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[Tepiindm

Kabwg 1 molvmlorotta twv very large-scale integrated (VLSI)
NOUAWUATOV  EYel avénbel, TEOCOUOLWTES Eyouve QTYTEL Yl VX
emBeBotwoovve 10 oyediaopo. Awkpopol  TOTOL  uot  EMITESY
TPOGOPOLWTWY  Eyouy Topaybel, pe oxomd  va  AVTLUETWTLOTOLY
SLLPOPETIMES YATELS TG OladHXTLoG TNG OYEDIAONG. 2KOTOG AVTNG TG
epyaolog etvat, Onwg dnAwbnxe, o oyediaopdg xat 1 LAOTOINGY EVOG
LoywoL mpocopolwty uxbodnyodpevouv and  yeyovota yx Ynplond
nodopata, o C++. TTowtouymd, LIAEYOLY UEQMES AVAPOQES OTN
Sradnactor eAeyyoL Twv VLSI, StopopeTineg aoetg auton, e EMHAEVTQO
TOV EAEYYO TOL OYESIAGOD 1AL LOLAITEQX TOV AELTOLEYIUO EAEYYO, LEQOG
TOL OTOLOL  ATMOTEAOLY Ol  TEOCOUOWTES. [lapatneodue
SLopoEeTInOTN T PeTaéd SlapOpwy edWV TEOCOW OLWTWY, Ke Baay T
AeLToLEYlor TOLG AL TO WOVTEAO nabuvoteprnong mouv vrmootneilovy,
e€NYWVTAC TNV ONUOVTIXOTNTA TV UOOLWY YXQOUTNOLOTIMWY TOLG.
EmnAgov, vmapyet plo evdekeyng avaivon tov Hewpntinod vndBabpoov
Tov ypetaleTat Yo Voo XTLOTEL Eva TeTolo epyaAeio nabwg ot OAeg ot
TOANTIUEG TIAY] QOYOPLEC TOL eMeTEePay TNV LAOTOINGCY v GLBEL.
[Tapovaotalovtat Tor #OELL YXEAATNOLOTIUA TTOL APOEOLY TY] CUVTAUTIAY)
XVAALOT] XY ELWY, TNV amobnnevo oe naTAAANAES GOUES OESOUEVWY KL
TNV EXPEACY] TNG OAOTNTAC TOL ULXAWUXTOS He 0pfo TPoOmOo. X7
OLVEYELX, AXELBWS TOLY DAOTIOLY)GOLUE TOV TRAYUATIXO U YAVIOUO TOW
ano  tov  nabodnyoduevo and T YEYOVOTX TQOGOWU OlWTY| HOG,
avoAbovpe 10 Baotnd pog ROVTEAD Yl v eme€epyalOopaote yeyovoTa
OOUPWVX e TO  HOVIEAO YEOVIOMOL povadtaiag nabuotepnong, to
YWwoto noat wg Timewheel, ano pla Oewoentny) mhevpd, snxt TEAOG
TPOYWQEOLE Oe TePLOGOTEQES ahyoplDneg mAnpoyopieg OGOV apopa
TNV DAOTIOI7|0Y] HOG.



Abstract

As the complexity of very large-scale integrated (VLSI) circuits has
increased, simulators have been built to verify design. Various types
and levels of simulators have produced in order to cope with different
phases of the design process. Aim of this thesis is, as stated, to design
and implement an event-driven logic simulator, of unit delay, for
digital circuits, in C++. Primarily, there are a few words about VLSI
testing, different stages of it, focusing on design testing and
specifically on functional testing, part of which are simulators. We
observe the differentiation between various kinds of simulators,
based on their functionality and delay model they support, explaining
the importance of their major characteristics. Furthermore, one can
tind a thorough analysis of the theoretical background needed to
build such a tool, as well as all the practical information that allowed
the implementation to happen. Main features are presented
concerning parsing from files, storing in appropriate data structures
and expressing the entity of the circuit in a right way. Afterwards, just
before implementing the actual mechanism behind the event-driven
simulator, we take a close look to our basic model for processing
events with respect to unit delay timing model, the commonly known
as Timewheel, from a theoretical perspective, and then we proceed
on more algorithmic information concerning our implementation.



