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Abstract

This thesis is intended to illustrate the process followed to achieve the updating of
finite element models of structures. The way to obtain and calculate the data to be
used as inputs from a model updating program is presented. Such data are the mass
and stiffness matrices of the finite element model, as well as the identifiable
frequencies and modeshapes that arise from the real measurements analysis. The
calculation and the saving of the required matrices of the model are made with the
help of a commercial finite element program named SAP2000 and with the
creation of a code in matlab. The code interacts with the commercial finite element
program in order to parameterize the different parts of the model and extract the
necessary stiffness and mass matrices at desired substructuring level. The
frequencies and modeshapes result from the analysis of measurements via a Modal
identification program and are compared with those of the finite element model's.
Finally, reference is made to the model reduction method and to the procedure to
be followed in order to achieve it. With the help of a code created in matlab, the
input data are calculated in order to be used in a model reduction program.The

framework is demonstrated using an application on a bridge structure.
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1. Introduction

1.1. The need for Model updating

In modern analysis of structural dynamics, much effort is devoted to the derivation
of accurate models of structures. Availability of an accurate dynamic finite
element model of a structure is very important to design engineers as it allows
them to improve the dynamic design of the structure at computer level resulting in
an optimized design apart from savings in terms of money and time. The first step
is the derivation of an analytical model, usually finite element model, based on the
assumed equations of motion. But there may be some inaccuracies or uncertainties
that may be associated with a finite element model. The discretisation error,
arising due to approximation of a continuous structure by a finite number of
individual elements, is inherent to the finite element technique. Other inaccuracies
may be due to the assumptions and simplifications made by the analyst with

regards to the choice of elements, modeling of boundary conditions, joints, etc.

These assumptions and simplifications have as a result that when tests are
performed to validate the analytical model, inevitably their results, notably natural
frequencies and modeshapes, do not coincide with the expected results from the
theoretic model. Clearly one would like to have a better model, based on both the
theoretical and the experimental results. In order to face the problems of
inaccuracy in analytical models, researchers have turned their attention to the
development of modeling methods based on experimental observation. This area,
known as system identification, has been particularly vibrant in the control
engineering community over the past 40 years. The model to be identified may be
a parametric or a non-parametric model and, in addition, it may be non-linear.
Once the model structure and model order have been chosen, the estimation of

parameters follows.

In structural dynamics, experimental modal analysis may be considered as a
special area of system identification for the determination of modal data (natural
frequencies, mode shapes, generalized masses and loss factors) from vibration

tests. The modal testing and modal extraction methods (Ewins 2000, Mc Connnel




1995) are also well developed for obtaining a reliable estimate of the modal data.
Given the availability of an accurate data acquisition and measuring equipment the
measured test data, though may not be precise, is generally considered to be more
accurate than analytical model predictions. This has formed the basis for
adjustment or correction of a finite element model, in the light of measured test
data, which is referred as model updating. The purpose of model updating is to
modify the mass, stiffness and damping parameters of the numerical model in
order to obtain better agreement between numerical results and test data. If the
updated model is to be used predictively, for untested loading conditions or
modified structural configurations, then it is important that the improved
agreement in results is achieved by correcting the inaccurate modelling
assumptions and not by making other (physically meaningless) alterations to the
model. Comprehensive reviews of structural parameter identification methods can
be found in (Mottershead and Friswell 1993; Doebling et al. 1996).

Structural model updating is an inverse problem according to which a model of a
structure, usually a finite element model, is adjusted so that either the calculated
time histories, frequency response functions, or modal parameters best match the
corresponding quantities measured or identified from the test data. This inverse
process aims at providing updated models and their corresponding uncertainties
based on the data. These updated models are expected to give more accurate
response predictions to future loadings, as well as allow for an estimation of the
uncertainties associated with such response predictions. In practice, the inverse
problem of model updating is usually ill-conditioned due to insensitivity of the
response to changes in the model parameters, and non-unique (Udwadia and
Sharma 1978; Berman 1989; Katafygiotis and Beck 1998; Katafygiotis et al. 2000)
because of insufficient available data relative to the large number of model
parameter needed to describe the desired model Structural model updating is an
inverse problem according to which a model of a structure, usually a finite element
model, is adjusted so that either the calculated time histories, frequency response
functions, or modal parameters best match the corresponding quantities measured
or identified from the test data. This inverse process aims at providing updated
models and their corresponding uncertainties based on the data. These updated

models are expected to give more accurate response predictions to future loadings,




as well as allow for an estimation of the uncertainties associated with such

response predictions.

1.2.  The importance of Model reduction

There are several definitions of model order reduction, and it depends on the
context which one is preferred. Originally, MOR was developed in the area of
systems and control theory, which studies properties of dynamical systems in
application for reducing their complexity, while preserving their input-output
behavior as much as possible. The field has also been taken up by numerical
mathematicians. Nowadays, model order reduction is a flourishing field of
research, both in systems and control theory and in numerical analysis. This has a
very healthy effect on MOR as a whole, bringing together different techniques and
different points of view, pushing the field forward rapidly.

Such simplification is needed in order to perform simulations within an acceptable
amount of time and limited storage capacity, but with reliable outcome. In some
cases, we would even like to have on-line predictions of the behaviour with
acceptable computational speed, in order to be able to perform optimizations of

processes and products.

Model Reduction tries to quickly capture the essential features of a structure. This
means that in an early stage of the process, the most basic properties of the
original model must already be present in the smaller approximation. At a certain
moment the process of reduction is stopped. At that point all necessary properties
of the original model must be captured with sufficient precision. All of this has to

be done automatically.




1.3. Outline of this work

The study carried out in order to device this work, was aimed at obtaining the
necessary information for the execution of the model updating . To achieve model
updating, the mass and stiffness matrices coming from the analysis of a model in
SAP2000 are required as well as the modeshapes and model frequencies of actual

construction.

Initially, the mass and stiffness matrices are calculated and extracted from the
different parts of the finite element model. Achieving this goal is done by creating
a matlab code that interacts with the SAP2000 finite element program and extracts
and stores the model's matrices. The parameterization of the various model
members is made by introducing parameters 0 that are related to the mass and
stiffness matrices and are the ones that will be valued in model updating so that
their optimal price improves the model.

Afterwards, from the measurements that have been given by the real bridge model
and specifically from the its deck, a range of frequencies and modeshapes has been
found. This was done with the help of a program that was given to us. Through
this range of measured frequencies and modeshapes, we identified these that
match to these of the finite element model.

Then, a flow diagram illustrates the model updating prepared process and the data

needed to make it.

Software to obtain "
Finite - stiffness and mass
stiffness and mass K
- matrices,
B matrices from the parts
parameters 6

model

of the model

inputs

Finite element
model updating Optimal 6
software

Modal frequencies and
modeshapes (inputs)

Collection of Maodal Identification

Measurements Software

Acceleration time histories

for each sensor




Finally, reference is made to the model reduction method. Reference is made to its
utility as well as to the data it is necessary to achieve model reduction. These data
are related with the mass and stiffness matrices of each section of the model as
well as with the internal, boundary and interfacial degrees of freedom of each

component of the structure.

The process followed to obtain the input data that are going to be used in a model

reduction program is depicted by the below flow chart.

Software to obtain
mass and stiffness
matrices of

model’s parts

Stiffness and mass
matrices of each
structure’s

component

Finite element
model

Subsequently, the chapters 3, 4, 5, show the ways to acquire the input data in terms

Software to obtain
boundary, internal
and interfacial
degrees of freedom
from each model's
part

Meodel reduction Program

Boundary, Internal

and interfacial

degrees of freedom

of each component

of model updating and model reduction respectively.
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2.  Model Updating

2.1 Introduction

Structural design and analysis generally requires a mathematical model
representing the physical behaviour of the structure. The finite element (FE)
method is the most appropriate tool for such modeling in structural engineering
today. However it is often observed that the initial FE model is a poor reflection of
structure, particularly in the field of structural dynamics. Inaccuracies arise
because of a number of simplifying assumptions and idealizations that have to be
made in FE modeling. In the recent years various model updating methods have
been developed to update the initial model using experimental data. If accurately
measured data are available then these data could be used to improve the
numerical model in general, and the uncertain parameters of the model in

particular.

The methods may be split according to the type of measured data they use and
model parameters that are updated. The measured data may be in form of
frequency response function (FRF) data or natural frequencies and mode shapes.
The updating process may estimate physical parameters, complete mass, damping
and stiffness matrices or groups of individual matrix elements. Other aspects of
model updating, such as parameter uniqueness, efficient computation,
parameterization, ill-conditioning and the use of incomplete data, are being
investigated. The measured data will always be incomplete because the
measurements will only be taken at a relatively small number of locations and over

a limited frequency range.
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2.2  Structural Model Class

Consider a parameterized class of linear structural models (e.g. a class of finite
element models) used to model the dynamic behaviour of the structure. The
structural model class involves a set of model parameters 6. The equation of

motion of such systems is:
M(0)i(t) + C(O)u(t) + K(@)u(t) = f(t)

Where M(6),C(6), K(6) are the global mass, damping and stiffness matrices

respectively. u(t) is the displacements and £ (t) is the vector of forces.

The parameter set 6 is the set of free model parameters to be estimated using the
measured data. The parameter set 6 is usually associated with geometrical,

material, stiffness or mass properties and boundary conditions.

Here we associate 8 with modulus of elasticity and density of the model.

