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Περίληψη 
 
 
Καθώς η πολυπλοκότητα των very large-scale integrated (VLSI) 
κυκλωµάτων έχει αυξηθεί, προσοµοιωτές έχουνε φτιαχτεί για να 
επιβεβαιώσουνε το σχεδιασµό. Διάφοροι τύποι και επίπεδα 
προσοµοιωτών έχουν παραχθεί, µε σκοπό  να αντιµετωπιστούν 
διαφορετικές φάσεις της διαδικασίας της σχεδίασης. Σκοπός αυτής της 
εργασίας είναι, όπως δηλώθηκε, ο σχεδιασµός και η υλοποίηση ενός 
λογικού προσοµοιωτή καθοδηγούµενου από  γεγονότα για ψηφιακά 
κυκλώµατα, σε C++. Πρωταρχικά, υπάρχουν µερικές αναφορές στη 
διαδικασία ελέγχου των VLSI, διαφορετικές φάσεις αυτού, µε επίκεντρο 
τον έλεγχο του σχεδιασµού και ιδιαίτερα τον λειτουργικό έλεγχο, µέρος 
του οποίου αποτελούν οι προσοµοιωτές. Παρατηρούµε τη 
διαφορετικότητα µεταξύ διαφόρων ειδών προσοµοιωτών, µε βάση  τη 
λειτουργία τους και το µοντέλο καθυστέρησης που υποστηρίζουν, 
εξηγώντας την σηµαντικότητα των κύριων χαρακτηριστικών τους. 
Επιπλέον, υπάρχει µία ενδελεχής ανάλυση του θεωρητικού υπόβαθρου 
που χρειάζεται για να χτιστεί ένα τέτοιο εργαλείο καθώς και όλες οι 
πρακτικές πλη ροφορίες που επέτρεψαν την υλοποίηση να συµβεί. 
Παρουσιάζονται τα κύρια χαρακτηριστικά που αφορούν τη συντακτική 
ανάλυση αρχείων, την αποθήκευση σε κατάλληλες δοµές δεδοµένων και 
την έκφραση της ολότητας του κυκλώµατος µε ορθό τρόπο. Στη 
συνέχεια, ακριβώς πριν υλοποιήσουµε τον πραγµατικό µηχανισµό πίσω 
από τον καθοδηγούµενο από  τα γεγονότα προσοµ οιωτή µας, 
αναλύουµε το βασικό µας µοντέλο για να επεξεργαζόµαστε γεγονότα 
σύµφωνα µε το  µοντέλο χρονισµού µοναδιαίας καθυστέρησης, το 
γνωστό και ως Timewheel, από µία θεωρητική πλευρά, και τέλος 
προχωρούµε σε περισσότερες αλγοριθµικές πληροφορίες όσον αφορά 
την υλοποίηση µας. 
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Abstract 
 
 
As the complexity of very large-scale integrated (VLSI) circuits has 
increased, simulators have been built to verify design. Various types 
and levels of simulators have produced in order to cope with different 
phases of the design process. Aim of this thesis is, as stated, to design 
and implement an event-driven logic simulator, of unit delay, for 
digital circuits, in C++. Primarily, there are a few words about VLSI 
testing, different stages of it, focusing on design testing and 
specifically on functional testing, part of which are simulators. We 
observe the differentiation between various kinds of simulators, 
based on their functionality and delay model they support, explaining 
the importance of their major characteristics. Furthermore, one can 
find a thorough analysis of the theoretical background needed to 
build such a tool, as well as all the practical information that allowed 
the implementation to happen. Main features are presented 
concerning parsing from files, storing in appropriate data structures 
and expressing the entity of the circuit in a right way. Afterwards, just 
before implementing the actual mechanism behind the event-driven 
simulator, we take a close look to our basic model for processing 
events with respect to unit delay timing model, the commonly known 
as Timewheel, from a theoretical perspective, and then we proceed 
on more algorithmic information concerning our implementation. 
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Introduction 
 
Ever since the early days of the electronic age, design verification has 
been an important part of the design process of digital circuits. The 
reason is simple. It is much more cost effective to verify accuracy of 
a design before manufacturing than to repair or rebuild thousands of 
erroneous circuits. 
It seems like it was not too long ago, verification was carried out by 
constructing an actual prototype of the circuit from discrete 
components interconnected by external wires, although, it is 
absolutely not. The prototype was then used to evaluate the logical 
correctness and the timing characteristics of a design. This method 
was rendered infeasible by the explosive growth of the size of the 
digital devices. The number of components in a very large-scale 
integrated (VLSI) circuit can reach hundreds of thousands. The 
complexity of circuitry has also increased at the same time. It has 
become too costly and too time-consuming to build prototypes for 
VLSI circuits. These factors along with the rapid improvements in 
speed and size of computers and the rapid decrease in the cost of 
computing have ushered in the computer aided design (CAD) tools. 
A CAD tool which has become a viable replacement for physical 
prototyping as a design verification tool is the simulator. A simulator 
allows a designer to simulate how a circuit under design would behave 
in reality, thus verifying design against the customer specifications. It 
allows the detection and measurement of events that may be very 
difficult or impossible to detect in the actual system. A simulator also 
enables a circuit designer to play “what if” during the design process 
to test different ideas and optimize the design. 
The complexity of electronic devices has reached such a level that 
even in the field of simulation, no single simulator can handle all 
aspects of simulation for a complex circuit. As a result, different types 
of simulators have emerged to tackle different areas of simulation.  
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Testing in VLSI circuits 
 
