

University of Thessaly

 Department of Mechanical Engineering

THESIS

A framework for modal identification and finite element model

updating using output-only vibration measurements

ARVANITIS SPYRIDON

Volos

July 2018

 1

Δςσαπιζηίερ

Θα ήθελα να εςσαπιζηήζου θεπμά ηον επιβλέπονηα ηηρ διπλυμαηικήρ μος

επγαζίαρ ηον Καθηγηηή κ. Κ. Παπαδημηηπίος, για ηην πολύηιμη βοήθεια και

καθοδήγηζή ηος καηά ηη διάπκεια εκπόνηζηρ ηηρ επγαζίαρ. Δπιπλέον, οθείλυ

εςσαπιζηίερ ζηα ςπόλοιπα δύο μέλη ηηρ ηπιμελούρ εξεηαζηικήρ επιηποπήρ, ηον

Καθηγηηή κ. Σπύπο Καπαμάνο και ηην Γιδάζκοςζα κα. Δλένη Καμούηζη. Δπί

πποζθέηυρ θα ήθελα να εςσαπιζηήζυ ηον κύπιο Πανέηζο για ηα δεδομένα και ηιρ

πληποθοπίερ πος μος έζηειλε ώζηε να μποπέζυ να πποσυπήζυ με ηην επγαζία

καθώρ και ηον Κώζηα Απγύπη πος μαρ παπασώπηζε ηον ππόγπαμμα ηος ώζηε να

μποπέζοςμε να δοςλέτοςμε.

Ακόμη, θα ήθελα να απεςθύνυ ένα μεγάλο εςσαπιζηώ ζηοςρ θίλοςρ και ζηην

οικογένεια μος, για ηην αμέπιζηη ζςμπαπάζηαζη και ςποζηήπιξη ηοςρ καθ’ όλη

ηη διάπκεια ηυν ζποςδών μος.

 2

Abstract

This thesis is intended to illustrate the process followed to achieve the updating of

finite element models of structures. The way to obtain and calculate the data to be

used as inputs from a model updating program is presented. Such data are the mass

and stiffness matrices of the finite element model, as well as the identifiable

frequencies and modeshapes that arise from the real measurements analysis. The

calculation and the saving of the required matrices of the model are made with the

help of a commercial finite element program named SAP2000 and with the

creation of a code in matlab. The code interacts with the commercial finite element

program in order to parameterize the different parts of the model and extract the

necessary stiffness and mass matrices at desired substructuring level. The

frequencies and modeshapes result from the analysis of measurements via a Modal

identification program and are compared with those of the finite element model's.

Finally, reference is made to the model reduction method and to the procedure to

be followed in order to achieve it. With the help of a code created in matlab, the

input data are calculated in order to be used in a model reduction program.The

framework is demonstrated using an application on a bridge structure.

 3

CONTENTS

1. Introduction .. 6

1.1. The need for Model updating... 6

1.2. The importance of Model reduction ... 8

1.3. Ouline of this work .. 9

2. Model Updating .. 11

2.1 Introduction .. 11

2.2 Structural Model Class ... 12

2.3 Substructuring and FE Model Parameterization 12

2.4 Linear Relation Between Model Matrices and Parameters 13

2.5 An Introduction to Model Updating Based on Modal Properties 13

2.5.1 Introduction…………………………………………………… 13

2.5.2 Formulation……………………………………………………. 14

3. The process of extraction of model’s stiffness and mass

matrices(presentation of the sotware) .. 15

 3.1 The FE Model…………………………………………………………15

 3.2 Software for acquisition of stiffness and mass matrices of model's

components………………………………………………………… .17

3.2.1 The acquisition of global stiffness matrix(before the parameterization

process), Ko, Ki………………………………………………………...19

3.2.2 The acquisition of global mass matrix(before the parameterization

process),Mo,Mi ………………………………………………………...25

4. Modal Identification of a bridge using vibration measurements. 28

4.1 Measurements data…………………………………………..…..…...28

4.2 Identification of mode shapes and modal frequencies based on FE

model………………………………………………………………....30

5. Model reduction .. 56

5.1 Introduction…………………………………………………………. .56

5.2 The kind of the degrees of freedom of a component……………………56

5.3 Calculation of the necessary degrees of freedom needed in model

reduction (the presentation of the software)……………………… ...57

5.4 Conclusion…………………………..60

 4

6. Conclusions ... 60

Appendix A……………………………………………………………………....61

Appendix B……………………………………………………………..………..69

Appendix C……………………………………………………………………....70

Appendix D……………………………………………………………………....81

Bibliography…………………………………………………………………......95

LIST OF FIGURES

Figure 3.1. The bridge Model made in SAP2000 ... 15

Figure 3.2. Structure’s components ... 16

figure 4.1. nm008 configuration ... 29

Figure 4.2. nm009 configuration ... 29

Figure 4.3. The location of the sensors ... 30

Figure 4.4. The measured frequencies from time history nm008 ... 32

Figure 4.5. Mode shape based on measurements (f=1.13Hz) .. 32

Figure 4.6. Oscillation of the bridge model for f=1.076257Hz (front view) 33

Figure 4.7. Oscillation of the bridge model for f=1.076257Hz (top view) 33

Figure 4.8. Mode shape based on measurements (f=1.5004 Hz) .. 34

Figure 4.9. Oscillation of the bridge model for f=1.283569Hz (front view) 34

Figure 4.10. Oscillation of the bridge model for f=1.283569 Hz (cross section) 35

Figure 4.11. Mode shape based on measurements (f=1.13 Hz) .. 35

Figure 4.12. Oscillation of the bridge model for f=1.915901 Hz (original view) 36

Figure 4.13. Oscillation of the bridge model for f=1.915901 Hz (cross section) 36

Figure 4.14. Oscillation of the bridge model for f=1.1993078 Hz (front view) 37

Figure 4.15. Oscillation of the bridge model for f=1.1993078Hz (top view) 37

Figure 4.16. Mode shape based on measurements (f=2.5511 Hz) .. 38

Figure 4.17. Oscillation of the bridge model for f=2.462727Hz (front view)............................ 38

Figure 4.18. Oscillation of the bridge model for f=2.462727 Hz (Cross Section) 39

Figure 4.19. Mode shape based on measurements (f=3.2928 Hz) .. 39

Figure 4.20. Oscillation of the bridge model for f=3.148780Hz (front view)............................ 40

Figure 4.21. Oscillation of the bridge model for f=3.148780Hz (cross section) 40

Figure 4.22. Mode shape based on measurements (f=3.9256 Hz) .. 41

Figure 4.23. Oscillation of the bridge model for f=3.644488 Hz (original view) 41

Figure 4.24. Oscillation of the bridge model for f=3.644488 Hz (cross section) 42

Figure 4.25. Oscillation of the bridge model for f=3.644488 Hz (front view) 42

Figure 4.26. Mode shape based on measurements (f=4.4405 Hz) ... 43

Figure 4.27. Oscillation of the bridge model for f=3.8759 Hz (front view) 43

 5

Figure 4.28. Oscillation of the bridge model for f=3.8759 Hz (cross section) 44

Figure 4.29. Mode shape based on measurements (f=4.724 Hz) .. 44

Figure 4.30. Oscillation of the bridge model for f=4.48316 (front view) 45

Figure 4.31. Oscillation of the bridge model for f=4.48316 (top view) 45

Figure 4.32. Oscillation of the bridge model for f=4.48316 (original view) 45

Figure 4.33. Mode shape based on measurements (f=5.1036 Hz) .. 46

Figure 4.34. Oscillation of the bridge model for f=4.54937 Hz (front view) 46

Figure 4.35. Oscillation of the bridge model for f=4.54937Hz (original view) 47

Figure 4.36. Oscillation of the bridge model for f=4.54937Hz (cross section) 47

figure 4.37. Mode shape based on measurements (f=5.4675 Hz) ... 48

Figure 4.38. Oscillation of the bridge model for f=4.76772Hz (cross section) 48

Figure 4.39. Oscillation of the bridge model for f=4.76772Hz (front view) 48

Figure 4.40. Identifiable mode shapes of the arced part ... 49

Figure 4.41. Mode shape for f=5.91396 Hz ... 50

Figure 4.42. Mode shape for f=5.91401 Hz ... 50

Figure 4.43. Mode shape for f=6.02791 Hz ... 50

Figure 4.44. Mode shape for f=6.05633 Hz ... 50

Figure 4.45. Mode shape for f=6.13507 Hz ... 51

Figure 4.46. . Mode shape for f=6.14033 Hz ... 51

Figure 4.47. Mode shape for f=6.15619Hz ... 51

Figure 4.48. Mode shape based on measurements (f=7.4562 Hz) .. 52

Figure 4.49. Oscillation of the bridge model for f=6.71095 Hz (cross section) 52

Figure 4.50. Oscillation of the bridge model for f=6.71095Hz (front view) 52

Figure 4.51. Oscillation of the bridge model for f=6.71095 Hz (front view) 53

Figure 4.52. Oscillation of the bridge model for f=7.14691 Hz (front view)............................ 53

Figure 4.53. Oscillation of the bridge model for f=7.14691 Hz (original view) 54

Figure 5.1. The bridge Model ... 57

 6

1. Introduction

1.1. The need for Model updating

In modern analysis of structural dynamics, much effort is devoted to the derivation

of accurate models of structures. Availability of an accurate dynamic finite

element model of a structure is very important to design engineers as it allows

them to improve the dynamic design of the structure at computer level resulting in

an optimized design apart from savings in terms of money and time. The first step

is the derivation of an analytical model, usually finite element model, based on the

assumed equations of motion. But there may be some inaccuracies or uncertainties

that may be associated with a finite element model. The discretisation error,

arising due to approximation of a continuous structure by a finite number of

individual elements, is inherent to the finite element technique. Other inaccuracies

may be due to the assumptions and simplifications made by the analyst with

regards to the choice of elements, modeling of boundary conditions, joints, etc.

These assumptions and simplifications have as a result that when tests are

performed to validate the analytical model, inevitably their results, notably natural

frequencies and modeshapes, do not coincide with the expected results from the

theoretic model. Clearly one would like to have a better model, based on both the

theoretical and the experimental results. In order to face the problems of

inaccuracy in analytical models, researchers have turned their attention to the

development of modeling methods based on experimental observation. This area,

known as system identification, has been particularly vibrant in the control

engineering community over the past 40 years. The model to be identified may be

a parametric or a non-parametric model and, in addition, it may be non-linear.

Once the model structure and model order have been chosen, the estimation of

parameters follows.

In structural dynamics, experimental modal analysis may be considered as a

special area of system identification for the determination of modal data (natural

frequencies, mode shapes, generalized masses and loss factors) from vibration

tests. The modal testing and modal extraction methods (Ewins 2000, Mc Connnel

 7

1995) are also well developed for obtaining a reliable estimate of the modal data.