2.3 Substructuring and FE Model Parameterization

Using finite element model analysis, one derives the element stiffness and the
mass matrices, the stiffness and the mass matrices of the substructures formed by a
group of elements, and finally the global stiffness and the mass matrices. These
matrices depend on the properties of the structure, like modulus of elasticity and

mass density. These properties are selected for updating and are included in 6.

In finite element analysis, the global stiffness and mass matrices formulation are

taking the following form:
N N
K(©) = Y KL(®) and M@©) = ) Ml (6)
i=1 i=1

K} (6),M!(9),N are the local stiffness , mass matrices and number of structure’s

elements respectively.

12



The linear relation between global stiffness and mass matrices and 6 is listed

below.

2.4 Linear Relation Between Model Matrices and Parameters

Ng Ng
K(6) = K, + z K; (6) and M(6) = M, + 2 M; (6)

K; and M; are assembled from element stiffness and mass matrices that depend
linearly on 6. K, and M, are assembled from element stiffness and mass matrices
that do not depend on 8. Nyis the number of parameters used to parameterize the

model or the number of the model’s parts that are parameterized.

K; and M; as well as the set of 6 are used as inputs in model updating programs.

2.5 An Introduction to Model Updating Based on Modal
Properties

2.5.1 Introduction

The problem of identifying the parameters of a structural model using dynamic
data has received much attention because of its importance in structural model
updating, structural health monitoring and structural control. The estimate of the
parameter values involves uncertainties that are due to limitations of the
mathematical models used to represent the behavior of the real structure, the
presence of measurement error in the data, and insufficient excitation and response
bandwidth. Structural identification and finite element model updating
methodologies are often based on modal data. The optimal structural models
resulting from such method can be used for response and reliability predictions,

structural health monitoring and control.

13



2.5.2 Formulation

Let D = {@%, % € RNo,r = 1,..m k = 1, ... Ny} be the measured data from a

A (k)

@ﬁk) and modeshape components @, at

structure, consisting of modal frequencies
N, measured DOFs where m is the number of observed modes and N, is the

number of modal data sets avaible.

Consider a parameterized class of linear structural models M used to model the
dynamic behaviour of the structure and let 8eRN¢ be the set of free structural
model parameters to be identified using the measured modal data. Let also
{w,(8),9,-(0) € RN¢,r = 1,..m} where N, is the number of model degrees of
freedom (DOF), be the predictions of the modal frequencies and modeshapes
obtained for a particular value of the parameter set & by solving the eigenvalue
problem corresponding to the model mass and stiffness matrices M(8) and K(8)

respectively,that is,
[K(8) — w,*(0)M]ep,(8) = 0

The objective in a modal-based structural identification methodology is to estimate
the values of the parameter set 6 so that the modal data {w,(8),¢,(0),7r =
1, ...m} predicted by the linear class of models best matches, in some sense, the
experimentally obtained modal data in D. In this thesis we produced the necessary

data in order to be used later for model updating.

14



3. The process of extraction of model’s stiffness and

mass matrices(presentation of the software)

3.1. The FE Model

Based on the linear relation between model matrices and parameters , a bridge

model made in SAP2000 is examined in order to be parameterized.

Figure 3.1. The bridge Model made in SAP2000

For this examination we separate the model into 4 components as it is shown in
figure 3.2.Another separation can be done according to which parts we want to

parameterize.

15



Figure 3.2. Structure’s components

e Component 1:arched part (aguamarine color)
e Component 2:deck (purple color)
e Component 3:piers(white color)

e Component 4:columns(blue color)

The separation of the bridge’s parts based on the materials that constitute these

parts.

e Arched part: Material name A992Fy50(Sap2000°’s name)
e Deck: Material name MAT
e Piers: Material name concrete_nomass

e Columns: Material name concrete_abut

The definition of stiffness and mass matrices for a component entails that the
parameters which are related to the other parameterized components will get zero
value. For example, if we want to extract only deck’s stiffness and mass matrices
we have to zero modulus of elasticity and mass density from the other three

components.

16



3.2. Software for acquisition of stiffness and mass matrices of

model’s components

Studying the SAP2000 bridge model, a code is created in order to extract the

stiffness and mass matrices from each part of the structure.

The code is written in MATLAB (version 2015a) and creates an interface between
Sap2000 and MATLAB. This interaction allows to change the model’s properties
through MATLAB.

e The interface is possible via a specific part of the code that is presented

below:

% pass data to Sap2000 as one - dimensional arrays
feature ('COM SafeArraySingleDim', 1);

% pass non - scalar arrays to Sap2000 API by reference

feature ('COM PassSafeArrayByRef', 1);

$start the interface
SapObject = actxserver ('CSI.SAP2000.API.SapObject");
% create Sap2000 object

SapModel = SapObject . SapModel ;
% start the application

ret = SapObject.ApplicationStart();

These commands are used in order to create a bridge between two

programs. Thus the interface is done.

e Next step is to open the model that we are studying.

% give the name of Sap2000 model file

name=input ('dwse onoma arxeiou: ' , 's'")

% the file is on the desktop
ret=SapObject.SapModel.File.OpenFile (['C:\Users\Spyros\Deskt
op\' ,name, '.sdb'])

e The SAP2000 file was loaded and the next step is to define the material
properties for each component. The bridge model is constituted from four

components, so the user has to define the material properties for each part.

[T o o o

% % % % % insert material properties for each material in
sap2000

number mat=input ('number of structure’s material/components'
)

for i=l:number mat

17



prompt = {'material name:', 'modulus of
elasticity:', 'coefficient of thermal expansion:
ratio:', 'density:"'};

title = 'material properties';

', 'poisson

r = inputdlg(prompt,title, [1 60]);
mat name (i)=r{l};

E(i)= str2num(r{2});
A(i) = str2num(r{3});
Nu (i) = str2num(r{4});

density(i)=str2num(r{5});

end

The modulus of elasticity, the poisson ratio, the coefficient of thermal
expansion and mass density are the necessary inputs. These inputs are
based on values that were given by the maker of the model . The
coefficient of thermal expansion and the poisson ratio are parameters that
do not contribute to stiffness and mass matrices. However these parameters

are necessary for the two programs interface.

After that, these inputs are passed into the finite element model. We insert
these data again in the model in case they were changed in a previous

model analysis.

for k=l:number mat

Enew (k) =E (k) ;
density new (k)=density (k) ;
% pass material properties to Sap2000

ret=SapModel.PropMaterial.SetMPIsotropic (char (mat name{k}),E
(k) ,Nu(k),A(k));
% pass mass density to Sap2000

ret=SapModel.PropMaterial.SetWeightAndMass (char (mat name{k})
,1, density(k));
end

18



3.2.1 The acquisition of global stiffness matrix(before the parameterization
process) , Ky, K;

All the necessary information is known in order to start the parameterization and
the extraction of the model’s matrices. Initially, the global stiffness is
calculated(the global mass matrix and M; are calculated after the calculation of
K;) through the model’s analysis. At this point, it is worth mentioning that
SAP2000 extracts stiffness and mass matrices as text files saved in the place where
the sap file is. TXK file gives the lower half of the symmetric stiffness matrix and
.TXM file gives the lower half of the symmetric mass matrix. There are three
columns in the files. The first and the second one give the position of each
stiffness/mass value (matrix’s row and column). The third column is the

stiffness/mass value. The software imports these data.

unlock the model

ret=SapModel.SetModelIsLocked(0) ;
% define load case in order to extract model matrices.
%We have to define a load case dead or modal for the
extraction of the matrices.
$that is asked by sap2000.There is no difference in the
matrices’ values

ret = SapModel.Analyze.SetSolverOption 1(1, 0,1, '"DEAD")
% analyze the model

ret = SapModel.Analyze.RunAnalysis();
% import data from M file
Mfilename=[name, '.TXM'];

mass = importdata (Mfilename) ;
mass matrix=mass.data;

% import data from Stiffness file
Sfilename=[name, '.TXK'];

s = importdata (Sfilename) ;
% Kt has 3 columns ,number of row and column,stiffness wvalue
Kt=s.data;

Kt is a matrix which includes three columns. The third column indicates
the stiffness value and the first two contains the number of the row and
column to which the stiffness value corresponds. The data from global

mass matrix also are imported in order to be used later.
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The global stiffness matrix does not have not its normal form thus we have
to bring it to its symmetric form. The process is easy while we seek for a
non-zero element of the third column of the Kt matrix. When we detect it,
we save its coordinates in matrices i and j respectively. If an element of the
third column of Kt is zero the i,j matrices obtain a zero value. The i matrix
contains the numbers of the rows and j the number of the columns for
every non zero element. After that, in a matrix called Ktotal the stiffness
values of Kt are imported in the positions which are indicated by the
matrices i,j . We create the lower half of the matrix and afterwards we

bring it to its normal form.

o)

% unlock the model

ret=SapModel.SetModelIsLocked(0) ;
% define load case in order to extract model matrices.We
have to define a load case dead or modal for the extraction
of the matrices. that is asked by sap2000.There is no
difference in the matrices’ values

ret = SapModel.Analyze.SetSolverOption 1(1, 0,1, 'DEAD")
% analyze the model

ret = SapModel.Analyze.RunAnalysis();

% import data from M file
Mfilename=[name, ' .TXM'];

mass = importdata (Mfilename) ;
mass matrix=mass.data;

% import data from Stiffness file
Sfilename=[name, '.TXK'];

s = importdata(Sfilename) ;

% Kt has 3 columns ,number of row and column,stiffness value

Kt=s.data;

T % 5S35 %5 %5 %% %S S
% % % % % % %% % % bring the stiffness matrix to its
original form % $ % % % % % %

o)

% matrix length

mhkos=length (Kt)

% first 2 colummns are the number of the row and column and
the third the stiffness value

% the last number of the column is the size of the matrix
given that the

% diagonial elements of the global stiffness matrix are non
zero thus the

% last element of the matrix describe its size

% read the coordinates of the last element

lastl=Kt (end, 2);

Ktotal=sparse (zeros (lastl));

% we find the non zero elements and keep their coordinates
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for p=1:mhkos
if Kt (p,3)~=0
if Kt (p,3)=0 then the values of i(p),]J(p) are zero
i (p)th (pl 1);
j(p)=Kt(p,2);

o

end
end

o)

°

for m=1:mhkos

% 1if Kt(p,3)=0 then the values of i(p),]Jj(p) are zero so
for the non

% zero 1,7J(where the non zero values on stiffness are)
we save the

% value of Kt in Ktotal

% So we create the lower half of the symmetric stiffness
matrix

if i(m)3j (m)~=0

Ktotal (i (m),]j (m))=Kt (m,3);

end
end

[

% we bring stiffness matrix to its final form by add the
upper symmetric half without the diagonal
Ktotal=(Ktotal+(tril (Ktotal,-1)).")