VLSI chip testing is done in several different places by several 
different types of people. When a new chip is designed and fabricated 
for the first time, testing should verify correctness of design and the 
test procedure. This often requires the involvement of the design 
engineer and the testing may even take place in the design laboratory 
rather than in a factory. Based on the result, both the design and the 
test procedure may be changed. This is called verification testing. 
Successful verification testing usually results in some good chips. 
These are the earliest chips and are normally used by the designers of 
systems that will use this design. A successful verification also signals 
the beginning of production. Production means large scale 
manufacturing. Fabricated chips are tested in the factory. 
This is called manufacturing testing. Finally, when the manufactured 
chips are received by a customer, they may be again tested to ensure 
quality. This testing, known as incoming inspection (or acceptance 
testing), is conducted either by the user or for the user by some 
independent testing house. 
Testing typically consists of applying a set of test stimuli to the inputs 
of the circuit under test (CUT) while analysing the output responses. 
Circuits that produce the correct output responses for all input stimuli 
pass the test and are considered to be fault-free. Those circuits that 
fail to produce a correct response at any point during the test 
sequence are assumed to be faulty. Testing is performed at various 
stages in the lifecycle of a VLSI device, including during the VLSI 
development process, the electronic system manufacturing process, 
and, in some cases, system-level operation. 
 

 
Figure	1	Illustrating	Circuit	Under	Test	
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Stages of testing in VLSI lifecycle 
 
 
The VLSI development process is illustrated where it can be seen that 
some form of testing is involved at each stage of the process. Based 
on a customer or project need, a VLSI device requirement is 
determined and formulated as a design specification. Designers are 
then responsible for synthesizing a circuit that satisfies the design 
specification and for verifying the design. Design verification is a 
predictive analysis that ensures that the synthesized design will 
perform the required functions when manufactured. When a design 
error is found, modifications to the design are necessary and design 
verification must be repeated. As a result, design verification can be 
considered as a form of testing. 
 
 
 

 
Figure	2	Different	stages	of	testing	
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Functional Verification 
 
In Electronic Design Automation, functional verification is the task 
of verifying that the logic design conforms to specification. In 
everyday terms, functional verification attempts to answer the 
question "Does this proposed design do what is intended?" This is a 
complex task, and takes the majority of time and effort in most large 
electronic system design projects. Functional verification is a part of 
more encompassing design verification, which, besides functional 
verification, considers non-functional aspects like timing, layout and 
power. Functional verification is very difficult because of the sheer 
volume of possible test cases that exist in even a simple design. 
Frequently there are more than 10^80 possible tests to 
comprehensively verify a design – a number that is impossible to 
achieve in a lifetime. This effort is equivalent to program verification, 
and is NP-hard or even worse – and no solution has been found that 
works well in all cases. However, it can be attacked by many methods. 
None of them are perfect, but each can be helpful in certain 
circumstances. 
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Simulators 
 
Simulation is a powerful set of techniques that are used heavily in 
digital circuit verification, test development, design debug, and 
diagnosis. 
A simulator is a collection of hardware and software systems which 
are used to mimic the behaviour of some entity or phenomenon. 
Simulators may be used to analyse and verify theoretical models 
which may be too difficult to grasp from a purely conceptual level. 
Such phenomenon range from examination of black holes to the 
study of highly abstract models of computation. As such, simulators 
provide a crucial role in both industry and academia. 
 
 

Advantages and Purposes of using simulators 
 
One of the primary advantages of simulators is that they are able to 
provide users with practical feedback when designing real world 
systems. This allows the designer to determine the correctness and 
efficiency of a design before the system is actually constructed. 
Consequently, the user may explore the merits of alternative designs 
without actually physically building the systems. By investigating the 
effects of specific design decisions during the design phase rather 
than the construction phase, the overall cost of building the system 
diminishes significantly. As an example, consider the design and 
fabrication of integrated circuits. During the design phase, the 
designer is presented with a myriad of decisions regarding such things 
as the placement of components and the routing of the connecting 
wires. It would be very costly to actually fabricate all of the potential 
designs as a means of evaluating their respective performance.  
Through the use of a simulator, however, the user may investigate the 
relative superiority of each design without actually fabricating the 
circuits themselves. By imitating the behaviour of the designs, the 
circuit simulator is able to provide the designer with information 
pertaining to the correctness and efficiency of alternate designs. After 



