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Abstract

The most exciting phrase to hear in science, the one that heralds new discoveries,

is not “Eureka!” but “That’s funny. . . ”

—Isaac Asimov

While data clustering has a long history and a large amount of research
has been devoted to the development of numerous clustering techniques,
significant challenges still remain. One of the most important of them is
associated with high data dimensionality. A particular class of clustering
algorithms has been very successful in dealing with such datasets, utiliz-
ing information driven by dimensionality reduction techniques. Projection
methods for dimension reduction have enabled the discovery of otherwise
unattainable structure in ultra high dimensional data. In this thesis, we
try to deepen our understanding on what can be achieved by this kind of
approaches in an attempt to theoretically discover the relationship between
true clusters in the data and the distribution of their projection. Based
on such findings, we propose a series of new hierarchical divisive clustering
algorithms. The proposed algorithms require minimal user-defined parame-
ters and have the desirable feature of being able to provide approximations
for the number of clusters present in the data. The experimental results in-
dicate that the proposed techniques are effective in simulated data scenarios
and as well in real world problems that are affected by high dimensionality.

This thesis is constituted by two major parts. First Part is devoted to
the introductory material and the basic concepts, while the second Part
contains an analytic overview of the proposed methodologies. More pre-
cisely in Chapter 1 an introduction to the Knowledge Discovery process is
presented and Chapter 2 refers to the necessary background information.
Subsequently in Chapter 3 the most well know clustering methodologies are
presented, while Chapter 4 is devoted to the Knowledge Discovery of High
Dimensional Data. In what follows, the new methods for clustering of high
dimensional data are presented, while Chapter 5 is devoted to the devel-

1
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2 abstract

opment of methods that can deal with ultra high dimensionality. Chapter
7 refers to the use of alternative methods for dimensionality reduction and
finally Chapter 8 focus on the clustering of high dimensional data streams.
The thesis ends with brief summary of the new algorithms and conclusions.
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- Chapter 1 -

Introduction

I will not define time, space, place and motion, as being well known to all.

—Sir Isaac Newton

Knowledge Discovery in Databases (KDD) can be defined as the auto-
matic analysis of data. More specifically KDD is the process used to identify
patters from large datasets. The most important part of the KDD process is
“Data Mining” which refers to the development of algorithms that discover
unknown patterns in the data.

§ 1.1 Knowledge Discovery

The knowledge discovery process is iterative and interactive, consisting of
the nine following steps [MR10]:

• Developing an understanding of the application domain.

This is a preparation step where the goal and the environment of the
knowledge discovery process need to be defined. During the KDD
procedure this step may be revised.

• Selecting and creating a data set on which discovery will be performed.

Having defined the KDD goals, the data preprocessing may begin.
The available data have to be integrated into one dataset. Also the
attributes that will be used in the process need to be determined.

• Preprocessing and cleansing.

The data reliability need to be enhanced. For this reason the miss-
ing value issues are addressed and the noise or outlying points are

5
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6 Chapter 1. Introduction

removed. To achieve this, usually data mining or statistical methods
are employed.

• Data transformation.

In this step, the data are transformed in order to be used better from
the data mining method. The data transformation includes the dimen-
sionality reduction through methods like feature selection and feature
extraction, and the attribute transformation. This is a very important
step for the overall success of the KDD process, but in most cases it
is also very project specific. The steps that follows are focused on the
data mining part of the process.

• Choosing the appropriate Data Mining task.

In this stage, the choice of which type of data mining (e.g. regres-
sion, classification, clustering) to use, have to be made. This choice is
mainly based on the goal of the KDD process.

• Choosing the Data Mining algorithm.

As long as we have decided on the strategy, the decision for the specific
method to be used have to be made.

• Employing the Data Mining algorithm.

This step deals with the implementations of the data mining algorithm.
The algorithm may need to be applied many times until the desired
result is achieved.

• Evaluation.

In this stage, the mined patterns are evaluated with respect to the
defined goals

• Using the discovered knowledge.

The knowledge now can be incorporated into another system for fur-
ther action. Based on this knowledge we can make changes to the
system and measure the effects. The success of this last step deter-
mines the efficiency of the KDD process.

§ 1.2 Data Mining

The increasingly availability of large amounts of data in the recent years,
have made necessary the use of data mining methods for analysis. Data Min-
ing (DM) can be defined as the extraction of knowledge from large amount
of data. The goal of data mining is to find patterns in the data that was
previously unknown. To achieve this data mining techniques employ the
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1.3. Machine Learning 7

use of analysis tools from statistical models, mathematical algorithms, and
machine learning methods. Data mining methods can be divided into two
categories.

• Supervised data mining

These techniques predict a hidden function using training data. The
training data is constituted by the by a set of input variables and
their corresponding class labels. The results of the methods are the
unknown class labels of the input data. The most well known examples
of supervised data mining are classification and prediction.

• Unsupervised data mining

These techniques make an attempt to identify patters in the data
without the use of a training set. The most representative method of
unsupervised data mining is clustering.

§ 1.3 Machine Learning

Learning is the process of developing a model, based on knowledge discovered
from a data set. Machine Learning can be formally defined as the complex
computation process of automatic pattern recognition and intelligent deci-
sion making based on input data. Machine learning is often confused with
data mining as they both usually employ similar methods and in many cases
overlap. In order to distinguish machine learning and data mining we can
use the following definitions. Machine learning focuses on prediction, based
on known properties learned from the training data. Data mining focuses on
the discovery of (previously) unknown properties on the data. Data mining
often uses machine learning methods, but by focusing on a different goal,
while machine learning often employs methods from the area of data mining
as unsupervised learning or as a preprocessing step in order to enhance the
learner accuracy.

§ 1.4 Data Clustering

Data clustering is a central component of the knowledge discovery process.
Formally it can be defined as “the process of partitioning a set of data vectors
into disjoint groups (clusters), so that objects of the same cluster are more
similar to each other than objects in different clusters”. The greater the
similarity (or homogeneity) within a group and the greater the difference
between groups, the better or more distinct the clustering. The modern
roots of data clustering date back to 1939 [Try39], but there are references
to it from antiquity. Clustering is related to Classification in the sense that

Institutional Repository - Library & Information Centre - University of Thessaly
17/05/2024 14:08:30 EEST - 18.188.60.124



8 Chapter 1. Introduction

it creates a labelling of the data points , however it derives these labels only
for the data. On the other hand, classification uses information from data
with known class labels to assign a class label to unlabelled data. For this
reason in some cases data clustering is referred as “supervised or automatic
classification”. In addition more rarely data clustering is also referred as
“numerical taxonomy” and “typological analysis”.
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- Chapter 2 -

Background Information

A mind needs books as a sword needs a whetstone, if it is to keep its edge.

—George R.R. Martin, A Game of Thrones

In this chapter the background information is provided regarding data
clustering which is the area that this thesis is focused on.

§ 2.1 Steps of the Clustering Process

A complete clustering process is constituted by the following steps:

1. Representation of data (may include the feature extraction or selec-
tion).

2. Definition of the similarity measure between the elements.

3. Clustering

4. Evaluation of the results.

In figure 2.1 we can see the connection between the first three steps of the
clustering process. The feedback loop is also included, according to which,
the result of the procedure affects the previous steps in order to improve the
results.

The term “representation of data” refer to the number and the type of
features that describe each on of the data elements. Feature selection called
the process that tries to select the most important features. On the other
hand, feature extraction refers to the transformation of features to others
that are more important with respect to the further clustering procedure.

9
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10 Chapter 2. Background Information

data representation define similarity clustering

feedback loop

data clusters

Figure 2.1: The steps of the clustering process.

A measure of similarity is being used to represent the similarity between
the elements, and is usually defined between couples of elements. Several
measures of similarity have been proposed that varies with respect to the
corresponding application [WM97]. Measures of similarity will be further
explained in Section 2.4.

The final clustering results can be exclusive where each data element is
assigned to a single cluster, or fuzzy where every element belongs to every
cluster with a membership weight. Moreover a clustering result can be a
hierarchy, which is a set of nested clusters that are organised as a tree, or
just as a division of the data set into non overlapping clusters. More details
of the clustering techniques will be given in Chapter 3.

The evaluation of the result of a clustering algorithm is multifaceted. On
one hand we have the evaluation of the data instead of the clustering result.
A data set that does not contain a structure of clusters should not get pro-
cessed by a clustering algorithm. The study of “Cluster tendency” where a
data set is being examined before given to a clustering algorithm as input,
does not get much attention in the recent years [JMF99]. For more informa-
tion refer to [Dub87]. On the other hand, “the validity analysis” evaluates
the clustering result. To achieve this, an optimality criterion is being used.
However, in most cases these criteria are subjective, as such there are not
any district rules. For more information regarding the evaluation of the
results of a clustering algorithm refer to Section 2.7.

§ 2.2 Terminology

In this section we will refer to the terms that will be used in this thesis.

• an element (also referred as document, observation, pattern, or point)
d is typically described as a a-dimensional vector, d = (d1, . . . , da),
where a is the number of features.

• The elements di of the observation d are called features, properties,
variables or dimensions.

• A data set D is represented by an n× a data matrix whose each row
represents a data sample di, for i = 1, . . . , n.
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2.3. Representation of data 11

• A measure of similarity is a metric defined in the space of feature and
is used to measure the similarity between the elements.

§ 2.3 Representation of data

In general there are not any particular specifications that suggest the optimal
representation of data. Actually in most cases the data creation cannot be
supervised. In that case the user is responsible to collect the data, and
optionally, to choose or produce the features that will be used at the next
steps of the procedure. Due to the difficulty of this task, the representation
of the data is often consider to be known in advance. Although, this is a
very important step of the procedure since the clustering result is heavily
depended on the representation. For example in Figure 2.2 a simple two
dimensional data set is illustrated where the elements are organised in one
semicircular cluster. Choosing the Cartesian representation, many clustering
algorithms would split the cluster due to its concave shape. On the other
hand, if we choose to use the polar coordinate system it is easier to define
that there is only one cluster in this data set.

Figure 2.2: A semi circular group of elements.

An element from the data set can represent either a natural object (i.e.
table), either an abstract concept (i.e. behaviour). The traditional repre-
sentation of each data element is through a multidimensional vector, where
each coordinate represents a particular feature [DH73]. These feature can
be quantitative or qualitative. For example if the colour of the hair and the
age are the features of a group of people, then the element (blond, 30), is
the representation of a blond person of age 30. Feature can be separated in
the following categories:

1. Quantitative feature:

Institutional Repository - Library & Information Centre - University of Thessaly
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12 Chapter 2. Background Information

(a) continues values (i.e. weight).

(b) district values (i.e. number of tables).

(c) values of spaces (i.e. length of a fact).

2. Qualitative features

(a) Unstructured (i.e. colour)

(b) Ordered (i.e. qualitative representation of age, young, middle
aged, old).

The most important step of representation procedure is the selection of
the most representative features. The feature selection techniques, select a
subset of features, based on the optimisation of some proximity criterion of
the clustering procedure. On the other hand, feature extraction techniques,
like the Principal Component Analysis, transform the representation of data
into a lower dimensional space.

§ 2.4 Measures of Similarity

As already mentioned, the definition of the similarity between the elements
of the data set is fundamental for the clustering procedure. The choice of
the similarity measure to use is a very difficult task, due to the variety of the
type of features. Usually the similarity between two elements is measured
through a distance function defined in the range values of the features.

The most widely used metric for continues features is the Euclidean
distance,

dist2(di, dj) =

(
a∑
k=1

|dki − dkj |2
) 1

2

= ‖di − dj‖2

which is a special case (p = 2) of the Minkowski distance,

distp(di, dj) =

(
a∑
k=1

|dki − dkj |p
) 1

p

= ‖di − dj‖p

.

In general the algorithms that use the Euclidean distance perform better
when the data set contains dense or isolated clusters [Jia94]. The disadvan-
tage of the direct use of such techniques is that the similarity measure is
dominated by the feature with the largest scale, however, this problem can
be solved through normalisation of the data set or by attaching weights to
the features. The linear correlation between the features can also alter such
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2.5. Types of Clusters 13

measures. This can be avoided using a weight transformation to the data
set or by employing the Mahalanobis metric:

distM (di, dj) = (di − dj)σ−1(di − dj)τ ,

where τ is the covariance matrix of the data set, Mahalanobis distance is
based on correlations between variables by which different patterns can be
identified and analysed.

The computation of distances is not effective when some or all features
are not continuous, since we cannot compare different types of features.
However for this cause several metrics have been proposed.

§ 2.5 Types of Clusters

A cluster can be described in several ways based on the goal of data analysis.
One of the most widely used type of clusters is the “center based clusters”.
The cluster is constituted by data points that are more close to the center of
the cluster than to any of the centers of the other clusters. Next there is the
“well separated clusters” type of clusters. In this case a cluster is constituted
of data points that are more close to each other than to any data point not
in the cluster. As expected this definition can only be satisfied when the
actual clusters are sufficient far from each other. Another common type
of clusters is the “graph based”. In this case the cluster is constituted by
data points that are connected to one another, but have no connection to
data points of another cluster. An example of this type of clusters are the
“contiguity based clusters”, where two data points are consider connected
only if their distance is lower than a specified value. This notion of a cluster
can be very useful when dealing with cluster of irregular shapes but fails
dramatically in the presence of noise. Finally there are the “density based”
type of clusters where a cluster is defined by dense region of data points that
is surrounded by a region of low density. This definition is widely used since
it is not affected by the shape of the clusters or the existence of noise. At
Figure 2.3 two dimensional data points are employed to visually illustrate
examples of the described types of clusters.

§ 2.6 Hard Clustering and Fuzzy Clustering

In traditional (hard) clustering, data are divided into distinct clusters, where
each data vector belongs to exactly one cluster. On the other hand, in
fuzzy (soft) clustering, data points can belong to more than one cluster, and
associated with each element is a set of membership levels. The membership
level that defines the association of a data point with a cluster is between 0
(where the data point absolutely does not belong to the cluster) and 1 (where
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Center based clusters Well separated clusters

Contiguity based clusters Density based clusters

Figure 2.3: Several cluster types.

the data point absolutely belongs to the cluster) with the constraint that
the sum of the weights for each data point must equal 1. These indicate
the strength of the association between that data point and a particular
cluster. Fuzzy clustering is a process of assigning these membership levels
and then using them to assign data points to one or more clusters. In
the same way, probabilistic clustering techniques can be used to compute
the probability with which each data point belongs to each cluster with
the similar constraint that the probabilities must sum to 1. Since both
the probabilities and the membership weights must sum to 1, these types
of clustering differs from the non-exclusive clustering, where a data point
simultaneously belongs to multiple clusters. Instead, these approaches are
mostly used to avoid the arbitrariness of assigning an object to only one
cluster when it may be close to several. In many cases, fuzzy clustering is
converted to hard clustering by assigning each data point to the cluster for
which its membership weight is highest.

§ 2.7 Experiments and Evaluation

For the experimental evaluation of the algorithmic implementations pre-
sented in this following sections, a series of simulated datasets are employed.
This procedure gives the opportunity to pre-design (and hence know before-
hand) the structure of the data that the clustering procedure aims to recover.
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This kind of artificial cluster construction method is typically used in similar
empirical evaluations [Nil02, KSI03, Ber06].

The datasets are constructed by drawing points from a finite mixture of
k Gaussian distributions that represent the actual clusters in the data. The
mean of each Gaussian is randomly placed in [100, 200]a and the covariance
matrix is also randomly generated by an appropriate procedure, so as to en-
sure that it is symmetric and positive definite. Next, from each distribution
100 points are drawn, so the total number of points in each dataset is k×100.
We will refer to this kind of data generation mechanism DSETGausian.

To extend the generality of the results, datasets has has also constructed
in a similar manner using Beta distributions. In detail, the actual clusters
are composed by independent univariate Beta distributions, one for each
dimension, of which the shape parameters are drawn at random uniformly
in the interval [1, 6]. After drawing 100 points from each cluster, the data
for each one is rescaled by a random factor (which is drawn uniformly in
[10, 20]) and subsequently repositioned again randomly in [100, 200]. This
data generation mechanism generates clusters of random shapes depending
on the values of the parameters of the Beta distributions. We will refer to
this data generation mechanism as DSETBeta.

2.7.1 Evaluation

There are different way to assess the quality of a data partition [JD88,
Kog07]. First, we could formulate quality as a function of the given data
(internal criteria). In this case the clustering problem actually becomes an
optimisation problem. A better method would be to use additional external
information not available to the algorithm, such as class labels. In general
there are three different techniques for evaluating the result of the clustering
algorithms:

• External Criteria,

• Internal Criteria,

• Relative Criteria.

The internal and external criteria are based on statistical methods. The ex-
ternal validity methods evaluate the clustering based on some user specific
intuition. The internal criteria are based on some metrics, which are based
on data set and the clustering schema. Relative criteria are based on the
comparison of the different clustering schema. The aim of the relative cri-
teria is to choose the best clustering schema from the different results. For
more information regarding validity analysis please refer to [Dub93, JD88].

When class labels are available a priori, external evaluation measures
for clustering can be applied. The task of the clustering process then is to
partition the data points to any number of clusters such that all data points
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16 Chapter 2. Background Information

that belong to the same class constitute a single cluster. Since the actual
classes are known it is trivial to determine whether a clustering algorithm has
achieved a perfect clustering result or not. However, it is not straightforward
to determine how far from perfect is an incorrect clustering result [Oak98].

Here we use external criteria to assess the quality of a data partition. As
such, we can measure the degree of correspondence between the resulting
clusters and the classes assigned a priori to each object. For a dataset D, let
L be a set of labels li ∈ L, for each point di ∈ D, i = 1, . . . , n, with li taking
values in {1, . . . , L}. Let a k-cluster partitioning Π = {C1, . . . , . . . , Ck} with
ci talking values in {1, . . . , C}. The purity of Π is defined as:

P (Π) =

∑k
j=1 max {|{pi ∈ Cj : li = 1}|, . . . , |{pi ∈ C : li = L}|}

n
, (2.1)

so that 0 ≤ P (Π) ≤ 1. High values indicate that the majority of vectors
in each cluster come from the same class, so in essence the partitioning is
“pure” with respect to class labels.

However, cluster purity does not address the question of whether all
members of a given class are included in a single cluster and therefore is
expected to increase monotonically with the number of clusters in the result.
For this reason, criteria like the V-measure [RH07] have been proposed.

The V-measure tries to capture cluster homogeneity and completeness,
which summarises a clustering solution’s success in including every point of
a single class and no others. Homogeneity is satisfied when each one of the
resulting clusters is constituted by data points of the same class. On the
other hand completeness is satisfied when all data points that belong to a
particular class are elements of the same cluster. Usually, for a clustering
result, when homogeneity increases, the completeness decreases, For exam-
ple the rare case where all data points are assigned into a single cluster, it
is a case of perfect completeness, on the other hand, since this single cluster
includes all classes, is consider to be totally inhomogeneous. In an another
extreme case where each data point constitutes a cluster, the perfect ho-
mogeneity is achieved, but with respect to completeness this is a very poor
result, with the exception of the case where each class contains only one
element. The distance from a perfect clustering is measured as the weighted
harmonic mean of the homogeneity and completeness measures.

Let A be the contingency table that represents the clustering result, such
that A = {aij} where aij is the number of data points that are members of
class Li and elements of the cluster Cj . Then homogeneity is defined as:

hm =

{
1 if H(L,C) = 0

1− H(L|C)
H(L) else

(2.2)

where
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H(L|C) = −
|C|∑
c=1

|L|∑
l=1

alc
N

log
alc∑|L|
l=1 alc

and

H(L) = −
|L|∑
l=1

∑|C|
c=1 alc
n

log

∑|C|
c=1

n
.

Completeness is symmetrical to homogeneity. As such completeness is de-
fined as:

cm =

{
1 if H(C,L) = 0

1− H(C|L)
H(C) else

, (2.3)

where

H(C|L) = −
|L|∑
l=1

|C|∑
c=1

alc
N

log
alc∑|C|
C=1 alc

and

H(C) = −
|C|∑
c=1

∑|L|
l=1 alc
n

log

∑|L|
l=1

n
.

Based on these calculations the V-measure of Π is defined as:

Vβ(Π) =
(1 + β)hc

hβ + c
, (2.4)

where h and c are the homogeneity and the completeness of Π respectively
and β is a positive real weight. If β is greater than 1, completeness is
weighted more strongly in the calculation, while if β is less than 1, homo-
geneity is weighted more strongly. Again it holds that 0 ≤ Vβ(Π) ≤ 1, while
higher values correspond to better performance. Here it is important to
notice that the computation of V-measure is completely independent of the
number of classes, the number of clusters and the size of the data set.

§ 2.8 Conclusions

Clustering deals with the separation of a data set into subclusters based on
some similarity measure. In general clustering is considered to be a subjec-
tive process since the input data set needs to be clustered in different ways
according to the goals of the corresponding application. This introduces
several difficulties into the clustering process. A possible solution for this
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18 Chapter 2. Background Information

matter is the representation of the subjective with knowledge. This knowl-
edge is imported into various steps of the procedure in order to achieve the
desired result. In this chapter, the various steps of the clustering process
are presented.
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- Chapter 3 -

Clustering Algorithms

The roots of education are bitter, but the fruit is sweet.

—Aristotle

There exist many categorisations of clustering algorithms, but broadly
we could divide them into three main categories:

• Hierarchical: Clustering algorithms that construct hierarchies of clus-
ters in a top-down (agglomerative) or bottom-up (divisive) fashion.
The former, start from n clusters, where n stands for the number
of data points, each containing a single data point and iteratively
merge the clusters satisfying certain measures of closeness. Divisive
algorithms follow a reverse approach; starting with a single cluster
containing all the data points and iteratively split existing clusters to
subsets.

• Partitioning: Clustering algorithms [SKK00], start from an initial clus-
tering (that may be formed at random) and subsequently create flat
partitioning by iteratively adjusting the clusters based on the distance
of the data points from a representative member of each cluster.

• Distance-Based: clustering algorithms create flat partitioning by con-
sidering neighbours of data points.

§ 3.1 Hierarchical Clustering Algorithms

A basic characteristic of the hierarchical methods is that the assignment
of a data point to a cluster is permanent, as such it cannot be removed

19
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20 Chapter 3. Clustering Algorithms

from the cluster or merged with objects belonging to a different cluster.
A hierarchical clustering can be displayed graphically using a tree diagram
called dendrogram, which displays both the relationship between a cluster
and its subclusters and the order in which the clusters were merged or split,
in the agglomerative and divisive case, respectively. A simple example of
the hierarchical procedure is illustrated in Figure 3.1.

Figure 3.1: A hierarchical clustering as a dendrogram (left) and as nested
clusters (right).

3.1.1 Hierarchical Agglomerative Methods

In general the steps of an agglomerative algorithm are the following:

1. Initially, the n objects are being split into n clusters and the symmetric
proximity matrix DIST = dist(di, dj) is constructed.

2. We search DIST for the closest clusters. Let K and L be the clusters
that are more close to each other, then min(DIST ) = dist(dK , dL).

3. The clusters K and L are being merged and the new cluster is named
KL. Also the matrix DIST is updated by removing lines and columns
that corresponds to K and L, and by adding a line and a column that
displays the distances of the new cluster KL from the rest of the
clusters.

4. Finally, repeat steps 2 and 3 n− 1 times in total. At the final state of
the algorithm all objects belongs to one clusters. The clusters created
during the algorithmic process are being recorded along with the level
of similarity of each merging.
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Defining proximity between clusters The hierarchical agglomerative
methods differentiates by the way they compute the proximity between two
clusters. While the calculation of the distance between two elements is clear
enough, the calculation of the distance between clusters that contain more
than one elements can be done in many ways. Cluster proximity is typically
defined with a particular cluster type in mind (see Section 2.5). For example
many agglomerative hierarchical techniques, such as Single Link, Complete
Link and Group Average, come from a graph based view of clusters. Single
Link defines proximity between two clusters as the distance between the
two closest points that are in different clusters. This yields contiguity-based
clusters as shown in Section 2.5. On the other hand, Complete Link consider
cluster proximity as the distance between the two farthest points that are
in different clusters. One more graph based approach is the Group Average,
which defines cluster proximity to be the average of all pairwise proximi-
ties of all points that belong to different cluster. In Figure 3.2 the above
approaches are illustrated.

Figure 3.2: The three graph based proximities described. Single Link (left),
Complete Link (middle) and Group Averege (right).

When each cluster is represented by a centroid (centroid method), the
cluster proximity is defined as the proximity between cluster centroids.

The median method it was first proposed in order to alleviate some
disadvantages of the centroid method. In the centroid method, if the sizes
of the two groups to be merged are quite different, then the centroid of the
new group will be very close to that of the larger group and may remain
within that group. In the median method, the centroid of a new group is
independent of the size of the groups that form the new group. On the other
hand, the Ward’s method, also assumes that a cluster is represented by a
centroid, but it measure the proximity between two clusters in terms of the
increase in the error sum of squares (ESS) that results from merging the two
clusters.

The proximity calculation methods described above satisfy a recursive
equation for the distance dM(KL) between the cluster M and the cluster KL
which was created by merging cluster K and L at a previous step of the
procedure. That is the following equation:

distM(KL) = αkdistMK +αldistML + βdistKL + γ|distMK − distML| (3.1)

where distKL the distance between the cluster K and L and α, β, γ the
parameters that define equation 3.1.1 according to Table 3.1.
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Single Link αK = αL = 1
2 β = 0 γ = −1

2

Complete Link αK = αL = 1
2 β = 0 γ = 1

2

Group Average αK = nK
nK+nL

, αL = nL
nK+nL

β = 0 γ = 0

Centroid clust. αK = nK
nK+nL

, αL = nL
nK+nL

β = −αKαL γ = 0

Median clust. αK = αL = 1
2 β = −1

4 γ = 0

Ward’s method αK = nM+nK
nM+nK+nL

, αL = nM+nL
nM+nK+nL

β = −nM
nM+nK+nL

γ = 0

Table 3.1: Parameters for Equation 3.1.1.

Agglomerative methods

Geometric methods Graph methods

Ward’s method

Centroid method

Median method

Single link method

Complete link method

Group average method

Figure 3.3: Commonly used hierarchical agglomerative methods.
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3.1.1.1 BIRCH

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) is
a widely use agglomerative hierarchical algorithm proposed in [ZRL96] for
clustering very large numerical data sets in Euclidean spaces. In the al-
gorithmic procedure a Clustering Feature (CF) is used to summarise the
information of each cluster. For a cluster C of an a-dimensional dataset,
CF is defined as follows:

CF (C) = (|C|, S1, S2),

where |C| is the number of instances in C and S1,S2 are a-dimensional
vectors defined as:

S1 =
∑
d∈C

d =

(∑
d∈C

x1, . . . ,
∑
d∈C

xa

)
,

S2 =
∑
d∈C

d2 =

(∑
d∈C

x21, . . . ,
∑
d∈C

x2a

)
,

where xj (1 ≤ j ≤ a) is the value of the j-th attribute of d. The algorithm
initially builds a CF tree dynamically as the new data points are inserted.
The parameters of the CF are the branching factor B, the leaf factor L and
the threshold T . The nodes that are not leafs contain at most B subnodes
of the form [CFi, childi] while the leaf nodes contain a most L entries fo the
form [CFi]. Finally, the diameter of each entry in a leaf node has to be less
than T . The determination of outliers is based on the density of each entry
in a leaf node, entries of low density are considered to be outliers. Then the
outliers are remove from the tree and are being stored to disk in order to
reduce its size. Later during the process the outliers are scanned in order
to examine if they can enter the tree form again without causing it to grow
in size. Finally, when the CF tree is built, an agglomerative hierarchical
clustering algorithm is applied to the nodes and a centroid is obtained for
each cluster. The new clusters are formed by reassigning each data point to
its nearest centroid.

The BIRCH algorithm has the advantage to perform very well in cases
where clusters have spherical shape and uniform size, but it is not recom-
mended for use with clusters of different sizes or irregular shapes.

3.1.1.2 CURE

Clustering Using Representatives (CURE) [KHK99] is an agglomerative hi-
erarchical clustering algorithm that can deal with large data sets that con-
tain nonspherical clusters of different sizes. The basic characteristic of this
algorithm is that each cluster is represented by a set of points that is well
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scattered in the cluster. CURE make use of random sampling and partition-
ing in order to handle large databases. The basic steps of the algorithmic
procedure are the following:

1. Draw a random sample: To handle large databases a random sample is
drawn. Here in order to analytically derive values for sample sizes, such
that the probability of missing clusters is low, the Chernoff bounds
[MR95] are used.

2. Partition the sample: In cases where the input sizes become large, a
partitioning scheme is needed to speed up CURE. The samplespace
is being partitioned into p partitions, each of size s

p , where s is the
sample size.

3. Partially cluster the partitions: Each partition is clustered until the
cluster number for each partition reduces to s

pq for some constant q ≥ 1.

4. Eliminate the outliers: The outliers do not merge with other points
in the same rate as actual clusters due to the greater distances from
other points and for this reason grow much slower in agglomerative
hierarchical clustering.

5. Cluster the partial clusters: A second clustering pass is run on the s
p

partial clusters for all the partitions.