Next step is to define the materials/components that are going to be
parameterized. The user decides which part/material wants to parameterize

and this materials is saved in a matrix.

for c=1:number mat
prompt = {'1:','2:"};
opts.Interpreter = 'tex';
answer = questdlg('Do you want to parameterized this
material/component?' ,mat name{c}, 'YES',6 'NO','.")
switch answer

case 'YES'

disp([answer ' done.'])
ans = 1;
case 'NO'
disp([answer ' ok.'])
ans = 2;
end
if ans ==
% the meter counts how many materials are going to be
% paremeterized.if meter<number mat then Ko exists
meter=meter+l
% we keep the number of material which is going to be
parameterized

o)

% this number corresponds to a material depending on the
order that the material is given by the user

param (meter)=c
end
end
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After the parameterized materials are defined, K, is calculated (K, is
assembled from element stiffness matrix that does not depend on ). If the
variable meter is equal to the number of structure’s material then all
components are going to be parameterized and there is no K. By contrast,
if the variable meter is lower than the number of structure’s materials then
some parts were not parameterized. The param matrix corresponds to the
parameterized materials. The value of modulus of elasticity of each

parameterized material is set to zero in order to extract K,,.

for u=l:meter

S E=0 for every parameterized material though this
sap2000 command

ret=SapModel.PropMaterial.SetMPIsotropic (char (mat name{param
(u) }),0,Nu(param(u)),A(param(u)));
end

This methodology is executed if the below condition is satisfied

if meter~=number mat&&meter~=0

The model is analyzed in order to extract K,.The parts with zero modulus
of elasticity do not give a stiffness matrix .The extraction of K, ,as well as
the figuration of its normal form , follow the same methodology with the

calculation of global stiffness matrix.

% run model analysis on order to extract stiffness
matrix.this stiffness matrix is Ko

ret = SapModel.Analyze.RunAnalysis();

% import data from the stiffnes text files

Sfilename=[name, '.TXK'];

s = importdata (Sfilename) ;

K o=s.data;

mhkosO=length (K o);

Ko=sparse (zeros (lastl));

s bring Ko to its normal form
for dd=1:mhkosO
if K o(dd, 3)~=0
metrhths0=dd
i(dd)=K o(dd,1);
j (dd)=K_o(dd, 2) ;
end
end
for nn=1:metrhthsO
if i(nn)j(nn)~=0
Ko (i(nn),j(nn))=K o(nn,3);
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end
end
% final form of Ko
Ko=(Ko+ (tril (Ko,=-1)).");

end

If all materials/components are chosen by the user to be parameterized then

the K, matrix is a zero matrix.

if meter==number mat
Ko=sparse (zeros (lastl));
end

Thus far, we have defined the global stiffness matrix and the K, (stiffness

matrix that does not depend on ).

The next step is to calculate K; the stiffness matrices that depend linearly
on @ as well as the values of 6;. The value of 8 is different to zero only for
the component from which we want to extract the stiffness matrix, the
other values of 6 are zero. The value of 8 changes in every loop depending
on the material that we examine. For example if we want to parameterize

the j material 6; # 0 while 8; = 0 for i=1....N and i#]

The process of extraction of K; is the same with that for extraction and

calculation of global stiffness matrix.

for g =l:meter

ret=SapModel.SetModelIsLocked (0Q) ;
% keep the number of material that is parameterized in
this loop
number matl=qg
% give value of 6 for the material
prompt = {'the value of parameter 6:'};
title = 'value of parameter 6 for ';
th = inputdlg (prompt,mat name{param(q)}, [1 60]);
% b is ©
b(g)=str2num(th{1l})

% we kept the parameterized material. 6 for others
materials is going to be zero. this changes in every loop.
only the material that is
% analyzed (in every loop) has no zero value of ©O.

for 1=l:meter
if 1~=qg
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b(1)=0;

end
% multiple the modulus of elasticity of each material with ©
Enew (param(l))=E (param(l)) *b(1l);
end

$for every material pass the value of new modulus of
elasticity in sap2000
for t=l:meter

ret=SapModel.PropMaterial.SetMPIsotropic (char (mat name{param
(t)}), Enew(param(t)),Nu(param(t)),A(param(t)));
end
%analyze the model
ret = SapModel.Analyze.RunAnalysis();
Simport stiffness matrix and bring it to its normal form
Sfilename=[name, ' .TXK'];
s = importdata(Sfilename) ;
K new=s.data;
mhkosl=length (K new) ;
last2=K new(end, 2) ;
K i=sparse(zeros(last2));
sum=0

k=0
K new_end=s.data(:,end);
for r=1:mhkosl
if K new(r,3)~=0
metrhths=r;
i(r)=K new(r,1);
j(r)=K new(r,2);
end
end

for n=1l:metrhths
if i(n)J(n)~=0
K i(i(n),Jj(n))=K new(n,3);
end

end

K i=(K i+(tril(K 1i,-1)).");
% The Ki matrices are created

Ki{g,l}=mat name (param(q));

% 1f there is Ko then the K of the spesific part is the K i
that was
% calculated above minus Ko.

Ki{q,2}=(K_i-Ko);

Ki{q,2}=Ki{q,2}/b(q);
the values of ©

thita(q)=b(q);

o\

end
end
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The cell arrays of Ki contain the K; matrices of every parameterized
material/component. Also, the values of 6 that were given for each
material were saved in a matrix called thita.The stiffness matrix is

calculated for each material and saved in matlab.

3.2.2 The acquisition of global mass matrix(before the parameterization
process) , My, M;

The changes in modulus of elasticity do not affect the mass matrix given that, it
depends on mass density. The global mass matrix’s data were imported in the code

when we tried to calculate the global stiffness matrix.

e At this point, global mass matrix is going to be transformed to its normal

form.
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metrhths2=0
mhkos m=length (mass matrix);
last m=mass matrix(end,2);
M=sparse (zeros (last m));
M sum=sparse (zeros (last m));
for ii=1:mhkos m
if mass matrix(ii, 3)~=0
x(ii)=mass matrix(ii,1);
z(ii)=mass matrix(ii,2);
metrhths2=1i1i
end
end
for ss=1l:metrhths2
if x(ss),z(ss)~=
M(x(ss),z(ss))=mass_matrix(ss,3);
end
end

Regarding the code,the mass_matrix is a matrix in which the data from
mass text file were imported and saved.It is constituted by three columns.
The third one is the mass value ,the first and the second columns are the
matrix’s number of the row and column respectively.The M matrix is a

diagonal matrix which contains the mass values of the global mass matrix.
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The next step is the calculation of M,(if it exists). The existence of M,

depends on the value of the meter variable.

o)

% %%%%%%%% calculation of Mo%%%%%%%%
if meter~=number mat&é&meter~=0

for ee=l:meter
ret=SapModel.SetModelIsLocked(0) ;

ret=SapModel.PropMaterial.SetWeightAndMass (char (mat name{par
am(ee) }),1, 0)
end
ret = SapModel.Analyze.RunAnalysis();
Mfilename=[name, ' .TXM'];

mass0= importdata (Mfilename) ;
mass matrixO=massO.data;
mhkos mO=length (mass matrix0);

Mo=sparse (zeros (last m));
metrhths00=0
for ww=1:mhkos mO0
if mass matrix0 (ww, 3)~=0
x0 (ww) =mass matrix0 (ww,1);
z0 (ww) =mass_matrix0 (ww,2);
metrhths00=ww

end
end
for uu=1l:metrhths00
if x0 (uu), z0 (uu)~=0
Mo (x0 (uu), z0 (uu) ) =mass_matrix0 (uu, 3);
end
end

end

if meter==number mat
Mo=sparse (zeros (last m));

end

After the calculation of M,, follow the extraction and the calculation of M;.
The mass matrix depends the mass density of each component, thus a new
parameter ¢ must be defined. This parameter is related to mass density.
The value of ¢ is different from zero only for the component/material from
which we want to extract the mass matrix, the other values of ¢ are set
zero. The value of ¢ changes in every loop as it depends on the material
that we examine. For example, if we want to parameterize the j material