  8 

carefully weighing the ramifications of each design, the best circuit 
may then be fabricated. 
Another benefit of simulators is that they permit system designers to 
study a problem at several different levels of abstraction. By 
approaching a system at a higher level of abstraction, the designer is 
better able to understand the behaviours and interactions of all the 
high-level components within the system and is therefore better 
equipped to counteract the complexity of the overall system. This 
complexity may simply overwhelm the designer if the problem had 
been approached from a lower level. As the designer better 
understands the operation of the higher-level components through 
the use of the simulator, the lower level components may then be 
designed and subsequently simulated for verification and 
performance evaluation. The entire system may be built based upon 
this ``top-down'' technique. This approach is often referred to 
as hierarchical decomposition and is essential in any design tool and 
simulator which deals with the construction of complex systems. For 
example, with respect to circuits, it is often useful to think of a 
microprocessor in terms of its registers, arithmetic logic units, 
multiplexors and control units. A simulator which permits the 
construction, interconnection and subsequent simulation of these 
higher-level entities is much more useful than a simulator which only 
lets the designer build and connect simple logic gates. Working at a 
higher-level abstraction also facilitates rapid prototyping in which 
preliminary systems are designed quickly for the purpose of studying 
the feasibility and practicality of the high-level design. 
Thirdly, simulators can be used as an effective means for teaching or 
demonstrating concepts to students. This is particularly true of 
simulators that make intelligent use of computer graphics and 
animation. Such simulators dynamically show the behaviour and 
relationship of all the simulated system's components, thereby 
providing the user with a meaningful understanding of the system's 
nature. Consider again, for example, a circuit simulator. By showing 
the paths taken by signals as inputs are consumed by components and 
outputs are produced over their respective fanout, the student can 
actually see what is happening within the circuit and is therefore left 



  9 

with a better understanding for the dynamics of the circuit. Such a 
simulator should also permit students to speed up, slow down, stop 
or even reverse a simulation as a means of aiding understanding. This 
is particularly true when simulating circuits which contain feedback 
loops or other operations which are not immediately intuitive upon 
an initial investigation. 
 
 

Simulation Hierarchy 
 
The design process is essentially a process of transforming a higher-
level description of a design to a lower level description. 
 

 
Figure	3	Different	levels	of	simulation	

 
Digital systems can be described at levels of abstraction ranging from 
behavioural to geometrical. Simulation capability exists at all of these 
levels.  
The behavioural description is the highest level of abstraction. At 
this level, a system is described in terms of the algorithms that it 
performs, rather than how it is constructed. The development of a 
large system may begin by characterizing its behaviour at the 
behavioural level, particularly if it is a “first of a kind”. A goal of 
behavioural simulations is to reveal conceptual flaws. When 
simulating behaviourally, the user is interested in determining things 
like optimum instruction set mix. 
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Once the system has been specified, a register transfer level (RTL) 
model, sometimes referred to as a functional model, can be used to 
describe the flow of data and control signals within and between 
functional units. The circuit is described in terms of flip-flops, 
registers, multiplexers, counters, arithmetic logic units (ALUs), 
encoders, decoders, and elements of similar level of complexity. 
Starting from a design specification, a behavioural (architecture) level 
description is developed in Verilog or as a C program and simulated 
to determine if it is functionally equivalent to the specification. The 
design is then described at the register-transfer level (RTL), which 
contains more structural information in terms of the sequential and 
combinational logic functions to be performed in the data paths and 
control circuits. The RTL description must be verified with respect 
to the functionality of the behavioural description before proceeding 
with synthesis to the logical level. A logical-level implementation is 
automatically synthesized from the RTL description to produce the 
gate-level design of the circuit. 
A logic model describes a system by means of switching elements or 
gates. At this level, the designer is interested in correctness of designs 
intended to implement functional building blocks and units. 
Performance or timing of the design is a concern at this level. The 
logical-level implementation should be verified in as much detail as 
possible to guarantee the correct functionality of the final design. 
In the final step, the logical-level description must be transformed to 
a physical-level description in order to obtain the physical placement 
and interconnection of the transistors in the VLSI device prior to 
fabrication. 
A circuit level model is used on individual gate and functional level 
devices to verify their behaviour. It describes a circuit in terms of 
devices such as resistors, capacitors, and current sources. The 
simulation user is interested in knowing what kind of switching 
speeds, voltages, and noise margins to expect. 
Finally, the geometrical level model describes a circuit in terms of 
physical shapes. 
 
 



  11 

 
 
 

 
Figure	4	Hierarchy	of	Digital	Circuit	Models		

In	a	top	down	design,	the	process	starts	with	the	system	specification	at	the	

behavioral	level	and	goes	through	a	series	of	decomposition	until	reaching	the	

physical	layout	at	the	geometrical	level.	Simulators	are	built	throughout	this	

process	of	decomposition. 
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Logic Simulation 
 
 In this section, we will discuss two commonly used gate-level 
logic simulation methodologies. We can classify simulators according 
to the type of internal model they process. With this classification, 
simulators can be divided into two major types; compiled simulators 
and event-driven simulators. 
Compilers for programming languages can be characterized as 
compiled or interpreted. Simulators are similarly characterized as 
compiled or event-driven. The compiled simulator is created by 
converting a netlist directly into a series of machine language 
instructions that reflect the functions and interconnections of the 
individual elements of the circuit. For each logic element, there exists 
a series of one or more machine language instructions and a 
corresponding entry in a circuit value table that holds the current 
value for that element. The event-driven simulator, sometimes called 
table-driven, operates on a circuit description contained in a set of 
tables, without first converting the network into a machine language 
image.  
 

