
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

Master Thesis

Incremental Homogenization Estimates
for Particulate Composites

by

ATHANASIOS PATSIOURAS

Diploma in Mechanical Engineering, University of Thessaly, 2015

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

2018

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:04:45 EEST - 18.116.47.245



Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:04:45 EEST - 18.116.47.245



c© 2018 Athanasios Patsiouras

The approval of this thesis by the Department of Mechanical Engineering, School of
Engineering, University of Thessaly does not imply the acceptance of the personal views
of the author (L. 5343/32 ar. 202 par. 2).

1

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:04:45 EEST - 18.116.47.245



Approved by the Three Members of the Advisor Committee

First Member
(Supervisor)

Michalis Agoras
Assistant Professor, Department of Mechanical Engineering
University of Thessaly

Second Member Nikolaos Aravas
Professor, Department of Mechanical Engineering
University of Thessaly

Third Member Alexis Kermanidis
Assistant Professor, Department of Mechanical Engineering
University of Thessaly

2

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:04:45 EEST - 18.116.47.245



Ευχαριστίες

Πρώτα απ΄ όλα, θέλω να ευχαριστήσω τον επιβλέποντα της εργασίας μου, Επίκουρο Καθη-

γητή κ. Μιχάλη Αγόρα, για την καθοδήγηση και την πολύτιμη βοήθεια που μου προσέφερε

κατά τη διάρκεια της δουλειάς μου. Επίσης, θα ήθελα να ευχαριστήσω τα μέλη της εξεταστι-

κής επιτροπής της εργασίας μου, Καθηγητή κ. Νικόλαο Αράβα και Επίκουρο Καθηγητή κ.

Αλέξη Κερμανίδη για το χρόνο που διέθεσαν για την ανάγνωση και αξιολόγηση της εργασίας.

Ευχαριστώ ιδιαίτερα τη Λευκή για την υποστήριξη που μου παρείχε καθώς και την κατα-

νόση που έδειξε όλο αυτό το διάστημα.

Τέλος, θα ήθελα να ευχαριστήσω τους γονείς μου και την αδερφή μου για τη συνεχή και

αμέριστη υποστήριξη τους καθ΄ όλη τη διάρκεια των σπουδών μου.

Πατσιούρας Αθανάσιος

3

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:04:45 EEST - 18.116.47.245



Contents

1 Introduction 8

2 Background 10
2.1 Prelimaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Linear-elastic composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Estimates for the effective behavior of particulate composites 15
3.1 Linear-elastic composite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Dilute suspensions of particles . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Hashin-Shtrikman type of estimates . . . . . . . . . . . . . . . . . . 17

3.2 Nonlinear composites: The variational procedure of Ponte Castañeda . . . 19

4 The incremental homogenization scheme 21
4.1 Incremental homogenization for linear-elastic composites . . . . . . . . . . 22
4.2 Incremental homogenization for nonlinear composites . . . . . . . . . . . . 23

5 Results and discussion 26
5.1 Linear elastic composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Rigid particle composites . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Porous composites . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.3 Particle composites . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.4 Fiber composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Nonlinear composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.1 Rigid spherical inclusions . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Porous composites . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.3 Particle composites . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.4 Fiber composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Concluding remarks 49

4

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:04:45 EEST - 18.116.47.245



List of Figures

2.1 Representative volume element of a two-phase particulate composite consisting
of aligned, ellipsoidal inclusions (solid lines) that are distributed with a different
ellipsoidal symmetry (dotted lines) in a matrix material. . . . . . . . . . . . . . 11

3.1 Geometrical Features of an Ellipsoid. . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Schematic representation of a dilute composite (N=2). . . . . . . . . . . . . . . 17

4.1 Schematic of a self-similar microstructure. RVE Ω[1]: ellipsoidal inclusions are
distributed with ellipsoidal symmetry in a homogeneous matrix material. RVE
Ω[i] with i = 2, ..., N : ellipsoidal inclusions are distributed with ellipsoidal sym-
metry in a heterogeneous matrix composed of the material in RVE Ω[i−1]. . . . 23

5.1 Schematic of a self-similar microstructure. RVE Ω[1]: spherical inclusions (or
fibers of circular cross-section) are distributed in a homogeneous matrix material.
RVE Ω[i] with i = 2, ..., N : spherical inclusions (or fibers of circular cross-section)
are distributed in a heterogeneous matrix composed of the material in RVE Ω[i−1]. 27

5.2 IH estimates for the normalized effective shear modulus of a composite con-
sisting of rigid spherical inclusions embedded in an isotropic, incompressible,
linear elastic matrix are plotted as a function of the inclusion concentration.(a)

The convergence of the IH estimate with increasing numbers (N) of increments,
N = 1, 2, 10, 100 and N →∞ (b) The precentage difference d[N ] between the IH
estimate and the corresponding HS estimate for various values of N . . . . . . . 28

5.3 Estimates for the normalized effective shear modulus of a composite consisting
of spherical pores embedded in an isotropic, incompressible, linear elastic matrix
are plotted as a function of the volume concentration of voids c(2). (a) The
normalized effective shear modulus as predicted by the IH scheme compared
with the homogenization estimates of the HS (N=1) bounds and the DS method.
(b) The difference in percentage between the HS estimate and the corresponding
estimates from the IH and the DS . . . . . . . . . . . . . . . . . . . . . . . . 30

5

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:04:45 EEST - 18.116.47.245



6 List of Figures

5.4 Results for the normalized effective shear modulus for a composite consisting
of isotropic spherical particles embedded in an isotropic, incompressible, linear
elastic matrix are plotted as a function of the concentration of particles c(2).
(a) The normalized effective shear modulus as predicted by the IH and the HS
(N=1) upper bound for a composite with heterogeneity contrast t = 0.2 . (b)

The percentage difference between the IH and the corresponding HS estimate for
a composite with heterogeneity contrast t = 0.2. (c) The normalized effective
shear modulus as predicted by the IH and the HS upper lower for a composite
with initial heterogeneity contrast t = 5. (d) The percentage difference between
the IH and the corresponding HS estimate for a composite with heterogeneity
contrast t = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Results for the normalized effective in-plane shear modulus of an incompress-
ible, linear elastic composite consisting of aligned fibers of circular cross-section
embedded in an isotropic matrix material are plotted as a function of the con-
centration of particles c(2). (a) The normalized effective in-plane shear modulus
as predicted by the IH and the HS (N=1) upper bound for a composite with
heterogeneity contrast t = 0.2. (b) The percentage difference between the IH and
the corresponding HS upper bound. (c) The normalized effective in-plane shear
modulus as predicted by the IH and the HS lower lower for a composite with
heterogeneity contrast t = 5. (d) The percentage difference between the IH and
the corresponding HS lower bound . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6 IH estimates for the normalized effective in-plane shear modulus of a fiber-
reinforced composite consisting of aligned rigid fibers embedded in an isotropic,
incompressible, linear elastic matrix are plotted as a function of the fibers con-
centration. (a) The convergence of the IH estimate with increasing numbers (N)

of increments, N = 1, 100 and N → ∞ (b) The percentage difference d[N ] be-
tween the IH estimate and the corresponding HS estimate for various values of
N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.7 Comparison of IH and VAR estimates for the normalized effective yield-stress
of a composite reinforced with rigid spherical particles embedded in a power-law
matrix phase are plotted as a function of the concentration of particles c(2). Parts
(a) and (b) shows σ̃0/σ

(1)
0 for the cases n = 3 and n = 10, respectively.(c) The

normalized effective yield-stress as predicted by the IH for N = 100 and N →∞,
for three values of the nonlinear exponent n = 1, 3, 10. (d) The percent difference
between the IH and the corresponding VAR estimates for n = 1, 3, 10. . . . . . 43

5.8 Plots of the effective yield surface obtained by the IH and VAR methods for
isotropic porous materials consisting of spherical voids distributed in an ideally
plastic matrix. (a) Plots for c(2) = 0.1, 0.2 (b) Plots for c(2) = 0.4, 0.5. CSA
estimates are shown for comparison. . . . . . . . . . . . . . . . . . . . . . . . 44

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:04:45 EEST - 18.116.47.245



List of Figures 7

5.9 IH and VAR estimates for the normalized effective yield stress of a particulate
composite consisting of spherical inclusion embedded in a power-law matrix, as
a function of the nonlinearity m. The concentration of particles is c(2) = 0.5.
IH and variational estimates are shown in (a) for heterogeneity contrast t = 0.2,
while the percent difference of the IH from the VAR estimate is shown in (b). Part
(c) shows IH and variational estimates for particle to matrix contrast contrast
t = 5 while the corresponding percent difference of the IH from the VAR estimate
is shown in part (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.10 The normalized effective yield stress of a particle-reinforced composite for c(2) =

0.4 and m = 0, as a function of the contrast σ(2)0 /σ
(1)
0 . Numerical results by

Papadioti et.al [16] are shown for comparison. . . . . . . . . . . . . . . . . . . 46
5.11 Comparison of the IH estimate and the corresponding variational estimate (VAR)

for the normalized effective in-plane yield-stress σ̃0/σ
(1)
0 of a rigidly fiber-reinforced

composite with an incompressible matrix.(a) The VAR estimate and IH estimate
for N →∞ are plotted as a function of m for a fixed volume fraction c(2) = 0.6.
(b) The precentage difference d[N ] between the IH estimate and the corresponding
VAR estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.12 The normalized effective in-plane yield stress σ̃0/σ
(1)
0 of a fibrous composite with

concentration c(2) = 0.20626. Comparison of the IH estimate with the FOSO es-
timate, variational estimate (VAR) and the the Composite Cylinder Assemblage
(CCA) for (a) a fiber-weakened composite with t = 0.2 and (b) a fiber-reinforced
composite with t = 5, as a function of the nonlinearity m. The Voigt and Reuss
bounds are also included in (a) and (b), respectively. . . . . . . . . . . . . . . . 47

5.13 The normalized effective in-plane yield stress σ̃0/σ
(1)
0 of a fibrous composite with

concentration c(2) = 0.2. Comparison of the IH estimate with the FOSO es-
timate, the simple variational estimate (VAR) and the Voigt bound for (a) a
fiber-weakened composite with σ(2)0 /σ

(1)
0 < 1 and (b) a fiber-reinforced composite

with σ(2)0 /σ
(1)
0 > 1, as a function of the heterogeneity contrast σ(2)0 /σ

(1)
0 . . . . . 48

5.14 The effective in-plane yield stress σ̃0 of a fibrous composite normalized by σ(1)0 .
Comparison of the IH estimate with the FOSO estimate, variational estimate
(VAR) and the Voigt bound for (a) a fiber-weakened composite with σ(2)0 /σ

(1)
0 =

0.2 and (b) a fiber-reinforced composite with σ(2)0 /σ
(1)
0 = 5, as a function of the

fiber concentration c(2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:04:45 EEST - 18.116.47.245



Chapter 1

Introduction

A composite material is a heterogeneous medium consisting of two or more homogeneous
materials (phases) with different properties that are distributed at a length scale much
smaller than the length scale of the overall dimensions of the composite. Many natural
and artificial materials are of this nature such as: glass fiber reinforced plastics, ceramic
particle reinforced metal matrix composites, polycrystalline metals,etc.

