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Abstract 

This thesis is intended to illustrate the process followed to achieve the updating of 

finite element models of structures. The way to obtain and calculate the data to be 

used as inputs from a model updating program is presented. Such data are the mass 

and stiffness matrices of the finite element model, as well as the identifiable 

frequencies and modeshapes that arise from the real measurements analysis. The 

calculation and the saving of the required matrices of the model are made with the 

help of a commercial finite element program named SAP2000 and with the 

creation of a code in matlab. The code interacts with the commercial finite element 

program in order to parameterize the different parts of the model and extract the 

necessary stiffness and mass matrices at desired substructuring level. The 

frequencies and modeshapes result from the analysis of measurements via a Modal 

identification program and are compared with those of the finite element model's. 

Finally, reference is made to the model reduction method and to the procedure to 

be followed in order to achieve it. With the help of a code created in matlab, the 

input data are calculated in order to be used in a model reduction program.The 

framework is demonstrated using an application on a bridge structure.  
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1. Introduction 

1.1. The need for Model updating 

 

In modern analysis of structural dynamics, much effort is devoted to the derivation 

of accurate models of structures. Availability of an accurate dynamic finite 

element model of a structure is very important to design engineers as it allows 

them to improve the dynamic design of the structure at computer level resulting in 

an optimized design apart from savings in terms of money and time. The first step 

is the derivation of an analytical model, usually finite element model, based on the 

assumed equations of motion. But there may be some inaccuracies or uncertainties 

that may be associated with a finite element model. The discretisation error, 

arising due to approximation of a continuous structure by a finite number of 

individual elements, is inherent to the finite element technique. Other inaccuracies 

may be due to the assumptions and simplifications made by the analyst with 

regards to the choice of elements, modeling of boundary conditions, joints, etc. 

These assumptions and simplifications have as a result that when tests are 

performed to validate the analytical model, inevitably their results, notably natural 

frequencies and modeshapes, do not coincide with the expected results from the 

theoretic model. Clearly one would like to have a better model, based on both the 

theoretical and the experimental results. In order to face the problems of 

inaccuracy in analytical models, researchers have turned their attention to the 

development of modeling methods based on experimental observation. This area, 

known as system identification, has been particularly vibrant in the control 

engineering community over the past 40 years. The model to be identified may be 

a parametric or a non-parametric model and, in addition, it may be non-linear. 

Once the model structure and model order have been chosen, the estimation of 

parameters follows. 

In structural dynamics, experimental modal analysis may be considered as a 

special area of system identification for the determination of modal data (natural 

frequencies, mode shapes, generalized masses and loss factors) from vibration 

tests. The modal testing and modal extraction methods (Ewins 2000, Mc Connnel 
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1995) are also well developed for obtaining a reliable estimate of the modal data. 

Given the availability of an accurate data acquisition and measuring equipment the 

measured test data, though may not be precise, is generally considered to be more 

accurate than analytical model predictions. This has formed the basis for 

adjustment or correction of a finite element model, in the light of measured test 

data, which is referred as model updating. The purpose of model updating is to 

modify the mass, stiffness and damping parameters of the numerical model in 

order to obtain better agreement between numerical results and test data. If the 

updated model is to be used predictively, for untested loading conditions or 

modified structural configurations, then it is important that the improved 

agreement in results is achieved by correcting the inaccurate modelling 

assumptions and not by making other (physically meaningless) alterations to the 

model. Comprehensive reviews of structural parameter identification methods can 

be found in (Mottershead and Friswell 1993; Doebling et al. 1996). 

Structural model updating is an inverse problem according to which a model of a 

structure, usually a finite element model, is adjusted so that either the calculated 

time histories, frequency response functions, or modal parameters best match the 

corresponding quantities measured or identified from the test data. This inverse 

process aims at providing updated models and their corresponding uncertainties 

based on the data. These updated models are expected to give more accurate 

response predictions to future loadings, as well as allow for an estimation of the 

uncertainties associated with such response predictions. In practice, the inverse 

problem of model updating is usually ill-conditioned due to insensitivity of the 

response to changes in the model parameters, and non-unique (Udwadia and 

Sharma 1978; Berman 1989; Katafygiotis and Beck 1998; Katafygiotis et al. 2000) 

because of insufficient available data relative to the large number of model 

parameter needed to describe the desired model Structural model updating is an 

inverse problem according to which a model of a structure, usually a finite element 

model, is adjusted so that either the calculated time histories, frequency response 

functions, or modal parameters best match the corresponding quantities measured 

or identified from the test data. This inverse process aims at providing updated 

models and their corresponding uncertainties based on the data. These updated 

models are expected to give more accurate response predictions to future loadings, 
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as well as allow for an estimation of the uncertainties associated with such 

response predictions.  

 

1.2.  The importance of Model reduction 

 

There are several definitions of model order reduction, and it depends on the 

context which one is preferred. Originally, MOR was developed in the area of 

systems and control theory, which studies properties of dynamical systems in 

application for reducing their complexity, while preserving their input-output 

behavior as much as possible. The field has also been taken up by numerical 

mathematicians. Nowadays, model order reduction is a flourishing field of 

research, both in systems and control theory and in numerical analysis. This has a 

very healthy effect on MOR as a whole, bringing together different techniques and 

different points of view, pushing the field forward rapidly. 

Such simplification is needed in order to perform simulations within an acceptable 

amount of time and limited storage capacity, but with reliable outcome. In some 

cases, we would even like to have on-line predictions of the behaviour with 

acceptable computational speed, in order to be able to perform optimizations of 

processes and products.  

Model  Reduction tries to quickly capture the essential features of a structure. This 

means that in an early stage of the process, the most basic properties of the 

original model must already be present in the smaller approximation. At a certain 

moment the process of reduction is stopped. At that point all necessary properties 

of the original model must be captured with sufficient precision. All of this has to 

be done automatically. 
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1.3. Outline of this work 

 

The study carried out in order to  device this work, was aimed at obtaining the 

necessary information for the execution of the model updating . To achieve model 

updating, the mass and stiffness matrices coming from the analysis of a model in 

SAP2000 are required as well as the modeshapes and model frequencies of actual 

construction. 

Initially, the mass and stiffness matrices are calculated and extracted from the 

different parts of the finite element model. Achieving this goal is done by creating 

a matlab code that interacts with the SAP2000 finite element program and extracts 

and stores the model's matrices. The parameterization of the various model 

members is made by introducing parameters θ that are related to the mass and 

stiffness matrices and are the ones that will be valued in model updating so that 

their optimal price improves the model. 

Afterwards, from the measurements that have been given by the real bridge model 

and specifically from the its deck, a range of frequencies and modeshapes has been 

found. This was done with the help of a program that was given to us. Through 

this range of measured frequencies and modeshapes, we identified these that 

match to these of the finite element model. 

Then, a flow diagram illustrates the model updating prepared process and the data 

needed to make it. 
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Finally, reference is made to the model reduction method. Reference is made to its 

utility as well as to the data it is necessary to achieve model reduction. These data 

are related with the mass and stiffness matrices of each section of the model as 

well as with the internal, boundary and interfacial degrees of freedom of each 

component of the structure. 

The process followed to obtain the input data  that are going to be used in a model 

reduction program is depicted by the below flow chart. 

 

 

 

 

Subsequently, the chapters 3, 4, 5, show the ways to acquire the input data in terms 

of model updating and model reduction respectively. 
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2. Model Updating 

 

2.1 Introduction 

 

Structural design and analysis generally requires a mathematical model 

representing the physical behaviour of the structure. The finite element (FE) 

method is the most appropriate tool for such modeling in structural engineering 

today. However it is often observed that the initial FE model is a poor reflection of 

structure, particularly in the field of structural dynamics. Inaccuracies arise 

because of a number of simplifying assumptions and idealizations that have to be 

made in FE modeling. In the recent years various model updating methods have 

been developed to update the initial model using experimental data. If accurately 

measured data are available then these data could be used to improve the 

numerical model in general, and the uncertain parameters of the model in 

particular. 

The methods may be split according to the type of measured data they use and 

model parameters that are updated. The measured data may be in form of 

frequency response function (FRF) data or natural frequencies and mode shapes. 

The updating process may estimate physical parameters, complete mass, damping 

and stiffness matrices or groups of individual matrix elements.  Other aspects of 

model updating, such as parameter uniqueness, efficient computation, 

parameterization, ill-conditioning and the use of incomplete data, are being 

investigated. The measured data will always be incomplete because the 

measurements will only be taken at a relatively small number of locations and over 

a limited frequency range. 
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2.2 Structural Model Class 

 

Consider a parameterized class of linear structural models (e.g. a class of finite 

element models) used to model the dynamic behaviour of the structure. The 

structural model class involves a set of model parameters θ. The equation of 

motion of such systems is: 

 ( ) ̈( )   ( ) ̇( )   ( ) ( )   ( ) 

Where  ( )  ( ),  ( ) are the global mass, damping and stiffness matrices 

respectively.  ( ) is the displacements and  ( ) is the vector of forces. 

The parameter set   is the set of free model parameters to be estimated using the 

measured data. The parameter set   is usually associated with geometrical, 

material, stiffness or mass properties and boundary conditions. 

Here we associate   with modulus of elasticity and density of the model. 

 

2.3 Substructuring and FE Model Parameterization 

 

Using finite element model analysis, one derives the element stiffness and the 

mass matrices, the stiffness and the mass matrices of the substructures formed by a 

group of elements, and finally the global stiffness and the mass matrices. These 

matrices depend on the properties of the structure, like modulus of elasticity and 

mass density. These properties are selected for updating and are included in    

In finite element analysis, the global stiffness and mass matrices formulation are 

taking the following form: 

 ( )  ∑  
 

 

   

( )                                 ( )   ∑  
 

 

   

( )   

  
 ( )   

 ( )   are the local stiffness , mass matrices and number of structure’s 

elements respectively.  
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The linear relation between global stiffness and mass matrices and   is listed 

below. 

2.4 Linear Relation Between Model Matrices and Parameters 

 

 ( )     ∑  

  

   

( )                                            ( )     ∑  

  

   

( )            

 

          are assembled from element stiffness and mass matrices that depend 

linearly on  .    and    are assembled from element stiffness and mass matrices 

that do not depend on  .   is the number of parameters used to parameterize the 

model or the number of the model’s parts that are parameterized. 

          as well as the set of   are used as inputs in model updating programs. 