Given the availability of an accurate data acquisition and measuring equipment the

measured test data, though may not be precise, is generally considered to be more

accurate than analytical model predictions. This has formed the basis for

adjustment or correction of a finite element model, in the light of measured test

data, which is referred as model updating. The purpose of model updating is to

modify the mass, stiffness and damping parameters of the numerical model in

order to obtain better agreement between numerical results and test data. If the

updated model is to be used predictively, for untested loading conditions or

modified structural configurations, then it is important that the improved

agreement in results is achieved by correcting the inaccurate modelling

assumptions and not by making other (physically meaningless) alterations to the

model. Comprehensive reviews of structural parameter identification methods can

be found in (Mottershead and Friswell 1993; Doebling et al. 1996).

Structural model updating is an inverse problem according to which a model of a

structure, usually a finite element model, is adjusted so that either the calculated

time histories, frequency response functions, or modal parameters best match the

corresponding quantities measured or identified from the test data. This inverse

process aims at providing updated models and their corresponding uncertainties

based on the data. These updated models are expected to give more accurate

response predictions to future loadings, as well as allow for an estimation of the

uncertainties associated with such response predictions. In practice, the inverse

problem of model updating is usually ill-conditioned due to insensitivity of the

response to changes in the model parameters, and non-unique (Udwadia and

Sharma 1978; Berman 1989; Katafygiotis and Beck 1998; Katafygiotis et al. 2000)

because of insufficient available data relative to the large number of model

parameter needed to describe the desired model Structural model updating is an

inverse problem according to which a model of a structure, usually a finite element

model, is adjusted so that either the calculated time histories, frequency response

functions, or modal parameters best match the corresponding quantities measured

or identified from the test data. This inverse process aims at providing updated

models and their corresponding uncertainties based on the data. These updated

models are expected to give more accurate response predictions to future loadings,

 8

as well as allow for an estimation of the uncertainties associated with such

response predictions.

1.2. The importance of Model reduction

There are several definitions of model order reduction, and it depends on the

context which one is preferred. Originally, MOR was developed in the area of

systems and control theory, which studies properties of dynamical systems in

application for reducing their complexity, while preserving their input-output

behavior as much as possible. The field has also been taken up by numerical

mathematicians. Nowadays, model order reduction is a flourishing field of

research, both in systems and control theory and in numerical analysis. This has a

very healthy effect on MOR as a whole, bringing together different techniques and

different points of view, pushing the field forward rapidly.

Such simplification is needed in order to perform simulations within an acceptable

amount of time and limited storage capacity, but with reliable outcome. In some

cases, we would even like to have on-line predictions of the behaviour with

acceptable computational speed, in order to be able to perform optimizations of

processes and products.

Model Reduction tries to quickly capture the essential features of a structure. This

means that in an early stage of the process, the most basic properties of the

original model must already be present in the smaller approximation. At a certain

moment the process of reduction is stopped. At that point all necessary properties

of the original model must be captured with sufficient precision. All of this has to

be done automatically.

 9

1.3. Outline of this work

The study carried out in order to device this work, was aimed at obtaining the

necessary information for the execution of the model updating . To achieve model

updating, the mass and stiffness matrices coming from the analysis of a model in

SAP2000 are required as well as the modeshapes and model frequencies of actual

construction.

Initially, the mass and stiffness matrices are calculated and extracted from the

different parts of the finite element model. Achieving this goal is done by creating

a matlab code that interacts with the SAP2000 finite element program and extracts

and stores the model's matrices. The parameterization of the various model

members is made by introducing parameters θ that are related to the mass and

stiffness matrices and are the ones that will be valued in model updating so that

their optimal price improves the model.

Afterwards, from the measurements that have been given by the real bridge model

and specifically from the its deck, a range of frequencies and modeshapes has been

found. This was done with the help of a program that was given to us. Through

this range of measured frequencies and modeshapes, we identified these that

match to these of the finite element model.

Then, a flow diagram illustrates the model updating prepared process and the data

needed to make it.

 10

Finally, reference is made to the model reduction method. Reference is made to its

utility as well as to the data it is necessary to achieve model reduction. These data

are related with the mass and stiffness matrices of each section of the model as

well as with the internal, boundary and interfacial degrees of freedom of each

component of the structure.

The process followed to obtain the input data that are going to be used in a model

reduction program is depicted by the below flow chart.

Subsequently, the chapters 3, 4, 5, show the ways to acquire the input data in terms

of model updating and model reduction respectively.

 11

2. Model Updating

2.1 Introduction

Structural design and analysis generally requires a mathematical model

representing the physical behaviour of the structure. The finite element (FE)

method is the most appropriate tool for such modeling in structural engineering

today. However it is often observed that the initial FE model is a poor reflection of

structure, particularly in the field of structural dynamics. Inaccuracies arise

because of a number of simplifying assumptions and idealizations that have to be

made in FE modeling. In the recent years various model updating methods have

been developed to update the initial model using experimental data. If accurately

measured data are available then these data could be used to improve the

numerical model in general, and the uncertain parameters of the model in

particular.

The methods may be split according to the type of measured data they use and

model parameters that are updated. The measured data may be in form of

frequency response function (FRF) data or natural frequencies and mode shapes.

The updating process may estimate physical parameters, complete mass, damping

and stiffness matrices or groups of individual matrix elements. Other aspects of

model updating, such as parameter uniqueness, efficient computation,

parameterization, ill-conditioning and the use of incomplete data, are being

investigated. The measured data will always be incomplete because the

measurements will only be taken at a relatively small number of locations and over

a limited frequency range.

 12

2.2 Structural Model Class

Consider a parameterized class of linear structural models (e.g. a class of finite

element models) used to model the dynamic behaviour of the structure. The

structural model class involves a set of model parameters θ. The equation of

motion of such systems is:

 () ̈() () ̇() () () ()

Where () (), () are the global mass, damping and stiffness matrices

respectively. () is the displacements and () is the vector of forces.

The parameter set is the set of free model parameters to be estimated using the

measured data. The parameter set is usually associated with geometrical,

material, stiffness or mass properties and boundary conditions.

Here we associate with modulus of elasticity and density of the model.

2.3 Substructuring and FE Model Parameterization

Using finite element model analysis, one derives the element stiffness and the

mass matrices, the stiffness and the mass matrices of the substructures formed by a

group of elements, and finally the global stiffness and the mass matrices. These

matrices depend on the properties of the structure, like modulus of elasticity and

mass density. These properties are selected for updating and are included in

In finite element analysis, the global stiffness and mass matrices formulation are

taking the following form:

 () ∑

() () ∑

()

 ()

 () are the local stiffness , mass matrices and number of structure’s

elements respectively.

 13

The linear relation between global stiffness and mass matrices and is listed

below.

2.4 Linear Relation Between Model Matrices and Parameters

 () ∑

() () ∑

()

 are assembled from element stiffness and mass matrices that depend

linearly on . and are assembled from element stiffness and mass matrices

that do not depend on . is the number of parameters used to parameterize the

model or the number of the model’s parts that are parameterized.

 as well as the set of are used as inputs in model updating programs.

2.5 An Introduction to Model Updating Based on Modal

Properties

2.5.1 Introduction

The problem of identifying the parameters of a structural model using dynamic

data has received much attention because of its importance in structural model

updating, structural health monitoring and structural control. The estimate of the

parameter values involves uncertainties that are due to limitations of the

mathematical models used to represent the behavior of the real structure, the

presence of measurement error in the data, and insufficient excitation and response

bandwidth. Structural identification and finite element model updating

methodologies are often based on modal data. The optimal structural models

resulting from such method can be used for response and reliability predictions,

structural health monitoring and control.

 14

2.5.2 Formulation

Let * ̂
() ̂

() + be the measured data from a

structure, consisting of modal frequencies ̂
()

 and modeshape components ̂
()

at

 measured DOFs where m is the number of observed modes and is the

number of modal data sets avaible.

Consider a parameterized class of linear structural models M used to model the

dynamic behaviour of the structure and let be the set of free structural

model parameters to be identified using the measured modal data. Let also

* () ()
 + where is the number of model degrees of

freedom (DOF), be the predictions of the modal frequencies and modeshapes

obtained for a particular value of the parameter set by solving the eigenvalue

problem corresponding to the model mass and stiffness matrices M() and K()

respectively,that is,

 , ()
 () - ()

The objective in a modal-based structural identification methodology is to estimate

the values of the parameter set so that the modal data * () ()

 + predicted by the linear class of models best matches, in some sense, the

experimentally obtained modal data in D. In this thesis we produced the necessary

data in order to be used later for model updating.

 15

3. The process of extraction of model’s stiffness and

mass matrices(presentation of the software)

3.1. The FE Model

Based on the linear relation between model matrices and parameters , a bridge

model made in SAP2000 is examined in order to be parameterized.

Figure 3.1. The bridge Model made in SAP2000

For this examination we separate the model into 4 components as it is shown in

figure 3.2.Another separation can be done according to which parts we want to

parameterize.

 16

Figure 3.2. Structure’s components

 Component 1:arched part (aquamarine color)

 Component 2:deck (purple color)

 Component 3:piers(white color)

 Component 4:columns(blue color)

The separation of the bridge’s parts based on the materials that constitute these

parts.

 Arched part: Material name A992Fy50(Sap2000’s name)

 Deck: Material name MAT

 Piers: Material name concrete_nomass

 Columns: Material name concrete_abut

The definition of stiffness and mass matrices for a component entails that the

parameters which are related to the other parameterized components will get zero

value. For example, if we want to extract only deck’s stiffness and mass matrices

we have to zero modulus of elasticity and mass density from the other three

components.

 17

3.2. Software for acquisition of stiffness and mass matrices of

model’s components

Studying the SAP2000 bridge model, a code is created in order to extract the

stiffness and mass matrices from each part of the structure.

The code is written in MATLAB (version 2015a) and creates an interface between

Sap2000 and MATLAB. This interaction allows to change the model’s properties

through MATLAB.

 The interface is possible via a specific part of the code that is presented

below:

% pass data to Sap2000 as one - dimensional arrays
feature ('COM_SafeArraySingleDim', 1);
% pass non - scalar arrays to Sap2000 API by reference
feature ('COM_PassSafeArrayByRef', 1);
%start the interface
SapObject = actxserver('CSI.SAP2000.API.SapObject');
 % create Sap2000 object
 SapModel = SapObject . SapModel ;
% start the application
 ret = SapObject.ApplicationStart();

These commands are used in order to create a bridge between two

programs. Thus the interface is done.

 Next step is to open the model that we are studying.

% give the name of Sap2000 model file
name=input('dwse onoma arxeiou: ' , 's')
% the file is on the desktop
ret=SapObject.SapModel.File.OpenFile(['C:\Users\Spyros\Deskt

op\' ,name, '.sdb'])

 The SAP2000 file was loaded and the next step is to define the material

properties for each component. The bridge model is constituted from four

components, so the user has to define the material properties for each part.