@; # 0while ¢; = 0 fori=1....N and i#j.
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5 $ calculation of Mi% %

o
o
o
o
o
o
o

if meter~=0
for kk=1l:meter
ret=SapModel.SetModelIsLocked (0) ;
define the value of f where f is o
prompt = {'the value of parameter o¢:'};
title = 'value of parameter ¢ for ';
ff = inputdlg(prompt,mat name{param(kk)}, [1 60]);

o

f(kk)=str2num(f£f{1})
% the value ¢ that is not zero is the only one that
relating with the material that is parameterized in this
loop

for 1ll=l:meter

if 11~=kk
£(11)=0;
end
% multiple the density with o
density new(param(ll))=density (param(1l1l))*£(11);
end
for tt=l:meter
% pass the parameterized densities in Sap2000

ret=SapModel.PropMaterial.SetWeightAndMass (char (mat name{par

am(tt)}),1, density new(param(tt))):;
end
% analyze the model

ret = SapModel.Analyze.RunAnalysis();
extract Mi and bring them to their normal form
Mfilename=[name, ' .TXM'];

o\°

massl= importdata (Mfilename) ;
mass matrixNew=massl.data;
mhkos_mlzlength(mass_matrixNew);
last ml=mass matrixNew(end,2);
M new=sparse (zeros (last ml));
metrhthsl1=0
for yy=l:mhkos ml
if mass matrixNew (yy,3)~=0
xn (yy)=mass matrixNew(yy,1);
zn (yy) =mass_matrixNew (yy,2);
metrhthsl=yy
end
end
for gg=l:metrhthsl
if xn(g9g9),zn(gg)~=0
M new(xn(gg),zn(gg))=mass_matrixNew (gg, 3);
end
end
Mi{kk,1l}=mat name (param(kk)) ;
Mi{kk,2}=(M new-Mo) ;
Mi{kk,2}=Mi{kk,2}/f (kk);
fi(kk)=f (kk)
end
end
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With regard to the code, M_new corresponds to the mass matrix of the
parameterized component/material. The cell arrays of Mi contain the mass
matrices for each parameterized component. Also, the values of ¢ are

saved in a matrix called fi.

The model matrices have been calculated and can be saved in .mat files in

order to be used for model updating.

4. Modal Identification of a bridge using vibration

measurements.

4.1 Measurements data

Based on the finite element model of a bridge model, developed with the Static
and Dynamic Analysis Program Sap2000v19,the analytical values of frequencies
and mode shapes of the arched bridge were calculated and used for more accurate
identification of frequencies, velocities and damping rates of measured oscillation

time histories.

Two sets of measurements were used and analyzed in order for the mode shapes to
be identified (figures 4.1 and 4.2). The location of the accelerometers on the
structure plays a key role for obtaining optimum measurements(figure
4.3).0Obtaining measurements that provide maximum information regarding the

dynamic modal characteristic
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Figure 4.1. nm008 configuration

Figure 4.2. nm009 configuration
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Figure 4.3. The location of the sensors

4.2  ldentification of mode shapes and modal frequencies based
on FE model

The identified modal frequencies based on the finite element model’s modal

analysis (the first fourteenth identified frequencies).

Table 1. Frequencies based on Sap2000 modal analysis and on measurements

Frequencies based on Identified measured
Sap2000 Model(Hz) frequencies(Hz)
1.076257 11332
1.283569 15004
1.9159 505
1.993078 -
2.462727 > 5511
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3.148780 3.2928

3.644488 3.925

3.8759 4.4405
4.48316 4.73
4.54937 5.1036
476772 5.4675
5.91396

5.91401 5.925,6.1003(probably
6.02791 corresponds to one of

these frequencies)

6.05633

6.13507

6.14033

6.15619

6.35409 -

6.71095 7.4562
7.14691 7.8703

These frequencies were identified based on the FE model through a range of
measurements. The figure 3.6 shows the explored peaks of the time response
spectrum of the arched bridge(for time history nm008).
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Figure 4.4. The measured frequencies from time history nm008

The matching of frequencies is based on the form of mode shapes. The

comparison of mode shapes for the above sets of frequencies is illustrated below:

1. Modal frequency f=1.1332Hz

Figure 4.5. Mode shape based on measurements (f=1.13Hz)
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Figure 4.6. Oscillation of the bridge model for f=1.076257Hz (front view)

Figure 4.7. Oscillation of the bridge model for f=1.076257Hz (top view)

The approach of the mode shape of the finite element model was successful given
that the two mode shapes are similar. The measured frequency is close to that of
the finite element model (fmeasurements/frem=1.1332Hz/1.076257Hz=1.053).0Our
estimation regarding the distribution of the components of the mode shape was

accurate.
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2. Modal frequency f=1.5004Hz

Figure 4.8. Mode shape based on measurements (f=1.5004 Hz)

Figure 4.9. Oscillation of the bridge model for f=1.283569Hz (front view)
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Figure 4.10. Oscillation of the bridge model for f=1.283569 Hz (cross section)

The approach of the mode shape of the finite element model was successful given
that the two mode shapes are similar. The measured frequency is close to that of
the finite element model (freasurements/Trem=1.5004Hz/1.283569Hz=1.1686). Our
estimation regarding the distribution of the components of the mode shape was

accurate.

3. Modal frequency f=2.05 Hz

Figure 4.11. Mode shape based on measurements (f=1.13 Hz)
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Figure 4.12. Oscillation of the bridge model for f=1.915901 Hz (original view)

Figure 4.13. Oscillation of the bridge model for f=1.915901 Hz (cross section)

The approach of the mode shape of the finite element model was successful given
that the two mode shapes are similar. The measured frequency is close to that of
the finite element model(fmeasurements/frem=2.05Hz/1.915901Hz=1.07). Our
estimation regarding the distribution of the components of the mode shape was

accurate.
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4. The modal frequency 1.993078 Hz

Based on finite element model, the modal frequency 1.993078 Hz does not match

any of the measurements due to the form of the mode shape.

Figure 4.14. Oscillation of the bridge model for f=1.1993078 Hz (front view)

Figure 4.15. Oscillation of the bridge model for f=1.1993078Hz (top view)
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5. Modal frequency f=2.5511 Hz

Figure 4.16. Mode shape based on measurements (f=2.5511 Hz)

Figure 4.17. Oscillation of the bridge model for f=2.462727Hz (front view)
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Figure 4.18. Oscillation of the bridge model for f=2.462727 Hz (Cross Section)

The approach of the mode shape of the finite element model was successful given
that the two mode shapes are similar. The measured frequency is close to that of
the finite element model.(fmeasurements/frem=2.5511Hz/2.462727Hz=1.03588). Our
estimation regarding the distribution of the components of the mode shape was

accurate.

6. Modal frequency f=3.2928 Hz

Figure 4.19. Mode shape based on measurements (f=3.2928 Hz)
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Figure 4.20. Oscillation of the bridge model for f=3.148780Hz (front view)

Figure 4.21. Oscillation of the bridge model for f=3.148780Hz (cross section)

The approach of the mode shape of the finite element model was successful given
that the two mode shapes are similar. The measured frequency is close to that of
the finite element model(freasurements/frem=3.2928Hz/3.148780Hz=1.03588). Our
estimation regarding the distribution of the components of the mode shape was

accurate.
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7. Modal frequency f=3.9256 Hz

Figure 4.22. Mode shape based on measurements (f=3.9256 Hz)

Figure 4.23. Oscillation of the bridge model for =3.644488 Hz (original view)

41



Figure 4.24. Oscillation of the bridge model for f=3.644488 Hz (cross section)

Figure 4.25. Oscillation of the bridge model for =3.644488 Hz (front view)

The approach of the mode shape of the finite element model was successful given
that the two mode shapes are similar. The measured frequency is close to that of
the finite element model(fmeasurements/fTrem=3.9256Hz/3.64488Hz=1.0771). Our
estimation regarding the distribution of the components of the mode shape was

accurate.
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8. Modal frequency f=4.4405 Hz

Figure 4.26. Mode shape based on measurements (f=4.4405 Hz)

Figure 4.27. Oscillation of the bridge model for f=3.8759 Hz (front view)

Figure 4.28. Oscillation of the bridge model for f=3.8759Hz (top view)
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Figure 4.28. Oscillation of the bridge model for f=3.8759 Hz (cross section)

The approach of the mode shape is not absolutely accurate. The measured
frequency is close to that of the finite element model (fmeasurements/frem=4.4405
Hz/3.8759Hz=1.1457). More measurements should be taken in order to verify the

mode shape.

9. Modal frequency f=4.724 Hz

Figure 4.29. Mode shape based on measurements (f=4.724 Hz)
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Figure 4.30. Oscillation of the bridge model for =4.48316 (front view)

Figure 4.31. Oscillation of the bridge model for f=4.48316 (top view)

Figure 4.32. Oscillation of the bridge model for f=4.48316 (original view)
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The approach of the mode shape of the finite element model was successful given
that the two mode shapes are similar. The measured frequency is close to that of
the finite element model (frmeasurements/Trem=4.724Hz/4.48316 Hz=1.0537). Our
estimation regarding the distribution of the components of the mode shape was
accurate.

