
University of Thessaly

Department of Electrical and Computer Engineering

Deep Learning Frameworks’ Effectiveness and
Efficiency for Time Series Prediction

by

Tryfon Tsakiris

A thesis submitted for the partial fulfillment of the requirements for the
bachelor degree in Electrical and Computer Engineering

Supervised by

Dimitrios Katsaros, Assistant Professor
Lefteris Tsoukalas, Professor

Περίληψη

Η αποτελεσματικότητα και ταχύτητα πρόβλεψης των τιμών μιας χρονοσειράς

είναι σημαντική σε μια πληθώρα περιοχών όπως στα χρηματιστήρια, σεισμικές

μελέτες και δίκτυα αισθητήρων. Ο στόχος της παρούσας πτυχιακής εργασίας,

είναι να αντιμετωπίσει αυτό το συγκεκριμένο πρόβλημα χρησιμοποιώντας τεχνι-

κές βαθιάς μάθησης (deep learning) και να διευρευνήσει την αποτελεσματικότη-
τα (ακρίβειας) πρόβλεψης και την ταχύτητα εκπαίδευσης και πρόβλεψης των κυ-

ριοτέρων βιβλιοθηκών βαθιάς μάθησης (deep learning). Εστιάζουμε στα "Long
Short-Term Memory" (LSTM) και "Gated Recurrent Unit" (GRU) νευρωνι-
κά δίκτυα που είναι παράγωγα των "Recurrent Neural Networks" (RNN) και
είναι ειδικά σχεδιασμένα για να χειρίζονται ακολουθίες δεδομένων, όπως μια

χρονοσειρά. Η υλοποίηση των μοντέλων πρόβλεψης έγινε με χρήση της υψη-

λού επιπέδου βιβλιοθήκης βαθιάς μάθησης Keras, η οποία επιτρέπει την χρήση
διαφορετικών πιο χαμηλού επιπέδου βιβλιοθηκών βαθιάς μάθησης (Tensorflow,
Theano, CNTK) ως την υποστηρικτική μηχανή της, η οποία καθιστά εφικτή
την δίκαιη σύγκριση μεταξύ τους.

1

Abstract
The speed and efficiency of predicting the values of a time series is important
in a variety of areas such as stock exchanges, seismic studies and sensor net-
works. The aim of this dissertation is to tackle this specific task with deep
learning and explore the prediction efficiency and the speed of training and
prediction of the popular deep learning frameworks and libraries. Focus is
put on "Long Short-Term Memory" (LSTM) and "Gated Recurrent Unit"
(GRU) networks, variants of "Recurrent Neural Networks" (RNN) which are
specifically designed to handle sequences, like time series. The forecasting
models are built with Keras, a high-level deep learning library, that allows
the use of different low-level deep learning frameworks (Tensorflow, Theano,
CNTK) as its backend engine, which makes it feasible to make a fair com-
parison between them.

2

Acknowledgments
With the completion of my diploma thesis, i would like to express my sincere
gratitude to my friends and everyone else, who contributed in their own way
and helped me reach at this point.

First and foremost, i would like to thank my thesis supervisor, Assistant
Professor Dimitrios Katsaros, who gave me the chance to work on this project
and for all his valuable help and guidance during the development of this
thesis. I would also like to thank my second supervisor, Professor Lefteris
Tsoukalas, for his participation and support.

Last but by no means least, i would like to thank my beloved family for
their unceasing and unparalleled love, as well as for the continued moral and
financial support throughout my studies. None of this could have happened
without them.

3

Contents
Page

1 Introduction . 8

2 Time Series . 9
2.1 Definition . 9
2.2 Components . 9
2.3 Stationarity . 10
2.4 Forecasting . 10

2.4.1 One-Step Ahead Forecasting 10
2.4.2 Multi-Step Ahead Forecasting 10
2.4.3 Forecasting Accuracy . 11

3 Artificial Neural Networks . 13
3.1 Artificial Neuron . 13
3.2 Activation Functions . 14

3.2.1 Sigmoid . 14
3.2.2 Tanh . 15
3.2.3 ReLU . 16

3.3 Network Training . 16
3.3.1 Backpropagation . 16
3.3.2 Supervised Learning . 18
3.3.3 Unsupervised Learning 18

3.4 Regularization . 18
3.4.1 Dropout . 18
3.4.2 Early Stopping . 19

3.5 Neural Network Architectures 19
3.5.1 Feedforward Neural Networks (FNN) 19
3.5.2 Recurrent Neural Networks (RNN) 20
3.5.3 Long-Short Term Memory Networks (LSTM) 21
3.5.4 Gated Recurrent Unit (GRU) 23

4 Data Preprocessing Techniques 25
4.1 Normalization . 25
4.2 Standardization . 25

5 Software Tools . 26
5.1 Deep Learning Frameworks . 26
5.2 Scientific Libraries . 27

6 Methodology . 28

4

6.1 Data Preparation . 28
6.1.1 Data Split . 28
6.1.2 Supervised Learning . 29
6.1.3 Data Preprocessing - Transformation 29

6.2 Keras Implementation Details 30
6.2.1 LSTM Input/Output . 30
6.2.2 LSTM State . 30
6.2.3 Callbacks . 31

6.3 Hyperparameter Tuning . 31

7 Experiments and Results . 32
7.1 Setup . 32
7.2 Datasets . 33

7.2.1 Dataset Visualizations . 34
7.3 Model Details . 36
7.4 Evaluation Metrics and Results 39
7.5 Predictions Visualization . 40

7.5.1 Beijing PM2.5 Dataset 40
7.5.2 Internet Traffic Dataset 41
7.5.3 Zürich Sunspots Dataset 42

8 Conclusion . 43

References . 46

5

List of Figures
3.1 Artificial Neuron Model. 14
3.2 Sigmoid activation function. 15
3.3 Hyperbolic tangent activation function. 15
3.4 Rectifier Linear Unit activation function - ReLU. 16
3.5 Neural network model with Dropout 18
3.6 Early stopping . 19
3.7 Feedforward neural network. 20
3.8 Standard recurrent neural network 20
3.9 Internal structure of an LSTM unit 23
3.10 Internal structure of a GRU unit 24
6.1 Holdout validation. 28
7.1 Beijing PM2.5 dataset visualization. 34
7.2 Internet traffic dataset visualization. 35
7.3 Zürich sunspots dataset visualization. 35
7.4 Model’s architecture with each layer’s I/O dimensions. 37
7.5 An illustration of the LSTM model 38
7.6 Out-of-sample one-step-ahead forecasts on the Beijing PM2.5

dataset . 40
7.7 Out-of-sample one-step-ahead forecasts on the Internet Traffic

dataset . 41
7.8 Out-of-sample one-step-ahead forecasts on the Zürich sunspots

dataset . 42

6

List of Tables
6.1 Time series conversion to supervised learning. 29
7.1 Machine specifications. 32
7.2 Deep learning frameworks version. 32
7.3 Datasets details. 33
7.4 Framework evaluation metrics of the LSTM for every dataset . 39
7.5 Tensorflow: LSTM vs GRU evaluation metrics for every dataset 39

7

1 Introduction
One of the most challenging and important field in data science is time series
forecasting. Almost every business needs to predict the future and make
better and more effective decisions. Some examples of time series forecasting
use cases are: financial forecasting, product sales forecasting, energy demand
forecasting for servers and buildings, internet traffic flow forecasting and
many more. The common point to their problem is to find a way to use
historical information in order to predict the future.