6. Label the data: Each of the remaining data points is assigned to the
cluster containing the representative point closest to it.

The complexity of the cure algorithm isO(n2 log n), but it can be reduced
to O(n2) for the 2-dimensional case.

3.1.2 Hierarchical Divisive Methods

A divisive hierarchical method start the algorithmic procedure with one
cluster that contains all the data points and splits this cluster. After the
initial separation the data points move from one group to another or more
sophisticated splits are executed on the already formed clusters [DM84].
There are two division techniques:

• Monothetic: A cluster is characterised monothetic when all of its ele-
ments have approximately the same value with respect to a particular
variable. A monothetic method divides the data on the basis of the
possession or otherwise of a single specified attribute.

• Polythetic: A cluster is characterised polythetic when all of its ele-
ments have approximately the same value with respect to all variables.
A polythetic method divides the data based on the values taken by all
attributes.
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Hierarchical clustering algorithms have been shown to result in high
quality partitions especially for applications involving clustering text collec-
tions. Nonetheless, their high computational requirements, usually prevents
their usage in real-life applications, where the number of samples and their
dimensionality is expected to be high (the computational cost is quadratic
to the number of samples).

Amongst the class of divisive hierarchical clustering algorithms the Prin-
cipal Direction Divisive (PDDP) algorithm is of great value due to its very
low computational complexity, in comparison with other algorithms of the
same class. We will further analyse PDDP algorithm in Section 4.1.5.

§ 3.2 Partitioning Clustering Algorithms

The partitioning clustering algorithm create a flat partitioning of the data
instead of building hierarchies. The main advantage of this class of algo-
rithms is that they can be applied on very big data sets.

The most popular of partitioning clustering algorithms is k-means, which
starting from k centres iteratively assigns each data point to the cluster
whose centroid minimises the Euclidean distance from the point [HW79].
The iteration terminates when none of the data points changes clusters,
or equivalently, when the centroids do not change significantly. Spheri-
cal k-means [DM01] is a recently proposed modification of the algorithm
that reduces k-means to the partitioning of the unit hypersphere by nor-
malising the data points. Algorithms that belong to the same class as the
k-means, can give adequate clustering results at low cost, since their run-
ning time is proportional to k · n. However, their results depend heavily
on their initialisation. Another similar approach is Gaussian Mixture Mod-
els (GMM) [MP00], where k multivariate normal density components are
combined, by assuming that each component represents a cluster. Like k-
means, an iterative algorithm is used, typically Expectation Maximization
(EM), to fit the parameters of each density to the data. Then the posterior
probabilities for each data point to each component of the model is indica-
tive of the probability of the point belonging to each cluster. GMM may be
more appropriate than the k-means clustering algorithm, when clusters have
different sizes and there exists correlated variables, but more control param-
eters need to be estimated. This makes their application in high dimensions
almost prohibitive.

3.2.1 The k-means algorithm

The basic concept of k-means algorithm is that each cluster is represented
by a particular point named center. To split the data set into k clusters,
the k centers Pj , j = 1, . . . , k are initialised randomly. Then, the algorithm
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assigns each data point to the cluster whose center is more close to it. This
assignment is based on on the following equation for every point di:

µj(di) =

{
1 if ‖di − Pj‖ ≤ ‖di − Pl‖ ∀l 6= j
0 else

. (3.2)

Usually for the calculation of the distance ‖di−Pl‖ the Euclidian distance
is being used as a proximity measure. When all data points are assigned to
clusters the algorithm calculates the new centers based on the centroids of
the data points of each cluster:

Pj =

∑n
i=1 µj(di)di∑n
i=1 µj(di)

. (3.3)

These steps are applied recursively until the membership of the clusters
no longer changes or until the error function E (Equation 3.2.1) does not
change significantly (converge).

E =
k∑
j=1

n∑
i=1

µj(di)‖di − Pj‖2. (3.4)

In brief, the k-means algorithm can be summarized as follows:

1. Initialize the k centers in the dataset.

2. Assign each data point to its closest center.

3. Calculate the new centers.

4. Repeat steps 2 and 3 until converged is achieved.

In general the algorithm can be described as a optimization procedure of
the objective function:

J =
k∑
j=1

n∑
i=1

‖di − Pj‖2 (3.5)

Although it can be proved that the process will always converge, the optimal
partitioning does not necessary corresponds to the global minimum of the
objective function.

Figure 3.4 displays a simple 2-dimensional example of the k-means algo-
rithmic procedure. The actuals clusters are being found into four algorithmic
steps.

The k-means algorithm is simple and quite efficient in most cases. There
are also many variants that improve its performance and are less susceptible
to initialization problems. However, k-means is not suitable in cases where
clusters are not globular or vary in size and density. In addition k-means
has troubles dealing with dataset that contain outliers. For this reason in
such cases, outlier removal methods are employed.
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Figure 3.4: Four iterations of the k-means algorithmic procedure.

3.2.2 The Fuzzy c-means algorithm

One of the most widely used fuzzy clustering algorithms is the Fuzzy C-
Means (FCM) algorithm. FCM is a clustering method that assigns each
each data point to a cluster to some degree that is specified by a membership
grade. This technique was originally introduced by Jim Bezdek in [Bez81]
as an improvement on earlier clustering methods and attempts to partition
a finite collection of data vectors into a collection of fuzzy clusters with
respect to some given criterion. A theoretical discussion of FCM can be
found in [Cox05].

Given a finite set of data, the algorithm returns a list of cluster centers
and a partition matrix indicating the degree to which each element belongs
to a given cluster. Like the k-means algorithm, the FCM aims to minimize
an objective function, like the following:

Jm =

N∑
i=1

C∑
j=1

umij ‖di − Pj‖2, 1 ≤ m ≤ ∞, (3.6)

where m is any real number greater than 1, uij is the degree of membership
of di in the cluster j, di is the i-th of a-dimensional measured data, Pj is
the a-dimension center of the cluster, and ‖ · ‖ is any norm expressing the
similarity between any measured data and the center. Fuzzy partitioning
is carried out through an iterative optimization of the objective function
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shown above, with the update of membership uij and the cluster centers Pj
by:

uij =
1∑C

l=1(
‖di−Pj‖
‖di−Pl‖ )

2
m−1

, (3.7)

where

Pj =

∑N
i=1 u

m
ij · di∑N

i=1 u
m
ij

.

This iteration stops when

maxij{|ul+1
ij − |u

l
ij |} ≤ ε, (3.8)

where l is the iteration number and ε is a constant between 0 and 1 that
controls the termination of algorithm. This procedure converges to a local
minimum or a saddle point of Jm.

§ 3.3 Density Based Clustering Algorithms

The density based clustering algorithms define a cluster based on the hy-
pothesis that the density (or the number of data points) in a neighbourhood
is over a specified threshold, while the distance based algorithms, assign a
data point to a cluster based on the distance between the data point and
the center of the cluster. In contrast to distance based algorithms, the den-
sity based can also deal effectively with cluster of non spherical or random
shapes. One of the most well known algorithms of this class is the DBSCAN
algorithm.

3.3.1 DBSCAN

Density Based Spatial Clustering of Application with Noise [SEKX98] (DB-
SCAN) is a density based clustering algorithm that has been proved quite
effective for spatial databases. Clusters are considered as high density neigh-
bourhoods of data points that are separated by neighbourhoods of low den-
sity. Although the density parameter is critical for DBSCAN’s success,
recently proposed heuristics are able to give high quality results. The basic
type of DBSCAN density is defined by the center based approach. The den-
sity of a data point is estimated by counting the number of points within
a specified radius (Rd). As expected the density of any point is heavily
depended on this radius. At the first step of the algorithmic procedure all
data points are classified into three categories. These are:

• Core points,
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• Border points,

• Noise points.

Core points are those points that contain at least a specified number
of data points within the radius Rd, border points are points that are not
core points, but a core point falls within their radius Rd and finally noise
points are those points that do not belong to any of the other two classes.
A two dimensional example of this classification is illustrated at Figure 3.5,
where the minimum number of points within the radius Rd that defines a
core point is five.

core point

border point

noise point

Figure 3.5: An example of the data points classification for DBSCAN
algorithm.

At the next step of the algorithmic procedure, any two core points lying
within the radius Rd of one another are put in the same cluster and any
border point that is close enough to a core point is put in the same cluster
as the core point. Finally all noise points are erased.

DBSCAN is relatively resistant to noise and, in contrast to k-means can
handle clusters of arbitrary shapes and sizes. However, the algorithm has
difficulties in dealing with high dimensional data because density is more
difficult to define for such data.

§ 3.4 Model-Based Clustering

Model based clustering algorithms use certain models for clusters and try
to optimize the fit between the data and the models. In model based clus-
tering it is assumed that the data are generated by a mixture of probability
distributions. Each component of the mixture corresponds to a cluster. We
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expect a clustering method to perform accurately when the data conform to
the model.

3.4.1 Gaussian Mixture Models

Gaussian Mixture Models (GMM) is a widely used clustering approach that
is often used for understanding and developing clustering criteria. In GMM
the data input D is considered to come from a random vector with density
[CG93]:

f(d) =

k∑
j=1

mjΦ(d|µj ,Σj)

where mj are the mixing proportions, 0 < mj < 1 and
∑k

j=1mj = 1, and
Φ(d|µ,Σ) is the density of the Gaussian distribution with mean vector µ and
covariance matrix Σ:

Φ(d|µ,Σ) =
exp[−1

2(d− µ)TΣ−1(d− µ)]√
(2π)d|Σ|

. (3.9)

There are two maximum likehood approaches for estimating the parameters
in a mixture:

• Mixture approach

The aim of this approach is to maximize the likehood over the mixture
parameters. As such the parameters

θ = m1, . . . ,mk−1, µ1, . . . , µk−1,Σ1, . . . ,Σk

are chosen to maximize the loglikehood

L(θ|d1, . . . , dn) =

n∑
i=1

ln

 k∑
j=1

mjΦ(di|µj ,Σj)

 . (3.10)

To find the parameters θ that maximize the above equation, the Ex-
pectation Maximization algorithm is used.

• Classification approach

The aim of the classification approach is to maximize the likehood
over the mixture parameters and also over the identifying labels of the
mixture component origin for each data point. Therefore the indicator
vectors zi = (zi1, . . . , zik), for which zik = 1 if di has been drawn from
the k-th component, and zik = 0 if di has been drawn from any other
component, are treated as unknown parameters.
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3.4.2 The Expectation Maximization Algorithm

The Expectation Maximization (EM) algorithm is a statistical method of
maximum likelihood estimation in the presence of incomplete data that can
be used for the purpose of clustering. For the clustering purpose the data
are defined as the set

{(di, zi), i = 1, . . . , n},
where D = {di, i = 1, . . . , n} is the input data set and zi = (zi1, . . . , zik) are
defined as

zij =

{
1 if xi belongs to the j-th cluster
0 else

.

There are two relevant assumptions. Firstly, each zi is independent and
identically distributed according to a multinomial distribution of one draw
on k classes with probabilities τ1, . . . , τ2. Secondly, we have that the density
of di given zi is given by

k∏
j=1

fj(di|Θj)
zij .

Then the complete loglikehood has the form

l(Θj , τj , zij |D) =
n∑
i=1

k∑
j=1

zij log[τjfj(di|Θj)],

and the conditional expectation of zij for the data point di is the following

ẑij = E[zij |di,Θ1, . . . ,Θk].

In the case of the hard clustering task, the data point di is assigned to
the cluster that corresponds to the highest membership. The algorithmic
procedure of EM is consisted by two steps named the E-step and the M-step.
During the E-step the values of ẑij are being calculated from the data input
and the current parameter estimates. The M-step procedure consists the
maximization of the complete data likehood, where each zij is replaced by
its current conditional expectation ẑij . For more information regarding the
EM algorithm refer to [MK08].

§ 3.5 Conclusions

Although many clustering algorithms have been proposed in the recent years,
the continuously increasing size of data bases and the new complex applica-
tions constantly arising, impose the necessity for development of new clus-
tering algorithms. These new algorithms must have the ability to utilize the
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possibilities of the modern data bases and incorporate the knowledge about
the several application fields easily.
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- Chapter 4 -

Knowledge Discovery in High Dimensional Data

Do not say a little in many words, but a great deal in a few.

—Pythagoras

While clustering has a long history and a large number of clustering
techniques have been developed in statistics, pattern recognition, data min-
ing, and other fields, significant challenges still remain. One of the most
important challenges encountered in clustering is associated with high data
dimensionality (“curse of dimensionality”) [Bel61].

In general terms, these problems result from the fact that a fixed num-
ber of data points become increasingly “sparse” as the dimensionality in-
creases [SEK03]. For clustering purposes, the most relevant aspect of the
curse of dimensionality concerns the effect that it has on distance or simi-
larity.

More precisely, the measure of distance or similarity affects critically
most clustering algorithms since it is required that the data points of one
cluster to be closer to each other that any data point that belongs to another
cluster. To visually analyse if a data set may contain clusters or not, we
could plot the histogram of the pairwise distances of the data points. In
the cases where clusters exist, the graph will typically show two peaks. One
peak represents the distance between the data points in clusters and the
other represents the average distance between data points. If there is only
one peak visible it means that the clustering task based on distance measures
is expected to be difficult.

In [BGRS99], for certain data distributions, it is shown that the rela-
tive difference of the distances of the closest and farthest data points of an
independently selected point goes to 0 as the dimensionality increases.

33
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lim
a→∞

MaxDist−MinDist

MinDist
= 0.

Thus, it is often said that “in high dimensional spaces, distances between
points become relatively uniform” [SEK03].

The authors in [BGRS99], provide a theoretical analysis of several types
of distributions along with results for high dimensional datasets. Although
this work was oriented towards the problem of finding the nearest neigh-
bors of points, many problematic situations have been exposed concerning
clustering of high dimensional data.

The nearest neighbor (NN) problem involves the determination of the
point xNN from the dataset D that is the nearest to a query point q ∈ Ra
(see Figure 4.1).

xNN = {x′ ∈ D|∀x ∈ D,x 6= x′ : dist(x′, q) ≤ dist(x, q)}.

Solving this problem is important for many applications such as similar-
ity search in geometric or multimedia databases [MG95, KSF+96, FEF+94],
data mining in fraud detection [BGMP99, HGY99] and information retrieval
[AGM+90, Sal89]. Most of these fields concerns high dimensional data.

query point nearest neighbor

Figure 4.1: A query point and its nearest neighbor.

Although many other empirical studies have shown that traditional in-
dexing methods fail in high dimensional spaces [BKK96, BGRS99, WSB98],
most NN problems can be solved easily for low dimensional applications for
which efficient index structures have been proposed. Many multidimensional
indexes have been proposed that work efficiently for low dimensional data
[GG98] .

However, as mentioned in [BGRS99] while it is natural to ask for the
nearest neighbor, there is not always a meaningful answer for a wide range of
distributions and distance functions as such questions arise as to weather the
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center of circle

query point
nearest neighbor

Figure 4.2: A query point and its nearest neighbor.

NN problem is actually meaningful. To explain this we consider the scenario
illustrated in Figure 4.2. Although there is a well defined nearest neighbor,
the distance difference between the nearest neighbor and any other point is
very small, as such the solution of concrete problems is not of much use.
Although this scenario is very contrived for any two dimensional application
of nearest neighbor, in [BGRS99] is shown that this is the norm for a broad
class of data distributions in high dimensionality. To establish this, the
authors examine the number of points that fall into a query sphere enlarged
by some factor ε (Figure 4.3). In the case where only few points fall into this
sphere, it means that the nearest neighbor to the query point is separated
from the rest of the data meaningfully. However, if most points fall into
the sphere there is no meaning in differentiating the nearest neighbor from
the rest data points if ε is small. The above observation is described by the
following definition

Definition 1. A nearest neighbor query is unstable for a given ε if the
distance from the query point to most data points is less than (1 + ε) times
the distance from the query point to its nearest neighbor.

The authors in [BGRS99] show that in many situations, for any ε > 0,
as dimensionality rises, the probability that a query is unstable converges
to 1.

In [HAK00] the authors deal with the quality issue of nearest neighbor
search and examine several theoretical and practical aspects of performing
nearest neighbor queries in high dimensional space. There are many reasons
for which there is not much meaning of the nearest neighbor search in high
dimensional spaces. One of the most important reasons is the data sparsity.
Here the authors extend the approach presented in [BGRS99] by focusing on
the difference between the distance of the nearest and the farthest data point
to a given query point (absolute difference, MaxDist–MinDist), instead
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MinDist

(1 + ε)MinDist

MaxDist

Figure 4.3: The query region and the enlarged region. MinDist is the
distance to the nearest neighbor and MaxDist the distance to the farthest
data point.

of the relative difference. It was shown that this value is depended on
the distance measure. More precisely, for the L1 distance it holds that
MaxDist–MinDist increases with dimensionality, while for the L2 distance
remains almost constant and for Ld where d ≥ 3 goes to 0. As such the Ld
metric for d ≥ 3 is meaningless for high dimensional data.

§ 4.1 Algorithms for High Dimensional Data

Clustering

All the aforementioned results showed the difficulties that emerge in cluster-
ing of high dimensional data. However, things are sometimes not as bad as
they might seem, since it is often possible to reduce the dimensionality of the
data without significant loss of information. This can be accomplished by
the feature selection procedure, i.e. discarding features showing little vari-
ation or having high correlation to other features. Feature selection is a
complicated subject in its own and is out of the scope of the present study.

Another clustering approach is to project points to a suitable low di-
mensional space. Typically, this type of dimensionality reduction is ac-
complished by applying techniques from linear algebra or statistics such as
Principal Component Analysis (PCA) [JD88] or Singular Value Decomposi-
tion (SVD) [Lax07]. This way, a powerful class of clustering algorithms
has emerged that provides the opportunity for the deployment of these
computational technologies from numerical linear algebra, an area that has
seen enormous expansion in recent decades. In this class of algorithms, the
Principal Direction Divisive Partitioning (PDDP) algorithm is of particular
value [Bol98]. Compared to other similar techniques (like Latent Semantic
Indexing [DDF+90] and Linear Least Square Fit [CY95]), PDDP has the
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advantage of very low computational complexity.

4.1.1 CLIQUE

CLIQUE algorithm [AGGR98] is based on the idea that a dense region in a
particular subspace must create dense regions when projected onto a lower
dimensional subspace.

To explain how the algorithm proceeds a simple two dimensional dataset
is employed. In Figure 4.4 we can see the one dimensional dense regions on
the x (horizontal) and y (vertical) coordinates respectively, which indicate
the projections of the two dimensional clusters. As shown the one dimen-
sional dense regions denote the regions (the intersections of two dense one
dimension dense regions) that probably contain clusters in a higher dimen-
sion. As such, by inspecting these one dimensional intervals one can find
the actual clusters. This technique can be easily applied to any subspace for
finding clusters efficiently. The disadvantages of CLIQUE is that in order
to reduce the subset of the investigated dimensions the algorithm needs to
use heuristics and also the computational complexity of the algorithm is not
linear with the dimensionality of the dataset.

x axis

y axis

Figure 4.4: A two dimensional example of the CLIQUE algorithm proce-
dure.

4.1.2 MAFIA

The Merging Adaptive Finite Intervals And is more than a clique (MAFIA)
algorithm [GNC99] is an improvement over the CLIQUE approach. The
boosted efficiency is achieved by using non-uniform grid cells. In more
detail, in the MAFIA procedure we partition each dimension based on a
variable number of adaptive intervals that represents better the distribu-
tion of the data set in that dimension, instead of splitting the data into

Institutional Repository - Library & Information Centre - University of Thessaly
17/05/2024 14:08:30 EEST - 18.188.60.124



38 Chapter 4. Knowledge Discovery in High Dimensional Data

a predefined number of evenly spaced intervals. To better explain the al-
gorithmic approach a two dimensional example is employed in Figure 4.5
for the comparison between the CLIQUE and the MAFIA algorithms. The
grid illustrated in Figure 4.5 (left) that CLIQUE uses, breaks the dense one
dimensional regions, as such there exists intervals at the edge that has lesser
density. On the other hand, the MAFIA algorithm begins with a large num-
ber of intervals for each dimension and then combine those that have similar
density. The results of the algorithm are shown in Figure 4.5 (right).

x axis

y axis

x axis

y axis

Figure 4.5: A comparison between the CLIQUE algorithm procedure (left)
and the MAFIA algorithmic procedure (right).

4.1.3 DENCLUE

The DENsity CLUstering (DENCLUE) [HHK98] algorithm is a density
based approach which can be considered as a generalization of other density
approaches such as DBSCAN. In the DENCLUE approach the clusters are
defined by the local peaks of the overall density. More specifically, for each
data point a hill climping technique is applied in order to find its closest
density peak. Then a set of data points assign to a particular peak define a
cluster. In the case where the density of a local peak is extremely low, all
elements assigned to the cluster defined by this peak are considered to be
noise and are erased. In addition, if two local peaks are connected through a
path of data points whose density is above a predefined threshold, then the
clusters defined by those peaks are merged. Thus, based on that attribute,
the algorithm can discover clusters of various shapes.

The DENCLUE procedure is based on the Kernel Density Estimation
(KDE) [WJ95]. KDE is a statistical technique used to describe the distri-
bution of a data set. In KDE the density is defined as the sum of a set of
kernel functions that corresponds to each data point. More details regarding
KDE will be given in Chapter 5.
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There are two basic steps in the DENCLUE algorithmic procedure.
Firstly, there is a prepossessing step where the minimal bounding hyper
rectangle is being divided in order to create a grid for the data. Then, the
grid shell that contain data points are determined and numbered according
to a particular origin. These grid shells are stored along with information
about the number of points; the sum of the points in the cell and the con-
nections they have to other cells. The next step of the algorithm is the
clustering step, where only the high populated cells and the cells connected
to them are being used. For each point the density is calculated based only
on points that belong to cells that are close to it. Finally, the algorithm
merges high density cells that are connected by a path of points having
density greater than a predefined value.

4.1.4 OptiGrid

The OptiGrid algorithm [HK99] was created by the authors of DENCLUE
in order to surpass the problems of the DENCLUE algorithm when the
dimensionality or the noise increases. The OptiGrid algorithm is based on
two observations made by the authors about the behaviour of points in
high dimensional space. The first observation is that the data noise seems
to correspond to uniformly distributed data in high dimensions, and the
second observation is that interpoint distances become relatively uniform as
dimensionality increases.

A simple representation of the algorithmic steps is given below:

1. Firstly for each dimension, a histogram of the data points is generated.
Then, the noise is determined by examining the histogram, and the
left and right maxima and the c − 1 (where c the number of clusters
input) maxima in between them are being found. Next, the c minima
between these maxima that define all the possible cuts are being found
and sorted according to a criterion (for example density).

2. Now select the best c cuts amongst all dimensions.

3. A grid that partitions the data is now created based on these cuts.

4. The high populated cell are being found and added to the list of clus-
ters.

5. Refine the cluster list.

6. Steps 1-5 are repeated using each cluster.

The OptiGrid algorithm in summary simply looks for optimal cutting
planes and then generates a grid based on that planes that is not likely
to cut any real clusters. Then it locates the potential clusters in the set
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of grid cells and further partitions them if possible. Although this is an
effective technique, there are many parameters that need to be defined in
the implementation of OptiGrid.

4.1.5 Principal Direction Divisive Partitioning

The Principal Component Divisive Partitioning algorithm (PDDP) is a “di-
visive” hierarchical clustering algorithm that operates directly on a n × a
data matrix D. It’s basic advantage is the very low computation complexity
in comparison with other algorithms of the same category. The algorithm
proceeds by separating the entire set of samples into two partitions P1 and
P2, using the projections pi onto the first principal component u1, which is
the direction on which the projections have the maximum variance (more
details regarding Principal Component Analysis will be given in Section
4.2.1). Each of the two partitions will be separated into two subpartitions
using the same process recursively. The result is a hierarchical structure
of partitions arranged into a binary tree (“the PDDP tree”) in which each
partition is either a leaf node (meaning it has not been separated) or has
been separated into two subpartitions forming its two children in the PDDP
tree. Any divisive clustering algorithm can be characterized by the way it
chooses to provide answers to the following three questions:

Q1: Which cluster to split further?

Q2: How to split the selected cluster?

Q3: When should the iteration terminate?

To generate this partitioning, the original PDDP algorithm uses the
sign of the projection of each data point (division point 0). This reveals
the text mining origins of the algorithm, since based on a term-document
data specification [Bol98], data points (documents) with positive projections
should be more similar to each other than data points (documents) with
negative ones. However, very often, the sign of the projection can lead to
undesirable cluster splits [TT08, ZG03, Dhi01, DKN03]. More formally we
can define this splitting criterion as follows:

• (Splitting Criterion SPC1): ∀di ∈ D, if pi > 0, then the i-th data
point belongs to the first partition P1 = P1 ∪ di; otherwise, it belongs
to the second partition P2 = P2 ∪ di.

In [Nil02], the utilisation of the second, the third, etc. component (in-
stead of the principal one) was proposed. A suitable projection was calcu-
lated based on a measure of coherence (scatter value, defined below) of the
generated clusters. However, this criterion greatly increases the computa-
tional complexity of the algorithm. Similarly, in [ZG03] it is suggested to
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extend this in a 2l-way partitioning strategy, by splitting simultaneously in
2l clusters using the sign of the projections of the l > 1 singular vectors. Al-
though, both these approaches have been shown to lead to improved cluster
quality, the problem is not solved. Using alternative principal components
does not guarantee improved partitioning, as the problem of where to split
irrespective of which projection is used, still exists.

Another approach to determine the splitting point is to use a k-means
steering procedure [Dhi01, DKN03, ZG07], with k = 2. In [ZG07] it is
suggested to extensively search every splitting point and select the one with
the best k-means objective function (for k = 2). The drawback of this
approach lies in the fact that even if the best such splitting point is found,
it does not guarantee a good splitting decision, as the k-means objective
function is flawed in many cases (e.g. unbalanced clusters, more than two
true clusters in the data, etc.) [JD88].

To answer the cluster selection question Q2, the PDDP algorithm as well
as all its variations [ZG03, Dhi01, DKN03, Nil02, ZG07], select the cluster
with maximum scatter value SV , defined as:

SV = ‖D − be‖F , (4.1)

where the vector b represents the mean vector of D and ‖ · ‖F is the Frobe-
nious norm. This quantity can be a measure of coherence and it is the same
as the one used by the k-means steered PDDP algorithm [ZG07].

Finally, most of the PDDP variants terminate the clustering procedure
when a user defined number of clusters (cmax) has been retrieved. Little
effort has been given to develop a method for the automatic cluster deter-
mination, which fits with the workings of the PDDP algorithm.

A detailed description of the algorithm is presented in Table 4.1. As
shown the criteria to answer questions Q1, Q2 and Q3 can be summarized
as follows:

C1: Select the cluster with the largest scatter value.

C2: Split the cluster based on the sign of the data projection onto the first
principal component.

C3: Stop when a user defined number of clusters has been retrieved.

§ 4.2 Dimensionality Reduction Techniques

In this Section the already known techniques that are used for dimensionality
reduction in this work are presented. These are the Principal Components
Analysis (PCA), the Independent Component Analysis (ICA) and the Ran-
dom Projection method.
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Function PDDP (D, cmax) {
1. While number of leafs of the pddp tree

smaller than cmax
2. Select the leaf Pk of the pddp tree with the largest

scat value: k = arg maxi{scat(Pi)}
3. Split Pk according to Splitting Criterion SPC1

4. Create sub-clusters of Pk and
add them to the pddp tree

}

Table 4.1: The PDDP algorithm Summary.

4.2.1 Principal Component Analysis

Principal Components Analysis (PCA) is a way of identifying patterns in
data, and expressing the data in such a way as to highlight their similarities
and differences. The central idea of Principal Component Analysis (PCA)
is to reduce the dimensionality of a data set, while retaining as much as
possible of the variation present in the data set.

To formally describe the manner in which PCA operates, let us assume
the data is represented by an n× a matrix D, whose each row represents a
data sample di, for i = 1, . . . , n. Also define the vector b and matrix Σ to
represent the mean vector and the covariance of the data respectively:

b =
1

n

n∑
i=1

di, Σ =
1

n
(D − b · e)> · (D − b · e),

where e is a column vector of ones. The covariance matrix Σ is symmetric
and positive semi-definite, so all its eigenvalues are real and non-negative.
The eigenvectors uj , j = 1, . . . , k corresponding to the k largest eigenvalues
are called the principal components or principal directions.

Let Uk be the matrix with columns the eigenvectors that corresponds to
the k largest eigenvalues and denote the targeted subspace. Then

pi = Uk(di − b), i = 1, . . . , n,

are the projections of di onto the k-dimensional subspace.
A simple example of the steps of the PCA procedure is illustrated in

Figure 4.6. For visual representation a two dimensional dataset is employed.
In Figure 4.6 (top) we can see the initial dataset (left) and the centralized
dataset (right), respectively. For PCA to work properly, you have to subtract
the mean from each of the data dimensions. The mean subtracted is the
average across each dimension, as such the resulted data set has a zero mean.
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Next, we need to calculate the covariance matrix and the corresponding
eigenvalues and eigenvectors. As expected, since this is a 2-dimensional data
set there are two eigenvectors (the columns of EC) and two corresponding
eigenvalues (EL) respectively.