10. Modal frequency f=5.1036 Hz

Figure 4.33. Mode shape based on measurements (f=5.1036 Hz)

Figure 4.34. Oscillation of the bridge model for f=4.54937 Hz (front view)
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Figure 4.35. Oscillation of the bridge model for f=4.54937Hz (original view)

Figure 4.36. Oscillation of the bridge model for f=4.54937Hz (cross section)

The approach of the mode shape of the finite element model was successful given
that the two mode shapes are similar. The measured frequency is close to that of
the finite element model(fmeasurements/frem=5.1036Hz/4.54937Hz=1.1218). Our
estimation regarding the distribution of the components of the mode shape was

accurate.
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11. Modal frequency f=5.4675 Hz

figure 4.37. Mode shape based on measurements (f=5.4675 Hz)

Figure 4.38. Oscillation of the bridge model for f=4.76772Hz (cross section)

Figure 4.39. Oscillation of the bridge model for f=4.76772Hz (front view)
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The approach of the mode shape of the finite element model was successful given
that the two mode shapes are close. The measured frequency is close to that of the
finite element model(fmeasurements/fTrem=5.4675Hz/4.76772Hz=1.1468).0ur
estimation regarding the distribution of the components of the mode shape was
accurate.

12. The modal frequencies 5.925 and 6.1003 Hz leads to a distortion of the

arched part of the bridge.

Figure 4.40. Identifiable mode shapes of the arced part

The representations of the mode shapes do not give us a clear image of the
distortion of the bridge. Considering the mode shapes of the finite element model
for frequencies close to the measured ones, we realize that 5.925 and 6.1003Hz

constitute local model frequencies.
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Figure 4.41. Mode shape for f=5.91396 Hz

Figure 4.42. Mode shape for f=5.91401 Hz

Figure 4.43. Mode shape for f=6.02791 Hz

Figure 4.44. Mode shape for f=6.05633 Hz

50



Figure 4.45. Mode shape for f=6.13507 Hz

Figure 4.46. . Mode shape for f=6.14033 Hz

Figure 4.47. Mode shape for f=6.15619Hz
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13. Modal frequency f=7.4562 Hz

Figure 4.48. Mode shape based on measurements (f=7.4562 Hz)

Figure 4.49. Oscillation of the bridge model for f=6.71095 Hz (cross section)

Figure 4.50. Oscillation of the bridge model for f=6.71095Hz (front view)
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The approach of the mode shape of the finite element model was successful given
that the two mode shapes are similar. The measured frequency is close to that of
the finite element model.(fmeasurements/frem=7.4562Hz/6.71095Hz=1.11).Our
estimation regarding the distribution of the components of the mode shape was
accurate.

14. Modal frequency f=7.8703 Hz

Figure 4.51. Oscillation of the bridge model for f=6.71095 Hz (front view)

Figure 4.52. Oscillation of the bridge model for f=7.14691 Hz (front view)
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Figure 4.53. Oscillation of the bridge model for f=7.14691 Hz (original view)

The approach of the mode shape of the finite element model was successful given
that the two mode shapes are similar. The measured frequency is close to that of
the finite element model(freasurements/Trem=7.8703Hz/7.14691Hz=1.1). Our
estimation regarding the distribution of the components of the mode shape was

accurate.

Conclusion

The aim was the identification of the basic mode shapes of the bridge’s deck and
arched part. As expected , the mode shapes were transverse,longitudinal,flexural
and torsional. Despite the fact that a small number of sensors were used our
estimation in the basic mode shapes was accurate. The first fifteen measured
frequencies were examined and the majority corresponds to the finite element

model’s frequencies.

e f=1.1332 Hz is a transverse modal frequency and gives the first
identified mode shape.
e f=1.5004 Hz is a longitudinal modal frequency and gives the

second identified mode shape
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e f=2.05 Hz is a torsional modal frequency and gives the third
identified mode shape.

e f=2.55 Hz is a flexural modal frequency and gives the fourth
identified mode shape.

e f=3.29 Hz is a flexural modal frequency and gives the fifth
identified mode shape.

e 1=3.925 Hz is a transverse modal frequency and gives the sixth
identified mode shape.

e f=4.4403 Hz is a transverse modal frequency and gives the
seventh identified mode shape.

e f=4.73 Hz is a transverse modal frequency and gives the eight
identified mode shape.

e f=5.1036 Hz is a transverse modal frequency and gives the
ninth identified mode shape.

e f=4675 Hz is a longitudinal modal frequency and gives the
tenth identified mode shape.

e f=5.25 Hz and 6.1003 Hz are local frequencies and gives the
eleventh and twelfth identified mode shape respectively.

o f=7.4562 Hz is a flexural model frequency and gives the
thirteenth identified mode shape.

e f=7.8703 Hz is a transverse model frequency and gives the

fourteenth identified mode shape.

The small differences in prices and distributions of the mode shapes of the
analytical model with those derived from measurements are due to the well-
prepared and correct instrumental monitoring with very sensitive sensors as well
as the good model simulation. The measured frequencies and mode shapes gave a
good estimation of the model’s mode shapes. These modal data and the model’s

matrices are used in model updating programs.
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5. Model reduction

5.1 Introduction

Many modern mathematical models of real-life processes pose challenges when
used in numerical simulations, due to complexity and large size (dimension).
Model order reduction aims to lower the computational complexity of such
problems, for example, in simulations of large-scale dynamical systems and
control systems. By a reduction of the model's associated state space dimension or
degrees of freedom, an approximation to the original model is computed which is
commonly referred to as a reduced order model. Reduced order models are useful
in settings where it is often unfeasible to perform numerical simulations using the

complete full order model.

Many software requires as inputs the stiffness and mass matrices of the model’s
components as wells as the interface degrees of freedom of the components , the
internal degrees of freedom of each component and the boundary degrees of
freedom for each component. Thus we develop a software in order to extract this

information.

5.2 The kinds of the degrees of freedom of a component

Degrees of freedom(DOFs) are a set of independent displacements/rotations that
completely define the displaced position of the mass with respect to its initial

position. It is the number of parameters that determine the state of a system.

The DOFs of a structure are divided into internal and boundary DOFs. The
boundary DOFs of a component are the DOFs that exist in the interface of a
component with the other components. The internal DOFs of a component are the
DOFs that exist where there is no interface with other components.

56



Figure 5.1. The bridge Model

For example the deck’s boundary DOFs(as we see in figure 4.59) are in the
interface among the deck,the arched part and the piers. The internal DOFs are

where there is no interface.

5.3  Calculation of the necessary degrees of freedom needed in

model reduction( The presentation of the software)

We have calculated the mass and stiffness matrices from each part of the model
using the previous code. Now, the next information we need is the boundary,
internal and interfacial degrees of freedom from each part of the structure.

The nodes’ displacements in the interface are the same for each part that is
involved. Thus, by comparing the stiffness matrices of each part we can find the
boundary DOFs. The common positions where the non zero stiffness values are,
reveal the boundary DOFs. The internal DOFs of the component are the rest DOFs
that are not involved in this comparison.( the diagonal of the stiffness matrix
contains non-zero elements in the degrees of freedom of the nodes of the

component).

The internal, boundaries and interface DOFs are calculated based on the
comparison of K; (stiffness matrices). Internal, boundaries, interfacial DOFs

and K; are important data used as inputs in model reduction softwares in order for
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a simplified model to be created. This helps us avoid the computational

complexity of huge structures.

We develop a software in order to extract the necessary DOFs based on the

comparison of stiffness matrices. The software is listed below:

S & 2o o 9o o oo o 9o o oo o 9o o o0 o oo o o0 o oo o 90 o 0O O oo
o o [CRNe) o [CRNe) o [CRNe) o [CRNe) o [CRNe) o [CRNe) o [CRNe) o [CRNe) o [CRNe) o [CRNe) o [CRNe) o [CRNe) o [CRNe)
o o

] ]

o o o . . . . o o [elge) o [elge)
% % % Interface,internal,boundary DOFS for fixed joints% % %% % %%
S 2o o oo

] [SRNe) ] [SRNe)

s & o o o o o o o o o o oo o oo o o0 o oo o o0 o oo o 90 o 0O O oo
o o o o o o o o o o o o [CRNe) o [CRNe) o [CRNe) o [CRNe) o [CRNe) o [CRNe) o [CRNe) o [CRNe) o [CRNe)

$ % % the non define variables are resulted from the code

% last?2 is the total dofs or the size of the K matrix
step=1;
counter=1;
parts=1;
plus=0;
for iel=step:number mat-1;
for ie=(step+l) :number mat;
for jk=1l:1last2;
the interface dofs exists where the digonals of the

o\°

stiffness

oe

matrices of two components are non-zero
if SMi{iel} (7k,jk)~=0&&SMi{ie} (§k,jk)~=0;
dofs{parts} (1, counter)=jk;
counter=counter+l;
plus=plus+1l

end
end
if counter~=1
namel=mat name (iel) ;
name2=mat name (ie);
pavla='-";
str=strcat (namel,pavla,name?) ;
interface dofs{parts,1l} = str;
interface dofs{parts, 2} =dofs{parts}
parts=parts+l
end
counter=1
end
step=step+l

step=1;
counter=1;
parts=1;
11=0;
for iel=step:number mat;
for ie=l:number mat;
if ie~=step
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for jk=l:last2;

% the boundary dofs exists where the digonals
of the stiffness
% matrices of the components are non-zero.Sometimes
boundary and
% interface dofs are the same

if SMi{iel} (§k,jk)~=0&&SMi{ie} (jk, jk)~=0
b dofs{parts,l}=mat name (iel);
b dofs{parts, 2} (1,counter)=jk;
counter=counter+l;
end
end
if counter~=1
11 (parts)=counter-1
end
end
end
counter=1
parts=parts+l
step=step+l
end
% We compare all the stiffness matrices from all the components in
order to find the boundary dofs so
% same elements are appeared more than ones.We keep the unique
dofs
for iel=l:number mat
boundary dofs{iel,l}=mat name (iel)
boundary dofs{iel,2}=unique( b dofs{iel,2})
end
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% % % internal dof

e o o o o o oo o o o o o
° ©c © © ©o c 0
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parts=1
counter=1
for ie=l:number mat
for jk=1l:last2
if sMi{ie} (3k,jk)~=0
3 find all dofs(total for each component)
all dofs{parts,l}=mat name (ie);
all dofs{parts,2} (1l,counter)=Jjk;
counter=counter+1;
end
end
if counter~=1
parts=parts+l
end
counter=1
end
% number mat=number of materials (materials with same properties
and different name are received as different)/components
for 1=1l:number mat
the dofs that are different from the boundary dofs are the
internal

o

% dofs
internal dofs{l}=setdiff(all dofs{l,2},boundary dofs{l,2})
end
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The variables mat_name,number_mat,last2 and SMi are calculated in the main

software which is presented in section 2 and in Appendix A.