Traditionally, there exist several classical models for time series fore-
casting such as Autoregressive (AR), Moving Average (MA), Autoregressive
Moving Average (ARMA) and Autoregressive Integrated Moving Average
(ARIMA). The basic assumption made by these models is that the time
series follow a specific distribution and that it can be represented by a lin-
ear equation. However, time series in general behave non-linearly and these
classical models are very hard to be applied effectively.

In recent years, artificial neural networks (ANNs) and deep learning in
particular, have become widely popular and are used almost everywhere to
solve problems in many different areas such as speech and image recognition,
natural language processing, medical research and time series forecasting.
These deep learning algorithms have provided new approaches for prediction
problems where the underlying relationships between variables are modeled
deep and layered hierarchically. The most prominent characteristic of ANNs
is their inherent capability of modeling non-linearities without any assump-
tions about the statistical distribution of the observations.

Of all the different deep learning architectures the most suitable for time
series forecasting would be one that can process sequential data and maintain
information about the past. An architecture that fulfills these requirements,
is the Recurrent Neural Network (RNN) and in particular its variants: Long-
Short Term Memory(LSTM) and Gated Recurrent Unit (GRU). These have
shown state-of-the-art results in many applications such as machine transla-
tion, hand writing and speech recognition [1, 2, 3].

Finally, with the advent of many successful use cases the number of deep
learning frameworks has been growing rapidly. Each framework is built in
a different manner and for different purposes. Due to this variety its often
necessary to decide which is the most beneficial deep learning framework for
a specific task. In this thesis, we will explore and compare the performance
of Tensorflow, Theano and CNTK as the backend engine of Keras for time
series prediction.

8

2 Time Series

2.1 Definition
A time series is a sequence of data points (observations) measured over time
and arranged in chronological order. It can be either continuous or discrete,
but most commonly, samples are taken at equally spaced points in time, thus
having a sequence of discrete-time data. Mathematically, it can be expressed
as a set of vectors Xt, each one being observed at a specified time t:

X = {X1, X2, ..., XT} or {Xt : t ∈ T}
Additionally, time series can be categorized as "univariate" or "multivari-

ate" depending on the number of variables into consideration. A univariate
time series is a sequence of observations of a single variable, such as data
collected from a sensor measuring the temperature of a room. If that sensor
measured the humidity as well and we were interested in the joint behavior
of these two variables then the time series would be characterized as multi-
variate.

2.2 Components
Time series in general is composed of three components namely the Trend
(T), Seasonality (S) and Irregular (I).

1. Trend (T): Trend is the long-term pattern of the time series. It can
be either positive or negative depending on whether the time series
exhibits an increasing or decreasing pattern.

2. Seasonality (S): Seasonality occurs when there is a variation in the
time series which is seasonal and fixed (e.g. the same month every year
or day in the week).

3. Irregular (I): The irregular component is the residual time series after
trend and seasonality are removed from the original time series. This
component is usually unpredictable and random.

There are two ways of how these components can be combined together
mathematically in order to compose the time series.

• Additive Model: Xt = Tt + St + It

• Multiplicative Model: Xt = Tt × St × It

9

2.3 Stationarity
A time series is stationary if its statistical properties like mean or variance
are constant over time. Most of the traditional forecasting methods, assume
that the distribution of the time series values is stationary.

Non-stationary data, are unpredictable and cannot be modeled or pre-
dicted correctly. Thus, in order to deal with the forecasting task these
traditional methods needed to convert the non-stationary time series into
stationary ones by removing the trend and seasonality components with the
appropriate pre-processing techniques.

2.4 Forecasting
Time series prediction or forecasting, refers to the process of using the past
observations of a time series in order to calculate one or several values ahead
in the future. This effectively means that we need to find the functional
dependency that holds the relationship between past and future values. Thus,
we need to find a model which approximates a function f in order to predict
h future values denoted as X̂, by using w past values of the time series. We
refer to h as the forecasting horizon and it indicates how far into the future
we should predict. Alternatively, h and w can be referred as lookahead and
lookback.

2.4.1 One-Step Ahead Forecasting

In one-step ahead forecasting we are interested in predicting only a single
future value by using past observations. The forecasting horizon in this case
is equal to one (h = 1) and the equation for one-step ahead forecasts is given
below:

X̂t+1 = f(Xt, Xt−1, ..., Xt−w+1) (2.1)

2.4.2 Multi-Step Ahead Forecasting

A multi-step ahead time series forecasting task consists of predicting more
than a single value in the future by using past observations, hence having a
forecasting horizon h > 1. There are three strategies that are commonly used
for multi-step ahead forecasting, namely the Iterative, Direct and MIMO
approach [4].

10

Iterative Approach

This is the simplest and most intuitive forecasting strategy where a single
model f is trained to perform one-step ahead forecasts (Equation 2.1). In
order to forecast h steps ahead, the model f is used multiple times by having
the recently forecasted values denoted as X̂ as inputs to predict the next
steps.

X̂t+h =

{
f(Xt, Xt−1, ..., Xt−w+h), if h = 1

f(X̂t+h−1, ..., Xt, ..., Xt−w+h), if h ∈ {2, ..., H} (2.2)

Direct Approach

In the direct approach in order to forecast h steps ahead a different model is
trained for each horizon independently. In other words, h models need to be
constructed, one for each horizon, based on the observed time series data.

X̂t+h = fh(Xt, Xt−1, ..., Xt−w+1), where h ∈ {1, ..., H} (2.3)

MIMO Approach

In this approach a model f is trained in order to produce multiple outputs
from the historical values of the time series. The forecasts are returned in
one shot manner by this multiple-output model f .

[X̂t+h, X̂t+h−1, ..., X̂t+1] = f(Xt, Xt−1, ..., Xt−w−1) (2.4)

Finally, it should be noted that the Iterative approach will have degraded
performance as it suffers from the accumulation of errors in multi-step ahead
forecasts. This is due to the fact that predictions are used in place of real
observations and errors are propagated for longer as the forecasting horizon
increases. Also, the Direct approach involves heavier computational load, as
it needs to train h different models.

2.4.3 Forecasting Accuracy

In order to evaluate the performance of the forecasting model we need to
quantify and measure the deviation of the predictions from the real mea-
surements. This deviation is called the forecast error and is defined as the
difference between the actual value and the forecast value. If the error is
denoted as Et, the actual value as Xt and the forecasted value as X̂t, then
the forecast error can be written as:

11

Et = Xt − X̂t (2.5)

Some of the most popular forecasting errors measures are:

• Mean Absolute Error (MAE):

MAE =
1

N

N∑
t=1

|Et| (2.6)

• Mean Squared Error (MSE):

MSE =
1

N

N∑
t=1

E2
t (2.7)

• Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

N

N∑
t=1

E2
t (2.8)

• Mean Absolute Percentage Error (MAPE):

MAPE =
100%

N

N∑
t=1

∣∣∣∣Et

Xt

∣∣∣∣ (2.9)

• Symmetric Mean Absolute Percentage Error (SMAPE):

SMAPE =
100%

N

N∑
t=1

|Et|
(|Xt|+ |X̂t|)/2

(2.10)

From the aforementioned metrics, only MAE and RMSE are scale de-
pendent metrics, which means that they are in the same scale as the data.
Additionally, MSE and RMSE have the property to penalize large errors
more than others due to the involved squaring operation.