EC =

[
−0.8447 0.5353
0.5353 0.8447

]

EL =

[
2.7964 0

0 13.5504

]
In Figure 4.6 (bottom left) we can see the eigenvectors plotted on top of the
data. The eigenvector that corresponds to the highest eigenvalue is the first
principal component and is considered to be the most significant. To reduce
the dimensionality of the data set with the minimum loss of information we
project the data onto the first Principal Component. Figure 4.6 (bottom
right) illustrates the projected data. An explanatory image of the procedure
is presented in Figure 4.7.
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Figure 4.6: A two dimensional example of various steps of the PCA
method.
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0,0

First Principal Component
Second Principal Component

Centralized data

Projected data

Figure 4.7: A two dimensional example of various steps of the PCA
method.

4.2.2 Independent Component Analysis

Independent component analysis (ICA) [A. 01, Com94] is a technique that
finds underlying factors or independent components from multivariate (mul-
tidimensional) statistical data by maximizing the statistical independence
of the estimated components. ICA defines a generative model for the ob-
served multivariate data, which is typically given as a large database of
samples. In the model, the data variables are assumed to be linear or non-
linear mixtures of some unknown latent variables and the mixing system
is also unknown. The latent variables are assumed non-gaussian and mu-
tually independent and they are called the independent components of the
observed data. These independent components can be found by ICA.

We can define ICA as follows. Let x = (x1, ..., xn) be the random vector
that represents the data and s = (s1, ..., sn) be the random vector that
represents the components. The task is to transform the data x, using a
linear static transformation W as

s = Wx,

into maximally independent components s measured by some function of
independence.

The most widely known definitions of independence for ICA are the
maximization of nongaussianity and the minimization of mutual informa-
tion. The classical measure of nongaussianity is kurtosis or the fourth-order
cumulant. Kurtosis is zero for a gaussian random variable and nonzero for
most non-gaussian random variables. Kurtosis, or rather its absolute value,
has been widely used as a measure of nongaussianity in ICA and related
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fields. The main reason is its simplicity, both computational and theoreti-
cal.

The second very important measure of nongaussianity is given by ne-
gentropy. Negentropy is based on the information-theoretic quantity of (dif-
ferential) entropy. Entropy is the basic concept of information theory. The
entropy of a random variable can be interpreted as the degree of information
that the observation of the variable gives. The more random and unstruc-
tured the variable is, the larger its entropy. The minimization of mutual
information is inspired by information theory.

Mutual information is equivalent to the well-known Kullback-Leibler di-
vergence. It is always non-negative, and zero if and only if the variables are
statistically independent. Thus, mutual information takes into account the
whole dependence structure of the variables and not only the covariance,
like the PCA and related methods do.

4.2.3 The Random Projection Method

In certain cases even Principal Component Analysis can be quite expensive
to compute for ultra high dimension datasets. For this reason Random Pro-
jection (RP) [Ach01, BM01, PRTV98] emerged as an alternative method
for dimension reduction. In RP, the data are projected onto a lower di-
mension subspace using a random matrix. RP is extremely computational
efficient and has also the desirable property to preserve the structure of
the data without introducing significant distortion. In [PRTV98], Papadim-
itriou et al. use random projection in the prepossessing of textual data,
prior to applying Linear Discriminant Analysis (LDA) for document cat-
egorization and classification. Despite the fact that LDA is an accurate
technique for solving these problems, it is also computational inefficient for
large databases. The authors used RP to speed up LDA by reducing the
dimensionality of the data. Kaski [Kas97] presented experimental results
using RP in the context of a system for organizing textual documents using
Self-Organising Maps (SOMs) (i.e. WEBSOM). His results illustrate that
RP needs moderate number of dimensions for producing a good mapping.
In this case, the results were as good as those obtained using PCA. Bingham
and Manilla [BM01] compared several dimensionality reduction techniques
on image and text data. In their results it was shown that RP preserves
distances and has performance comparable to that of PCA, while being
much faster. In [GBN], Goel et al. investigated the feasibility of RP for
face recognition. The authors there performed a large number of exper-
iments and comparisons using PCA. The experimental results illustrated
that although RP represents faces in a random, low-dimensional subspace,
its overall performance is comparable to that of PCA while having lower
computational requirements. Dasgupta [Das99, Das00] also concludes that
RP results in more spherical cluster than those in the original dimension.
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RP also performs better than PCA on eccentric data, where actually PCA
might fail completely. Finally, Boutsidis et al. in [BZD10] use RP for di-
mensionality reduction for k-means clustering. The authors there provide
theoretical results and present a fast and accurate method. The uses of RP
are also abundant in other applications like molecular biology [LLTY97],
and signal processing [CRT06, Don06].

4.2.3.1 Theoretical aspects of RP

In Random Projection method, the original a-dimensional data is projected
to an r-dimensional subspace (r < a), using a random a × r orthogonal
matrix R, whose rows have unit lengths. Using matrix notation where Dn×a
is the original set of n a-dimensional observations,

DRP
n×r = Dn×aRa×r,

is the projection of the data onto the lower r-dimensional subspace spanned
by R.

The orthogonalization of R is computational expensive, but necessary
in order to preserve the similarities between the original vectors in the low
dimension space and to avoid distortions. However, in some cases, we can
avoid orthogonalization. As shown in [HN94], in high dimension spaces,
there exists a much larger number of almost orthogonal vectors than orthog-
onal directions. Thus, high-dimensional vectors having random directions
are very likely to be close to orthogonal.

The selection of the elements of the matrix R is a matter of interest. In
most cases the elements are drawn from a normal distribution, but this is
not always necessary. In [Ach01] the author has proposed a much simpler
algorithm for approximating the random matrix. That algorithm produces
a sparse random matrix with elements in {−1, 0, 1}. In this way there are
further computational savings. Random projection is computationally very
simple, forming the random matrix R and projection the n× a data matrix
D onto r dimensions is of order O(nra) and if the data matrix D is sparse
with about c non zero entries per column, the complexity is reduced to
O(cra) [PRTV98].

Random Projection is motivated by the Johnson - Lindenstrauss lemma
(lemma 4.2.1) that states that a set of n points in a high dimension Euclidean
space can be mapped down onto an r < O(log n/ε2) dimension space such
that the distances between the points are approximately preserved. In other
words, the distance are not distorted more than a factor of 1 ± ε, for any
0 < ε < 1.

Lemma 4.2.1. (Johnson and Lindenstrauss [JL84]): Given ε > 0 and
an integer n, let r be a positive integer such that r ≥ r0 = O(ε−2 log n). For
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every set D of n points in Ra, there exists g : Ra → Rr such that for all
x, yεD

(1− ε)‖x− y‖2 ≤ ‖g(x)− g(y)‖2 ≤ (1 + ε)‖x− y‖2

Proof of this lemma is given in [Ach01] and [DG99].

§ 4.3 High Dimensional Applications

In this Section we present the real life high dimensional clustering applica-
tions used in this work for the evaluation of the proposed clustering tech-
niques.

4.3.1 Application on Microarray Datasets

The development of microarray technologies gives scientists the ability to
examine, discover and monitor the mRNA transcript levels of thousands
of genes in a single experiment. Discovering the patterns hidden in gene
expression microarray data is a tremendous opportunity and challenge for
functional genomics and proteomics. A promising approach to address this
task is to utilize data mining techniques. Cluster analysis is a key step in
understanding how the activity of genes varies during biological processes
and is affected by disease states and cellular environments. In particular,
clustering can be used either to identify sets of genes according to their
expression in a set of samples, or to cluster samples into homogeneous groups
that may correspond to particular macroscopic phenotypes. The latter is
in general more difficult because of the high dimensionality that describes
these datasets. For this reason they make a perfect candidate to explore the
performance of the algorithms proposed in this paper.

4.3.2 Text Mining Application

In the recent years text mining is a topic of great interest. Due to the con-
tinuous evolution of the hardware and software platforms, web applications,
social networks applications and other information based applications pro-
duce large amounts of text databases. As such there is a growing need for
the development of methods that have been designed in order to be able to
process these databases effectively. For this reason the text mining task con-
stitutes a research field in data mining, machine learning and information
retrieval. Text data are in their nature high dimensional and as a result very
often dimensionality reduction techniques are employed by the algorithms.

4.3.3 Face Recognition

Facial recognition systems are becoming very popular in numerous appli-
cations from security systems to smart vending machines [TLL+10]. Face
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is a highly non-rigid object. Detecting human faces from an image it is a
difficult task mostly because of the variation of human faces such as races,
illumination, facial expressions, face scales, head poses (off-plane rotations),
face tilting (in-plane rotations), occlusions, etc. In most cases the problem
is also affected by the environment where lighting conditions, image quality,
and cluttered backgrounds emerge. For this ultra high dimensional task,
PCA analysis or similar dimensionality reduction techniques are the most
used tools for analysis.

§ 4.4 Conclusions

While a lot of work has been done on developing clustering methods, there
are still significant challenges that need to be addressed. One of the most
important of them is high data dimensionality. To deal with this problem
new clustering methods have been developed based on the fact that it is
possible to reduce the data dimensionality without significant loss of infor-
mation. In this Section some of the most well known methods in this area a
re presented along with the most effective tools for dimensionality reduction.
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- Chapter 5 -

Enhancing Principal Direction Divisive Clustering

Life is an unfoldment, . . . . To understand the things that are at our door is the

best preparation for understanding those that lie beyond.

—Hypatia

§ 5.1 Introduction

In this Section, we aim to understand what can be achieved by partitioning
the data based on their projection on a particular direction. To this end, we
attempt to theoretically discover the relationship between true clusters in the
data and the distribution of their projection onto the principal components.

Obviously, this requires assumptions of what true clusters actually mean,
which are called “inductive bias” [GvLW09]. Here, out of the large variety
of such assumptions, we focus on two particular ones: the “compact” and
the “peak” based clusters, respectively. Based on these assumptions, we
propose appropriate criteria for the various steps involved in hierarchical
divisive clustering (see Section 4.1.5).

Any divisive clustering algorithm can be characterised by the way it
chooses to provide answers to the following three questions:

Q1: Which cluster to split further?

Q2: How to split the selected cluster?

Q3: When should the iteration terminate?

In the sections that follow we are going to examine each of the three basic
questions involved in the hierarchical divisive clustering procedure individ-
ually.

51
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52 Chapter 5. Enhancing Principal Direction Divisive Clustering

§ 5.2 How to split the selected cluster?

This question is the most central one in a divisive clustering procedure. The
reason for this lies in the fact that if a bad decision is made in the first steps
on the procedure, little can be done in the subsequent steps to remedy the
clustering result. This is the reason why a substantial amount of research
has been devoted to find an optimal way to answer this question.

To illustrate the drawbacks of the approaches already in the literature,
we can visually inspect the result of each of them in a simple example. In
Fig. 5.1, we illustrate the clustering result of partitioning in two clusters a
dataset composed of a mixture of 30 Gaussian distributions. Fig. 5.1 (top
left) corresponds to the first step of an algorithm that splits based on the
sign of the projections onto the first principal component (criterion SPC1).
Fig. 5.1 (top right) shows the equivalent result when the partitioning is
performed based on the sign of the projections onto the second principal
component, as proposed in [Nil02]. Finally, Fig. 5.1 (bottom) depicts the
result of the partitioning using k-means steering, where the best splitting
point is calculated exhaustively as proposed in [ZG07]. As shown, splitting
utilising the sign results in sub-optimal decisions, since a large number of
compact cluster are split in half in both cases. Also using k-means steering
exhibits a marginal improvement.
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Figure 5.1: The partitioning result of different splitting criteria.
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5.2.1 Contiguous Clusters

Trying to investigate the situations in which a criterion can be optimal, we
first need to formally define a cluster. Different cluster definitions exist in the
literature [SEK03]. The one employed here is used for contiguous clusters,
where any point in a cluster is closer (or more similar) to one or more other
points in the cluster than to any point not in the cluster. Formally we define
first the coherence of a set as follows:

Definition 2. (Set Coherence): Let D ∈ Rn×a be a data matrix corre-
sponding to a set of points D. Then the coherence of the D is defined as
COH(D) = max{‖di − di∗‖ : ∀i = 1, . . . , n}, where di are the row vectors of
D and i∗ = arg minj{‖di − dj‖ : ∀j = 1, . . . , n, and j 6= i}

Now, we can formally define a cluster as a contiguous set:

Definition 3. (Contiguous Set): Let D set of points di, for i = 1, . . . , n,
a subset C ⊂ D is a Contiguous set, when COH(C) < COH(C ∪ {di}), ∀di ∈
D/C .

In the above definition, COH(C) is the coherence of the set C and D/C =
{d ∈ D : d /∈ C}. Using such definitions we can now define the clustering
problem.

Definition 4. (Contiguous Clusterable Set): A set D of points is k
contiguous clusterable if there exists a partition Π of D into k subsets
C1, . . . , Ck, such that any Ci is a Contiguous Set.

Thus, we can prove the following Lemma, stating that if in a data pro-
jection the distance between two consecutive projections is at least M , then
the points to the left of the interspace cannot lie in the same cluster with the
points in the right, where M is the maximum of the cluster coherencies. As
such, splitting on any point in that space is optimal in terms of the partition
Π. In Fig. 5.2 such an example is illustrated. The distance L between the
projections pt∗ and pl∗ is larger than both the cluster coherencies, so split-
ting the data on either pt∗ or pl∗ guarantees that each partition will contain
points from different true clusters.

Lemma 5.2.1. Let a k-contiguous-clusterable set D of points di, for i =
1, . . . , n and Π its partition into k Contiguous subsets C1, . . . , Ck. Let u ∈ Ra,
with ‖u‖ = 1. Let P be the set of projections pi of the vectors di on u. Also,
let M = max{COH(C) : C ∈ Π}. If there is a pl∗ ∈ P such that pt∗−pl∗ > M ,
where pt∗ = min{p : p > pl∗ , p ∈ P}, then all dt, for which pt > pl∗, and all
dl, for which pl 6 pl∗, belong to different sets of Π.

Proof. First note that for any dl and dt, with l 6= t, it holds that:

‖dl − dt‖ > |pl − pt|. (5.1)
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Figure 5.2: An example application of Lemma 5.2.1.

Since pt∗ − pl∗ >M , for any dl with pl 6 pl∗ and for any dt with pt > pl∗ it
holds that:

pt − pl > pt∗ − pl∗ > M.

Thus from Eq. (5.1) we have:

‖dl − dt‖ > |pl − pt| > M. (5.2)

Since D is k-contiguous-clusterable, COH(C) 6 M , for all C ∈ Π. If there
was a C ∈ Π, such that dl, dt ∈ C, then from Definition 2, it would have to
hold ‖dl − dt‖ 6 M . This contradicts Eq. 5.2, thus dl and dt need to be in
different clusters. Thus, the lemma is proved.

In real life scenarios however cluster coherencies cannot be known in
advance. Also even if they were known, it could be difficult to find a large
enough empty space in a particular projection.

Even if we do not know the real cluster coherencies, we can still claim
that by splitting on the largest distance between two consecutive projections
is a good choice, given the particular projection, as it does not split any
contiguous cluster. In the lemma that follows we show in more detail what
can be achieved by this splitting criterion.

Lemma 5.2.2. Let D be a set of n points di ∈ Ra, for i = 1, . . . , n and
u ∈ Ra, with ‖u‖ = 1. Let P be the set of projections pi, for i = 1, . . . , n,
of the vectors di ∈ D on u. Also, let for each pi ∈ P, ne(i) = arg minj{pj :
pj > pi, pj ∈ P} and define isp as follows:

isp = arg max
i
{pne(i) − pi,∀pi ∈ P}.

Then, if Disp = {di ∈ D : pi 6 pisp}, M = pisp − pj∗, where pj∗ = min{pj ∈
P : pj > pisp}, then for any subset D′isp ⊂ Disp for which COH(D′isp) 6 M ,
it holds that:

COH(D′isp) 6 COH(D′isp ∪ {dj})
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for any dj ∈ D for which pj > pisp.

Proof. First note that for di ∈ D′isp , it holds that pi 6 pisp . This way, for any
dj ∈ D such that pj > pj∗ it holds that pi − pj > M . Subsequently, it also
holds ‖di − dj‖ > M . As such, from Definition 2, COH(D′isp ∪ {dj}) > M .

Since COH(D′isp) 6M , the Lemma is proved.

An example of the application of this Lemma is illustrated in Fig. 5.3. In
this example COH(Disp), is larger than M , but the coherence of the subsets
COH(Disp,1), COH(Disp,2), and COH(Disp,3), is smaller than M . Adding any
point dj with dj ∈ D for which pj > pisp , would only increase the coherence
of any of those subsets, although the coherence of Disp will decrease if we
add pj∗ , since it holds that L1 < L2, L3, and L1 = COH(Disp).
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Figure 5.3: An example application of Lemma 5.2.2.

The above lemmas point out that partitioning data based on the largest
distance M between consecutive projections is guaranteed not to split a
cluster, if the maximum coherence of each cluster is less than M . In the case
that such knowledge is not available, splitting in such a manner guarantees
that no cluster with less than M coherence is split. In real life data sets,
we do not how dense the real clusters are. Thus, one would like to discover
clusters with coherence as large as possible. Given a particular projection,
obviously the best strategy is to split on the largest distance between two
consecutive projections. As proposed in [TT08], let us formally define the
following splitting criterion:

• (Splitting Criterion SPC2): Let ∀pi ∈ P, ne(i) = arg minj{pj : pj >
pi, ∀pj ∈ P} and define isp as follows isp = arg maxi{pne(i)− pi, ∀pi ∈
P}. Then, P1 = {di ∈ D : pi 6 pisp} and P2 = {di ∈ D : pi > pisp}.

Fig 5.4 illustrates the result of this criterion on the exemplary dataset
used previously, where alternative criteria in the literature produce sub-
optimal partitions. As shown, no cluster is split and only one of the points
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of one cluster is attributed to a wrong partition. Note also, that the result
is heavily unbalanced in terms of number of points in each partition, where
the alternative criteria produce somewhat balanced partitions.
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Figure 5.4: The partitioning result of SPC2 splitting criterion.

5.2.2 Dense Convex Clusters

Although the SPC2 criterion might seem appropriate in terms of cluster
coherence, its main drawback is that it will operate sub-optimally in cases
where there are outlying points in the data. In such situations all the dis-
tances between successive projections can be uniform and it could be im-
possible to make an informative splitting decision. However, this is not a
problem of the particular criterion per se, but rather of the cluster definition
that has been used. Nonetheless, we would like to be able to deal with such
situations. In what follows, we will describe an alternative formulation of
the clustering problem that allows us to design a splitting methodology able
to deal with this situation. So, we are redefining clusters as convex subsets
of the data space that are more dense than the regions around them.

Definition 5. (Dense Convex Set): If we assume f : Ra → R to be the
probability density function of x ∈ Ra, then a set C ⊂ Ra is dense and convex
if there is a set C′ ⊂ Ra such that f(x) > f(y), ∀x ∈ C, and ∀y ∈ C′ and
∀x, y ∈ C then (1− t)x+ ty ∈ C, ∀t ∈ [0, 1].

The above definition determines clusters not in terms of the points they
include, but their probability density function f . This way we can assume
the data set D, as a finite sample drawn from that distribution. Similarly,
we can redefine the clustering problem as follows:

Definition 6. (Dense Convex Clusterable Set): A set D of points is
Dense Convex k-Clusterable if there exist k disjoint subsets C1, . . . , Ck,
such that the convex hull H(Ci) of any Ci is a dense convex set.
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In practice, it is not possible to know in advance the real density of
the data f , but we can construct estimates of it given the data set D.
There are approaches for such a task and among them Kernel Density Es-
timation [WJ95] is a well studied non-parametric estimation that does not
assume any particular form for the real density f .

In the most simple forms for a multivariate kernel density estimator is:

f̂(x;h) = n−1h−a
n∑
i=1

K((x− di)/h),

where h ∈ R+ is a real positive number called the bandwidth and K : Ra →
R is a kernel function which needs to satisfy:

∫
K(x)dx = 1. There are

several kernel functions that can be used, like uniform, triangular, Epanech-
nikov, normal, and others. However the quality of a kernel estimate depends
less on the shape of the K than on the value of its bandwidth h. A usual
choice for the kernel is the standard multi-variate normal density:

K(x) = (2π)−a/2e−0.5‖x‖.

For the estimation properties of such a method refer to [WJ95].
For any projection direction u ∈ Ra, with ‖u‖ = 1, we can also estimate

the univariate density of the projections ux ∈ R, for x ∈ Ra:

f̂ ′(ux;h) = n−1h−1
n∑
i=1

K ((ux− pi)/h) .

Now, the kernel function used is:

K ′(ux) = (2π)−1/2e−0.5|ux|.

Note that K ′(ux) > K(x), since ‖x‖ > |ux|, and the normal density is a
monotonically decreasing function. Moreover:

f̂(x;h) 6 f̂ ′(ux;h′), (5.3)

as long as h = h′ > 1 or h′ 6 ha.
Although kernel density estimation technique is a quite general and pow-

erful method, has a significant disadvantage of being computationally inten-
sive. In general, given n data samples and m points at which the density
need to be evaluated, the computational complexity is O(nm)

However, it has been shown [YDGD03, GS91] that using techniques like
the Fast Gauss Transform (FGT) we can achieve linear running time for the
Kernel Density Estimation, especially for the one dimensional case at hand.
The fast Gauss transform is an analysis based fast algorithm in the sense
that it speeds up the computation by approximating the Gaussian function
to achieve a desired precision.
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The performance of FGT degrades exponentially with increasing dimen-
sionality, which makes it impractical for several applications in Machine
Learning. While methods have been developed for improving FGT in order
to be applicable in higher dimensions [RYDG05], in our benefit, in this work
the FGT method is being applied on data samples of reduced dimensionality.
Thus, there is no need to use such methods.

Using this estimation methodology, the following lemma can be proved:

Lemma 5.2.3. Let a dense convex k-clusterable set D of points di, for
i = 1, . . . , n and Π its partition into k dense convex subsets C1, . . . , Ck. Let
u ∈ Ra, with ‖u‖ = 1. Let P be the set of projections pi of the vectors di
on u. Also, let M = min{f̂(x;h) : x ∈ C, C ∈ Π}. If there exists x ∈ R,
such that the univariate estimate density f̂ ′(x;h′) < M , with h = h′ > 1 or
h′ 6 ha, then all dt for which pt > x, and dl for which pl 6 x, belong to
different sets of Π.

Proof. Let us suppose that there exist dt, dl ∈ D, C ∈ P such that dt, dl ∈ C,
and pt = udt and pl = udl with pl 6 x and pt > x. Obviously, there exists
λ ∈ [0, 1], such that x = λpl + (1 − λ)pt. Also for the vector z ∈ Rd with
z = λdl + (1−λ)dt, it holds that z ∈ C since C is convex (note that uz = x).

As such f̂ ′(uz;h′) = f̂ ′(x;h′) < M . However, from Eq. 5.3, we have
that f̂(z;h) 6 f̂ ′(uz;h′) = f̂ ′(x;h′) and since z ∈ C, f̂(z;h) > M , this is a
contradiction. Thus, the Lemma is proved.

This lemma extends the result of Lemma 5.2.1 in the case of dense convex
clusterable sets. Now, all we need to find is a point on the projection line
with low enough density. If we split based on that point we are guaranteed
not to split any clusters. Of course the above Lemma assumes that the
minimum density of the points in each cluster is known. This assumption
could be unattainable in real life scenarios. Nevertheless, given a particular
projection we could find the global minimiser x∗ of the projections density
f̂ ′(x;h′) and split based on that point. That helps not to split any clusters of
density greater or equal to f̂ ′(x;h′). However, x∗ must be formally defined:

Definition 7. (Global Minimiser): A global minimiser x∗ ∈ R, is the
point that f̂ ′(x∗;h′) 6 f̂ ′(x′;h′), where x′ ∈ X = {x′′ ∈ R : ∃δ > 0, f̂ ′(x′′;h′) <
f̂ ′(x;h′), ∀x for which |x′′ − x| < δ}.

Based on that definition the following splitting criterion is proposed:

• (Splitting Criterion SPC3): Let f̂ ′(x;h′) be the kernel density estima-
tion of the density of the projections pi ∈ P and x∗ its global minimiser
given by Definition 7. Then construct P1 = {di ∈ D : pi 6 x∗} and
P2 = {di ∈ D : pi > x∗}.

Note, that finding such a minimiser might seem more difficult than it ac-
tually is. The reason for that lies in the fact that valid splitting points lie
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between consecutive data projections pi. Also, between any two consecutive
projections pi and pi+1 the estimated density f̂ ′(x;h′), for pi 6 x 6 pi+1,
is monotonous, due to the manner that this is calculated. As such we can
constrain the search for the global minimiser on the finite set P and set δ
for each pi, as the minimum of |pi+1 − pi| and |pi−1 − pi|, where pi−1, and
pi+1 are the two nearest projections of pi from either side.

Let us examine the result of this criterion on the exemplary dataset used
before. Fig. 5.5(top) illustrates the result that is similar to the one obtained
by SPC2. The difference lies in the fact that the outlying point that was
misplaced under SPC2, does not affect the SPC3 criterion and it is assigned
to the correct sub-partition. It is interesting to inspect the estimated density
shown in Fig. 5.5(bottom). The estimate density exhibits several minima.
However, especially one of those minima has a very low density value (very
close to 0) that provides a quite good indication that no cluster will be split.

This splitting criterion suggests that the minimiser of the estimated den-
sity is the best we can do to avoid splitting clusters. However, there always
exists the problem of not being able to find such a minimiser. This could
happen in two cases; either the data do not contain any density based convex
clusters, or the selected bandwidth is very large [WJ95]. The first case can
act as an indication when to stop the recursive splitting of the data, under
the assumption that the density estimation is accurate enough. The second
case, is a well studied problem, especially in the particular one dimensional
situation [Tur93]. Later in Section 5.8, we investigate how different band-
width values affect the performance of the clustering procedure.

§ 5.3 Which cluster to split?

As explained in Section 4.1.5, the second question that any divisive algo-
rithm needs to face is which cluster to select from the pool of already re-
trieved partitions, to forego with the clustering procedure. It is obvious
that this step of the procedure is quite important as well. Being able to
split effectively has no merit, when the selected cluster to split corresponds
to a coherent group. Imposing a clustering structure on a dataset, when
such a structure does not exist, is a central issue in cluster analysis. In
general, determining the presence or the absence of a clustering structure
is called the “cluster tendency” problem. A series of specialised tests have
been developed to judge the existence of a clustering structure, before the
application of a clustering algorithm, like the scan test, quadrant analy-
sis, moment structure and inter-point distances [TK06]. However, it still
remains an open issue.

As already discussed in Section 4.1.5, the PDDP algorithm, as well as all
its variations [ZG03, Dhi01, DKN03, Nil02, ZG07], select the cluster with
maximum scatter value SV (Eq. 4.1). Another explanation of this selection

Institutional Repository - Library & Information Centre - University of Thessaly
17/05/2024 14:08:30 EEST - 18.188.60.124



60 Chapter 5. Enhancing Principal Direction Divisive Clustering

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0  10  20  30  40  50  60  70  80  90  100  110

Spliting using SPC3

 0

 0.005

 0.01

 0.015

 0.02

 0.025

-80 -60 -40 -20  0  20  40  60  80

f(
x
;h

)

Figure 5.5: The partitioning result of SPC3 splitting criterion (top) and
the corresponding density estimation of the projections (bottom).
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method is that the cluster having in effect the widest (largest variance)
projection on the first principal component is chosen (“shoot the biggest
animal”).

This can be very easily deemed unsuccessful through a simple example as
shown in [TT08], which for completeness purposes is included here as well.
Fig. 5.6 illustrates a case where the dataset has already been split into two
clusters shown with different colours. In this case, the green large cluster
has a SV value of 0.25414, which is 0.17945 larger than the SV value of the
red cluster. So, in this case selecting the cluster with the larger SV value
for further splitting would have no chance of producing a correct clustering.

The splitting criteria proposed in the previous section could also provide
guidance for the cluster selection step. In the pool of already retrieved
clusters, we expect the one with the largest distance among consecutive
projections to probably contain more than one actual clusters.

The same can be said for the minimum estimated density criterion. A
minimiser with very small density should be a good indicator of multi-
modality of the density function and consequently it lessens the chance to
split an actual cluster. Thus we propose the following two selection criteria:

• (Cluster Selection Criterion CS1): Let Π a partition of the data set
D into k sets. Let M = {M〉 : 〉 = ∞, . . . , ‖} be the set of the
largest distances Mi among consecutive projections, for each Ci ∈ Π,
i = 1, . . . , k. The next set to split is Cj , with j = arg maxi{Mi : Mi ∈
M}.

• (Cluster Selection Criterion CS2): Let Π a partition of the data set D
into k sets. Let F be the set of the density estimates fi = f̂(x∗i ;h) of
the minimisers x∗i for the projection of the data of each Ci ∈ Π, i =
1, . . . , k. The next set to split is Cj , with j = arg maxi{fi : fi ∈ F}.