Introduction

Ever since the early days of the electronic age, design verification has
been an important part of the design process of digital circuits. The
reason is simple. It is much more cost effective to verify accuracy of
a design before manufacturing than to repair or rebuild thousands of
erroneous circuits.

It seems like it was not too long ago, verification was carried out by
constructing an actual prototype of the circuit from discrete
components interconnected by external wires, although, it is
absolutely not. The prototype was then used to evaluate the logical
correctness and the timing characteristics of a design. This method
was rendered infeasible by the explosive growth of the size of the
digital devices. The number of components in a very large-scale
integrated (VLSI) circuit can reach hundreds of thousands. The
complexity of circuitry has also increased at the same time. It has
become too costly and too time-consuming to build prototypes for
VLSI circuits. These factors along with the rapid improvements in
speed and size of computers and the rapid decrease in the cost of
computing have ushered in the computer aided design (CAD) tools.

A CAD tool which has become a viable replacement for physical
prototyping as a design verification tool is the simulator. A simulator
allows a designer to simulate how a circuit under design would behave
in reality, thus verifying design against the customer specifications. It
allows the detection and measurement of events that may be very
difficult or impossible to detect in the actual system. A simulator also
enables a circuit designer to play “what if” during the design process
to test different ideas and optimize the design.

The complexity of electronic devices has reached such a level that
even in the field of simulation, no single simulator can handle all
aspects of simulation for a complex circuit. As a result, different types
of simulators have emerged to tackle different areas of simulation.



Testing in VLSI circuits

VLSI chip testing is done in several different places by several
different types of people. When a new chip 1s designed and fabricated
for the first time, testing should verify correctness of design and the
test procedure. This often requires the involvement of the design
engineer and the testing may even take place in the design laboratory
rather than in a factory. Based on the result, both the design and the
test procedure may be changed. This is called verification testing.
Successful verification testing usually results in some good chips.
These are the earliest chips and are normally used by the designers of
systems that will use this design. A successful verification also signals
the beginning of production. Production means large scale
manufacturing. Fabricated chips are tested in the factory.

This is called manufacturing testing. Finally, when the manufactured
chips are received by a customer, they may be again tested to ensure
quality. This testing, known as incoming inspection (or acceptance
testing), i1s conducted either by the user or for the user by some
independent testing house.

Testing typically consists of applying a set of test stimuli to the inputs
of the circuit under test (CUT) while analysing the output responses.
Circuits that produce the correct output responses for all input stimuli
pass the test and are considered to be fault-free. Those circuits that
fail to produce a correct response at any point during the test
sequence are assumed to be faulty. Testing is performed at various
stages in the lifecycle of a VLSI device, including during the VLSI
development process, the electronic system manufacturing process,
and, in some cases, system-level operation.

Figure 1 lllustrating Circuit Under Test
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Stages of testing in VLSI lifecycle

The VLSI development process 1s illustrated where it can be seen that
some form of testing is involved at each stage of the process. Based
on a customer or project need, a VLSI device requirement is
determined and formulated as a design specification. Designers are
then responsible for synthesizing a circuit that satisfies the design
specification and for verifying the design. Design verification is a
predictive analysis that ensures that the synthesized design will
perform the required functions when manufactured. When a design
error is found, modifications to the design are necessary and design
verification must be repeated. As a result, design verification can be
considered as a form of testing.