Finally, MAPE and SMAPE are percentage errors which makes them
easy understandable and can be good metrics for comparisons between dif-
ferent datasets. The former, though has many limitations, one of which is
that it cannot be used if there are zero values, as this results in a division-by-
zero which yields undefined results. The latter, is an improved version and
has been used in many forecasting competitions.

12

3 Artificial Neural Networks
Artificial neural networks (ANNs) are machine learning models inspired by
the structure and function of the brain. They try to replicate how human
brain learns and deals with complex problems.

Generally, a neural network consists of several interconnected computa-
tional units called artificial neurons or just neurons and a set of directed
edges between them with assigned weights. These computational units are
organized in layers, specifically the Input layer, one or more Hidden layers
and finally the Output layer. The outputs of neurons are passed from one
layer to the next and information flows through the network. A typical neural
network is depicted in Figure (3.7).

1. Input layer: Its main task is to bring the raw input data into the
network for further processing.

2. Hidden layers: Is responsible for computations on the given data
from the input layer and transferring this information to the next layer
and eventually to the output layer.

3. Output layer: This is the last layer of a neural network and is respon-
sible for performing computations and transformations on the data that
came from the previous layer, in order to produce the end result.

Ultimately, just as biological neural networks learn their proper responses
to given inputs artificial neural networks need to do the same. This procedure
is called learning or training and its purpose is to teach the artificial neural
network how to respond to given inputs.

3.1 Artificial Neuron
An artificial neuron is the basic building block of every artificial neural net-
work. It accepts a set of inputs x, multiplies them with the appropriate
weights w, adds the bias b and then passes this weighted sum to a linear or
non-linear activation function to produce an output.

13

x2 w2 Σ f

Activation
function

y

Output

x1 w1

xn wn

Weights

Bias
b

...

Inputs

Figure 3.1: Artificial Neuron Model.

The output of the neuron, depicted in Figure (3.1) is given by the follow-
ing equation:

y = f(
n∑

i=1

wi · xi + b) (3.1)

where f is the activation function with typical choices like sigmoid, tanh or
ReLU.

3.2 Activation Functions
Activation functions are essential for a neural network to learn and make
sense of something really complicated. They introduce non-linearity in the
network by converting the input signal to an output signal via a transforma-
tion function. Some of the most popular activation functions are mentioned
below.

3.2.1 Sigmoid

Sigmoid is one of the most widely used activations functions for the output
layer. It has a characteristic "S-shaped" curve shown in Figure (3.2). It takes
as input a real number and outputs a value in the range of [0, 1]. Hence,
outputs can easily be interpreted as probabilities.

f(x) = σ(x) =
1

1 + e−x
(3.2)

14

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

σ
(x
)

Sigmoid

Figure 3.2: Sigmoid activation function.

3.2.2 Tanh

Tanh is similar to the sigmoid but has an output range of [-1, 1] which in turn
means, the output values are zero-centered. Thus, strongly negative inputs
to the tanh will map to negative outputs and zero-valued inputs will map to
near-zero outputs. Hence, it can overcome the vanishing gradient problem.

f(x) = tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x
ex + e−x

(3.3)

−4 −2 0 2 4
−1.5

−1

−0.5

0

0.5

1

1.5

x

ta
n
h
(x
)

Tanh

Figure 3.3: Hyperbolic tangent activation function.

15

3.2.3 ReLU

One of the most popular and widely used activation function is the rectified
linear unit (ReLU). This function whilst simple, it is proven to be very ef-
fective with fast convergence and it is mainly used as an activation function
for the hidden layers.

f(x) = max(0, x) =

{
0, if x < 0
x, if x ≥ 0

(3.4)

−4 −2 0 2 4
−0.5

0

0.5

1

1.5

x

re
lu
(x
)

ReLU

Figure 3.4: Rectifier Linear Unit activation function - ReLU.

3.3 Network Training
Training a neural network simply means to adjust the weights of the connec-
tions between neurons. At the beginning, the weights of the connections are
initialized randomly. This obviously means that the neural network is going
to produce bad results. Thus, in order for the neural network to be used
adequately for the required task, it needs to be trained to find the proper
weights.

3.3.1 Backpropagation

The most popular algorithm used for the training of a neural network is
Backpropagation. This algorithm requires a measure of the network’s output
error which is given by the loss function denoted as L. Its ultimate goal is
to minimize this loss function L in weight space, by using a gradient based
optimizer such as Stochastic Gradient Descend (SGD), Adam, RMSProp or

16

others [5]. The general idea of gradient descent based minimizers, is to
iteratively take steps proportional to the negative of the gradient of the
target function L.

Backpropagation algorithm can be summarized in this three steps:

1. Forward Pass: The input is given to the network via the input layer.
These inputs are propagated through the network and their activations
are computed and stored at each layer.

2. Error Calculation: After the forward pass, the network uses the loss
function L to compute the error by comparing the prediction with the
target value (supervised learning), as a means to estimate its perfor-
mance. If MSE is used as the loss function then L is given by the
following equation:

L =
1

N

N∑
i=1

(outputi − targeti)2 (3.5)

where N denotes the number of neurons in the output layer.

3. Backward Pass: At this step the partial derivative of the loss function
L with respect to the network weights is computed and then an update
procedure is initiated which adjusts the weights of the neurons in each
layer in a backward manner. Each weight is updated using the following
equation:

Wnew = Wold − γ
∂L
∂Wold

(3.6)

where γ represents the learning rate, i.e., a hyper-parameter that con-
trols the magnitude of the weight updates. Finally, it should be noted
that in order to effectively compute the partial derivatives for the back-
ward pass, the chain rule is used:

∂x

∂z
=
∂x

∂y
· ∂y
∂z

(3.7)

17

3.3.2 Supervised Learning

In this type of learning, the network receives both the inputs and the output
targets usually called the (ground truth) of each training set. Thus for each
input, the output of the network, can be compared with the expected result
and the network’s weights can be adjusted accordingly.

3.3.3 Unsupervised Learning

The goal of unsupervised learning is to infer useful information or patterns
from a dataset without any guidance. It is called unsupervised because unlike
supervised learning, the network is not given any labeled data, which means
that there is no correct answer to compare the prediction.

3.4 Regularization
Regularization is a technique used in deep learning in order to prevent the
model from over-fitting. Over-fitting occurs when the neural network tries to
model the training-data too closely in an extent, that impacts negatively its
ability and performance for predictions on new data. Out of all the available
methods in the literature we list only the ones that are used on this thesis.

3.4.1 Dropout

Dropout [6] is a technique where a random fraction of neurons are "dropped"
or "cut-off" during the training phase. In essence, this means that at each
training step, randomly selected neurons are kept with probability p or re-
moved from the network along with their incoming and outgoing connections,
with probability q = 1− p.

Figure 3.5: Neural network model with Dropout, in the right image crossed
neurons are dropped. (Source: [7]).