% % % % % insert material properties for each material in

sap2000
number_mat=input('number of structure’s material/components'

)
for i=1:number_mat

 18

prompt = {'material name:','modulus of

elasticity:','coefficient of thermal expansion:','poisson

ratio:','density:'};
title = 'material properties';

r = inputdlg(prompt,title,[1 60]);
mat_name(i)=r{1};
E(i)= str2num(r{2});
A(i) = str2num(r{3});
Nu(i) = str2num(r{4});
density(i)=str2num(r{5});

end

The modulus of elasticity, the poisson ratio, the coefficient of thermal

expansion and mass density are the necessary inputs. These inputs are

based on values that were given by the maker of the model . The

coefficient of thermal expansion and the poisson ratio are parameters that

do not contribute to stiffness and mass matrices. However these parameters

are necessary for the two programs interface.

 After that, these inputs are passed into the finite element model. We insert

these data again in the model in case they were changed in a previous

model analysis.

for k=1:number_mat

 Enew(k)=E(k);
 density_new(k)=density(k);
% pass material properties to Sap2000

ret=SapModel.PropMaterial.SetMPIsotropic(char(mat_name{k}),E

(k),Nu(k),A(k));
% pass mass density to Sap2000

ret=SapModel.PropMaterial.SetWeightAndMass(char(mat_name{k})

,1, density(k));
end

 19

3.2.1 The acquisition of global stiffness matrix(before the parameterization

process)

All the necessary information is known in order to start the parameterization and

the extraction of the model’s matrices. Initially, the global stiffness is

calculated(the global mass matrix and are calculated after the calculation of

) through the model’s analysis. At this point, it is worth mentioning that

SAP2000 extracts stiffness and mass matrices as text files saved in the place where

the sap file is. TXK file gives the lower half of the symmetric stiffness matrix and

.TXM file gives the lower half of the symmetric mass matrix. There are three

columns in the files. The first and the second one give the position of each

stiffness/mass value (matrix’s row and column). The third column is the

stiffness/mass value. The software imports these data.

 unlock the model
 ret=SapModel.SetModelIsLocked(0);
% define load case in order to extract model matrices.
%We have to define a load case dead or modal for the

extraction of the matrices.
%that is asked by sap2000.There is no difference in the

matrices’ values
 ret = SapModel.Analyze.SetSolverOption_1(1, 0,1, 'DEAD')
% analyze the model
 ret = SapModel.Analyze.RunAnalysis();
% import data from M file
Mfilename=[name,'.TXM'];

mass = importdata(Mfilename);
mass_matrix=mass.data;
% import data from Stiffness file
Sfilename=[name,'.TXK'];
s = importdata(Sfilename);
% Kt has 3 columns ,number of row and column,stiffness value
Kt=s.data;

Kt is a matrix which includes three columns. The third column indicates

the stiffness value and the first two contains the number of the row and

column to which the stiffness value corresponds. The data from global

mass matrix also are imported in order to be used later.

 20

 The global stiffness matrix does not have not its normal form thus we have

to bring it to its symmetric form. The process is easy while we seek for a

non-zero element of the third column of the Kt matrix. When we detect it,

we save its coordinates in matrices i and j respectively. If an element of the

third column of Kt is zero the i,j matrices obtain a zero value. The i matrix

contains the numbers of the rows and j the number of the columns for

every non zero element. After that, in a matrix called Ktotal the stiffness

values of Kt are imported in the positions which are indicated by the

matrices i,j . We create the lower half of the matrix and afterwards we

bring it to its normal form.

% unlock the model
 ret=SapModel.SetModelIsLocked(0);
% define load case in order to extract model matrices.We

have to define a load case dead or modal for the extraction

of the matrices. that is asked by sap2000.There is no

difference in the matrices’ values
 ret = SapModel.Analyze.SetSolverOption_1(1, 0,1, 'DEAD')
% analyze the model
 ret = SapModel.Analyze.RunAnalysis();
% import data from M file
Mfilename=[name,'.TXM'];

mass = importdata(Mfilename);
mass_matrix=mass.data;
% import data from Stiffness file
Sfilename=[name,'.TXK'];
s = importdata(Sfilename);

% Kt has 3 columns ,number of row and column,stiffness value

Kt=s.data;
%

% % % % % % % % % % % % % %
 % % % % % % % % % % % bring the stiffness matrix to its

original form % % % % % % % %
%

% % % % % % % % % % % % %
% matrix length
mhkos=length(Kt)
% first 2 colummns are the number of the row and column and

the third the stiffness value
% the last number of the column is the size of the matrix

given that the
% diagonial elements of the global stiffness matrix are non

zero thus the
% last element of the matrix describe its size
% read the coordinates of the last element
last1=Kt(end,2);
Ktotal=sparse(zeros(last1));

% we find the non zero elements and keep their coordinates

 21

 for p=1:mhkos
 if Kt(p,3)~=0
% if Kt(p,3)=0 then the values of i(p),j(p) are zero
 i(p)=Kt(p,1);
 j(p)=Kt(p,2);
 end
 end
%
for m=1:mhkos
 % if Kt(p,3)=0 then the values of i(p),j(p) are zero so

for the non
 % zero i,j(where the non zero values on stiffness are)

we save the
 % value of Kt in Ktotal
% So we create the lower half of the symmetric stiffness

matrix
 if i(m)j(m)~=0
 Ktotal(i(m),j(m))=Kt(m,3);
 end
end
% we bring stiffness matrix to its final form by add the

upper symmetric half without the diagonal
Ktotal=(Ktotal+(tril(Ktotal,-1)).')

 Next step is to define the materials/components that are going to be

parameterized. The user decides which part/material wants to parameterize

and this materials is saved in a matrix.

for c=1:number_mat
prompt = {'1:','2:'};
opts.Interpreter = 'tex';
answer = questdlg('Do you want to parameterized this

material/component?' ,mat_name{c}, 'YES','NO','.')
switch answer
 case 'YES'
 disp([answer ' done.'])
 ans = 1;
 case 'NO'
 disp([answer ' ok.'])
 ans = 2;
end
 if ans ==1
% the meter counts how many materials are going to be
% paremeterized.if meter<number_mat then Ko exists
 meter=meter+1
% we keep the number of material which is going to be

parameterized
% this number corresponds to a material depending on the

order that the material is given by the user

 param(meter)=c
 end
end

 22

 After the parameterized materials are defined, is calculated (is

assembled from element stiffness matrix that does not depend on). If the

variable meter is equal to the number of structure’s material then all

components are going to be parameterized and there is no By contrast,

if the variable meter is lower than the number of structure’s materials then

some parts were not parameterized. The param matrix corresponds to the

parameterized materials. The value of modulus of elasticity of each

parameterized material is set to zero in order to extract .

for u=1:meter
% E=0 for every parameterized material though this

sap2000 command

ret=SapModel.PropMaterial.SetMPIsotropic(char(mat_name{param

(u)}),0,Nu(param(u)),A(param(u)));
end

This methodology is executed if the below condition is satisfied
if meter~=number_mat&&meter~=0

 The model is analyzed in order to extract .The parts with zero modulus

of elasticity do not give a stiffness matrix .The extraction of ,as well as

the figuration of its normal form , follow the same methodology with the

calculation of global stiffness matrix.

% run model analysis on order to extract stiffness

matrix.this stiffness matrix is Ko
 ret = SapModel.Analyze.RunAnalysis();
 % import data from the stiffnes text files
 Sfilename=[name,'.TXK'];
 s = importdata(Sfilename);
 K_o=s.data;
 mhkos0=length(K_o);

 Ko=sparse(zeros(last1));

% bring Ko to its normal form
 for dd=1:mhkos0
 if K_o(dd,3)~=0
 metrhths0=dd
 i(dd)=K_o(dd,1);
 j(dd)=K_o(dd,2);
 end
 end
 for nn=1:metrhths0
 if i(nn)j(nn)~=0
 Ko(i(nn),j(nn))=K_o(nn,3);

 23

 end
 end
% final form of Ko
 Ko=(Ko+(tril(Ko,-1)).');

end

If all materials/components are chosen by the user to be parameterized then

the matrix is a zero matrix.

if meter==number_mat
 Ko=sparse(zeros(last1));
end

Thus far, we have defined the global stiffness matrix and the (stiffness

matrix that does not depend on).

 The next step is to calculate the stiffness matrices that depend linearly

on as well as the values of . The value of is different to zero only for

the component from which we want to extract the stiffness matrix, the

other values of are zero. The value of changes in every loop depending

on the material that we examine. For example if we want to parameterize

the j material while for i=1….N and i j

The process of extraction of is the same with that for extraction and

calculation of global stiffness matrix.

for q =1:meter

 ret=SapModel.SetModelIsLocked(0);
% keep the number of material that is parameterized in

this loop
 number_mat1=q
% give value of θ for the material
 prompt = {'the value of parameter θ:'};
 title = 'value of parameter θ for ';
 th = inputdlg(prompt,mat_name{param(q)},[1 60]);
 % b is θ
 b(q)=str2num(th{1})
 % we kept the parameterized material. θ for others

materials is going to be zero. this changes in every loop.

only the material that is
% analyzed (in every loop) has no zero value of θ.
 for l=1:meter
 if l~=q

 24

 b(l)=0;
 end
% multiple the modulus of elasticity of each material with θ
 Enew(param(l))=E(param(l))*b(l);

 end

%for every material pass the value of new modulus of

elasticity in sap2000
 for t=1:meter

ret=SapModel.PropMaterial.SetMPIsotropic(char(mat_name{param

(t)}), Enew(param(t)),Nu(param(t)),A(param(t)));
 end
%analyze the model
 ret = SapModel.Analyze.RunAnalysis();
%import stiffness matrix and bring it to its normal form
 Sfilename=[name,'.TXK'];
 s = importdata(Sfilename);
 K_new=s.data;
 mhkos1=length(K_new);
 last2=K_new(end,2);
 K_i=sparse(zeros(last2));
 sum=0

 k=0
 K_new_end=s.data(:,end);
 for r=1:mhkos1
 if K_new(r,3)~=0
 metrhths=r;
 i(r)=K_new(r,1);
 j(r)=K_new(r,2);
 end
 end

 for n=1:metrhths
 if i(n)j(n)~=0
 K_i(i(n),j(n))=K_new(n,3);
 end
 end

 K_i=(K_i+(tril(K_i,-1)).');
% The Ki matrices are created

 Ki{q,1}=mat_name(param(q));
% if there is Ko then the K of the spesific part is the K_i

that was
% calculated above minus Ko.
 Ki{q,2}=(K_i-Ko);
 Ki{q,2}=Ki{q,2}/b(q);
% the values of θ
 thita(q)=b(q);

 end
end

 25

The cell arrays of Ki contain the matrices of every parameterized

material/component. Also, the values of that were given for each

material were saved in a matrix called thita.The stiffness matrix is

calculated for each material and saved in matlab.