§ 5.4 When should the iteration terminate?

Irrespectively of the method used, a fundamental issue in cluster analysis is
the determination of the number of clusters present in a dataset. This issue
also remains an open problem in cluster analysis. For instance, well-known
and widely used iterative techniques, such as the k-means algorithm [HW79],
require from the user a priori designation of the number of clusters present in
the dataset. There also exist approaches that adjust the number of clusters
during training. The ISODATA technique [BH67] is based on the same key
idea as the k-means algorithm; starting with a typical number of initial clus-
ters, it iteratively merges and splits existing clusters according to ”within-
group variability” and “closeness” thresholds. Another popular approach
is to employ Akaike Information Criterion (AIC) and Bayesian Information

Institutional Repository - Library & Information Centre - University of Thessaly
17/05/2024 14:08:30 EEST - 18.188.60.124



62 Chapter 5. Enhancing Principal Direction Divisive Clustering

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-2 -1  0  1  2  3  4

SV=0.17945

SV=0.25414

Figure 5.6: A dataset of unbalanced clusters and the corresponding scatter
values.

Criterion (BIC) to choose among partitions with different number of clus-
ters. In the same theme the Integrated Completed Likelihood (ICL) criterion
has been proposed as more appropriate for clustering purposes [BCG00]. In
this category of algorithms PG-means [FHE07] aims to learn the number
of components of a Gaussian Mixture Modelling approach, using statistical
hypothesis tests on one-dimensional projections of the data. The computa-
tionally efficient x-means algorithm, proposed in [PM00], is another popular
approach from the class of partitioning algorithms that has the ability to
approximate the number of clusters in the data.

One of the most promising approaches from the density based category of
algorithms is DBSCAN [SEKX98]. DBSCAN is a density-based clustering
algorithm that tries to recover clusters from spatial databases and auto-
matically decides the number of clusters. Clusters are defined by means of
neighbourhoods of objects. The density of each such neighbourhood has to
exceed some threshold. The value of the threshold is critical for the execution
of the algorithm and heuristics have been proposed to determine it. Finally,
there exist some recent agglomerative hierarchical clustering algorithms that
have been shown to be able to achieve high quality clustering results, such as
BIRCH [ZRL96], CHAMELEON [GRS98] and CURE [KHK99]. However,
these type of algorithms require higher user intervention to provide accurate
estimations for the cluster number.

There also exist a few grid-based algorithms [HK99, AGGR05], that have
been shown to be able to produce good clustering results. One of the most
notable of these is CLIQUE [AGGR05]. Their biggest drawback is that they
have a running time that is exponential to the data dimensionality. To be
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more precise, they are exponential not to the actual data dimensionality,
but to the dimensionality of the subspaces where the clusters reside and is
possibly much smaller than the full data dimensionality. So they are more
fitted to operate on cases where specific clusters lie on few dimensions and
medium data dimensions (e.g. 20, 40), and not in cases where dimensions
lie in the range of thousands.

Little has been done however to develop an efficient technique for PDDP
based approaches. The crudest approach would be to stop the execution
when all the discovered clusters have a scatter value that is smaller than
a predefined value, but the tuning of this parameter can be difficult from
a user perspective. The criteria used in other algorithms could also be
employed in the PDDP case. For example in [KSI03] it is proposed to use
BIC to determine if a further split would improve the clustering result or
not. Additionally, we could use nearest neighbour statistics like the ones
used in cluster tendency [TK06, You82].

In [TT08], a termination criterion based on the maximum distance be-
tween consecutive projections was proposed. More specifically, we propose
to have a maximum number of allowed clusters kmax as an upper bound and
subsequently continue splitting as long as there exists clusters with more
than MinPts points, where MinPts is a user defined parameter to describe
the minimum number of points that are allowed to constitute a valid clus-
ter. Notice that this is not an uncommon procedure for algorithms that are
designed to deal with noisy datasets [SEKX98]. In this case, it is indirectly
assumed that the distances between two outliers are larger than any two
points of a cluster. Formally the termination criterion is the following based
on the two user defined parameters kmax and MinPts:

• (Stopping Criterion ST1): Iteratively split the data set D into kmax
subsets. Report as clusters the ones with more than MinPts points.
Designate the remaining points as outliers.

For the density based approach presented here, we could allow the exis-
tence of a minimiser to guide the termination of the procedure. We can stop
the iteration as long as no minimiser exists for any of the retrieved clusters.
This stopping criterion makes the assumption that all the retrieved clusters
are uniformly dense, so they cannot be further split. Note however, that
this depends on the bandwidth selection and automated bandwidth selec-
tion techniques could be employed to remove user intervention. Formally:

• (Stopping Criterion ST2): Let Π a partition of the data set D into
k sets. Let X be the set of minimisers x∗i of the density estimates
f̂(x∗i ;h) of the projection of the data of each Ci ∈ Π, i = 1, . . . , k.
Stop the procedure when the set X is empty.
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§ 5.5 Algorithms

In this section the algorithmic constructions are presented based on the
different proposed criteria in the earlier sections. These particular construc-
tions are just employed to investigate (through experimental analysis) the
effectiveness of these criteria. In principle, more algorithms having different
characteristics can be constructed using any combination of criteria. The
particular implementations do not try to mix different approaches, but are
pure in the sense that they employ criteria from a particular methodology.
Thus, we have two algorithmic implementations. The first implementation
(iPDDP) is based on the idea of splitting based on the largest distance
between any two consecutive projections. The second implementation (de-
PDDP) is a compilation of the criteria that are based on the minimiser of
the estimated density of the projections.

The iPDDP implementation is shown in Table 5.1. This algorithmic
schema is build around the stopping criterion ST1, the cluster selection
criterion CS1, and the spitting criterion SPC2. This has the drawback
that the user needs to specify the maximum number of clusters kmax and
the MinPts parameter to describe the minimum number of points that are
allowed to constitute a valid cluster. Although the selection of MinPts
parameter is easy, the selection of kmax is not that straightforward. If kmax
is selected to obtain a much larger value than the actual number of clusters
the algorithm will be forced to iteratively strip points from the clusters. In
some extreme cases, a cluster could be totally decomposed into smaller sets
of less than MinPts points, eventually ending up in the outlier set. The
effect of these parameters is further investigated in Section 5.7.

Function iPDDP (D, kmax,MinPts) {
1. Set Π = {D}
2. While |Π| < kmax, do
3. Select a set C ∈ Π, using cluster selection criterion CS1
4. Split C into two sub-sets C1 and C2, using Splitting Criterion SPC2

5. Remove C from Π and set Π→ Π ∪ {C1, C2}
6. Set O = ∅
7. For any C in Π with |C| < MinPts, do
8. Remove C from Π
9. Set C with |C| < MinPts and set O → O ∪ C,
10. Return Π the partition of D into |Π| clusters and O the set of outliers.
}

Table 5.1: The iPDDP algorithm summary.

The computational complexity of the iPDDP implementation is mostly
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influenced by the computation of the principal vectors as in the original
PDDP algorithm. To compute this, the Singular Value Decomposition of the
data matrix D is employed. This introduces a total worst case complexity
of O(kmax(2 + kSV D)snz n a), where kSV D are the iterations needed by the
Lanczos SVD computation algorithm and snz is the fraction of non-zero
entries in D (for more details refer to [Bol98]). In the iPDDP case, the
additional computation steps that are required, increase the complexity to
O(kmax(2+kSV D)(snzn a+n log(n))), which although increased is still on par
with the most clustering algorithms. Notice that the additional cost is not
influenced by the data dimensionality. Thus, the ability of the algorithms
to deal with ultra high dimensional data is maintained.

The dePDDP implementation is shown in Table 5.2. This is just a com-
pilation of the criteria SPC3 for the cluster splitting, CS2 for the cluster
selection, and ST2 for the termination of the algorithm. The computa-
tional complexity of this approach, using a brute force technique, would be
quadratic in the number of samples. However, as shown in Section 5.2.2
using techniques like the Fast Gauss Transform we achieve linear running
time for the Kernel Density Estimation. To find the minimiser we only need
to evaluate the density at n positions, in between the projected data points,
since those are the only places we can have valid splitting points. Thus, the
total complexity of the algorithm remains O (kmax(2 + kSV D)(snzn a)).

Function dePDDP (D) {
1. Set Π = {D}
2. Do
3. Select a set C ∈ Π, using cluster selection criterion CS2
3. Split C into two sub-sets C1 and C2 using Splitting Criterion SPC3

4. Remove C from Π and set Π→ Π ∪ {C1, C2}
5. While Stopping Criterion ST2 is not satisfied
6. Return Π the partition of D into |Π| clusters
}

Table 5.2: The dePDDP algorithm summary.

§ 5.6 Experimental Analysis

This section is devoted to the experimental evaluation of the algorithmic
implementations presented in the previous section.

Table 5.3 reports the purity and V-measure (see Section 2.7) of the
PDDP, iPDDP, dePDDP, KM-PDDP [ZG07], Gaussian Mixture Model (GMM),
and k-means algorithms in 100 randomly generated datasets, using the
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DSETGausian mechanism (see Section 2.7). Each entry of the table is the
mean observed value of the corresponding measure obtained over the 100
different datasets and the number in parentheses is the observed standard
deviation. A standard deviation of 0 corresponds to a observed variance of
less than 10−2.

Dimension 2

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

PDDP 0.88 (0.04) 0.89 (0.03) 0.83 (0.03) 0.86 (0.02) 0.79 (0.02) 0.86 (0.01)

iPDDP 0.89 (0.03) 0.88 (0.06) 0.89 (0.02) 0.77 (0.15) 0.93 (0.04) 0.38 (0.24)

dePDDP 0.95 (0.03) 0.96 (0.02) 0.93 (0.03) 0.93 (0.02) 0.86 (0.02) 0.91 (0.01)

KM-PDDP 0.91 (0.04) 0.93 (0.03) 0.88 (0.03) 0.79 (0.22) 0.86 (0.03) 0.71 (0.06)

GMM 0.93 (0.03) 0.94 (0.03) 0.87 (0.02) 0.91 (0.02) 0.80 (0.01) 0.90 (0.00)

k-means 0.92 (0.04) 0.93 (0.03) 0.90 (0.03) 0.92 (0.02) 0.84 (0.00) 0.90 (0.00)

Dimension 5

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

PDDP 0.94 (0.03) 0.95 (0.02) 0.92 (0.03) 0.94 (0.02) 0.89 (0.02) 0.92 (0.02)

iPDDP 1.00 (0.01) 1.00 (0.01) 0.98 (0.02) 0.98 (0.03) 0.97 (0.01) 0.66 (0.25)

dePDDP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.99 (0.00)

KM-PDDP 0.98 (0.02) 0.99 (0.01) 0.96 (0.03) 0.97 (0.02) 0.91 (0.05) 0.76 (0.33)

GMM 0.96 (0.02) 0.97 (0.01) 0.92 (0.02) 0.96 (0.01) 0.90 (0.02) 0.96 (0.01)

k-means 0.93 (0.02) 0.94 (0.02) 0.93 (0.02) 0.95 (0.01) 0.93 (0.01) 0.96 (0.01)

Dimension 20

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

PDDP 0.97 (0.02) 0.97 (0.02) 0.96 (0.02) 0.95 (0.04) 0.96 (0.01) 0.94 (0.03)

iPDDP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.99 (0.01) 0.92 (0.20)

dePDDP 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.99 (0.00)

KM-PDDP 0.98 (0.03) 0.99 (0.02) 0.96 (0.03) 0.98 (0.01) 0.90 (0.03) 0.92 (0.12)

GMM 0.93 (0.03) 0.94 (0.02) 0.90 (0.02) 0.94 (0.01) 0.90 (0.01) 0.95 (0.01)

k-means 0.94 (0.02) 0.96 (0.02) 0.93 (0.02) 0.95 (0.01) 0.92 (0.01) 0.95 (0.01)

Dimension 50

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

PDDP 0.97 (0.02) 0.97 (0.03) 0.97 (0.02) 0.97 (0.02) 0.97 (0.01) 0.94 (0.02)

iPDDP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.01) 1.00 (0.01)

dePDDP 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.99 (0.00)

KM-PDDP 0.95 (0.03) 0.97 (0.02) 0.93 (0.03) 0.96 (0.01) 0.90 (0.02) 0.96 (0.01)

GMM 0.89 (0.03) 0.89 (0.03) 0.88 (0.02) 0.91 (0.02) 0.87 (0.02) 0.91 (0.01)

k-means 0.94 (0.02) 0.95 (0.01) 0.93 (0.02) 0.95 (0.01) 0.92 (0.01) 0.95 (0.01)

Table 5.3: Mean purity and V-measure (with the observed standard devia-
tion in parenthesis), for DSETGausian generated data of different algorithms,
over 100 experiments.

As shown, the performance of PDDP, KM-PDDP, and GMM algorithms
deteriorates as the number of clusters increases. Regarding the V-measure,
the same is true only for that low dimensional cases. The reason for this
lies in the fact that in low dimensions a kind of “chaining” effect [SEKX98]
can appear between clusters. On the other hand, the dePDDP algorithm is
marginally affected and produces high quality results in all cases. Note that
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the MinPts parameters for iPDDP was set to 5 and kmax was set to the
actual number of clusters across all experiments. The actual cluster number
was also given as input to all algorithms except dePDDP. The bandwidth
parameter of dePDDP was set to twice the optimal value given by Eq. 5.8.
Further explanation for this value is given in Section 5.8. Notice that this
does not guarantee that the algorithm will stop to the actual cluster number,
but this issue will be further explored below (see Section 5.6.2).

Next Table 5.4 reports the purity and V-measure of the algorithms
in 100 randomly generated datasets, using the described (see Section 2.7)
DSETBeta mechanism. Again, the reported values are the mean observed
measure values in 100 different experiments and the number in parenthesis
is the standard deviation. The results are similar to the DSETGausian case.
The exception is GMM as it shows worse results, especially in the low di-
mensional high cluster number case. This is expected since the assumption
of a Gaussian mixture on which GMM operates does not hold, so cluster
recovery is hindered. However, all the PDDP variants show similar results,
with dePDDP to produce very accurate clusterings. We have also followed
the same procedure for the t and log-normal distributions but the results
are very similar so they are not included for brevity.

To facilitate a more direct understanding of the results of each algo-
rithm, we will use two 2-dimensional datasets that are publicly available at
http://cs.joensuu.fi/sipu/datasets/ and will resort to visual inspec-
tion of the results. These datasets S1 and S4, contain 5000 data points in 15
Gaussian clusters with different degree of cluster overlapping. In this case,
we will test two additional algorithms. The first one is the CLIQUE algo-
rithm [AGGR05], that were unable to use it in the previous experiments,
as we only had a 2-dimensional implementation. The second algorithm is
the PG-means [FHE07], which is considered a more sophisticated GMM
approach.

The results are illustrated in Figs 5.7 and 5.8, for S1 and S4, respec-
tively. In the S1 case iPDDP retrieves only 4 of the clusters and due to the
chaining effect fails to retrieve any more. In the S4 case it does not manage
to produce sensible clustering, for the same reason. The high degree of clus-
ter overlapping also hinders the KM-PDDP and GMM algorithms, both of
them producing bad results in the case of S4 dataset. PG-means seems to
overestimate the number of clusters, splitting most clusters in 2 or 3 parts.
However, it can clearly identify the dense core of each cluster, but quite
often this happens by more than two overlapping components which make
the partitions quite confusing. Although this is a GMM based approach it
shows much better results in the S4 case, substantially outperforming the
standard GMM approach, but still there seem to exist one or two overlap-
ping components. On the other hand, the high degree of cluster overlapping
seems to help the k-means algorithm, resulting in a very good result for the
S4 dataset, improving on the result of S1 dataset where one of the clusters is
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Dimension 2

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

PDDP 0.87 (0.04) 0.88 (0.03) 0.83 (0.03) 0.86 (0.02) 0.76 (0.02) 0.84 (0.01)

iPDDP 0.90 (0.04) 0.89 (0.05) 0.89 (0.03) 0.80 (0.13) 0.91 (0.04) 0.58 (0.18)

dePDDP 0.95 (0.02) 0.94 (0.02) 0.91 (0.04) 0.92 (0.02) 0.84 (0.03) 0.88 (0.01)

KM-PDDP 0.8 9(0.03) 0.89 (0.04) 0.86 (0.04) 0.76 (0.23) 0.86 (0.04) 0.63 (0.19)

GMM 0.92 (0.02) 0.92 (0.02) 0.87 (0.03) 0.91 (0.02) 0.23 (0.10) 0.61 (0.13)

k-means 0.91 (0.03) 0.92 (0.02) 0.88 (0.02) 0.91 (0.02) 0.81 (0.04) 0.88 (0.01)

Dimension 5

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

PDDP 0.94 (0.03) 0.94 (0.03) 0.91 (0.03) 0.93 (0.02) 0.88 (0.02) 0.91 (0.02)

iPDDP 1.00 (0.01) 1.00 (0.01) 0.98 (0.02) 0.98 (0.03) 0.98 (0.01) 0.50 (0.24)

dePDDP 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 0.99 (0.00)

KM-PDDP 0.94 (0.04) 0.96 (0.03) 0.93 (0.02) 0.96 (0.02) 0.90 (0.04) 0.68 (0.33)

GMM 0.95 (0.03) 0.96 (0.01) 0.93 (0.02) 0.96 (0.01) 0.91 (0.01) 0.96 (0.01)

k-means 0.94 (0.03) 0.95 (0.02) 0.93 (0.02) 0.95 (0.01) 0.92 (0.01) 0.96 (0.01)

Dimension 20

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

PDDP 0.96 (0.02) 0.96 (0.03) 0.96 (0.02) 0.96 (0.02) 0.95 (0.01) 0.92 (0.02)

iPDDP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.98 (0.01) 0.80 (0.27)

dePDDP 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 0.99 (0.00)

KM-PDDP 0.92 (0.04) 0.95 (0.03) 0.92 (0.03) 0.96 (0.01) 0.87 (0.03) 0.92 (0.06)

GMM 0.94 (0.03) 0.96 (0.01) 0.92 (0.02) 0.95 (0.01) 0.91 (0.02) 0.96 (0.01)

k-means 0.94 (0.02) 0.95 (0.02) 0.93 (0.02) 0.95 (0.01) 0.93 (0.01) 0.95 (0.01)

Dimension 50

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

PDDP 0.97 (0.02) 0.97 (0.02) 0.97 (0.01) 0.95 (0.03) 0.97 (0.01) 0.94 (0.02)

iPDDP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.99 (0.01) 0.97 (0.07)

dePDDP 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 0.99 (0.00) 1.00 (0.00) 0.99 (0.00)

KM-PDDP 0.88 (0.03) 0.93 (0.02) 0.89 (0.03) 0.95 (0.02) 0.88 (0.02) 0.95 (0.02)

GMM 0.88 (0.03) 0.87 (0.03) 0.88 (0.03) 0.91 (0.02) 0.87 (0.02) 0.92 (0.01)

k-means 0.94 (0.02) 0.95 (0.02) 0.93 (0.02) 0.95 (0.01) 0.92 (0.01) 0.95 (0.01)

Table 5.4: Mean purity and V-measure (with the observed standard devi-
ation in parenthesis), for DSETBeta generated data of different algorithms,
over 100 experiments.
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split and two others are merged. CLIQUE in both cases manages to retrieve
the core of the clusters, but one or two clusters are totally missed. This
probably happens because CLIQUE is very sensitive to user intervention. It
is very difficult to choose parameters that retrieve all the clusters without
merging any of them (especially in the S4 case). Finally, dePDDP produces
very good results in both S1 and S4. In the S4 case, dePDDP retrieves 2 or
3 more clusters than the 15 actual ones, but this is due to the large amount
of noise points.

5.6.1 Datasets with Noise

In real life datasets we are expecting to find cases where the data are contam-
inated with noise. To examine the performance of the different algorithms
in such cases we are going to construct appropriate simulation settings. For
this reason, we first employ the DSETGausian data generation mechanism
and in each dataset we include a number of uniform randomly drawn points
in the data space to represent noise. First, we are going to examine the case
of 1000 noise points.

The results are shown in Table 5.5 with respect to cluster purity and V-
measure, respectively. The reported results are again the mean values over
100 experiments, with the observed standard deviation shown in parenthesis.
In this case, in low dimensions all the algorithms perform poorly. It seems
that the noise contamination is so high that it makes it impossible for the
algorithms to retrieve the cluster structure (especially the iPDDP and the
KM-PDDP algorithms). Even in this case, the dePDDP algorithm produces
the best results. However, as the dimensionality of the data increases, the
clustering structure becomes more prominent and the algorithms manage to
successfully retrieve it. The dePDDP algorithm stands out in this case, as it
results in very pure clusterings and is the least affected by noise, irrespective
of the number of clusters in the data. The iPDDP algorithm, as expected,
manages to provide pure partitions when either the dimensionality is very
large or the number noise points is small with respect to the total number of
points in the data (cases with large number of clusters). However, in those
cases PDDP and KM-PDDP perform similarly well.

To better illustrate the effect of noise contamination, in Figure 5.9 we
plot the purity and the V-measure of different algorithms for an increasing
percentage of noisy points in the data set. These plots refer to a particular
case of 5 dimensions and 15 classes. The x-axis of this plot corresponds to
the percentage of the noisy points in the dataset. For each algorithm the
mean obtained purity over 100 experiments is plotted. The vertical lines
designate the standard deviation in each experiment. It is evident that the
performance of both iPDDP and KM-PDDP heavily deteriorates with the
increase of noise contamination, while the rest algorithms are only gradually
affected. dePDDP is the least affected algorithm and only when more than
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PDDP iPDDP

dePDDP KM-PDDP

CLIQUE GMM

PG-means k-means

Figure 5.7: Visual comparison of different algorithms on the S1 example
dataset. Different colours and point types correspond to different clusters.
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PDDP iPDDP

dePDDP KM-PDDP

CLIQUE GMM

PG-means k-means

Figure 5.8: Visual comparison of different algorithms on the S4 example
dataset. Different colours and point types correspond to different clusters.
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Dimension 2

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

PDDP 0.70 (0.05) 0.80 (0.04) 0.66 (0.05) 0.79 (0.03) 0.63 (0.04) 0.78 (0.02)

iPDDP 0.11 (0.14) 0.01 (0.04) 0.21 (0.23) 0.01 (0.03) 0.67 (0.29) 0.05 (0.04)

dePDDP 0.87 (0.08) 0.89 (0.12) 0.88 (0.06) 0.92 (0.03) 0.84 (0.03) 0.88 (0.02)

KM-PDDP 0.29 (0.17) 0.32 (0.23) 0.38 (0.22) 0.44 (0.24) 0.71 (0.25) 0.38 (0.21)

GMM 0.71 (0.04) 0.84 (0.02) 0.70 (0.04) 0.84 (0.02) 0.64 (0.03) 0.83 (0.02)

k-means 0.79 (0.05) 0.90 (0.03) 0.79 (0.05) 0.91 (0.02) 0.80 (0.02) 0.90 (0.01)

Dimension 5

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

PDDP 0.78 (0.06) 0.84 (0.05) 0.77 (0.06) 0.85 (0.04) 0.78 (0.04) 0.87 (0.01)

iPDDP 0.22 (0.23) 0.05 (0.08) 0.56 (0.27) 0.15 (0.09) 0.85 (0.11) 0.16 (0.09)

dePDDP 0.98 (0.02) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.99 (0.00)

KM-PDDP 0.65 (0.17) 0.65 (0.28) 0.62 (0.22) 0.48 (0.32) 0.87 (0.09) 0.25 (0.25)

GMM 0.74 (0.05) 0.88 (0.01) 0.75 (0.04) 0.90 (0.01) 0.75 (0.03) 0.92 (0.01)

k-means 0.87 (0.04) 0.94 (0.01) 0.90 (0.03) 0.96 (0.01) 0.88 (0.02) 0.96 (0.01)

Dimension 20

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

PDDP 0.92 (0.03) 0.88 (0.11) 0.92 (0.03) 0.79 (0.10) 0.92 (0.04) 0.68 (0.07)

iPDDP 0.80 (0.04) 0.47 (0.12) 0.87 (0.04) 0.37 (0.10) 0.95 (0.02) 0.29 (0.13)

dePDDP 0.95 (0.20) 0.95 (0.22) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

KM-PDDP 0.87 (0.04) 0.93 (0.03) 0.84 (0.04) 0.91 (0.03) 0.87 (0.06) 0.55 (0.32)

GMM 0.77 (0.06) 0.90 (0.02) 0.75 (0.03) 0.91 (0.01) 0.80 (0.03) 0.93 (0.01)

k-means 0.86 (0.04) 0.93 (0.02) 0.88 (0.03) 0.95 (0.01) 0.88 (0.02) 0.96 (0.00)

Dimension 50

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

PDDP 0.89 (0.03) 0.82 (0.06) 0.93 (0.01) 0.74 (0.07) 0.92 (0.04) 0.65 (0.07)

iPDDP 0.93 (0.03) 0.88 (0.11) 0.95 (0.01) 0.82 (0.10) 0.97 (0.01) 0.57 (0.21)

dePDDP 1.00 (0.00) 1.00 (0.01) 1.00 (0.00) 1.00 (0.01) 1.00 (0.00) 1.00 (0.00)

KM-PDDP 0.89 (0.05) 0.95 (0.02) 0.86 (0.05) 0.94 (0.02) 0.87 (0.03) 0.86 (0.11)

GMM 0.64 (0.08) 0.82 (0.04) 0.70 (0.06) 0.87 (0.02) 0.77 (0.03) 0.91 (0.01)

k-means 0.87 (0.04) 0.93 (0.02) 0.86 (0.03) 0.94 (0.01) 0.88 (0.02) 0.95 (0.01)

Table 5.5: Mean purity and V-measure (with the observed standard de-
viation in parenthesis), for DSETGausian generated data contaminated with
1000 noise points of different algorithms, over 100 experiments.
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50% of the points in the data correspond to noise.
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Figure 5.9: The performance of the algorithms, when the noise contami-
nation increases with respect to cluster purity (top) and the V -measure (bot-
tom).

5.6.2 Automatic cluster number determination

As described above, the iPDDP and dePDDP algorithms can automati-
cally determine the number of clusters in a data set. To measure the effi-
ciency of the algorithms, we resort to a similar experimental procedure to
the one previously described. 100 datasets are artificially constructed using
the DSETGausian data generation mechanism.
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74 Chapter 5. Enhancing Principal Direction Divisive Clustering

In this case, the use of PDDP and KM-PDDP algorithms is not possi-
ble, since these algorithms do not have an automated stopping criterion. On
the other hand, we additionally include two very popular algorithms: the
DBSCAN algorithm [SEKX98] as a representative of the density-based class
and the x-means algorithm [PM00] as a representative of the partitioning
class. Regarding the GMM algorithm, we executed the algorithm for a vary-
ing number of clusters (up to a maximum kmax) and then selected the best
amongst them using three model selection criteria, namely BIC, AIC and
ICL [BCG00]. Moreover, we also tested the PG-means algorithm [FHE07],
as a more sophisticated GMM approach.

Similarly to the previous experimental settings, a number of different
dimensions and number of clusters were tested. The MinPts parameter for
iPDDP was set to 5 and kmax was set twice the actual number of clusters
across all experiments. The bandwidth parameter of dePDDP was set to
the optimal one given by Eq. 5.8. For DBSCAN algorithm, the MinPts was
set to 5 and Eps to 5a, where a is the data dimensionality.

The results from this experimental setting are exhibited in Table 5.6,
with respect to cluster purity and V-measure, respectively. Furthermore,
Table 5.7 reports the number of retrieved clusters for each algorithm.

The iPDDP algorithm in this case seems very efficient, especially as the
dimensionality grows and the clusters are more clearly separated. It pro-
duces very good results with respect to both the purity and the V-measure,
and gives almost perfect estimations for the number of clusters in high di-
mensional cases. Similarly, dePDDP performs very well in all dimensions
examined and always produces accurate estimations for the number of clus-
ters. DBSCAN manages to correctly retrieve the number of clusters, with
very pure partitions. However, note that DBSCAN identifies many points
as outliers including them in one big cluster and that this cluster is re-
moved for the calculation of the purity and the V-measure (i.e. not shown
in the tables). GMM-BIC and GMM-ICL perform similarly, producing good
partitions in low dimensions, but their performance degrades as the dimen-
sionality increases. The same holds for the number of retrieved clusters. As
dimensionality increases the number of clusters is underestimated. GMM-
AIC performs better with respect to both cluster purity and V-measure.
In low dimensions it retrieves almost accurate cluster numbers, but in high
dimensions it greatly overestimates the number of clusters. Out of all the
mixture modelling approaches PG-means managed to produce the best re-
sults, very close to the ones achieved by dePDDP and iPDDP. The problem
with this approach is that it cannot handle the 50 dimensional cases, re-
sulting in the majority of runs in trivial partitions of one cluster. For this
reason we have excluded it from the particular part of Tables 5.6 and 5.7.
Finally, the x-means algorithm exhibits very poor performance across all
experiments.