18

3.4.2 Early Stopping

Early stopping is another technique used in deep learning to prevent the
model from overfitting. Essentially, in this technique we need to keep a
portion of our training dataset as a validation set. Then we need to constantly
monitor the validation set error and whenever this error improves, we store
a copy of the models parameters. Hence, when the training algorithm stops
we return to the saved parameters rather than the latest ones. The stopping
criteria for the training algorithm is when the model stops improving on the
validation set i.e. validation error increases, for a specified number of epochs
or iterations, usually called the "patience".

Figure 3.6: Early stopping technique to stop training exactly when validation
set error starts to increase.

3.5 Neural Network Architectures
As mentioned earlier artificial neural networks are organized in layers com-
posed of neurons. Depending on the problem at hand, connections can be
made from neurons of one layer to another or/and between neurons at the
same layer. This provides a flexibility to the neural network, allowing it to
better adapt at a specific task.

3.5.1 Feedforward Neural Networks (FNN)

The Feedforward neural network (FNN) depicted in Figure (3.7) below, is
the simplest type of artificial neural networks. In this type of networks
information strictly flows in one direction, from the input-layer to the output-

19

layer. There aren’t any feedback loops in the network, which in turn means
that the output of every layer doesn’t affect the same layer.

Input 1

Input 2

Input 3

...

Input n

...
...

Output 1

...

Output n

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 3.7: Feedforward neural network.

3.5.2 Recurrent Neural Networks (RNN)

Conventional neural networks make the assumption that every input element
is independent from each other. This means that after processing one element
there isn’t any kind of information maintained, thus making them unsuitable
for sequential data like time series.

A recurrent neural network (RNN) is a network that can overcome this
limitation. More specifically, this network has feedback loops in it, making it
capable of preserving historical information from previous timesteps.

Figure 3.8: A recurrent neural network and its unfolded version to show how
the network’s memory is built (Source: [8]).

20

In general the RNN, takes as input a sequence of vectors xt = {x1, x2, ..., xT}
computes the hidden states st = {s1, s2, ..., sT} and finally outputs ot =
{o1, o2, ..., oT} for every time step t, t ∈ {1, 2, ..., T}. The hidden states rep-
resent the memory of the network and are computed by passing the weighted
input at the current timestep xt with the weighted hidden state of the pre-
vious timestep st−1 through an activation function f .

This procedure can be described mathematically as:

st = f(Uxt +Wst−1 + bs) (3.8)

ot = f(V st + bo) (3.9)

where U,W, V are the weight matrices which are the same for each timestep,
b∗ are the biases and f is a non-linear activation function.

A recurrent neural network can be unfolded as depicted in Figure (3.8)
and can be treated as a standard feedforward network that can be trained
in a way similar to backpropagation. This approach is called Backpropa-
gation Through Time (BPTT) [9]. Furthermore, even though RNNs can
model sequence data decently they are not capable of maintaining long-term
dependencies [10].

3.5.3 Long-Short Term Memory Networks (LSTM)

In order to overcome the aforementioned problem in the training phase of
the RNN, Hochreiter and Schmidhuber introduced the LSTM architecture
[11]. This architecture later got many updates and refinements from many
researchers. One of the most notable additions to the vanilla architecture of
the LSTM, was that of Schmidhuber, Gers and Cummins which included the
forget gate [12].

The LSTM architecture is very similar to that of the RNN but with
the exception that each neuron is replaced by an LSTM unit —Figure (3.9),
which is a composite unit composed of a memory cell and three gates : input,
output and forget gates.

1. Forget Gate: The forget gate applies a sigmoid function on the
weighted sum of the input in the current timestep xt and the output of
the previous step ht−1 and outputs a value between [0, 1]. This effec-
tively decides, which information is going to be removed from the cell
state. A value of 0 indicates that the information should be completely
removed and a value of 1 exactly the opposite.

21

ft = σ(Wfxt +Rfht−1 + bf) (3.10)

2. Input Gate: The input gate applies a sigmoid function on the weighted
sum of the input in the current timestep xt and the output of the pre-
vious step ht−1, to ascertain which values to be updated on the cell
state Ct. This information is combined with the new candidate values
for the cell state, denoted as C̃t, by passing xt and ht−1 through a tanh
function.

it = σ(Wixt +Riht−1 + bi) (3.11)

C̃t = tanh(Wcxt +Rcht−1 + bc) (3.12)

3. Memory Cell: The memory cell is updated by forgetting the infor-
mation that is no longer required from the previous time step and the
information that is relevant in the current timestep.

Ct = ft � Ct−1 + it � C̃t (3.13)

4. Output Gate: The output gate applies a sigmoid function on the
weighted sum of xt and ht−1 in order to control what information should
flow out of the LSTM unit. The result of this gate is then passed
through a tanh function to produce the output of the LSTM unit ht,
at the current timestep t.

ot = σ(Woxt +Roht−1 + bo) (3.14)

ht = tanh(Ct)� ot (3.15)

22

It should be noted that in the equations above, � is element-wise multi-
plication (Hadamard product) andW∗, R∗ and b∗ represent the input weights,
the recurrent weights and the biases respectively.

Figure 3.9: Internal structure of an LSTM unit (Source: Colah’s blog [13]).

3.5.4 Gated Recurrent Unit (GRU)

The Gated Recurrent Unit was introduced by Kyunghyun Cho [14] and is
another variant of RNNs that follows closely the architecture of the LSTM.
Both variants, can track long-term dependencies while mitigating the prob-
lems of the training phase in RNNs [10].

Similarly to the LSTM unit, the GRU unit employs gating mechanisms
to modulate the flow of information inside the unit. It combines the input
and forget gates into a single update gate and has an additional reset gate.
Additionally, the GRU does not maintain a cell state and exposes its full
content without any adjustment. That being said, the GRU unit is simpler
than the LSTM and has fewer parameters which makes it more computational
efficient.

1. Update Gate: The update gate zt decides how much the unit updates
its content or information from the previous step. It applies a sigmoid
function to the weighted sum of the input at the current timestep xt
and the previous output ht−1.

zt = σ(Wzxt +Rzht−1) (3.16)

2. Reset Gate: The reset gate rt decides how to combine the new input
with the previous memory. Similarly to the update gate, it applies

23

a sigmoid function to the weighted sum of the input at the current
timestep xt and the previous output ht−1.

rt = σ(Wrxt +Rrht−1) (3.17)

3. Output: The output of the GRU unit ht at time t is a linear inter-
polation between the previous output ht−1 and the candidate output
h̃t.

h̃t = tanh(Whxt +Rh(rt � ht−1)) (3.18)

ht = (1− zt)� ht−1 + zt � h̃t (3.19)

It should be noted that in the equations above, � is element-wise multi-
plication (Hadamard product) and W∗, R∗ represent the input weights and
the recurrent weights respectively.

Figure 3.10: Internal structure of a GRU unit (Source: Colah’s blog [13]).

24

4 Data Preprocessing Techniques
In deep learning, the raw input data have to undergo some transformations
prior to inserting them to the network. This procedure has proven to sig-
nificantly improve the convergence as well as the performance of the model
[7].

4.1 Normalization
Normalization also known as "Min-Max Scaling" is the process of rescaling
the data from the original scale into the desired scale, which is usually [0, 1]
or [-1, 1]. Of course, a linear scaling like this requires that the minimum and
maximum values can be found.