 

 

2.5 An Introduction to Model Updating Based on Modal 

Properties 

 

2.5.1 Introduction 

 

The problem of identifying the parameters of a structural model using dynamic 

data has received much attention because of its importance in structural model 

updating, structural health monitoring and structural control. The estimate of the 

parameter values involves uncertainties that are due to limitations of the 

mathematical models used to represent the behavior of the real structure, the 

presence of measurement error in the data, and insufficient excitation and response 

bandwidth. Structural identification and finite element model updating 

methodologies are often based on modal data. The optimal structural models 

resulting from such method can be used for response and reliability predictions, 

structural health monitoring and control. 
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2.5.2 Formulation 

 

Let   * ̂ 
( )  ̂ 

( )                    + be the measured data from a 

structure, consisting of modal frequencies  ̂ 
( )

 and modeshape components  ̂ 
( )

at 

   measured DOFs where m is the number of observed modes and    is the 

number of modal data sets avaible. 

Consider a parameterized class of linear structural models M used to model the 

dynamic behaviour of the structure and let       be the set of free structural 

model parameters to be identified using the measured modal data. Let also 

*  ( )   ( )   
         + where     is the number of model degrees of 

freedom (DOF), be the predictions of the modal frequencies and modeshapes 

obtained for a particular value of the parameter set    by solving the eigenvalue 

problem corresponding to the model mass and stiffness matrices M( ) and K( ) 

respectively,that is, 

                                           , ( )    
 ( ) -  ( )    

The objective in a modal-based structural identification methodology is to estimate 

the values of the parameter set   so that the modal data *  ( )   ( )   

    + predicted by the linear class of models best matches, in some sense, the 

experimentally obtained modal data in D. In this thesis we produced the necessary 

data in order to be used later for model updating. 

 

 

 

 

 

 

 



 
  15 

 

3. The process of extraction of model’s stiffness and 

mass matrices(presentation of the software)  

 

3.1. The FE Model 

 

Based on the linear relation between model matrices and parameters , a bridge 

model made in SAP2000 is examined in order to be parameterized. 

 

 

Figure 3.1. The bridge Model made in SAP2000 

 

 

For this  examination we separate the model into 4 components as it is shown in 

figure 3.2.Another separation can be done according to which parts we want to 

parameterize. 
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Figure 3.2. Structure’s components 

 

 Component 1:arched part (aquamarine color)  

 Component 2:deck (purple color) 

 Component 3:piers(white color) 

 Component 4:columns(blue color) 

 

The separation of the bridge’s parts based on the materials that constitute these 

parts. 

 Arched part: Material name A992Fy50(Sap2000’s name) 

 Deck: Material  name MAT 

 Piers: Material name concrete_nomass 

 Columns: Material name concrete_abut 

 

The definition of stiffness and mass matrices for a component entails that the 

parameters which are related to the other parameterized components will get zero 

value. For example, if we want to extract only deck’s stiffness and mass matrices 

we have to zero modulus of elasticity and mass density from the other three 

components.  
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3.2. Software for acquisition of stiffness and mass matrices of 

model’s components 

 

Studying the SAP2000 bridge model, a code is created in order to extract the 

stiffness and mass matrices from each part of the structure. 

The code is written in MATLAB (version 2015a) and creates an interface between 

Sap2000 and MATLAB. This interaction allows to change the model’s properties 

through MATLAB. 

 

 The interface is possible via a specific part of the code that is presented 

below: 

% pass data to Sap2000 as one - dimensional arrays 
feature ('COM_SafeArraySingleDim', 1); 
% pass non - scalar arrays to Sap2000 API by reference  
feature ('COM_PassSafeArrayByRef', 1); 
%start the interface 
SapObject = actxserver('CSI.SAP2000.API.SapObject'); 
 % create Sap2000 object 
 SapModel = SapObject . SapModel ; 
%  start the application 
 ret = SapObject.ApplicationStart(); 

 

These commands are used in order to create a bridge between two 

programs. Thus the interface is done.  

 

 Next step is to open the model that we are studying. 

%  give the name of Sap2000 model file 
name=input('dwse onoma arxeiou: ' , 's') 
%  the file is on the desktop 
ret=SapObject.SapModel.File.OpenFile(['C:\Users\Spyros\Deskt

op\' ,name, '.sdb']) 

 

 The SAP2000 file was loaded and the next step is to define the material 

properties for each component. The bridge model is constituted from four 

components, so the user has to define the material properties for each part.  

 
% % % % % insert material properties for each material in 

sap2000 
number_mat=input('number of structure’s material/components' 

) 
for i=1:number_mat 
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prompt = {'material name:','modulus of 

elasticity:','coefficient of thermal expansion:','poisson 

ratio:','density:'}; 
title = 'material properties'; 

  

  
r = inputdlg(prompt,title,[1 60]); 
mat_name(i)=r{1}; 
E(i)= str2num(r{2}); 
A(i) = str2num(r{3}); 
Nu(i) = str2num(r{4}); 
density(i)=str2num(r{5}); 

  
end 

 

The modulus of elasticity, the poisson ratio, the coefficient of thermal 

expansion and mass density are the necessary inputs. These inputs are 

based on values that were given by the maker of the model . The 

coefficient of thermal expansion and the poisson ratio are parameters that 

do not contribute to stiffness and mass matrices. However these parameters 

are necessary for the two programs interface. 

 After that, these inputs are passed into the finite element model. We insert 

these data again in the model in case they were changed in a previous 

model analysis. 

 

for k=1:number_mat 

  
    Enew(k)=E(k); 
    density_new(k)=density(k); 
%     pass material properties to Sap2000 
    

ret=SapModel.PropMaterial.SetMPIsotropic(char(mat_name{k}),E

(k),Nu(k),A(k)); 
%     pass mass density to Sap2000 
    

ret=SapModel.PropMaterial.SetWeightAndMass(char(mat_name{k})

,1, density(k)); 
end 
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3.2.1 The acquisition of global stiffness matrix(before the parameterization 

process)        

  

All the necessary information is known in order to start the parameterization and 

the extraction  of the model’s matrices. Initially, the global stiffness is 

calculated(the global mass matrix and     are calculated after the calculation of 

  ) through the model’s analysis. At this point, it is worth mentioning that 

SAP2000 extracts stiffness and mass matrices as text files saved in the place where 

the sap file is. TXK file gives the lower half of the symmetric stiffness matrix and 

.TXM file gives the lower half of the symmetric mass matrix. There are three 

columns in the files. The first and the second one give the position of each 

stiffness/mass value (matrix’s row and column). The third column is the 

stiffness/mass value. The software imports these data. 

  unlock the model 
 ret=SapModel.SetModelIsLocked(0); 
%  define load case in order to extract model matrices. 
%We have to define a load case dead or modal for the 

extraction of the matrices. 
%that is asked by sap2000.There is no difference in the 

matrices’ values 
 ret = SapModel.Analyze.SetSolverOption_1(1, 0,1,  'DEAD') 
%  analyze the model 
 ret = SapModel.Analyze.RunAnalysis(); 
% import data from M file 
Mfilename=[name,'.TXM']; 

  
mass = importdata(Mfilename); 
mass_matrix=mass.data; 
% import data from Stiffness file 
Sfilename=[name,'.TXK']; 
s = importdata(Sfilename); 
% Kt has 3 columns ,number of row and column,stiffness value 
Kt=s.data; 

 

 

Kt is a matrix which includes three columns. The third column indicates 

the stiffness value and the first two contains the number of the row and 

column to which the stiffness value corresponds. The data from global 

mass matrix also are imported in order to be used later. 
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 The global stiffness matrix does not have not its normal form thus we have 

to bring it to its symmetric form. The process is easy while we seek for a 

non-zero element of the third column of the Kt matrix. When we detect it, 

we save its coordinates in matrices i and j respectively. If an element of the 

third column of Kt is zero the i,j matrices obtain a zero value. The i matrix 

contains the numbers of the rows and j the number of the columns for 

every non zero element. After that, in a matrix called Ktotal  the stiffness 

values of Kt are imported in the positions which are indicated by the 

matrices i,j . We create the lower half of the matrix and afterwards we 

bring it to its normal form. 

%  unlock the model 
 ret=SapModel.SetModelIsLocked(0); 
%  define load case in order to extract model matrices.We 

have to define a load case dead or modal for the extraction 

of the matrices. that is asked by sap2000.There is no 

difference in the matrices’ values 
 ret = SapModel.Analyze.SetSolverOption_1(1, 0,1,  'DEAD') 
%  analyze the model 
 ret = SapModel.Analyze.RunAnalysis(); 
% import data from M file 
Mfilename=[name,'.TXM']; 

  
mass = importdata(Mfilename); 
mass_matrix=mass.data; 
% import data from Stiffness file 
Sfilename=[name,'.TXK']; 
s = importdata(Sfilename); 

% Kt has 3 columns ,number of row and column,stiffness value 

 
Kt=s.data; 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% % % % % % % % % % % % % % 
 % % % % % % % % % % % bring the stiffness matrix to its 

original form % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% % % % % % % % % % % % %   
% matrix length  
mhkos=length(Kt) 
% first 2 colummns are the number of the row and column and 

the third the stiffness value 
% the last number of the column is the size of the matrix 

given that the 
% diagonial elements of the global stiffness matrix are non 

zero thus the  
% last element of the matrix describe its size 
% read the coordinates of the last element 
last1=Kt(end,2); 
Ktotal=sparse(zeros(last1)); 

 
% we find the non zero elements and keep their coordinates  
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 for p=1:mhkos 
    if Kt(p,3)~=0 
%         if Kt(p,3)=0 then the values of i(p),j(p) are zero 
        i(p)=Kt(p,1); 
        j(p)=Kt(p,2); 
    end 
 end 
%  
for m=1:mhkos 
    % if Kt(p,3)=0 then the values of i(p),j(p) are zero so 

for the non 
    % zero i,j(where the non zero values on stiffness are) 

we save the 
    % value of Kt in Ktotal 
%     So we create the lower half of the symmetric stiffness 

matrix 
   if i(m)j(m)~=0  
    Ktotal(i(m),j(m))=Kt(m,3); 
   end 
end 
% we bring stiffness matrix to its final form by add the 

upper symmetric half without the diagonal  
Ktotal=(Ktotal+(tril(Ktotal,-1)).') 