Homogenization methods aim to determine the “effective” or “average” properties of
composites directly from the properties of the constitutive phases and their arrangement
within the composite. For linear elastic composites there are available many methods
for estimating their effective behavior. Simple estimates for the effective elastic moduli
of composites and polycrystals were derived by Voigt and Reuss, who assumed uniform
strain and uniform stress, respectively. Bishop and Hill (1952) [4, 5], by means of the
principles of minimum potential and complementary energy, have shown that these re-
sults are upper and lower bounds, respectively. Decades later, Eshelby gave the exact
solution to the problem of an ellipsoidal elastic inclusion embedded in an infinite uniform
elastic matrix under arbitrary uniform boundary condition (Eshelby, 1957 [6]). Eshelby’s
solution can be easily extended to determine the effective behavior of dilute composites.
In addition, an exact result has been introduced by Hashin [8] for the effective bulk mod-
ulus of a special class of microstructures called the composite spheres assemblage (CSA).
Later, Hashin and Shtrikman (HS) [9] developed a variational principle that yields bounds
for composites with statistically isotropic phase geometry. These bounds are significant
improvement to the Voigt-Reuss bounds. It is important to mention that one-point and
two-point statistics for the phase distribution are used in the HS bounds. Further con-
tribution made from Willis [27], who generalized the Hashin and Shtrikman bounds for
composites with a more general ellipsoidal symmetry for the two-point probabilities. For
particulate material systems, more specific estimates have been given by Ponte Castañeda
and Willis [18] still using the variational method of HS. In addition to the above men-
tioned methods, many approximations for estimating effective moduli of composites a
have been introduced. A well-known approximation for effective properties of particulate
composites is the differential scheme (DS), introduced by Bruggeman [3] in the context
of conductivity.

For nonlinear composites, first improvement to Voigt and Reuss bounds have been
given from Talbot and Willis [26], who generalized the Hashin and Strickman variational

8

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:04:45 EEST - 18.116.47.245



Introduction 9

principle for nonlinear composites materials. A more general variational method proposed
later from Ponte Castañeda [19, 20] that allow the derivation of a more general class
of bounds and estimates. This method predicts the effective properties of a nonlinear
composite by means of an optimal chosen linear comparison composite (LCC). Most
recently, a new symmetric fully optimized second order method (FOSO) was introduced
by Ponte Castañeda and Furer [7], building on previous second order methods of Ponte
Castañeda [21, 23]. This method is known to yield the most accurate estimates to date
for nonlinear materials.

Previous works of Agoras and Ponte Castañeda [1, 2] has shown that improved es-
timates for nonlinear composites may be obtained by utilizing iterated homogenization.
Motivated by this finding, in this thesis, following Agoras and Ponte Castañeda [1] we
will use a sequential homogenization procedure for estimating the effective behavior of
composite materials. However, unlike the recent work of Agoras and Ponte Castañeda [2]
where the matrix phase was added incrementally, starting with high volume fractions of
inclusions, we will use a discretized version of the DS where the composite is constructed
by the gradual addition of small amounts of inclusions to a homogeneous matrix material.
Thus, the estimates that will be obtained in this work are expected to be different in
general than the corresponding estimates of Agoras and Ponte Castañeda [2].

This thesis is laid out as follows. Chapter 2, introduces the homogenization frame-
work that this work is based on. The necessary background will be presented, including
the definition of the microstructure, the local constitutive behavior of the phases and a
general variational formulation for the homogenization problem. Next, we will discuss
the constitutive relations that can be obtained in the context of linear elastic materials.
Chapter 3, deals with the determination of the effective behavior of linear and nonlinear
elastic, two-phase, particulate composites. First, we will present the Ponte Castañeda-
Willis [18] (PCW) estimates for the effective modulus tensors of linear elastic particulate
composites. In the sequel, we provide a brief description of the variational method of
Ponte Castañeda for the determination of the effective behavior of nonlinear composites.
In Chapter 4 we will describe the “incremental homogenization” (IH) scheme that we will
use for estimating the effective behavior of both linear and nonlinear composites. Finally,
in Chapter 5 we will present several applications of the incremental homogenization within
the context of linear and nonlinear composites, including rigidly reinforced composites,
porous materials and two phase composites with specific heterogeneity contrast.

In this work, scalars will be denoted by italic Roman, a, or Greek letters, α; vectors
by boldface Roman letters, P; second-order tensors by boldface italic Roman letters,
Z, or Greek letters, σ; and fourth-order tensors by barred letters, C. When necessary,
Cartesian components will be introduced, such that, for example, Pi, σij, Cijkl are the
Cartesian components of P, σ, and C, respectively. The summation notation is used
for repeated indices. Dyadic (or tensor) products will be denoted by the symbol ⊗ (e.g
(u ⊗ v)ij = uivj and (σ ⊗ σ)ijkl = σijσkl) and the various other products by dots (e.g.
u · v = uivi, (C .. ε)ij = Cijklεkl).
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Chapter 2

Background

2.1 Prelimaries
We consider a “representative volume element” (RVE) of a 2-phase composite material
made up of a family of inclusions (phase 2) that are distributed randomly over a matrix
material (phase 1), as shown in Fig. 2.1 The volume of the RVE is denoted as Ω and the
sub-regions of the RVE occupied by each phase r as Ω(r), with r = 1, 2. The notations 〈·〉
and 〈·〉(r) will be used in this work to denote the volume average of a field over Ω and Ω(r),
respectively. We make the assumption that the size of the inclusions ` is much smaller
than the characteristic lenght scale L of the RVE

` << L. (2.1)

The distribution of the constituent phases in the RVE Ω is described by means of char-
acteristic functions χ(r)(x) as follows

χ(r)(x) =

{
1, x ∈ Ω(r)

0, otherwise
. (2.2)

Hence, the corresponding volume fractions c(r) of the matrix and inclusion phases may be
written in terms of the associated characteristic functions as c(r) ≡ |Ω(r)|/|Ω| = 〈χ(r)(x)〉.
Furthermore, we assume that the microstructures of interest are statistically uniform,
ergodic and possesses no long -range order (see e.g. Willis, 1981 [28]).

The constitutive behavior of the phases is assumed to be characterized by the stress
potentials u(r)(σ), which are taken to be convex functions of the Cauchy stress tensor
σ. In this case, the local constitutive relation between the strain tensor ε and the stress
tensor σ is given by

ε =
∂u

∂σ
(x,σ), (2.3)

where

u(x,σ) =
N∑
r=1

χ(r)(x) u(r)(σ) (2.4)

is the local stress potential of the composite.

10
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Background 11

( ) ( )1 2
RVE  = 

( )2


( )1


L

Figure 2.1: Representative volume element of a two-phase particulate composite consisting
of aligned, ellipsoidal inclusions (solid lines) that are distributed with a different ellipsoidal
symmetry (dotted lines) in a matrix material.

Under the above mentioned hypotheses of statistical uniformity and separation of
length-scales, it is expected that the RVE will behave macroscopically as homogeneous.
This in turn implies that macroscopically uniform fields will occur when an affine boundary
condition is applied at the boundary ∂Ω of the RVE. Therefore, in order to determine
the effective behavior of the composite we consider the boundary condition of uniform
traction

σ(x) · n(x) = σ · n(x), (2.5)
where σ is a constant, symmetric, second-order tensor and n(x) is the outward unit vector
normal to ∂Ω. It follows from the divergence theorem that under this boundary condition
the resulting macroscopic, or average stress field over the RVE is

〈σ〉 = σ. (2.6)

Thus, the effective behavior of the composite may be determined from the relation between
the imposed uniform stress and the produced macroscopic strain.

Given the boundary condition (2.5) and assuming no body forces, the effective stress
potential of the two-phase medium is defined directly from the principle of minimum
potential energy as (Hill, 1963 [12]; Suguet, 1987 [25]; Ponte Castañeda and Suquet, 1998
[22]):

ũ(σ) ≡ min
τ∈S(σ)

〈u(x, τ )〉 = min
τ∈S(σ)

2∑
r=1

c(r) 〈u(r)(τ )〉(r), (2.7)

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:04:45 EEST - 18.116.47.245



12 Background

where
S(σ) =

{
τ ,∇ · τ = 0 in V and 〈τ 〉 = σ

}
(2.8)

is the associated statically admissible set of stress fields τ over Ω, that are divergence
free and satisfy the boundary condition (2.5), while σ is the actual stress field over the
RVE that minimizes the stress functional. It follows then, that the effective constitutive
relation is given by

ε =
∂ũ

∂σ
(σ), (2.9)

where ε ≡ 〈ε〉 is the corresponding average strain over Ω.
Alternatively, the homogenization problem can be formulated by using the strain po-

tentials w(r)(ε) of the phases, that are related to the stress potentials u(r)(σ) by means
of the the Legendre-Fenchel transformation

w(r)(ε) = (u(r))∗(ε) = max
σ

[
σ .. ε− u(r)(σ)

]
. (2.10)

The local constitutive relation is now given by the relation

σ =
∂w

∂ε
(x, ε), w(x, ε) =

N∑
r=1

χ(r)(x) w(r)(ε) (2.11)

and correspondingly, the effective response of the composite medium is given through the
effective strain potential w̃(ε), defined as

σ =
∂w̃

∂ε
(ε), w̃(ε) ≡ min

ε∈K(ε)
〈w(x, ε)〉 = min

ε∈K(ε)

2∑
r=1

c(r) 〈w(r)(ε)〉(r), (2.12)

where K(ε) is the kinematically admissible set of strain fields, such that there is a contin-
uous displacement field u satisfying ε = (∇u+ (∇u)T )/2 in Ω and the condition u = ε ·x
on ∂Ω. Finally, it should be remarked that under the convexity assumption the effective
potentials ũ(σ) and w̃(ε) are also convex functions and that the formulations (2.7) and
(2.12) are equivalent in the sense that the effective potentials are Legendre duals of each
other (Ponte Castañeda and Willis, 1988[17]).