 
Figure	5	Classification	of	Logic	Simulators	
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Compiled Code Simulators 
 
Compiled-code simulators are very effective where two-state (0,1) 
simulation suffices. Otherwise, the larger number of signal states 
makes the code complex. The two-state simulation is useful for 
combinational logic and for sequential logic which is already 
initialized. Another scenario is the high-level design verification 
where the circuit is described using functional modules and stimuli 
are generated by testbenches. Because the code execution can be very 
fast on a computer, such simulators are capable of high speed. Large 
gate-level circuits present several problems. First, timing problems 
glitches, race conditions, etc. – are not modelled in a compiled-code 
simulator. The simulator does detect oscillations when the iterations 
do not converge, but it is difficult to deal with the situation unless the 
unknown (X) state is available. The second problem is that of the 
inefficiency incurred by the evaluation of the entire code when only 
a few signals may be changing. In digital circuits, generally only 1-
10% of signals are found to change at any time. For this reason, event-
driven simulators run much faster at the gate-level. Finally, any 
detailed timing (such as multiple-delay or minmax-delay) is almost 
impossible to simulate in the compiled-code. For these reasons, the 
use of compiled-code simulators is usually limited to high-level design 
verification. 
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Event-Driven Simulators 
 
Event-driven simulation is a very effective procedure for discrete-
event simulation. It is based on the recognition that any signal change 
(event) must have a cause, which is also an event. Thus, an event 
causes new events, which in turn may cause more events. An event-
driven simulator follows the path of events. Consider a circuit at the 
gate-level. Suppose, all signals are in steady-state when a new vector 
is applied to primary inputs. Some inputs change, causing events on 
those input signals. Gates whose inputs now have events are called 
active and are placed in an activity list. The simulation proceeds by 
removing a gate from the activity list and evaluating it to determine 
whether its output has an event. A changing output makes all fanout 
gates active, which are then added to the activity list. The process of 
evaluation stops when the activity list becomes empty. An event-
driven simulator only does the necessary amount of work. For logic 
circuits, in which typically very few signals change at a time, this can 
result in significant savings of computing effort. However, the biggest 
advantage of this technique is in its ability to simulate any arbitrary 
delays. This is done by a procedure known as event scheduling. 
Suppose the evaluation of an active gate generates an event at its 
output. If the gate has a switching delay of units, then the event 
should take effect time units later. For correctly considering the 
effects of delays, the simulator distributes the activity list in time. 
Event scheduling is the procedure of distributing the activity caused 
by events over time according to the specified delays. 
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Suitability 
 
Compiled-code and event-driven simulation each have their 
advantages and disadvantages. Compiled-code simulation is good for 
cycle-based simulation, where only the circuit behaviour at the end of 
each clock cycle is of interest and zero-delay simulation can be used. 
Compiled-code simulation is also good for hiding the details of a 
simulation model, such as a processor core. Compiled-code 
simulation is also good when the circuit activity is high or when 
bitwise parallel simulation is used. The overhead of compilation 
restricts compiled-code simulation to applications where a large 
number of input vectors will be simulated. Event-driven simulation 
is the best approach for implementing general delay models, and 
detecting hazards. It is also the best approach for circuits with low 
activity, such as low-power circuits 
that employ clock gating. Event-driven simulation is also the best 
approach during circuit debug, when frequent edit-simulate-debug 
cycles occur and simulation start-up time is important. 
 
 

Delay Model support 
 
Event-driven simulation can be performed in either a zero or a 
nominal or unit delay environment. A zero-delay simulator ignores 
delay values within a logic element; it simply calculates the logic 
function performed by the element. A nominal-delay simulator 
assigns delay values to logic elements based on manufacturer’s 
recommendations or measurements with precision instruments. 
Some simulators, trying to strike a balance between the two, perform 
a unit-delay simulation in which each logic element is assigned a fixed 
delay, and since the elements are all assigned the same delay, the value 
1 (unit delay) is as good as any other. The nominal delay simulator 
can give precise results but at a cost in CPU time. The zero-delay 
simulator usually runs faster but does not indicate when events occur, 
so races and hazards can present problems. The unit-delay simulator 
lies between the other two in range of performance. It records time 
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units during simulation, so it requires more computations than zero-
delay simulation, but the mechanism for scheduling events is simpler 
than for time based simulation. However, regarding all element delays 
as being equal can produce inaccurate results in timing sensitive 
circuits and may give the user a false sense of security. Unit delay 
simulation in sequential circuits does, however, have the advantage 
that time advances; so, if oscillations occur, they will eventually reach 
the end of the clock period and be detected without a need for 
additional code dedicated to oscillation detection. 
 
 
 
 
 

 
Figure	6	Spectrum	of	events	based	on	the	delay	model	applied	
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Software Architecture 
 

Design background 
 
The inputs of the simulator consist of the design’s external topology 
or cell connectivity information (.v file), the cell’s internal information 
such as internal connectivity and logic function (.lib file), and value 
changes for specified variables or all variables (.vcd file). Basic 
software architecture and data structures are based on CCSOpt, 
which is a stand-alone cell resizing tool. 
 
 
 

 
 
 

Figure	7	The	Software	Architecture	
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Files parsed 
	
Verilog	(.v)	File	

 
The Verilog file specifies the top-level hierarchy of the design. For 
this thesis, we will be using a small set of keywords with the Verilog 
language. Our Verilog parser supports the set of keywords found 
within the simple.v file (reproduced below for clarity). It also supports 
comments that start with ‘//’. The expected syntax is shown below. 
 