5.4 Conclusion

The degrees of freedom of each part of the structure as well as the calculated
stiffness and mass matrices consist important data (inputs) for model reduction.
Softwares dealing with model reduction use these data as inputs in order for a

simplified model to be created.

6. Conclusions

Model updating

By using the code we developed and by analyzing the modeshapes and modal
frequencies that come from measurements, we have acquired the necessary data to
be introduced into a model updating program. We have acquired the mass and
stiffness matrices and the values of the parameters 0 that are related with the finite
element model as well as the measurement results. The aim is to use the model
updating to solve the eigenvalue problem, previously mentioned, and the its

results, for the appropriate value of 6, to be close to those of the measurements
Model reduction

With the help of the program developed for the bridge model, the internal,
boundary and interfacial degrees of freedom of each part of the model were
calculated. These degrees of freedom along with the mass and stiffness matrices of
each parameterized part of the structure are the input data into a model reduction

program
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Appendix A: Software for extraction of the model’s
stiffness and mass matrices in SAP2000

Part 1: Inputs

o o o o o

% % % % % insert material properties for each material in sap2000
number mat=input ('number of structure material/components ' )
for i=l:number mat

prompt = {'material name:', 'modulus of elasticity:','coefficient
of thermal expansion:', 'poisson ratio:', 'density:'};
title = 'material properties';

r = inputdlg(prompt,title, [1 60]);
mat name{i}=r{l};

E(i)= str2num(xr{2});

A(i) = str2num(r{3});

Nu (i) = str2num(r{4});
density(i)=str2num(r{5});
end

Part 2: Main body

% pass data to Sap2000 as one - dimensional arrays
feature ('COM SafeArraySingleDim', 1);
% pass non - scalar arrays to Sap2000 API by reference

feature ('COM PassSafeArrayByRef', 1);

% create Sap2000 object

% ginetai to interface

SapObject = actxserver ('CSI.SAP2000.API.SapObject');

SapModel = SapObject . SapModel ;

ret = SapObject.ApplicationStart();

% give the name of sap2000 file that is studies
name=input ('dwse onoma arxeiou: ' , 's')

ret=SapObject.SapModel.File.OpenFile (['C:\Users\Spyros\Desktop\"
,name, '.sdb'])
ret=SapModel.SetModelIsLocked(0) ;

for k=1:number mat

Enew (k) =E (k) ;
density new (k)=density (k) ;
% pass material properties

ret=SapModel.PropMaterial.SetMPIsotropic (char (mat name{k}),E (k),Nu
(k) ,A(k));
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% pass mass density

ret=SapModel.PropMaterial.SetWeightAndMass (char (mat name{k}),1,
density(k));
end

% unlock the model

ret=SapModel.SetModelIsLocked (0) ;

% define load case in order to extract model matrices.

%$We have to define a load case dead or modal for the extraction of
the matrices.

%$that is asked by sap2000.There is no difference in the matrices’
values

ret = SapModel.Analyze.SetSolverOption 1(1, 0,1, 'DEAD")

% analyze the model

ret = SapModel.Analyze.RunAnalysis();
% import data from M file
Mfilename=[name, ' .TXM'];

mass = importdata (Mfilename) ;
mass matrix=mass.data;

% import data from Stiffness file
Sfilename=[name, '.TXK'];

s = importdata (Sfilename) ;

% Kt has 3 columns ,number of row and column,stiffness value
Kt=s.data;

2 9 9 2 o2 9 o 2o o 9 9 o o 9o o 2o 9 o o o 9 9o o 9o o & o 9o o o o o o
o © © © © ©®© ©®© ©®© © ©v® © © ©© ©©®© ©® ©®© © ©®© ©® ©® © ©© ©©®© ©© ©® ©®© © © ©® ©® © T© ©

% % % % % % bring the stiffness matrix to its original

2 9 9 2 9 9 o 2 o 9o o o 9o 9o 2o o 9 o o 9o 9 & o 9 & o o o o o o o o
o © © © © ©®© ©®© ©®© © ©© ©v® ©®© © © ©©®© ©® ©® ©®© © ©©®© ©® ©®© ©®© © ©®© ©® ©® © © ©® © © ©

% matrix length

mhkos=length (Kt)

% first 2 colummns are the number of the row and column and the
third the stiffness value

% the last number of the column is the size of the matrix given
that the

% diagonial elements of the global stiffness matrix are non zero
thus the

% last element of the matrix describe its size

% read the coordinates of the last element

lastl=Kt (end, 2);

Ktotal=sparse (zeros (lastl));

o)

% we find the non zero elements and keep their coordinates

for p=1:mhkos
if Kt(p,3)~=0
if Kt (p,3)=0 then the values of i(p),]J(p) are zero

o\°

i (p):Kt (pl 1) ;

j(p)=Kt(p,2);
end

end

o\°

for m=1:mhkos

% 1f Kt(p,3)=0 then the values of i(p),]j(p) are zero so for
the non

% zero 1i,7J (where the non zero values on stiffness are) we save
the
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% value of Kt in Ktotal

% So we create the lower half of the symmetric stiffness
matrix

if i(m)Jj (m)~=0

Ktotal (i (m),j (m))=Kt (m,3);

end
end

o)

% we bring stiffness matrix to its final form by add the upper
symmetric half without the diagonal
Ktotal=(Ktotal+ (tril (Ktotal,-1)).")

o\

unlock model.Every time that we analyze the model the model lock
o we

% have to unlock it.

ret=SapModel.SetModelIsLocked (0) ;

n

meter=0

for c=1:number mat
prompt = {'l:','2:"};

opts.Interpreter = 'tex';
answer = questdlg ('Do you want to parameterized this
material/component?' ,mat name{c}, 'YES',6 'NO','.")

switch answer
case 'YES'
disp ([answer
ans = 1;
case 'NO'
disp([answer ' ok.'])
ans = 2;

' done.'])

end

if ans ==
the meter counts how many materials are going to be
paremeterized.if meter<number mat then Ko exists
meter=meter+l

% we keep the number of material which is going to be

parameterized

% this number corresponds to a material depending on the order
that the material is given by the user

o oe

param(meter)=c

end

end
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5 % %Scalculation of Ko% % % %
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if meter~=number mat&&meter~=0
for u=l:meter

% E=0 for every parameterized material through this sap2000
command

ret=SapModel.PropMaterial.SetMPIsotropic (char (mat name{param(u)}),
0,Nu (param(u)),A(param(u)));
end

% run model analysis on order to extract stiffness matrix.this
stiffness matrix is Ko

ret = SapModel.Analyze.RunAnalysis();

% import data from the stiffnes text files
Sfilename=[name, '.TXK'];
s = importdata (Sfilename) ;
K o=s.data;
mhkosO=length (K_ o) ;

Ko=sparse (zeros (lastl));

oe

bring Ko to its normal form
for dd=1:mhkosO
if K o(dd,3)~=0
metrhths0=dd
i(dd)=K o(dd,1);
j(dd)=K o(dd,2);
end
end
for nn=1l:metrhthsO
if i(nn)j (nn)~=0
Ko (i(nn),j(nn))=K o(nn,3);
end
end
$ final form of Ko
Ko= (Ko+ (tril (Ko,-1)).");

end

if meter==number mat
Ko=sparse (zeros (lastl));

o o o o o o o [elge) o o o o o o [elge) o o o o o o [elge) o o o o o o o
%% %% % % %% % %% %5 %% %% %% %% %% %5 %5 %% %% %%

Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
$ % % % % % % %Scalculation of Ki $ % % % % % % % % % % % % % %
© o o o o o o oo o o o o o o 90 © o o o 9o o 90 o o © o o o 0O o
o o o o o o o [ORNe) o o o o o o [ORNe) o o o o o o [ORNe) o o o o o o [ORNe) o

if meter~=0

K sum=sparse (zeros (lastl))
% every loop refers to a material that is going to be
paremeterized

for g =l:meter

ret=SapModel.SetModelIsLocked (0) ;

% keep the number of material that is parameterized in this
loop

number matl=q
give value of 6 for the material
prompt = {'the value of parameter 6:'};

o\°
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title = 'value of parameter 6 for ';

th = inputdlg(prompt,mat name{param(q)}, [l 60]);
% b is ©

b(g)=str2num(th{1l})