3.2.2 The acquisition of global mass matrix(before the parameterization

process)

The changes in modulus of elasticity do not affect the mass matrix given that, it

depends on mass density. The global mass matrix’s data were imported in the code

when we tried to calculate the global stiffness matrix.

 At this point, global mass matrix is going to be transformed to its normal

form.

%

%
% calculation of mass matrix. THe methodology is the same

with the calculation of the stiffness matrix% %
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

%

 metrhths2=0
 mhkos_m=length(mass_matrix);
 last_m=mass_matrix(end,2);
 M=sparse(zeros(last_m));
 M_sum=sparse(zeros(last_m));
 for ii=1:mhkos_m
 if mass_matrix(ii,3)~=0
 x(ii)=mass_matrix(ii,1);
 z(ii)=mass_matrix(ii,2);
 metrhths2=ii
 end
 end
 for ss=1:metrhths2
 if x(ss),z(ss)~=0
 M(x(ss),z(ss))=mass_matrix(ss,3);
 end
 end

Regarding the code,the mass_matrix is a matrix in which the data from

mass text file were imported and saved.It is constituted by three columns.

The third one is the mass value ,the first and the second columns are the

matrix’s number of the row and column respectively.The M matrix is a

diagonal matrix which contains the mass values of the global mass matrix.

 26

 The next step is the calculation of (if it exists). The existence of

depends on the value of the meter variable.

% %%%%%%%% calculation of Mo%%%%%%%%
 if meter~=number_mat&&meter~=0

 for ee=1:meter
 ret=SapModel.SetModelIsLocked(0);

ret=SapModel.PropMaterial.SetWeightAndMass(char(mat_name{par

am(ee)}),1, 0)
 end
 ret = SapModel.Analyze.RunAnalysis();
 Mfilename=[name,'.TXM'];

 mass0= importdata(Mfilename);
 mass_matrix0=mass0.data;
 mhkos_m0=length(mass_matrix0);

 Mo=sparse(zeros(last_m));
 metrhths00=0
 for ww=1:mhkos_m0
 if mass_matrix0(ww,3)~=0
 x0(ww)=mass_matrix0(ww,1);
 z0(ww)=mass_matrix0(ww,2);
 metrhths00=ww

 end
 end
 for uu=1:metrhths00
 if x0(uu),z0(uu)~=0
 Mo(x0(uu),z0(uu))=mass_matrix0(uu,3);
 end
 end
end
if meter==number_mat
 Mo=sparse(zeros(last_m));
end

 After the calculation of , follow the extraction and the calculation of .

The mass matrix depends the mass density of each component, thus a new

parameter must be defined. This parameter is related to mass density.

The value of is different from zero only for the component/material from

which we want to extract the mass matrix, the other values of are set

zero. The value of changes in every loop as it depends on the material

that we examine. For example, if we want to parameterize the j material

 while for i=1….N and i j.

 27

% % % % % % % % % % % % % % calculation of Mi% % % % % % % %

% % % % % %%
if meter~=0
 for kk=1:meter
 ret=SapModel.SetModelIsLocked(0);
% define the value of f where f is φ
 prompt = {'the value of parameter φ:'};
 title = 'value of parameter φ for ';
 ff = inputdlg(prompt,mat_name{param(kk)},[1 60]);

 f(kk)=str2num(ff{1})
 % the value φ that is not zero is the only one that

relating with the material that is parameterized in this

loop
 for ll=1:meter
 if ll~=kk
 f(ll)=0;
 end
% multiple the density with φ
 density_new(param(ll))=density(param(ll))*f(ll);

 end
 for tt=1:meter
% pass the parameterized densities in Sap2000

ret=SapModel.PropMaterial.SetWeightAndMass(char(mat_name{par

am(tt)}),1, density_new(param(tt)));
 end
% analyze the model
 ret = SapModel.Analyze.RunAnalysis();
% extract Mi and bring them to their normal form
 Mfilename=[name,'.TXM'];

 mass1= importdata(Mfilename);
 mass_matrixNew=mass1.data;
 mhkos_m1=length(mass_matrixNew);
 last_m1=mass_matrixNew(end,2);
 M_new=sparse(zeros(last_m1));
 metrhths1=0
 for yy=1:mhkos_m1
 if mass_matrixNew(yy,3)~=0
 xn(yy)=mass_matrixNew(yy,1);
 zn(yy)=mass_matrixNew(yy,2);
 metrhths1=yy
 end
 end
 for gg=1:metrhths1
 if xn(gg),zn(gg)~=0
 M_new(xn(gg),zn(gg))=mass_matrixNew(gg,3);
 end
 end
 Mi{kk,1}=mat_name(param(kk));
 Mi{kk,2}=(M_new-Mo);
 Mi{kk,2}=Mi{kk,2}/f(kk);
 fi(kk)=f(kk)
 end
 end

 28

With regard to the code, M_new corresponds to the mass matrix of the

parameterized component/material.The cell arrays of Mi contain the mass

matrices for each parameterized component. Also, the values of are

saved in a matrix called fi.

The model matrices have been calculated and can be saved in .mat files in

order to be used for model updating.

4. Modal Identification of a bridge using vibration

measurements.

4.1 Measurements data

Based on the finite element model of a bridge model, developed with the Static

and Dynamic Analysis Program Sap2000v19,the analytical values of frequencies

and mode shapes of the arched bridge were calculated and used for more accurate

identification of frequencies, velocities and damping rates of measured oscillation

time histories.

Two sets of measurements were used and analyzed in order for the mode shapes to

be identified (figures 4.1 and 4.2). The location of the accelerometers on the

structure plays a key role for obtaining optimum measurements(figure

4.3).Obtaining measurements that provide maximum information regarding the

dynamic modal characteristic

 29

Figure 4.1. nm008 configuration

Figure 4.2. nm009 configuration

 30

Figure 4.3. The location of the sensors

4.2 Identification of mode shapes and modal frequencies based

on FE model

The identified modal frequencies based on the finite element model’s modal

analysis (the first fourteenth identified frequencies).

Table 1. Frequencies based on Sap2000 modal analysis and on measurements

Frequencies based on

Sap2000 Model(Hz)

Identified measured

frequencies(Hz)

1.076257 1.1332

1.283569 1.5004

1.9159 2.05

1.993078 -

2.462727 2.5511

 31

3.148780 3.2928

3.644488 3.925

3.8759 4.4405

4.48316 4.73

4.54937 5.1036

4.76772 5.4675

5.91396

5.91401

6.02791

6.05633

6.13507

6.14033

6.15619

5.925,6.1003(probably

corresponds to one of

these frequencies)

6.35409 -

6.71095 7.4562

7.14691 7.8703

Τhese frequencies were identified based on the FE model through a range of

measurements.The figure 3.6 shows the explored peaks of the time response

spectrum of the arched bridge(for time history nm008).

 32

Figure 4.4. The measured frequencies from time history nm008

The matching of frequencies is based on the form of mode shapes. The

comparison of mode shapes for the above sets of frequencies is illustrated below:

1. Modal frequency f=1.1332Hz

Figure 4.5. Mode shape based on measurements (f=1.13Hz)

 33

Figure 4.6. Oscillation of the bridge model for f=1.076257Hz (front view)

Figure 4.7. Oscillation of the bridge model for f=1.076257Hz (top view)

The approach of the mode shape of the finite element model was successful given

that the two mode shapes are similar. The measured frequency is close to that of

the finite element model (fmeasurements/fFEM=1.1332Hz/1.076257Hz=1.053).Our

estimation regarding the distribution of the components of the mode shape was

accurate.

 34

2. Modal frequency f=1.5004Hz

Figure 4.8. Mode shape based on measurements (f=1.5004 Hz)

Figure 4.9. Oscillation of the bridge model for f=1.283569Hz (front view)

 35

Figure 4.10. Oscillation of the bridge model for f=1.283569 Hz (cross section)

The approach of the mode shape of the finite element model was successful given

that the two mode shapes are similar. The measured frequency is close to that of

the finite element model (fmeasurements/fFEM=1.5004Hz/1.283569Hz=1.1686). Our

estimation regarding the distribution of the components of the mode shape was

accurate.

3. Modal frequency f=2.05 Hz

Figure 4.11. Mode shape based on measurements (f=1.13 Hz)

 36

Figure 4.12. Oscillation of the bridge model for f=1.915901 Hz (original view)

Figure 4.13. Oscillation of the bridge model for f=1.915901 Hz (cross section)

The approach of the mode shape of the finite element model was successful given

that the two mode shapes are similar. The measured frequency is close to that of

the finite element model(fmeasurements/fFEM=2.05Hz/1.915901Hz=1.07). Our

estimation regarding the distribution of the components of the mode shape was

accurate.

 37

4. The modal frequency 1.993078 Hz

Βased on finite element model, the modal frequency 1.993078 Hz does not match

any of the measurements due to the form of the mode shape.

Figure 4.14. Oscillation of the bridge model for f=1.1993078 Hz (front view)

Figure 4.15. Oscillation of the bridge model for f=1.1993078Hz (top view)

 38

5. Modal frequency f=2.5511 Hz

.

Figure 4.16. Mode shape based on measurements (f=2.5511 Hz)

Figure 4.17. Oscillation of the bridge model for f=2.462727Hz (front view)

 39

Figure 4.18. Oscillation of the bridge model for f=2.462727 Hz (Cross Section)

The approach of the mode shape of the finite element model was successful given

that the two mode shapes are similar. The measured frequency is close to that of

the finite element model.(fmeasurements/fFEM=2.5511Hz/2.462727Hz=1.03588). Our

estimation regarding the distribution of the components of the mode shape was

accurate.

6. Modal frequency f=3.2928 Hz

Figure 4.19. Mode shape based on measurements (f=3.2928 Hz)

 40

Figure 4.20. Oscillation of the bridge model for f=3.148780Hz (front view)

Figure 4.21. Oscillation of the bridge model for f=3.148780Hz (cross section)

The approach of the mode shape of the finite element model was successful given

that the two mode shapes are similar. The measured frequency is close to that of

the finite element model(fmeasurements/fFEM=3.2928Hz/3.148780Hz=1.03588). Our

estimation regarding the distribution of the components of the mode shape was

accurate.