Design Specification
A
Design < Design Verification

v

Fabrication < Wafer Test
v

Packaging < Package Test
A

Quality Assurance |« Final Testing

Figure 2 Different stages of testing



Functional Verification

In Electronic Design Automation, functional verification is the task
of verifying that the logic design conforms to specification. In
everyday terms, functional verification attempts to answer the
question "Does this proposed design do what is intended?" This is a
complex task, and takes the majority of time and effort in most large
electronic system design projects. Functional verification is a part of
more encompassing design verification, which, besides functional
verification, considers non-functional aspects like timing, layout and
power. Functional verification is very difficult because of the sheer
volume of possible test cases that exist in even a simple design.
Frequently there are more than 10780 possible tests to
comprehensively verify a design — a number that is impossible to
achieve in a lifetime. This effort is equivalent to program verification,
and 1s NP-hard or even worse — and no solution has been found that
works well in all cases. However, it can be attacked by many methods.
None of them are perfect, but each can be helpful in certain
circumstances.



Simulators

Simulation is a powerful set of techniques that are used heavily in
digital circuit verification, test development, design debug, and
diagnosis.

A simulator is a collection of hardware and software systems which
are used to mimic the behaviour of some entity or phenomenon.
Simulators may be used to analyse and verify theoretical models
which may be too difficult to grasp from a purely conceptual level.
Such phenomenon range from examination of black holes to the
study of highly abstract models of computation. As such, simulators
provide a crucial role in both industry and academia.

Advantages and Purposes of using simulators

One of the primary advantages of simulators is that they are able to
provide users with practical feedback when designing real world
systems. This allows the designer to determine the correctness and
efficiency of a design before the system is actually constructed.
Consequently, the user may explore the merits of alternative designs
without actually physically building the systems. By investigating the
effects of specific design decisions during the design phase rather
than the construction phase, the overall cost of building the system
diminishes significantly. As an example, consider the design and
tabrication of integrated circuits. During the design phase, the
designer is presented with a myriad of decisions regarding such things
as the placement of components and the routing of the connecting
wires. It would be very costly to actually fabricate all of the potential
designs as a means of evaluating their respective performance.

Through the use of a simulator, however, the user may investigate the
relative superiority of each design without actually fabricating the
circuits themselves. By imitating the behaviour of the designs, the
circuit simulator is able to provide the designer with information
pertaining to the correctness and efficiency of alternate designs. After



carefully weighing the ramifications of each design, the best circuit
may then be fabricated.

Another benefit of simulators is that they permit system designers to
study a problem at several different levels of abstraction. By
approaching a system at a higher level of abstraction, the designer is
better able to understand the behaviours and interactions of all the
high-level components within the system and is therefore better
equipped to counteract the complexity of the overall system. This
complexity may simply overwhelm the designer if the problem had
been approached from a lower level. As the designer better
understands the operation of the higher-level components through
the use of the simulator, the lower level components may then be
designed and subsequently simulated for verification and
performance evaluation. The entire system may be built based upon
this ““top-down" technique. This approach is often referred to
as hierarchical decomposition and is essential in any design tool and
simulator which deals with the construction of complex systems. For
example, with respect to circuits, it is often useful to think of a
microprocessor in terms of its registers, arithmetic logic units,
multiplexors and control units. A simulator which permits the
construction, interconnection and subsequent simulation of these
higher-level entities is much more useful than a simulator which only
lets the designer build and connect simple logic gates. Working at a
higher-level abstraction also facilitates rapid prototyping in which
preliminary systems are designed quickly for the purpose of studying
the feasibility and practicality of the high-level design.

Thirdly, simulators can be used as an effective means for teaching or
demonstrating concepts to students. This is particularly true of
simulators that make intelligent use of computer graphics and
animation. Such simulators dynamically show the behaviour and
relationship of all the simulated system's components, thereby
providing the user with a meaningful understanding of the system's
nature. Consider again, for example, a circuit simulator. By showing
the paths taken by signals as inputs are consumed by components and
outputs are produced over their respective fanout, the student can
actually see what is happening within the circuit and is therefore left



with a better understanding for the dynamics of the circuit. Such a
simulator should also permit students to speed up, slow down, stop
or even reverse a simulation as a means of aiding understanding. This
is particularly true when simulating circuits which contain feedback
loops or other operations which are not immediately intuitive upon
an initial investigation.

