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Abstract 
 
  
One of the main common cancer therapy problems is late detection. Circulating tumor cells 

(CTCs) invade the lymphatic system, causing metastases. Isolation of CTC’s is a difficult 

process while current methodology is not always productive. However, genetic sequencing 

of isolated CTC’s, can give us the panorama of the gene mutations, which are similar to 

those from the solid tumor they originated. Therefore, cancer treatment can be designed 

based on each patient’s molecular profile of the disease. In the framework of this Thesis, 

collections of identified cancer driver genes were screened to identify drugs targeting 

specific cancer drivers and the number of anticancer agents that are currently on clinical 

trials. Successful isolation of CTC’s from blood samples can be tedious. A new CTC 

detection method based on the telomerase activity in cancer cells has been used. Firstly, 

MCF7 and MDA-MB-231 cell lines were infected with the virus vector OBP-401, to test the 

efficiency of the detection method through the expression of a Green Fluorescent Protein 

(GFP). The procedure was further optimized by testing patient's blood samples. Although the 

detection was successful, the ratio of living cells to GFP positive cells was low while the 

number of GFP positive cells was much lower than expected. Nevertheless CTC’S  were 

isolated successfully and through single cell genetic sequencing, the number of mutations 

for each patient has been obtained. By using the aforementioned cancer driver genes 

database, patients were able to find out whether their oncogenic mutations could be treated 

or whether they are on a clinical trial level, paving the way for individualized cancer 

treatment. 
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 Aim 
 
 
 

The aim of thesis was to produce a database of drugs that target specific mutations on 

cancer driver genes which may be employed for personalized cancer therapy. This database 

may also serve as an additional diagnostic test when combined with mutations on circulating 

tumor cells for any clinically new treatment target. Thus, we provided a census of human 

cancer genes, including those that are currently considered druggable. For the experimental 

part, we provided an orthogonal verification that isolated single cells are viable, potentially 

immortal (conforming to cancer diagnosis), and providing triaging for genetic sequencing. 

Cancer cells for single cells project, were verified by the use of hTERT promoter in 

adenovirus vector with EGFP reporter (Oncolys Biopharma,Telomescan),combined with 

cancer cell detection and verification. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Introduction. 
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Cancer is a group of more than 100 distinctive diseases. Tumorigenesis is a process with 

many steps including alterations in cell genotypes (Diaz-Cano, 2012). Essential alterations in 

cell physiology include self-sufficiency in growth signals, insensitivity to anti-growth signals, 

evading apoptosis, limitless replicative potential, sustained angiogenesis tissue invasion and 

metastases (Futreal et al. 2004), deregulated metabolism, evading immune system, genome 

instability and inflammation (Futreal et al. 2010). Most human cancers are caused by two to 

eight alterations that develop over the course of 20 to 30 years (Vogelstein et al. 2013). 

Cancer originates at the single cell level but also spreads by way of one or more single cells 

from its tissue of origin to neighboring lymph nodes or to far distant organs through blood 

stream forming metastases. Furthermore, cancer cells can invade existing tumors with new 

variants of the original cancer clone, including new sub clones that are treatment resistant 

(Martin et al. 2013). 

 

Cancer starts with a single cell; therefore cancer therapy needs to be based on properties of 

single tumor cells. Results of genetic sequencing showcase the limited number of cancer 

driver mutations. A driver mutation is causally implicated in oncogenesis. It has conferred 

growth advantage on the cancer cell and has been positively selected in the microenviron-

ment of the tissue in which the cancer arises. A passenger mutation has not been selected, 

has not conferred clonal growth advantage and has therefore not contributed to cancer de-

velopment (Stratton et al. 2009). A central goal of the cancer genome analysis is the identif i-

cation of cancer driver genes. The main problem is to distinguish driver from passenger mu-

tations. Driver mutations cluster in the subset of genes that are cancer genes whereas pas-

senger mutations are more or less randomly distributed (Campbell et al. 2009). 

 

This is important information in fighting cancer. Targeting cancer in the level of individual 

cells increases the chances of successful treatment. In order to do that, we need to know the 

specific genes that are mutated in each individual cancer. Close examination of individual 

genes, has identified a relatively small number of genes responsible for cancer (out of the 

20,000 genes in the human genome). The cancer gene census is still ongoing. An individual 

cancer is caused by various combinations of 2 to 8 out of the total of hundred cancer genes.  

With single cell genetic sequencing, we can discover what gene mutations need to be tar-

geted for treatment in each individual patient. As we complete the census of potential cancer 

genes and mutations and as the companies develop new drugs targeting them, we can treat 

the root causes of cancer, based on individual cell information (Ericsson et al. 2016). 
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2. Cancer driver genes. 

   

The identification of new cancer driver genes constitutes a scientific breakthrough due to the 

challenges which occur from the heterogeneity of somatic mutations and the number of 

genes mutated at a low frequency. Cancer driver genes can be categorized into three 

groups: 1) gain of function (oncogenes), 2) loss of function (tumor suppressor genes), 3) 

switch of function, which promotes malignant transformation.  

 

A central aim of cancer research has been to identify the mutated genes that are implicated 

in oncogenesis. COSMIC, the Catalogue of Somatic Mutations in Cancer and IntOGen-

mutations platform, are the world’s largest and most comprehensive resources for exploring 

the impact of somatic mutations in cancer. 

 

 
 

 2.1 Cosmic cancer genes census. 

 

COSMIC (http://cancer.sanger.ac.uk/cancergenome/projects/cencus/) is an online database 

of somatically acquired mutations found in human cancer. It is the largest catalogue of 

exploring the impact of somatic mutations in cancer. COSMIC can accommodate information 

on base substitutions, insertions and deletions, translocations and changes in copy number. 

Data sources are identified from the published literature and online data portals. Over 300 

cancer genome publications have now been curated, and COSMIC includes substantial data 

sets from The Cancer Genome Atlas and International Cancer Genome Consortium project 

(Pleasance et al. 2010). 

 

 Approximately half of COSMIC's cancer genomes are curated from these consortium data 

portals, the other half from curations of published literature. The details of samples and 

disease descriptions are curated into COSMIC manually, and the mutations, usually supplied 

as genomic co-ordinates, are annotated automatically via a software pipeline. Upon 

selection of a gene from the Census for full expert curation, all papers mentioning its 

mutation in human cancer are collected and exhaustively curated before it is released into a 

new version of COSMIC (Forbes et al. 2014).  

 

Once this initial curation is released, the gene is updated as significant new information is 

published. Each curator is responsible for a defined set of 60 or more genes, developing 

substantial expertise. In parallel, cancer genomes are curated via a more bioinformatic 
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approach. Genomic data is obtained half from published supplementary information tables, 

and the other half from genome consortia such as TCGA, ICGC. Such molecular profiling 

includes point mutations, gene fusions, copy number annotations, structural breakpoints, 

gene expression and CpG island methylation variants (Forbes et al. 2014).  