 41

7. Modal frequency f=3.9256 Hz

Figure 4.22. Mode shape based on measurements (f=3.9256 Hz)

Figure 4.23. Oscillation of the bridge model for f=3.644488 Hz (original view)

 42

Figure 4.24. Oscillation of the bridge model for f=3.644488 Hz (cross section)

Figure 4.25. Oscillation of the bridge model for f=3.644488 Hz (front view)

The approach of the mode shape of the finite element model was successful given

that the two mode shapes are similar. The measured frequency is close to that of

the finite element model(fmeasurements/fFEM=3.9256Hz/3.64488Hz=1.0771). Our

estimation regarding the distribution of the components of the mode shape was

accurate.

 43

8. Modal frequency f=4.4405 Hz

Figure 4.26. Mode shape based on measurements (f=4.4405 Hz)

Figure 4.27. Oscillation of the bridge model for f=3.8759 Hz (front view)

Figure 4.28. Oscillation of the bridge model for f=3.8759Hz (top view)

 44

Figure 4.28. Oscillation of the bridge model for f=3.8759 Hz (cross section)

The approach of the mode shape is not absolutely accurate. The measured

frequency is close to that of the finite element model (fmeasurements/fFEM=4.4405

Hz/3.8759Hz=1.1457). More measurements should be taken in order to verify the

mode shape.

9. Modal frequency f=4.724 Hz

Figure 4.29. Mode shape based on measurements (f=4.724 Hz)

 45

Figure 4.30. Oscillation of the bridge model for f=4.48316 (front view)

Figure 4.31. Oscillation of the bridge model for f=4.48316 (top view)

Figure 4.32. Oscillation of the bridge model for f=4.48316 (original view)

 46

The approach of the mode shape of the finite element model was successful given

that the two mode shapes are similar. The measured frequency is close to that of

the finite element model (fmeasurements/fFEM=4.724Hz/4.48316 Hz=1.0537). Our

estimation regarding the distribution of the components of the mode shape was

accurate.

10. Modal frequency f=5.1036 Hz

Figure 4.33. Mode shape based on measurements (f=5.1036 Hz)

Figure 4.34. Oscillation of the bridge model for f=4.54937 Hz (front view)

 47

Figure 4.35. Oscillation of the bridge model for f=4.54937Hz (original view)

Figure 4.36. Oscillation of the bridge model for f=4.54937Hz (cross section)

The approach of the mode shape of the finite element model was successful given

that the two mode shapes are similar. The measured frequency is close to that of

the finite element model(fmeasurements/fFEM=5.1036Hz/4.54937Hz=1.1218). Our

estimation regarding the distribution of the components of the mode shape was

accurate.

 48

11. Modal frequency f=5.4675 Hz

figure 4.37. Mode shape based on measurements (f=5.4675 Hz)

Figure 4.38. Oscillation of the bridge model for f=4.76772Hz (cross section)

Figure 4.39. Oscillation of the bridge model for f=4.76772Hz (front view)

 49

The approach of the mode shape of the finite element model was successful given

that the two mode shapes are close. The measured frequency is close to that of the

finite element model(fmeasurements/fFEM=5.4675Hz/4.76772Hz=1.1468).Our

estimation regarding the distribution of the components of the mode shape was

accurate.

12. The modal frequencies 5.925 and 6.1003 Hz leads to a distortion of the

arched part of the bridge.

Figure 4.40. Identifiable mode shapes of the arced part

The representations of the mode shapes do not give us a clear image of the

distortion of the bridge. Considering the mode shapes of the finite element model

for frequencies close to the measured ones, we realize that 5.925 and 6.1003Hz

constitute local model frequencies.

 50

Figure 4.41. Mode shape for f=5.91396 Hz

Figure 4.42. Mode shape for f=5.91401 Hz

Figure 4.43. Mode shape for f=6.02791 Hz

Figure 4.44. Mode shape for f=6.05633 Hz

 51

Figure 4.45. Mode shape for f=6.13507 Hz

Figure 4.46. . Mode shape for f=6.14033 Hz

Figure 4.47. Mode shape for f=6.15619Hz

 52

13. Modal frequency f=7.4562 Hz

Figure 4.48. Mode shape based on measurements (f=7.4562 Hz)

Figure 4.49. Oscillation of the bridge model for f=6.71095 Hz (cross section)

Figure 4.50. Oscillation of the bridge model for f=6.71095Hz (front view)

 53

The approach of the mode shape of the finite element model was successful given

that the two mode shapes are similar. The measured frequency is close to that of

the finite element model.(fmeasurements/fFEM=7.4562Hz/6.71095Hz=1.11).Our

estimation regarding the distribution of the components of the mode shape was

accurate.

14. Modal frequency f=7.8703 Hz

Figure 4.51. Oscillation of the bridge model for f=6.71095 Hz (front view)

Figure 4.52. Oscillation of the bridge model for f=7.14691 Hz (front view)

 54

Figure 4.53. Oscillation of the bridge model for f=7.14691 Hz (original view)

The approach of the mode shape of the finite element model was successful given

that the two mode shapes are similar. The measured frequency is close to that of

the finite element model(fmeasurements/fFEM=7.8703Hz/7.14691Hz=1.1). Our

estimation regarding the distribution of the components of the mode shape was

accurate.

Conclusion

The aim was the identification of the basic mode shapes of the bridge’s deck and

arched part. As expected , the mode shapes were transverse,longitudinal,flexural

and torsional. Despite the fact that a small number of sensors were used our

estimation in the basic mode shapes was accurate. The first fifteen measured

frequencies were examined and the majority corresponds to the finite element

model’s frequencies.

 f=1.1332 Hz is a transverse modal frequency and gives the first

identified mode shape.

 f=1.5004 Hz is a longitudinal modal frequency and gives the

second identified mode shape

 55

 f=2.05 Hz is a torsional modal frequency and gives the third

identified mode shape.

 f=2.55 Hz is a flexural modal frequency and gives the fourth

identified mode shape.

 f=3.29 Hz is a flexural modal frequency and gives the fifth

identified mode shape.

 f=3.925 Hz is a transverse modal frequency and gives the sixth

identified mode shape.

 f=4.4403 Hz is a transverse modal frequency and gives the

seventh identified mode shape.

 f=4.73 Hz is a transverse modal frequency and gives the eight

identified mode shape.

 f=5.1036 Hz is a transverse modal frequency and gives the

ninth identified mode shape.

 f=4675 Hz is a longitudinal modal frequency and gives the

tenth identified mode shape.

 f=5.25 Hz and 6.1003 Hz are local frequencies and gives the

eleventh and twelfth identified mode shape respectively.

 f=7.4562 Hz is a flexural model frequency and gives the

thirteenth identified mode shape.

 f=7.8703 Hz is a transverse model frequency and gives the

fourteenth identified mode shape.

The small differences in prices and distributions of the mode shapes of the

analytical model with those derived from measurements are due to the well-

prepared and correct instrumental monitoring with very sensitive sensors as well

as the good model simulation. The measured frequencies and mode shapes gave a

good estimation of the model’s mode shapes. These modal data and the model’s

matrices are used in model updating programs.

 56

5. Model reduction

5.1 Introduction

Many modern mathematical models of real-life processes pose challenges when

used in numerical simulations, due to complexity and large size (dimension).

Model order reduction aims to lower the computational complexity of such

problems, for example, in simulations of large-scale dynamical systems and

control systems. By a reduction of the model's associated state space dimension or

degrees of freedom, an approximation to the original model is computed which is

commonly referred to as a reduced order model. Reduced order models are useful

in settings where it is often unfeasible to perform numerical simulations using the

complete full order model.

Many software requires as inputs the stiffness and mass matrices of the model’s

components as wells as the interface degrees of freedom of the components , the

internal degrees of freedom of each component and the boundary degrees of

freedom for each component. Thus we develop a software in order to extract this

information.

5.2 The kinds of the degrees of freedom of a component

Degrees of freedom(DOFs) are a set of independent displacements/rotations that

completely define the displaced position of the mass with respect to its initial

position. It is the number of parameters that determine the state of a system.

The DOFs of a structure are divided into internal and boundary DOFs. The

boundary DOFs of a component are the DOFs that exist in the interface of a

component with the other components. The internal DOFs of a component are the

DOFs that exist where there is no interface with other components.

 57

Figure 5.1. The bridge Model

For example the deck’s boundary DOFs(as we see in figure 4.59) are in the

interface among the deck,the arched part and the piers. The internal DOFs are

where there is no interface.

5.3 Calculation of the necessary degrees of freedom needed in

model reduction(The presentation of the software)

We have calculated the mass and stiffness matrices from each part of the model

using the previous code. Now, the next information we need is the boundary,

internal and interfacial degrees of freedom from each part of the structure.

The nodes’ displacements in the interface are the same for each part that is

involved. Thus, by comparing the stiffness matrices of each part we can find the

boundary DOFs. The common positions where the non zero stiffness values are,

reveal the boundary DOFs. The internal DOFs of the component are the rest DOFs

that are not involved in this comparison.(the diagonal of the stiffness matrix

contains non-zero elements in the degrees of freedom of the nodes of the

component).

The internal, boundaries and interface DOFs are calculated based on the

comparison of (stiffness matrices). Internal, boundaries, interfacial DOFs

and are important data used as inputs in model reduction softwares in order for

 58

a simplified model to be created. This helps us avoid the computational

complexity of huge structures.

 We develop a software in order to extract the necessary DOFs based on the

comparison of stiffness matrices. The software is listed below:

% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %%

% %
% % % Interface,internal,boundary DOFS for fixed joints% % %% % %%

% %% % %%
% % % % % % % % % % % % %% % %% % %% % %% % %% % %% % %% % %% % %%

% %
% % % % % the non define variables are resulted from the code

sap_mat
% % % % % % %% % % % % % %% % % % % % %
% % % % % % % interface dofs% % % % % % %
 % % % % % % %% % % % % % %% % % % % % %
% last2 is the total dofs or the size of the K matrix
step=1;
counter=1;
 parts=1;
 plus=0;
for iel=step:number_mat-1;
 for ie=(step+1):number_mat;
 for jk=1:last2;
% the interface dofs exists where the digonals of the

stiffness
% matrices of two components are non-zero
 if SMi{iel}(jk,jk)~=0&&SMi{ie}(jk,jk)~=0;
 dofs{parts}(1,counter)=jk;
 counter=counter+1;
 plus=plus+1
 end
 end
 if counter~=1
 name1=mat_name(iel);
 name2=mat_name(ie);
 pavla='-';
 str=strcat(name1,pavla,name2);
 interface_dofs{parts,1} = str;
 interface_dofs{parts,2} =dofs{parts}

 parts=parts+1
 end
 counter=1
 end
 step=step+1
end
% % % % % % %% % % % % % %% % % % % % %
% % % % % % % boundary dofs% % % % % % %
 % % % % % % %% % % % % % %% % % % % % %
 step=1;
counter=1;
 parts=1;
 l1=0;
for iel=step:number_mat;
 for ie=1:number_mat;
 if ie~=step