  

  

 Next step is to define the materials/components that are going to be 

parameterized. The user decides which part/material wants to parameterize 

and this materials is saved in a matrix. 

for c=1:number_mat 
prompt = {'1:','2:'}; 
opts.Interpreter = 'tex'; 
answer = questdlg('Do you want to parameterized this 

material/component?' ,mat_name{c}, 'YES','NO','.')  
switch answer 
    case 'YES' 
        disp([answer ' done.']) 
        ans = 1; 
    case 'NO' 
        disp([answer ' ok.']) 
        ans = 2;  
end 
  if ans ==1 
%       the meter counts how many materials are going to be 
%       paremeterized.if meter<number_mat then Ko exists 
      meter=meter+1 
%       we keep the number of material which is going to be 

parameterized 
% this number corresponds to a material depending on the 

order that the material is given by the user 

       
      param(meter)=c 
   end 
end 
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 After the parameterized materials are defined,    is calculated (   is 

assembled from element stiffness matrix that does not depend on  ). If the 

variable meter is equal to the number of structure’s material then all 

components are going to be parameterized and there is no     By contrast, 

if the variable meter is lower than the number of structure’s materials then 

some parts were not parameterized. The param matrix corresponds to the 

parameterized materials. The value of modulus of elasticity of each 

parameterized material is set to zero in order to extract   . 

 

for u=1:meter 
%     E=0 for every parameterized material though this 

sap2000 command  

 
ret=SapModel.PropMaterial.SetMPIsotropic(char(mat_name{param

(u)}),0,Nu(param(u)),A(param(u))); 
end 

 

This methodology is executed if the below condition is satisfied  
if meter~=number_mat&&meter~=0 

 

 The model is analyzed in order to extract   .The parts with zero modulus 

of elasticity do not give a stiffness matrix .The extraction of    ,as well as 

the figuration of its normal form , follow the same methodology with the 

calculation of global stiffness matrix. 

% run model analysis on order to extract stiffness 

matrix.this stiffness matrix is Ko 
    ret = SapModel.Analyze.RunAnalysis(); 
    % import data from the stiffnes text files 
     Sfilename=[name,'.TXK']; 
     s = importdata(Sfilename); 
     K_o=s.data; 
     mhkos0=length(K_o); 

       
     Ko=sparse(zeros(last1)); 

           
%      bring Ko to its normal form 
   for dd=1:mhkos0 
    if K_o(dd,3)~=0 
        metrhths0=dd 
        i(dd)=K_o(dd,1); 
        j(dd)=K_o(dd,2); 
    end 
   end 
 for nn=1:metrhths0 
   if i(nn)j(nn)~=0  
    Ko(i(nn),j(nn))=K_o(nn,3); 
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   end 
 end     
% final form of Ko 
       Ko=(Ko+(tril(Ko,-1)).'); 

        
end  
 

 

If all materials/components are chosen by the user to be parameterized then 

the    matrix is a zero matrix. 

if meter==number_mat 
    Ko=sparse(zeros(last1)); 
end 

 

Thus far, we have defined the global stiffness matrix and the    (stiffness 

matrix that does not depend on  ). 

 The next step is to calculate     the stiffness matrices that depend linearly 

on   as well as the values of   . The value of   is different to zero only for 

the component from which we want to extract the stiffness matrix, the 

other values of   are zero. The value of   changes in every loop depending 

on the material that we examine. For example if we want to parameterize 

the j material       while      for i=1….N and i j 

The process of extraction of    is the same with that for extraction and 

calculation of global stiffness matrix. 

 

for q =1:meter 

   
   ret=SapModel.SetModelIsLocked(0); 
%    keep the number of material that is parameterized in 

this loop 
       number_mat1=q 
%        give value of θ for the material    
   prompt = {'the value of parameter θ:'}; 
    title = 'value of parameter θ for '; 
    th = inputdlg(prompt,mat_name{param(q)},[1 60]); 
    %        b is θ   
    b(q)=str2num(th{1}) 
 % we kept the parameterized material. θ for others 

materials is going to be zero. this changes in every loop. 

only the material that is 
% analyzed (in every loop) has no zero value of θ. 
     for l=1:meter 
       if l~=q 
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         b(l)=0; 
       end 
% multiple the modulus of elasticity of each material with θ 
       Enew(param(l))=E(param(l))*b(l); 

        
     end  

    

    
%for every material pass the value of new modulus of 

elasticity in sap2000 
     for t=1:meter 
      

ret=SapModel.PropMaterial.SetMPIsotropic(char(mat_name{param

(t)}), Enew(param(t)),Nu(param(t)),A(param(t))); 
     end 
%analyze the model 
     ret = SapModel.Analyze.RunAnalysis(); 
%import stiffness matrix and bring it to its normal form 
     Sfilename=[name,'.TXK']; 
     s = importdata(Sfilename); 
     K_new=s.data; 
     mhkos1=length(K_new); 
     last2=K_new(end,2); 
     K_i=sparse(zeros(last2)); 
     sum=0 

      
     k=0 
     K_new_end=s.data(:,end); 
   for r=1:mhkos1 
    if K_new(r,3)~=0 
        metrhths=r; 
        i(r)=K_new(r,1); 
        j(r)=K_new(r,2); 
    end 
   end 

  
 for n=1:metrhths 
   if i(n)j(n)~=0  
    K_i(i(n),j(n))=K_new(n,3); 
   end 
 end 

  
       K_i=(K_i+(tril(K_i,-1)).'); 
% The Ki matrices are created 

          
       Ki{q,1}=mat_name(param(q)); 
%  if there is Ko then the K of the spesific part is the K_i 

that was 
% calculated above minus Ko. 
       Ki{q,2}=(K_i-Ko); 
       Ki{q,2}=Ki{q,2}/b(q); 
% the values of θ 
      thita(q)=b(q); 

  

   
 end  
end 
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The cell arrays of Ki contain the    matrices of every parameterized 

material/component. Also, the values of   that were given for each 

material were saved in a matrix called thita.The stiffness matrix is 

calculated for each material and saved in matlab. 

 

3.2.2 The acquisition of global mass matrix(before the parameterization 

process)        

 

The changes in modulus of elasticity do not affect the mass matrix given that, it 

depends on mass density. The global mass matrix’s data were imported in the code 

when we tried to calculate the global stiffness matrix.  

 At this point, global mass matrix is going to be transformed to its normal 

form. 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% % % % % % % % % % % % % % % % % % % % % % % % % 
% calculation of mass matrix. THe methodology is the same 

with the calculation of the stiffness matrix% %  
% % % % % % % % % % % %  % % % % % % % % % % % % % % % % % % 

% % % % % % % % % % % % % % % % % % % % % % % % % % 

  
 metrhths2=0 
 mhkos_m=length(mass_matrix); 
 last_m=mass_matrix(end,2); 
 M=sparse(zeros(last_m)); 
 M_sum=sparse(zeros(last_m)); 
 for ii=1:mhkos_m 
     if mass_matrix(ii,3)~=0 
         x(ii)=mass_matrix(ii,1); 
         z(ii)=mass_matrix(ii,2); 
         metrhths2=ii 
     end 
 end 
 for ss=1:metrhths2 
     if x(ss),z(ss)~=0 
        M(x(ss),z(ss))=mass_matrix(ss,3); 
     end    
 end 

 

Regarding the code,the mass_matrix is a matrix in which the data from 

mass text file were imported and saved.It is constituted by three columns. 

The third one is the mass value ,the first and the second columns are the 

matrix’s number of the row and column respectively.The M matrix is a 

diagonal matrix which contains the mass values of the global mass matrix. 
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 The next step is the calculation of   (if it exists). The existence of    

depends on the value of the meter variable. 

 

% %%%%%%%% calculation of Mo%%%%%%%% 
 if meter~=number_mat&&meter~=0 

  
  for ee=1:meter 
     ret=SapModel.SetModelIsLocked(0); 
     

ret=SapModel.PropMaterial.SetWeightAndMass(char(mat_name{par

am(ee)}),1, 0) 
  end 
   ret = SapModel.Analyze.RunAnalysis(); 
     Mfilename=[name,'.TXM']; 

  
     mass0= importdata(Mfilename); 
     mass_matrix0=mass0.data; 
     mhkos_m0=length(mass_matrix0); 

      
     Mo=sparse(zeros(last_m)); 
     metrhths00=0 
     for ww=1:mhkos_m0 
      if mass_matrix0(ww,3)~=0 
         x0(ww)=mass_matrix0(ww,1); 
         z0(ww)=mass_matrix0(ww,2); 
         metrhths00=ww 

       
      end 
     end 
    for uu=1:metrhths00 
      if x0(uu),z0(uu)~=0 
        Mo(x0(uu),z0(uu))=mass_matrix0(uu,3); 
      end 
    end   
end 
if meter==number_mat 
    Mo=sparse(zeros(last_m)); 
end     

 

 

 After the calculation of   , follow the extraction and the calculation of   . 

The mass matrix depends the mass density of each component, thus a new 

parameter   must be defined. This parameter is related to mass density. 