2.2 Linear-elastic composites
For the special case of materials with linear elastic behavior, the stress is related with the
strain linearly via the constitutive relation

σ =
∂w(r)(ε)

∂ε
= C(r) .. ε or ε =

∂u(r)(σ)

∂σ
= S(r) .. σ, (2.13)

where C(r) and S(r) = (C(r))−1 stand respectively for the elasticity (or stiffness) tensor and
the compliance tensor of phase r, both being positive definite, fourth order tensors that
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Background 13

possess major and minor symmetries. It then follows, that the corresponding strain and
stress potentials of the phases specialize to the following quadratic form

w(r)(ε) =
1

2
ε .. C(r) .. ε and u(r)(σ) =

1

2
σ .. S(r) .. σ. (2.14)

Furthermore, from the linearity of problem follows that the stress and strain fields must
be linear to the applied boundary condition. This implies that the overall mean stress σ
is also related linearly to the overall mean strain ε

σ = C̃ .. ε and ε = S̃ .. σ, (2.15)

and, therefore, the relevant effective-strain and effective-stress potentials are of the form

w̃(ε) =
1

2
ε .. C̃ .. ε and ũ(σ) =

1

2
σ .. S̃ .. σ, (2.16)

where C̃ and S̃ are the associated effective elasticity and compliance tensor, such that
C̃ = S̃−1. Similarly, the first moments, or averages of the stress and strain fields over each
phase r, are linked to the macroscopic stress and strain respectively, through the linear
equations

σ(r) ≡ 〈σ〉(r) = B(r) .. σ and ε(r) ≡ 〈ε〉(r) = A(r) .. ε. (2.17)

In the above expressions the quantities B(r) and A(r) denote the stress- and strain- concen-
tration tensors that exhibit minor symmetry, but not necessarily major symmetry. Next,
by making use of the fact that

σ =
2∑
r=1

c(r)σ(r) and ε =
2∑
r=1

c(r)ε(r) (2.18)

it follows that the concentration tensors should satisfy the identities
2∑
r=1

c(r)B(r) = I and
2∑
r=1

c(r)A(r) = I. (2.19)

Also, from the constitutive relations for the phases follows that

σ(r) = C(r) .. ε(r) and ε(r) = S(r) .. σ(r). (2.20)

Then, by combining this last relations with (2.17) and (2.15) we obtain the following
expressions for the effective elasticity and compliance tensors in terms of the associated
stress- and strain-concentration tensors

S̃ =
2∑
r=1

c(r)S(r) .. B(r) and C̃ =
2∑
r=1

c(r)C(r) .. A(r). (2.21)

In addition, expressions for the second moments of the stress and strain in phase r can be
obtained by differentiating the effective-stress and -strain potentials with respect to the
elasticity and compliance tensor of the relevant phase

〈σ ⊗ σ〉(r) =
1

c(r)
∂(σ .. S̃ .. σ)

∂S(r)
and 〈ε⊗ ε〉(r) =

1

c(r)
∂(ε .. C̃ .. ε)

∂C(r)
. (2.22)
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14 Background

Note, however, that if the stress and and strain fields are uniform over the phase r, the
expressions (2.22)1 and (2.22)2 reduce respectively to

〈σ ⊗ σ〉(r) = σ(r) ⊗ σ(r) and 〈ε⊗ ε〉(r) = ε(r) ⊗ ε(r). (2.23)
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Chapter 3

Estimates for the effective behavior of
particulate composites

3.1 Linear-elastic composite

3.1.1 Dilute suspensions of particles

Amajor contribution to the theory of heterogeneous media has been made by Eshelby(1957
[6]), who solved the problem of a linear elastic, ellipsoidal inclusion embedded in a differ-
ent linear elastic, infinite matrix material when the matrix is subject to a generic uniform
strain (or stress) at infinity.

Figure 3.1: Geometrical Features of an Ellipsoid.

In this connection, we recall that the geometrical features of an ellipsoidal (see Fig.
3.1) may be defined as follows

ΩZ =
{
x, |Z−T · x| ≤ 1

}
(3.1)

where Z is a symmetric, positive definite, second order tensor, which defines the shape
and orientation of the ellipsoid and it is given by

Z = α1n1 ⊗ n1 + α2n2 ⊗ n2 + α3n3 ⊗ n3 (3.2)

15
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16 Estimates for the effective behavior of particulate composites

with αi and ni denoting the principal values and the principal axes of the ellipsoid. For
future reference, it is useful to introduce the aspect ratios

w1 =
α3

α1

and w2 =
α3

α2

(3.3)

that completely describe the shape of the inclusion.
Eshelby’s solution is based on the fact that the stress and strain fields in the inclusion

are uniform when the applied field at infinity is uniform. Consider an ellipsoidal particle
with elasticity tensor C(1) embedded in an infinite matrix with elasticity tensor C(0),
subject to a uniform strain ε at infinity. Eshelby has shown that the strain field inside
the inclusion is given by

ε(1) =

[
I + P(0) ..

(
C(1) − C(0)

)]−1
.. ε (3.4)

where the P(0) is a constant fourth-order tensor that has major and minor symmetries,
and is given by the expression

P(0) =
detZ

4π

∫
|ξ|=1

H(0)(ξ) |Z · ξ|−3dS, (3.5)

where
H

(0)
ijpq =

[
K(0)(ξ)

]−1
ip

ξjξq|(ij)(pq) and K
(0)
ip = C

(0)
ijpqξjξq, (3.6)

with the brackets in (3.6)1 denoting symmetrization with respect to the corresponding
indices. It should also be emphasized that the micro-structural tensor P(0), and therefore
the strain field ε(1), depends on the shape and orientation of the inclusion but not on its
size.

This solution generalizes to the case of a dilute composite, where the state of the strain
in any one particle in the composite medium under homogeneous boundary conditions is
not affected by all the other particles. In particular, we consider a composite made up
of a dilute suspension of ellipsoidal particles, with elasticity tensor C(1), distributed in a
homogeneous matrix, with elasticity tensor C(0), as shown in Fig.3.2. The inclusions are
randomly distributed in the matrix in a way that the resulting composite is macroscopi-
cally uniform, and their shape and orientation is assumed to be characterized by identical
shape tensors Z(1)

i . Then, it follows from Eshelby’s solution that the strain-concentration
tensor for the inclusion phase is given by

A(1) =

[
I + P(0) ..

(
C(1) − C(0)

)]−1
, (3.7)

where P(0) is the associated micro-structure tensor. Next, taking into account the identity
(2.19) and the relation (2.21), we obtain the following expression for the effective elasticity
tensor of the above described dilute composite

C̃ = C(0) + c(1)

[(
C(1) − C(0)

)
+ P(0)

i

]−1
(3.8)
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Estimates for the effective behavior of particulate composites 17

Ω 

Ω [0] 

[1] 

Figure 3.2: Schematic representation of a dilute composite (N=2).

3.1.2 Hashin-Shtrikman type of estimates

For a composite that it is not dilute, interactions between particles must be accounted
for. Thus the homogenization problem of estimating the effective behavior becomes ex-
tremely difficult to solve. In order to deal with this problem, Hashin and Strickman [9]
introduced a variational princibles which can be used to obtain bounds and estimates
for composite materials with linear constituents. These principles were first used by HS
to generate bounds for random composites with statistically isotropic microstructures.
These bounds were generalized to random composite materials with more general ellip-
soidal (anisotropic) microstructures by Willis [27]. Building on the work of Willis [27]
Ponte Castañenda and Willis [18] developed more specific bounds and estimates for the
class of particulate microstructures consisting of ellipsoidal particles that are distributed
with ellipsoidal symmetry in the matrix. The latter results will be referred in this work
as PCW estimates and are discussed in more detail in the sequel.

Fig. 2.1 depicts a specimen of the materials of interest consisting of aligned ellipsoidal
inclusions (phase 2) that are distributed randomly with ellipsoidal symmetry in a homo-
geneous matrix (phase 1). The shape and orientation of the inclusions are described in
terms of the shape tensor Z(p) by means of the relation (3.1), and the two-point proba-
bility of finding a pair of inclusions located at x and x′ depends on x − x′ through the
combination

p(d)(x− x′) = p(d)(|(Z(d))−T · (x− x′)|) (3.9)

where Z(d) is the corresponding shape tensor that characterizes the shape and orientation
of the ellipsoidal distribution. For this class of materials, variational estimates for the
effective elasticity and compliance tensor C̃ and C̃ = (S̃)−1 are given by (Ponte Castañeda
and Willis, 1995 [18]):

C̃PCW = C(1) + c(2)
[(

C(2) − C(1)
)−1

+ c(1)P
]−1

(3.10)
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18 Estimates for the effective behavior of particulate composites

and
S̃PCW = S(1) + c(2)

[(
S(2) − S(1)

)−1
+ c(1)Q

]−1
. (3.11)

Here P and Q are fourth-order tensors, containing information about the shape and dis-
tribution of the particles, defined as:

P =
1

c(1)
[
P(p) − c(2)P(d)

]
and Q =

1

c(1)
[
Q(p) − c(2)Q(d)

]
(3.12)

with
Q(s) = C(1) − C(1) .. P(s) .. C(1), (3.13)

while the superscript s refers to either s = p or s = d and the associated tensor P(s) was
defined by relation (3.5). Note that the estimates (3.10) and (3.11) are equivalent in the
sense that C̃PCW = (S̃PCW )−1. It should also be noted that if C(1) ≤ C(2) (in the sense of
quadratic forms) then expression (3.10) provides a lower bound for C̃ and (3.11) provides
an upper bound for S̃. On the other hand, if C(1) ≥ C(2) then expression (3.10) provides
an upper bound for C̃ and (3.11) provides a lower bound for S̃

In the context of the estimates (3.10) and (3.11), the first moments of the stress σ
and strain ε over the inclusions of the composite are given by

σ(2) = B(2) .. σ, B(2) = [I + c(1)Q .. (S(2) − S(1))]−1 (3.14)

and
ε(2) = A(2) .. ε, A(2) = [I + c(1)P .. (C(2) − C(1))]−1. (3.15)

In addition, making use of fact that the calculation of the above bounds was carried
out by assuming that the fields in the inclusions are uniform, the expressions for the
corresponding second moments reduces to

〈σ ⊗ σ〉(2) = σ(2) ⊗ σ(2) and 〈ε⊗ ε〉(2) = ε(2) ⊗ ε(2). (3.16)

In this work, we will use the PCW estimates to describe the effective behavior of linear-
elastic particulate composites with isotropic phases. In this context, it should be noted
that for composites with isotropic distribution of spherical particles, as well as for the case
of isotropic distribution of aligned fibers with circular cross-sections the PCW estimates
will take precisely the same form as the Hashin–Shtrikman [9] bounds. In particular, for a
composite consisting of spherical particles (w1 = w2 = 1) that are distributed isotropically
in a matrix material the Hashin and Shtrikman estimates for the effective shear and bulk
modulus are respectively given by

µ̃HS = c(1)µ(1) + c(2)µ(2) − c(1)c(2)(µ(1) − µ(2))2

c(2)µ(1) + c(1)µ(2) + µ(1) 8µ(1)+9κ(1)

6(2µ(1)+κ(1))

(3.17)

and

κ̃HS = c(1)κ(1) + c(2)κ(2) − c(1)c(2)(κ(1) − κ(2))2

c(2)κ(1) + c(1)κ(2) + 4µ(1)/3
(3.18)

In addition, for an incompressible transversely isotropic composite consisting of aligned
fibers of circular cross-section (w1 = w2 = w,w → ∞) that are distributed isotropically
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Estimates for the effective behavior of particulate composites 19

(isotropic symmetry in the transverse plane) in a matrix material the HS estimate for the
associated in-plane (and anti-plane) effective shear modulus is given by

µ̃HSp = µ(1) (1− c(2))µ(1) + (1 + c(2))µ(2)

(1 + c(2))µ(1) + (1− c(2))µ(2)
. (3.19)

Finally, as already mentioned, the stress and strain fields associated with the PCW
estimate are uniform (by assumption) in phase 2, which, in general, is not true for compos-
ites beyond the dilute regime. However, we recall that for a dilute linear elastic composite,
the stress and strain fields within the ellipsoidal inclusions turn out to be constant. This
observation implies that the estimates (3.10) and (3.11) are exact for dilute composites
where the particles are well separated, but on the other hand, for non-dilute concentration
of inclusions their accuracy will decrease as the concentration of particles becomes higher.