Next, we repeat the same experimental procedure, but with noise con-
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Dimension 2

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

iPDDP 0.88 (0.05) 0.92 (0.04) 0.84 (0.04) 0.86 (0.10) 0.75 (0.05) 0.65 (0.15)

dePDDP 0.94 (0.04) 0.95 (0.02) 0.92 (0.03) 0.93 (0.02) 0.84 (0.04) 0.89 (0.02)

GMM-BIC 0.88 (0.04) 0.93 (0.02) 0.72 (0.13) 0.87 (0.06) 0.18 (0.09) 0.58 (0.15)

GMM-AIC 0.89 (0.07) 0.93 (0.03) 0.68 (0.22) 0.85 (0.10) 0.24 (0.10) 0.63 (0.13)

GMM-ICL 0.85 (0.10) 0.92 (0.04) 0.72 (0.15) 0.87 (0.07) 0.25 (0.13) 0.64 (0.12)

PG-means 0.94 (0.02) 0.95 (0.01) 0.92 (0.02) 0.93 (0.02) 0.82 (0.03) 0.90 (0.01)

x-means 0.20 (0.10) 0.44 (0.09) 0.10 (0.04) 0.35 (0.06) 0.04 (0.01) 0.29 (0.03)

DBSCAN 0.80 (0.07) 0.88 (0.05) 0.73 (0.06) 0.84 (0.04) 0.56 (0.09) 0.63 (0.07)

Dimension 5

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

iPDDP 1.00 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.95 (0.05) 0.79 (0.27)

dePDDP 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 0.99 (0.00) 1.00 (0.00) 0.99 (0.00)

GMM-BIC 0.99 (0.01) 0.98 (0.01) 0.98 (0.01) 0.98 (0.00) 0.94 (0.06) 0.97 (0.01)

GMM-AIC 0.97 (0.03) 0.95 (0.01) 0.97 (0.01) 0.96 (0.01) 0.89 (0.21) 0.92 (0.18)

GMM-ICL 0.98 (0.02) 0.98 (0.01) 0.96 (0.07) 0.98 (0.02) 0.95 (0.02) 0.97 (0.00)

PG-means 1.00 (0.00) 1.00 (0.01) 1.00 (0.01) 1.00 (0.01) 0.95 (0.02) 0.98 (0.01)

x-means 0.28 (0.15) 0.44 (0.09) 0.10 (0.04) 0.36 (0.05) 0.04 (0.00) 0.29 (0.01)

DBSCAN 1.00 (0.00) 1.00 (0.00) 1.00 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Dimension 20

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

iPDDP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

dePDDP 1.00 (0.00) 1.00 (0.01) 1.00 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00)

GMM-BIC 0.80 (0.07) 0.92 (0.02) 0.74 (0.09) 0.92 (0.02) 0.73 (0.00) 0.93 (0.00)

GMM-AIC 0.98 (0.01) 0.92 (0.01) 0.98 (0.01) 0.93 (0.01) 0.96 (0.00) 0.96 (0.00)

GMM-ICL 0.83 (0.07) 0.93 (0.02) 0.77 (0.09) 0.93 (0.02) 0.66 (0.00) 0.92 (0.00)

PG-means 0.99 (0.02) 0.99 (0.01) 0.97 (0.02) 0.99 (0.01) 0.98 (0.01) 0.99 (0.00)

x-means 0.32 (0.07) 0.61 (0.09) 0.16 (0.05) 0.44 (0.09) 0.05 (0.02) 0.32 (0.05)

DBSCAN 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Dimension 50

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

iPDDP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

dePDDP 1.00 (0.00) 1.00 (0.01) 1.00 (0.00) 0.99 (0.00) 1.00 (0.00) 1.00 (0.00)

GMM-BIC 0.31 (0.06) 0.69 (0.03) 0.28 (0.03) 0.74 (0.02) 0.27 (0.02) 0.78 (0.01)

GMM-AIC 0.98 (0.02) 0.88 (0.02) 0.98 (0.01) 0.90 (0.01) 0.96 (0.01) 0.91 (0.01)

GMM-ICL 0.31 (0.04) 0.70 (0.04) 0.29 (0.03) 0.74 (0.02) 0.30 (0.03) 0.80 (0.01)

x-means 0.34 (0.09) 0.64 (0.04) 0.20 (0.07) 0.57 (0.03) 0.09 (0.03) 0.46 (0.08)

DBSCAN 1.00 (0.00) 0.98 (0.01) 1.00 (0.00) 0.98 (0.01) 1.00 (0.00) 0.99 (0.00)

Table 5.6: Mean purity and V-measure (with the observed standard devia-
tion in parenthesis), for DSETGausian generated data of different algorithms,
with automated cluster determination over 100 experiments.
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Dimension 2

15 Clusters 25 Clusters 50 Clusters

iPDDP 12.25(1.48) 16.55(2.91) 18.10 (3.63)

dePDDP 15.10(1.41) 25.45(2.84) 46.70 (5.26)

GMM-BIC 13.15(1.39) 15.65(3.80) 7.50 (3.64)

GMM-AIC 14.30(2.61) 15.40(5.53) 9.00 (3.49)

GMM-ICL 12.30(2.39) 15.95(4.42) 9.35 (4.36)

PG-means 14.00(1.10) 26.20(2.48) 37.80(4.07)

x-means 2.43(0.72) 2.13(0.34) 2.03(0.18)

DBSCAN 9.93(1.41) 13.03(1.72) 10.90(2.20)

Dimension 5

15 Clusters 25 Clusters 50 Clusters

iPDDP 14.95 (0.22) 25.05 (0.38) 34.75 (16.15)

dePDDP 15.80 (1.08) 26.65 (1.01) 56.44 (2.96)

GMM-BIC 18.05 (1.56) 30.55 (2.31) 61.25 (10.19)

GMM-AIC 24.40 (4.13) 45.30 (4.12) 73.44 (25.53)

GMM-ICL 17.95 (2.01) 30.50 (4.57) 68.00 (6.50)

PG-means 15.60 (0.80) 25.20 (0.40) 45.00 (1.79)

x-means 2.67 (0.54) 2.17 (0.45) 2.00 (0.00)

DBSCAN 15.00 (0.00) 24.83 (0.37) 49.63 (0.48)

Dimension 20

15 Clusters 25 Clusters 50 Clusters

iPDDP 15.05 (0.22) 25.00 (0.00) 50.00 (0.00)

dePDDP 15.65 (0.73) 26.80 (1.50) 56.00 (0.00)

GMM-BIC 10.90 (1.14) 16.70 (2.17) 33.00 (0.00)

GMM-AIC 28.95 (1.86) 48.15 (5.12) 63.00 (0.00)

GMM-ICL 11.35 (1.28) 17.65 (2.35) 31.00 (0.00)

PG-means 14.80 (0.40) 23.80 (0.75) 48.20 (0.75)

x-means 3.77 (0.42) 2.97 (0.66) 2.27 (0.44)

DBSCAN 15.30 (0.59) 25.30 (0.46) 50.57 (0.76)

Dimension 50

15 Clusters 25 Clusters 50 Clusters

iPDDP 15.15 (0.36) 25.05 (0.22) 50.00 (0.00)

dePDDP 15.70 (0.95) 26.60 (1.16) 54.50 (0.50)

GMM-BIC 4.30 (0.56) 6.70 (0.64) 12.50 (0.50)

GMM-AIC 30.75 (0.54) 50.60 (0.66) 101.00 (0.00)

GMM-ICL 4.50 (0.59) 6.80 (0.60) 14.00 (1.00)

x-means 4.00 (0.00) 4.00 (0.00) 3.60 (0.55)

DBSCAN 16.23 (1.99) 28.33 (3.67) 53.40 (4.84)

Table 5.7: Mean number of retrieved clusters (with the observed standard
deviation in parenthesis), for DSETGausian generated data of different algo-
rithms, over 100 experiments.

Institutional Repository - Library & Information Centre - University of Thessaly
17/05/2024 14:08:30 EEST - 18.188.60.124



5.7. Selection of the kmax and MinPts of the iPDDP algorithm 77

taminated data as before, by including 1000 noise points. The results are
shown in Table 5.8 with respect to cluster purity and V-measure. Similarly,
Table 5.9 reports the number of retrieved clusters for each algorithm. In
this case, the results of the iPDDP algorithm are heavily affected by the
inclusion of noise, except for the high dimensional cases. In low dimensions,
the number of retrieved clusters is very small due the chaining effect. As
expected, dePDDP is not affected by the inclusion of noise and again pro-
duces high quality results with respect to the cluster purity and V-measure,
while simultaneously producing accurate estimations for the number of clus-
ters. The same is true for the DBSCAN algorithm. However, the DBSCAN
algorithm is also influenced by the chaining effect in the 2-dimensional case.
The GMM-BIC and GMM-ICL are also affected by the noise points and
they produce bad results in all cases (especially in high dimensions). On the
other hand, GMM-AIC can retrieve good results only in high dimensions.
It seems that the inclusion of noise improved the performance of GMM-
AIC in high dimensions with respect to the number of retrieved clusters.
The PG-means algorithm in this case finds it more difficult to approximate
the number of clusters, underestimating their number significantly. This
translates to lower values for both cluster purity and V-measure but it still
outperforms all the GMM alternatives. The results of the x-means algorithm
remain pretty bad.

§ 5.7 Selection of the kmax and MinPts of the

iPDDP algorithm

As we have seen, the iPDDP algorithm can be used to automatically de-
termine the number of clusters in the dataset. To achieve this we need to
force the algorithm to find more than the actual clusters, by selecting an
appropriate value for the kmax parameter. However, in real life problems,
the number of the actual clusters is not know and in effect the selection of
the kmax parameter is not straightforward.

To examine the effect of this parameter on the performance of the pro-
posed iPDDP algorithm, we employ datasets constructed as in Section 5.6,
using DSETGausian with and without noise. In both cases, the datasets con-
tain 25 clusters in 5 dimensions, while the noisy datasets contain additionally
1000 uniformly distributed random points to represent noise.

The results with respect to the number of retrieved clusters, as well as
the purity and V-measure are presented in Figure 5.10 (top) and (bottom),
respectively. In the noiseless case, the algorithm consistently results in high
values for both the purity and the V-measure. However, when kmax obtains
very high values (higher than 300) the number of clusters are gradually un-
derestimated. This occurs because when the value of kmax is too high the
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Dimension 2

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

iPDDP 0.19 (0.20) 0.05 (0.09) 0.28 (0.23) 0.12 (0.10) 0.55 (0.21) 0.19 (0.11)

dePDDP 0.89 (0.07) 0.92 (0.05) 0.90 (0.05) 0.91 (0.05) 0.84 (0.03) 0.89 (0.02)

GMM-BIC 0.42 (0.10) 0.66 (0.11) 0.32 (0.12) 0.60 (0.13) 0.15 (0.06) 0.50 (0.13)

GMM-AIC 0.41 (0.15) 0.64 (0.13) 0.27 (0.08) 0.55 (0.10) 0.13 (0.05) 0.45 (0.15)

GMM-ICL 0.34 (0.13) 0.59 (0.16) 0.26 (0.11) 0.51 (0.17) 0.12 (0.06) 0.41 (0.13)

PG-means 0.83 (0.07) 0.91 (0.03) 0.82 (0.04) 0.90 (0.01) 0.71 (0.05) 0.87 (0.02)

x-means 0.20 (0.10) 0.44 (0.09) 0.10 (0.04) 0.35 (0.06) 0.04 (0.01) 0.29 (0.03)

DBSCAN 0.80 (0.07) 0.88 (0.05) 0.73 (0.06) 0.84 (0.04) 0.56 (0.09) 0.63 (0.07)

Dimension 5

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

iPDDP 0.54 (0.15) 0.21 (0.10) 0.67 (0.11) 0.26 (0.10) 0.70 (0.03) 0.16 (0.14)

dePDDP 0.99 (0.02) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.01) 0.99 (0.00)

GMM-BIC 0.63 (0.10) 0.85 (0.03) 0.55 (0.09) 0.84 (0.04) 0.34 (0.20) 0.63 (0.29)

GMM-AIC 0.67 (0.06) 0.85 (0.03) 0.58 (0.07) 0.85 (0.02) 0.54 (0.05) 0.87 (0.01)

GMM-ICL 0.66 (0.11) 0.85 (0.04) 0.54 (0.07) 0.84 (0.03) 0.42 (0.04) 0.83 (0.01)

PG-means 0.76 (0.20) 0.89 (0.09) 0.78 (0.12) 0.91 (0.04) 0.77 (0.12) 0.92 (0.05)

x-means 0.28 (0.15) 0.44 (0.09) 0.10 (0.04) 0.36 (0.05) 0.04 (0.00) 0.29 (0.01)

DBSCAN 1.00 (0.00) 1.00 (0.00) 1.00 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Dimension 20

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

iPDDP 0.87 (0.04) 0.70 (0.10) 0.89 (0.04) 0.58 (0.14) 0.89 (0.05) 0.27 (0.15)

dePDDP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

GMM-BIC 0.63 (0.12) 0.85 (0.04) 0.63 (0.08) 0.88 (0.02) 0.57 (0.16) 0.89 (0.03)

GMM-AIC 0.82 (0.12) 0.92 (0.04) 0.84 (0.12) 0.94 (0.04) 0.95 (0.02) 0.97 (0.00)

GMM-ICL 0.64 (0.08) 0.86 (0.03) 0.65 (0.07) 0.88 (0.02) 0.67 (0.05) 0.90 (0.01)

PG-means 0.85 (0.16) 0.73 (0.29) 0.93 (0.02) 0.83 (0.10) 0.90 (0.03) 0.76 (0.04)

x-means 0.32 (0.07) 0.61 (0.09) 0.16 (0.05) 0.44 (0.09) 0.05 (0.02) 0.32 (0.05)

DBSCAN 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Dimension 50

15 Clusters 25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas. Pur. V-meas.

iPDDP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.76 (0.24) 0.98 (0.02) 0.76 (0.24)

dePDDP 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.99 (0.00) 1.00 (0.00) 0.99 (0.00)

GMM-BIC 0.26 (0.06) 0.62 (0.09) 0.26 (0.06) 0.74 (0.03) 0.24 (0.04) 0.74 (0.03)

GMM-AIC 0.74 (0.14) 0.86 (0.06) 0.74 (0.14) 0.87 (0.09) 0.69 (0.25) 0.87 (0.09)

GMM-ICL 0.29 (0.06) 0.65 (0.05) 0.29 (0.06) 0.77 (0.01) 0.31 (0.01) 0.77 (0.01)

x-means 0.34 (0.09) 0.64 (0.04) 0.20 (0.07) 0.57 (0.03) 0.09 (0.03) 0.46 (0.08)

DBSCAN 1.00 (0.00) 0.98 (0.01) 1.00 (0.00) 0.98 (0.01) 1.00 (0.00) 0.99 (0.00)

Table 5.8: Mean purity and V-measure (with the observed standard de-
viation in parenthesis), for DSETGausian generated data contaminated with
1000 noise points of different algorithms with automated number of clusters
determination, over 100 experiments.
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Dimension 2

15 Clusters 25 Clusters 50 Clusters

iPDDP 1.30 (0.46) 1.90 (0.77) 4.12 (1.45)

dePDDP 13.25 (2.84) 23.90 (3.74) 45.50 (5.41)

GMM-BIC 5.95 (1.88) 6.45 (2.73) 5.38 (1.93)

GMM-AIC 5.95 (2.62) 5.20 (1.81) 4.62 (1.87)

GMM-ICL 5.00 (2.37) 4.95 (2.71) 4.00 (1.87)

PG-means 14.60 (2.87) 20.80 (1.33) 32.40 (2.58)

x-means 2.00 (0.00) 2.00 (0.00) 2.00 (0.00)

DBSCAN 35.20 (3.25) 28.60 (3.76) 12.05 (4.15)

Dimension 5

15 Clusters 25 Clusters 50 Clusters

iPDDP 2.30 (0.56) 3.65 (1.01) 4.33 (1.89)

dePDDP 14.90 (0.89) 25.85 (0.96) 57.00 (0.00)

GMM-BIC 8.90 (1.55) 12.95 (2.18) 15.00 (9.63)

GMM-AIC 9.10 (0.94) 13.75 (1.73) 25.00 (1.41)

GMM-ICL 9.00 (1.38) 12.60 (1.50) 20.00 (2.16)

PG-means 11.00 (2.90) 17.60 (3.44) 33.60 (7.81)

x-means 2.00 (0.00) 2.00 (0.00) 2.00 (0.00)

DBSCAN 15.00 (0.00) 24.95 (0.22) 49.50 (0.67)

Dimension 20

15 Clusters 25 Clusters 50 Clusters

iPDDP 7.50 (1.53) 9.55 (2.73) 9.00 (4.00)

dePDDP 15.20 (0.40) 26.10 (1.30) 55.50 (1.50)

GMM-BIC 8.10 (1.45) 13.70 (1.76) 25.50 (6.50)

GMM-AIC 11.70 (2.12) 21.75 (5.31) 63.50 (0.50)

GMM-ICL 8.30 (0.90) 14.00 (1.61) 28.50 (1.50)

PG-means 9.00 (3.74) 16.20 (3.54) 23.60 (2.42)

x-means 2.65 (0.57) 2.35 (0.48) 2.00 (0.00)

DBSCAN 15.20 (0.51) 25.20 (0.40) 50.45 (0.74)

Dimension 50

15 Clusters 25 Clusters 50 Clusters

iPDDP 15.00 (0.00) 24.85 (0.91) 34.00 (5.00)

dePDDP 15.60 (0.80) 26.65 (1.31) 54.00 (1.00)

GMM-BIC 3.65 (0.91) 5.75 (1.04) 10.50 (1.50)

GMM-AIC 10.00 (2.37) 21.60 (1.91) 35.50 (1.50)

GMM-ICL 3.90 (0.54) 6.20 (1.29) 12.50 (0.50)

x-means 3.90 (0.30) 3.50 (0.59) 2.95 (0.59)

DBSCAN 17.15 (2.67) 27.85 (3.48) 53.85 (4.25)

Table 5.9: Mean number of retrieved clusters (with the observed stan-
dard deviation in parenthesis), for DSETGausian generated data contami-
nated with 1000 noise points of different algorithms, over 100 experiments.
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80 Chapter 5. Enhancing Principal Direction Divisive Clustering

algorithm splits even the actual clusters in very small sets, incorrectly iden-
tifying them as outliers. So, in general, as along as we do not set extremely
high values to kmax, the algorithm is expected to result in good partitions.
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Figure 5.10: The performance of the iPDDP algorithm with respect to
the number of retrieved clusters (top) and the purity and V -measure values
(bottom) for a range of values for the kmax parameter.

The presence of noise in the dataset makes the problem much more
difficult. This is expected as the iPDDP algorithm has failed to result in
good partitions in noisy cases (see results in Section 5.6.2). The algorithm
manages to achieve high values for the purity and V-measure only when
kmax is set high enough (over 500). However, setting kmax to a very large
value is not a solution. As shown, there exists a range of kmax values (i.e.
500 to 800) where the algorithm is able to retrieve the correct number of
clusters. That interval is connected to the number of noisy points in the
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data, which of course in real life problems is not known beforehand. As
such, it is obvious that in a noisy dataset the determination of appropriate
kmax values can be problematic and, as shown in Section 5.6.2, the algorithm
is expected to exhibit inferior performance.

To examine the effect of the MinPts parameter on the performance of
the iPDDP algorithm we employ the same noiseless dataset used above. Now
the kmax parameter is set to two times the actual number of clusters. In
Figure 5.11 (top) and (bottom), we present the results with respect to the
number of retrieved clusters, and the purity and V-measure, respectively,
for several values of the MinPts parameter. As shown, the performance of
the algorithm is not affected, as long as, the MinPts parameter has value
smaller than the size of the clusters. Thus, in the case that the user cannot
make an informative selection of the value of MinPts, setting it to a small
number is a sensible choice. The results for the noisy dataset are similar
and are excluded for brevity.

§ 5.8 Bandwidth Selection for the dePDDP al-

gorithm

As already discussed, the dePDDP algorithm relies on the density of the
projected points to guide the clustering procedure. This density is approx-
imated though a non-parametric kernel density estimation mechanism, a
standard technique in explorative data analysis, for which there is still a big
dispute on how to assess the quality of the estimate and which choice of
bandwidth is optimal [Tur93].

The bandwidth of the kernel is a free parameter which exhibits a strong
influence on the resulting estimate. The way that the bandwidth selection
influences the estimation can be explained by examining the Asymptotic
Mean Squared Error (AMISE). Small values of h increase the (asymptotic)
variance and thus the resulting estimate f̂(x;h) seems “wiggly” with many
spurious features if graphically checked. On the other hand, big values of h
reduce the (asymptotic) variance of f̂(x;h), but also increase the (asymp-
totic) bias, probably “smoothing away” the features of the true density f .
An example of this behaviour is illustrated in Figure 5.12.

The most common optimality criterion used to select the bandwidth
parameter is the mean integrated squared error

MISE(h) = E

∫
(f̂(x;h)− f(x))2dx. (5.4)

Under weak assumptions on f andK, MISE(h) = AMISE(h)+o(1/nh+
h4), where o is the little o notation. The AMISE is the Asymptotic MISE
which consists of the two leading terms
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Figure 5.11: The performance of the iPDDP algorithm with respect to
the number of retrieved clusters (top) and the purity and V -measure values
(bottom) for a range of values for the MinPts parameter.

AMISE(h) =
R(K)

nh
+

1

4
m2(K)2h4R(f ′′), (5.5)

where R(g) =
∫
g(x)2dx for a function g, m2(K) =

∫
x2K(x) and f ′′ is the

second derivative of f . The minimum of this AMISE is the solution to this
differential equation

∂

∂h
AMISE(h) =

R(K)

nh2
+m2(K)2h3R(f ′′) = 0 (5.6)

or

hAMISE =
R(K)1/5

m2(K)2/5R(f ′′)1/5n1/5
. (5.7)
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Figure 5.12: An example of the KDE for a big bandwidth value (top) and
for a small bandwidth value (bottom) respectivelly.
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84 Chapter 5. Enhancing Principal Direction Divisive Clustering

Neither the AMISE nor the hAMISE formulas can be used directly,
since they involve the unknown density function f , so numerous methods
have been proposed to automatically select the bandwidth. For more details
refer to [Tur93], where various techniques to automatically tune the band-
width are discussed and their particular characteristics are explained. A
cross-validation selection method was proposed in [Sar93], while [AL95] pro-
posed a plug-in estimate which minimises an estimate of the mean weighted
integrated squared error, using the density function as a weight function.
In [Han04] it was proposed to choose the bandwidth depending on the rough-
ness of the first derivative of the density, which is straightforward to esti-
mate. Here, we just follow the “normal reference rule”, which suggests to
use a bandwidth hopt that minimises the Mean Integrated Squared Error
(MISE). This is given by:

hopt = σ

(
4

3n

)1/5

, (5.8)

where σ is standard deviation of the data.

Throughout the experiments in the paper we have set the bandwidth
parameter to the value hopt given by Eq. 5.8. In this section, we experimen-
tally examine how different bandwidth selection schemes would affect the
performance of dePDDP algorithm.

First we would like to investigate how an “improper” bandwidth would
affect the performance of the algorithm. As it is not trivial to specify what
an improper bandwidth is, since even that is data dependent, we are going
to use a wide range of multiples of the hopt value and examine the clustering
performance of each one.

For this reason, we employ the DSETGausian data generation mechanism
and for various values of the bandwidth multiplier we examine obtained pu-
rity and V-measures. Further, to examine the effect with respect to different
dimensions and number of clusters, we use datasets of 2 and 15 dimensions,
with 15 and 25 clusters. The results are illustrated in Figure 5.13. It is
evident that there exists a wide range of multiplier values between 1.5 and
3 that the dePDDP algorithm exhibits very good results with respect both
to purity and V-measure. However, for small values of the multiplier, the
results show high purity, the V -measure is much smaller as it quite possi-
ble that many actual clusters are split. For large values of the multiplier,
both the purity and V -measure obtain small values, indicative of bad par-
titions. Note also that the results are similar for all of the combinations
of dimensions and clusters examined, shows that the bandwidth selection
is independent of the data dimensionality or the number of clusters in the
data. In conclusion, we can see that any value of the multiplier less than 2
gives good results. Large bandwidths should be avoided, since the algorithm
is expected to perform poorly. On the other hand, small bandwidths are not
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such a big concern, since the algorithm is expected to return an increased
number of (pure) clusters.
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Figure 5.13: The performance of the dePDDP algorithm with respect to
cluster purity (top) and the V -measure (bottom), when the bandwidth hopt
is multiplied by a range of different values.

§ 5.9 Running time Analysis

In this section we study the running time of the presented methods. We
compare them against the running time of the original PDDP algorithm
and the time required by iterative algorithms. The iterative algorithms
used are the standard k-means (where the correct number of clusters is
given a priori to the algorithm) and the GMM with the combination of the
AIC to automatically estimate the number of clusters. Note that GMM is
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executed for a varying number of clusters up to a maximum kmax, where
kmax was set twice the actual number of clusters and that the AIC is used
to select amongst them. For the dePDDP we are using the Fast Gauss
Transform [YDGD03] to estimate the density of the projected points.

In detail, we are going to test the running time of the different algorithms
initially for an increasing number of points and next for an increasing di-
mensionality. In the first case we use datasets generated from a mixture
of 10 Gaussian 10 dimensional distributions that represent the actual clus-
ters in the data and iteratively increase the data set size by sampling an
increasing number of points from each Gaussian distribution. The results
are illustrated in Figure 5.14 (top) (notice the log-scale of the y axis). For
the second experiment, we again use a mixture of 10 Gaussian distributions,
where the dimensionality of the distributions is iteratively increased. The
results are illustrated in Figure 5.14 (bottom). The running time of each
algorithm is measured in seconds and the CPU used is an Intel(R) Xeon(R)
E5405, operating at 2.00GHz, having 4 gigabytes of RAM.

As shown the k-means algorithm is the fastest algorithm with respect to
the number of points in the data. PDDP, iPDDP and dePDDP have similar
performance and they seem quite competitive to k-means. GMM-AIC on
the other hand needs many orders of magnitude large running times. Note
that all the algorithms show a similar increasing trend. The results for the
increasing dimensionality case are reversed. In this case PDDP turns out
to be the fastest algorithm, closely followed by iPDDP and dePDDP. The
k-means algorithm in this case is heavily affected by the increasing dimen-
sionality, resulting in very large running times. The running time of GMM
was enormous and after 200 dimensions the algorithm exhibited numerical
stability problems. Since it was unable to converge, it was not included
in the plot. In general, we observe that the performance of the proposed
methods are quite competitive even to the simplest of iterative methods and
show very good performance when the dimensionality is increasing.

§ 5.10 Benchmark Datasets

In this section we test the performance of the algorithms on benchmark
datasets from the UCI Machine Learning Repository [BM98]. These datasets
have been used for the evaluation of a number of similar algorithms [TV07,
Hua98, Fis87, MS83], so easy comparison to other approaches is facilitated.
In particular we use the following datasets:

• (VOTES): This data set includes votes for each of the U.S. House of
Representatives Congressmen on the 16 key votes identified by the
CQA. The CQA lists nine different types of votes: voted for, paired
for, and announced for (these three simplified to yea), voted against,
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Figure 5.14: The CPU time cost of the algorithms as the size of the dataset
grows (top). The CPU time cost of the algorithms as the dimensionality
grows (bottom).

Institutional Repository - Library & Information Centre - University of Thessaly
17/05/2024 14:08:30 EEST - 18.188.60.124



88 Chapter 5. Enhancing Principal Direction Divisive Clustering

paired against, and announced against (these three simplified to nay),
voted present, voted present to avoid conflict of interest, and did not
vote or otherwise made a position known (these three simplified to
an unknown disposition). Thus, the data are described by 16 at-
tributes. The total number of objects is 435; 267 of which are labelled
as democrats, while the remaining 168 as republicans.

• (BREAST-CANCER): This breast cancer database was obtained from
the University of Wisconsin Hospitals, Madison from Dr. William H.
Wolberg. There are 369 instances in this datasets, described though
10 features. Each instance has one of 2 possible classes: benign or
malignant. There are 16 instances that contain a single missing (i.e.
unavailable) attribute value that we arbitrary set to 0.

• (SYNTHETIC CONTROL): This data consists of 600 examples of
control charts synthetically generated by the process in [AM99]. There
are six different classes of control charts: Normal, Cyclic, Increasing
trend, Decreasing trend, Upward shift, and Downward shift.

The results in terms of cluster purity and V-measured are shown in Ta-
ble 5.10. Here, the PDDP algorithm manages to achieve very good results
for the BREAST-CANCER dataset, but its performance deteriorates in the
other two datasets. On the other hand, the iPDDP algorithm seems able to
provide high purity partitions, but the associated V-measures are very low,
indicating that some of the actual classes in the data are not split at all. This
translates to possible chaining effects, since this is the main reason for the
iPDDP failure, as shown by the experimental analysis on simulated data.
The KM-PDDP algorithm, in the case of the SYNTHETIC CONTROL
datasets, fails to provide good results in terms of V-measure. Possible be-
cause of the structure of this dataset which contains uneven classes that the
algorithm fails to capture. The GMM algorithm seems to have difficulties
to deal with the VOTES dataset, but manages to achieve good results in
the other two cases. On the other hand, k-means provides very good results
in all cases, supporting its popularity in low dimensional data. PG-means
provides good results amongst all GMM based approaches and, in general,
is competitively. Finally, the dePDDP algorithm achieves highly pure parti-
tions in all tested datasets. It is of equal importance that in the considered
problems, the dePDDP algorithm never underestimates the number of clus-
ters, providing approximations that in two out of the three cases are very
close to the actual number of classes, as well. Notice that the number of
clusters is given as input to the rest of the clustering algorithms.
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Dataset BREAST-CAN. VOTES SYNTH. CONT.