Simulation Hierarchy

The design process is essentially a process of transforming a higher-
level description of a design to a lower level description.

Design Specification
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Figure 3 Different levels of simulation

Digital systems can be described at levels of abstraction ranging from
behavioural to geometrical. Simulation capability exists at all of these
levels.

The behavioural description is the highest level of abstraction. At
this level, a system is described in terms of the algorithms that it
performs, rather than how it is constructed. The development of a
large system may begin by characterizing its behaviour at the
behavioural level, particularly if it 1s a “first of a kind”. A goal of
behavioural simulations is to reveal conceptual flaws. When
simulating behaviourally, the user 1s interested in determining things
like optimum instruction set mix.



Once the system has been specified, a register transfer level (RTL)
model, sometimes referred to as a functional model, can be used to
describe the flow of data and control signals within and between
tunctional units. The circuit 1s described in terms of flip-flops,
registers, multiplexers, counters, arithmetic logic units (ALUs),
encoders, decoders, and elements of similar level of complexity.
Starting from a design specification, a behavioural (architecture) level
description is developed in Verilog or as a C program and simulated
to determine if it is functionally equivalent to the specification. The
design is then described at the register-transfer level (RTL), which
contains more structural information in terms of the sequential and
combinational logic functions to be performed in the data paths and
control circuits. The RTL description must be verified with respect
to the functionality of the behavioural description before proceeding
with synthesis to the logical level. A logical-level implementation is
automatically synthesized from the RTL description to produce the
gate-level design of the circuit.

A logic model describes a system by means of switching elements or
gates. At this level, the designer is interested in correctness of designs
intended to implement functional building blocks and units.
Performance or timing of the design is a concern at this level. The
logical-level implementation should be verified in as much detail as
possible to guarantee the correct functionality of the final design.

In the final step, the logical-level description must be transformed to
a physical-level description in order to obtain the physical placement
and interconnection of the transistors in the VLSI device prior to
tabrication.

A circuit level model is used on individual gate and functional level
devices to verify their behaviour. It describes a circuit in terms of
devices such as resistors, capacitors, and current sources. The
simulation user is interested in knowing what kind of switching
speeds, voltages, and noise margins to expect.

Finally, the geometrical level model describes a circuit in terms of
physical shapes.

10
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Figure 4 Hierarchy of Digital Circuit Models
In a top down design, the process starts with the system specification at the
behavioral level and goes through a series of decomposition until reaching the
physical layout at the geometrical level. Simulators are built throughout this

process of decomposition.
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Logic Simulation

In this section, we will discuss two commonly used gate-level

logic simulation methodologies. We can classity simulators according
to the type of internal model they process. With this classification,
simulators can be divided into two major types; compiled simulators
and event-driven simulators.
Compilers for programming languages can be characterized as
compiled or interpreted. Simulators are similarly characterized as
compiled or event-driven. The compiled simulator is created by
converting a netlist directly into a series of machine language
instructions that reflect the functions and interconnections of the
individual elements of the circuit. For each logic element, there exists
a series of one or more machine language instructions and a
corresponding entry in a circuit value table that holds the current
value for that element. The event-driven simulator, sometimes called
table-driven, operates on a circuit description contained in a set of
tables, without first converting the network into a machine language
image.
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Compiled Code Simulators

Compiled-code simulators are very effective where two-state (0,1)
simulation suffices. Otherwise, the larger number of signal states
makes the code complex. The two-state simulation is useful for
combinational logic and for sequential logic which is already
initialized. Another scenario is the high-level design verification
where the circuit is described using functional modules and stimuli
are generated by testbenches. Because the code execution can be very
tast on a computer, such simulators are capable of high speed. Large
gate-level circuits present several problems. First, timing problems
glitches, race conditions, etc. — are not modelled in a compiled-code
simulator. The simulator does detect oscillations when the iterations
do not converge, but it is difficult to deal with the situation unless the
unknown (X) state is available. The second problem is that of the
inefficiency incurred by the evaluation of the entire code when only
a few signals may be changing. In digital circuits, generally only 1-
10% of signals are found to change at any time. For this reason, event-
driven simulators run much faster at the gate-level. Finally, any
detailed timing (such as multiple-delay or minmax-delay) is almost
impossible to simulate in the compiled-code. For these reasons, the
use of compiled-code simulators is usually limited to high-level design
verification.