3.2 Nonlinear composites: The variational procedure
of Ponte Castañeda

In this section we will present the variational method proposed by Ponte Castañeda
[19, 20] which can be used to obtain bounds and estimates for the properties of nonlinear
composites. Specifically, this method makes use of a suitable chosen linear comparison
composite (LCC) to estimate the effective properties of a nonlinear composite in terms of
already available estimates for the corresponding linear composite.

We consider a nonlinear two-phase composite material with random particulate mi-
crostructure consisting of aligned ellipsoidal inclusions that are distributed with ellip-
soidal symmetry in a matrix material. The constitutive behavior of the nonlinear phases
is characterized by convex stress potentials u(r), satisfying the conditions u(r)(0) = 0 and
u(r)(σ)→∞ as |σ| → ∞

The estimate for the macroscopic stress potential of the above described composite
has as follows

ũ(σ) ≈ ũV B(σ) (3.20)

with

ũV B(σ) = sup
S(1),S(2)

[
1

2
σ .. S̃ .. σ −

2∑
r=1

c(r)v(r)
(
S(r)
)]
, (3.21)

where the “error functions” v(r) are defined by

v(r)(S(r)) = sup
σ̂(r)

[
1

2
σ̂(r) .. S(r) .. σ̂(r) − u(r)(σ̂(r))

]
. (3.22)

In the above equations the tensor S̃ denotes the effective compliance tensor of a “linear
comparison composite” LCC which has the same microstructure as the actual nonlinear
material, while S(1) and S(2) are the compliance tensors that define the local constitutive
relation of the phases of the LCC and σ̂(r) are second-order tensors, that maximize the
corrector functions v(r). The discussion of the optimality conditions in (3.21) and (3.22),
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20 Estimates for the effective behavior of particulate composites

will not be performed here in the general context, but instead we will assume that the
potentials u(r) are incompressible and isotropic functions of the form

u(r)(σ) = ψ(r)(σe) ≡ g(r)(σ2
e), (3.23)

where σe =
√

3σd .. σd/2 denotes the von Misses equivalent stress, and g(r) are non neg-
ative convex functions of σ2

e such that g(r) → ∞ as σ2
e → ∞. Then, the corresponding

properties of the matrix and the particle phase of the LCC are assumed to be of the form

S(r) =
1

2µ(r)
K. (3.24)

The optimality conditions in (3.21) and (3.22) generate now the following system of non-
linear equations

σ̂(r) =

√〈
σ2
e

〉(r)
=

√√√√ 3

2c(r)
σ ..

∂S̃

∂
(
2µ(r)

)−1 .. σ (3.25)

and
1

2µ(r)
=

3ψ(r)′(σ̂(r))

2σ̂(r)
, (3.26)

where σ̂(r) corresponds to the second moment of the equivalent stress field in phase r of
the LCC, and are determined along with the the scalar moduli µ(r). Finally, using the
result (3.25), the estimate (3.21) can be rewritten as

ũV B(σ) = (1− c(2))ψ(1)(σ̂(1)) + c(2)ψ(2)(σ̂(2)) (3.27)

In addition, for the special case that the particles are distributed isotropically, it turns
out that that the homogenized potential of the composite (3.27) is also of the form (3.23)
[1], i.e.

ũ(σ) = ψ̃(σe) ≡ g̃(σ2
e), (3.28)

where the function g̃ posses the same properties as g(r). The optimality condition (3.25)
may now be written as

σ̂(r) =

√〈
σ2
e

〉(r)
=

√
1

c(r)
∂(2µ̃)−1

∂
(
2µ(r)

)−1σ2
e, (3.29)

where we have made use of the fact that

S̃ =
1

2µ̃
K. (3.30)

However, as discussed earlier, estimating exactly the effective compliance tensor S̃ is
not possible, in general. Therefore, in this work we will use the estimate (3.11) as an
approximation for S̃. Next, assuming that the phases of the nonlinear composite are
well-ordered, such that

u(1)(σ) ≥ u(2)(σ), (3.31)
it is expected that the phases of the LCC will also be well ordered S(1) ≥ S(2). In this
case, the expression (3.11) will provide a lower bound for the effective compliance tensor
S̃ of the LCC material, and in turn, the expression (3.21) will also provide a rigorous
lower bound for the nonlinear medium. On the other hand, if an upper bound is used for
S̃, the expression (3.21) provides only an estimate for ũ(σ).
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Chapter 4

The incremental homogenization
scheme

Another method for estimating the effective properties of linear composites with partic-
ulate microstructures, is the Differential Scheme (DS), introduced first by Bruggeman
[3] in the context of conductivity, and generalized later by Norris [15] to materials with
more than two phases. The DS is based on the idea of the incremental construction of
the composite by adding sequentially an infinitesimal amount of inclusions to the matrix
material. The basic assumption is that the added inclusions at each stage of the con-
struction process are much larger than the previous ones, thus the medium surrounding
them can be treated as homogeneous. Since every volume increment is infinitesimal small,
the new inclusions will be in a dilute suspension with respect to the effective medium of
the previous level, therefore the effective properties of the composite at each stage of this
iterative procedure may be computed using a dilute concentration result, such as (3.8).
The essential problem with this method is that the corresponding microstructure is not
realistic, since a composite having an infinite numbers of length scales could never be built
in practice. However, as shown by Zimmerman [33] it frequently happens the effective
properties computed with the DS to agree quite well with experimental data, although
the details of the microstructure of the model and the tested specimen are different.

As discussed in the last paragraph of the subsection 3.1.2, the PCW estimates are
exact estimates for dilute composites, but their accuracy is expected to deteriorate for
high particles concentrations. Given this observation, it is then appropriate to investigate
the possibility of obtaining estimates different and hopefully more accurate from their
standard counterparts, by using a discretized version of the DS, where the composite
is constructed incrementally by the gradual addition of a small, but non infinitesimal,
amount of inclusions. In the next two subsections, we will describe the incremental
homogenization procedure that we will use in this work in the context of linear and
nonlinear particulate composites.

21
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22 The incremental homogenization scheme

4.1 Incremental homogenization for linear-elastic com-
posites

In this section, we will use the discretized version of the DS to estimate the effective re-
sponse of a two-phase, linear-elastic composite material, consisting of ellipsoidal inclusions
with elasticity tensor C(2) embedded in a homogeneous matrix with elasticity tensor C(1).
Following Agoras and Ponte Castañeda [1], we consider an N -scale particulate composite,
as shown schematically in Fig. 4.1, which may be constructed by means of the following
iterative procedure. At the first stage of the iterative procedure, we add a small volume
fraction c(2)[1] of ellipsoidal particles to the homogeneous matrix, that are distributed ran-
domly with ellipsoidal symmetry, where the two-point correlation function of the particle
distribution has the same aspect ratio and orientation of those of the particles, such that
Z

(p)
[1] = Z

(d)
[1] = Z. Then, the PCW estimate (3.10) for the effective elasticity tensor of the

resulting composite is given by

C̃IH
[1] = C(1) + c

(2)
[1]

[(
C(2) − C(1)

)−1
+ (1− c(2)[1] )P[1]

]−1
, (4.1)

where the label “IH” stands for Incremental Homogenization and with P[1] given by (3.5)
in terms of Z and C[1]. In the second iteration we add to the current composite medium
a volume fraction c(2)[2] of even larger ellipsoidal particles, with inclusion and distribution
shapes that are identical to the particles at the first iteration (Z(p)

[2] = Z
(d)
[2] = Z). The

resulting composite may now be treated as a two-phase, single-scale composite with one
matrix phase with elasticity tensor C̃IH

[1] and one inclusion phase with elasticity tensor
C(2). Thus, the PCW estimate (3.10) for the effective elasticity tensor C̃IH

[2] is given by

C̃IH
[2] = C̃[1] + c

(2)
[2]

[(
C(2) − C̃[1]

)−1
+ (1− c(2)[2] )P[2]

]−1
. (4.2)

The final composite is constructed by repeating this process N times, until we reach the
desired volume fraction of particles, denoted as c(2). Now, the corresponding expression
for the effective stiffness tensor of the composite is

C̃IH
[N ] = C̃IH

[N−1] + c
(2)
[N ]

[(
C(2) − C̃IH

[N−1]

)−1
+ (1− c(2)[N ])P[N ]

]−1
, (4.3)

and the total concentration of particles in the final material may be expressed as

c(2) = 1−
N∏
i=1

(1− c(2)[i] ) (4.4)

where c(2)[i] represents the volume fraction of the inclusions added at the i-th stage.
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Figure 4.1: Schematic of a self-similar microstructure. RVE Ω[1]: ellipsoidal inclusions are
distributed with ellipsoidal symmetry in a homogeneous matrix material. RVE Ω[i] with i =
2, ..., N : ellipsoidal inclusions are distributed with ellipsoidal symmetry in a heterogeneous matrix
composed of the material in RVE Ω[i−1].

4.2 Incremental homogenization for nonlinear compos-
ites

In this section we use the IH scheme to estimate the effective behavior of a nonlinear
composite, consisting of two isotropic phases. The construction process is the same as
described in the previous section, starting with the smallest inclusions and proceeds with
increasing orders of magnitude. Again, we will assume that at each stage of the construc-
tion process both the inclusions and their distribution function have the same ellipsoidal
shape and orientation. However, for simplicity, we will present the incremental proce-
dure for statistically isotropic microstructures, i.e Z = I , so that the material of the
matrix phase will remain isotropic in every level of the composite. The corresponding
microstructure is now depicted in Fig. 5.1.