 59

 for jk=1:last2;
 % the boundary dofs exists where the digonals

of the stiffness
% matrices of the components are non-zero.Sometimes

boundary and
% interface dofs are the same
 if SMi{iel}(jk,jk)~=0&&SMi{ie}(jk,jk)~=0
 b_dofs{parts,1}=mat_name(iel);
 b_dofs{parts,2}(1,counter)=jk;
 counter=counter+1;
 end
 end
 if counter~=1
 l1(parts)=counter-1
 end
 end
 end
 counter=1
 parts=parts+1
 step=step+1
end
% We compare all the stiffness matrices from all the components in

order to find the boundary dofs so
% same elements are appeared more than ones.We keep the unique

dofs
for iel=1:number_mat

 boundary_dofs{iel,1}=mat_name(iel)
 boundary_dofs{iel,2}=unique(b_dofs{iel,2})
end
 % % % % % % %% % % % % % %% % % % % % %
% % % % % % % internal dofs% % % % % % %
 % % % % % % %% % % % % % %% % % % % % %
 parts=1
 counter=1
 for ie=1:number_mat
 for jk=1:last2
 if SMi{ie}(jk,jk)~=0
% find all dofs(total for each component)
 all_dofs{parts,1}=mat_name(ie);
 all_dofs{parts,2}(1,counter)=jk;
 counter=counter+1;
 end
 end
 if counter~=1
 parts=parts+1
 end
 counter=1
 end
% number_mat=number of materials(materials with same properties

and different name are received as different)/components
for l=1:number_mat
% the dofs that are different from the boundary dofs are the

internal
% dofs
 internal_dofs{l}=setdiff(all_dofs{l,2},boundary_dofs{l,2})
 end

 60

The variables mat_name,number_mat,last2 and SMi are calculated in the main

software which is presented in section 2 and in Appendix A.

5.4 Conclusion

The degrees of freedom of each part of the structure as well as the calculated

stiffness and mass matrices consist important data (inputs) for model reduction.

Softwares dealing with model reduction use these data as inputs in order for a

simplified model to be created.

6. Conclusions

Model updating

By using the code we developed and by analyzing the modeshapes and modal

frequencies that come from measurements, we have acquired the necessary data to

be introduced into a model updating program. We have acquired the mass and

stiffness matrices and the values of the parameters θ that are related with the finite

element model as well as the measurement results. The aim is to use the model

updating to solve the eigenvalue problem, previously mentioned, and the its

results, for the appropriate value of θ, to be close to those of the measurements

Model reduction

With the help of the program developed for the bridge model, the internal,

boundary and interfacial degrees of freedom of each part of the model were

calculated. These degrees of freedom along with the mass and stiffness matrices of

each parameterized part of the structure are the input data into a model reduction

program

 61

Appendix A: Software for extraction of the model’s

stiffness and mass matrices in SAP2000

Part 1: Inputs

% % % % % insert material properties for each material in sap2000
number_mat=input('number of structure material/components ')
for i=1:number_mat

prompt = {'material name:','modulus of elasticity:','coefficient

of thermal expansion:','poisson ratio:','density:'};
title = 'material properties';

r = inputdlg(prompt,title,[1 60]);
mat_name{i}=r{1};
E(i)= str2num(r{2});
A(i) = str2num(r{3});
Nu(i) = str2num(r{4});
density(i)=str2num(r{5});
end

Part 2: Main body

% pass data to Sap2000 as one - dimensional arrays
feature ('COM_SafeArraySingleDim', 1);
% pass non - scalar arrays to Sap2000 API by reference
feature ('COM_PassSafeArrayByRef', 1);
% create Sap2000 object
% ginetai to interface
SapObject = actxserver('CSI.SAP2000.API.SapObject');

 SapModel = SapObject . SapModel ;
 ret = SapObject.ApplicationStart();

% give the name of sap2000 file that is studies
 name=input('dwse onoma arxeiou: ' , 's')

 ret=SapObject.SapModel.File.OpenFile(['C:\Users\Spyros\Desktop\'

,name, '.sdb'])
 ret=SapModel.SetModelIsLocked(0);

for k=1:number_mat

 Enew(k)=E(k);
 density_new(k)=density(k);
% pass material properties

ret=SapModel.PropMaterial.SetMPIsotropic(char(mat_name{k}),E(k),Nu

(k),A(k));

 62

% pass mass density

ret=SapModel.PropMaterial.SetWeightAndMass(char(mat_name{k}),1,

density(k));
end

% unlock the model
 ret=SapModel.SetModelIsLocked(0);
% define load case in order to extract model matrices.
%We have to define a load case dead or modal for the extraction of

the matrices.
%that is asked by sap2000.There is no difference in the matrices’

values
 ret = SapModel.Analyze.SetSolverOption_1(1, 0,1, 'DEAD')
% analyze the model
 ret = SapModel.Analyze.RunAnalysis();
% import data from M file
Mfilename=[name,'.TXM'];

mass = importdata(Mfilename);
mass_matrix=mass.data;
% import data from Stiffness file
Sfilename=[name,'.TXK'];
s = importdata(Sfilename);
% Kt has 3 columns ,number of row and column,stiffness value
Kt=s.data;
%

% % % % % % % % % % %
 % % % % % % % % % % % bring the stiffness matrix to its original

form % % % % % % % %
%

% % % % % % % % % %
% matrix length
mhkos=length(Kt)
% first 2 colummns are the number of the row and column and the

third the stiffness value
% the last number of the column is the size of the matrix given

that the
% diagonial elements of the global stiffness matrix are non zero

thus the
% last element of the matrix describe its size
% read the coordinates of the last element
last1=Kt(end,2);
Ktotal=sparse(zeros(last1));

% we find the non zero elements and keep their coordinates

 for p=1:mhkos
 if Kt(p,3)~=0
% if Kt(p,3)=0 then the values of i(p),j(p) are zero
 i(p)=Kt(p,1);
 j(p)=Kt(p,2);
 end
 end
%
for m=1:mhkos
 % if Kt(p,3)=0 then the values of i(p),j(p) are zero so for

the non
 % zero i,j(where the non zero values on stiffness are) we save

the

 63

 % value of Kt in Ktotal
% So we create the lower half of the symmetric stiffness

matrix
 if i(m)j(m)~=0
 Ktotal(i(m),j(m))=Kt(m,3);
 end
end
% we bring stiffness matrix to its final form by add the upper

symmetric half without the diagonal
Ktotal=(Ktotal+(tril(Ktotal,-1)).')

% unlock model.Every time that we analyze the model the model lock

so we
% have to unlock it.
 ret=SapModel.SetModelIsLocked(0);

meter=0

for c=1:number_mat
prompt = {'1:','2:'};

opts.Interpreter = 'tex';
answer = questdlg('Do you want to parameterized this

material/component?' ,mat_name{c}, 'YES','NO','.')

switch answer
 case 'YES'
 disp([answer ' done.'])
 ans = 1;
 case 'NO'
 disp([answer ' ok.'])
 ans = 2;

end
 if ans ==1
% the meter counts how many materials are going to be
% paremeterized.if meter<number_mat then Ko exists
 meter=meter+1
% we keep the number of material which is going to be

parameterized
% this number corresponds to a material depending on the order

that the material is given by the user

 param(meter)=c

 end

end

 % % % % % % % % % % % % % % % % % %% % % % % % % % % % % % % % %

% % % % %
 % % % % % % % % % % % % % % %calculation of Ko% % % % % % % % %

% % % % %
 % % % % % % % % % % % % % % % % % %% % % % % % % % % % % % % % %

% % % % %

 64

if meter~=number_mat&&meter~=0
 for u=1:meter
% E=0 for every parameterized material through this sap2000

command

ret=SapModel.PropMaterial.SetMPIsotropic(char(mat_name{param(u)}),

0,Nu(param(u)),A(param(u)));
 end

% run model analysis on order to extract stiffness matrix.this

stiffness matrix is Ko
 ret = SapModel.Analyze.RunAnalysis();
 % import data from the stiffnes text files
 Sfilename=[name,'.TXK'];
 s = importdata(Sfilename);
 K_o=s.data;
 mhkos0=length(K_o);

 Ko=sparse(zeros(last1));

% bring Ko to its normal form
 for dd=1:mhkos0
 if K_o(dd,3)~=0
 metrhths0=dd
 i(dd)=K_o(dd,1);
 j(dd)=K_o(dd,2);
 end
 end
 for nn=1:metrhths0
 if i(nn)j(nn)~=0
 Ko(i(nn),j(nn))=K_o(nn,3);
 end
 end
% final form of Ko
 Ko=(Ko+(tril(Ko,-1)).');

end

if meter==number_mat
 Ko=sparse(zeros(last1));
end

 % % % % % % % %% % % % % % % %% % % % % % % %% % % % % % % %
 % % % % % % % %calculation of Ki % % % % % % % % % % % % % % %
 % % % % % % % %% % % % % % % %% % % % % % % %% % % % % % % %% %
if meter~=0

 K_sum=sparse(zeros(last1))
 % every loop refers to a material that is going to be

paremeterized
 for q =1:meter

 ret=SapModel.SetModelIsLocked(0);
% keep the number of material that is parameterized in this

loop
 number_mat1=q
% give value of θ for the material
 prompt = {'the value of parameter θ:'};

 65

 title = 'value of parameter θ for ';
 th = inputdlg(prompt,mat_name{param(q)},[1 60]);
 % b is θ
 b(q)=str2num(th{1})

% we kept the parameterized material. θ for others materials

is going
% to be zero.this changes in every loop.only the material

that is
% analyzed (in every loop) has no zero value of θ.
 for l=1:meter
 if l~=q
 b(l)=0;
 end
% multiple the modulus of elasticity of each material with θ
 Enew(param(l))=E(param(l))*b(l);

 end

% for every material pass the value of new modulus of

elasticity in
% sap2000
 for t=1:meter

ret=SapModel.PropMaterial.SetMPIsotropic(char(mat_name{param(t)}),

Enew(param(t)),Nu(param(t)),A(param(t)));
 end
% analyze the model
 ret = SapModel.Analyze.RunAnalysis();
% import stiffness matrix and bring it to its normal form
 Sfilename=[name,'.TXK'];
 s = importdata(Sfilename);
 K_new=s.data;
 mhkos1=length(K_new);
 last2=K_new(end,2);
 K_i=sparse(zeros(last2));
 sum=0

 k=0
 K_new_end=s.data(:,end);
 for r=1:mhkos1
 if K_new(r,3)~=0
 metrhths=r;
 i(r)=K_new(r,1);
 j(r)=K_new(r,2);
 end
 end

 for n=1:metrhths
 if i(n)j(n)~=0
 K_i(i(n),j(n))=K_new(n,3);
 end
 end

 K_i=(K_i+(tril(K_i,-1)).');
% The Ki matrices are created

 Ki{q,1}=mat_name(param(q));