The value of   is different from zero only for the component/material from 

which we want to extract the mass matrix, the other values of   are set 

zero. The value of   changes in every loop as it depends on the material 

that we examine. For example, if we want to parameterize the j material 

     while      for i=1….N and i j. 
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% % % % % % % % % % % % % % calculation of Mi% % % % % % % % 

% % % % % %%  
if meter~=0 
 for kk=1:meter 
     ret=SapModel.SetModelIsLocked(0); 
%    define the value of f where f is φ 
     prompt = {'the value of parameter φ:'}; 
     title = 'value of parameter φ for '; 
     ff = inputdlg(prompt,mat_name{param(kk)},[1 60]); 

  
      f(kk)=str2num(ff{1}) 
 %       the value φ that is not zero is the only one that 

relating with the material that is parameterized in this 

loop 
     for ll=1:meter 
       if ll~=kk 
        f(ll)=0; 
       end 
%        multiple the density with φ 
       density_new(param(ll))=density(param(ll))*f(ll); 

        
     end  
     for tt=1:meter 
%      pass the parameterized densities in Sap2000     
      

ret=SapModel.PropMaterial.SetWeightAndMass(char(mat_name{par

am(tt)}),1, density_new(param(tt))); 
     end 
%      analyze the model 
     ret = SapModel.Analyze.RunAnalysis(); 
%      extract Mi and bring them to their normal form 
     Mfilename=[name,'.TXM']; 

  
     mass1= importdata(Mfilename); 
     mass_matrixNew=mass1.data; 
     mhkos_m1=length(mass_matrixNew); 
     last_m1=mass_matrixNew(end,2); 
     M_new=sparse(zeros(last_m1)); 
     metrhths1=0 
     for yy=1:mhkos_m1 
      if mass_matrixNew(yy,3)~=0 
         xn(yy)=mass_matrixNew(yy,1); 
         zn(yy)=mass_matrixNew(yy,2); 
         metrhths1=yy 
            end 
     end 
    for gg=1:metrhths1 
      if xn(gg),zn(gg)~=0 
        M_new(xn(gg),zn(gg))=mass_matrixNew(gg,3); 
      end 
    end 
    Mi{kk,1}=mat_name(param(kk)); 
    Mi{kk,2}=(M_new-Mo); 
    Mi{kk,2}=Mi{kk,2}/f(kk); 
    fi(kk)=f(kk) 
 end 
  end 
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With regard to the code, M_new corresponds to the mass matrix of the 

parameterized component/material.The cell arrays of Mi contain the mass 

matrices for each parameterized component. Also, the values of   are 

saved in a matrix called fi. 

The model matrices have been calculated and can be saved in .mat files in 

order to be used for model updating. 

 

4. Modal Identification of a bridge using vibration 

measurements. 

 

4.1 Measurements data 

 

Based on the finite element model of a bridge model, developed with the Static 

and Dynamic Analysis Program Sap2000v19,the analytical values of frequencies 

and mode shapes of the arched bridge were calculated and used for more accurate 

identification of frequencies, velocities and damping rates of measured oscillation 

time histories. 

Two sets of measurements were used and analyzed in order for the mode shapes to 

be identified (figures 4.1 and 4.2). The location of the accelerometers on the 

structure plays a key role for obtaining optimum measurements(figure 

4.3).Obtaining measurements that provide maximum information regarding the 

dynamic modal characteristic 
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Figure 4.1. nm008 configuration 

  

 

 

 

Figure 4.2. nm009 configuration 
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Figure 4.3. The location of the sensors 

 

 

4.2 Identification of mode shapes and modal frequencies based 

on FE model 

 

The identified modal frequencies based on the finite element model’s modal 

analysis (the first fourteenth identified frequencies). 

 

Table 1. Frequencies based on Sap2000 modal analysis and on measurements 

Frequencies based on 

Sap2000 Model(Hz) 

Identified measured 

frequencies(Hz) 

1.076257 1.1332 

1.283569 1.5004 

1.9159 2.05 

1.993078 - 

2.462727 2.5511 
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3.148780 3.2928 

3.644488 3.925 

3.8759 4.4405 

4.48316 4.73 

4.54937 5.1036 

4.76772 5.4675 

5.91396 

5.91401 

6.02791 

6.05633 

6.13507 

6.14033 

6.15619 

 

 

5.925,6.1003(probably 

corresponds to one of 

these frequencies) 

 

6.35409 - 

6.71095 7.4562 

7.14691 7.8703 

 

 

Τhese frequencies were identified based on the FE model through a range of 

measurements.The  figure 3.6 shows the explored peaks of the time response 

spectrum of the arched bridge(for time history nm008). 
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Figure 4.4. The measured frequencies from time history nm008 

                    

The matching of frequencies is based on the form of mode shapes. The 

comparison of mode shapes for the above sets of frequencies is illustrated below: 

 

1. Modal frequency f=1.1332Hz 

 

 

Figure 4.5. Mode shape based on measurements (f=1.13Hz) 
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Figure 4.6. Oscillation of the bridge model for f=1.076257Hz (front view) 

 

 

Figure 4.7. Oscillation of the bridge model for f=1.076257Hz (top view) 

 

The approach of the mode shape of the finite element model was successful given 

that the two mode shapes are similar. The measured frequency is close to that of 

the finite element model (fmeasurements/fFEM=1.1332Hz/1.076257Hz=1.053).Our 

estimation regarding the distribution of the components of the mode shape was 

accurate. 
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2.  Modal frequency f=1.5004Hz 

 

 

Figure 4.8. Mode shape based on measurements (f=1.5004 Hz) 

 

 

Figure 4.9. Oscillation of the bridge model for f=1.283569Hz (front view) 
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Figure 4.10. Oscillation of the bridge model for f=1.283569 Hz (cross section) 

 

The approach of the mode shape of the finite element model was successful given 

that the two mode shapes are similar. The measured frequency is close to that of 

the finite element model (fmeasurements/fFEM=1.5004Hz/1.283569Hz=1.1686). Our 

estimation regarding the distribution of the components of the mode shape was 

accurate. 

                                                                                         

3. Modal frequency f=2.05 Hz 

 

 

Figure 4.11. Mode shape based on measurements (f=1.13 Hz) 
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Figure 4.12. Oscillation of the bridge model for f=1.915901 Hz (original view)  

 

 

 

Figure 4.13. Oscillation of the bridge model for f=1.915901 Hz (cross section) 

 

                                                                                            

The approach of the mode shape of the finite element model was successful given 

that the two mode shapes are similar. The measured frequency is close to that of 

the finite element model(fmeasurements/fFEM=2.05Hz/1.915901Hz=1.07). Our 

estimation regarding the distribution of the components of the mode shape was 

accurate. 
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4. The modal frequency 1.993078 Hz  

Βased on finite element model, the modal frequency 1.993078 Hz does not match 

any of the measurements due to the form of the mode shape. 

 

 

Figure 4.14. Oscillation of the bridge model for f=1.1993078 Hz (front view) 

 

 

 

 

Figure 4.15. Oscillation of the bridge model for f=1.1993078Hz (top view) 
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5. Modal frequency f=2.5511 Hz 

 

.  

Figure 4.16. Mode shape based on measurements (f=2.5511 Hz) 

 

 

Figure 4.17. Oscillation of the bridge model for f=2.462727Hz (front view) 
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Figure 4.18. Oscillation of the bridge model for f=2.462727 Hz (Cross Section) 

 

The approach of the mode shape of the finite element model was successful given 

that the two mode shapes are similar. The measured frequency is close to that of 

the finite element model.(fmeasurements/fFEM=2.5511Hz/2.462727Hz=1.03588). Our 

estimation regarding the distribution of the components of the mode shape was 

accurate. 

 

6.  Modal frequency f=3.2928 Hz 

 

 

Figure 4.19. Mode shape based on measurements (f=3.2928 Hz) 
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Figure 4.20. Oscillation of the bridge model for f=3.148780Hz (front view) 

 

 

 

Figure 4.21. Oscillation of the bridge model for f=3.148780Hz (cross section) 

  

The approach of the mode shape of the finite element model was successful given 

that the two mode shapes are similar. The measured frequency is close to that of 

the finite element model(fmeasurements/fFEM=3.2928Hz/3.148780Hz=1.03588). Our 

estimation regarding the distribution of the components of the mode shape was 

accurate. 
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7. Modal frequency f=3.9256 Hz 

 

 

Figure 4.22. Mode shape based on measurements (f=3.9256 Hz) 

 

 

 

Figure 4.23. Oscillation of the bridge model for f=3.644488 Hz (original view) 
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Figure 4.24. Oscillation of the bridge model for f=3.644488 Hz (cross section) 

 

 

 

Figure 4.25. Oscillation of the bridge model for f=3.644488 Hz (front view) 

 

The approach of the mode shape of the finite element model was successful given 

that the two mode shapes are similar. The measured frequency is close to that of 

the finite element model(fmeasurements/fFEM=3.9256Hz/3.64488Hz=1.0771). Our 

estimation regarding the distribution of the components of the mode shape was 

accurate. 
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8. Modal frequency f=4.4405 Hz 

                                                                                         

 

Figure 4.26.  Mode shape based on measurements (f=4.4405 Hz) 

 

 

Figure 4.27. Oscillation of the bridge model for f=3.8759 Hz (front view) 

 

 

Figure 4.28. Oscillation of the bridge model for f=3.8759Hz (top view) 
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Figure 4.28. Oscillation of the bridge model for f=3.8759 Hz (cross section) 

 

The approach of the mode shape is not absolutely accurate. The measured 

frequency is close to that of the finite element model (fmeasurements/fFEM=4.4405 

Hz/3.8759Hz=1.1457). More measurements should be taken in order to verify the 

mode shape. 

 

9. Modal frequency f=4.724 Hz 

 

 

Figure 4.29. Mode shape based on measurements (f=4.724 Hz) 
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Figure 4.30. Oscillation of the bridge model for f=4.48316 (front view) 

             

                                                                                  

 

Figure 4.31. Oscillation of the bridge model for f=4.48316 (top view) 

 

 

 

Figure 4.32. Oscillation of the bridge model for f=4.48316 (original view) 
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The approach of the mode shape of the finite element model was successful given 

that the two mode shapes are similar. The measured frequency is close to that of 

the finite element model (fmeasurements/fFEM=4.724Hz/4.48316 Hz=1.0537). Our 

estimation regarding the distribution of the components of the mode shape was 

accurate. 

 

10. Modal frequency f=5.1036 Hz 

                                                                                             

 

Figure 4.33. Mode shape based on measurements (f=5.1036 Hz) 

 

 

Figure 4.34. Oscillation of the bridge model for f=4.54937 Hz (front view) 
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Figure 4.35. Oscillation of the bridge model for f=4.54937Hz (original view) 

 

 

 

Figure 4.36. Oscillation of the bridge model for f=4.54937Hz (cross section) 

 

   

The approach of the mode shape of the finite element model was successful given 

that the two mode shapes are similar. The measured frequency is close to that of 

the finite element model(fmeasurements/fFEM=5.1036Hz/4.54937Hz=1.1218). Our 

estimation regarding the distribution of the components of the mode shape was 

accurate. 
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11. Modal frequency f=5.4675 Hz 

 

 

figure 4.37. Mode shape based on measurements (f=5.4675 Hz)                                      

  

 

Figure 4.38. Oscillation of the bridge model for f=4.76772Hz (cross section) 

 

 

Figure 4.39. Oscillation of the bridge model for f=4.76772Hz (front view) 
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The approach of the mode shape of the finite element model was successful given 

that the two mode shapes are close. The measured frequency is close to that of the 

finite element model(fmeasurements/fFEM=5.4675Hz/4.76772Hz=1.1468).Our 

estimation regarding the distribution of the components of the mode shape was 

accurate. 