 

 

  Figure 1: COSMIC list of driver genes as it is shown in the front page of the website. 
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2.2 IntOGen. 

 

The IntOGen-mutations platform (http://www.intogen.org) summarizes somatic mutations, 

genes and pathways involved in tumorigenesis. It identifies and visualizes cancer drivers, 

analyzing 4,623 exomes from 13 cancer sites. It provides support to cancer researchers, 

aids the identification of drivers across tumor cohorts and helps rank mutations for better 

clinical decision-making. The IntOGen-mutations pipeline integrates the results of tumor 

genomes analyzed with different mutation-calling workflows and is scalable to hundreds of 

thousands of tumor genomes (Gonzalez-Perez et al. 2013).  

 

It currently includes OncodriveFM7, a tool that detects genes that are significantly biased 

toward the accumulation of mutations with high functional impact (FM bias) without the need 

to estimate background mutation rate, and OncodriveCLUST9, which picks up genes whose 

mutations tend to cluster in particular regions of the protein sequence with respect to 

synonymous mutations (CLUST bias) (Online Methods). Both tools detect signals of positive 

selection, which appear in genes whose mutations are selected during tumor development 

and are therefore likely drivers (Araya et al. 2016). 

 

 

  Figure 2: IntOGen list of driver genes as it is shown in the front page of the website                                      
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2.3 Candidate cancer gene database. 

 

The CCGD (http://ccgd-starrlab) is a manually curated database containing a unified 

description of all identified candidate driver genes and the genomic location of transposon 

common insertion sites (CISs) from all currently published transposon-based screens. The 

current version includes data and results from 28 publications covering 40 individual 

screens. All data have been manually curated and genomic loci have been updated to the 

current genome build. Searches can be by gene, study or cancer type. This allows users to 

determine if a gene of interest is a putative cancer driver gene and quickly generate a list of 

driver genes that have been identified in a particular tumor type (Abott et al. 2015). 

 

 

 Figure 3: CCGD list of driver genes as it is shown in the front page of the website.                                      
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2.4 Differences between the databases. 

 

One of the main differences between the three databases is the way the genes are selected 

in order to be included in each table. In cosmic cancer gene census, there is a manual 

approach that helps the capture of very high detail across mutation positions, disease 

descriptions and other patient and population data (such as age, ethnicity and therapeutic 

regime). Experienced curators identify inconsistencies or errors in publications, allowing the 

rejection of untrustworthy, incomplete or unspecific data sources. New genes are included in 

only when curation of their literature is exhausted, and the mutation patterns are as up-to-

date as possible. Complementary to the manual curation effort, a semi-automated approach 

has been developed for curation of large cancer genome (and exome) data sets. The details 

of samples and disease descriptions are curated into COSMIC manually, and the mutations, 

usually supplied as genomic co-ordinates, are annotated automatically via a software 

pipeline using Ensembl genome annotations. This utilizes custom software similar to the 

Variant Effect Predictor to identify the positions of coding mutations as well as consequence 

annotations (Forbes et al. 2015).   

 

On the other hand, IntOGen instead of using mutation recurrence measurements detects 

other signals of positive selection. For instance, OncodriveFM detects genes in which 

observed mutations in tumors are biased towards high functional impacting mutations. One 

important advantage of this method is that it does not depend on the background mutation 

rate. OncodriveCLUST, on the other hand, detects genes in which mutations are clustered in 

certain protein regions. An important feature of our methods is that they only require the list 

of somatic mutations as input and they are computationally inexpensive, both of which are 

important features when analyzing large cohorts of tumors like we do in IntOGen-mutations 

(Gonzalez-Perez et al. 2017).  

 

As far it concerns the candidate cancer gene database, CCGD is a manually curated 

database and the genes are identified in mouse models in all published transposon-based 

forward genetic screens for cancer. If the frequency of transposon insertions in a given 

genomic region is higher than expected by chance, the region is called a CIS and the genes 

within or near this region are identified as candidate cancer genes (Abott et al. 2015).  

 

Another also significant difference between the first two databases, is the number of genes 

included in each database. In COSMIC, there is a total number of 609 cancer genes in 

comparison with IntOGen which includes a total number of 459 genes. In the two lists, only 

185 genes are in common (Figure 4). 
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ABL2 ATRX CDK4 DNMT3A FGFR2 IDH2 MKL1 NRAS RAD21 TCF7L2 

ACSL3 AXIN1 CDKN1B EGFR FGFR3 KAT6B MLH1 NSD1 RBM10 TET2 

ACSL6 AXIN2 CDKN2A EIF4A2 FIP1L1 KDM5C MLLT4 NUP98 RHOA TGFBR2 

ACVR1B B2M CEBPA ELF4 FLT3 KDM6A MTOR PAX5 RUNX1 THRAP3 

AFF4 BAP1 CHD4 EP300 FOXA1 KDR MYB PBRM1 SETD2 TP53 

AKAP9 BCL11A CHEK2 ERBB2 FOXP1 KEAP1 MYC PER1 SF3B1 TSC1 

AKT1 BCOR CIC ERBB2IP FUBP1 KIT MYCN PHF6 SMAD2 U2AF1 

ALK BLM CIITA ERBB3 FUS KLF4 MYD88 PIK3CA SMAD4 USP6 

APC BMPR2 CLTC ERCC2 GATA3 KLF6 MYH11 PIK3R1 SMARCA4 VHL 

ARHGAP26 BRAF CNOT3 EZH2 GNA11 KRAS MYH9 PLCG1 SMARCB1 WHSC1 

ARID1A BRCA1 CREBBP FAM123B GNAS LCP1 NCOR1 PPM1D SPOP WHSC1L1 

ARID1B BRCA2 CRTC3 FAM46C GOLGA5 MAP2K1 NCOR2 PPP2R1A SRGAP3 WT1 

ARID2 C15orf55 CTCF FANCI HLA-A MAP2K4 NDRG1 PPP6C STAG2 XPO1 

ARNTL CASP8 CTNNB1 FAS HLF MAP3K1 NF1 PRKAR1A STK11 ZFHX3 

ASXL1 CBFB CUX1 FAT1 HNF1A MAX NF2 PRRX1 SUZ12  

ATF1 CCND1 CYLD FBXO11 HRAS MECOM NFE2L2 PSIP1 SYK  

ATIC CDC73 DDX3X FBXW7 HSP9OAA1 MED12 NOTCH1 PTCH1 TBL1XR1  

ATM CDH1 DDX5 FCRL4 HSP9OAB1 MEN1 NOTCH2 PTEN TBX3  

 

Figure 4: List of driver genes that are in common in COSMIC and IntOGen platforms. 
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3. Overview of targeted cancer therapies. 