Classes 2 2 6

Clusters 2 2 6

PDDP Pur. 0.9639 0.8432 0.5766

V-meas. 0.8103 0.4097 0.5780

Clusters 2 2 6

iPDDP Pur. 0.8338 0.8065 0.7726

V-meas. 0.0547 0.0033 0.7517

Clusters 11 3 11

dePDDP Pur. 0.9174 0.7837 0.9076

V-meas. 0.7634 0.3784 0.7600

Clusters 2 2 6

KM-PDDP Pur. 0.9617 0.8489 0.8613

V-meas. 0.7634 0.3944 0.0163

Clusters 2 2 6

GMM Pur. 0.8663 0.6252 0.7479

V-meas. 0.5553 0.0086 0.5219

Clusters 5 3 2

GMM-BIC Pur. 0.9463 0.6565 0.5888

V-meas. 0.4544 0.0539 0.1203

Clusters 5 2 13

GMM-AIC Pur. 0.8670 0.6302 0.8745

V-meas. 0.4882 0.0151 0.6597

Clusters 5 4 2

GMM-ICL Pur. 0.9466 0.7123 0.3931

V-meas. 0.4467 0.0368 0.3511

Clusters 6 6 5

PG-means Pur. 0.9472 0.8140 0.8154

V-meas. 0.5034 0.3402 0.2698

Clusters 2 2 6

k-means Pur. 0.9571 0.8434 0.7637

V-meas. 0.7361 0.4037 0.7013

Table 5.10: Results with respect to the clustering purity and V-measure for
the three UCI repository data sets.
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§ 5.11 Text Mining

Text mining was the initial motivation behind the development of the orig-
inal PDDP algorithm. To this end, to examine the performance of the
proposed approaches in text datasets we use a subset of the original TDT2
corpus. The TDT2 corpus (Nist Topic Detection and Tracking corpus) con-
sists of data collected during the first half of 1998 and taken from 6 sources,
including 2 newswires (APW and NYT), 2 radio programs (VOA and PRI)
and 2 television programs (CNN and ABC). In total it consists of 11201
on-topic documents, which are classified into 96 semantic categories. Here,
we used 4 samples from the initial corpora, containing 2, 3, 4, and 5 cat-
egories, respectively. For each sample, 50 randomly generated sub-samples
were used, provided in http://www.cs.uiuc.edu/homes/dengcai2/Data/

TextData.html.

The results are illustrated in Fig 5.15. Each boxplot depicts the obtained
values for the clustering purity, in each of the random sub-samples. The box
depicts the interquantile range of the data and contains a bold line at the
data median. The lines extending from each end of the box indicate the
range covered by the remaining data.
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Figure 5.15: The purity of clustering results for the TDT2 corpus subsets.

As the plots indicate, the PDDP algorithm is quite effective in recog-
nising the structure of the data, especially in the 2 and 3 class cases. In

Institutional Repository - Library & Information Centre - University of Thessaly
17/05/2024 14:08:30 EEST - 18.188.60.124

http://www.cs.uiuc.edu/homes/dengcai2/Data/TextData.html
http://www.cs.uiuc.edu/homes/dengcai2/Data/TextData.html


5.12. Concluding Remarks 91

those particular cases, the efficiency the iPDDP and dePDDP is always on
par and marginally improved. The 4 class and 5 class case is a bit different.
Here, the PDDP accuracy has a median value around 70%, which points out
to the fact that the data are quite complex so deriving the class structure is
quite difficult. For these cases, the iPDDP algorithm produces results with
reduced partitioning purity. The KM-PDDP algorithm provides the worst
results on all cases.

§ 5.12 Concluding Remarks

In this Chapter, we try to deepen our understanding on what can be achieved
by approaches based on Principal Direction Divisive Clustering. We first
make assumptions on the nature of the true clusters in the data (“inductive
bias”) and then attempt to theoretically discover the relationship between
the true clusters and the distribution of their projection onto the principal
components. Based on that, appropriate criteria for the various steps in-
volved in hierarchical divisive clustering have been developed. At a next
step, these criteria are combined into new algorithms and their effectiveness
is investigated.

The presented algorithms require minimal user-defined parameters and
have the desirable feature of being able to provide approximations for the
number of clusters present in a dataset. This in itself is an open problem in
cluster analysis and little has been done in the past for the high dimensional
data case that we are mostly concerned with here.

The included experimental results indicate that the presented techniques
are effective both in terms of partitioning the data and determining the true
number of clusters in the dataset. Their performance is very good, even
compared against the popular density based methods. Finally, to stress
test the presented methods a series of experiments on real world and test
datasets are included. In this case, density based techniques cannot be
directly applied and complicated feature selection methods are required to
actually get results [TPV06]. However, the presented algorithms exhibited
promising results even in these hard and extremely interesting problems.
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- Chapter 6 -

Clustering of Ultra High Dimensional Data

There are things which seem incredible to most men who have not studied

Mathematics.

—Archimedes

§ 6.1 Introduction

In this Chapter, we combine the RP method, (see Section 4.2.3) with the
dePDDP technique to create a new effective and computationally efficient
clustering methodology. While constructing a full PCA representation has
a complexity that is polynomial with respect to the data dimension, RP’s
complexity is linear. This suggests that by applying RP first to get a reduced
dimension representation and using PCA later could also reduce the total
complexity significantly.

§ 6.2 Random Direction Divisive Clustering

In this section two new lemmas are introduced that lead as into constructing
new algorithmic frameworks that compine RP and PCA. First based on
the Johnson and Lindenstrauss lemma (see Section 4.2.3.1), utilizing the
definitions of Section 5.1 and without making any assumptions for the data
distribution, we can show the following:

Lemma 6.2.1. Given 0 < ε < 1 and an integer n, let r be a positive integer
such that r ≥ r0 = O(ε−2 log n). For every set D of n points in Ra there
exists g : Ra → Rr such that

93
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94 Chapter 6. Clustering of Ultra High Dimensional Data

f̂ r(g(x);h) ≤ e
√
1−ε

(2π)(a−r)/2hr−a
f̂(x;h),

where

f̂ r(g(x);h) = n−1h−r
n∑
i=1

K ((g(x)− g(xi))/h) ,

with kernel function

Kr(g(x)) = (2π)−r/2e−0.5‖g(x)‖.

Proof. Applying the Johnson and Lindenstrauss lemma, we know that for
all x, xi ∈ Ra holds that

‖g(x)− g(xi)‖2 > (1− ε)‖x− xi‖2 ⇔
‖g(x)− g(xi)‖ >

√
1− ε‖x− xi‖ ⇔

−0.5‖g(x)− g(xi)‖ 6 −0.5
√

1− ε‖x− xi‖ ⇔
e−0.5‖g(x)−g(xi)‖ 6 e−0.5

√
1−ε‖x−xi‖.

Since eab ≤ eaeb when a and b have different sign we have that

e−0.5‖g(x)−g(xi)‖ 6 e
√
1−εe−0.5‖x−xi‖ ⇔

(2π)(a−r)/2(2π)(r/2)e−0.5‖g(x)−g(x)i‖ 6 e
√
1−ε(2π)(a/2)e−0.5‖x−xi‖.

Now, we can sum each part of the inequality, for all i = 1, . . . , n. As such
we have

(2π)(a−r)/2
n∑
i=1

(2π)(r/2)e−0.5‖g(x)−g(xi)‖ 6 e
√
1−ε

n∑
i=1

(2π)(a/2)e−0.5‖x−xi‖.

And by multiplying by n−1 and h−a we have

(2π)(a−r)/2hr−af̂ r(g(x);h) 6 e
√
1−εf̂(x;h)⇔

f̂ r(g(x);h) 6
e
√
1−ε

(2π)(a−r)/2hr−a
f̂(x;h).

The above extends the result of Lemma 4.2.1, in terms of the kernel
density estimate of the data projection. Using the above result, we extend
Lemma 5.2.3 as follows:
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6.2. Random Direction Divisive Clustering 95

Lemma 6.2.2. Let a dense convex k-clusterable set D of points di ∈ Ra,
for i = 1, . . . , n and Π its partition into k dense convex subsets C1, . . . , Ck.
Let DRP be the set of projections Rdi of the vectors di on the orthogonal
matrix Ra×r. Let u ∈ Rr, with ‖u‖ = 1. Let P be the set of projections pi
of the vectors Rdi on u. Also, let M = min{f̂(x;h) : x ∈ C, C ∈ Π} and

A = e
√
1−ε

(2π)(a−r)/2hr−a
given 0 < ε < 1. If there exists x ∈ R, such that the

univariate estimate density f̂ ′(x;h′) < AM , with h = h′ > 1 or h′ 6 ha,
then all dt for which pt > x, and dl for which pl 6 x, belong to different sets
of Π.

Proof. Let us suppose that there exist dt, dl ∈ D, C ∈ P such that dt, dl ∈ C,
and pt = uRdt and pl = uRdl with pl 6 x and pt > x. Obviously, there
exists λ ∈ [0, 1], such that x = λpl + (1 − λ)pt. Also for the vector z ∈ Ra
with z = λdl + (1 − λ)dt, it holds that z ∈ C since C is convex (note that
uRz = x).

As such f̂ ′(uRz;h′) = f̂ ′(x;h′) < AM . However, since f̂(x;h) 6 f̂ ′(ux;h′),
we have that f̂(Rz;h) 6 f̂ ′(uRz;h′) = f̂ ′(x;h′). Also, from lemma 6.2.1, we
have

f̂(Rz;h) > Af̂(z : h)⇔
Af̂(z;h) 6 f̂ ′(x;h′)⇔
Af̂(z;h) 6 AM ⇔
f̂(z;h) 6 M

and since z ∈ C, f̂(z;h) > M , this is a contradiction. Thus, the Lemma is
proved.

6.2.1 Constructing New RP Clustering Algorithms

The above theoretical results allow us to use RP and PCA in the dePDDP
scheme to form new algorithms, with the promise of very low computational
complexity. As this combination can be performed in two different ways, we
formulate the following algorithms:

• Random Projection dePDDP (rp-dePDDP):
In this case the data are initially projected onto a random frame as
explained in Section 4.2.3.1. Then the dePDDP algorithm is applied
as before, but on that reduced dimension representation.

• Random Direction Divisive Partitioning (RDDP):
Here the RP method is used at each stage of the dePDDP process. As
each subcluster is formed, the data belonging to just that cluster are
projected onto a new random frame of reduced dimension, and then
PCA is applied on it to get the final one dimensional projection.
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Obviously, the RDDP is deemed to be computationally more expensive,
and as will be shown in Section 6.3, without significant performance gains.
However, for completeness purposes, it is included in this study.

6.2.1.1 Random Line RDDP

We can also formulate a simplified combination of the Random Projection
method and dePDDP. In detail, we can create a random matrix R in the
way described in Section 6.2, using r = 1. Thus, in essence:

DRP
n×1 = Dn×aRa×1,

is the projection of the original set onto a random line. This kind of pro-
jection has been considered in a number of settings, including the approxi-
mation of nearest neighbors [Kle97, KOR98] and the learning intersections
of halfspaces [Vem10]. Additionally, such projections have been used in
learning mixture of Gaussians models [Das99, SK01].

This way we construct a algorithm, based on dePDDP that discards
PCA altogether, and only uses projections of the data onto such a random
line. We will refer to this method as Random Line RDDP (rl-RDDP).

§ 6.3 Experimental Analysis

In this section, we perform a series of experiments to evaluate the effective-
ness of the approaches presented in Section 6.2.1. Here, because of the strong
relation between the algorithms, we also evaluate the statistical significance
of the observed performance differences, for each algorithm we conducted
three two-sample Wilcoxon rank sum tests between the results of that al-
gorithm and the results of each of the three proposed methods rl-RDDP,
rp-dePDDP and RDDP, respectively. The null hypothesis in each test is
that the samples come from identical continuous distributions with equal
medians, against the alternative that they do not have equal medians. In
the tables summarizing the results, we report the result of the test as 1,
when the null hypothesis is rejected at the 5% significance level and as 0
otherwise.

Table 6.1 reports the purity and the V-measure including the results of
the statistical tests of the PDDP, dePDDP, km-PDDP [ZG07], rl-RDDP,rp-
dePDDP, RDDP, k-means and rp-kmeans [BZD10] algorithms in 100 ran-
domly generated datasets, using the previously described DSETGausian. The
rp-kmeans algorithm is the standard k-means, applied to the dataset that
is a priori projected onto a random frame. For k-means and rp-kmeans
algorithms, we employ Matlab’s k-means implementation. Each entry of
Table 6.1 is the mean observed value of the corresponding measure obtained
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over the 100 different datasets and the number in parentheses is the ob-
served standard deviation. A standard deviation of 0 corresponds to a ob-
served variance of less than 10−2. The error rate of the RP method was
set to 0.5 for all algorithms and the actual cluster number was given as in-
put to PDDP, km-PDDP, k-means and rp-kmeans algorithms. To estimate
the density of the projected data the algorithms are using the Fast Gauss
Transform [YDGD03].

Dimension 100

25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas.

PDDP 0.95 (0.03) (0/1/1) 0.98 (0.01) (0/1/1) 0.88 (0.04) (1/1/1) 0.95 (0.01) (1/1/1)

dePDDP 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0) 0.97 (0.15) (1/0/0) 0.97 (0.13) (1/0/0)

km-PDDP 0.74 (0.06) (1/1/1) 0.93 (0.01) (1/1/1) 0.78 (0.03) (1/1/1) 0.95 (0.00) (1/1/1)

rl-RDDP 0.93 (0.09) (0/1/1) 0.97 (0.04) (0/1/1) 0.96 (0.02) (0/1/1) 0.98 (0.00) (0/1/1)

rp-dePDDP 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0)

RDDP 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0)

rp-kmeans 0.85 (0.03) (1/1/1) 0.94 (0.01) (1/1/1) 0.82 (0.02) (1/1/1) 0.95 (0.00) (1/1/1)

k-means 0.86 (0.03) (1/1/1) 0.95 (0.01) (1/1/1) 0.84 (0.02) (1/1/1) 0.96 (0.01) (1/1/1)

Dimension 1000

25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas.

PDDP 0.97 (0.03) (1/1/1) 0.99 (0.01) (1/0/0) 0.94 (0.04) (0/1/1) 0.98 (0.01) (0/1/1)

dePDDP 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0) 0.97 (0.05) (1/0/0) 0.98 (0.01) (1/0/0)

km-PDDP 0.74 (0.05) (1/1/1) 0.93 (0.01) (1/1/1) 0.76 (0.03) (1/1/1) 0.95 (0.00) (1/1/1)

rl-RDDP 0.96 (0.03) (0/1/1) 0.98 (0.01) (0/1/1) 0.95 (0.02) (0/1/1) 0.98 (0.00) (0/1/1)

rp-dePDDP 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0)

RDDP 1.00 (0.00) (1/0/0) 0.99 (0.00) (1/0/0) 0.99 (0.03) (1/0/0) 0.99 (0.01) (1/0/0)

rp-kmeans 0.84 (0.03) (1/1/1) 0.94 (0.01) (1/1/1) 0.83 (0.04) (1/1/1) 0.95 (0.00) (1/1/1)

k-means 0.85 (0.05) (1/1/1) 0.95 (0.02) (1/1/1) 0.82 (0.02) (1/1/1) 0.95 (0.01) (1/1/1)

Dimension 5000

25 Clusters 50 Clusters

Pur. V-meas. Pur. V-meas.

PDDP 0.98 (0.02) (1/1/1) 0.99 (0.00) (1/0/0) 0.97 (0.01) (1/1/1) 0.99 (0.00) (1/1/1)

dePDDP 0.94 (0.08) (1/1/1) 0.97 (0.02) (0/1/1) 0.93 (0.12) (1/0/0) 0.97 (0.06) (1/0/0)

km-PDDP 0.74 (0.04) (1/1/1) 0.93 (0.01) (1/1/1) 0.76 (0.03) (1/1/1) 0.95 (0.00) (1/1/1)

rl-RDDP 0.95 (0.05) (0/1/1) 0.98 (0.01) (0/1/1) 0.90 (0.22) (0/1/1) 0.92 (0.22) (0/1/1)

rp-dePDDP 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0)

RDDP 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0) 0.99 (0.00) (1/0/0)

rp-kmeans 0.84 (0.03) (1/1/1) 0.95 (0.01) (1/1/1) 0.82 (0.02) (1/1/1) 0.95 (0.00) (1/1/1)

k-means - - - -

Table 6.1: Mean purity, V-measure (with the observed standard deviation
in parenthesis) and statistical significance test for DSETGausian generated
data of different algorithms over 100 experiments.

As shown, the rp-dePDDP and RDDP algorithms are as effective as de-
PDDP algorithm in all cases, while rl-RDDP, as expected, performs sightly
worse. As we will see in the next section, the proposed algorithms are much
more computationally efficient, so the fact that they maintain the accuracy
of the original method is very promising.

Note that the results of the dePDDP based algorithms on the automatic
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98 Chapter 6. Clustering of Ultra High Dimensional Data

determination of the number of clusters is almost identical on this experi-
ment and are not included for brevity. In all cases the algorithms retrieve no
more than one or two extra clusters [TTP10b]. The results of k-means for
5000 dimensions are also excluded due to the extremely high computational
time required.

6.3.1 Computational Cost

In this section, we study the running time of the proposed methods. Ta-
ble 6.2 reports the running time in seconds of the previous experiment. As
expected, the RP based methods are much faster especially for the high di-
mensional cases. In the case of 5000 dimensions, the rl-RDDP and RDDP
algorithms perform as fast as rp-kmeans, while rp-dePDDP remains the
fastest method in all cases.

Dimension 100

25 Clusters 50 Clusters

PDDP 1.17 (0.04) (1/1/1) 2.78 (0.06 ) (1/1/1)

dePDDP 1.69 (0.26) (1/1/1) 5.33 (1.01 ) (1/1/1)

km-PDDP 6.34 (1.13) (1/1/1) 21.79 (6.56) (1/1/1)

rl-RDDP 0.10 (0.01) (0/1/1) 0.36 (0.07 ) (0/1/1)

rp-dePDDP 0.72 (0.10) (1/0/0) 2.34 (0.41 ) (1/0/0)

RDDP 0.68 (0.09) (1/0/0) 2.25 (0.37 ) (1/0/0)

rp-kmeans 1.93 (0.37) (1/1/1) 12.04 (1.54 ) (1/1/1)

k-means 23.56 (3.47) (1/1/1) 96.37 (6.36 ) (1/1/1)

Dimension 1000

25 Clusters 50 Clusters

PDDP 11.34 (0.37 ) (1/1/1) 27.78 ( 0.51 ) (1/1/1)

dePDDP 17.14 (2.73 ) (1/1/1) 54.53 (12.61 ) (1/1/1)

km-PDDP 22.41 (4.19 ) (1/1/1) 82.43 (19.81 ) (1/1/1)

rl-RDDP 0.62 (0.11 ) (0/1/1) 2.22 ( 0.40 ) (0/1/1)

rp-dePDDP 0.79 (0.08 ) (1/0/1) 2.68 ( 0.47 ) (1/0/1)

RDDP 1.28 (0.22 ) (1/1/0) 4.09 ( 0.71 ) (1/1/0)

rp-kmeans 2.25 (0.25 ) (1/1/1) 13.99 (1.13 ) (1/1/1)

k-means 379.80(45.74) (1/1/1) 1678.61 (122.82) (1/1/1)

Dimension 5000

25 Clusters 50 Clusters

PDDP 64.29 ( 1.70) (1/1/1) 153.97 (3.58 ) (1/1/1)

dePDDP 85.36 (15.67) (1/1/1) 268.36 (56.94) (1/1/1)

km-PDDP 93.30 (16.58) (1/1/1) 385.85 (76.00) (1/1/1)

rl-RDDP 4.64 ( 0.92) (0/1/0) 13.78 (3.84 ) (0/1/1)

rp-dePDDP 1.04 ( 0.10) (1/0/1) 3.10 (1.48 ) (1/0/1)

RDDP 4.60 ( 0.75) (0/1/0) 16.48 (5.67 ) (1/1/0)

rp-kmeans 2.53 (0.28 ) (1/1/1) 15.02 (1.46 ) (0/1/1)

k-means - -

Table 6.2: Mean computational time in seconds (with the observed standard
deviation in parenthesis) and statistical significance test for DSETGausian

generated data of different algorithms over 100 experiments.

In the second set of experiments, we test the running time of the algo-
rithms that utilize RP, initially for an increasing dimensionality and next
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for an increasing number of points. In the first case, we use datasets gener-
ated from a mixture of 25 Gaussian distributions, where the dimensionality
of the distributions is iteratively increased. The results are illustrated in
Figure 6.1 (top). Please notice the log-scale of the y axis. Subsequently,
we use a mixture of 25 Gaussian distributions and iteratively increase the
data set size by sampling an increasing number of points from each Gaus-
sian distribution. The results are illustrated in Figure 6.1 (bottom). So,
in general, we can observe that the RP based methods manage to achieve
comparable performance to their PCA-based counterparts to a fraction of
the computational time of the latter. Moreover, the simplest method of the
lot (rp-dePDDP), seems to be the method of choice with regards to both
computational performance and accuracy.
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Figure 6.1: The CPU time cost of the algorithms as the dimensionality
grows (top). The CPU time cost of the algorithms as the size of the dataset
grows (bottom).
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The running time of each algorithm is measured in seconds and the
system specifications are an Intel(R) Xeon(R) E5405 CPU, operating at
2.00GHz, having 4 gigabyte of RAM.

6.3.2 Clustering Microarray data

In this Section we perform a series of experiments on the following microar-
ray datasets (see also Section 4.3.1).

• COLON: 40 tumor and 22 normal colon tissues. 2000 gene expression
level measurements.
http://microarray.princeton.edu/oncology

• PROSTATE: 52 tumor and 50 non-tumor samples. 6033 gene expres-
sion level measurements.
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

• CARCINOMA: 18 tumor and 18 normal samples. 7457 gene expression
level measurements.
http://microarray.princeton.edu/oncology/carcinoma.html

• LYMPHOMA: 62 of the 3 lymphoid malignancies samples types. 4026
gene expression levels.
http://genome-www.stanford.edu

• SRBCT: 83 samples spanning 4 classes. 2308 gene expression level
measurements.
http://research.nhgri.nih.gov/microarray/Supplement

• LEUKEMIA: 72 samples of 2 types of acute leukemias. 7129 gene
expression level measurements.
http://www.genome.wi.mit.edu/MPR

• ALL: 248 samples of 6 subtypes of acute lymphoblastic leukemia.
12559 gene expression level measurements
http://www.stjuderesearch.org/data/ALL1

In Table 6.3, the clustering results with respect to purity and V-measure
of the algorithms for each dataset are illustrated. Again, the actual number
of clusters in the data is given as input to the PDDP, KM-PDDP, k-means
and rp-kmeans algorithms. The error rate of the RP method was set to 0.1 to
achieve better clustering results. For rl-RDDP, RDDP, rp-dePDDP, k-means
and rp-kmeans algorithms, we present the mean values and the standard
deviation (in the parenthesis) over 100 experiments. Again, we also report
the statistical significance of the results. As shown, both rp-dePDDP and
RDDP algorithms performs as good as dePDDP and in some cases even
better, while the rl-RDDP algorithm exhibits inferior performance. The

Institutional Repository - Library & Information Centre - University of Thessaly
17/05/2024 14:08:30 EEST - 18.188.60.124



6.3. Experimental Analysis 101

slight advantage of rp-dePDDP and RDDP could occur due to the fact that
in some cases by projecting the data onto Random Projections, the clusters
of the projected subspace are more spherical [Das99, Das00] than those in the
original dimension and thus can be easier retrieved. The cases for which the
proposed methods show inferior performance with respect to the V-measure
are cases where the algorithms find a higher number of clusters than the
actual one. Table 6.4 reports the running time of the algorithms in seconds
for each dataset. Here, as expected due to the nature of microarray datasets
that are being characterized by very small number of samples, there are not
significant differences amongst the algorithms.

6.3.3 Face Recognition

In this experiment er examine the applicability of the methods presented in
Section 6.2.1 in a unsupervised facial recognition task (see Section 4.3.3).
Two different datasets are employed. The ORL dataset [SH94] contains
ten different images of 40 distinct subjects. For some subjects, the images
were taken at different times, varying the lighting, facial expressions (open
/ closed eyes, smiling / not smiling) and facial details (glasses / no glasses).
All the images were taken against a dark homogeneous background with
the subjects in an upright, frontal position (with tolerance for some side
movement). Each image has an analysis of 112× 92 pixels, so the final size
of the data matrix is 400× 10304 pixels.

The second set was the Yale Face Database [GBK01], containing 5760
single light source images of 10 subjects each seen under 576 viewing condi-
tions (9 poses x 64 illumination conditions). Each image has an analysis of
640 × 480 pixels. However, we have selected 400 images of them randomly
belonging to 9 persons, to maintain an equivalence to the ORL dataset.
Thus, the size of the data matrix is 400× 307200.