 

 

12. The modal frequencies 5.925 and 6.1003 Hz leads to a distortion of the 

arched part of the bridge. 

 

Figure 4.40. Identifiable mode shapes of the arced part 

 

The representations of the mode shapes do not give us a clear image of the 

distortion of the bridge. Considering the mode shapes of the finite element model 

for frequencies close to the measured ones, we realize that 5.925 and 6.1003Hz 

constitute local model frequencies. 
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Figure 4.41. Mode shape for f=5.91396 Hz 

 

 

Figure 4.42. Mode shape for f=5.91401 Hz 

                                                                                  

 

Figure 4.43. Mode shape for f=6.02791 Hz 

 

 

Figure 4.44. Mode shape for f=6.05633 Hz 
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Figure 4.45. Mode shape for f=6.13507 Hz 

                              

 

Figure 4.46. . Mode shape for f=6.14033 Hz 

 

 

Figure 4.47. Mode shape for f=6.15619Hz 
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13. Modal frequency f=7.4562 Hz 

 

 

Figure 4.48. Mode shape based on measurements (f=7.4562 Hz) 

                                        

 

Figure 4.49. Oscillation of the bridge model for f=6.71095 Hz (cross section) 

 

 

Figure 4.50. Oscillation of the bridge model for f=6.71095Hz (front view) 
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The approach of the mode shape of the finite element model was successful given 

that the two mode shapes are similar. The measured frequency is close to that of 

the finite element model.(fmeasurements/fFEM=7.4562Hz/6.71095Hz=1.11).Our 

estimation regarding the distribution of the components of the mode shape was 

accurate. 

 

14.  Modal frequency f=7.8703 Hz 

 

 

Figure 4.51. Oscillation of the bridge model for f=6.71095 Hz (front view) 

 

 

Figure 4.52. Oscillation of the bridge model for f=7.14691 Hz  (front view) 
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Figure 4.53. Oscillation of the bridge model for f=7.14691 Hz  (original view) 

                                                                                            

The approach of the mode shape of the finite element model was successful given 

that the two mode shapes are similar. The measured frequency is close to that of 

the finite element model(fmeasurements/fFEM=7.8703Hz/7.14691Hz=1.1). Our 

estimation regarding the distribution of the components of the mode shape was 

accurate. 

 

Conclusion 

 

The aim was the identification of the basic mode shapes of the bridge’s deck and 

arched part. As expected , the mode shapes were transverse,longitudinal,flexural 

and torsional. Despite the fact that a small number of sensors were used our 

estimation in the basic mode shapes was accurate. The first fifteen measured 

frequencies were examined and the majority corresponds to the finite element 

model’s frequencies. 

 f=1.1332 Hz is a transverse modal frequency and gives the first 

identified mode shape. 

 f=1.5004 Hz is a longitudinal modal frequency and gives the 

second identified mode shape 
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 f=2.05 Hz is a torsional modal frequency and gives the third 

identified mode shape. 

 f=2.55 Hz is a flexural modal frequency and gives the fourth 

identified mode shape. 

 f=3.29 Hz is a flexural modal frequency and gives the fifth 

identified mode shape. 

 f=3.925 Hz is a transverse modal frequency and gives the sixth 

identified mode shape. 

 f=4.4403 Hz is a transverse modal frequency and gives the 

seventh identified mode shape. 

 f=4.73 Hz is a transverse modal frequency and gives the eight 

identified mode shape. 

 f=5.1036 Hz is a transverse modal frequency and gives the 

ninth identified mode shape. 

 f=4675 Hz is a longitudinal modal frequency and gives the 

tenth identified mode shape. 

 f=5.25 Hz and 6.1003 Hz are local frequencies and gives the 

eleventh and twelfth identified mode shape respectively. 

 f=7.4562 Hz is a flexural model frequency and gives the 

thirteenth identified mode shape. 

 f=7.8703 Hz is a transverse model frequency and gives the 

fourteenth identified mode shape. 

The small differences in prices and distributions of the mode shapes of the 

analytical model with those derived from measurements are due to the well- 

prepared and correct instrumental monitoring with very sensitive sensors as well 

as the good model simulation. The measured frequencies and mode shapes gave a 

good estimation of the model’s mode shapes. These modal data and the model’s 

matrices are used in model updating programs. 
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5. Model reduction 

 

5.1 Introduction 

 

Many modern mathematical models of real-life processes pose challenges when 

used in numerical simulations, due to complexity and large size (dimension). 

Model order reduction aims to lower the computational complexity of such 

problems, for example, in simulations of large-scale dynamical systems and 

control systems. By a reduction of the model's associated state space dimension or 

degrees of freedom, an approximation to the original model is computed which is 

commonly referred to as a reduced order model. Reduced order models are useful 

in settings where it is often unfeasible to perform numerical simulations using the 

complete full order model. 

Many software requires as inputs the stiffness and mass matrices of the model’s 

components as wells as the interface degrees of freedom of the components , the 

internal degrees of freedom of each component and the boundary degrees of 

freedom for each component. Thus we develop a software in order to extract this 

information. 

 

5.2 The kinds of the degrees of freedom of a component 

 

Degrees of freedom(DOFs) are a set of independent displacements/rotations that 

completely define the displaced position of the mass with respect to its initial 

position. It is the number of parameters that determine the state of a system. 

The DOFs of a structure are divided into internal and boundary DOFs. The 

boundary DOFs of a component  are the DOFs that exist in the interface of a 

component with the other components. The internal DOFs of a component are the 

DOFs that exist where there is no interface with other components. 
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Figure 5.1. The bridge Model 

                                                                                     

For example the deck’s boundary DOFs(as we see in figure 4.59) are in the 

interface among the deck,the arched part and the piers. The internal DOFs are 

where there is no interface. 

 

5.3  Calculation of the necessary degrees of freedom needed in 

model reduction( The presentation of the software) 

We have calculated the mass and stiffness matrices from each part of the model 

using the previous code. Now, the next information we need is the boundary, 

internal and interfacial degrees of freedom from each part of the structure. 

The nodes’ displacements in the interface are the same for each part that is 

involved. Thus, by comparing the stiffness matrices of each part we can find the 

boundary DOFs. The common positions where the non zero stiffness values are, 

reveal the boundary DOFs. The internal DOFs of the component are the rest DOFs 

that are not involved in this comparison.( the diagonal of the stiffness matrix 

contains non-zero elements in the degrees of freedom of the nodes of the 

component). 

The internal, boundaries and interface DOFs are calculated based on the 

comparison of    (stiffness matrices). Internal, boundaries, interfacial DOFs 

and    are important data used as inputs in model reduction softwares in order for 
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a simplified model to be created. This helps us avoid the computational 

complexity of huge structures.  

 We develop a software in order to extract the necessary DOFs based on the 

comparison of stiffness matrices. The software is listed below: 

% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% 

% % 
% % % Interface,internal,boundary DOFS for fixed joints% % %% % %% 

% %% % %%  
% % % % % % % % % % % % %% % %% % %% % %% % %% % %% % %% % %% % %% 

% % 
% % % % % the non define variables are resulted from the code 

sap_mat 
% % % % % % %% % % % % % %% % % % % % % 
% % % % % % % interface dofs% % % % % % % 
 % % % % % % %% % % % % % %% % % % % % % 
%  last2 is the total dofs or the size of the K matrix 
step=1; 
counter=1; 
 parts=1; 
 plus=0; 
for iel=step:number_mat-1; 
   for ie=(step+1):number_mat; 
     for jk=1:last2; 
%          the interface dofs exists where the digonals of the 

stiffness 
%          matrices of two components are non-zero 
         if SMi{iel}(jk,jk)~=0&&SMi{ie}(jk,jk)~=0; 
             dofs{parts}(1,counter)=jk; 
             counter=counter+1; 
             plus=plus+1 
         end 
     end     
          if counter~=1 
              name1=mat_name(iel); 
              name2=mat_name(ie); 
              pavla='-'; 
              str=strcat(name1,pavla,name2); 
              interface_dofs{parts,1} = str; 
              interface_dofs{parts,2} =dofs{parts} 

             
             parts=parts+1 
          end 
     counter=1   
   end 
   step=step+1 
end 
% % % % % % %% % % % % % %% % % % % % % 
% % % % % % % boundary dofs% % % % % % % 
 % % % % % % %% % % % % % %% % % % % % % 
 step=1; 
counter=1; 
 parts=1; 
 l1=0; 
for iel=step:number_mat; 
   for ie=1:number_mat; 
     if ie~=step   
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      for jk=1:last2; 
          %          the boundary dofs exists where the digonals 

of the stiffness 
%          matrices of the components are non-zero.Sometimes 

boundary and 
%          interface dofs are the same 
         if SMi{iel}(jk,jk)~=0&&SMi{ie}(jk,jk)~=0 
             b_dofs{parts,1}=mat_name(iel); 
             b_dofs{parts,2}(1,counter)=jk; 
             counter=counter+1; 
         end 
      end 
      if counter~=1 
          l1(parts)=counter-1 
      end 
     end 
     end 
   counter=1 
   parts=parts+1 
   step=step+1 
end 
% We compare all the stiffness matrices from all the components in 

order to find the boundary dofs so  
% same elements are appeared more than ones.We keep the unique 

dofs      
for iel=1:number_mat 

    boundary_dofs{iel,1}=mat_name(iel) 
    boundary_dofs{iel,2}=unique( b_dofs{iel,2}) 
end 
   % % % % % % %% % % % % % %% % % % % % % 
% % % % % % % internal dofs% % % % % % % 
 % % % % % % %% % % % % % %% % % % % % %           
   parts=1   
  counter=1      
 for ie=1:number_mat             
 for jk=1:last2 
     if SMi{ie}(jk,jk)~=0 
%   find all dofs(total for each component) 
             all_dofs{parts,1}=mat_name(ie); 
             all_dofs{parts,2}(1,counter)=jk; 
             counter=counter+1; 
     end 
 end 
 if counter~=1 
     parts=parts+1 
 end 
 counter=1 
 end 
%  number_mat=number of materials(materials with same properties 

and different name are received as different)/components             
for l=1:number_mat 
%     the dofs that are different from the boundary dofs are the 

internal 
%     dofs 
    internal_dofs{l}=setdiff(all_dofs{l,2},boundary_dofs{l,2}) 
    end   
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The variables mat_name,number_mat,last2 and SMi are calculated in the main 

software which is presented in section 2 and in Appendix A. 