 

3.1 Cancer driver genes as targeted cancer agents. 

 

The discovery of a single driver gene is the first step in the development of targeted or 

immune therapies. While the discovery of the complete set of driver genes will take time, the 

identification of new cancer driver genes is a scientific breakthrough with limited benefits for 

cancer patients unless it can be targeted by a drug. However, designing a drug is even 

harder than identifying a cancer gene in the first place, and it is getting harder every year.  

 

The cost of developing a new drug doubles approximately every nine years. During the last 

20 years less than 200 cancer drugs have been approved by FDA (US Food and Drug 

Administration). This is due to the varying degrees of toxicity and the cancer heterogeneity in 

each patient. Targeted cancer therapies are mostly drugs or other substances that interfere 

with specific targets in order to stop the growth and spread of cancer. They are designed to 

interact with a specific target (molecular target) and that is why they sometime are called 

molecularly targeted therapies. 

 

Targeted cancer agents are classified as either monoclonal antibodies or small molecules. 

Monoclonal antibodies target specific antigens on the surface of the cell in comparison with 

small molecules that penetrate the membrane to interact with targets inside the cell 

(interference with the enzymatic activity of the target protein). The FDA has approved 

multiple targeted drug cancer therapies.  

 

3.2 FDA approved drugs for cancer driver genes.  

 

Current targeted therapies can be categorized in three different approaches: 1) direct target-

ing in order to inhibit activated cancer driver genes 2) indirect targeting through the inhibition 

of non-altered proteins connected to the altered drivers and 3) therapies that compensate 

the activity loss of a tumor suppressor gene.  Unfortunately, current therapies cannot replace 

the function of a tumor suppressive gene. Furthermore, the majority of the approved drugs 

cannot interfere with drivers that participate in protein complexes. Also, genetic heterogenei-

ty among the cells can have a huge impact in patients’ response to targeted cancer therapy.  
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The FDA has approved over the past 20 years less than 200 cancer drugs due to the cost of 

developing new drugs in addition with the varying degrees of toxicity, pervasive institutional 

regulation and patient heterogeneity. In order to identify how many of these cancer drugs 

have specific targets (cancer driver genes that are included in COSMIC and IntoGen). A list 

exported from the FDA official site (http://www.fda.gov) comprising a total of 609 genes in 

COSMIC and 459 genes in IntoGen, was screened leading to the discovery of only 25 genes 

that are specific targets for cancer drugs that have been approved by the FDA (Figure 5). 

 
 
 
   
            DRUG GENES  

1. AFANITIB EGFR, HER2 
2. AXINITIB KIT,PDGFR 

3. BELINOSTAT HDAC 

4. BOSUTINIB ABL 

5. CABOZANTINIB FLT3,KIT,MET,RET 

6. CERITINIB ALK 
7. CETUXIMAB EGFR 

8. COBIMETINIB MEK 

9. CRIZOTINIB ALK,MET,ROS1 

10. DABRAFENIB BRAF 

11. DASATINIB ABL,KIT,SRC 
12. ERLOTINIB EGFR 

13. EVEROLIMUS mTOR 

14. GEFINITIB EGFR 

15. IBRUTINIB BTK 

16. IDELALISIB PI3K 
17. IMATINIB ABL,PDGFR 

18. LAPATINIB HER2 

19. NECITUMUMAB EGFR 

20. NINTEDANIB PDGFR 
21. NILOTINIB ABL 

22. OLAPARIB BRCA1/2 

23. OLARATUMAB PDGFR 

24. OSIMERTINIB EGFR 

25. PALBOCICLIB CDK4/6 
26. PANITUMUMAB EGFR 

27. PANOBINOSTAT HDAC 

28. PAZOPANIB KIT,PDGFR,RAF,RET 

29. PERTUZUMAB HER2 

30. PONATINIB ABL,FGFR,FLT3 
31. REGORAFENIB KIT,PDGFR,RAF,RET 

32. ROMIDESTIN HDAC 

33. RUCAPARIB BRCA1/2 

34. RUXOLITINIB JAK 
35. SIROLIMUS mTOR 

36. SONIDEGIB SMO 

37. SORAFENIB BRAF,FLT3,PDGFR,RAF,RET 

38. SUNITINIB FLT3,KIT,PDGFR,RET 
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39. TEMSIROLIMUS mTOR 

40. TRAMETINIB MEK 

41. TRASTUZUMAB HER2 
42. VANDETANIB RET 

43. VEMURAFENIB BRAF 

44. VENETOCLAX BCL-2 

45. VISMODEGIB PTCH,SMO 

46. VORINOSTAT HDAC 

              
Figure 5. List of current FDA approved drugs targeting specific cancer driver genes. The list includes 
only drugs that are used against these cancer drivers as primary targets. Cancer drivers that are tar-
geted by these FDA approved drugs as secondary targets via metabolic pathways are not included. 
 
 

 

3.3 Clinical trials. 

 

Clinical trials provide the basic evidence of efficacy and outcome that regulators, providers, 

and insurance companies rely on when they determine whether or not to approve, prescribe, 

or reimburse a patient for taking a drug. Trials are incredibly slow and expensive for a myriad 

of reasons, but perhaps the most important one that relates to our lack of rapid therapeutic 

progress is the mismatch between disease, trial design, and patient enrollment (Lefkofsky, 

2016). 

 

Clinical trials are not often based on the molecular profile of each patient. The main criteria 

for the enrollment of a patient, is only if it fits the phenotype of the disease that is under ex-

amination. But, each patient’s response in the trial is often based on these molecular charac-

teristics such as point mutations. Furthermore, trials are so expensive and as a result com-

panies prefer to avoid small or targeted trials such as drugs for specific cancer driver genes. 

The percentage of people that carry the specific mutations that are under investigation  in 

each trial is very low. So it is rather difficult to find enough patients to conduct the trials. Also, 

a trial for drug that targets a specific cancer driver gene implies a small market size. The 

necessary investments for clinical trials are huge, so each company wants a market that can 

actually support the up-front cost of the clinical trials. But due to cancer’s heterogeneity, in 

the near future in order to be able to treat cancer effectively, we need to design tailor -made 

drugs, especially for rare cancer driver genes mutations. Though, targeting specific driver 

genes, can be a huge step in cancer treatment, combination therapies hold even a bigger 

promise to each patient’s unique molecular composition. 

 

Clinical trials determine which new investigational drugs are allowed to enter medical prac-

tice, but the unit on which value is measured in a clinical setting is not a drug, but a trea t-
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ment pathway. Currently, many anticancer agents are studied as potential drugs against 

cancer drivers (http://clinicaltrials.gov). The table below presents the genes from the 609 

genes of COSMIC catalogue and the 459 genes of IntOGen catalogue, associated with a 

specific anticancer agent that is currently on clinical trials (Figure 6). 