 

 
Figure	8	Expected	Syntax	for	.v	files	
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The expected structure of the Verilog file is to start with the module 
declaration, defining the interface of the module with name <circuit 
name>. The inputs and output pins are explicitly declared; the initial 
wires are optionally declared with the keyword wire. For each 
cell definition, every <cell type> (.<pin name>) should be a specified 
cell type (pin) in the library file, and every <cell instance name> and 
<net name> should be found in the design specification. Each field 
is considered a string. 
 

 
Figure	9	More	specific	example	of	a	.v	file	
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Consider the example given above. 
Lines 01 and 29 define the start and end of the specified design with 
the keywords module and endmodule. Lines 01-04 specify the input 
and output connection names of the module (note that the direction 
is not specified here). Line 07 specifies the primary inputs (PIs) of 
the module with the keyword input. These names must match the 
ones started with module (lines 01-04). Line 10 specifies the primary 
output (PO) of the module with the keyword output. This name 
must match the one stated with the module (lines 01-04). Line 13 
specifies the connections or nets within the module with the 
keyword wire. These connections specify both the external PIs and 
POs as well as the internal connections between gates (explained 
further after lines 16-27). Lines 17-27 specify the cells used in the 
design, as well as how the cells are connected. For example, on line 
16, an INV_X2-type cell instance of I_5 is specified, it’s A pin is fed 
by primary input N12, and its ZN pin feeds the primary output 
N23. On line 27, N1 feeds the A1 pin of the AND2_X2-type cell 
instance NAND2_1. Line 29 terminates the module definition.  
 
 
 

 
Figure	10	Internal	Representation	
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Library	(.lib)	File	
 
 
 
 
 
This file contains the set of all cells or gates that are available to 

the design. All cell instances found in the .v file will have 
corresponding cell type that is located in this file. Gate-level delay and 
output slew calculations will use the relevant timing information 
found for the appropriate cell type. For this thesis, we will be using 
the NanGate 45nm Open Cell Library and the Open Source Liberty 
parser. The parser supports the full logical (.lib) set of constructs 
including Composite Current Source (CCS) Modelling Technology, 
and noise, plus syntax, and common semantic checks.  
The relevant portions of the .lib file are explained below. The library 
consists of (i) a header, (ii) a set of lookup-table definitions, and (iii) 
a set of cell definitions, where a cell will be a combinational element 
(e.g., NAND2) or a sequential element (e.g., flip-flop DFF). While 
there are many keywords available, this thesis will only use the 
following set. 
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HEADER. The header sets the general information about the 
library, and is defined in the NanGate 45nm Open Cell Library with 
the following format:  
 
 

 
Figure	11	Header	section	in	.lib	file	

 
 
LOOKUP TABLES. Most of the cell libraries include table models 
to specify the delays and timing checks for various timing arcs of the 
cell. The table models are referred to as NLDM (Non-Linear Delay 
Model) and are used for delay, output slew, or other timing checks. 
The table models capture the delay through the cell for various 
combinations of input transition time at the cell input pin and total 
output capacitance at the cell output. 
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CELL DEFINITIONS. A cell specifies a gate that could be used 
as part of a design, e.g., combinational gate NAND2 and flip-flop 
DFF. Its relevant specified syntax in the .lib format is:  
 
 

 
Figure	12	Cell	Description	of	.lib	file	

 
 
In a cell, multiple pins can be defined, e.g., a standard NAND2 will 
have 3 pins – two inputs and one output. For each pin, the direction 
field indicates the type of pin: (i) input, (ii) output, or (iii) internal. 
The capacitance, max capacitance, and min capacitance fields specify 
the respective pin capacitance, maximum and minimum expected pin 
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loads. A timing( ) definition creates a timing arc (directed pin-to-pin) 
inside a cell.  
Combinational timing arcs. Combinational arcs propagate delay and 
output slew from a source pin to a sink pin. They are found in 
common combinational logic gates, e.g., NAND2 or as a clock-
trigger segment in flip-flops. 
Below, we can observe how the cell definition part looks like, giving 
emphasis on the right illustration, as it contains the logic function that 
characterises each gate. This very own function that we extract for 
each gate, parse it in order to obtain a literal logic function, and route 
successfully every suitable net/edge as input, so as we can calculate 
the right output every time, and finally create a new event. 
 
 

 
Figure	13	Function	Section	of	each	gate		in	.lib	file	
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Value	Change	Dump	(.vcd)	File	

 
 
 
Value change dump (also known less commonly as "Variable Change 
Dump") is an ASCII-based format for dump files generated by EDA 
logic simulation tools. The standard, four-value VCD format was 
defined along with the Verilog hardware description language by the 
IEEE Standard 1364-1995 in 1995. An Extended VCD format 
defined six years later in the IEEE Standard 1364-2001 supports the 
logging of signal strength and directionality. The simple and yet 
compact structure of the VCD format has allowed its use to become 
ubiquitous and to spread into non-Verilog tools such as the VHDL 
simulator GHDL and various kernel tracers. A limitation of the 
format is that it is unable to record the values in memories. 
The VCD file comprises a header section with date, simulator, and 
timescale information; a variable definition section; and a value 
change section, in that order. The sections are not explicitly 
delineated within the file, but are identified by the inclusion of 
keywords belonging to each respective section. 
 