The results are illustrated in Table 6.5. Note that only the RP based
methods are used here since the computational complexity of the other al-
gorithms is prohibitive for these datasets. As shown in the case of the ORL
dataset, none of the algorithms is able to recognize the clustering structure
of the data, as all of them produce clusterings with very low purity. For
the case of the Yale dataset, the situation is reversed, contradicting our ex-
pectation of further performance reduction, as the dimensionality grows by
a factor of 30. This indicates that increasing dimensionality is transformed
from a “curse” to a “blessing”. The additional information of the high reso-
lution images seems to be preserved by the Random Projection method, in
a way that allows the algorithms to efficiently utilize it. In particular, the
rp-dePDDP and RDDP methods produce almost totally pure clusterings,
with an increased cluster number. However, the high purity of the results,
combined with the moderate V-measure values, indicates that the resulting
partitions also have a logical meaning. An example partition of a subset of
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Dataset COL PRO CAR LYM SRB LEY ALL

Classes 2 2 2 3 4 2 6

Cl. 2.00 (0.00) 2.00 (0.00) 2.00 (0.00) 3.00 (0.00) 4.00 (0.00) 2.00 (0.00) 6.00 (0.00)

Pur. 0.65 (0.00) 0.58 (0.00) 0.75 (0.00) 0.97 (0.00) 0.62 (0.00) 0.90 (0.00) 0.33 (0.00)

PDDP (1/1/1) (0/1/1) (1/1/1) (1/1/1) (1/1/1) (1/1/1) (1/1/1)

V-m. 0.03 (0.00) 0.02 (0.00) 0.20 (0.00) 0.88 (0.00) 0.42 (0.00) 0.56 (0.00) 0.04 (0.00)

(1/1/1) (0/1/1) (0/1/1) (1/0/1) (1/1/1) (1/0/1) (1/1/1)

Cl. 7.00 (0.00) 12.00 (0.00) 4.25 (0.44) 9.00 (0.00) 10.00 (0.00) 2.00 (0.00) 21.00 (0.00)

Pur. 0.79 (0.00) 0.80 (0.00) 0.87 (0.02) 1.00(0.00) 0.84 (0.00) 0.96 (0.00) 0.77 (0.00)

dePDDP (1/0/0) (1/1/1) (1/0/0) (1/1/1) (1/0/0) (1/0/0) (1/0/0)

V-m. 0.17 (0.00) 0.18 (0.00) 0.36 (0.04) 0.57 (0.00) 0.55 (0.00) 0.77 (0.00) 0.49 (0.00)

(1/0/0) (1/1/1) (1/0/0) (1/1/0) (1/0/0) (1/1/1) (1/1/1)

Cl. 2.00 (0.00) 2.00 (0.00) 2.00 (0.00) 3.00 (0.00) 4.00 (0.00) 2.00 (0.00) 6.00 (0.00)

Pur. 0.65 (0.00) 0.59 (0.00) 0.66 (0.11) 0.85 (0.00) 0.49 (0.00) 0.96 (0.00) 0.33 (0.00)

KM-PDDP (1/1/1) (0/1/1) (0/1/1) (1/1/1) (0/1/1) (1/0/0) (1/1/1)

V-m. 0.02 (0.00) 0.05 (0.00) 0.14 (0.08) 0.65 (0.00) 0.28 (0.00) 0.77 (0.00) 0.03 (0.00)

(1/1/1) (0/1/1) (0/1/1) (1/0/0) (1/1/1) (1/1/1) (1/1/1)

Cl. 6.00 (3.48) 5.25 (4.34) 3.75 (1.55) 5.95 (2.39) 4.60 (3.10) 5.40 (3.57) 6.25 (2.81)

Pur. 0.70 (0.05) 0.59 (0.07) 0.69 (0.11) 0.75 (0.05) 0.49 (0.08) 0.70 (0.05) 0.36 (0.03)

rl-RDDP (0/1/1) (0/1/1) (0/1/1) (0/1/1) (0/1/1) (0/1/1) (0/1/1)

V-m. 0.09 (0.05) 0.05 (0.04) 0.16 (0.13) 0.26 (0.09) 0.19 (0.10) 0.09 (0.07) 0.07 (0.05)

(0/1/1) (0/1/1) (0/1/1) (0/1/1) (0/1/1) (0/1/1) (0/1/1)

Cl. 5.45 (1.79) 10.05 (2.78) 3.80 (0.77) 5.05 (2.09) 9.30 (1.95) 6.60 (3.75) 17.35 (3.70)

Pur. 0.77 (0.06) 0.72 (0.07) 0.88 (0.05) 0.99 (0.01) 0.84 (0.07) 0.96 (0.02) 0.77 (0.03)

rp-dePDDP (1/0/0) (1/0/1) (1/0/0) (1/0/0) (1/0/0) (1/0/0) (1/0/0)

V-m. 0.18 (0.07) 0.13 (0.04) 0.43 (0.11) 0.79 (0.19) 0.56 (0.06) 0.53 (0.14) 0.53 (0.02)

(1/0/0) (1/0/0) (1/0/0) (1/0/0) (1/0/0) (1/0/0) (1/0/0)

Cl. 5.60 (2.52) 7.90 (2.15) 4.20 (1.11) 6.65 (2.21) 8.40 (2.35) 6.40 (2.64) 16.60 (4.44)

Pur. 0.77 (0.06) 0.67 (0.05) 0.88 (0.06) 0.99 (0.01) 0.81 (0.11) 0.96 (0.02) 0.77 (0.04)

RDDP (1/0/0) (1/1/0) (1/0/0) (1/0/0) (1/0/0) (1/0/0) (1/0/0)

V-m. 0.18 (0.04) 0.11 (0.03) 0.39 (0.09) 0.68 (0.15) 0.54 (0.10) 0.50 (0.12) 0.53 (0.03)

(1/0/0) (1/0/0) (1/0/0) (1/0/0) (1/0/0) (1/0/0) (1/0/0)

Cl. 2.00 (0.00) 2.00 (0.00) 2.00 (0.00) 3.00 (0.00) 4.00 (0.00) 2.00 (0.00) 6.00 (0.00)

Pur. 0.68 (0.08) 0.58(0.00) 0.75(0.00) 0.94(0.07) 0.53(0.01) 0.97(0.00) 0.54(0.08)

k-means (1/1/1) (0/1/1) (1/1/1) (1/1/1) (0/1/1) (1/1/1) (1/1/1)

V-m. 0.07 (0.16) 0.02(0.00) 0.20(0.00) 0.82(0.16) 0.24(0.04) 0.81(0.00) 0.37(0.09)

(1/1/1) (0/1/1) (0/1/1) (1/0/1) (1/1/1) (1/1/1) (1/1/1)

Cl. 2.00 (0.00) 2.00 (0.00) 2.00 (0.00) 3.00 (0.00) 4.00 (0.00) 2.00 (0.00) 6.00 (0.00)

Pur. 0.67 (0.07) 0.58 (0.01) 0.75 (0.07) 0.91 (0.07) 0.55 (0.03) 0.97 (0.01) 0.53 (0.08)

rp-kmeans (1/1/1) (0/1/1) (1/1/1) (1/1/1) (1/1/1) (1/0/0) (1/1/1)

V-m. 0.07 (0.14) 0.02 (0.00) 0.21 (0.13) 0.76 (0.17) 0.27 (0.04) 0.80 (0.08) 0.34 (0.09)

(1/1/1) (0/1/1) (0/1/1) (1/0/0) (1/1/1) (1/1/1) (1/1/1)

Table 6.3: Mean purity, V-measure, number of clusters discovered (with
the observed standard deviation in parenthesis) and statistical significance
test for the microarray datasets.
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Dataset COL PRO CAR LYM SRB LEY ALL

PDDP 0.56 (0.15) 1.74 (0.18) 1.79 (0.48) 1.71 (0.31) 1.27 (0.45) 1.08 (0.22) 12.10 (0.32)

(1/1/1) (1/1/1) (1/1/0) (1/1/1) (1/1/0) (1/1/1) (1/1/1)

dePDDP 1.83 (0.04) 9.95 (0.09) 3.79 (0.23) 4.83 (0.26) 2.75 (0.07) 1.01 (0.05) 44.91 (1.78)

(1/1/1) (1/1/1) (1/1/1) (1/1/1) (1/1/1) (1/1/1) (1/1/1)

KM-PDDP 0.47 (0.03) 1.72 (0.02) 1.53 (0.23) 1.81 (0.14) 1.16 (0.12) 1.03 (0.03) 11.12 (0.19)

(1/0/1) (1/1/1) (1/1/0) (1/1/0) (1/1/1) (1/1/1) (1/1/1)

rl-RDDP 0.03 (0.01) 0.10 (0.07) 0.06 (0.02) 0.07 (0.02) 0.03 (0.01) 0.06 (0.02) 0.80 (0.29)

(0/1/1) (0/1/1) (0/1/1) (0/1/1) (0/1/1) (0/1/1) (0/1/1)

rp-dePDD 0.47 (0.11) 1.09 (0.18) 0.52 (0.04) 0.59 (0.17) 0.74 (0.14) 0.71 (0.25) 2.83 (0.29)

(1/0/1) (1/0/1) (1/0/1) (1/0/1) (1/0/1) (1/0/1) (1/0/1)

RDDP 0.86 (0.35) 3.39 (0.72) 1.68 (0.39) 2.04 (0.67) 1.34 (0.36) 1.68 (0.58) 16.32 (2.88)

(1/1/0) (1/1/0) (1/1/0) (1/1/0) (1/1/0) (1/1/0) (1/1/0)

k-means 0.89 (0.19) 2.05 (0.16) 1.68 (0.23) 2.01 (0.35) 1.73 (0.33) 1.58 (0.47) 50.61 (15.66)

(1/1/0) (1/1/1) (1/1/0) (1/1/0) (1/1/1) (1/1/0) (1/1/1)

rp-kmeans 0.31 (0.05) 0.56 (0.03) 0.48 (0.05) 0.49 (0.05) 0.51 (0.06) 0.52 (0.23) 2.72 (0.38)

(1/1/1) (1/1/1) (1/1/1) (1/0/1) (1/1/1) (1/1/1) (1/0/1)

Table 6.4: Mean computational time in seconds(with the observed standard
deviation in parenthesis) and statistical significance test for the microarray
datasets.

the data is exhibited in Figure 6.2. In this sample, there exist 3 different
persons in 10 different poses. Most of the algorithms in this example pro-
vide a purity of 1.0, which is a totally clear partition, but they estimate the
number of clusters to 4. The images of one of the persons is split in two
clusters, possibly because of the different luminosity in the two sets, as no
image transformations are used to account for that. That is the reason we
see reduced V-measure values.

Figure 6.2: Clustering result for 3 different persons in 10 different poses.
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104 Chapter 6. Clustering of Ultra High Dimensional Data

ORL Dataset

rl-RDDP rp-dePDDP RDDP rp-kmeans

Pu. 0.32 (0.12) 0.44 (0.11) 0.50 (0.07) 0.54 (0.02)

(0,0,1) (0,0,0) (1,0,0) (1,1,1)

Vm. 0.52 (0.19) 0.62 (0.08) 0.65 (0.03) 0.71 (0.01)

(0,0,1) (0,0,0) (1,0,0) (1,1,1)

Cl. 52.0 (23.4) 54.5 (15.9) 56.0 (10.3) 40.0 (0.0)

Ct. 1.30 (0.63) 0.87 (0.48) 2.48 (0.32) 0.60 (0.12)

(0,0,1) (0,0,1) (1,1,0) (1,1,1)

Yale Dataset

rl-RDDP rp-dePDDP RDDP rp-kmeans

Pu. 0.63 (0.20) 0.96 (0.03 ) 0.94 (0.01 ) 0.76 (0.08)

(0,1,1) (1,0,0) (1,0,0) (1,1,1)

Vm. 0.51 (0.16) 0.66 (0.02) 0.67 (0.01) 0.76 (0.06)

(0,1,1) (1,0,0) (1,0,0) (1,1,1)

Cl. 42.5 (20.1) 65.0 (8.1) 63.0 (5.7) 9.0 (0.0)

Ct. 67.40 (27.38) 2.77 (0.24) 81.94 (8.17) 1.90 (0.07)

(0,1,0) (1,0,1) (0,1,0) (1,1,1)

Table 6.5: Mean purity, V-measure, number of clusters discovered, com-
putational time in seconds (with the observed standard deviation in paren-
thesis) and statistical significance test for ORL and Yale datasets over 10
experiments.

§ 6.4 Concluding Remarks

For data sets with ultra high dimensionality even the application of Principal
Component Analysis becomes problematic. For this type of problems, Ran-
dom Projection has been proposed as a computational efficient alternative,
with appealing theoretical characteristics. In this Chapter, we examine how
Random Projection can be used into the dePDDP clustering framework.
Additionally, we theoretically study the properties of the resulting frame-
work.

In our analysis, we show that as the Random Projection method does not
significantly alter the distribution of the data on the projected space, the
theoretical characteristics of the clustering algorithms remain valid. This
result suggests that the clustering framework would suffer minimal perfor-
mance losses, while gaining all the computational savings of the Random
Projection method.

Finally, using an experimental analysis of a combination of simulated and
real world datasets, we show that the resulting algorithms can at least main-
tain the performance of the original Principal Component Analysis based
algorithms in a fraction of the computation time.
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- Chapter 7 -

Clustering on Alternative Projection Directions

In mathematics the art of proposing a question must be held of higher value than

solving it.

—Geoge Cantor

§ 7.1 Introduction

In this Chapter we examine the use of alternative methods for finding suit-
able projections directions. In Section 7.2 we utilize a projection pursuit
method to create a hierarchical clustering framework that can be applied
on gene expression microarray data. Next, in Section 7.3, a new criterion of
direction interestingness is presented, which incorporates information from
the density of the projected data.

§ 7.2 Independent Component Divisive Cluster-

ing

In this Section, we employ dePDDP [TTP10b] and substitute its projec-
tion methodology with Independent Component Analysis (ICA) (see Section
4.2.2). The ICA is a technique capable of finding the underlying factors or
sources, when other classic methods fail. This allows the algorithm though
the proposed modification to better use the density of the projected data to
guide the clustering process.

The critical attribute of the ICA model is that we can use it to find
directions for which the 1-dimensional projected data onto these directions
show the least Gaussian distribution. It has been argued by Huber [Hub85]
and by Jones and Sibson [JS87] that the Gaussian distribution is the least

105
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106 Chapter 7. Clustering on Alternative Projection Directions

interesting one, and that the most interesting directions are those that show
the least Gaussian distribution. Interesting distribution can be a consider
a distribution that captures the structure of the data. As such ICA can
be considered as an 1-dimensional projection pursuit technique for finding
directions of maximum nongaussianity. Since we need to find only one di-
rection there is not any need to estimate all the independent components.
The independent components are obtained in descending order of nongaus-
sianity so the most interesting independent components are obtained first.
This significantly reduces the computational cost of the method, especially
in the case of high dimensional data.

A two dimensional example of such a case is shown at Figure 7.1. As
shown, the non-Gaussian and the principal direction are almost identical for
the dataset at Figure 7.1 (left). On the other hand, these two directions
are almost vertical for the dataset shown at figure Figure 7.1 (right). In
this case, although the two actual clusters are clearly visible, if we project
the data onto the principal component would not be possible to distinguish
them. However, the same does not happen when the data are projected onto
the non-Gaussian direction. As such this is a direction with a higher level
of interestingness.
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Figure 7.1: Projection Pursuit: a two dimensional example.

To find the direction of maximum non-gaussianity, we utilize a well
known fixed point algorithm. The FastICA algorithm [Hyv99] is a very
efficient method for maximizing the objective function with respect to the
selected measure of non-gaussianity. For this task, it is assumed that the
data is preprocessed. The most basic preprocessing is to center the data.
Centering is performed to simplify the execution of the ICA algorithm. The
next step of preprocessing is the data whitening. Before the application of
ICA and after centering, the data matrix is transformed into a new one that
is white, meaning that its components are uncorrelated and their variances
are equal to unity. Whitening can be achieved with principal component
analysis or singular value decomposition. Whitening ensures that all dimen-
sions are treated equally before the algorithm is run. In this work, we only

Institutional Repository - Library & Information Centre - University of Thessaly
17/05/2024 14:08:30 EEST - 18.188.60.124



7.2. Independent Component Divisive Clustering 107

make use of the FastICA algorithm for one unit. The FastICA for one unit
finds a direction w such that the projection

DP
n×k = Dn×awa×1,

maximizes nongaussianity. Nongaussianity is here measured by the approx-
imation of negentropy [HO00].

7.2.1 The Algorithmic Scheme

In this section, we will introduce a new algorithmic scheme based on the
principles of dePDDP. The new technique is incorporating information from
the ICA model to find optimal directions to project the data. To estimate
the ICA model, we utilize the FastICA algorithm, described in the previous
section.

A new hierarchical divisive clustering algorithm is presented, namely
ICDC. More specifically, the ICDC algorithm utilizes the following criteria:

• (Stopping Criterion) STICDC : Let Π = {{Ci, Pi}, i = 1, . . . , k} a
partition of the data set D into k sets Ci, and the assorted projections
Pi of them onto the direction of maximum nongaussionality. Let X ,
be the set of minimizers x∗i of the density estimates f̂(x∗i ;h) of the
projection Pi of the data of each Ci ∈ Π, i = 1, . . . , k. Stop the
procedure when the set X is empty.

• (Cluster Selection Criterion) CSICDC : Let Π = {{Ci, Pi}, i = 1, . . . , k}
a partition of the data set D into k sets Ci, and the assorted projec-
tions Pi of them onto the direction of maximum nongaussionality. Let
F be the set of the density estimates fi = f̂(x∗i ;h) of the minimizers
x∗i for the projection Pi of the data of each Ci ∈ Π, i = 1, . . . , k. The
next set to split is Cj , with j = arg maxi{fi : fi ∈ F}.

• (Splitting Criterion) SPCICDC : Let f̂ ′(x;h′) be the kernel density
estimation of the density of the projections pi ∈ P, and x? its global
minimizer. Then construct P1 = {di ∈ D : pi 6 x?} and P2 = {di ∈
D : pi > x?}.

The ICDC implementation is shown in Table 7.1.
The advantage of the proposed method over the PCA based techniques

can be illustrated by evaluating the 2-dimensional example of Figure 7.1. At
Figure 7.2, we illustrate the projections of the data and their corresponding
density for each direction. The top two plots of the figure correspond to
the projected data onto the direction of maximum nongaussianity, while
the bottom two correspond to the projected data onto the first principal
direction for each dataset of Figure 7.1 (left and right), respectively. For
the dataset presented in Figure 7.1 (left), there exists a minimizer of the
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108 Chapter 7. Clustering on Alternative Projection Directions

Function ICDC (D) {
1. Get up the direction of maximum nongaussionality of D
2. Calculate P = Dup the projection of D to up

3. Set Π = {{D, P}}
4. Do
5. Select an element {C,PC} ∈ Π using Selection Criterion CSICDC
6. Split C into two sub-sets C1, C2, using Splitting Criterion SPCICDC
7. Remove {C, PC} from Π and set Π→ Π ∪ {{C1, P C1}, {C2, P C2}},

where P C1 , P C2 are the projections of C1, C2 on the direction of
maximum nongaussionality up1 , up2 of C1 and C2, respectively

8. While Stopping Criterion STICDC is not satisfied
9. Return Π the partition of D into |Π| clusters
}

Table 7.1: The ICDC algorithm Summary.

density function in both cases. However, this is not the case for the dataset
of Figure 7.1 (right). A minimizer exists only for the density of the projected
data onto the direction of maximum nongaussianity. Thus, in this case, the
actual clusters cannot be distinguished, when the data are projected onto
the first principal component.

7.2.2 Clustering Microarray data

In this Section the presented ICDC algorithm is compare against PCA driven
methods on a series of microarray datasets (see Section 4.3.1. The datasets
empoyed here are the follwing:

• The CARCINOMA [NASL01] data set that contains 18 tumor sam-
ples and 18 normal samples. There exist 7457 gene expression level
measurements per sample. The data set is available at:
http://microarray.princeton.edu/oncology/carcinoma.html

• The LYMPHOMA dataset [AED+00a] that contains 62 samples of the
3 lymphoid malignancies samples types. The samples are measured
over 4026 gene expression levels. This dataset is available at:
http://genome-www.stanford.edu

• The LEUKEMIA [DFS02, GST+99] data set that contains 72 samples
of 2 types of acute leukemias.There exist 7129 gene expression level
measurements per sample. It is available at:
http://www.genome.wi.mit.edu/MPR
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Figure 7.2: Density estimation of the projected data onto the direction of
maximum nongaussianity (Top). Density estimation of the projected data
onto the first principal direction (bottom).

• The Lung Cancer (Dana-Farber Cancer Institute, Harvard Medical
School) dataset (LUNG-H) [BRS+01]. A total of 203 snap-frozen lung
tumors and normal lung were analysized. The 203 specimens include
139 samples of lung adenocarcinomas, 21 samples of squamous cell
lung carcinomas, 20 samples of pulmonary carcinoids, 6 samples of
small-cell lung carcinomas and 17 normal lung samples. Each sample
is described by 12600 genes. The data set is available at: http://www-
genome.wi.mit.edu/mpr/lung/

• The Lung Cancer (University of Michigan) dataset (LUNG-M)
[BKH+02] that contains 86 primary lung adenocarcinomas samples
and 10 non-neoplastic lung samples. Each sample is described by 7129
genes. It is available at:
http://www.camda.duke.edu/CAMDA03/contest.asp

• The DLBCL (Stanford) dataset (DLBCL-S) [AED+00b]. It contains
distinct types of diffuse large B-cell lymphoma (DLBCL) using gene
expression data. There are 47 samples, 24 of them are from germinal
centre B-like group while 23 are activated B-like group. Each sample
is described by 4026 genes. It is available at:
http://llmpp.nih.gov/lymphoma/
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In Table 7.2, the clustering results with respect to purity and V-measure
of the algorithms for each dataset are illustrated. For ICDC algorithm 100
experiments for each dataset have been made and we present the mean values
and standard deviation of purity, V-measure and number of found clusters
(standard deviation of zero value is not reported in the table). Although
both dePDDP and ICDC algorithms have the ability to automatically pre-
dict the actual cluster number, here we will not focus on this attribute of
the algorithms; the number of clusters to be found is given as input to the
algorithms. However, the termination criterion of the algorithms can still
be satisfied at any time. In the case of LUNG-H, LUNG-M, and DLBCL-
S datasets, to improve performance, the algorithms are forced to find more
clusters than the true number of classes. This is a common procedure for this
category of algorithms. The algorithms presented here in comparison with
the proposed method are projection based method based on Principal Com-
ponent Analysis. These are the original PDDP algorithm, the km-PDDP
algorithm [ZG07], and the dePDDP. The value of the bandwidth parame-
ter for the density function in the case of dePDDP and ICDC has been set
based on the “normal reference rule” (see Section 5.8) using the multiplier
value 2. As shown, in most of the cases, the ICDC algorithm has a signif-
icant performance advantage and in cases where dePDDP performs better
there is only a slight difference compared to ICDC. Thus, the use of the
proposed ICDC algorithm is highly recommended in the case of clustering
of microarray datasets.

Dataset LEY LYM CAR LUNG-H LUNG-M DLBCL-S

Classes 2 3 2 5 2 2

Cl. 2 3 2 10 10 10

PDDP Pur. 0.90 0.96 0.75 0.78 0.96 0.74

V-m. 0.56 0.87 0.19 0.33 0.25 0.23

Cl. 2 3 2 7 10 10

dePDDP Pur. 0.95 1.00 0.75 0.83 0.96 0.65

V-m. 0.77 1.00 0.19 0.43 0.25 0.15

Cl. 2 3 2 10 10 10

KM-PDDP Pur. 0.96 0.85 0.75 0.78 0.93 0.65

V-m. 0.77 0.64 0.19 0.33 0.14 0.10

Cl. 2 3 2 9.7(0.9) 8.7(2.0) 9.9 (0.3)

ICDC Pur. 0.98 1.00 0.97 0.82 (0.02) 0.96 (0.01) 0.86 (0.05)

V-m. 0.90 1.00 0.84 0.37 (0.03) 0.21 (0.05) 0.29 (0.04)

Table 7.2: Mean purity, V-measure, and number of clusters discovered for
the microarray datasets.

7.2.3 Concluding Remarks

In this Section, an effective hierarchical divisive technique, which utilizes the
ICA model, is presented. The new clustering algorithm projects the data
onto the direction of maximum interestingness and consequently incorpo-
rates information from the density of the projected data.
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The experimental results presented are promising, since the ICDC algo-
rithm outperforms other algorithms of the same class in the case of clustering
of microarray datasets.

§ 7.3 Density Based Projection Pursuit Cluster-

ing

Projection pursuit [FT74] is the procedure of finding “interesting” projec-
tions for a dataset, i.e. directions that maintain its structure and at the
same time reduce its dimensionality. This procedure can be consider as an
optimization task over the space of the projection directions, where one have
to optimize the interestingness criterion.

Several measures of interestingness can be found in the literature. It has
been argued that the direction in which the projected data are Gaussian
distributed is the least interesting one, while the most interesting directions
are those that exhibit the least Gaussian distribution [Hub85, JS87]. Classi-
cal measure of non-gaussianity are kurtosis and the fourth-order cumulant.
The most widely used type of projection pursuit is the Principal Compo-
nent Analysis (PCA) [JD88]. The interestingness criterion of the PCA is
the variance of the projected data.

In this Section a new interestingness criterion is introduced, based on
data cluster’s separability. Its main characteristic is that incorporates in-
formation from the density of the projected data. In turn, we integrate
the aforementioned interestingness criterion into a hierarchical clustering
technique and create a new clustering algorithm. To efficiently tackle the
optimization task for the projection pursuit procedure, we employ a stochas-
tic optimization methodology, namely the Differential Evolution (DE) algo-
rithm [SP97].

7.3.1 Density-based projection pursuit

Before describing the proposed projection pursuit method, we need to define
the optimization space. As we are interested of one-dimensional projections
of the data, we can restrict the optimization space to the half part of a unit
hyper-sphere.

For example, in the two dimensional space, the space of all possible
directions can be first restricted to the vectors on the unity circle as vectors
with different lengths produce the same direction. Also as the symmetric
vectors define the same directions, the projection direction space can be
further bounded in the half unit circle.

As such the optimization space for the two dimensional case can be
defined with the help of polar coordinates. Let θ be the angular coordinate
such that θ ∈ [0, π] and the radial coordinate δ = 1, then for any direction
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[x, y] holds that x = δ cos θ and y = δ sin θ (see Figure 7.3 (left)). Similarly,
in the three dimensional case the optimization space can be defined by the
vectors on the surface of the half part of a unit sphere. To explain better
the three dimensional case, we visualize the optimization space in Figure 7.3
(right).

0π

δ

Figure 7.3: Example of the projection direction space in the two (left) and
three (right) dimensional cases.

Having defined the optimization space, the main goal is to find an opti-
mizer, i.e. the best direction to project our data. PCA utilizes the variance
of the projected data as a quality criterion and assumes that the direction
that maximizes it is the most appropriate. This turns out to be the principal
direction of the data. Although PCA is a very effective technique, there are
cases where the structure of the projected data onto the principal direction
does not capture the data clustering structure. To illustrate such a case we
employ a two dimensional dataset shown at Figure 7.4 (top). The projected
data onto the principal component, as well as their corresponding density,
are illustrated at Figure 7.4 (bottom left). As expected, based on the de-
PDDP algorithm splitting criterion, we would be unable to appropriately
split the data into clusters, because the density of the projected data has no
minima.

To examine the optimization task of the PCA in this dataset, we can
observe the quality criterion of the projected data for several directions
(angular coordinate θ), in Figure 7.4 (bottom right). The maximum variance
direction is very evident and stable, although the corresponding projection
fails to capture the clustering structure.

In [TTP10a] we have introduced such a quality criterion guided by the
minimizer of the density function of the projected data. A lower density
value of the minimizer would determine a better direction [TTP10a]. How-
ever, no matter how coherent a dataset is, it is very common that there
is a projection direction for which the projected data will contain outlying
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Figure 7.4: The two–dimensional dataset with the principal direction (top).
The projections onto the principal direction along with their densities (bot-
tom left) and the optimization quality criterion (bottom right).

points. In those points, the density of the data will be very small and the
particular direction would be recognised as a good one, irrespective of what
happens to the bulk of the data. In such a case, the whole procedure could
be guided by the outlying points. The aforementioned behavior leads to a
hierarchical clustering algorithm that splits a dataset first to all the outlying
points before it actually splits actual clusters.

In this Section, we present a new quality criterion, i.e. a new objective
function that is able to avoid this problem. As long as we locate the min-
imizer x∗ of the projected data onto a particular direction, we retrieve the
maximum value of the density at the left (M1) and right (M2) side of the
minimizer. The new quality criterion is defined as the difference between
the density values of the splitting point and the minimum of M1 and M2
density values. Formally:

Definition 7.3.1. (Quality Criterion): Let u be any vector of Ra with
‖u‖ = 1, P be the set of projections pi of the vectors di onto u, f̂ ′(x;h′)
be the kernel density estimation of the projections pi ∈ P, and x? its global
minimizer as defined in Definition 7. Let M1 and M2 be the maximum
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density value at the left and the right sides of x? respectively and M =
max{M1,M2}. The Quality Criterion is a function QC : Ra → R of u
such that

QC(u) = f̂ ′(M ;h′)− f̂ ′(x?;h′)

We refer to this quality criterion as depth (see Figure 7.5). Using the
depth criterion the Projection Pursuit problem can be formally defined as
follows.

Definition 7.3.2. (Best Depth Projection Direction Problem): Let
U = {u ∈ Ra : ‖u‖ = 1} represent the space of projection directions. Then
the problem of finding the best depth projection direction resorts to finding the
maximum uopt of the projection directions space U , i.e. the vector uopt ∈ U
such that:

QC(uopt) > QC(u), ∀u ∈ U . (7.1)

To exhibit the behavior of the proposed best depth projection direction
methodology, we employ the two dimensional dataset used at the previous
example. At the top of Figure 7.6, we illustrate the best depth direction as
well as the principal direction of the data set. The projected data and their
corresponding density values onto the best depth direction are demonstrated
at Figure 7.6 (bottom left). As shown, this direction conveniently makes
the projected data density to contain a minimum between the points of the
two actual clusters. This is particularly very well suited for the dePDDP
algorithm, as the splitting criterion used by that algorithm would effectively
split the actual data clusters.

Similarly, for further visual understanding, we employ a three dimen-
sional dataset constituted by two clusters of different sizes (see Figure 7.7).
Figure 7.7 (top) illustrates the dataset along with the principal and the
chosen best depth direction, while their projections and their corresponding
densities are demonstrated at the bottom left and bottom right of Figure 7.7,
respectively. Finally, Figure 7.8 reports the landscape of the three dimen-
sional optimization space and its optimal value. As show, the optimization
landscape becomes more challenging as the dimensionality grows, since it is

M1

M2

global minimum

m

projected data

density function

projection direction

depth

Figure 7.5: The proposed quality criterion
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Figure 7.6: The two–dimensional dataset with the principal and the best
depth direction (top). The projections onto best depth direction along with
their densities (bottom left) and the depth quality criterion values (bottom
right) for each direction.

non-differentiable and highly multimodal. For this reason the utilization of
a global optimization algorithm is essential.

7.3.2 Differential Evolution

We attempt to tackle the aforementioned optimization problem using the
Differential Evolution (DE) algorithm [SP97]. DE is a stochastic paral-
lel direct search method, which utilizes concepts borrowed from the broad
class of Evolutionary Algorithms (EAs). DE is capable of handling non-
differentiable, discontinuous, non-linear, noisy and highly multimodal objec-
tive functions, which makes it a suitable choice to handle the aforementioned
landscapes.

