expense of significant memory consumption. But Spark is 

not a good fit for applications that make asynchronous fine-grained updates to 

shared state [10]. Also, if we do not have sufficient memory and the speed is 

not a demanding requirement, Hadoop is a better choice. For those 

applications which are time sensitive or involved in iterative algorithms and 

there is abundant memory available, Spark is sure to be the best fit. 

As our future work, we plan to set up Hadoop and Spark on a bigger 
cluster to test the scalability of each platform. Also, we want to increase the 
memory capacity of the clusters and in order to explore the influence of 
memory restriction on running time of Spark we would like to use active fiber 
connection between nodes. 

Finally, there is a big desire to design an intelligent system that can help 
us to choose a platform and the configuration parameters based on the 
applications and the input data sizes to get the optimized performance. 
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