The equation to normalize the data in the range [a, b] is the following:

X ′t = (b− a) Xt −Xmin

Xmax −Xmin

+ a (4.1)

A variant of this method, called "Mean Normalization" subtracts the mean
value µ, instead of the minimum. Thus, Equation (4.1) becomes:

X ′t = (b− a) Xt − µ
Xmax −Xmin

+ a (4.2)

4.2 Standardization
The goal of standardization is to rescale the input features, so that they
have the properties of a standard normal distribution, i.e. zero mean and
unit standard deviation, µ = 0 and σ = 1. Of course, this method requires
that the mean and standard deviation of the observable values can be found.

The equation to standardize the data is the following:

X ′t =
Xt − µ
σ

(4.3)

where µ is the mean and σ is the standard deviation of the data.

µ =
1

N

N∑
t=1

Xt (4.4) σ =

√√√√ 1

N

N∑
t=1

(Xt − µ)2 (4.5)

25

5 Software Tools

5.1 Deep Learning Frameworks
A deep learning framework is an interface or library that allows developers to
easily design, build and evaluate deep learning models, by using a collection
of pre-built optimized components. There is a huge collection of deep learning
frameworks one can use to develop neural networks, with the most popular
listed below.

Tensorflow

Tensorflow is an open source library for high performance numerical com-
putation using data flow graphs. Its flexible architecture allows easy deploy-
ment of computations across various platforms such as CPUs and GPUs. It
was developed by Google Brain Team and is one of the most commonly used
frameworks today.

Theano

Theano is a python library that allows you to define, optimize and evaluate
mathematical expressions involving multi-dimensional arrays efficiently on
either CPU or GPU architectures. It was developed by a research group
at the University of Montreal and it was one of the first widely used deep
learning frameworks.

Microsoft Cognitive Toolkit

Microsoft Cognitive Toolkit (CNTK) is an open-source software toolkit
for commercial-grade distributed deep learning, developed by Microsoft. It
describes neural networks as a series of computational steps via a directed
graph. It also allows for easy integration with Azure Cloud Services.

Keras

Keras is a high level deep-learning library in Python that offers a very
human-friendly and easily operated interface in order to build neural net-
works. It’s capable of running on top of of either Tensorflow, Theano or Mi-
crosoft Cognitive Toolkit. Keras was developed and maintained by François
Chollet and has a huge community and support.

26

https://www.tensorflow.org/
http://deeplearning.net/software/theano/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://keras.io/

5.2 Scientific Libraries
Python has a wide variety of libraries that transform it from a general pur-
pose programming language into a very powerful tool for data analysis and
visualization. Some of the core libraries used in this thesis and that make
this feasible are listed below.

NumPy

NumPy is the foundational library for scientific computing in Python, and
many of the most popular libraries use NumPy arrays as their basic inputs
and outputs. In short, NumPy introduces objects for multidimensional arrays
and matrices, as well as routines that allow developers to perform advanced
mathematical and statistical functions on those arrays.

SciPy

SciPy is a collection of mathematical algorithms and high-level functions
built on top of NumPy. This package provides efficient numerical routines
such as numerical integration, optimization, linear algebra and many others
via its submodules.

Scikit-learn

Scikit-learn is a python machine learning library that builds on NumPy and
SciPy by adding algorithms for common machine learning and data mining
tasks such as clustering, regression and classification.

Pandas

Pandas is a software library written for the Python programming language
for data manipulation and analysis. In particular, it offers high-level data
structures and operations for manipulating numerical tables and time series.

Matplotlib

Matplotlib is the standard Python library that is used to generate visual-
izations such as 2D plots and graphs.

27

http://www.numpy.org/
https://www.scipy.org/
http://scikit-learn.org/stable/
https://pandas.pydata.org/
https://matplotlib.org/

6 Methodology
In this thesis, we decided to use Keras to build the deep learning models for
the time series prediction task. In the subsequent sections we briefly explain
all the required steps of our implementation.

6.1 Data Preparation

6.1.1 Data Split

In order to build the model and estimate its performance, we need to split
the dataset into three subsets namely the training, validation and test set.

• Training Dataset: This set is used solely during the training proce-
dure of the neural network in order to fit the parameters of the model
(e.g. weights).

• Validation Dataset: This set is mainly used to provide an unbiased
evaluation of the model fit on the training dataset. This set is used to
tune the hyperparameters of the neural network (e.g. number of hidden
units).

• Test Dataset: This set is comprised by previously unseen data and it
is used to assess the predictive performance of the final model.

This method is called Holdout Validation and the general procedure one
follows when doing this split on the dataset is depicted in Figure (6.1) below.

Figure 6.1: Holdout validation.

28

6.1.2 Supervised Learning

In order to train the neural network, the time series data needs to be reformed
and framed as a supervised learning task. A common approach is to use a
sliding window over the dataset in order to create input-output pairs. For
instance, if we have the series X = {X1, X2, ..., X10} and we would like to
use the last three observations (timesteps) in order to predict the next value
in the series, then we need to produce the following sequences:

Input Output

[X1, X2, X3] X4

[X2, X3, X4] X5

[X3, X4, X5] X6

[X4, X5, X6] X7

[X5, X6, X7] X8

[X6, X7, X8] X9

[X7, X8, X9] X10

Table 6.1: Time series conversion to supervised learning.

6.1.3 Data Preprocessing - Transformation

Before we input the raw data in the network they have to undergo some
transformations as mentioned in Section (4). For the LSTM network, all
the input time series have been normalized in the range [-1, 1] to match the
output range of the activation function tanh. This is accomplished by using
Equation (4.1).

It should be noted that in order to evaluate the model predictions and
gather metrics, the predictions need to be inverted back to the original scale.
This is accomplished by using a reverse operation of Equation (4.1).

It is also really important to not leak any information when doing this
operation from the test dataset during training. Thus, in order to normalize
or standardize the time series, one should estimate the parameters of the
equations only from the training dataset.

29

6.2 Keras Implementation Details
Working with LSTM in Keras is not that straightforward and requires some
attention when building the model. In the following sections, we briefly
discuss these tricky parts.

6.2.1 LSTM Input/Output

To start with, the LSTM layer requires the input data to be in the form of
a three dimensional array with dimensions [batch_size, timesteps, features].

1. Batch_size: is the number of samples in a forward/backward pass
before a weight update.

2. Timesteps: is the number of past observations to use (i.e. lookback
or lags).

3. Features: is the number of features for every timestep (1 for univariate
or n if multivariate).

The output of the LSTM layer by default is a 2D array with dimensions
[batch_size, units] or [batch_size, timesteps, units] in case the argument
"return_sequences" in the LSTM layer, is set to True. This option is mainly
used when multiple LSTM layers are stacked together, in order for the next
LSTM layer to obtain the whole sequence (timesteps) from the previous.

6.2.2 LSTM State

Another option in the LSTM layer is the parameter "stateful". Even though,
LSTM layers are inherently stateful, this option allows batches of samples to
share the values of their hidden states. Thus, if this option is enabled the
hidden state of ith sample in the previous batch k will be provided as initial
state to the ith sample in the subsequent batch k + 1.

It should be noted though, that in case a network is stateful the batch_size
has to be a divisor of the size of all the datasets (train, validation, test). Thus,
an additional pre-processing step has to be made for the time series data that
might require to truncate the last batches of the datasets.