Although more general constitutive models for the phases may be used, in this work
for simplicity the constitutive behavior of the matrix and the inclusion phase is taken to
be isotropic and incompressible, characterized by the stress potentials of the form (3.23),
i.e.,

u(r)(σ) = ψ(r)(σe) ≡ g(r)(σ2
e) (4.5)

where we recall that σe =
√

3σd .. σd/2 and that σd denotes the deviatoric part of the
stress tensor. The g(r) are assumed to be non-negative, convex functions of σ2

e , such that
g(r) → ∞ as σ2

e → ∞. In addition, the fact that the microstructures under considera-
tion are statistically isotropic implies that the homogenized potential of each level of the
composite will also be of the form (4.5) [1]

We begin by making use of the expression (3.21) to obtain the following estimate for
the effective stress potential of the level-1 material

ũIH[1] (σ[1]) = ψ̃[1](σe[1]) = c
(1)
[1] ψ

(1)(σ̂
(1)
[1] ) + c

(2)
[1] ψ

(2)(σ̂
(2)
[1] ) (4.6)

while from the optimality conditions (3.26) and (3.29) we have the following system of
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nonlinear equations
1

2µ
(r)
[1]

=
3ψ

(r)′

[1] (σ̂
(r)
[1] )

2σ̂
(r)
[1]

, (4.7)

and

σ̂
(r)
[1] =

√〈
σ2
e[1]

〉(r)
=

√√√√ 1

c
(r)
[1]

∂(2µ̃[1])−1

∂
(
2µ

(r)
[1]

)−1σ2
e[1] (4.8)

where we recall that σ̂(r)
[1] is the second moment of the equivalent stress over the phase r of

the LCC under an average applied stress σ[1] and σe[1] is the associated applied equivalent
stress. Next, we use the same procedure to estimate the effective response of the material
in Ω[2]

ũIH[2] (σ[2]) = ψ̃[2](σe[2]) = c
(1)
[2] ψ

(1)
[2] (σ̂

(1)
[2] ) + c

(2)
[2] ψ

(2)(σ̂
(2)
[2] ), (4.9)

where ψ(1)
[2] = ψ̃[1] and the associated optimality conditions are given by

1

2µ
(r)
[2]

=
3ψ

(r)′

[2] (σ̂
(r)
[2] )

2σ̂
(r)
[2]

, (4.10)

σ̂
(r)
[2] =

√〈
σ2
e[2]

〉(r)
=

√√√√ 1

c
(r)
[2]

∂(2µ̃[2])−1

∂
(
2µ

(r)
[2]

)−1σ2
e[2] (4.11)

Note that the expression (4.9) implies that the second moments σ̂(r)
[1] are evaluated at

σe[1] = σ̂
(1)
[2] . Now, by substituting relation (4.6) in relation (4.9), we obtain

ũIH[2] (σ[2]) = c
(1)
[2] c

(1)
[1] ψ

(1)(σ̂
(1)
[1] ) + c

(1)
[2] c

(2)
[1] ψ

(2)(σ̂
(2)
[1] ) + c

(2)
[2] ψ

(2)(σ̂
(2)
[2] )

=
2∏
i=1

(1− c(2)[i] )ψ(1)(σ̂
(1)
[1] ) +

2∑
i=1

c
(2)
[i]

(
2∏

j=i+1

(1− c(2)[j] )

)
ψ(2)(σ̂

(2)
[i] ), (4.12)

where we have used the fact that c(1)[i] = 1− c(2)[i] . This procedure is repeated N times until
we reach the final level-N composite, with the desired concentration of particles that is
given by the relation (4.4). The corresponding IH estimate for the overall effective stress
potential may be written in the form

ũIH[N ](σ) =
N∏
i=1

(1− c(2)[i] )ψ(1)(σ̂
(1)
[1] ) +

N∑
i=1

c
(2)
[i]

(
N∏

j=i+1

(1− c(2)[j] )

)
ψ(2)(σ̂

(2)
[i] ), (4.13)

and the associated optimality conditions at each stage of this iterative process are ex-
pressed as

1

2µ
(r)
[i]

=
3ψ

(r)′

[i] (σ̂
(r)
[i] )

2σ̂
(r)
[i]

(4.14)
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and

σ̂
(r)
[i] =

√〈
σ2
e[i]

〉(r)
=

√√√√ 1

c
(r)
[i]

∂(2µ̃[i])−1

∂
(
2µ

(r)
[i]

)−1σ2
e[i], (4.15)

with ψ(1)
[i] = ψ̃[i−1], σe[i] = σ̂

(1)
[i+1] and σe[N ] = σe.
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Chapter 5

Results and discussion

In this chapter, we will present some applications of the IH scheme for linear and nonlin-
ear composites, within the context of 2-D and 3-D model problems, in order to explore
the difference between one step and iterative homogenization. Specifically, in the 2-D
examples we provide results for the effective in-plane response of composites consisting of
aligned fibers of circular cross-section that are distributed isotropically in the transverse
plane in a matrix material, and are subjected to plane-stress loading conditions. In the
3-D examples, we consider composites consisting of spherical particles that are distributed
isotropically in a matrix material, and are subject to general loading conditions. These
microstructures are shown schematically in Fig.5.1

Also, in this work we take the concentration of the inclusions to be the same for all
length scales c(2)[i] ≡ c, thus the expression (4.4) may be rewritten in the form

c(2) = 1− (1− c)N (5.1)

which implies that
c = 1− (1− c(2))

1
N , (5.2)

where we recall that c(2) is the total volume fraction og particles (or fibers) in the N -scale
composite.

26

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:04:45 EEST - 18.116.47.245



Results and discussion 27

   
 

 
 1 2

1 1 1
RVE    

   
 

 
 1 2

2 2 2
RVE    

 
 2

2


 
 1

2


 2
L

 2

 
 2

1


 
 1

1


 1
L

 1

   
 

 
 1 2

RVE  
N N N

  

 
 2

N


 
 1

N


 N
L

 N

Figure 5.1: Schematic of a self-similar microstructure. RVE Ω[1]: spherical inclusions (or
fibers of circular cross-section) are distributed in a homogeneous matrix material. RVE Ω[i]

with i = 2, ..., N : spherical inclusions (or fibers of circular cross-section) are distributed in a
heterogeneous matrix composed of the material in RVE Ω[i−1].

5.1 Linear elastic composites

5.1.1 Rigid particle composites

We will apply the iterative procedure of section 4.1 to a multi-scale linear elastic composite
made up of spherical rigid inclusions embedded in an incompressible matrix material. We
begin by using the expression (3.17) to estimate the effective shear modulus of the level-1
material

µ̃IH[1] = µ(1) 2 + 3c

2(1− c)
(5.3)

Next, we proceed to the second level of the composite. The separation of length scales
hypothesis allows us to regard the material as a single scale composite but this time we
take the matrix modulus to be the effective modulus of the previous level. The effective
shear modulus in this step is

µ̃IH[2] = µ̃IH[1]
2 + 3c

2(1− c)
= µ(1)

( 2 + 3c

2(1− c)

)2
.

By iterating this procedure we get

µ̃IH[N ] = µ̃IH[N−1]
2 + 3c

2(1− c)

= µ(1)

(
2 + 3c

2(1− c)

)N
and using (5.1), we get an expression for the effective shear modulus as a function of the
overall particle concentration c(2)

µ̃IH[N ] = µ(1)

(
5− 3(1− c(2)) 1

N )

2(1− c(2)) 1
N

)N
. (5.4)
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For an infinite number of iterations N →∞, expression (5.4) reduces to

µ̃IH[∞] =
1

(1− c(2)) 5
2

. (5.5)

It is noted that this IH estimate coincides with the corresponding estimate obtained by
the differential scheme [33], as it should.

Fig. 5.2 presents results of the normalized effective shear modulus for increasing
numbers of iterations. In particular, Fig. 5.2(a) shows plots for the normalized effective
shear modulus for specific number of iterations N = 1, 2, 10 and N → ∞, as a function
of c(2). The deviation of these IH estimates from the corresponding HS estimate (which
coincides with the IH for N=1) is shown in Fig.5.2(b), where the percent difference

d[N ] = 100
µ̃IH[N ] − µ̃HS

µ̃HS
(5.6)

is plotted as a function of c(2). From Fig. 5.2(a) we observe that IH estimates for all
values of N are greater that the HS estimate which is consistent with the bounding
character of the latter. It is also observed that the estimates for N = 100 and N → ∞
are indistinguishable, which suggests that practically the estimate converges for N ' 100
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Figure 5.2: IH estimates for the normalized effective shear modulus of a composite consisting
of rigid spherical inclusions embedded in an isotropic, incompressible, linear elastic matrix are
plotted as a function of the inclusion concentration.(a) The convergence of the IH estimate
with increasing numbers (N) of increments, N = 1, 2, 10, 100 and N → ∞ (b) The precentage
difference d[N ] between the IH estimate and the corresponding HS estimate for various values of
N .
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5.1.2 Porous composites

Consider a composite with the microstructure of Fig. 5.1, consisting of spherical voids
(phase 2) embedded in an isotropic and incompressible matrix material (phase 1). The
HS upper bound for the material described by the RVE Ω[1] are

µ̃IH[1] = µ(1) (1− c)
1 + 2

3
c

and κ̃IH[1] = µ(1)4

3

(1− c)
c

(5.7)

Next, observing that the matrix material is compressible for i = 2, ..., N we use expressions
(3.17) and (3.18) to obtain the following results

µ̃IH[i] = µ̃IH[i−1]

(1− c)− (1− c)c

c+
8µ̃IH

[i−1]
+9κ̃

[IH]
[i−1]

6(2µ̃IH
[i−1]

+κ̃IH
[i−1]

)

 (5.8)

and

κ̃IH[i] = κ̃IH[i−1]

(1− c)− (1− c)c

c+
4µ̃IH

[i−1]

3κ̃IH
[i−1]

 (5.9)

Finally, using (5.2), the effective shear and bulk modulus of the composite in terms of the
overall concentration of voids may be written as

µ̃IH[N ] = µ(1) 3(1− c(2)) 1
N

5− 2(1− c(2)) 1
N

N∏
j=2

(1− c(2))
1
N −

[
1− (1− c(2)) 1

N

]
(1− c(2)) 1

N

1− (1− c(2)) 1
N +

8µ̃IH
[j−1]

+9κ̃IH
[j−1]

6(2µ̃IH
[j−1]

+κ̃IH
[j−1]

)

 (5.10)

κ̃IH[N ] = µ(1) 4(1− c(2)) 1
N

3
[
1− (1− c(2)) 1

N

] N∏
j=2

(1− c(2))
1
N −

[
1− (1− c(2)) 1

N

]
(1− c(2)) 1

N

1− (1− c(2)) 1
N +

4µ̃IH
[j−1]

3κ̃IH
[j−1]

)

 (5.11)

Figure 5.3 presents results for the normalized effective shear modulus as a function
of c(2). For comparison, we also include the corresponding estimates obtained by the DS
[15, 33]

µ̃

µ(1)
= (1− c(2))2

[
2− (

µ̃

µ(1)
)
3
5

] 1
3 (5.12)

From Fig.5.3(a) we observe that IH predicts overall a more compliant behavior for the
porous material than the HS estimate. It is also observed that the IH and the DS curves
are almost identical. Fig5.3(b) shows plots of the difference (in percentage) between the
HS (N=1) estimate and the corresponding estimates from the DS and the IH. It is clearly
observed again that the differences are minor for small concentration of the voids (see
c(2) = 0.1) but become significant for higher values of c(2).
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Figure 5.3: Estimates for the normalized effective shear modulus of a composite consisting of
spherical pores embedded in an isotropic, incompressible, linear elastic matrix are plotted as a
function of the volume concentration of voids c(2). (a) The normalized effective shear modulus
as predicted by the IH scheme compared with the homogenization estimates of the HS (N=1)
bounds and the DS method. (b) The difference in percentage between the HS estimate and the
corresponding estimates from the IH and the DS