 
 
 GENES             DRUGS 

AKT cenisertib, ipatasertib ,afuresertib, uprosertib, ARQ751, AZD5363. 
ALK dalantercept, brigatinib, alectinib(approved in japan), lorlatinib,entrectinib. 

 
ATR VX-803,VX-970 
BCL-2 navitoclax,,obatoclax,oblimerson,rosomindar. 

AT101 

BRAF ARQ736,BGB-283,RAF265,PLX3603 
BRACA1/2 BMN673(talazoparib), 
BRD3/4 GSK525762. 
BTK acalabrutinib,cenisertib,AVL-292 
CCND1 briciclib 
CD27 Varlilumab 
CD74 Milatuzumab 
CDK4/6 Ribociclib,abemaciclib 
CDKN2A Iloraserib 
CHEK2 Rabuserib 

DDR2 Sitravatinib 
EGFR AEE788,brigatinib,naquotinib,vandetanib,Icotib,canertinib,rociletinib,epitinib,theliatinib 

Olmutinib,pelitinib,poziotinib,dacomitinib,,Modotuximab,depatuxizumab,nimotuzumab 
Duligotuzumab,AZD8931,AC480,BMS-690514 

FGFR1/2/3 Masitinib,lucitanib,sulfatinib,dovinitib,Erdafinitib,orantinib,AZD-4547,BGJ398 
DEBIO1347,XL228,enmd-2076,HGS1036,LY28774455 

FLT3 Quitinib,cenicertib,gilteritinib,lestaurtinib,,Crenolanib,tandutinib,amuvattinib,midostaurin 
Enmd-2076,PLX3397 

HDAC Resminostat,citarinostat,abexinostat,entinostat,retinostat,ricolinostat,mcetinostat 

HER2 AEE788,tucatinib,canertinib,neratinib,XL647,Mubritinib,glycooptimized 
trastuzumab,margetixumab,MM-111-5422 

HSP90 Tanespimycin,onalespib,luminespib,ganetespib,Retaspimycin,debio0932,SNX-
5422,XL888 

IDH1/2 AG-120,enasidenib 

JAK1/2 PRT062070,AT9283,BMS-911543,XL019,Itacitinib,lestaurtinib,fedratinib,pancritinib, 
gandotinib. 

KIT Masitinib,motesanib,cenisertib,telatinib,XL820,Sitravatinib,tandutinib,amuvatini, 
modostaurin 

KRAS BGB-283 
MAPK1 BVD-523,MK-835m3 
MDM2 idasanutlin 
MEK AZD8330,BI847325,CL-1040,GDC-0623,PD0325901,ROS5126766,TAK-733 

MET AMG208,AMG337,BMS-777607,foretinib,EMD1214063,PF042217903,SAR125844 
ABT-700,volitinib,glesatinib,sitravatinib,amuvatinib,emibetuzumab,onartuzumab 

MTOR Ridaforolimus,dactolisib,apitolisib,sapanisertibGedatolisib,voxtalisib,AZD2014,AZD8055 
BGT226,CC-223,OSI-027,PF-4691502PI103,PWT33597,SF1126 

NOTCH1 brontictuzumab 
NRAS BGB-283 
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NTRK1/2/3 AZD7451,LOXO-101,PLX7486,TSR-011Sitravatinib,entrectinib,lestaurtinib 

PDGFR Iloraserib,motesanib,pazopanib,sitravatinib,Tandutinib,X-82 
PDGFRA/B Crenolanib, amuvatinib,linifanib,axitinib,Sorafenib,telatinib,regorafenib,sunitinib 

Orantinib,tovetumab,XL820 

PI3K panlisib,dactolisib,buparlisib,alpelisib,Pictilisib,apitolisib,omipalisib,gedatolisib 
Pilaralisib,sophoretin,quercetin,PI-103,GSK2636771,PF-4691502,PWT33597 
PX-866, SF1126. 

PKC Sophoretin,enzastaurin 
RAF Encorafenib,MLN2840,ROS5126766,XL281 
RET Motesanib,sitravatinib,amuvatinib 

ROS1 Iorlatinib,entrectinib 
SMO Patidegib,taladegib 

STAT3 OPB-31121 
SRC Sracatinib,ilorasertib,KX2-391,XL228 
SYK Entospletinib,fostamatinib,PRT062070 
TGFBR1/2 Galunisertib,IMC-TR1 
XPO1 Selinexor 
 

Figure 6. List of anticancer agents that are currently on clinical trials against specific cancer drivers 
as primary targets. 
 

 

3.4 FDA versus EMA. 

 

The evolution of European regulation of DADs, by contrast, is much more recent, with signif-

icant changes after the formation of EU in 1993. Before EU regulation and marketing ap-

proval for DADs fell to each member state. Differences in regulations among the states often 

impeded marketing and disbursement of DADs across Europe, and in some cases fostered 

“protectionist” legislation within states to shield sovereign nations' companies from fierce 

market competition. Among the current 28 member states, many interstate agencies have 

been reorganized. Clinical trial applications are generally handled in the member state, 

whereas marketing applications are approved by both state and central agencies in accord-

ance with regulations set forth by the EC. After clinical trials, FDA drug approvals follow a 

centralized path, whereas European approval can occur through 4 different paths, depend-

ing on the nature of the drug and the preference of the manufacturer( Norman et al. 2016) 

(Figure 7). 
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Figure 7: Differences between the procedures for drug approval in USA and Europe. Taken from Van 

Norman et al. 2016. 

 

The FDA and the EMA regulatory systems, share common goals. Despite the main effort of 

each organization to approve drugs which can reach the public more quickly, the motives 

behind the approvals appear to have huge dissimilarities. Drugs appear to be approved 

more quickly in Europe than in the United States. However, analysis indicate, that they actu-

ally reach the commercial market more quickly in United States than in Europe. During the 

past years, efforts to promote transparency and mutual standardization of DAD approval ac-

cesses, are currently underway (Norman et al. 2016). 
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Figure 8: Time of approval of drugs for specific cancer driver genes. 
a
Numbers indicate time to final 

approval from the European Commission, with time to positive opinion from EMA’s Committee for 

Medicinal Products for Human use given in parenthesis, 
b
under review at time of publication, 

c
Priority 

review procedure used. Taken from RR Shah et al. 2013. 
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4. Circulating tumor cells. 