Additionally, after the network is rendered stateful, there should be spe-
cial care on when the model should reset the the states. It is common to
reset the states after the whole sequence has been processed. Thus, for time
series forecasting, we should reset the states after each epoch (i.e. a complete
forward/backward pass of all the samples).

30

6.2.3 Callbacks

Keras allows the creation of callbacks in order to make changes to the network
during training. In thesis, the following callbacks are created/used:

1. EarlyStopping: To monitor the validation loss and stop training when
there is no improvement for a number of epochs.

2. ModelCheckpoint: This callback saves the weights as well as all the
information regarding the training state of the model in a special file
(HDF5 format).

3. ReduceLROnPlateau: This is used to reduce the learning rate of
the optimizer in case there is no improvement in the validation loss for
a number of epochs.

4. ResetStateCallback: This callback is mainly created to reset the
states of the model at the end of each epoch (in case the model is
stateful).

5. CVSLogger: Callback in order to store the evaluation metrics for each
epoch, during training.

6.3 Hyperparameter Tuning
The whole complexity of the experiments with ANNs is the process of tuning
the hyperparameters (e.g. number of neurons, number of layers, learning rate,
epochs etc.). In our experiments we manually tuned the hyperparameters of
the model via trial and error. For deeper and more complex networks, one
can look into more time-consuming and exhaustive searching methods like
grid-search, random-search or bayesian optimization [15, 16].

31

7 Experiments and Results
As mentioned earlier, our deep learning models are built with Keras. Keras
allows the use of different backends (frameworks) such as Tensorflow, Theano
and CNTK to handle all the low-level operations. In this section, we test the
performance of the aforementioned frameworks in terms of training speed and
prediction accuracy for out-of-sample forecasts (i.e. forecasts on the testing
dataset). We will focus on univariate time series —Table (7.3) and a method
for one-step ahead forecasts will be employed.

—It should be noted, that all frameworks are CPU only variants and have
been installed from the official sites (see Section 5.1) following the proposed
guidelines and using the default configurations.

7.1 Setup
The following tables contain the detailed specifications of the machine and
the frameworks that are used in the experiments.

System Details

Platform Linux x86_64
Distribution Ubuntu 16.04.5 LTS
CPU Model Intel i7-4700MQ
Number of Cores 4
Number of Threads 8
CPU Frequency 2.40 - 3.40 GHz
Memory (RAM) 8 GB

Table 7.1: Machine specifications.

Framework Version

Keras 2.2.2
Tensorflow 1.9.0
Theano 1.0.2
CNTK 2.5.1

Table 7.2: Deep learning frameworks version.

32

7.2 Datasets
The datasets used in the experiments are publicly available and their details
are listed in Table (7.3) below.

Dataset Name Abstract Size Attributes Source

Beijing PM2.5
Dataset

This hourly data set
contains the PM2.5 data of
US Embassy in Beijing.
Meanwhile, meteorological
data from Beijing Capital
International Airport are
also included.

43824 13

UCI
Machine
Learning
Repository

Internet traffic
data (in bits)
from an ISP

This dataset contains
aggregated traffic in the
United Kingdom academic
network backbone. It was
collected between 19
November 2004, at 09:30
hours and 27 January 2005,
at 11:11 hours. Data is
collected at five minute
intervals.

19888 1

Time
Series
Data
Library

Zürich monthly
sunspot
numbers

This dataset describes a
monthly count of the
number of observed
sunspots for over 230 years
(1749-1983).

2820 1

Time
Series
Data
Library

Table 7.3: Datasets details.

The Beijing PM2.5 dataset contains also meteorological data, but we’re
interested in forecasting the PM2.5 concentration, thus we are going to drop
all the other attributes. Furthermore, we can observe that the dataset con-
tains some missing values hence, an additional pre-processing step has to be
done to remove these rows. The Zürich and Internet traffic datasets, are left
as is because there are no missing values.

33

https://archive.ics.uci.edu/ml/datasets
https://archive.ics.uci.edu/ml/datasets
https://archive.ics.uci.edu/ml/datasets
https://archive.ics.uci.edu/ml/datasets
https://datamarket.com/data/set/232g/internet-traffic-data-in-bits-from-an-isp-aggregated-traffic-in-the-united-kingdom-academic-network-backbone-it-was-collected-between-19-november-2004-at-0930-hours-and-27-january-2005-at-1111-hours-data-collected-at-five-minute-intervals#!ds=232g&display=line
https://datamarket.com/data/set/232g/internet-traffic-data-in-bits-from-an-isp-aggregated-traffic-in-the-united-kingdom-academic-network-backbone-it-was-collected-between-19-november-2004-at-0930-hours-and-27-january-2005-at-1111-hours-data-collected-at-five-minute-intervals#!ds=232g&display=line
https://datamarket.com/data/set/232g/internet-traffic-data-in-bits-from-an-isp-aggregated-traffic-in-the-united-kingdom-academic-network-backbone-it-was-collected-between-19-november-2004-at-0930-hours-and-27-january-2005-at-1111-hours-data-collected-at-five-minute-intervals#!ds=232g&display=line
https://datamarket.com/data/set/232g/internet-traffic-data-in-bits-from-an-isp-aggregated-traffic-in-the-united-kingdom-academic-network-backbone-it-was-collected-between-19-november-2004-at-0930-hours-and-27-january-2005-at-1111-hours-data-collected-at-five-minute-intervals#!ds=232g&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line

7.2.1 Dataset Visualizations

In order to get a visual grasp of the patterns that govern the time series, the
datasets are plotted over their whole range —Figures (7.1 - 7.3).

Jul
201

0

Jan
201

1

Jul
201

1

Jan
201

2

Jul
201

2

Jan
201

3

Jul
201

3

Jan
201

4

Jul
201

4

Date index

0

200

400

600

800

1000

P
M
2.
5
re
ad
in
gs

Beijing PM2.5 Concentration

Figure 7.1: Beijing PM2.5 dataset visualization.

34

No
v 2

0 2
004

No
v 2

7 2
004

De
c 0

4 2
004

De
c 1

1 2
004

De
c 1

8 2
004

De
c 2

5 2
004

Jan
01

200
5

Jan
08

200
5

Jan
15

200
5

Jan
22

200
5

Date index

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

d
in

te
rn

et
tr

affi
c

(b
it

s)

Internet Traffic Data

Figure 7.2: Internet traffic dataset visualization.

175
4

179
4

183
4

187
4

191
4

195
4

Date index

0

50

100

150

200

250

300

M
on
th
ly

su
ns
p
ot
s
co
un

t

Zurich Monthly Sunspot Numbers

Figure 7.3: Zürich sunspots dataset visualization.

35

7.3 Model Details
The same model is used for all the datasets, in order to compare the scala-
bility of the frameworks in terms of the length of the datasets. Additionally,
after experimentation with the tuning procedure of the hyperparameters, we
chose the ones that lead the model to produce the best prediction perfor-
mance on all validation datasets.