5.4 Conclusion 

The degrees of freedom of each part of the structure as well as the calculated 

stiffness and mass matrices consist important data (inputs) for model reduction. 

Softwares dealing with model reduction use these data as inputs in order for a 

simplified model to be created. 

6. Conclusions 

 

Model updating 

By using the code we developed and by analyzing the modeshapes and modal 

frequencies that come from measurements, we have acquired the necessary data to 

be introduced into a model updating program. We have acquired the mass and 

stiffness matrices and the values of the parameters θ that are related with the finite 

element model as well as the measurement results. The aim is to use the model 

updating to solve the eigenvalue problem, previously mentioned, and the its 

results, for the appropriate value of θ, to be close to those of the measurements 

Model reduction 

With the help of the program developed for the bridge model, the internal, 

boundary and interfacial degrees of freedom of each part of the model were 

calculated. These degrees of freedom along with the mass and stiffness matrices of 

each parameterized part of the structure are the input data into a model reduction 

program 
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Appendix A: Software for extraction of the model’s 

stiffness and mass matrices in SAP2000 

 

Part 1: Inputs 

 

% % % % % insert material properties for each material in sap2000 
number_mat=input('number of structure material/components ' ) 
for i=1:number_mat 

  
prompt = {'material name:','modulus of elasticity:','coefficient 

of thermal expansion:','poisson ratio:','density:'}; 
title = 'material properties'; 

  

  
r = inputdlg(prompt,title,[1 60]); 
mat_name{i}=r{1}; 
E(i)= str2num(r{2}); 
A(i) = str2num(r{3}); 
Nu(i) = str2num(r{4}); 
density(i)=str2num(r{5}); 
end 

 

Part 2: Main body 

 

% pass data to Sap2000 as one - dimensional arrays 
feature ('COM_SafeArraySingleDim', 1); 
% pass non - scalar arrays to Sap2000 API by reference  
feature ('COM_PassSafeArrayByRef', 1); 
% create Sap2000 object 
% ginetai to interface 
SapObject = actxserver('CSI.SAP2000.API.SapObject'); 

  
 SapModel = SapObject . SapModel ; 
 ret = SapObject.ApplicationStart(); 

  
%  give the name of sap2000 file that is studies 
 name=input('dwse onoma arxeiou: ' , 's') 

  
 ret=SapObject.SapModel.File.OpenFile(['C:\Users\Spyros\Desktop\' 

,name, '.sdb']) 
 ret=SapModel.SetModelIsLocked(0); 

    
for k=1:number_mat 

  
    Enew(k)=E(k); 
    density_new(k)=density(k); 
%     pass material properties 
    

ret=SapModel.PropMaterial.SetMPIsotropic(char(mat_name{k}),E(k),Nu

(k),A(k)); 
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%     pass mass density 
    

ret=SapModel.PropMaterial.SetWeightAndMass(char(mat_name{k}),1, 

density(k)); 
end 

  
%  unlock the model 
 ret=SapModel.SetModelIsLocked(0); 
%  define load case in order to extract model matrices. 
%We have to define a load case dead or modal for the extraction of 

the matrices. 
%that is asked by sap2000.There is no difference in the matrices’ 

values 
 ret = SapModel.Analyze.SetSolverOption_1(1, 0,1,  'DEAD') 
%  analyze the model 
 ret = SapModel.Analyze.RunAnalysis(); 
% import data from M file 
Mfilename=[name,'.TXM']; 

  
mass = importdata(Mfilename); 
mass_matrix=mass.data; 
% import data from Stiffness file 
Sfilename=[name,'.TXK']; 
s = importdata(Sfilename); 
% Kt has 3 columns ,number of row and column,stiffness value 
Kt=s.data; 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% % % % % % % % % % % 
 % % % % % % % % % % % bring the stiffness matrix to its original 

form % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% % % % % % % % % %   
% matrix length  
mhkos=length(Kt) 
% first 2 colummns are the number of the row and column and the 

third the stiffness value 
% the last number of the column is the size of the matrix given 

that the 
% diagonial elements of the global stiffness matrix are non zero 

thus the  
% last element of the matrix describe its size 
% read the coordinates of the last element 
last1=Kt(end,2); 
Ktotal=sparse(zeros(last1)); 

  
% we find the non zero elements and keep their coordinates  

       
 for p=1:mhkos 
    if Kt(p,3)~=0 
%         if Kt(p,3)=0 then the values of i(p),j(p) are zero 
        i(p)=Kt(p,1); 
        j(p)=Kt(p,2); 
    end 
 end 
%  
for m=1:mhkos 
    % if Kt(p,3)=0 then the values of i(p),j(p) are zero so for 

the non 
    % zero i,j(where the non zero values on stiffness are) we save 

the 
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    % value of Kt in Ktotal 
%     So we create the lower half of the symmetric stiffness 

matrix 
   if i(m)j(m)~=0  
    Ktotal(i(m),j(m))=Kt(m,3); 
   end 
end 
% we bring stiffness matrix to its final form by add the upper 

symmetric half without the diagonal  
Ktotal=(Ktotal+(tril(Ktotal,-1)).') 

   
% unlock model.Every time that we analyze the model the model lock 

so we 
% have to unlock it. 
 ret=SapModel.SetModelIsLocked(0); 

  
meter=0 

  
for c=1:number_mat 
prompt = {'1:','2:'}; 

  
opts.Interpreter = 'tex'; 
answer = questdlg('Do you want to parameterized this 

material/component?' ,mat_name{c}, 'YES','NO','.') 

     

     

  
switch answer 
    case 'YES' 
        disp([answer ' done.']) 
        ans = 1; 
    case 'NO' 
        disp([answer ' ok.']) 
        ans = 2; 

     
end 
  if ans ==1 
%       the meter counts how many materials are going to be 
%       paremeterized.if meter<number_mat then Ko exists 
      meter=meter+1 
%       we keep the number of material which is going to be 

parameterized 
% this number corresponds to a material depending on the order 

that the material is given by the user 

       
      param(meter)=c 

         
  end 

   
end 

  
 % % % % % % % % % % % % % % % % % %% % % % % % % % % % % % % % % 

% % % % % 
  % % % % % % % % % % % % % % %calculation of Ko% % % % % % % % % 

% % % % %  
 % % % % % % % % % % % % % % % % % %% % % % % % % % % % % % % % % 

% % % % % 
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if meter~=number_mat&&meter~=0 
 for u=1:meter 
%     E=0 for every parameterized material through this sap2000 

command 

     
    

ret=SapModel.PropMaterial.SetMPIsotropic(char(mat_name{param(u)}),

0,Nu(param(u)),A(param(u))); 
  end 

  
% run model analysis on order to extract stiffness matrix.this 

stiffness matrix is Ko 
    ret = SapModel.Analyze.RunAnalysis(); 
    % import data from the stiffnes text files 
     Sfilename=[name,'.TXK']; 
     s = importdata(Sfilename); 
     K_o=s.data; 
     mhkos0=length(K_o); 

       
     Ko=sparse(zeros(last1)); 

           
%      bring Ko to its normal form 
   for dd=1:mhkos0 
    if K_o(dd,3)~=0 
        metrhths0=dd 
        i(dd)=K_o(dd,1); 
        j(dd)=K_o(dd,2); 
    end 
   end 
 for nn=1:metrhths0 
   if i(nn)j(nn)~=0  
    Ko(i(nn),j(nn))=K_o(nn,3); 
   end 
 end     
% final form of Ko 
       Ko=(Ko+(tril(Ko,-1)).'); 

        
end  

  
if meter==number_mat 
    Ko=sparse(zeros(last1)); 
end 

  
 % % % % % % % %% % % % % % % %% % % % % % % %% % % % % % % % 
 % % % % % % % %calculation of Ki % % % % % % % % % % % % % % %  
 % % % % % % % %% % % % % % % %% % % % % % % %% % % % % % % %% %  
if meter~=0 

  
 K_sum=sparse(zeros(last1)) 
 %    every loop refers to a material that is going to be 

paremeterized 
 for q =1:meter 

   
   ret=SapModel.SetModelIsLocked(0); 
%    keep the number of material that is parameterized in this 

loop 
       number_mat1=q 
%        give value of θ for the material    
   prompt = {'the value of parameter θ:'}; 



 
  65 

 

    title = 'value of parameter θ for '; 
    th = inputdlg(prompt,mat_name{param(q)},[1 60]); 
    %        b is θ   
    b(q)=str2num(th{1}) 

  
%      we kept the parameterized material. θ for others materials 

is going 
%      to be zero.this changes in every loop.only the material 

that is 
%      analyzed (in every loop) has no zero value of θ. 
     for l=1:meter 
       if l~=q 
         b(l)=0; 
       end 
% multiple the modulus of elasticity of each material with θ 
       Enew(param(l))=E(param(l))*b(l); 

        
     end  

    

    
%     for every material pass the value of new modulus of 

elasticity in 
%     sap2000 
     for t=1:meter 
      

ret=SapModel.PropMaterial.SetMPIsotropic(char(mat_name{param(t)}), 

Enew(param(t)),Nu(param(t)),A(param(t))); 
     end 
%      analyze the model 
     ret = SapModel.Analyze.RunAnalysis(); 
%      import stiffness matrix and bring it to its normal form 
     Sfilename=[name,'.TXK']; 
     s = importdata(Sfilename); 
     K_new=s.data; 
     mhkos1=length(K_new); 
     last2=K_new(end,2); 
     K_i=sparse(zeros(last2)); 
     sum=0 

      
     k=0 
     K_new_end=s.data(:,end); 
   for r=1:mhkos1 
    if K_new(r,3)~=0 
        metrhths=r; 
        i(r)=K_new(r,1); 
        j(r)=K_new(r,2); 
    end 
   end 

  
 for n=1:metrhths 
   if i(n)j(n)~=0  
    K_i(i(n),j(n))=K_new(n,3); 
   end 
 end 