More specifically, DE is a population–based stochastic algorithm that
exploits a population of NP potential solutions, individuals, to effectively
probe the optimization space. DE randomly initializes the population in
the D–dimensional optimization domain through a uniform probability dis-
tribution. Individuals evolve over successive steps to explore promising re-
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Figure 7.7: The three–dimensional dataset with the principal and the best
depth direction (top). The projections onto the principal direction (bottom
left) and the best depth direction (bottom right) along with their densities.

gions of the search space and locate the minima of the objective function.
The user–defined population size, NP , is fixed throughout the evolution
process. At each iteration, called generation, new vectors are derived by
the combination of randomly chosen vectors from the current population.
This operation in our context can be referred to as mutation, while the
outcoming vectors as mutant individuals. Several mutation strategies have
been proposed in the DE literature. The most common and widely used
can be found in [SP97, PSL05, DS11, ETP+11]. Afterwards, each mu-
tant individual is then mixed with another vector – the target vector –
through an operation called recombination or crossover, which yields the
so–called trial vector. The most well known and widely used variants of
DE utilize two main crossover schemes; the exponential and the binomial
crossover [SP97, PSL05, DS11]. Finally, the trial vector undergoes the se-
lection operator, according to which, it is accepted as a member of the pop-
ulation of the next generation only if it yields a reduction in the value of the
objective function f relative to that of the target vector. Alternatively, the
target vector is retained in the next generation. The search operators effi-
ciently guide the population to search for an optimum and focus on the most
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Figure 7.8: The best depth optimization landscape of the three–dimensional
dataset along with its optimum point.

promising regions of the solution space. A more comprehensive description
of the DE can be found in [SP97, PSL05, DS11, ETP+11].

More specifically, for each individual xig, i = 1, 2, . . . , NP, where g de-
notes the current generation, the mutant individual vig+1 can be generated
through several mutation strategies [ETP+11] with different characteristics.
The most known and widely used mutation strategy acts in accordance with
the following equation:

vig+1 = xr1g + F (xr2g − xr3g ), (7.2)

where F > 0 is a real parameter, called mutation constant and

r1, r2, r3, r4, r5 ∈ {1, 2, . . . , i− 1, i+ 1, . . . ,NP} ,

are random integers mutually different and not equal to the running index
i. The mutation constant, controls the impact of the difference between the
last two individuals and is mainly responsible for the convergence rate of
the algorithm [PSL05].

In turn, the recombination operator is applied to further increase the
diversity of the population. The outcome of the recombination operation are
trial vectors which are a combination of the mutant individuals with other
predetermined individuals, called the target individuals. In detail, for each
component l (l = 1, 2, . . . , D) of the mutant individual vig+1, we uniformly
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choose a real number r in the interval [0, 1] and compare this number with
the predefined recombination constant, CR. If r 6 CR, we select, as the l–th
component of the trial individual uig+1, the l–th component of the mutant

individual vig+1. Otherwise, the l–th component of the target vector xig
becomes the l–th component of the trial vector. Finally, the trial individual
is accepted for the next generation only if it reduces the value of the objective
function at hand (selection operator).

In this context, we try to tackle the optimization problem defined in
Definition 7.3.2, where the optimization search space is the space of all pos-
sible projections, i.e. U ⊂ Ra. It should be noticed that we do not constrain
the individuals of the population to lie in U . Instead, we let them lie in Ra.
However, when we evaluate the QC(·), we transform the trial individuals uig
to úig = uig/‖uig‖ and evaluate QC(úig) instead.

7.3.3 The Proposed Clustering Algorithm

In this Section, we present a new algorithmic scheme based on the principles
of the dePDDP algorithm. The new technique utilizes the depth quality
criterion proposed in Section 7.3.1 to guide a projection pursuit method. As
already mentioned, for finding the best depth direction over the space of all
possible ones, we use the DE optimization algorithm described above. After
projecting the data onto the direction of maximum depth the algorithm
splits them based on the global minimizer x∗. More specifically, the new
divisive hierarchical clustering algorithm, given the name DBPPC (Density
Based Projection Pursuit Clustering) utilizes the following criteria:

• (Stopping Criterion) STDBPPC : Let Π = {{Ci, Pi}, i = 1, . . . , k} a
partition of the data set D into k sets Ci, and the assorted projections
Pi of them onto the direction of maximum depth. Let X , be the set
of minimisers x∗i of the density estimates f̂(x∗i ;h) of the projection Pi
of the data of each Ci ∈ Π, i = 1, . . . , k. Stop the procedure when the
set X is empty.

• (Cluster Selection Criterion) CSDBPPC : Let Π = {{Ci, Pi}, i =
1, . . . , k} a partition of the data set D into k sets Ci, and the assorted
projections Pi of them onto the direction of maximum depth. Let F
be the set of the density estimates fi = f̂(x∗i ;h) of the minimisers x∗i
for the projection Pi of the data of each Ci ∈ Π, i = 1, . . . , k. The
next set to split is Cj , with j = arg mini{fi : fi ∈ F}.

• (Splitting Criterion) SPCDBPPC : Let f̂ ′(x;h′) be the kernel density
estimation of the density of the projections pi ∈ P, and x? its global
minimiser. Then construct P1 = {di ∈ D : pi 6 x?} and P2 = {di ∈
D : pi > x?}.

Based on that criteria Table 7.3 reports the complete algorithmic scheme.
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7.3.4 Experimental Results

In this section, we perform an experimental evaluation of the proposed
clustering algorithm. At the first part of our experimental analysis, we
employ a series of simulated datasets to examine the performance of the
proposed methodology. We compare the performance of the proposed clus-
tering algorithm against four well known clustering algorithms, namely de-
PDDP [TTP10b], k-means [HW79], DBSCAN [EKSX96], GMM. Table 7.4
reports the purity and Table 7.5 the V-measure of the algorithms in 100 ran-
domly generated datasets, using the described DSETbeta mechanism. The
clustering algorithms have been implemented in the Matlab environment.
For the k-means algorithm, we employ Matlab’s k-means functions. For
the DBSCAN algorithm the eps (neighborhood radius) parameter was set
to the default value given in [EKSX96] and the k (number of objects in a
neighborhood of an object) parameter was set to 5. The density estimation
of the projected data in the dePDDP and the DBPPC algorithms is calcu-
lated using the Fast Gauss Transform [YDGD03]. As proposed in [TTP10b],
the bandwidth parameter for the density was set by choosing a multiple of
the hopt bandwidth (“normal reference rule”), which is the bandwidth that
minimizes the Mean Integrated Squared Error (MISE). This is given by:

hopt = σ

(
4

3n

)1/5

,

where σ is the standard deviation of the data. The multiple was set to 4 for
these experiments.

To facilitate a more direct understanding of the results, we will use two
2-dimensional datasets constructed with the DSETbeta mechanism and will
resort to visual inspection (Figures 7.9 and 7.10). As shown for the dataset
of Figure 7.9 only the DBPPC algorithm manages to retrieve all the actual
clusters. Although more than 3 clusters have been retrieved, none of the

Function DBPPC (D) {
1. Set Π = {D}
2. Do
3. Select a set C ∈ Π, using Selection Criterion CSDBPPC
3. Split C into two sub-sets C1 and C2 using Splitting Crit. SPCDBPPC
4. Remove C from Π and set Π→ Π ∪ {C1, C2}
5. While Stopping Criterion STDBPPC is not satisfied
6. Return Π the partition of D into |Π| clusters
}

Table 7.3: The DBPPC algorithm summary.
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sub-clusters contain elements that belong to more than one actual cluster.
In Figure 7.10, the second dataset is a typical case, where projecting the
data onto the principal direction is not considered to be a good projection
and, as expected, dePDDP fails to split the data. On the other hand, the
DBPPC algorithms manage to split the data effectively.

Dimension 5

No. Of Cl. dePDDP k-means DBSCAN GMM DBPPC

5 0.90 (0.23) 0.97 (0.05) 0.52 (0.23) 0.99 (0.02) 0.98 (0.05)

25 0.34 (0.15) 0.86 (0.03) 0.06 (0.03) 0.88 (0.04) 0.86 (0.04)

Dimension 25

No. Of Cl. dePDDP k-means DBSCAN GMM DBPPC

5 1.00 (0.17) 0.96 (0.08) 0.90 (0.10) 0.96 (0.07) 1.00 (0.00)

25 0.80 (0.39) 0.88 (0.03) 0.05 (0.02) 0.86 (0.04) 1.00 (0.00)

Table 7.4: Mean purity for the generated datasets (with the observed stan-
dard deviation in parenthesis)

Dimension 5

No. Of Cl. dePDDP k-means DBSCAN GMM DBPPC

5 0.91 (0.19) 0.95 (0.06) 0.56 (0.33) 0.98 (0.04) 0.94 (0.05)

25 0.44 (0.21) 0.90 (0.02) 0.04 (0.07) 0.93 (0.02) 0.88 (0.03)

Dimension 25

No. Of Cl. dePDDP k-means DBSCAN GMM DBPPC

5 1.00 (0.22) 0.97 (0.05) 0.95 (0.05) 0.96 (0.06) 0.98 (0.02)

25 0.82 (0.42) 0.96 (0.01) 0.03 (0.05) 0.94 (0.01) 0.98 (0.01)

Table 7.5: Mean V-measure for the generated datasets (with the observed
standard deviation in parenthesis)

7.3.5 Real Data Application

In this section, we study the performance of the proposed method against
the aforementioned clustering algorithms in real world applications. For
this purpose, we employ two biomedical datasets from the UCI Machine
Learning Repository [BM98]; the Breast Canser dataset and the Vertebral
dataset, and two microarray datasets, the Leukemia [HKK05] and the Lym-
phoma [AED+00a] datasets. A brief description for each dataset is reported
below.

• (BREAST CANCER): This breast cancer database was obtained from
the University of Wisconsin Hospitals, Madison from Dr. William H.
Wolberg. There are 369 instances in this dataset, described though
10 features. Each instance has one of 2 possible classes: benign or
malignant. There are 16 instances that contain a single missing (i.e.
unavailable) attribute value that we arbitrary set to 0.
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Figure 7.9: Clustering results for a two dimensional dataset
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Figure 7.10: Clustering results for a two dimensional dataset
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• (VERTEBRAL): This biomedical data set was built by Dr. Henrique
da Mota during a medical residence period in the Group of Applied Re-
search in Orthopaedics (GARO) of the Centre Médico-Chirurgical de
Réadaptation des Massues, Lyon, France. There are 310 instances in
this dataset that corresponds to patients, described though 6 biome-
chanical attributes. Each patient belongs to one out of three cate-
gories: Normal (100 patients), Disk Hernia (60 patients) or Spondy-
lolisthesis (150 patients).

• (LEYKEMIA): The dataset is the one used by Handl et al. [HKK05]
in their survey of computational cluster validation to illustrate the
use of some measures. It is a 38 × 100 data matrix, where each row
corresponds to a patient with acute leukemia and each column to a
gene. For this dataset, there are three actual clusters.

• (LYMPHOMA): The dataset comes from the study of Alizadeh et
al. [AED+00a] on the three most common adult lymphoma tumors. It
is an 80× 100 matrix, where each row corresponds to a tissue sample
and each column to a gene. There are three clusters in the dataset. The
dataset has been obtained from the original microarray experiments
as described by Dudoit and Fridlyand in [DF02].

For this experiment the actual number of clusters was also given as in-
put to the dePDDP and DBPPC algorithms and the multiple value for the
bandwidth parameter was set recursively to 4. If the algorithm cannot split
the initial dataset, we decrease this parameter by 1/4. As shown at Ta-
ble 7.6, the DBPPC algorithm’s performance remains high in all cases. For
the Vertebral and the Leukemia datasets, since the DBPPC splits only a
few outliers at the first algorithmic steps, we let the algorithm retrieve a few
more than the actual clusters. Note that this is not an uncommon proce-
dure for this type of clustering algorithms. To have comparable results, we
assign the same number of clusters as input to all methods. It is important
to note that dePDDP algorithm although it is very effective for the first
three cases, it does not manage to split the Vertebral dataset at all. GMM
is producing good results as well, but it is unable to operate on the first
two datasets, because of their dimensionality. On the other hand, DBPPC
performs efficiently in comparison with the other methods. It is notable that
the DBPPC algorithm’s performance remains stable across all the different
datasets, while all the other considered methods, at least one of the cases,
fail to retrieve good results.
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Dataset Leukemia Lymphoma Breast-Cancer Vertebral

Classes 3 3 2 3

Cl. 4 3 3 ...

dePDDP Pur. 0.9737 0.8375 0.9714 ...

V-m. 0.8369 0.5885 0.8051 ...

Cl. 4 3 2 5

k-means Pur. 0.9695 (0.01) 0.8413 (0.04) 0.9585 (0.00) 0.7383 (0.01)

V-m. 0.8201 (0.02) 0.5826 (0.09) 0.7361 (0.00) 0.4023 (0.00)

Cl. 2 2 2 2

DBSCAN Pur. 0.6053 0.5250 0.7883 0.4839

V-m. 0.2782 0.1088 0.2614 0.0044

Cl. ... ... 2 3

GMM Pur. ... ... 0.8741(0.00) 0.7678(0.00)

V-m. ... ... 0.5553(0.00) 0.4540(0.03)

Cl. 4 3 2 5

DBPPC Pur. 0.9395 (0.01) 0.8750 (0.00) 0.9605 (0.00) 0.7461 (0.02)

V-m. 0.7010 (0.03) 0.6924 (0.03) 0.7470 (0.03) 0.4937 (0.05)

Table 7.6: Results with respect to the mean clustering purity and V-measure
(with the observed standard deviation in parenthesis)

§ 7.4 Conclusion

In this Section, we presented a new algorithmic scheme based on the princi-
ples of the dePDDP algorithm. The new technique utilizes a new measure
of interestingness (quality criterion) of projection directions to guide a pro-
jection pursuit method. For finding the best direction over the space of all
possible ones, we use the DE optimization algorithm. The performance of
the presented method is promising in simulated and real world clustering
applications.
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- Chapter 8 -

Clustering of High Dimensional Data Streams

One should always generalize.

—Carl Gustav Jacobi

§ 8.1 Introduction

Recent technological advances have made the continues collection of data
trivial. A series of everyday activities such as the use of a credit card, a
phone call or web browsing require data storage. Usually interesting infor-
mation can be mined from these large data collections, which is very useful
in several applications. When the stored databases are very large, a series
of computational and mining challenges arise.

The unlimited rate at which the data grow made impossible the passing
of the database multiple times. This introduces a number of constraints on
the implementation of the mining algorithms, as such the stream mining
algorithms should be designed in such a way that they should not require
more than one pass of the data. Another significant problem in mining of
data streams is the evolution of the streams over time, a behaviour often
referred as temporal locality. In that case, a straightforward adaptation of
one pass mining algorithms does not solves the mining task effectively. For
this reason the design of the stream mining algorithm must focus on the
evolution of the data over time.

A streaming clustering process aims to continuously track the clustering
structure of the data. Since stream data by nature imposes a one pass
constraint on the design of the algorithms, this task becomes more difficult.
In addition, in many cases streaming data are also high dimensional and in
result more complex to cluster, due to the effect that high dimensionality
has on distance or similarity [SEK03, BGRS99]. Recently, in [TTP10b], we
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126 Chapter 8. Clustering of High Dimensional Data Streams

have proposed a density based hierarchical clustering approach (dePDDP)
which can deal with high dimensional data, by projecting them onto a lower
dimensional subspace.

Most clustering methods cannot be used for streaming data, since they
rely on the assumption that the data are available in a permanent memory
structure, from which global information can be obtained at any time. How-
ever in many cases a clustering algorithm can be extended to the concept of
data streams. A k-means clustering model for data streams was proposed
in [DHEE01] and more recently, [CEQZ06] developed the DENSTREAM
algorithm, by extending the GDBSCAN algorithm.

§ 8.2 The Proposed Clustering Algorithm

In this Section, we extend the dePDDP framework and propose a new
method for high dimensional data stream clustering. To extend the de-
PDDP approach to streaming data we need to update online the hierarchi-
cal structure of the algorithm at each data point arrival. Thus the proposed
streaming modification will use the standard dePDDP methodology to as-
sign the data entry to an already defined cluster or to create a new one
one.

In more detail, at each time instant n for each new data point arrival
dn the proposed algorithm appropriately updates the hierarchical clustering
structure recovered up to that time point. Starting from the root node the
data points will be first projected on the u1 Principal Component (PC)
of all the points that have been up to that time assigned to that node.
Subsequently they will be assigned to a sub-node as described in Section 5.1,
based on the density estimate f̂(x;h) of all the points assigned up to that
time point to that node.

However, this would imply that all the points assigned to each node need
to be kept in memory to calculate both the PC u1 and f̂(x;h), which is
unrealistic in the data stream scenario. However, online methods have been
developed that overcome this constraint for online adaptation of both u1
and f̂(x;h), respectively. Here, for the principal component u1, we use the
candid covariance-free IPCA (CCIPCA) method [WZH03], which is based
on the work of Oja and Karhunen [OK85] and Sanger [San89]. The CCIPCA
method is described in Section 8.2.1. To calculate the density function over
data stream efficiently we employ the method introduced in [ZCWQ03] based
on the M-kernels concept. The main characteristic of this methodology is
that it only uses a fix-sized main memory, which is irrespective of the total
number of data points in the stream, and the time complexity is in linear
with the size of the data stream (see Section 8.2.2).

The complete algorithmic scheme of the new SPDC (Streaming Principal
Direction Clustering) algorithm is presented at Table 8.1. For each node of
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Function SPDC {
1. For each point arrival dn
2. Do
3. ID = RootNode
3. Update uID1 and calculate pIDn = uID1 dn
4. Update Density f̂(x;h)ID with pIDn
5. If there is a minimiser x∗ then
6. If pIDn > x∗ then ID = RkidID else ID = LkidID

7. go to 4
5. End If
}

Table 8.1: The SPDC algorithm summary.

the hierarchical structure the algorithm keeps in memory the node identity
ID, the PC uID1 , the Density Function f̂(x;h)ID, and the identity of the
left and right kid RkidID and LkidID respectively. For each point arrival
dn, the PC is updated and dn is projected onto the updated PC. Then the
density function is updated and d is assigned to the left or right sub-node
based on the minimizer x∗ as explained in Section 5.1. The iteration stops
when there is not a minimizer and the algorithms returns the identity ID.

8.2.1 Incremental PCA

Let d1, d2, . . . be the sample vectors that are acquired sequentially. Each
dn, n = 1, 2, . . ., is a a-dimensional vector. Without loss of generality, we can
assume that dn has a zero mean (the mean may be incrementally estimated
and subtracted out). Then the nth step estimate un1 of u1 is given by

un1 =
n− 1− l

n
un−11 +

1 + l

n
dnd

T
n

un−11

‖un−11 ‖
,

where (n − 1/n) is the weight for the last estimate and 1/n is the weight
of the new data. The positive parameter l is called the amnesic parameter.
With the presence of l, larger weight is given to new samples and the effect
of old samples will fade out gradually. In this work we do not use an amnesic
parameter and l is set to 0. Finally, to begin the iteration, we set u01 = d1,
the first direction of data spread. A mathematical proof of the convergence
of CCIPCA can be founded in [ZW01].
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8.2.2 Density Estimation over Data Streams

To calculate the density of a point at the time frame of the stream n we
need to calculate the sum of n elements as shown at Equation 5.3. To find
a minimizer x∗ we need to calculate the density over n points. As expected,
when data comes in the form of data stream, the large volume and the
endlessness of the data stream make it computationally impossible to keep
them in memory.

To handle data stream efficiently, we can maintain a representative sam-
ple of points with appropriately weights in order to accurately approximate
f̂(x;h), as described in [ZCWQ03].

Let m be the number of the sample of points that we keep in memory.
When a new point arrives at time m + 1 in order to update the density
function based on this point without increasing computational complexity
we merge two points based on a merging cost. As merging cost, we use
the distance between two consecutive points. Let pk and pl be the two
points with the smallest merging cost. Then pk and pl are substituted by
pn = (pk + pl)/2. The weight value of the kernel function that corresponds
to pn is the sum of the weight values of the kernel function of pk and pl
respectively. Then, at time point n, the density estimation can be written
as

f̂∗n(x;h) = n−1h−1
m∑
i=1

ρ∗iK ((x− pi)/h) .

where
∑m

i=1 ρ
∗
i = n.

The bandwidth parameter is very important for the quality of the den-
sity estimation. Most well known bandwidth strategies [Sco92] often assign
a global bandwidth to all kernels. However, these strategies depend on
the complete sample, which is not known in the concept of data streams.
To overcome this problem, we use an approximate solution that complies
with the processing requirements of data streams similar to the one used
in [HSia]. We use the “normal reference rule” bandwidth strategy, which is
the bandwidth that minimizes the Mean Integrated Squared Error (MISE).

For a sample with n samples this is given by hnopt = σ
(

4
3n

)1/5
, where σ is the

standard deviation of the data. The standard deviation here is computed
incrementally in constant time.

§ 8.3 Experimental Analysis

In this Section, we perform an experimental evaluation of the proposed clus-
tering method on streaming data. Firstly, we employ a series of simulated
datasets. In particular, we construct datasets by randomly drawing points
from a finite mixture of k Gaussian distributions that represent the actual
clusters in the data. 5000 points are drawn in total for each dataset. The
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mean of each Gaussian is randomly placed in [100, 200]a and the covariance
matrix is also randomly generated by an appropriate procedure, so as to
ensure that it is symmetric and positive definite.

Tables 8.2 and 8.3 report the clustering performance with respect to the
clustering purity, the V-measure and the number of the found clusters for
several types of datasets. For each dataset type, 50 experiments have been
performed and the mean values with the standard deviation (in the paren-
thesis) are presented. The clustering performance is always measured at the
last 100 points of the stream. The performance of the proposed method
is compared against the well known DENSTREAM algorithm [CEQZ06].
For DENSTREAM the ε parameter was set to 100. In the case of SPDC
(Streaming Principal Direction Clustering) 100 M-kernels where used in all
experiments. The bandwidth parameter for the density estimation was set
as explained in Section 8.2.2. As shown the SPDC clustering results yield
superior Purity and V-measure in most cases.

Dimension 2 Dimension 10

No. Of Cl. Purity V-measure Clusters Purity V-measure Clusters

SPDC SPDC

2 1.00 (0.02) 0.68 (0.09) 6.02 (1.59) 0.99 (0.06) 0.81 (0.16) 4.00 (1.43)

5 0.96 (0.07) 0.92 (0.05) 6.90 (1.68) 0.96 (0.07) 0.95 (0.05) 5.64 (1.16)

10 0.72 (0.14) 0.82 (0.09) 8.14 (2.06) 0.82 (0.11) 0.89 (0.06) 10.08 (2.26)

DENSTREAM DENSTREAM

2 0.51 (0.00) 0.00 (0.00) 1.00 (0.00) 0.85 (0.05) 0.70 (0.23) 1.70 (0.23)

5 0.22 (0.00) 0.00 (0.00) 1.00 (0.00) 0.56 (0.07) 0.60 (0.12) 2.70 (1.78)

10 0.12 (0.00) 0.00 (0.00) 1.00 (0.00) 0.23 (0.00) 0.35 (0.02) 2.00 (0.22)

Table 8.2: Mean purity, V-measure and number of the found clusters for
the artificial datasets.

Dimension 50 Dimension 100

No. Of Cl. Purity V-measure Clusters Purity V-measure Clusters

SPDC SPDC

2 1.00 (0.00) 0.90 (0.10) 2.88 (0.82) 1.00 (0.00) 0.92 (0.08) 2.64 (0.62)

5 0.97 (0.07) 0.97 (0.05) 5.30 (0.78) 0.90 (0.13) 0.93 (0.08) 4.84 (0.86)

10 0.85 (0.11) 0.91 (0.06) 9.18 (1.73) 0.78 (0.13) 0.86 (0.10) 8.26 (1.81)

DENSTREAM DENSTREAM

2 1.00 (0.00) 1.00 (0.00) 2.00 (0.00) 1.00 (0.00) 1.00 (0.00) 2.00 (0.00)

5 1.00 (0.00) 1.00 (0.00) 5.00 (0.00) 0.92 (0.01) 0.95 (0.00) 4.60 (0.26)

10 0.17 (0.00) 0.21 (0.05) 1.50 (0.27) 0.21 (0.00) 0.31 (0.04) 1.90 (0.54)

Table 8.3: Mean purity, V-measure and number of the found clusters for
the artificial datasets

To examine the sensitivity of the number of M-kernels parameter used by
SPDC algorithm, we perform a series of experiments for the 50-dimensional
5-cluster case. For each parameter value 50 experiments have been made. A
shown at Figure 8.1, a parameter value higher than 10 is enough to achieve
high quality results.
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Figure 8.1: Mean purity and V-measure with respect to the corresponding
number of M-kernels

Finally, we test the efficiency of SPDC and DENSTREAM at the For-
est CoverType real world dataset, obtained from the UCI machine learning
repository [BM98]. This dataset is comprised of 581012 observations char-
acterized in 54 attributes, where each observation is labelled in one of seven
forest cover classes. Here, we only use the 10 numerical attributes. In
Figure 8.2, we can see boxplots of the Purity and the V-measure of the clus-
tering result, obtained in the last 100 points for various time point of the
data stream for SPDC and DENSTREAM, respectively. The ε parameter
for DENSTREAM was set to 30 for better results. As shown the SPDC
results are superior in both cases. Purity values are always high, but the
V-measure obtain lower values since in most cases the algorithms tend to
find more clusters than the actual.
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Figure 8.2: Boxplots of Purity and V-measure for the Forest CoverType
real world dataset.
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§ 8.4 Concluding Remarks

Although many data stream clustering algorithms have been proposed in
the literature, very few of them can actually deal with high dimensional
data. Here, we present an algorithm that can effectively deal with such high
dimensional data streams. The proposed method shows promising results
in synthetic and real data scenarios.
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Conclusion

The so-called Pythagoreans, who were the first to take up mathematics, not only

advanced this subject, but saturated with it, they fancied that the principles of

mathematics were the principles of all things.

—Aristotle

Clustering is a subjective problem in its nature [GvLW09]. Although it
sounds easy to find similar objects in a database, the similarity in itself is
only in the eyes of the beholder. Additionally, the introduction of high di-
mensionality datasets posed new problems to the data analyst. Surprisingly
however, data clustering algorithms work and they provide meaningful re-
sults for a variety of problems ranging from text mining to microarray data
analysis [ZG07, TPV06]. To tackle the challenging new problems, a new
class of algorithms has been developed. These algorithms operate on the
projection of the data into a lower dimensional subspace in order to be able
to effectively discover clusters.

This thesis is devoted to the development of theoretically motivated clus-
tering methods drawing on principles from non-parametric density estima-
tion and recent dimensionality reduction approaches. This approach en-
able us to develop our understanding of the clustering problem and develop
effective methods for real world problems that arise in text mining, face
recognition and several biomedical applications.

The second Part of this thesis is devoted to the original work introduced
here. More precisely, in Chapter 5, we try to deepen our understanding
on what can be achieved by approaches that are based on dimensionality
reduction techniques. We first make assumptions on the nature of the true
clusters in the data (“inductive bias”) and then attempt to theoretically
discover the relationship between the true clusters and the distribution of
their projection onto the principal components. Based on that, appropriate
criteria for the various steps involved in hierarchical divisive clustering are
proposed. At a next step, these criteria are combined into new algorithms
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and their effectiveness is investigated.

The proposed algorithms require minimal user-defined parameters and
have the desirable feature of being able to provide approximations for the
number of clusters present in a dataset. This in itself is an open problem in
cluster analysis and little has been done in the past for the high dimensional
data case that we are mostly concerned with here.

The included experimental results indicate that the proposed techniques
are effective both in terms of partitioning the data and determining the true
number of clusters in the dataset. Their performance is very good, even
compared against the popular density based methods. Finally, to stress test
the proposed methods a series of experiments on real world microarray and
test mining datasets are included. In this case, density based techniques
cannot be directly applied and complicated feature selection methods are
required to actually get results [TPV06]. However, the proposed algorithms
exhibited promising results even in these hard and extremely interesting
problems.

Later on, in Chapter 6, those approaches are extended to cases of ultra
high data dimensionality. In such cases, even the application of Principal
Component Analysis becomes problematic. For this type of problems, Ran-
dom Projection has been proposed as a computational efficient alternative,
with appealing theoretical characteristics. Thus, it is examined how Ran-
dom Projection can be used into the recently proposed dePDDP clustering
framework. Additionally, a theoretically study of the properties of the re-
sulting framework is provided.

In the analysis, it is shown that as the Random Projection method does
not significantly alter the distribution of the data on the projected space,
the theoretical characteristics of the clustering algorithms remain valid. This
result suggests that the resulting clustering framework would suffer minimal
performance losses, while gaining all the computational savings of the Ran-
dom Projection method. Finally, using an experimental analysis of a com-
bination of simulated and real world datasets, it is shown that the resulting
algorithms can at least maintain the performance of the original Principal
Component Analysis based algorithms in a fraction of computation time.

Subsequently, in Chapter 7, new clustering algorithms are constructed
based on the alternative methods for finding suitable projections directions.
For this purpose a new measure of interestingness (quality criterion) of pro-
jection directions is introduced and for each problem the Differential Evolu-
tion algorithm is used to optimize it. In an additional attempt to retrieve the
direction of maximum interestingness, the ICA model is utilized and incor-
porated into a hierarchical divisive clustering technique. The constructed
clustering algorithms present promising performance in several simulated
and real world clustering applications, since they outperform other algo-
rithms of the same class.
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Finally, in Chapter 8, a streaming clustering approach is constructed by
extending the high dimensional clustering algorithm presented in Chapter
5. Although many data stream clustering algorithms have been proposed in
the literature, very few of them can actually deal with high dimensionality.
The algorithm presented here can effectively deal with high dimensional
data streams. The proposed method shows promising results in synthetic
and real data scenarios.
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