The predictor is a stateful multi-layered model that consists of two stacked
LSTM layers with 128 and 256 neurons respectively and a Dense layer (fully
connected layer) with a single neuron to produce a single prediction (one-
step ahead forecasting). The first LSTM layer returns as an output the whole
sequence (timesteps), while the second one returns only the last step, thus
dropping the temporal dimension. In-between layers we added a dropout
layer of 0.2, in order to prevent the model from overfitting. The model is
trained for 30 number of epochs with early-stopping and a batch size of 128.
The objective loss function is MSE and RMSprop [17] is used as the network’s
optimizer with a learning-rate of 0.001. Furthermore, the learning rate is
monitored and is reduced by a factor of 0.5 in case there is no improvement
in the validation loss for 5 epochs. The time series have been converted to
input-output pairs (supervised learning) with a number of 24 past timesteps
and one output, with a process like the one depicted in Section (6.1.2) —Table
(6.1). We use 70% of data for training, 10% for validation and the last 20%
to test the prediction performance. The model’s architecture as well as its
input/output dimensions are depicted in Figures (7.4 - 7.5) below.

36

Figure 7.4: Model’s architecture with each layer’s I/O dimensions.

37

LSTM LSTM LSTM . . . LSTM

xt−23 xt−22 xt−21 . . . xt

Dropout Dropout Dropout . . . Dropout

LSTM LSTM LSTM . . . LSTM

Dropout

Dense xt+1

Figure 7.5: An illustration of the LSTM model. It takes as input the past
24 observations (timesteps) and produces an output sequence to the next
layers. Finally, the output of the last cell of the second LSTM layer is used
as input to the fully connected layer to produce a scalar output prediction.
In-between layers we’ve introduced a Dropout layer in order to prevent the
model from overfitting.

38

7.4 Evaluation Metrics and Results
To assess the performance of the frameworks for the LSTM model, we will use
three different metrics, namely the Mean Absolute Error (MAE) Equation
(2.6), the Root Mean Square Error (RMSE) Equation (2.8) and the time it
took for the model to train on the training dataset for 30 epochs.

Dataset Beijing PM2.5 Internet Traffic Zürich Sunspots

Metrics MAE RMSE Time MAE RMSE Time MAE RMSE Time

Tensorflow 12.30 21.75 16m59s 62.15 84.56 7m29s 14.06 19.00 1m0s
Theano 11.88 21.59 27m14s 60.17 81.86 14m57s 14.16 19.23 2m7s
CNTK 12.19 21.85 33m48s 61.97 84.60 16m38s 13.43 18.28 2m14s

Table 7.4: Framework evaluation metrics of the LSTM for every dataset

Additionally, we trained with TensorFlow a GRU network as an exact
replica of the LSTM, to compare their performance. From Table (7.5), it is
clear that GRU achieves better score for the given datasets while being faster
during training, indicating that it might be better candidate for modeling the
time series.

Dataset Beijing PM2.5 Internet Traffic Zürich Sunspots

Metrics MAE RMSE Time MAE RMSE Time MAE RMSE Time

LSTM 12.30 21.75 16m59s 62.15 84.56 7m29s 14.06 19.00 1m0s
GRU 11.94 21.69 13m35s 57.91 78.76 6m31s 13.41 18.39 0m55s

Table 7.5: Tensorflow: LSTM vs GRU evaluation metrics for every dataset

39

7.5 Predictions Visualization
In the following subsections we will illustrate the first 300 out-of-sample
predictions of the GRU model for every dataset. The GRU model was chosen
because it achieved the best MAE and RMSE scores, as depicted in Table
(7.5).

7.5.1 Beijing PM2.5 Dataset

Figure (7.6) depicts the first 300 continuous plots of one-step-ahead fore-
casted values and the actual values on the test dataset.

0 50 100 150 200 250 300

−100

0

100

200

300

400

500

600

700
Actuals vs Predictions, Test dataset

true

predictions

Figure 7.6: One-step-ahead predictions on the Beijing PM2.5 test dataset.
Predictions are represented with red color and actual values with blue.

40

7.5.2 Internet Traffic Dataset

Figure (7.7) depicts the first 300 continuous plots of one-step-ahead fore-
casted values and the actual values on the test dataset.

0 50 100 150 200 250 300
1000

2000

3000

4000

5000

6000

7000

8000
Actuals vs Predictions, Test dataset

true

predictions

Figure 7.7: One-step-ahead predictions on the Internet traffic test dataset.
Predictions are represented with red color and actual values with blue.

41

7.5.3 Zürich Sunspots Dataset

Figure (7.8) depicts the first 300 continuous plots of one-step-ahead fore-
casted values and the actual values on the test dataset.

0 50 100 150 200 250 300
0

50

100

150

200

250

300
Actuals vs Predictions, Test dataset

true

predictions

Figure 7.8: One-step-ahead predictions on the Zürich sunspots test dataset.
Predictions are represented with red color and actual values with blue.

42

8 Conclusion
In this thesis we presented the relevant theory, of time series and deep learn-
ing, that is required in order to build a model to perform time series forecast-
ing. Subsequently, we presented the state-of-the-art deep learning architec-
tures for sequence based tasks (LSTM, GRU), their inner workings as well
as methods that are widely used in deep learning. Additionally, we showed
the steps of how to manipulate time series and frame them in a form that
is suitable for the LSTM model’s training. Furthermore, many of the imple-
mentation details of Keras are presented, which are required in order to build
the LSTM, to feed the time series data to the LSTM as well as to monitor
its training. Finally, these models were trained with the available deep learn-
ing frameworks that serve as the backend engine of Keras and comparisons
were made in terms of prediction accuracy and training speed for different
datasets and for different network architectures (LSTM - GRU).

For the last part, even though different frameworks use slightly different
implementations of the mathematical operations, the results gathered from
the experiments are approximately the same, except for the training speed.
This is mainly due to the different optimizations of the mathematical libraries
used in the background that handle the matrix and linear algebra operations.
Additionally, from the experiments presented in Table (7.4) we can clearly
see that CNTK is the slowest in terms of training speed, with Theano being
a little bit faster than the former and TensorFlow being the fastest.

As of the comparison of the LSTM versus the GRU network, it seems
that GRU is less computationally expensive than LSTM, mainly because of
the fewer parameters which result in a faster training speed. It is also evident
that the GRU can achieve better predictions than the LSTM, having better
evaluation scores as indicated by the results presented in Table (7.5).

To sum up, it seems that the winner of the frameworks comparison is
Google’s TensorFlow, as it achieved approximately the same evaluation score,
but it was approximately 2x faster than the others. Hence, to build LSTM
and GRU models for time series prediction, TensorFlow seems to be the
most suitable framework as the backend engine of Keras in a CPU (non-
GPU) setup, by using the default configurations provided in the installation
guidelines of each framework.

43

References
[1] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami,

Horst Bunke, and Jürgen Schmidhuber. A Novel Connectionist System
for Unconstrained Handwriting Recognition. IEEE Trans. Pattern Anal.
Mach. Intell., 31(5):855–868, May 2009. ISSN 0162-8828. doi: 10.1109/
TPAMI.2008.137. http://dx.doi.org/10.1109/TPAMI.2008.137.

[2] Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. Speech
recognition with deep recurrent neural networks. CoRR, abs/1303.5778,
2013. http://arxiv.org/abs/1303.5778.

[3] Biao Zhang, Deyi Xiong, and Jinsong Su. Recurrent neural machine
translation. CoRR, abs/1607.08725, 2016. http://arxiv.org/abs/
1607.08725.