  
       K_i=(K_i+(tril(K_i,-1)).'); 
% The Ki matrices are created 

          
       Ki{q,1}=mat_name(param(q)); 
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%        if there is Ko then the K of the spesific part is the K_i 

that was 
%        calculated above minus Ko. 
       Ki{q,2}=(K_i-Ko); 
       Ki{q,2}=Ki{q,2}/b(q); 
%        the values of θ 
      thita(q)=b(q); 

  

   
 end  
end 

     
if meter==0 
    disp([no parameterized material']) 
end 
 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% % % % % % % % % % % % % % % % % % % % % % 
% calculation of mass matrix. THe methodology is the same as the 

calculation of the stiffness matrix% %  
% % % % % % % % % % % %  % % % % % % % % % % % % % % % % % % % % % 

% % % % % % % % % % % % % % % % % % % % % % % 

  
 metrhths2=0 
 mhkos_m=length(mass_matrix); 
 last_m=mass_matrix(end,2); 
 M=sparse(zeros(last_m)); 
 M_sum=sparse(zeros(last_m)); 
 for ii=1:mhkos_m 
     if mass_matrix(ii,3)~=0 
         x(ii)=mass_matrix(ii,1); 
         z(ii)=mass_matrix(ii,2); 
         metrhths2=ii 
     end 
 end 
 for ss=1:metrhths2 
     if x(ss),z(ss)~=0 
        M(x(ss),z(ss))=mass_matrix(ss,3); 
     end 

          

      
 end 
 % %%%%%%%% calculation of Mo%%%%%%%% 
 if meter~=number_mat&&meter~=0 

  
  for ee=1:meter 
     ret=SapModel.SetModelIsLocked(0); 
     

ret=SapModel.PropMaterial.SetWeightAndMass(char(mat_name{param(ee)

}),1, 0) 
  end 
   ret = SapModel.Analyze.RunAnalysis(); 
     Mfilename=[name,'.TXM']; 

  
     mass0= importdata(Mfilename); 
     mass_matrix0=mass0.data; 
     mhkos_m0=length(mass_matrix0); 

      
     Mo=sparse(zeros(last_m)); 
     metrhths00=0 
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     for ww=1:mhkos_m0 
      if mass_matrix0(ww,3)~=0 
         x0(ww)=mass_matrix0(ww,1); 
         z0(ww)=mass_matrix0(ww,2); 
         metrhths00=ww 

       
      end 
     end 
    for uu=1:metrhths00 
      if x0(uu),z0(uu)~=0 
        Mo(x0(uu),z0(uu))=mass_matrix0(uu,3); 
      end 
    end   
end 
if meter==number_mat 
    Mo=sparse(zeros(last_m)); 
end  
% % % % % % % % % % % % % % calculation of Mi% % % % % % % % % % % 

% % %%  
if meter~=0 
 for kk=1:meter 
     ret=SapModel.SetModelIsLocked(0); 
%    define the value of f where f is φ 
     prompt = {'the value of parameter φ:'}; 
     title = 'value of parameter φ for '; 
     ff = inputdlg(prompt,mat_name{param(kk)},[1 60]); 

  
      f(kk)=str2num(ff{1}) 
%       the value φ that is not zero is the only one that relating 

with the material that is parameterized in this loop 
     for ll=1:meter 
       if ll~=kk 
        f(ll)=0; 
       end 
%        multiple the density with φ 
       density_new(param(ll))=density(param(ll))*f(ll); 
     end  
     for tt=1:meter 
%      pass the parameterized densities in Sap2000     
      

ret=SapModel.PropMaterial.SetWeightAndMass(char(mat_name{param(tt)

}),1, density_new(param(tt))); 
     end 
%      analyze the model 
     ret = SapModel.Analyze.RunAnalysis(); 
%      extract Mi and bring them to their normal form 
     Mfilename=[name,'.TXM']; 
     mass1= importdata(Mfilename); 
     mass_matrixNew=mass1.data; 
     mhkos_m1=length(mass_matrixNew); 
     last_m1=mass_matrixNew(end,2); 
     M_new=sparse(zeros(last_m1)); 
     metrhths1=0 
     for yy=1:mhkos_m1 
      if mass_matrixNew(yy,3)~=0 
         xn(yy)=mass_matrixNew(yy,1); 
         zn(yy)=mass_matrixNew(yy,2); 
         metrhths1=yy 

       
      end 
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     end 
    for gg=1:metrhths1 
      if xn(gg),zn(gg)~=0 
%           may we have Mo so  
        M_new(xn(gg),zn(gg))=mass_matrixNew(gg,3); 
      end 
    end 
    Mi{kk,1}=mat_name(param(kk)); 
    Mi{kk,2}=(M_new-Mo); 
    Mi{kk,2}=Mi{kk,2}/f(kk); 
    fi(kk)=f(kk) 
 end   
end 
% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% 

% %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % % 
% calculate Ki for each material given that may we did not 

parameterize all the components  in the previous process% %  
% % % % % % % % % % % % %% % %% % %% % %% % %% % %% % %% % %% % %% 

% %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % % 

 
  for jk=1:number_mat 
       ret=SapModel.SetModelIsLocked(0); 
       for iel=1:number_mat  
       

ret=SapModel.PropMaterial.SetMPIsotropic(char(mat_name{iel}),E(iel

),Nu(iel),A(iel)); 
       

ret=SapModel.PropMaterial.SetWeightAndMass(char(mat_name{iel}),1, 

density(iel)); 
       end  
       for hv=1:number_mat 
           if hv~=jk 
               ret=SapModel.SetModelIsLocked(0); 
ret=SapModel.PropMaterial.SetMPIsotropic(char(mat_name{hv}),0,Nu(h

v),A(hv)); 
           end 
       end 
        ret = SapModel.Analyze.RunAnalysis(); 
     Sfilename=[name,'.TXK']; 
     s = importdata(Sfilename); 
     SM=s.data; 
     mhkos1=length(SM); 
     last2=K_new(end,2); 
     S_1=sparse(zeros(last2)); 

     
   for r=1:mhkos1 
     if SM(r,3)~=0 
        metrhths=r; 
        i(r)=SM(r,1); 
        j(r)=SM(r,2); 
     end 
   end 
  for n=1:metrhths 
    if i(n)j(n)~=0  
      S_1(i(n),j(n))=SM(n,3); 
    end    
  end 

  S_1=(S_1+(tril(S_1,-1)).'); 
   SMi{jk}=S_1; 
  End 
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Appendix B: Explanation on how to use the SAP2000 API 

and how the SAP2000 API functions are 

documented.  

 

All the used SAP2000 API functions are listed here 

 SapObject = actxserver('CSI.SAP2000.API.SapObject') . This function 

starts the interface between the two programs. 

 SapModel= SapObject.SapModel  Creates the SapModel object 

 SapObject.ApplicationStart. This function starts the Sap2000 application. 

 SapObject.SapModel.File.OpenFile. This function opens an existing 

Sap2000 file. The file name must have an sdb, $2k, s2k, xls, or mdb 

extension. Files with sdb extensions are opened as standard Sap2000 files. 

Files with $2k and s2k extensions are imported as text files. Files with xls 

extensions are imported as Microsoft Excel files. Files with mdb 

extensions are imported as Microsoft Access files. 

 SapObject.SapModel.SetModelIsLocked. This function unlocks the model. 

With some exceptions, definitions and assignments can not be changed in a 

model while the model is locked. If an attempt is made to change a 

definition or assignment while the model is locked and that change is not 

allowed in a locked model, an error will be returned. 

 SapObject.SapModel.PropMaterial.SetMPIsotropic. This function sets the 

material directional symmetry type to isotropic, and assigns the isotropic 

mechanical properties(The modulus of elasticity, Poisson’s ratio, The 

thermal coefficient) 

 SapObject.SapModel.PropMaterial.SetWeightAndMass. This is either 1 or 

2, indicating what is specified by the Value item. 

1 = Weight per unit volume is specified 

2 = Mass per unit volume is specified 

 

If the weight is specified, the corresponding mass is program calculated 

based on the specified weight. Similarly, if the mass is specified, the 

corresponding weight is program calculated based on the specified mass. 
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Appendix C: Instructions for the identification of 

Model’s properties in SAP2000 

 

A.   The identification of component’s material and their 

properties in SAP2000 

 

 

               Figure C.1. The original model 

 

Step 1: view the colors 

To identify the different parts of the structure the user can click on Display options 

toolbar button>General options. The options on this form can be used to 

selectively display various features associated with objects in the model.  

View by Color of drop-down list. This list can be used to specify that the model 

be displayed using Colors associated with Objects (as assigned using the Options 

menu > Graphics Colors > Display command), Section properties (as defined 

using the Define menu > Section Properties subcommands), Material properties 

(as defined using the Define menu > Materials command), Groups (see next 

bullet), Frame Design Type (as determined from the object, section, and material 

properties), or full color or black and white "color"  using a color printer. By 

clicking on materials the user can see the different materials in the structure(this 

assumes that every material has different color).(figure C.2) 

http://docs.csiamerica.com/help-files/etabs/Menus/Options/Graphics_Colors/Display_Colors.htm
http://docs.csiamerica.com/help-files/etabs/Menus/Options/Graphics_Colors/Display_Colors.htm
http://docs.csiamerica.com/help-files/etabs/Menus/Define/Material_Properties/Material_Properties.htm
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By selecting view by color of materials the user can see all the different materials 

used by the model.(figure C.3) 

 

                                                               (a) 

 

 (b) 

Figure C.2. Display Options               

 

 
Figure C.3. The materials of the structure (viewed by color)  

 

It is obvious that there are three different materials in the structure. 
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Step 2: Identify the used materials 

 

In the Define menu>Material the user can see the materials that exist in Sap2000. 

In Modify/Show Material section, he can see the properties of the materials and 

understand which material is used in the model(depending on its color).(figures 

C.4 , C.5) 

 

 

  Figure C.4. The Define Menu                            

 

 

 

 

Figure C.5. The Materials 
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Figure C.6. The properties of A992Fy50 material 

       

B. Separation of parts in SAP2000 

 

Step 1: Select the parts  

 

Sometimes we have to separate some parts of a structure in order to examine them. 