5.1.3 Particle composites

In this subsection, we consider a composite consisting of incompressible and isotropic
spherical particles, embedded in an incompressible and isotropic matrix phase. Taking
the limit κ(1)[1] → ∞ and κ(2)[1] → ∞ in (3.17) it can be easily shown that the estimate for
the effective shear modulus of the level-1 material is given by

µ̃IH[1] = µ(1)

(1− c) + ct− (1− c)c(1− t)2

c+ 3
2

+ (1− c)t

, (5.13)

where t = µ(2)/µ(1) is the heterogeneity contrast. Then, the effective shear modulus in
each stage of this iterative procedure is given by the following relation

µ̃IH[i] = µ̃[i−1]

(1− c) + ct(
µ̃[i−1]

µ(1)
)−1 −

(1− c)c(1− t( µ̃[i−1]

µ(1)
)−1)2

c+ 3
2

+ (1− c)t( µ̃[i−1]

µ(1)
)−1

, (5.14)
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Finally, using the expression (5.2) the overall effective shear modulus of the composite
may be written as

µ̃IH[N ] = µ(1)

N∏
i=1


3(1− c(2)) 1

N +
[
5− 3(1− c(2)) 1

N

]
t(
µ̃[i−1]

µ(1)
)−1

5− 2(1− c(2)) 1
N + 2(1− c(2)) 1

N t(
µ̃[i−1]

µ(1)
)−1

 (5.15)

Fig. 5.4 presents results for the effective shear modulus as a function of the particle
concentration c(2). Specifically, Fig.5.4(a) provides plots for the effective shear modulus
for a particle-weakened composite with a contrast t = 0.2, and Fig.5.4(c) for a particle
reinforced composite with t = 5. We observe that in both cases the IH estimates are
consistent with the HS (N=1) bounds. The deviation of these IH estimates from the
corresponding HS estimates are shown in Fig.5.4(b) and Fig.5.4(d) where the percentage
difference is plotted as a function of c(2). The main observation from these results is that
the differences are much smaller than the differences observed in the previous cases. We
also notice that the difference is slightly bigger when the inclusions are stiffer from the
matrix. Finally, it is remarked that the the maximum difference in both cases occurs at
about c(2) = 0.7 while in the previous examples the maximum differences were observed
at c(2) → 1.

5.1.4 Fiber composites

In this subsection we consider a fibrous, linear elastic, two-phase composite with the
microstructure of Fig 5.1, subject to in-plane loadings. Both the matrix and fibers are
assumed to be isotropic and incompressible. From the expression 3.19 we have that the
estimate for the in-plane effective shear modulus of the level-1 material is given by

µ̃IH[1] = µ(1) (1− c) + (1 + c)t

(1 + c) + (1− c)t
, (5.16)

where we recall that t = µ(2)/µ(1) is the associated heterogeneity contrast. Then, following
a similar procedure to the one described in the previous subsections, we arrive to the
following result for the effective in-plane shear modulus of the composite

µ̃IH[N ] = µ(1)

N∏
i=1


2
[
1 + t(

µ̃[i−1]

µ(1)
)−1
]

2 + (1− c(2)) 1
N

[
t(
µ̃[i−1]

µ(1)
)−1 − 1

] − 1

.
For the extreme case of rigid fibers (k →∞) the above result reduces to

µ̃IH[N ] = µ(1)
[
2(1− c(2))

1
N )− 1

]N
, (5.17)

which in the limit as N →∞ takes the form

µ̃IH[∞] = µ(1) 1

(1− c(2))2
. (5.18)
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Results for the normalized in-plane shear modulus are shown in Fig.5.5. Specifically,
Fig.5.5(a) provides plots of the effective shear modulus for a fiber-weakened composite,
t = 0.2, while Fig.5.5(c) for a fiber-reinforced composite with t = 5. The percentage
difference of the IH estimates from the corresponding HS bounds (N=1) are plotted as a
function of c(2) in Figs 5.5(b) and 5.5(d). As in the previous cases, the differences of the
IH from the corresponding HS estimates are overall quite small, with a maximum close
to c(2) = 0.7. We also note that the IH results are consistent with the HS bounds.

Figoure 5.6 provides results for the IH estimates for the effective in-plane response of
an incompressible composite reinforced with rigid fibers. From 5.6(a) we observe that in
this case there are significant differences between the IH and HS estimates, albeit smaller
than the corresponding differences in the case of rigid spheroidal inclusions. From 5.6(b)
we observe again that the differences are small for c(2) ≤ 0.2, but become increasingly
more significant for higher values of the fiber volume fraction.

5.2 Nonlinear composites
In analogy to the previous section, we will apply the iterative procedure of subsection
4.2 to estimate the effective response of nonlinear composites. We will assume that the
potentials ψ(r) are of the power-law form

ψ(r)(σe) =
ε0σ

(r)
0

n+ 1

(
σe

σ
(r)
0

)n+1

, (5.19)

where σe =
√

3σd .. σd/2 is the von Misses equivalent stress, n is the nonlinearity ex-
ponent (the inverse of the m = 1/n) and σ0,ε0 are reference strain and stress measures,
respectively.

5.2.1 Rigid spherical inclusions

We focus our attention to a composite with the microstructure of Fig.5.1, consisting of
rigid spherical inclusions (with stress potential equal to zero) reinforcing a power-law
matrix phase. From (3.17) we have that the estimate for the effective shear modulus of
the associated LCC

µ̃[1] = µ
(1)
[1]

2 + 3c

2(1− c)
(5.20)

Then, substituting (5.20) in expression (4.8), the second moment of the equivalent stress
field in the matrix phase of the LCC is given by

σ̂
(1)
[1] =

(
2

2 + 3c

) 1
2

σ[1]. (5.21)

Next, using (5.21) in (4.6) we find that the normalized yield stress for the level-1 material
is

σ̃IH[1]

σ
(1)
0

=
(1 + 3

2
c)

n+1
2n

(1− c) 1
n

. (5.22)

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:04:45 EEST - 18.116.47.245



Results and discussion 33

Taking into account that the microstructure is identical in every scale of the composite
and with heterogeneity contrast σ(2)

0 /σ̃IH[i−1] =∞, follows immediately that

σ̃IH[i]
σ̃IH[i−1]

=
(1 + 3

2
c)

n+1
2n

(1− c) 1
n

. (5.23)

Following Agoras and Ponte Castañeda [1] the normalized overal-effective yield stress may
be written as

σ̃IH[N ]

σ0
=

σ̃IH[N ]

σ̃IH[N−1]
. . .

σ̃IH[2]
σ̃IH[1]

σ̃IH[1]
σ0

(5.24)

=

(
(1 + 3

2
c)

n+1
2n

(1− c) 1
n

)N

=

(
5
2
− 3

2
(1− c(2)) 1

N

)N(n+1)
2n

(
1− c(2)

) 1
n

, (5.25)

and for the extreme case of an infinite number of steps this estimate reduces to

σ̃IH[∞]

σ0
=

1

(1− c(2)) 7+3n
4n

. (5.26)

In Fig. 5.7 results for the normalized effective yield-stress σ̃0[N ]/σ0 are plotted for three
specific values of the nonlinear exponent n = 1, 3, 10 of the matrix phase, as a function of
the particle concentration c(2). More specifically, Fig. 5.7(a) presents σ̃0[N ]/σ0 for n = 3
and N = 1, 100 and N →∞, and Fig.5.7(b) presents σ̃0[N ]/σ0 for n = 10 and N = 1, 100
and N → ∞, while Fig. 5.7(d) shows the differences of the incremental estimates from
the corresponding variational estimates (N = 1) in percentage. From parts (a) and (b)
we observe that the iterative estimate predicts a stronger material than the variational
estimate, while from part (d) we see the difference is getting smaller as the nonlinearity
of the matrix phase increases.

5.2.2 Porous composites

In this subsection we will specialize the incremental variational estimate to a porous,
power-law material with the microstructure of Fig.5.1. First, we make use of (3.17) and
(3.18) to calculate the effective shear and bulk modulus of the LCC associated with the
level-1 porous material

µ̃[1] = µ(1) (1− c)
1 + 2

3
c

and κ̃[1] = µ(1)4

3

(1− c)
c

. (5.27)

From (3.21) follows that the effective response of the level-1 material is given by

ũIH[1] (σ[1]) = sup
µ[1]

{
1

6µ̃[1]

σ2
e[1] +

1

2κ̃[1]
σ2
m[1] − (1− c)V[1](µ[1])

}
, (5.28)
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where the associated error function in this case is

V[1](µ[1]) = sup
σ̂e[1]

{
1

6µ[1]

σ̂2
e[1] − u[1](σ̂e[1])

}
. (5.29)

From the optimality condition in equation (5.28) follows that

σ̂e[1]) =
1

1− c

√
(1 +

2

3
c)σ2

e[1] + (
9

4
c)σ2

m[1]. (5.30)

Then, by substituting the last results in (5.28), the expression for effective stress potential
reduces to

ũIH(1) (σ[1]) = (1− c) ε0σ0
n+ 1


[
(1 + 2

3
c)σ2

e[1] + (9
4
c)σ2

m[1]

] 1
2

(1− c)σ0


n+1

(5.31)

Next, we use (3.21) to estimate the effective stress-potential of the material in Ω[2]

ũIH[2] (σ[2]) = sup
µ[2], κ[2]

{
1

6µ̃[2]

σ2
e[2] +

1

2κ̃[2]
σ2
m[2] − (1− c)V[2](µ[2], κ[2])

}
(5.32)

where the error function associated with the matrix phase of level-2 composite is

V[2](µ[2], κ[2]) = sup
σ̂e[2], σ̂m[2]

{
1

6µ[2]

σ̂2
e[2] +

1

2κ[2]
σ̂2
m[2] − u[2](σ̂e[2], σ̂m[2])

}
(5.33)

and
u[2](σ) ≡ ũIH[1] (σ) (5.34)

Then, from the optimality conditions in (5.33) follows that

µ[2] =
σ̂e[2]

3
∂u[2](σ̂e[2],σ̂m[2])

∂σ̂e[2]

=
(3a[1])

−1

A[1]

(5.35)

where
a[1] = 1 +

2

3
c, (5.36)

A[1] =


[
(1 + 2

3
c)σ̂2

e[2] + (9
4
c)σ̂2

m[2]

] 1
2

(1− c)σ0


n

ε0[
(1 + 2

3
c)σ̂2

e[2] + (9
4
c)σ̂2

m[2]

] 1
2

(5.37)

and

κ[2] =
σ̂m[2]

∂u[2](σ̂e[2],σ̂m[2])

∂σ̂m[2]

=
b−1[1]

A[1]