 

4.1 CTC’s role in metastasis. 

 

The major cause of cancer-associated mortality is tumor metastasis. Cancer cells invade the 

surrounding tissue of the primary tumor into lymphatic and blood circulation systems co-

opting them as a transportation vehicle to ultimately metastasize to other parts of the body 

(Marchetti et al. 2014). Once in the blood, the vast majority of the circulating tumor cells 

actually die from natural causes, but a few survive. A few of those also attach at distant 

organs where they may exit the circulation and migrate further into the distant organ site 

where they may settle down. A fateful few of those dispersed cells may in turn start to grow 

to found new tumors (Ericsson et al. 2016). Because this process mostly occurs through the 

blood, circulating tumor cells (CTCs) are of obvious importance and interest. CTCs might 

serve as an alternative source of material (liquid biopsy”) to diagnose cancer patients, in 

contrast to current invasive and painful tumor biopsies (Marchetti et al. 2014). 

 

The metastatic process includes the suggestion that a reversible epithelial-to-mesenchymal 

transition (EMT), describing a major phenotypic change in a subset of cells within the 

primary tumour, is essential for metastasis to proceed (Thiery and Sleeman,2006; Yang et al. 

2006; Thiery, 2003). During EMT, epithelial tumour cells lose cell-to-cell to contacts and 

develop a more motile and invasive mesenchymal phenotype, facilitating their entry into the 

bloodstream, and revert back to an epithelial phenotype upon extravasation in host tissue 

(the so-called mesenchymal-to-epithelial transition (MET) (Christiansen and Rajasekaran, 

2006; Thiery and Sleeman, 2006). Many CTC detection techniques depend on capture of 

CTCs based on defined epithelial protein expression (e.g. EpCam and cytokeratins); thus, 

the very process of CTC detection may be inherently flawed if EMT has occurred. However, 

it is recognized that EMT is not a homogenous ‘black and white’ cellular scenario and it 

seems likely that CTCs can express both epithelial and mesenchymal properties, to varying 

degrees, giving rise to heterogeneous CTC populations (Christiansen and Rajasekaran, 

2006). 

 

Detecting and studying CTCs, has still many obstacles to overcome. CTCs inherit a 

heterogeneous malignant potential to home in on and generate metastasis into secondary 

organs. Further, technical challenges in the field persist with regard to identifying and 

interrogating their heterogeneity, additive to fully capturing these rare tumor cells. Many 

studies have discussed the clinical impact of detecting CTCs, considering that CTC testing is 
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being employed currently in over 400 clinical trials worldwide. However, much of the 

information regarding CTCs is missing, and many challenges must be overcome before their 

clinical potential as biomarkers and therapeutic targets is fulfilled (Marchetti et al. 2014). 

 

 

Figure 9: Circulating tumor cells, typical of those found in cancer patients. Taken from Marrinucci et 

al. 2012.  
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4.2 CTC’s detection methods. 

CTCs are captured from the vasculature by using specific antibodies able to recognize spe-

cific tumoral markers (usually EpCAM); however this approach is biased by the need for a 

sufficient expression of the selected protein on the cell surface, event necessary for the en-

richment step. Moreover, since EpCAM and other proteins (e.g. cytokeratins) are not ex-

pressed in some tumors and can be down regulated during the epithelial to mesenchymal 

transition (EMT), new enrichment strategies are required (Mikolajczyk et al. 2011). In princi-

ple, methods can be divided into nucleic-acid-based and cytometric approaches. 

Nucleic-acid-based methods were predominantly adopted throughout the 1990s following 

the development of the polymerase chain reaction (PCR) and indeed can be very sensitive 

techniques, relying on the detection of specific DNA or RNA sequences differentially ex-

pressed by tumour cells (Alunni-Fabbroni and Sandri, 2010; Paterlini-Brechot and Benali, 

2007). However, in recent years there has been a preferential shift toward cytometric assays 

where cells remain intact, hence morphology can be visualized, cells can be enumerated 

and further analysis by techniques such as fluorescent in situ hybridization (FISH) or even 

DNA/RNA extraction are practically or theoretically possible, contrasting with the more lim-

ited capabilities using nucleic-acid-based methods. 

Cytometric approaches use immunostaining profiles to identify and characterize CTCs. The-

se assays need to be highly sensitive, highly specific and highly reproducible if they are to 

be useful in the clinical setting and used to make patient treatment decisions. Most methods 

employ an initial enrichment step to optimize the probability of rare cell detection, achievable 

through immunomagnetic separation, centrifugation or filtration. Cytometric-based tech-

niques subsequently interrogate cells by fluorescence microscopy or immunohistochemistry. 

The most widely used cytometric CTC technology currently in clinical testing is the 

CellSearch™ platform (Veridex LLC, Huntingdon Valley, PA, USA) and is the only technology 

to have received FDA approval for the enumeration of CTC in whole blood in specific cohorts 

of cancer patients (Miller et al. 2010). The major advantage of this system is its semi-

automation and proven reproducibility, reliability, sensitivity, linearity and accuracy 

(Riethdorf et al. 2007; Allard et al. 2004). These are features crucial to any biomarker tech-

nology to ensure validity of results in clinical testing across multiple sites and have so far 

been lacking with previous techniques. CellSearch employs immunomagnetic bead-based 

separation to enrich for CTCs, and the platform characteristics have been described in detail 

previously (Miller et al. 2010; Allard et al. 2004). 
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Figure 10: Using ferrofluid nanoparticles with antibodies that target epithelial cell adhesion molecules, 

CTCs are magnetically separated from the bulk of other cells in the blood. CTCs are then stained with 

cytokeratin monoclonal antibodies, which are specific to epithelial cells. A monoclonal antibody stain is 

used to identify CD45, a marker specific to leukocytes called DAPI is also added to highlight the 

nuclei of both CTCs and leukocytes. Cells are put in a magnet cartridge that applies a magnetic force 

that pulls the cells to a single focal depth. The cartridge containing stained CTCs is placed onto the 

CELLTRACKS ANALYZER II
®
System for scanning. Once the cartridge has been scanned, the system 

displays tumor cell candidates that are positive for cytokeratin and DAPI. These candidate cells are 

presented to an operator for final review. Taken from Truini et al. 2014. 

 

 

 

 

 

 

4.3 CTC’s detecting technique using TelomeScan. 
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Because of the low number of CTCs (1 CTC in 106-107 leukocytes), there are many 

problems with the current CTC detection methods. Current methods are based on the 

concentration of CTCs using anti-CD45 and anti-epithelial adhesion molecule antibodies. 

The detection is occurred via immunostaining with anti-cytokeratin-8 anti-CK-9 and anti-CK-

19 antibodies. Although, the CTCs with these methods can be detected, there are also false 

negative and false positive results. Many types of tumor cells are negative of EpCAM or the 

CK molecules. Furthermore, these antigens are also expressed on normal epithelial cells. 