% we kept the parameterized material. © for others materials
is going
% to be zero.this changes in every loop.only the material
that is
% analyzed (in every loop) has no zero value of ©.
for l=l:meter
if 1~=qg
b(1)=0;
end
% multiple the modulus of elasticity of each material with ©
Enew (param(l) )=E (param(l))*b (1) ;
end
% for every material pass the wvalue of new modulus of
elasticity in
% sap2000

for t=l:meter

ret=SapModel.PropMaterial.SetMPIsotropic (char (mat name{param(t)}),
Enew (param(t)),Nu(param(t)) ,A(param(t)));

end
% analyze the model
ret = SapModel.Analyze.RunAnalysis();
% import stiffness matrix and bring it to its normal form

Sfilename=[name, '.TXK'];

s = importdata(Sfilename) ;
K new=s.data;
mhkosl=length (K new) ;
last2=K new(end, 2);

K i=sparse(zeros(last2));
sum=0

k=0
K new _end=s.data(:,end);
for r=1:mhkosl
if K new(r,3)~=0
metrhths=r;
i(r)=K new(r,1);
j(r)=K new(r,2);
end
end

for n=1:metrhths
if i(n)J(n)~=0
K i(i(n),Jj(n))=K new(n,3);
end

end

K i=(K i+(tril(K 1i,-1)).");
% The Ki matrices are created

Ki{g,l}=mat name (param(q));

65



% if there is Ko then the K of the spesific part is the K i
that was
% calculated above minus Ko.
Ki{qg,2}=(K_i-Ko);
Ki{g,2}=Ki{qg,2}/b(q);
the values of 6
thita(q)=b(q);

o

end
end

if meter==
disp([no parameterized material'])

\
o
\
\
\
\
\
\
\
\
\
\
\
\
oe
o
oe
\
\

o) o) o)
© © © © © © © © © © © © © ©

. . Lo o
calculation of the stiffness matrix% %
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% %% %% %% % %% %% %% %% %% %% %%

metrhths2=0
mhkos_m=length(mass_matrix);
last m=mass matrix(end,2);
M=sparse (zeros (last m));
M sum=sparse (zeros (last m));
for ii=1:mhkos m
if mass matrix(ii, 3)~=0
x(ii)=mass matrix(ii,1);
z(ii)=mass matrix(ii,2);
metrhths2=1i
end
end
for ss=l:metrhths?2
if x(ss),z(ss)~=
M(x(ss),z(ss))=mass matrix(ss,3);

end
end
% $%%%%%%% calculation of Mo%%%%%%%%

if meter~=number maté&&meter~=0

for ee=l:meter
ret=SapModel.SetModelIsLocked(0) ;

ret=SapModel.PropMaterial.SetWeightAndMass (char (mat name{param/(ee)
P11, 0)
end
ret = SapModel.Analyze.RunAnalysis();
Mfilename=[name, '.TXM'];

massO0= importdata (Mfilename) ;
mass matrixO=massO.data;
mhkos _mO=length (mass matrix0);

Mo=sparse (zeros (last m));
metrhths00=0

66



for ww=1:mhkos mO

if mass matrix0 (ww, 3)~=0
x0 (ww) =mass matrix0 (ww,1);
z0 (ww) =mass matrixO0 (ww,2);
metrhths00=ww

end
end
for uu=1l:metrhths00
if x0(uu), z0 (uu)~=0
Mo (x0 (uu), z0 (uu) ) =mass _matrix0 (uu, 3);
end
end
end
if meter==number mat
Mo=sparse (zeros (last m));

end

o o o o o o o o o o o o o o . 0O O O o o o o o o o o
% % % %% %% %% %S % % % calculation of Mi% % % % $ % % % % % %
o o oo

o ™©O T©©°

if meter~=0
for kk=l:meter
ret=SapModel.SetModelIsLocked(0) ;
define the value of f where f is o
prompt = {'the value of parameter o¢:'};
title = 'value of parameter ¢ for ';
ff = inputdlg(prompt,mat name{param(kk)}, [1 60]);

o

f(kk)=str2num(f£{1})
% the value ¢ that is not zero is the only one that relating
with the material that is parameterized in this loop

for 1ll=1:meter

if 11l~=kk
£f(11)=0;
end

o\°

multiple the density with ¢
density new(param(ll))=density (param(ll))*£(11);
end
for tt=l:meter
% pass the parameterized densities in Sap2000

ret=SapModel.PropMaterial.SetWeightAndMass (char (mat name{param(tt)

}),1, density new(param(tt)));
end
% analyze the model
ret = SapModel.Analyze.RunAnalysis();
% extract Mi and bring them to their normal form

Mfilename=[name, ' .TXM'];

massl= importdata (Mfilename) ;

mass matrixNew=massl.data;

mhkos ml=length (mass matrixNew) ;

last ml=mass matrixNew (end, 2) ;

M new=sparse (zeros (last ml));

metrhthsl1=0

for yy=1l:mhkos ml

if mass matrixNew (yy, 3)~=0

xn (yy)=mass matrixNew (yy,1);
zn (yy)=mass matrixNew (yy,2);
metrhthsl=yy

end
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end
for gg=1l:metrhthsl

if xn(gg9),zn(gg)~=0

may we have Mo so
M new(xn(gg),zn(gg))=mass_matrixNew (gg, 3);

end
end
Mi{kk,l}=mat name (param(kk)) ;
Mi{kk,2}=(M new-Mo) ;
Mi{kk,2}=Mi{kk,2}/f (kk);
fi(kk)=f (kk)

o

end
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for jk=l:number mat
ret=SapModel.SetModelIsLocked(0) ;
for iel=l:number mat

ret=SapModel.PropMaterial.SetMPIsotropic (char (mat name{iel}),E (iel
),Nu(iel), A(iel));

ret=SapModel.PropMaterial.SetWeightAndMass (char (mat name{iel}),1,
density(iel));
end
for hv=1:number mat
if hv~=jk
ret=SapModel.SetModelIsLocked(0) ;
ret=SapModel.PropMaterial.SetMPIsotropic (char (mat name{hv}),0,Nu(h
v),Ahv));
end
end
ret = SapModel.Analyze.RunAnalysis();
Sfilename=[name, '.TXK'];
s = importdata (Sfilename) ;
SM=s.data;
mhkosl=length (SM) ;
last2=K new(end, 2);
S l=sparse(zeros(last2));

for r=1:mhkosl
if SM(r,3)~=0
metrhths=r;
i(r)=SM(r,1);
j(r)=SM(r,2);
end
end
for n=l:metrhths
if i(n)J(n)~=0
S 1(i(n),J(n))=SM(n,3);

end
end
S 1=(S_1+(tril(s_1,-1)).");
SMi{jk}=5 1;
End
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Appendix B: Explanation on how to use the SAP2000 API
and how the SAP2000 API functions are
documented.

All the used SAP2000 API functions are listed here

e SapObject = actxserver('CSI.SAP2000.AP1.SapObject’) . This function
starts the interface between the two programs.

e SapModel= SapObject.SapModel Creates the SapModel object

e SapObject.ApplicationStart. This function starts the Sap2000 application.

e SapObject.SapModel.File.OpenFile. This function opens an existing
Sap2000 file. The file name must have an sdb, $2k, s2k, xls, or mdb
extension. Files with sdb extensions are opened as standard Sap2000 files.
Files with $2k and s2k extensions are imported as text files. Files with xlIs
extensions are imported as Microsoft Excel files. Files with mdb
extensions are imported as Microsoft Access files.

e SapObject.SapModel.SetModellsLocked. This function unlocks the model.
With some exceptions, definitions and assignments can not be changed in a
model while the model is locked. If an attempt is made to change a
definition or assignment while the model is locked and that change is not
allowed in a locked model, an error will be returned.

e SapObject.SapModel.PropMaterial.SetMPIsotropic. This function sets the
material directional symmetry type to isotropic, and assigns the isotropic
mechanical properties(The modulus of elasticity, Poisson’s ratio, The
thermal coefficient)

e SapObject.SapModel.PropMaterial.SetWeightAndMass. This is either 1 or
2, indicating what is specified by the Value item.

1 = Weight per unit volume is specified

2 = Mass per unit volume is specified

If the weight is specified, the corresponding mass is program calculated
based on the specified weight. Similarly, if the mass is specified, the

corresponding weight is program calculated based on the specified mass.
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Appendix C: Instructions for the identification of
Model’s properties in SAP2000

A.  The identification of component’s material and their
properties in SAP2000

Figure C.1. The original model

Step 1: view the colors

To identify the different parts of the structure the user can click on Display options
toolbar button>General options. The options on this form can be used to
selectively display various features associated with objects in the model.

View by Color of drop-down list. This list can be used to specify that the model
be displayed using Colors associated with Objects (as assigned using the Options

menu > Graphics Colors > Display command), Section properties (as defined

using the Define menu > Section Properties subcommands), Material properties

(as defined using the Define menu > Materials command), Groups (see next

bullet), Frame Design Type (as determined from the object, section, and material
properties), or full color or black and white "color" using a color printer. By
clicking on materials the user can see the different materials in the structure(this

assumes that every material has different color).(figure C.2)
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By selecting view by color of materials the user can see all the different materials
used by the model.(figure C.3)

()

(b)
Figure C.2. Display Options

Figure C.3. The materials of the structure (viewed by color)

It is obvious that there are three different materials in the structure.
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Step 2: ldentify the used materials

In the Define menu>Material the user can see the materials that exist in Sap2000.
In Modify/Show Material section, he can see the properties of the materials and
understand which material is used in the model(depending on its color).(figures
C.4,Cb)

Figure C.4. The Define Menu

Figure C.5. The Materials
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Figure C.6. The properties of A992Fy50 material

B.  Separation of parts in SAP2000

Step 1: Select the parts

Sometimes we have to separate some parts of a structure in order to examine them.
As we saw in figure 1 the deck and the arched part consists a component. We want
to separate these two components in SAP2000 in order to calculate the stiffness

and mass matrix of each part. For example we select to modify the deck.