 66

% if there is Ko then the K of the spesific part is the K_i

that was
% calculated above minus Ko.
 Ki{q,2}=(K_i-Ko);
 Ki{q,2}=Ki{q,2}/b(q);
% the values of θ
 thita(q)=b(q);

 end
end

if meter==0
 disp([no parameterized material'])
end
 %

%
% calculation of mass matrix. THe methodology is the same as the

calculation of the stiffness matrix% %
% % % % % % % % % % % % %

%

 metrhths2=0
 mhkos_m=length(mass_matrix);
 last_m=mass_matrix(end,2);
 M=sparse(zeros(last_m));
 M_sum=sparse(zeros(last_m));
 for ii=1:mhkos_m
 if mass_matrix(ii,3)~=0
 x(ii)=mass_matrix(ii,1);
 z(ii)=mass_matrix(ii,2);
 metrhths2=ii
 end
 end
 for ss=1:metrhths2
 if x(ss),z(ss)~=0
 M(x(ss),z(ss))=mass_matrix(ss,3);
 end

 end
 % %%%%%%%% calculation of Mo%%%%%%%%
 if meter~=number_mat&&meter~=0

 for ee=1:meter
 ret=SapModel.SetModelIsLocked(0);

ret=SapModel.PropMaterial.SetWeightAndMass(char(mat_name{param(ee)

}),1, 0)
 end
 ret = SapModel.Analyze.RunAnalysis();
 Mfilename=[name,'.TXM'];

 mass0= importdata(Mfilename);
 mass_matrix0=mass0.data;
 mhkos_m0=length(mass_matrix0);

 Mo=sparse(zeros(last_m));
 metrhths00=0

 67

 for ww=1:mhkos_m0
 if mass_matrix0(ww,3)~=0
 x0(ww)=mass_matrix0(ww,1);
 z0(ww)=mass_matrix0(ww,2);
 metrhths00=ww

 end
 end
 for uu=1:metrhths00
 if x0(uu),z0(uu)~=0
 Mo(x0(uu),z0(uu))=mass_matrix0(uu,3);
 end
 end
end
if meter==number_mat
 Mo=sparse(zeros(last_m));
end
% % % % % % % % % % % % % % calculation of Mi% % % % % % % % % % %

% % %%
if meter~=0
 for kk=1:meter
 ret=SapModel.SetModelIsLocked(0);
% define the value of f where f is φ
 prompt = {'the value of parameter φ:'};
 title = 'value of parameter φ for ';
 ff = inputdlg(prompt,mat_name{param(kk)},[1 60]);

 f(kk)=str2num(ff{1})
% the value φ that is not zero is the only one that relating

with the material that is parameterized in this loop
 for ll=1:meter
 if ll~=kk
 f(ll)=0;
 end
% multiple the density with φ
 density_new(param(ll))=density(param(ll))*f(ll);
 end
 for tt=1:meter
% pass the parameterized densities in Sap2000

ret=SapModel.PropMaterial.SetWeightAndMass(char(mat_name{param(tt)

}),1, density_new(param(tt)));
 end
% analyze the model
 ret = SapModel.Analyze.RunAnalysis();
% extract Mi and bring them to their normal form
 Mfilename=[name,'.TXM'];
 mass1= importdata(Mfilename);
 mass_matrixNew=mass1.data;
 mhkos_m1=length(mass_matrixNew);
 last_m1=mass_matrixNew(end,2);
 M_new=sparse(zeros(last_m1));
 metrhths1=0
 for yy=1:mhkos_m1
 if mass_matrixNew(yy,3)~=0
 xn(yy)=mass_matrixNew(yy,1);
 zn(yy)=mass_matrixNew(yy,2);
 metrhths1=yy

 end

 68

 end
 for gg=1:metrhths1
 if xn(gg),zn(gg)~=0
% may we have Mo so
 M_new(xn(gg),zn(gg))=mass_matrixNew(gg,3);
 end
 end
 Mi{kk,1}=mat_name(param(kk));
 Mi{kk,2}=(M_new-Mo);
 Mi{kk,2}=Mi{kk,2}/f(kk);
 fi(kk)=f(kk)
 end
end
% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %%

% %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %
% calculate Ki for each material given that may we did not

parameterize all the components in the previous process% %
% % % % % % % % % % % % %% % %% % %% % %% % %% % %% % %% % %% % %%

% %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %

 for jk=1:number_mat
 ret=SapModel.SetModelIsLocked(0);
 for iel=1:number_mat

ret=SapModel.PropMaterial.SetMPIsotropic(char(mat_name{iel}),E(iel

),Nu(iel),A(iel));

ret=SapModel.PropMaterial.SetWeightAndMass(char(mat_name{iel}),1,

density(iel));
 end
 for hv=1:number_mat
 if hv~=jk
 ret=SapModel.SetModelIsLocked(0);
ret=SapModel.PropMaterial.SetMPIsotropic(char(mat_name{hv}),0,Nu(h

v),A(hv));
 end
 end
 ret = SapModel.Analyze.RunAnalysis();
 Sfilename=[name,'.TXK'];
 s = importdata(Sfilename);
 SM=s.data;
 mhkos1=length(SM);
 last2=K_new(end,2);
 S_1=sparse(zeros(last2));

 for r=1:mhkos1
 if SM(r,3)~=0
 metrhths=r;
 i(r)=SM(r,1);
 j(r)=SM(r,2);
 end
 end
 for n=1:metrhths
 if i(n)j(n)~=0
 S_1(i(n),j(n))=SM(n,3);
 end
 end

 S_1=(S_1+(tril(S_1,-1)).');
 SMi{jk}=S_1;
 End

 69

Appendix B: Explanation on how to use the SAP2000 API

and how the SAP2000 API functions are

documented.

All the used SAP2000 API functions are listed here

 SapObject = actxserver('CSI.SAP2000.API.SapObject') . This function

starts the interface between the two programs.

 SapModel= SapObject.SapModel Creates the SapModel object

 SapObject.ApplicationStart. This function starts the Sap2000 application.

 SapObject.SapModel.File.OpenFile. This function opens an existing

Sap2000 file. The file name must have an sdb, $2k, s2k, xls, or mdb

extension. Files with sdb extensions are opened as standard Sap2000 files.

Files with $2k and s2k extensions are imported as text files. Files with xls

extensions are imported as Microsoft Excel files. Files with mdb

extensions are imported as Microsoft Access files.

 SapObject.SapModel.SetModelIsLocked. This function unlocks the model.

With some exceptions, definitions and assignments can not be changed in a

model while the model is locked. If an attempt is made to change a

definition or assignment while the model is locked and that change is not

allowed in a locked model, an error will be returned.

 SapObject.SapModel.PropMaterial.SetMPIsotropic. This function sets the

material directional symmetry type to isotropic, and assigns the isotropic

mechanical properties(The modulus of elasticity, Poisson’s ratio, The

thermal coefficient)

 SapObject.SapModel.PropMaterial.SetWeightAndMass. This is either 1 or

2, indicating what is specified by the Value item.

1 = Weight per unit volume is specified

2 = Mass per unit volume is specified

If the weight is specified, the corresponding mass is program calculated

based on the specified weight. Similarly, if the mass is specified, the

corresponding weight is program calculated based on the specified mass.

 70

Appendix C: Instructions for the identification of

Model’s properties in SAP2000

A. The identification of component’s material and their

properties in SAP2000

 Figure C.1. The original model

Step 1: view the colors

To identify the different parts of the structure the user can click on Display options

toolbar button>General options. The options on this form can be used to

selectively display various features associated with objects in the model.

View by Color of drop-down list. This list can be used to specify that the model

be displayed using Colors associated with Objects (as assigned using the Options

menu > Graphics Colors > Display command), Section properties (as defined

using the Define menu > Section Properties subcommands), Material properties

(as defined using the Define menu > Materials command), Groups (see next

bullet), Frame Design Type (as determined from the object, section, and material

properties), or full color or black and white "color" using a color printer. By

clicking on materials the user can see the different materials in the structure(this

assumes that every material has different color).(figure C.2)

http://docs.csiamerica.com/help-files/etabs/Menus/Options/Graphics_Colors/Display_Colors.htm
http://docs.csiamerica.com/help-files/etabs/Menus/Options/Graphics_Colors/Display_Colors.htm
http://docs.csiamerica.com/help-files/etabs/Menus/Define/Material_Properties/Material_Properties.htm

 71

By selecting view by color of materials the user can see all the different materials

used by the model.(figure C.3)

 (a)

 (b)

Figure C.2. Display Options

Figure C.3. The materials of the structure (viewed by color)

It is obvious that there are three different materials in the structure.

 72

Step 2: Identify the used materials

In the Define menu>Material the user can see the materials that exist in Sap2000.

In Modify/Show Material section, he can see the properties of the materials and

understand which material is used in the model(depending on its color).(figures

C.4 , C.5)

 Figure C.4. The Define Menu

Figure C.5. The Materials

 73

Figure C.6. The properties of A992Fy50 material

B. Separation of parts in SAP2000

Step 1: Select the parts

Sometimes we have to separate some parts of a structure in order to examine them.

As we saw in figure 1 the deck and the arched part consists a component. We want

to separate these two components in SAP2000 in order to calculate the stiffness

and mass matrix of each part. For example we select to modify the deck.

Step 2: Separation process

The modified part must have the same properties as it had before the modification.

Thus, we create a copy of the deck’s material. In the Define menu>Material>Add

copy of Material a copy of the material is created.(figure C.7)

 74

Figure C.7. The deck’s material is A992Fy50 so we create a copy of it

The properties of the copied material are the same with the original one (figures

C.8).

Figure C.8. The properties of the copied material

The copied material should have different name and color from the original one in

order to distinguish them.(we select material name MAT and purple color)

 75

Now we change the deck’s material from A992Fy50 to MAT. This can be done by

selecting an element from the deck (each element has a frame) . In section

property there is the name of element’s frame. We can click on the frame’s name

and after that we change its material to MAT(figures C.9,).

Figure C.9. Click on this element and after that on its frame called long_nerves

Figure C.10. For this frame we click on Modify/Show Property section and change

the material to MAT.

 76

Figure C.11. The figure of the model after the modification

As we see ,all elements with the same properties were changed color. These

elements that do not change their material have a different kind of frame. The

same process is followed in order to modify the rest of deck’s elements.(figures

C.12,C.13)

Figure C.12 These kind of elements are selected that have frame called traverse.

Click on frame’s name.

 77

Figure C.13 The frame’s material is changed to MAT

Figure C.14. The figure of the model after modification

One last set of elements should be modified in order to distinguish the deck from

the arched part. The process is the same as previously.

 78

The final form of the model is depicted in Figure C.15.

Figure C.15. Model’s final form

In the case that we want to study only one element the process is quite different.