(5.38)
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where
b[1] =

9

4
c, (5.39)

while from the optimality conditions in (5.32) we have that

σ̂2
e[(2)] =

3

(1− c)

[
∂(6µ̃[2])

−1

∂(2µ[2])−1
σ2
e[2] +

∂(2κ̃[2])
−1

∂(2µ[2])−1
σ2
m[2]

]
(5.40)

=

9cσ2
m[2]

4
+

[
27(3+2c)κ2

[2]
+48(3+2c)κ[2]µ[2]+32(2+3c)µ2

[2]

]
σ2
e[2]

(9κ[2]+8µ[2])
2

(1− c)2
(5.41)

and

σ̂2
m[2] =

2

3(1− c)

[
∂(6µ̃[2])

−1

∂(3κ[2])−1
σ2
e[2] +

∂(2κ̃[2])
−1

∂(3κ[2])−1
σ2
m[2]

]
(5.42)

=
σ2
m[2] +

20cκ2
[2]
σ2
e[2]

(9κ[2]+8µ[2])
2

(1− c)2
(5.43)

By substituting (5.41) and (5.43) along with the corresponding expressions for µ[2] and
κ[2] in (5.32), the variational bound for the material in RVE Ω[2], reduces to

ũIH[2] (σ[2]) = (1− c)2 ε0σ0
n+ 1


[
a[2]σ

2
e[2] + b[2]σ

2
m[2]

] 1
2

(1− c)2σ0


n+1

(5.44)

where

a[2] =
a[1]
[
9a[1](3 + 2c) + 4b[1](2 + 3c)

]
27a[1] + 8b[1]

, (5.45)

b[2] = b[1] + (
9

4
c)a[1]. (5.46)

The whole procedure is then repeated, until the desired volume fractions of the porous
phase is reached. The overall effective-stress potential of the composite is given by

ũV B[N ] (σ) = (1− c)N ε0σ0
n+ 1


[
a[N ]σ

2
e[N ] + b[N ]σ

2
m[N ]

] 1
2

(1− c)Nσ0


n+1

, (5.47)

where

a[i] =
a[i−1]

[
5(9a[i−1] + 4b[i−1])− 6(3a[i−1] + 2b[i−1])(1− c(2))

1
N

]
27a[i−1] + 8b[i−1]

, (5.48)

b[i] = b[i−1] +
9

4
[1− (1− c(2))

1
N ]a[i−1], (5.49)

σe[i−1] = σ̂e[i] and σm[i−1] = σ̂m[i], with σe[N ] =
√

3σd .. σd/2 and σm[N ] = 1
3
trσ.
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Fig.5.8 compares yield surfaces for ideally plastic (n → ∞) behavior for the matrix.
In particular, 5.8(a) shows the results for c(2) = 0.1 and c(2) = 0.2 while in 5.8(b) the
plots correspond to c(2) = 0.5 and c(2) = 0.6. For comparison purposes, we have also
included the exact results from the composite sphere assemblage model (CSA) under
pure hydrostatic loadings. From these results it is observed that IH predictions for the
effective behavior of the porous material are softer than the corresponding CSA and the
variational estimates (N=1), especially for high values of the porosity. Note, in particular,
that the difference gets bigger for higher values of the stress triaxiality (Xσ = σm/σe),
even for low porosity where differences are small in general.

5.2.3 Particle composites

We begin by considering a composite with the microstructure of Fig.5.1, made up from
incompressible spherical inclusions (phase 2) embedded in an incompressible matrix ma-
terial (phase 1). Both phases are assumed to be governed by power-law potentials of
the form (5.19). Next, taking the limit κ(1) → ∞ and κ(2) → ∞ in (3.17), we find the
following expression for the scalar effective modulus µ̃[1] of the LCC associated with the
material resulting from the first iteration

µ̃[1] =
µ
(1)
[1]

[
3(1− c)µ(1)

[1] + (2 + 3c)µ
(2)
[1]

]
(3 + 2c)µ

(1)
[1] + 2(1− c)µ(2)

[1]

(5.50)

Substituting the above expression in the equations (4.15) we get

σ̂
(1)
[1]

σe[1]
=

√
6c(k[1] − 1)2 + (3 + 2k[1])2

3 + 3c(k[1] − 1) + 2k[1]
,

σ̂
(2)
[1]

σe[1]
=

5k[1]
3 + 3c(k[1] − 1) + 2k[1]

(5.51)

where we have made use of the notation k[1] = µ
(2)
[1] /µ

(1)
[1] . Taking the ratio of the associated

equations (4.14) for µ(r) and making use of the above results we obtain the following
nonlinear equation for k[1](

σ
(2)
0

σ
(1)
0

)n(
6c(k[1] − 1)2 + (3 + 2k[1])

2

25k2[1]

)n−1
2

= k[1] (5.52)

Then, substituting expressions (5.51) into (4.6), it follows that estimate for the normalized
effective yield stress of the level-1 material is given by

σ̃IH0[1]
σ0

=

{
(1− c)

(
σ̂
(1)
e[1]

σe[1]

)
+ c

(
σ̂
(2)
e[1]

σe[1]

)(
σ
(2)
0

σ
(1)
0

)−n}− 1
n

(5.53)

The whole procedure is then repeated successively, for each level i = 2...N of the
composite, with σ(1)

0[i] = σ̃IH[i−1]. Finally, it turns out that the iterated effective yield stress
is given by
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σ̃IH[N ]

σ
(1)
0

=

[
3(1− c(2)) 1

N (1− k[N ]) + 5k[N ]

]n+1
n[

5n+1
[
1− (1− c(2)) 1

N

]
kn+1
[N ] t

−n + (1− c(2)) 1
N

[
5(3 + 2k2[N ])− 6(1− c(2)) 1

N (k[N ] − 1)2
]( σ̃0[N−1]

σ
(1)
0

)−n] 1
n

,

(5.54)

where the variables k[i] are determined by solving the following set of nonlinear equa-
tion(

σ
(2)
0

σ̃IH[i−1]

)n(
6
[
1− (1− c(2)) 1

N

]
(k[i] − 1)2 + (3 + 2k[i])

2

25k2[i]

)n−1
2

= k[i], i = 2, 3, . . . , N

(5.55)
In Fig.5.9 results for the normalized effective yield stress σ̃0/σ

(1)
0 are plotted as a

function of the nonlinearity for particle concentration c(2) = 0.5. As we see in Fig.5.9(a)

for a composite with a particle to matrix contrast t = σ
(2)
0 /σ

(1)
0 = 0.2 the IH results give

slightly lower predictions for all values of the nonlinearity parameter m = n−1. Fig.5.9(b)
shows the percent difference of the IH estimate from the corresponding variational estimate
for t = 0.2. Fig.5.9(c) is the counterpart to Fig.5.9(a) in the particle reinforced case with
t = 5, where the IH estimate always remain above the variational estimate. The differences
of the IH estimate from the corresponding variational estimate for t = 5 are shown as
percentages in Fig.5.9(d), where it is remarked that the maximum difference is observed
for m ≈ 0.1.

In Fig.5.10 results for σ̃0/σ
(1)
0 of a particle-reinforced composite are shown as a function

of the contrast t = σ
(2)
0 /σ

(1)
0 for a fixed volume fraction c(2). For comparison purposes,

we also include FEM results provided by Papadioti et.al [16]. The IH results are found
to be above from both the VAR and FEM estimates for all values of t. In addition,
it is observed that for t < 2.5 the FEM results are a bit lower than the VAR. On the
other hand for t ≥ 2.5 the FEM results remain above the VAR results, and below the
IH results, but always closer to the VAR estimates. We can see that both the VAR
and IH estimates become constant as the contrast reaches a threshold contrast value.
Specifically, for c(2) = 0.4 the threshold contrast values when using the VAR and IH
methods are rV AR ≈ 1.97 and rIH ≈ 3.34, respectively.

5.2.4 Fiber composites

In this subsection we will focus on a nonlinear, fibrous composite which has the mi-
crostructure of Fig.5.1. The constitutive behaviors of the matrix and fibers are taken
to be characterized by phase potentials of the power-law form (5.19). Following a simi-
lar procedure to that of the subsection 5.2.3 we obtain the following expression for the
iterated effective in-plane yield stress of the associated composite
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σ̃IH[N ]

σ
(1)
0

=

[
2k[N ] + (1− c(2)) 1

N (1− k[N ])
]n+1

n[
(1− c(2)) 1

N

[
2(1 + k2[N ])− (1− c(2)) 1

N (1− k[N ])2
]n+1

n

(
σ̃0[N−1]

σ
(1)
0

)−n
+ 2
[
1− (1− c(2)) 1

N

]
kn+1
[N ] t

−n
] 1

n

,

(5.56)

where the variables k[i] are determined by solving the following set of nonlinear equa-
tion(

σ
(2)
0

σ̃IH[i−1]

)n([
1− (1− c(2)) 1

N

]
(1− k[i])2 + (1 + k[i])

2

4k2[i]

)n−1
2

= k[i], i = 2, 3, . . . , N (5.57)

In addition, for the case of rigid fibers, the the corresponding effective in-plane yield
stress is determined by following a the procedure of subsection 5.2.1

σ̃IH[N ]

σ
(1)
0

=

(
2− (1− c(2)) 1

N

)N(n+1)
2n

(
1− c(2)

) 1
n

, (5.58)

In the limit as N →∞ the above result reduces to

σ̃IH[∞]

σ
(1)
0

= (1− c(2))−
3+n
2n (5.59)

Results of this subsection will presented and compared to results derived from the
recently developed FOSO (Fully Optimized Second-Order) method for nonlinear homog-
enization (see for details J.Furer and Ponte Castañeda [7]). FOSO makes use of a more
general LCC, leading to estimates that are more accurate than those resulting from earlier
methodologies. We also include the Voigt-Reuss bounds for the effective behavior of the
composite. The Voigt bound is an upper bound on the effective behavior, while the Reuss
bound is a lower bound on the effective behavior. For our application the corresponding
Voigt σV0 and Reuss σR0 bounds are given by(

(1− c(2))(σ(1)
0 )−n + c(2)(σ

(2)
0 )−n

)− 1
n

= σR0 ≤ σ̃0 ≤ σV0 = (1− c(2))σ(1)
0 + c(2)σ

(2)
0 (5.60)

In one instance we will also present results from composite cylinder assemblage model
(CCA). CCA model builds on an infinite number of cylinder sizes and is known to be
an exact estimate for linear composites subject to some special loading conditions. How-
ever CCA model gives only an approximation for a nonlinear composites under in-plane
loading.

In Fig.5.11 IH and VAR results for the normalized in-plane effective yield-stress are
plotted as functions of m. From Fig.5.11(a) we observe that the IH estimates are stiffer
than the corresponding variational estimates for all values of m. The deviation of the IH
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estimate from the corresponding VAR estimate is shown in Fig.5.11(b) where the percent
difference is plotted as a function of m. It is also observed that the difference decreases
for decreasing values of m.