 

Α novel method for detecting CTCs ,using a green fluorescent protein (GFP) - expressing 

conditionally replicating adenovirus(Ad) (Fuminory Sakurai et al. 2015), is developed by 

Oncolys Biopharma. Telomescan or OBP-401, is an oncolytic adenovirus vector that 

expresses a GFP gene. OBP-401 contains the human telomerase reverse transcriptase 

gene promoter. Human telomerase is a complex of template RNA and enzyme subunits 

including hTERT, which is expressed in cancer and some normal stem cells but not in 

normal somatic cells. 

 

 

 

 

 

Figure 11: Structure of telomerase complex. The human telomerase complex consists of a catalytic 

sub- unit (hTERT), an RNA component (hTR), dyskerin, NOP2, NHP2, and additional associated 

proteins. Taken from Roth et al. 2010. 
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The hTERT gene promoter is contained upstream of the E1 gene in the adenovirus type 5 

genome. The expression is highly specific to cancer cells (Takakura et al.1998) and the 

hTERT promoter has cancer specificity, the virus can express E1 genes preferentially in 

cancer cells and replicate with much higher efficiency than in healthy cells (Kawashima et 

al.2004; Takakura et al. 2010). 

 

 

 

Figure 12: Structure of TelomeScan. The hTERT gene promoter has been inserted upstream of the 

E1A and E1B genes linked with an internal ribosome entry site in the adenovirus type 5 genome, and 

the GFP gene is inserted under the cytomegalovirus promoter into the E3 region. Taken from Urata et 

al. 2013. 

 

 

Adenovirus enters target cells by binding to the Coxsackie/Adenovirus Receptor (CAR) 

(Bergelson et al. 1997). After binding to the CAR, the adenovirus is internalized via integrin-

mediated endocytosis (Russell, 2000) followed by active transport to the nucleus. Once in 

the nucleus, the early events are initiated (e.g. transcription and translation of E1 proteins), 

followed by expression of the adenoviral late genes and viral replication. That expression of 

the late genes is dependent upon E1.  
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Figure 13:.Cancer cells are essentially acquired immortalized nature and express strong telomerase 

activity. Thus, OBP-401 can replicate only in telomerase activity-positive cells such as cancer cells by 

hTERT promoter activity-dependent E1/E2 gene expression, but not in telomerase activity-negative 

normal cells. Along with the increase in virus replication, concurrently-expressed GFP accumulates in 

hTERT-positive cells. Taken from Kishimoto H et al.2006. 
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5. Material and methods. 

 

Several apparatuses have been developed for the detection of CTCs including iCellate Med-

ical AB, which offers a service to identify circulating tumor cells from blood samples. In our 

lab, we perform CTC analyses with our proprietary isolation system IsoPic™ and related 

downstream verification tests. Most of these assays rely on surface markers which may be 

susceptible to downregulation, such as that associated with epithelial-mesenchymal transi-

tion (EMT). In order to evaluate the efficacy of the detection of CTCs through IsoPic™, we 

used a novel CTC detection method which is based in one of the hallmarks of cancer (limi t-

less replicate potential). Telomerase is an enzyme that replenishes the ends of chromo-

somes and it is not expressed in the majority of the normal cells. In contrast, telomerase is 

upregulated in almost all tumor cells. Oncolys Biopharma, created a telomerase-specific rep-

lication selective-adenovirus, which is an oncolytic adenovirus vector that expresses a green 

fluorescent protein. In this experiment, we evaluated the efficacy of this adenovirus vector to 

infect breast cancer cell lines (MCF7 and MDA-MB-231) as well as their GFP expression 

ratios. 

 

 

 

5.1 Cell culture. 

 

Two breast cell lines (MCF-7 and MDA-MB-231) were grown in plates with RPMI-1640 

medium with 10% (v/v) FBS and 1% (v/v) PS. Cells were harvested at an 80% confluent 

state using 1x trypsin (Sigma) and resuspended in RPMI-1640 medium. The cells were 

transferred in a 24 well plate and incubated for 24h. 

 

5.2 Infection without Lipofectamine. 

 

The infection of the cell lines was performed as follows. Firstly, we used one vial of the OBP-

401 that is stored in -80 oC. Materials used in this experiment are: 

Virus vial (10~12 μL) OBP-401, 

Opti-MEM media, 

24-well plate with MCF7 and MDA-MB-231 cell lines. 

 

The experiment was performed in a fully equipped virus laboratory (biosafety level 2). First 

the virus for the infection was prepared by adding opti-MEM with a final concentration of 
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100x (12 μL of virus +1.188 μL of Opti-MEM for both rows of the cells). Then the first row of 

the MCF7 cell line was infected apart from the first well which was used as a control. The 

first well was used as a control, the second well was infected with an amount of the OBP-

401/ Opti-MEM solution of 6 μL for a MOI of 10. The third well with 26 μL for a MOI OF 40. 

The fourth well with 65.2 μL for a MOI of 100. The fifth well with 130 μL for a MOI of 100. The 

sixth with 326 μL for a MOI of 500. The procedure was replicated for the first row of the 

MDA-MB-231 cell line.  

 

 

MCF7 

CONTROL 

6μL(virus 

solution)+ 

0.5mL  

Opti-MEM 

26μL(virus 

solution)+ 

0.5mL  

Opti-MEM 

65.2μL(virus 

solution)+ 

0.5mL  

Opti-MEM 

130μL(virus 

solution)+ 

0.5ml   

Opti-MEM 

326μL(virus 

solution)+ 

0.5mL  

Opti-MEM 

MCF7 MCF7 MCF7 MCF7 MCF7 MCF7 

MDA  

CONTROL 

6μL(virus 

solution)+ 

0.5mL  

Opti-MEM 

26μL(virus 

solution)+ 

0.5mL  

Opti-MEM 

65.2μL(virus 

solution)+ 

0.5mL  

Opti-MEM 

130μL(virus 

solution)+ 

0.5mL  

Opti-MEM 

326μL(virus 

solution)+ 

0.5mL  

Opti-MEM 

MDA MDA MDA MDA MDA MDA 

 

 

After this step, we added, in each well of the rows that we infected, 0.5 mL of Opti -MEM and 

we put the 24 well plate for a 12 hour incubation (required time for the infection of the cell 

lines). After 12h the virus solution was removed and RPMI-1640 medium was added for 

another 12h. After 24h of infection, the cells expressing GFP were counted under a 

fluorescent microscope. 

 

5.3 Infection with Lipofectamine. 

 

To compare the efficacy of the infection, the same experiment was performed using 

Lipofectamine® 2000 Transfection Reagent. The protocol used had one more step in 

comparison with the infection protocol without the transfection reagent. In addition with the 

virus solution, a Lipofectamine solution with Opti-MEM was prepared. In total a dilution of 15 

μL of Lipofectamine® in 2.947 mL of Opti-MEM was made. After the Lipofectamine solution 

was added into the virus solution was incubated for 20 min. After 12h of incubation, the virus 
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solution from the wells was replaced by an RPMI- 1640 medium. After 24h, the GFP 

expression rates were observed in a fluorescent microscope. 