C. Study one element

Step 1: choose the element

Initially we have to choose which element we want to examine. For example, an

element of the deck is selected (Figure C.16)

Figure C.16. The selected element

 79

Step 2: Modification of the element

After the selection of the element, we have to modify it. There many elements

with the same properties with the selected one, thus the discrimination of the

specific element is based on its frame’s modification.

We have to create a copy of its frame by clicking on the frame’s name and after

that on the Add a Copy of Property section (Figures C.17,C.18).

Figure C.17.The frame called long_nerves is copied

Figure C.18. FSEC2 is a copy of the frame called long_nerves and replaces

long_nerves frame only in this element.

 80

Next we have to create a copy of the material called A992Fy50 in order to replace

it and the discrimination is done (Figure C.19)

Figure C.19.The selected element after the discretization.(with orange color)

Conclusion

The example that was presented in this appendix illustrates the parts separation’s

general idea in SAP2000. The user can separate one part from the others based on

this methodology.

This separation helps us to examine each part of the structure. For example, after

the deck’s and arced part separation we have the ability to extract stiffness and

mass matrices from both parts separately.

 81

Appendix D: Software for Experimental Modal Analysis

The software is written in MATLAB2011a and consists of four independent

modulus which are: Data, Pre-Processing, Modal Identification, Post-Processing.

The main menu of the software is depicted in figure D.1.

Figure D.1. Main menu

The Data module is used to load data from .mat files which the program is going

to process. Also results from previous estimations can be loaded (Figure D.2).

 82

Figure D.2

More specifically the data can be:

 Experimental measurements of the acceleration(Time

Histories) of multiple sensors. In the Insert Time Histories

section the user must load a .mat file which contains the

measured by sensors acceleration, the label of each sensor and

the discretization time. The time histories of multiple sensors

need to be arranged in the columns of a matrix named accel.

Each column represents the measurement of the specific

sensor. Furthermore the sensors label must be stored in a

matrix named channeltext and time in a variable named dt. It

is important that the same names to be followed otherwise the

program will not run. An example of 6 sensors is shown in

figure D.3.

 83

Figure D.3. accel=measurement acceleration, dt=time between measurements,

channeltext=label of each sensor

It is possible to load more than one measurements. If we have to measure a large

structure as a bridge with a small number o sensors we have to take multiple

measurements from different positions. That is called sensor configuration.

 In the Insert Modal Identification results section saved

results can be loaded from previous sessions in order to not be

reproduced.

 In the Insert Geometry section the user can load a .mat file

that contains variables which define the geometry of the

structure. The geometry is a figure of the structure and consists

of the nodes ,their degrees of freedom and lines(elements)

which connect the nodes. The geometry .mat file must contain

a matrix named node_coords which contains the coordinates

of each node, a matrix named node_dofs which contains the

degrees of freedom of each node, a matrix el_nodes which is

the element connectivity and a matrix named reference_dofs

which contains the common reference degrees of freedom. In

every sensor configuration we change the location of the

sensors but some of them should remain common. The names

of matrices should be the same with the above ones in order for

the software to run correctly. An example of a bridge geometry

 84

.mat file for the previous measurements is illustrated in figure

D.4.

Figure D.4. node_coords=nodes coordinates, node_dofs=degrees of freedom of

each node, el_nodes=nodes of each element,reference_dofs=common sensors

 In Convert section measurements from another format can be

converted in to a .mat file in order to be used by the software.

After the user loads the necessary .mat files, he or she continue with the Pre-

Processing stage where the Power Spectral Density (PSD),the Singular Value

Spectrum (SVS) of the ambient acceleration time histories and Time

Histories(figure D.5, figure D.6,figure D.7 respectivly)can be visually inspected.

Such inspection can provide information about the modal frequencies and

damping ratios of the structure. In this stage the user gives an estimation of the

modal frequencies which are to going to be used in Modal Identification.

Each sensor configuration can be inspected individually in the pre-processing step,

and specific channels of a configuration can be selected or de-selected from being

used in the Modal Identification process. This feature serves to potentially remove

an unwanted sensor from the analysis because of possible bad recording. It is

worth mentioning that SVS main merit derives from the fact that it has the ability

 85

to separate the noise from the signal, and that it can reveal closely spaced modes

that are not apparent in the PSD.

Figure D.5. PSD of a single configuration using each sensor.

Figure D.6. SVS of a single configuration using each sensor.

 86

 Figure D.7. Time Histories of a single configuration using each sensor.

 Figure D.8. Selection/de-selection of sensors and selection of configurations.

 87

The Show Bandwidth mode, which is found underneath the graph, gives the ability

to zoom in a specific area (figure D.9).

Figure D.9

At the top of the graph there is a Graph mode which provides PSD,SVS and Time

Histories diagrams and the PSD mode provides information about PSD for each

sensor (figure D.10 and D.11).

Figure D.10

Figure D.11

 88

After obtaining an estimate of the natural frequencies of the structure from

observing the SVS or PSD(as it shown in figure D.5 and figure D.6) the user can

define the frequency bands which contain a natural frequency .By clicking the

Bands button the user can mention the space where one of the natural frequencies

is. These estimations can be saved for other analysis. An example is depicted in

figure D.12.

Figure D.12. Frequency bands(an example for two frequencies).

Next step is The Modal Identification which uses a Bayesian methodology in order

to extract the modal frequencies, mode shapes, and modal damping ratios from the

measured ambient acceleration time histories of each sensor configuration.(figure

D.13)

 89

Figure D.13. Modal Identification

After obtaining the modal properties the next step is to visualize the model in Post-

Processing.(figure D.14)

Figure D.14.The Shape is formed for two configurations nm008,nm009

In order to visualize the mode shapes it is necessary to combine all the local mode

shapes identified from each configuration to produce the full mode shape at all

measured degrees of freedom. The user, must also determine the measured points

of the structure as the degrees of freedom in which each sensor measuring for each

configuration. This can be done in the Define/Edit window (figure D.15)

 90

In the first column the user selects (or de-selects) the wanted(or unwanted) sensors

for each configuration, and in the second column defines the direction of each

sensor. After that he selects the nodes where the sensors are and clicks in Select

Nodes. These steps defines where the sensors are and in which direction they are

measuring. This process can be saved in order to be used in another analysis

(figure D.16).

Figure D.15. Define/Edit menu

Figure D.16. Selected DOFs and selected nodes

 91

Figure D.17. Nodes where the sensors were placed for each configuration

The status of all the sensor configurations can be viewed from the Status button of

the main Post-processing window.(figure D.18)

Figure D.18. Configurations Status

After the placing of the sensors the mode shapes can be assembled from the

Assemble button and afterwards the user can view the mode shapes by clicking in

the Deform Shape button (figure D.19).

 92

Figure D.19.Deform shape menu

Figure D.20. Mode shape for frequency 1.50 Hz

Usually not all geometry points were measured by a sensor, and those points have

no associated mode shape component. However, for visualization purposes we

would like to associate those points with some other measured points in order for

them to deform as well. This is done from the Inactive DOFs menu. The inactive

DOFs deform as the means of the two associated DOFs (figure D.21).

 93

Figure D.21.The inactive DOF 8 becomes active while is associated with 6 and

12(active DOFs)

The Configuration button provides information and the results, concerning all

configuration.(figure D.22)

Figure D.22.Configuration Details

 94

View options button shows/hides details of the model.(figure D.23)

Figure D.23

After the analysis of the model by clicking the export button the user can export

the mode shapes as a .mat file or as an image (figure D.23).

Figure D.24

The mode shapes have been saved in a .mat file. The form of this file is presented

in figure D.25

Figure D.25

 95

BIBLIOGRAPHY

T. Kailath, Linear Systems, Prentice–Hall, Englewood Cliffs, NJ, 1980.

R. E. Kalman, Mathematical description of linear dynamical systems, J. Soc.

Indust. Appl. Math. Ser. A Control, 1 (1963)

R. C. K. Lee, Optimal Estimation, Identification, and Control, Research

Monographs 196, MIT Press, Cambridge, MA, 1964.

H. H. Rosenbrock, Structural properties of linear dynamical systems, Int. J.

Control, 20 (1974)

E. Walter and L. Pronzato, Identification of Parametric Models from Experimental

Data, translated from the 1994 French original and revised by the authors, with the

help of John Norton, Comm. Control Engrg. Ser., Springer-Verlag, Berlin,

Masson, Paris, 1997.

Mottershead JE, Friswell MI. Model updating in structural dynamics: a survey. J

Sound Vib 1993;

Marwala T. Finite element model updating using computational intelligence

techniques: applications to structural dynamics. Springer; 2010.

Moaveni B, He X, Conte JP, De Callafon RA. Damage identification of a

composite beam using finite element model updating. Comput Aided Civil

Infrastruct Eng 2008;

Christodoulou K, Papadimitriou C. Structural identification based on optimally

weighted modal residuals. Mech Syst Signal Process 2007

Craig Jr RR. Structural dynamics –an introduction to computer methods. New

York: John Wiley & Sons; 1981

Friswell, M.I.; Mottershead, J.E. (1995). Finite element model updating in

structural dynamics. Solid Mechanics and Its Applications. 38. MA: Kluwer

Academic Publishers Group. pp. 1–286. ISBN 978-0-7923-3431-6.

Marwala, Tshilidzi (2002). "Finite element model updating using wavelet data and

genetic algorithm". Journal of Aircraft

Marwala, Tshilidzi (2010). Finite Element Model Updating Using Computational

Intelligence Techniques: Applications to Structural Dynamics.

https://en.wikipedia.org/wiki/Kluwer_Academic_Publishers_Group
https://en.wikipedia.org/wiki/Kluwer_Academic_Publishers_Group
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-7923-3431-6

 96

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University

Press, Baltimore, Maryland, 3rd edition, 1996.

Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2nd

edition, 2003.

Reynier, M. and Abou-Kandil, H., “Sensors Location for Updating

Problems”,Mechanical Systems and Signal Processing, 1999,

Alvin, K.F., “Finite Element Model Update via Bayesian Estimation and

Minimization of Dynamic Residuals”, American Institute of Aeronautics and

Astronautics Journal, 1997,

Stephan, C. (2012). \Sensor placement for modal identi_cation". Mechanical

Systems and Signal Pro-cessing,

Qureshi, Z.H., Ng, T.S. and Goodwin, G.C. (1980). \Optimum experimental

design for identi_cation of

distributed parameter systems". International Journal of Control,

Beck, J.L. and Katafygiotis, L.S., “Updating Models and Their Uncertainties.

I:Bayesian Statistical Framework”, Journal of Engineering Mechanics (ASCE),

SAP2000 API

MATLAB API

Beck, J.L., “Statistical System Identification of Structures”, Proceedings of the 5th

International Conference on Structural Safety and Reliability (ASCE), San

Francisco, 1989,