VCD keywords are marked by a leading $ (but variable identifiers can 
also start with a $). In general, every keyword starts a section which 
is terminated by an $end keyword. 
All VCD tokens are delineated by whitespace. Data in the VCD file 
is case sensitive. 
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HEADER 
The header section of the VCD file includes a timestamp, a simulator 
version number, and a timescale, which maps the time increments 
listed in the value change section to simulation time units. 
 
VARIABLE DEFINITION 
The variable definition section of the VCD file contains scope 
information as well as lists of signals instantiated in a given scope. 
Each variable is assigned an arbitrary, compact ASCII identifier for 
use in the value change section. The identifier is composed of 
printable ASCII characters from ! to ~ (decimal 33 to 126). Several 
variables can share an identifier if the simulator determines that they 
will always have the same value. The scope type definitions closely 
follow Verilog concepts, and include the types module, task, function, 
and fork. 
 
 
$dumpvars 
The section beginning with $dumpvars keyword contains initial 
values of all variables dumped. 
 
VALUE CHANGE 
The value change section contains a series of time-ordered value 
changes for the signals in a given simulation model. For scalar (single 
bit) signal the format is signal value denoted by 0 or 1 followed 
immediately by the signal identifier with no space between the value 
and the signal identifier. For vector (multi-bit) signals the format is 
signal value denoted by letter 'b' or 'B' followed by the value in binary 
format followed by space and then the signal identifier. Value for real 
variables is denoted by letter 'r' or 'R' followed by the data using 
%.16g printf( ) format followed by space and then the variable 
identifier. 
This last section, is the section where we parse the primary inputs. 
Below we can observe a typical Value Change Dump file. 
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Figure	14	A	typical	.vcd	file	
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Classes Implemented 

 
In order to achieve both an implementation and a visualisation in a 
later stage, of a digital circuit, given as inputs it’s Verilog file, a Liberty 
library and a Value Change Dump file we must resort to using some 
classes to express our objects. 
 

 
 
 

Figure	15	Classes	Implemented	
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Below, one can find some explanatory information about the object-
oriented construction of classes.  
 
Graph 
We created a class called Graph which refers to the implementation 
of a circuit as graph. Noteworthy information should be the following 
fields: node-map inputs as to represent the Primary Inputs of the 
circuit. 
 
CellInst 
This class refers to gates as a unity, the exact instance of every gate 
this time though. To put it in a simple way, each gate of the circuit is 
represented in the program or the graph as an object of type CellInst. 
The main fields we need to focus right now are the ones concerning 
the interaction of the particular nodes inside the CellInst, inputs and 
outputs. Thus, we can observe: vector < Node * > inputs, vector 
< Node * > outputs, vector < Node * >& getInputs( ), vector < 
Node * >& getOutputs( ) are the ones necessary for the time being. 
 
Node 
Moving on to the Node class representing the inputs and outputs of 
each gate. This class allows us to further analyze the connectivity 
between inner parts of a gate, such as inputs, outputs and edges that 
exist. Some parts of this class that are important: vector < Edge * > 
forward;  vector < Edge * > getForwardEdges( ) which refer to 
forward Edges from a gate’s output to another gate’s input, and the 
field called int value and it’s suitable set and get method, referring to 
the current value that a Node has. This value is set to 0 ***? Finally 
there exist two fields cellInst * getCellInst( ) and string getName( 
) whose role is to make us able to know which CellInst contains the 
Node currently being examined. 
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Event 
The main “Event” for this thesis. We constructed a class named 
exactly after the object representing it. This class should fit exactly 
ones’ purposes, thus for our current purposes we chose to implement 
the following fields: CellInst* current, Node* responsible , int 
value , int timestamp as for the current CellInstance, the responsible 
for the event that happened, the value this time and the timestamp. 
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Internal Representation 
 
The Verilog files describe the circuit connectivity, in the abstract level 
of cells and nets. In order to apply the simulation algorithm, that 
connectivity information must be interpreted and mapped into a 
graph, which is performed in the parsing module. For example, 
visualizing the circuit c17.v, in the abstract model of cells and nets 
will yield the following connectivity map. 
 
 
 
 
 

 
Figure	16	Visualisation	of	connectivity	map	of	circuit	c17.v	

 
 
 
 
Many of the algorithms used in the industry, consists of graph 
explorations or different graph operations, which means that the 
connectivity map must be transformed into a simple directed graph 
representation (nodes/edges). 
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The nodes of the graph will be the pins of each cell, and the ports 
(Primary inputs/Primary outputs). The names of each node must be 
unique, which means that the name of the pins cannot uniquely define 
a node. In that case, an enhanced name must be used, which uses as 
a prefix the instance name of the cell, which is already unique. The 
ports are already unique, but for simplicity reasons, have a prefix of 
input/output. 
 

 
Figure	17	The	nodes	of	a	pin	based	graph	

 
The edges of the graph, that describe the connectivity between cells, 
will be the nets of the circuit. There is no need for naming the edges, 
but for simplification the actual name of the nets is used. These edges 
are described as net edges. 
 