 

5.4 Virus vector OBP-401. 

 

For this experiment, the amount of virus needed for different MOI (10, 40,100,200) was 

calculated.  For a 24 well plate the cell number is approximately 1.5*105 cells in a single well. 

 

MOI Virus needed[IU] 

10 1.5*106 

40 6*106 

100 15*106 

200 30*106 

500 75*106 

 

To transform the amount of virus needed into μL, we used this general formula: 

μL needed=virus needed[IU]/viral titer[IU/μL]. The virus titer is 2.3*107 IU/μL. 

 

 

MOI Adenovirus amount [μL] 

10  0.065 

40 0.26 

100 0.652 

200 1.3 

500 3.26 

 

Each virus vial contains 10 μL of viral particles. This was diluted 100x, so 6 μL from the vial 

was used while 594 μL of Opti-MEM was added to total 600 μL. The final concentrations for 

different MOI are summarized in the table below. 

 

MOI Adenovirus amount[μL] 

10 6 

40 26 

100 65.2 

200 130 

500 326 
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5.5 Cell counting. 

 

To determine cell viability, a TC20TM automated cell counter by BIORAD was used. 1 part 

trypan blue dye was mixed with 1 part of cell suspension. On parafilm 10μL of the cell 

suspension was combined with 10μL of trypan blue dye and pipetted up and down to mix. 10 

μL of the mixture was pipetted into the opening of either chamber on the counting slide. 

Then the counting slide was inserted into the slide slot of the TC20 cell counter, which 

automatically initiated a cell count. 
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6. Results. 

 

6.1 Titration of OBP-401 virus vector in cancer cell lines without Lipofectamine. 

 
For the first phase of the experiment, a decision was made to infect the cell lines without 

using a transfection reagent. Before infecting the cell lines the numbers of virus particles 

needed to infect one cell (MOI) were calculated. The MOI differs between various cell lines. 

Therefore, because the cell lines were infected for the first time, this approach of infecting 

without Lipofectamine, was used to determine the MOI necessary for efficient transgene 

expression in MCF7 and MDA-MB-231 cell lines. 

 

 One day before the infection, the MCF7 and MDA-MB-231 cells were seeded into a 24 well 

plate (first two rows for MCF7 and last two for MDA-MB-231). The following day, the virus 

particles were thaw on ice. For easier handling the virus was diluted in OPTIMEM and 

pipetted in higher quantities into the wells. To establish a control, one well was left free of 

virus particles. The infected cells were incubated for 12h.  

 

After 12h the virus solution was removed from the wells, and RPMI-1640 medium was 

added. The cells were left for another 12h of incubation at 370C before the acquisition of 

pictures of the cells by fluorescent microscopy. Another set of cell pictures were acquired 

after 48h of incubation. (Figure 14). 

  

 

 
  

 Figure 14. MDA cell line after infection with the virus vector OBP-401 without using Lipofectamine. 
For MCF7 data are not shown. 
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6.2 Titration of OBP-401 virus in cancer cell lines using Lipofectamine. 

 
In order to determine the efficiency of infection with OBP-401 in MCF7 and MDA-MB-231 

cell lines, the cell lines were infected, using this time Lipofectamine as a transfection 

reagent. Cells were seeded into a 24 well plate and left for a 24h incubation. The virus 

particle was thaw on ice and the virus solution was prepared (12 μL of virus + 1.188 μL of 

Opti-MEM). The virus solution was divided in 5 tubes, (based on the amounts for different 

MOI). Then, another 5 tubes were prepared for the Lipofectamine solution. The calculated 

amounts for Opti-MEM was added in each tube followed by the addition of 3 μL of 

Lipofectamine in all of them. Tubes were incubated for 5 minutes, then transferred the 

Lipofectamine solution from each tube to the one with the virus solution. All were further 

incubated at room temperature for 20 minutes before infection and further incubation for 12h. 

Then, the virus-Lipofectamine solution was replaced by RPMI-1640 medium were left for 

another 12h incubation. Pictures were acquired after 24h and 48h of incubation respectively, 

using a fluorescent microscope (Figure 15, 16). 

 

 
 

Figure 15. MCF7 cell line infection results using Lipofectamine. GFP expression ratios were observed 
using an inverted fluorescent microscope after 24h and 48h. 
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Figure 16: MDA-MB-231 cell line infection results using Lipofectamine. GFP expression ratios were 
observed using an inverted fluorescent microscope after 24h and 48h respectively. 

 

 

 

 

 

 

 

6.3 Cell counting. 

 

 

Despite the successful infection of both cell lines with and without a transfection reagent, the 

rate of the infected cells per well for each MOI and at each time point was necessary to be 

determined. To evaluate the efficiency of the infection, pictures of the cells were acquired 

after 72h of incubation. Higher quantities of the virus after 72h (MOI 200,500) lead to cyto-

toxic effects (Figure 17). In order to determine the ratio between live and dead cells into 

each well, a TC20TM automated cell counter by BIORAD was used. First, the RPMI-1640 

from each well was removed and cells were treated with trypsin and then were counted. The 

results of the cell counting are presented in Figures 18 and 19. 
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Figure 17: MCF7 and MDA-MB-231 cell lines infection results using Lipofectamine. GFP expression 
ratios were observed using an inverted fluorescent microscope after 72h. 

 

 

MCF7 Total count  Live count 

CONTROL 7,55x104  cells/mL 5,53x104 cells/mL 

MOI 10 1,31x105 cells/mL 8,55x104 cells/mL 

MOI 40 6,54x104 cells/mL 5,53x104 cells/mL 

MOI 100 1,11x105  cells/mL 9,06x104 cells/mL 

MOI 200 Out of range Out of range 

MOI 500 6,54x104 cells/mL 5,03x104 cells/mL 

Figure 18: Total number of living cells after the infection of MCF7 cells with OBP-401 using 
Lipofectamine. In the table we can see the number of living cells in comparison with the total amount 
of cells in each well infected for each MOI after 72h from infection. 
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MDA-MB-231 Total count  Live count 

CONTROL 3.62x105  cells/mL 3.47x105 cells/mL 

MOI 10 2.62x105 cells/mL 2.52x105 cells/mL 

MOI 40 2.06x105 cells/mL 2.01x105 cells/mL 

MOI 100 1.91x105 cells/mL 1.86x105 cells/mL 

MOI 200 1.56X105 cells/mL 1.36x105 cells/mL 

MOI 500 Out of range Out of range 

Figure 19: Total number of living cells after the infection of MDA-MB-231 cells with OBP-401 using 
Lipofectamine. In the table we can see the number of living cells in comparison with the total amount 

of cells in each well infected for each MOI after 72h from infection. 