Fig.5.12 shows plots of the normalized yield stress for two values of the heterogeneity
contrast t = 0.2, 5, as a function of the fiber concentration c(2). As we see in Fig.5.12(a),
for a fiber-weakened composite the results from the variational estimates are in close
agreement with those derived from FOSO and CCA in case of small nonlinearity. Moreover
we notice that the IH estimate is (slightly) closer to the results from FOSO than the
variational estimate. On the other hand, from Fig.5.12(b) we observe that for a fiber-
reinforced material the VAR estimate is closer to FOSO for all values of m.

In Fig. 5.13 we plot the results for the normalized effective yield stress in the limit
as m→ 0 as a function of the heterogeneity contrast σ(2)

0 /σ
(1)
0 for a fixed volume fraction

c
(2)
0 = 0.2. Fig. 5.13(a) shows plots for contrast σ(2)

0 /σ
(1)
0 ≤ 1 where we can see that

the iterated variational bound tends to get closer to the estimates resulting from FOSO.
Note that, since the fibers are weaker than the matrix, variational estimate constitutes
an upper bound for the effective behavior of the composite. Exactly the opposite effect
is observed when the composite is fiber-reinforced( Fig. 5.13(b)) where we notice that
the difference gets bigger by iterating. Finally, it is relevant to remark that a common
feature of the FOSO, VAR and IH methods is that after a value of heterogeneity contrast
and above, depending on the volume fraction, predict that the inclusions act like rigid
particles and the corresponding estimate becomes constant further on.

Figure 5.14 depicts the effective yield stress σ̃0 normalized by σ
(1)
0 as a function of

the fiber concentration c(2). Again, for a fiber-weakened material we observe that the IH
estimate lies closer to FOSO estimate. In fact for large fiber concentrations c(2) > 0.5
Fig.5.14(a) shows that the results from both methods are in very good agreement. In
contrast, from Fig.5.14(b) we observe that the effective response predicted from the IH
method for a fiber-reinforced composite is less close to FOSO than the corresponding
prediction from the variational method.
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Figure 5.4: Results for the normalized effective shear modulus for a composite consisting of
isotropic spherical particles embedded in an isotropic, incompressible, linear elastic matrix are
plotted as a function of the concentration of particles c(2). (a) The normalized effective shear
modulus as predicted by the IH and the HS (N=1) upper bound for a composite with hetero-
geneity contrast t = 0.2 . (b) The percentage difference between the IH and the corresponding
HS estimate for a composite with heterogeneity contrast t = 0.2. (c) The normalized effective
shear modulus as predicted by the IH and the HS upper lower for a composite with initial het-
erogeneity contrast t = 5. (d) The percentage difference between the IH and the corresponding
HS estimate for a composite with heterogeneity contrast t = 5.
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Figure 5.5: Results for the normalized effective in-plane shear modulus of an incompressible,
linear elastic composite consisting of aligned fibers of circular cross-section embedded in an
isotropic matrix material are plotted as a function of the concentration of particles c(2). (a)
The normalized effective in-plane shear modulus as predicted by the IH and the HS (N=1)
upper bound for a composite with heterogeneity contrast t = 0.2. (b) The percentage difference
between the IH and the corresponding HS upper bound. (c) The normalized effective in-plane
shear modulus as predicted by the IH and the HS lower lower for a composite with heterogeneity
contrast t = 5. (d) The percentage difference between the IH and the corresponding HS lower
bound
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Figure 5.6: IH estimates for the normalized effective in-plane shear modulus of a fiber-reinforced
composite consisting of aligned rigid fibers embedded in an isotropic, incompressible, linear
elastic matrix are plotted as a function of the fibers concentration. (a) The convergence of
the IH estimate with increasing numbers (N) of increments, N = 1, 100 and N → ∞ (b) The
percentage difference d[N ] between the IH estimate and the corresponding HS estimate for various
values of N .
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Figure 5.7: Comparison of IH and VAR estimates for the normalized effective yield-stress of a
composite reinforced with rigid spherical particles embedded in a power-law matrix phase are
plotted as a function of the concentration of particles c(2). Parts (a) and (b) shows σ̃0/σ

(1)
0 for

the cases n = 3 and n = 10, respectively.(c) The normalized effective yield-stress as predicted
by the IH for N = 100 and N →∞, for three values of the nonlinear exponent n = 1, 3, 10. (d)
The percent difference between the IH and the corresponding VAR estimates for n = 1, 3, 10.
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Figure 5.8: Plots of the effective yield surface obtained by the IH and VAR methods for isotropic
porous materials consisting of spherical voids distributed in an ideally plastic matrix. (a) Plots
for c(2) = 0.1, 0.2 (b) Plots for c(2) = 0.4, 0.5. CSA estimates are shown for comparison.
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Figure 5.9: IH and VAR estimates for the normalized effective yield stress of a particulate
composite consisting of spherical inclusion embedded in a power-law matrix, as a function of
the nonlinearity m. The concentration of particles is c(2) = 0.5. IH and variational estimates
are shown in (a) for heterogeneity contrast t = 0.2, while the percent difference of the IH from
the VAR estimate is shown in (b). Part (c) shows IH and variational estimates for particle to
matrix contrast contrast t = 5 while the corresponding percent difference of the IH from the
VAR estimate is shown in part (d)

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:04:45 EEST - 18.116.47.245



46 Results and discussion

▲

▲

▲
▲ ▲ ▲

VAR

IH

▲ FEM

m= 0

c
(2) = 0.4

1.0 1.5 2.0 2.5 3.0 3.5 4.0
1.0

1.2

1.4

1.6

1.8

2.0

σ0
(2) /σ0

(1)

σ0

σ0
(1)

Figure 5.10: The normalized effective yield stress of a particle-reinforced composite for c(2) = 0.4

and m = 0, as a function of the contrast σ(2)0 /σ
(1)
0 . Numerical results by Papadioti et.al [16] are

shown for comparison.
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Figure 5.11: Comparison of the IH estimate and the corresponding variational estimate (VAR)
for the normalized effective in-plane yield-stress σ̃0/σ

(1)
0 of a rigidly fiber-reinforced composite

with an incompressible matrix.(a) The VAR estimate and IH estimate for N →∞ are plotted as
a function of m for a fixed volume fraction c(2) = 0.6. (b) The precentage difference d[N ] between
the IH estimate and the corresponding VAR estimate.
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Figure 5.12: The normalized effective in-plane yield stress σ̃0/σ
(1)
0 of a fibrous composite with

concentration c(2) = 0.20626. Comparison of the IH estimate with the FOSO estimate, vari-
ational estimate (VAR) and the the Composite Cylinder Assemblage (CCA) for (a) a fiber-
weakened composite with t = 0.2 and (b) a fiber-reinforced composite with t = 5, as a function
of the nonlinearity m. The Voigt and Reuss bounds are also included in (a) and (b), respectively.
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Figure 5.13: The normalized effective in-plane yield stress σ̃0/σ
(1)
0 of a fibrous composite with

concentration c(2) = 0.2. Comparison of the IH estimate with the FOSO estimate, the sim-
ple variational estimate (VAR) and the Voigt bound for (a) a fiber-weakened composite with
σ
(2)
0 /σ
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0 < 1 and (b) a fiber-reinforced composite with σ
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0 > 1, as a function of the
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Figure 5.14: The effective in-plane yield stress σ̃0 of a fibrous composite normalized by σ(1)0 .
Comparison of the IH estimate with the FOSO estimate, variational estimate (VAR) and the
Voigt bound for (a) a fiber-weakened composite with σ(2)0 /σ

(1)
0 = 0.2 and (b) a fiber-reinforced

composite with σ(2)0 /σ
(1)
0 = 5, as a function of the fiber concentration c(2).
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Chapter 6

Concluding remarks

In this thesis we have used a discretized version of the DS for estimating the effective
behavior of particulate composites by means of iterated homogenization. At this point,
it is relevant to recall that the PCW estimates [18] are sufficiently accurate for small
and moderate concentrations of the inclusions, but on the other hand, for very high
concentrations their accuracy deteriorates. Thus, the motivation behind the use of this
homogenization procedure stems from the fact that allows us to homogenize every level of
the resulting composite separately, where the added inclusions are in small concentration
with respect to the previous effective medium.

For the applications of this incremental homogenization scheme we have considered
four different cases in the context of linear elasticity and four more for nonlinear compos-
ites with power-law phases. The main conclusions are summarized in the following.

For a linear rigidly-reinforced material the differences between the IH estimate and
the standard HS bound are significant especially at moderate to high concentrations. Fur-
thermore, it was found that for an infinite number of increments the IH estimate reduces
identically to the corresponding result from the DS, as it was expected. On the other
hand, for small volume fractions of the particles the differences between the IH method
and the HS bound are negligible. The next case we considered, was that of a linear
porous medium. Again, the prediction of the iterated estimate is in agreement with the
non-iterated for low values of porosity but we notice large differences for higher values
of porosity, although smaller than the corresponding differences in the case of the rigidly
reinforced composites. Moreover, it was found that the IH results for N = 100 match
closely with the corresponding DS estimate (see Fig.5.8). For linear incompressible com-
posites with heterogeneity contrast t = 0, 2 and t = 5, described in detail in subsections
5.1.3 and 5.1.4, the differences between the iterated estimates and the HS bounds are lim-
ited in general, in contrast with the results from the previous two previous subsections.
Finally, it is important to emphasize that in all cases considered the IH estimates obey
the corresponding HS bounds, as they should.

For a nonlinear rigidly reinforced composite, the IH estimates are always stiffer than
the corresponding variational estimates (VAR). In addition, it is observed that this dif-
ference decreases as the nonlinearity of the matrix increases (Fig.5.7(d)). On the other
hand, for a nonlinear porous material the results predicted by the IH are found to be
softer in comparison with the VAR results and the composite sphere assemblage (CSA)
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50 Concluding remarks

predictions. It is also remarked that for high stress triaxialities (Xσ = σm/σe), differences
between these methods become more apparent. For nonlinear incompressible composites
with spherical particles we investigated the effective behavior in the ideally plastic limit.
We saw that, for a particle-reinforced composite the IH estimates were, in general, al-
ways larger from the corresponding VAR estimates and the FEM predictions; moreover
the FEM results were always closer to the VAR estimates. On the other hand, for a
particle-weakened composite the IH estimates were always bellow the VAR results. Fi-
nally, in subsection 5.2.4 we applied the IH method to two-dimensional composites with
microstructures consisting of statistically isotropic distributions of circular fibers in a ma-
trix phase. The IH estimates were compared with the classical Voigt-Reuss bounds, the
recently developed symmetric fully optimized second order method (FOSO) [7] and with
estimates from the composite cylinders assemblage (CCA) model. It was found that for
a fiber-weakened composite the IH results generally are closer to FOSO than the VAR
estimate. In fact, Fig 5.14(a) shows that for high volume fraction c(2) > 0.5 the IH re-
sults agree quite well with the corresponding results from FOSO. One the other hand, the
exactly opposite effect is observed when the composite is fiber-reinforced.
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