 
Figure	18	The	graph	including	the	cell	connectivity	
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The tool cannot extract the total graph of the circuit by only using 
the Verilog files. The connectivity information inside its cell, is 
described in the .lib file. Each output of a cell has a set of input related 
pins, for which the timing information is specified. Those relations 
specify the internal connectivity of a cell and the edges are described 
as cell edges. 
 
 
 
 
 
 
 
 

 
Figure	19	The	graph	including	the	cell	internal	connectivity	
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The internal representation is further enhanced by grouping all the 
associated pins in the same data structure, which is the cell instance,  
Figure 20. The pins are also categorized by its type, input or output.  
 
 
 
 
 

 
Figure	20	The	final	internal	representation	including	the	CellInstances	

 
 
 
 
 
 
 
The nodes of the circuit store the transition and arrival times, as well 
as its logical value. The net edges store the wire capacitance, the 
resistance, and the calculated delay. The cell edges store the timing 
tables and calculated delay. 
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Theoretical Approach to our simulator  
 
Unit Delay event-driven simulator design 

 
The scheduler is an important component of an event-drive 
simulator. It keeps track of event occurrences and schedules the 
necessary gate evaluations. For zero-delay simulation, the event queue 
is a good enough scheduler because timing is not considered. For 
unit-delay simulation, however, a more sophisticated scheduler is 
required to determine not only which gates to evaluate but also when 
to evaluate them. Because events must be evaluated in chronological 
order, the scheduler is implemented as a priority queue. Figure 20 
depicts one possible priority queue implementation for a unit delay 
event-driven simulator. In the priority queue, the vertical list is an 
ordered list that stores the time stamps when events occur. Attached 
to each time stamp ti is a horizontal list of events that occur at time 
ti. During simulation, a new event that will occur at time ti is 
appended to the event list of time stamp ti. For example, in Figure 20, 
the value of signal w will switch to v+w at ti. If ti is not in the time 
stamp list yet, the scheduler will first place it in the list according to 
the chronological order. 
 
 
 

 
Figure	21	Priority	queue	event	scheduler	
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The TimeWheel Concept 
 
For the priority queue scheduler in Figure 21, the time needed to 
locate a time stamp to insert an event grows with the circuit size. To 
improve the event scheduler efficiency, one may use, instead of a 
linked list, an array of evenly spaced time stamps. Although some 
entries in the array may have empty event lists, the overall search time 
is reduced because the target time stamp can be indexed by its value. 
Further enhancement is possible with the concept of timing wheel as 
shown in Figure 22.  
 
 

 
Figure	22	A	circular	stack	-	TimeWheel	-	implementation	of	the	priority	queue	

of	our	event-driven	simulator	

 
Let the time resolution be one time unit and the array size M. A time 
stamp that is d time units ahead of current simulation time (with array 
index i) is stored in the array and indexed by (i+d) mod M if d is less 
than M; otherwise, it is stored in an overflow remote event list similar 
to that is shown in Figure 21. Remote event lists are brought into the 
timing wheel once their time stamps are within M−1 time units from 
current simulation time. A two-pass strategy for unit delay event-
driven simulation is depicted in Figure 23. When there are still future 
time stamps to process, the event list LE of next time stamp t is 
retrieved. LE is processed in a two-pass manner. In pass one (the left 
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shaded box), the simulator determines the set of gates to be evaluated. 
The notation (g, v+g) indicates that the output of gate g is to become 
v+g. For each event (g, v+g), if v+g is the same as g’s current value 
vg, this event is false and is discarded. On the other hand, if v+g = 
vg (i.e., (g, v+g) is a valid event), then vg is updated to v+g, and the 
fanout gates of g are appended to the activity list LA. In the second 
pass (the right shaded box), gates are evaluated and new events are 
scheduled. While the activity list LA is non-empty, a gate g is retrieved 
and evaluated. Let the evaluation result be v+g. The scheduler will 
schedule the new event (g, v+g) at time stamp t+delay(g), where 
delay(g) denotes the nominal delay of gate g. The two-pass strategy 
avoids repeated evaluation of gates with events on multiple inputs. 
 
 
 

 

 
Figure	23	Two-pass	simulation	strategy	flowchart	
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Implementation of the TimeWheel 
 
After having successfully parsed the three aforementioned files (.v, 
.lib, .vcd), and having constructed the suitable objects, classes to 
categorise and identify our circuits’ elements, we should have 
obtained numerous information helping us have an algorithmic 
approach to our problem. By now, from the .v file, we should have 
constructed and “visualised” our circuit as a graph, upon which our 
simulator is based. This graph should contain, as we have seen both 
at the UML and the Internal Representation above, CellInst(ances) 
representing each time the respective gate, which should contain 
input and output pins represented as Nodes and lists of inputs and 
outputs. Nets that are outputs or inputs from gate to gate, that should 
translate to CellInst, are characterised as Edge-type. 
 
Furthermore, parsing the .lib file, is the task that gives life and 
meaning to CellInst and Nodes. By browsing specific characteristics 
about each gate and storing them properly we can simulate each time 
the function we want to. One of these, is the logic function of each 
gate, which we find and store as a type of string. 
 