 
 
In order to determine the rate of infected cells per well for each MOI, the amount of the GFP 
expressing cells for each cell line and for each MOI after 72h from infection with 
Lipofectamine were calculated. Figures 20 and 21, illustrate the results from testing different 

MOI on the MCF7 and MDA-MB-231 respectively. 
 
 
 
 

 

Figure 20: Total number of cells in each well in comparison with the number of living cells and GFP 
positive cells for MCF7 cell lines. The counting of the GFP positive cells was performed manually. 
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Figure 21: Total number of cells in each well in comparison with the number of living cells and GFP 
positive cells for MDA-MB-231 cell lines. The counting of the GFP positive cells was performed 
manually. 

 

 

6.4 Infection of MCF7 and MDA-MB-231 cells lines with OBP-401 using Lipofectamine 

in MOI 40 and 100. 

 

The first two experiments were performed to evaluate the efficiency of infection of MCF7 and 

MDA-MB-231 cell lines with the virus vector OBP-401. It was determined that infection using 

Lipofectamine as a transfection reagent was more successful in comparison with the infec-

tion with a transfection reagent. Furthermore, the MOI necessary for efficient GFP expres-

sion without cytotoxic side effects was determined. High quantities of the virus (MOI 

200.500) led to artifacts due to non-healthy cells. As a result, the infection of the cell lines 

was performed with the adjusted MOI 40 and 100. 

 

This time, the cells were seeded and transferred in a 6 well plate. In the first column the 

MCF7 cells were transferred while in the second column the MDA-MB-231 cells. The plate 

was incubated for 24h. The following day, the virus solution (2 μL virus particles + 198 μL 

Opti-MEM) was prepared and the Lipofectamine solution divided in two tubes (one for MOI 

40 and one for MOI 100). The tubes were left for a 5 minutes incubation and then the 

Lipofectamine solution from each tube was transferred to each tube with the virus solution, 

respectively. After a 20 minute incubation at room temperature cells in each well were in-

fected and incubated for 12h. Then the virus-Lipofectamine solution was replaced by RPMI-

1640 medium and another 12h incubation was followed. Pictures were acquired after 24h 

(Figure 22). 
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Figure 22: MCF7 and MDA-MB-231 cell line infection results for MOI 40 and 100 using 
Lipofectamine. GFP expression ratios were observed using an inverted fluorescent microscope after 
24h and 48h respectively. 

 

 
 
6.5 Identification of GFP positive cells. 
 

To evaluate the GFP expression ratios, in the blood samples that were spiked with the OBP-

401 virus vector infected MCF7 and MDA-MB-231 cell lines, a fluorescent microscope was 

used. The microscopy results are shown in Figures 23 and 24. 
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Figure 23: Fluorescent microscopy results of blood samples spiked with OBP-401 virus infected 
MCF7 cell lines. The blood samples were spiked with uninfected MCF7 cells as a control and with 
MOI 40 virus infected MCF7 cells. In the first row, the GFP expression results are shown. In the 
second and third row, the DAPI and the merge pictures are displayed. 
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Figure 24. Fluorescent microscopy results of blood samples spiked with OBP-401 virus infected 
MDA-MB-231 cell lines. The blood samples were spiked with uninfected MDA-MB-231 cells as a 
control and with MOI 40 virus infected MDA-MB-231 cells. In the first row, the GFP expression results 
are shown. In the second and third row, the DAPI and the merge pictures are displayed. 
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7. Discussion. 

 

Current available CTC detection methods are based on immunological recognition of 

EpCAM, cytokeratin and other epithelial specific cell surface markers. Although the detection 

with these methods is successful, the rates of detection vary between 14,4 to 90% (He et al. 

2008; Judson et al, 2003; Behbakht et al,2011; Poveda et al. 2011).  During the epithelial-to-

mesenchymal transition (EMT) process, the epithelial markers are known to be 

downregulated, leading to false negative results (Mikolajczyk et al. 2011). Furthermore, the 

detected cells using these methods are not always cancer cells. There is a chance that 

these cells are normal epithelia found into the blood circulation. Lastly, these epithelial 

markers are also expressed in dead cells (present surface antigens), so the detected cells 

may not be living cells. OBP-401 was chosen due to his ability to infect and replicate only in 

cancer living cells. Also the rate of infection is not affected by the EMT process. 

 

OBP-401 virus vector was chosen to evaluate the efficient detection of cancer cells via GFP 

expression. The MCF7 and MDA-MB-231 breast cancer cell lines were used. MDA-MB-231 

cells are very prone to cytotoxic agents because of their lack of DNA repairing capability due 

to mutations of BCRA or TP53 (Velic et al. 2015). From the infection of the cell lines without 

Lipofectamine, the successful infection of the cells was observed. After 48h from infection 

and in MOI 40,100,200 and 500, the expression rates increased periodically. 

 

In higher MOI (200,500), the number of dead cells was higher in comparison with the wells 

infected with lower MOI. After the observation that cells can be infected successfully without 

a transfection reagent, the same experiment was performed using Lipofectamine. From the 

microscopy observations, the difference of the GFP expression ratios between the cell lines 

was evident. The intensity and the number of the GFP expressed cells are higher in MCF7 

cells in comparison with ΜDΑ-ΜΒ-231 cells. 

 

By comparing the infection results with and without Lipofectamine of the MDA-MB-231 cells, 

the number of the GFP positive cells was higher while the fluorescence was also more 

intense using Lipofectamine. In conclusion, it can be estimated that infection with 

Lipofectamine is more successful than the infection without it. Furthermore, it was 

discovered that higher quantities of the virus led to cytotoxic effects so it was decided to 

perform another infection with Lipofectamine with MOI 40 and 100. After the infection, the 

detection efficiency of the OBP-401 detection system was tested in blood samples. After 

harvesting the GFP positive MCF7 and MDA-MB-231 cells were spiked into blood samples.  
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From microscopy results, the CTC detection rate was approximately 45% successful in 

these clinical samples. The low CTC detection rate, shows the improvements that are 

needed in current detection systems.  

 

CTC detection could be a really valuable prognostic marker in combination with genetic 

sequencing. CTC’s can be sequenced and give us a panorama of the mutations in each 

patient’s cancer. Blood samples are relatively easily available compared to tissue biopsies 

and can be taken repeatedly. This can lead to a perpetual monitoring of treatments. As a 

result, the overgrowth of drug resistant sub clones may be prevented by shifting to 

alternative therapies. There is a hope that the short list of treatment targets can be extended 

to include ultimately all, of the several hundred driver genes in cancer. 
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