[4] S. Ben Taieb, G. Bontempi, A. Atiya, and A. Sorjamaa. A review
and comparison of strategies for multi-step ahead time series forecast-
ing based on the NN5 forecasting competition. ArXiv e-prints, August
2011. https://arxiv.org/abs/1108.3259.

[5] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms. CoRR, abs/1609.04747, 2016. http://arxiv.org/abs/1609.
04747.

[6] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting. Journal of Machine Learning Research, 15:1929–
1958, 2014. http://jmlr.org/papers/v15/srivastava14a.html.

[7] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller.
Efficient BackProp. In Neural Networks: Tricks of the Trade, This Book
is an Outgrowth of a 1996 NIPS Workshop, pages 9–50, London, UK,
UK, 1998. Springer-Verlag. ISBN 3-540-65311-2. http://dl.acm.org/
citation.cfm?id=645754.668382.

[8] Yann LeCun, Y Bengio, and Geoffrey Hinton. Deep learning. In Na-
ture, volume 521, pages 436–44, 05 2015. http://dx.doi.org/10.1038/
nature14539.

[9] P. J. Werbos. Backpropagation through time: what it does and how
to do it. Proceedings of the IEEE, 78(10):1550–1560, Oct 1990. ISSN
0018-9219. http://dx.doi.org/10.1109/5.58337.

44

http://dx.doi.org/10.1109/TPAMI.2008.137
http://arxiv.org/abs/1303.5778
http://arxiv.org/abs/1607.08725
http://arxiv.org/abs/1607.08725
https://arxiv.org/abs/1108.3259
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://jmlr.org/papers/v15/srivastava14a.html
http://dl.acm.org/citation.cfm?id=645754.668382
http://dl.acm.org/citation.cfm?id=645754.668382
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/5.58337

[10] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependen-
cies with gradient descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157–166, Mar 1994. ISSN 1045-9227. doi: 10.1109/72.
279181. https://dl.acm.org/citation.cfm?id=2328340.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Mem-
ory. Neural Comput., 9(8):1735–1780, November 1997. ISSN 0899-7667.
http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[12] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to
Forget: Continual Prediction with LSTM. Neural Computation, 12:
2451–2471, 1999. https://dl.acm.org/citation.cfm?id=1121915.

[13] Christopher Olah. Understanding LSTM Networks. http://colah.
github.io/posts/2015-08-Understanding-LSTMs/, 2015.

[14] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Repre-
sentations using RNN Encoder-Decoder for Statistical Machine Transla-
tion. CoRR, abs/1406.1078, 2014. http://arxiv.org/abs/1406.1078.

[15] Patrick Koch, Brett Wujek, Oleg Golovidov, and Steven Gard-
ner. Automated hyperparameter tuning for effective machine
learning. 2017. https://support.sas.com/resources/papers/
proceedings17/SAS0514-2017.pdf.

[16] Jeremy Jordan. Hyperparameter tuning for machine learning models.
https://www.jeremyjordan.me/hyperparameter-tuning/, 2017.

[17] T. Tieleman and G. Hinton. Lecture 6e—RmsProp: Divide the gra-
dient by a running average of its recent magnitude. Coursera: Neural
Networks for Machine Learning, 2012. https://www.cs.toronto.edu/
~tijmen/csc321/slides/lecture_slides_lec6.pdf.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[19] Z. C. Lipton, J. Berkowitz, and C. Elkan. A Critical Review of Recur-
rent Neural Networks for Sequence Learning. ArXiv e-prints 1506.00019
cs.LG, may 2015.

[20] François Chollet et al. Keras. https://keras.io, 2015.

45

https://dl.acm.org/citation.cfm?id=2328340
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://dl.acm.org/citation.cfm?id=1121915
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://arxiv.org/abs/1406.1078
https://support.sas.com/resources/papers/proceedings17/SAS0514-2017.pdf
https://support.sas.com/resources/papers/proceedings17/SAS0514-2017.pdf
https://www.jeremyjordan.me/hyperparameter-tuning/
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.deeplearningbook.org
https://keras.io

[21] Sorjamaa, Antti and Hao, Jin and Reyhani, Nima and Ji, Yongnan and
Lendasse, Amaury. Methodology for Long-term Prediction of Time Se-
ries. Neurocomput., 70(16-18):2861–2869, October 2007. ISSN 0925-
2312. doi: 10.1016/j.neucom.2006.06.015. http://dx.doi.org/10.
1016/j.neucom.2006.06.015.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014. URL http://arxiv.org/
abs/1412.6980. http://arxiv.org/abs/1412.6980.

[23] Rob J Hyndman and Anne B Koehler. Another look at measures of
forecast accuracy. International Journal of Forecasting, pages 679–688,
2006. https://doi.org/10.1016/j.ijforecast.2006.03.001.

[24] Souhaib Ben Taieb and Gianluca Bontempi. Recursive Multi-step Time
Series Forecasting by Perturbing Data. In Proceedings of the 2011 IEEE
11th International Conference on Data Mining, pages 695–704. IEEE
Computer Society, 2011. doi: 10.1109/ICDM.2011.123. https://doi.
org/10.1109/ICDM.2011.123.

[25] Gianluca Bontempi, Souhaib Ben Taieb, and Yann-Aël Le Borgne.
Machine Learning Strategies for Time Series Forecasting. volume
138 of Lecture Notes in Business Information Processing, pages 62–
77. Springer, 2012. https://link.springer.com/chapter/10.1007%
2F978-3-642-36318-4_3.

46

http://dx.doi.org/10.1016/j.neucom.2006.06.015
http://dx.doi.org/10.1016/j.neucom.2006.06.015
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1109/ICDM.2011.123
https://doi.org/10.1109/ICDM.2011.123
https://link.springer.com/chapter/10.1007%2F978-3-642-36318-4_3
https://link.springer.com/chapter/10.1007%2F978-3-642-36318-4_3

	Introduction
	Time Series
	Definition
	Components
	Stationarity
	Forecasting
	One-Step Ahead Forecasting
	Multi-Step Ahead Forecasting
	Forecasting Accuracy

	Artificial Neural Networks
	Artificial Neuron
	Activation Functions
	Sigmoid
	Tanh
	ReLU

	Network Training
	Backpropagation
	Supervised Learning
	Unsupervised Learning

	Regularization
	Dropout
	Early Stopping

	Neural Network Architectures
	Feedforward Neural Networks (FNN)
	Recurrent Neural Networks (RNN)
	Long-Short Term Memory Networks (LSTM)
	Gated Recurrent Unit (GRU)

	Data Preprocessing Techniques
	Normalization
	Standardization

	Software Tools
	Deep Learning Frameworks
	Scientific Libraries

	Methodology
	Data Preparation
	Data Split
	Supervised Learning
	Data Preprocessing - Transformation

	Keras Implementation Details
	LSTM Input/Output
	LSTM State
	Callbacks

	Hyperparameter Tuning

	Experiments and Results
	Setup
	Datasets
	Dataset Visualizations

	Model Details
	Evaluation Metrics and Results
	Predictions Visualization
	Beijing PM2.5 Dataset
	Internet Traffic Dataset
	Zürich Sunspots Dataset

	Conclusion
	References