Traversing throughout the graph we can link the right nets to the 
prototype’s function every time. That is obligatory in order to have 
the right values inserted to the logical function in order to evaluate 
the result. Linking the right inputs to each gate’s nodes, obtaining an 
equivalent string as result, this time not with the formal logic function 
but with the real inputs inserted. 
 
As we earlier saw, inside the liberty library one can find the logic 
function for each available gate. It is not only parsing that is needed 
in this occasion though, as the function comes as a type of string. 
Using a stack, we can turn that string to a fully functional logic 
equation. 
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There can be seen two main structures for creating the so-called 
event-driven unit delay logic simulator. Besides the basic class created 
(Event), one can find the vector < Event * > activity. This activity 
list, withholds any events that are pending to happen. Every event 
that is executed is removed from this list so as not to be executed 
another time. Another major data structure used in this thesis is the 
multimap < int , Event * > mymap. This is the history of all events 
that happened during the simulation and until our circuit’s output has 
stabilised. It is obvious that two variables are stored every time. The 
first one is the timestamp – which every time increases by one unit – 
and the second one is a pointer to the specific every time Event-
object that contains the information about the event, such as the 
Node that the event happened, the responsible for the event, the 
timestamp, and the value that caused the event. 
We proceed creating the starting events as parsed from the .vcd file. 
These events concern the primary inputs at first. The primary inputs 
can be found stored as type of node_map in the Graph class. These 
events of course will have a timestamp of 0.  
As of now, our simulation has just got started. We continue spinning 
the timewheel, advancing the time plus one unit each time, exploring 
the primary events the first time, the events that are caused because 
of them, evaluating and executing. 
Below we can observe two flow charts. The first one is more general, 
as to the tasks that we must carry out in each cycle, while the second 
one is more specific, on how we implemented a two pass strategy, 
similar to the one explained above.  
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Figure	24	Main	Flow	of	Event-Driven	Simulation.	During	simulation,	these	tasks	

are	carried	out	in	each	cycle	until	no	events	are	left.	
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Figure	25	Two-pass	simulation	strategy	flowchart	implementation	
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Multimap Container 
 
After an Event has been executed, it is deleted from the Activity List 
and it is inserted into a multimap, as a kind of history, for further 
verification and testing purposes. Multimap is a Sorted Associative 
Container that associates objects of type Key with objects of type 
Data. multimap is a Pair Associative Container, meaning that its value 
type is pair<const Key, Data>. It is also a Multiple Associative 
Container, meaning that there is no limit on the number of elements 
with the same key. 
Multimap has the important property that inserting a new element 
into a multimap does not invalidate iterators that point to existing 
elements. Erasing an element from a multimap also does not 
invalidate any iterators, except, of course, for iterators that actually 
point to the element that is being erased.  
We have chosen to keep history of event that way, having in mind 
that multimap is usually implemented as sorted binary tree. Such trees 
can most commonly be a red black known for their good time 
complexity in big O notation in searching insertion and deletion. In 
this case, our concern for further debugging reasons is the searching 
complexity, as we want to investigate events that happened in the past 
and who was the responsible for the particular event plus the 
timestamp of the event as well. 
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Red-Black	Trees	
 
A red–black tree is a kind of self-balancing binary search tree. Each 
node of the binary tree has an extra bit, and that bit is often 
interpreted as the colour (red or black) of the node. These colour bits 
are used to ensure the tree remains approximately balanced during 
insertions and deletions. 
 
Balance is preserved by painting each node of the tree with one of 
two colours (typically called 'red' or 'black') in a way that satisfies 
certain properties, which collectively constrain how unbalanced the 
tree can become in the worst case. When the tree is modified, the new 
tree is subsequently rearranged and repainted to restore the colouring 
properties. The properties are designed in such a way that this 
rearranging and recolouring can be performed efficiently. 
 
The balancing of the tree is not perfect, but it is good enough to allow 
it to guarantee searching in O (log n) time, where n is the total number 
of elements in the tree. The insertion and deletion operations, along 
with the tree rearrangement and recolouring, are also performed in O 
(log n) time. 
 
Tracking the colour of each node requires only 1 bit of information 
per node because there are only two colours. The tree does not 
contain any other data specific to its being a red–black tree so its 
memory footprint is almost identical to a classic (uncoloured) binary 
search tree. In many cases, the additional bit of information can be 
stored at no additional memory cost. 
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Conclusion 
 
 
 
 
As the era emerges, with the complexity of the circuits augmenting 
so fast, CAD tools not only for design and verification but also for 
designing and implementing circuits in general, have become as 
aforementioned a viable replacement for physical prototyping. Aim 
of this thesis was to design and implement an event-driven logic 
simulator for digital circuits. After analysing different types of 
simulators and the theoretical background we implemented the one 
fitting our purposes.  
Studying in general about digital circuits has been intriguing, having 
always in mind the scalability involved in VLSI circuits. It has been a 
pleasure for me to have worked under the supervision of such a great 
environment at the office E5.  
Once again, Ι would like to attribute huge acknowledgements to all 
the people in my life that assisted me and shared their wisdom with 
me, through good and tough times, during my studies at the 
University of Thessaly. 
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