As we saw in figure 1 the deck and the arched part consists a component. We want 

to separate these two components in SAP2000 in order to calculate the stiffness 

and mass matrix of each part. For example we select to modify the deck. 

 

Step 2: Separation process 

 

The modified part must have the same properties as it had before the modification. 

Thus, we create a copy of the deck’s material. In the Define menu>Material>Add 

copy of Material a copy of the material is created.(figure C.7) 
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Figure C.7. The deck’s material is A992Fy50 so we create a copy of it 

 

The properties of the copied material are the same with the original one (figures 

C.8). 

 

Figure C.8. The properties of the copied material 

 

The copied material should have different name and color from the original one in 

order to distinguish them.(we select material name MAT and purple color) 



 
  75 

 

Now we change the deck’s material from A992Fy50 to MAT. This can be done by 

selecting an element from the deck ( each element has a frame) . In section 

property there is the name of element’s frame. We  can click on the frame’s name 

and after that we change its material to MAT(figures C.9, ). 

 

 

Figure C.9. Click on this element and after that on its frame called long_nerves 

 

 

 

Figure C.10. For this frame we click on Modify/Show Property section and change 

the material to MAT. 
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Figure C.11. The figure of the model after the modification 

 

As we see ,all elements with the same properties were changed color. These 

elements that do not change their material have a different kind of frame. The 

same process is followed in order to modify the rest of deck’s elements.(figures 

C.12,C.13) 

 

 

Figure C.12 These kind of elements are selected that have frame called traverse. 

Click on frame’s name. 
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Figure C.13 The frame’s material is changed to MAT 

 

 

 

 

Figure C.14. The figure of the model after modification 

 

One last set of elements should be modified in order to distinguish the deck from 

the arched part. The process is the same as previously. 
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The final form of the model is depicted in Figure C.15. 

 

Figure C.15. Model’s final form  

In the case that we want to study only one element the process is quite different. 

 

C.   Study one element 

 

Step 1: choose the element 

 

Initially we have to choose which element we want to examine. For example, an 

element of the deck is selected (Figure C.16) 

 

Figure C.16. The selected element 
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Step 2: Modification of the element 

 

After the selection of the element, we have to modify it. There many elements 

with the same properties with the selected one, thus the discrimination of the 

specific element is based on its frame’s modification. 

We have to create a copy of its frame by clicking on the frame’s name and after 

that on the Add a Copy of Property section (Figures C.17,C.18). 

 

 

Figure C.17.The frame called long_nerves is copied 

 

 

Figure C.18. FSEC2 is a copy of the frame called long_nerves and replaces 

long_nerves frame only in this element. 
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Next we have to create a copy of the material called A992Fy50 in order to replace 

it and the discrimination is done (Figure C.19) 

 

 

Figure C.19.The selected element after the discretization.(with orange color) 

 

 

Conclusion 

 

The example that was presented in this appendix illustrates the parts separation’s 

general idea in SAP2000. The user can separate one part from the others based on 

this methodology. 

This separation helps us to examine each part of the structure. For example, after 

the deck’s and arced part separation we have the ability to extract stiffness and 

mass matrices from both parts separately. 
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Appendix D: Software for Experimental Modal Analysis 

 

The software is written in MATLAB2011a and consists of four independent 

modulus which are: Data, Pre-Processing, Modal Identification, Post-Processing. 

The main menu of the software is depicted in figure D.1. 

 

 

Figure D.1. Main menu 

 

 

 

The Data module is used to load data from .mat files which the program is going                     

to process. Also results from previous estimations can be loaded (Figure D.2). 
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Figure D.2 

 

 

More specifically the data can be: 

 Experimental measurements of the acceleration(Time 

Histories) of multiple sensors. In the Insert Time Histories 

section the user must load a .mat file which contains the 

measured by sensors acceleration, the label of each sensor and 

the  discretization time. The time histories of multiple sensors 

need to be arranged in the columns of a matrix named accel. 

Each column represents the measurement of the specific 

sensor. Furthermore the sensors label must be stored in a 

matrix named channeltext and time in a variable named dt. It 

is important that the same names to be followed  otherwise the 

program will not run. An example of  6 sensors is shown in 

figure D.3. 
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Figure D.3. accel=measurement acceleration, dt=time between measurements,    

channeltext=label of each sensor 

 

It is possible to load more than one measurements. If we have to measure a large 

structure as a bridge with a small number o sensors we have to take multiple 

measurements from different positions. That is called sensor configuration.   

 In the Insert Modal Identification results section saved 

results can be loaded from previous sessions in order to not be 

reproduced. 

 In the Insert Geometry section the user can load a .mat file 

that contains variables which define the geometry of the 

structure. The geometry is a figure of the structure and consists 

of the nodes ,their degrees of freedom and lines(elements) 

which connect the nodes. The geometry .mat file must contain 

a matrix named node_coords which contains the coordinates 

of each node, a matrix named node_dofs which contains the 

degrees of freedom of each node, a matrix el_nodes which is 

the element connectivity and a matrix named reference_dofs 

which contains the common reference degrees of freedom. In 

every sensor configuration we change the location of the 

sensors but some of them should remain common. The names 

of matrices should be the same with the above ones in order for 

the software to run correctly. An example of a bridge geometry 
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.mat file for the previous measurements is illustrated in figure 

D.4. 

 

Figure D.4. node_coords=nodes coordinates, node_dofs=degrees of freedom of 

each node, el_nodes=nodes of each element,reference_dofs=common sensors 

 

 

 In Convert section measurements from another format can be 

converted in to a .mat file in order to be used by the software. 

 

After the user loads the necessary .mat files, he or she continue with the Pre-

Processing stage where the Power Spectral Density (PSD),the Singular Value 

Spectrum (SVS) of the ambient acceleration time histories and Time 

Histories(figure D.5, figure D.6,figure D.7 respectivly)can be visually inspected. 

Such inspection can provide information about the modal frequencies and 

damping ratios of the structure. In this stage the user gives an estimation of the 

modal frequencies which are to going to be used in Modal Identification.  

Each sensor configuration can be inspected individually in the pre-processing step, 

and specific channels of a configuration can be selected or de-selected from being 

used in the Modal Identification process. This feature serves to potentially remove 

an unwanted sensor from the analysis because of possible bad recording. It is 

worth mentioning that SVS main merit derives from the fact that it has the ability 
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to separate the noise from the signal, and that it can reveal closely spaced modes 

that are not apparent in the PSD.  

 

Figure D.5. PSD of a single configuration using each sensor. 

 

Figure D.6. SVS of a single configuration using each sensor. 
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          Figure D.7. Time Histories of a single configuration using each sensor. 

  

 

 

      Figure D.8. Selection/de-selection of sensors and selection of configurations. 
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The Show Bandwidth mode, which is found underneath the graph, gives the ability 

to zoom in a specific area (figure D.9). 

 

 

Figure D.9 

 

 

At the top of the graph there is a Graph mode which provides PSD,SVS and Time 

Histories diagrams and the PSD mode provides information about PSD for each 

sensor (figure D.10 and D.11). 

 

 

Figure D.10 

 

 

 

 

Figure D.11 
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After obtaining an estimate of the natural frequencies of the structure from 

observing the SVS or PSD(as it shown in figure D.5 and figure D.6)  the user can 

define the frequency bands which contain a natural frequency .By clicking the 

Bands button the user can mention the space where one of the natural frequencies 

is. These estimations can be saved for other analysis. An example is depicted in 

figure D.12. 

 

 

Figure D.12.  Frequency bands(an example for two frequencies). 

 

Next step is The Modal Identification which uses a Bayesian methodology in order 

to extract the modal frequencies, mode shapes, and modal damping ratios from the 

measured ambient acceleration time histories of each sensor configuration.(figure 

D.13) 
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Figure D.13. Modal Identification 

After obtaining the modal properties the next step is to visualize the model in Post-

Processing.(figure D.14) 

 

 

Figure D.14.The Shape is formed for two configurations nm008,nm009 

                                                                                              

In order to visualize the mode shapes it is necessary to combine all the local mode 

shapes identified from each configuration to produce the full mode shape at all 

measured degrees of freedom. The user, must also determine the measured points  

of the structure as the degrees of freedom in which each sensor measuring for each 

configuration. This can be done in the Define/Edit window (figure D.15) 
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In the first column the user selects (or de-selects) the wanted(or unwanted) sensors 

for each configuration, and in the second column defines the direction of each 

sensor. After that he selects the nodes where the sensors are and clicks in Select 

Nodes. These steps defines where the sensors are and in which direction they are 

measuring. This process can be saved in order to be used in another analysis 

(figure D.16). 

 

Figure D.15. Define/Edit menu 

 

 

 

Figure D.16. Selected DOFs and selected nodes 
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Figure D.17. Nodes where the sensors were placed for each configuration 

The status of all the sensor configurations can be viewed from the Status button of 

the main Post-processing window.(figure D.18) 

 

 

Figure D.18. Configurations Status 

 

After the placing of the sensors the mode shapes can be assembled from the 

Assemble button and afterwards the user can view the mode shapes by clicking in 

the Deform Shape button (figure D.19). 
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Figure D.19.Deform shape menu 

 

Figure D.20. Mode shape for frequency 1.50 Hz 

 

Usually not all geometry points were measured by a sensor, and those points have 

no associated mode shape component. However, for visualization purposes we 

would like to associate those points with some other measured points in order for 

them to deform as well. This is done from the Inactive DOFs menu. The inactive 

DOFs deform as the means of the two associated DOFs (figure D.21). 
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Figure D.21.The inactive DOF 8 becomes active while is associated with 6 and 

12(active DOFs) 

The Configuration button provides information and the results, concerning all 

configuration.(figure D.22) 

 

Figure D.22.Configuration Details 



 
  94 

 

View options button shows/hides details of the model.(figure D.23) 

 

Figure D.23 

 

After the analysis of the model by clicking the export button the user can export 

the mode shapes as a .mat file or as an image (figure D.23). 

 

 

Figure D.24 

 

The mode shapes have been saved in a .mat file. The form of this file is presented 

in figure D.25 

 

Figure D.25 
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