Step 2: Separation process

The modified part must have the same properties as it had before the modification.
Thus, we create a copy of the deck’s material. In the Define menu>Material>Add

copy of Material a copy of the material is created.(figure C.7)
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Figure C.7. The deck’s material is A992Fy50 so we create a copy of it

The properties of the copied material are the same with the original one (figures
C.8).

Figure C.8. The properties of the copied material

The copied material should have different name and color from the original one in

order to distinguish them.(we select material name MAT and purple color)
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Now we change the deck’s material from A992Fy50 to MAT. This can be done by
selecting an element from the deck ( each element has a frame) . In section
property there is the name of element’s frame. We can click on the frame’s name
and after that we change its material to MAT (figures C.9, ).

Figure C.9. Click on this element and after that on its frame called long_nerves

Figure C.10. For this frame we click on Modify/Show Property section and change
the material to MAT.
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Figure C.11. The figure of the model after the modification

As we see ,all elements with the same properties were changed color. These
elements that do not change their material have a different kind of frame. The

same process is followed in order to modify the rest of deck’s elements.(figures

C.12,C.13)

Figure C.12 These kind of elements are selected that have frame called traverse.

Click on frame’s name.
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Figure C.13 The frame’s material is changed to MAT

Figure C.14. The figure of the model after modification

One last set of elements should be modified in order to distinguish the deck from

the arched part. The process is the same as previously.
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The final form of the model is depicted in Figure C.15.

Figure C.15. Model’s final form

In the case that we want to study only one element the process is quite different.

C. Study one element

Step 1: choose the element

Initially we have to choose which element we want to examine. For example, an

element of the deck is selected (Figure C.16)

Figure C.16. The selected element
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Step 2: Modification of the element

After the selection of the element, we have to modify it. There many elements
with the same properties with the selected one, thus the discrimination of the

specific element is based on its frame’s modification.

We have to create a copy of its frame by clicking on the frame’s name and after

that on the Add a Copy of Property section (Figures C.17,C.18).

Figure C.17.The frame called long_nerves is copied

Figure C.18. FSEC2 is a copy of the frame called long_nerves and replaces

long_nerves frame only in this element.
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Next we have to create a copy of the material called A992Fy50 in order to replace

it and the discrimination is done (Figure C.19)

Figure C.19.The selected element after the discretization.(with orange color)

Conclusion

The example that was presented in this appendix illustrates the parts separation’s
general idea in SAP2000. The user can separate one part from the others based on

this methodology.

This separation helps us to examine each part of the structure. For example, after
the deck’s and arced part separation we have the ability to extract stiffness and

mass matrices from both parts separately.
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Appendix D: Software for Experimental Modal Analysis

The software is written in MATLAB2011a and consists of four independent
modulus which are: Data, Pre-Processing, Modal Identification, Post-Processing.

The main menu of the software is depicted in figure D.1.

Figure D.1. Main menu

The Data module is used to load data from .mat files which the program is going

to process. Also results from previous estimations can be loaded (Figure D.2).
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Figure D.2

More specifically the data can be:

e Experimental measurements of the acceleration(Time
Histories) of multiple sensors. In the Insert Time Histories
section the user must load a .mat file which contains the
measured by sensors acceleration, the label of each sensor and
the discretization time. The time histories of multiple sensors
need to be arranged in the columns of a matrix named accel.
Each column represents the measurement of the specific
sensor. Furthermore the sensors label must be stored in a
matrix named channeltext and time in a variable named dt._It
is important that the same names to be followed otherwise the
program will not run. An example of 6 sensors is shown in
figure D.3.
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Figure D.3. accel=measurement acceleration, dt=time between measurements,

channeltext=label of each sensor

It is possible to load more than one measurements. If we have to measure a large

structure as a bridge with a small number o sensors we have to take multiple

measurements from different positions. That is called sensor configuration.

In the Insert Modal ldentification results section saved

results can be loaded from previous sessions in order to not be

reproduced.

In the Insert Geometry section the user can load a .mat file

that contains variables which define the geometry of the
structure. The geometry is a figure of the structure and consists
of the nodes ,their degrees of freedom and lines(elements)
which connect the nodes. The geometry .mat file must contain
a matrix named node coords which contains the coordinates
of each node, a matrix named node_dofs which contains the
degrees of freedom of each node, a matrix el_nodes which is
the element connectivity and a matrix named reference_dofs
which contains the common reference degrees of freedom. In
every sensor configuration we change the location of the
sensors but some of them should remain common. The names
of matrices should be the same with the above ones in order for
the software to run correctly. An example of a bridge geometry
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.mat file for the previous measurements is illustrated in figure
D.4.

Figure D.4. node_coords=nodes coordinates, node_dofs=degrees of freedom of

each node, el_nodes=nodes of each element,reference_dofs=common sensors

e In Convert section measurements from another format can be

converted in to a .mat file in order to be used by the software.

After the user loads the necessary .mat files, he or she continue with the Pre-
Processing stage where the Power Spectral Density (PSD),the Singular Value
Spectrum (SVS) of the ambient acceleration time histories and Time
Histories(figure D.5, figure D.6,figure D.7 respectivly)can be visually inspected.
Such inspection can provide information about the modal frequencies and
damping ratios of the structure. In this stage the user gives an estimation of the

modal frequencies which are to going to be used in Modal Identification.

Each sensor configuration can be inspected individually in the pre-processing step,
and specific channels of a configuration can be selected or de-selected from being
used in the Modal Identification process. This feature serves to potentially remove
an unwanted sensor from the analysis because of possible bad recording. It is

worth mentioning that SVS main merit derives from the fact that it has the ability
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to separate the noise from the signal, and that it can reveal closely spaced modes

that are not apparent in the PSD.

Figure D.5. PSD of a single configuration using each sensor.

Figure D.6. SVS of a single configuration using each sensor.
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Figure D.7. Time Histories of a single configuration using each sensor.

Figure D.8. Selection/de-selection of sensors and selection of configurations.
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The Show Bandwidth mode, which is found underneath the graph, gives the ability

to zoom in a specific area (figure D.9).

Figure D.9

At the top of the graph there is a Graph mode which provides PSD,SVS and Time

Histories diagrams and the PSD mode provides information about PSD for each
sensor (figure D.10 and D.11).

Figure D.10

Figure D.11
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After obtaining an estimate of the natural frequencies of the structure from
observing the SVS or PSD(as it shown in figure D.5 and figure D.6) the user can
define the frequency bands which contain a natural frequency .By clicking the
Bands button the user can mention the space where one of the natural frequencies
is. These estimations can be saved for other analysis. An example is depicted in
figure D.12.

Figure D.12. Frequency bands(an example for two frequencies).

Next step is The Modal Identification which uses a Bayesian methodology in order
to extract the modal frequencies, mode shapes, and modal damping ratios from the

measured ambient acceleration time histories of each sensor configuration.(figure
D.13)

88



Figure D.13. Modal Identification

After obtaining the modal properties the next step is to visualize the model in Post-

Processing.(figure D.14)

Figure D.14.The Shape is formed for two configurations nm008,nm009

In order to visualize the mode shapes it is necessary to combine all the local mode
shapes identified from each configuration to produce the full mode shape at all
measured degrees of freedom. The user, must also determine the measured points
of the structure as the degrees of freedom in which each sensor measuring for each

configuration. This can be done in the Define/Edit window (figure D.15)
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In the first column the user selects (or de-selects) the wanted(or unwanted) sensors
for each configuration, and in the second column defines the direction of each
sensor. After that he selects the nodes where the sensors are and clicks in Select
Nodes. These steps defines where the sensors are and in which direction they are
measuring. This process can be saved in order to be used in another analysis

(figure D.16).

Figure D.15. Define/Edit menu

Figure D.16. Selected DOFs and selected nodes
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Figure D.17. Nodes where the sensors were placed for each configuration

The status of all the sensor configurations can be viewed from the Status button of

the main Post-processing window.(figure D.18)

Figure D.18. Configurations Status

After the placing of the sensors the mode shapes can be assembled from the
Assemble button and afterwards the user can view the mode shapes by clicking in
the Deform Shape button (figure D.19).
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Figure D.19.Deform shape menu

Figure D.20. Mode shape for frequency 1.50 Hz

Usually not all geometry points were measured by a sensor, and those points have
no associated mode shape component. However, for visualization purposes we
would like to associate those points with some other measured points in order for
them to deform as well. This is done from the Inactive DOFs menu. The inactive

DOFs deform as the means of the two associated DOFs (figure D.21).
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Figure D.21.The inactive DOF 8 becomes active while is associated with 6 and
12(active DOFs)

The Configuration button provides information and the results, concerning all

configuration.(figure D.22)

Figure D.22.Configuration Details
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View options button shows/hides details of the model.(figure D.23)

Figure D.23

After the analysis of the model by clicking the export button the user can export

the mode shapes as a .mat file or as an image (figure D.23).

Figure D.24

The mode shapes have been saved in a .mat file. The form of this file is presented
in figure D.25

Figure D.25
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