13



Event-Driven Simulators

Event-driven simulation is a very effective procedure for discrete-
event simulation. It is based on the recognition that any signal change
(event) must have a cause, which is also an event. Thus, an event
causes new events, which in turn may cause more events. An event-
driven simulator follows the path of events. Consider a circuit at the
gate-level. Suppose, all signals are in steady-state when a new vector
is applied to primary inputs. Some inputs change, causing events on
those input signals. Gates whose inputs now have events are called
active and are placed in an activity list. The simulation proceeds by
removing a gate from the activity list and evaluating it to determine
whether its output has an event. A changing output makes all fanout
gates active, which are then added to the activity list. The process of
evaluation stops when the activity list becomes empty. An event-
driven simulator only does the necessary amount of work. For logic
circuits, in which typically very few signals change at a time, this can
result in significant savings of computing effort. However, the biggest
advantage of this technique is in its ability to simulate any arbitrary
delays. This is done by a procedure known as event scheduling.
Suppose the evaluation of an active gate generates an event at its
output. If the gate has a switching delay of units, then the event
should take effect time units later. For correctly considering the
effects of delays, the simulator distributes the activity list in time.
Event scheduling is the procedure of distributing the activity caused
by events over time according to the specified delays.

14



Suitability

Compiled-code and event-driven simulation each have their
advantages and disadvantages. Compiled-code simulation 1s good for
cycle-based simulation, where only the circuit behaviour at the end of
each clock cycle is of interest and zero-delay simulation can be used.
Compiled-code simulation is also good for hiding the details of a
simulation model, such as a processor core. Compiled-code
simulation is also good when the circuit activity is high or when
bitwise parallel simulation is used. The overhead of compilation
restricts compiled-code simulation to applications where a large
number of input vectors will be simulated. Event-driven simulation
is the best approach for implementing general delay models, and
detecting hazards. It is also the best approach for circuits with low
activity, such as low-power circuits

that employ clock gating. Event-driven simulation is also the best
approach during circuit debug, when frequent edit-simulate-debug
cycles occur and simulation start-up time is important.

Delay Model support

Event-driven simulation can be performed in either a zero or a
nominal or unit delay environment. A zero-delay simulator ignores
delay values within a logic element; it simply calculates the logic
function performed by the element. A nominal-delay simulator
assigns delay values to logic elements based on manufacturer’s
recommendations or measurements with precision instruments.
Some simulators, trying to strike a balance between the two, perform
a unit-delay simulation in which each logic element is assigned a fixed
delay, and since the elements are all assigned the same delay, the value
1 (unit delay) is as good as any other. The nominal delay simulator
can give precise results but at a cost in CPU time. The zero-delay
simulator usually runs faster but does not indicate when events occur,
so races and hazards can present problems. The unit-delay simulator
lies between the other two in range of performance. It records time

15



units during simulation, so it requires more computations than zero-
delay simulation, but the mechanism for scheduling events is simpler
than for time based simulation. However, regarding all element delays
as being equal can produce inaccurate results in timing sensitive
circuits and may give the user a false sense of security. Unit delay
simulation in sequential circuits does, however, have the advantage
that time advances; so, if oscillations occur, they will eventually reach
the end of the clock period and be detected without a need for
additional code dedicated to oscillation detection.
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Figure 6 Spectrum of events based on the delay model applied
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Software Architecture

Design background

The inputs of the simulator consist of the design’s external topology
or cell connectivity information (.v file), the cell’s internal information
such as internal connectivity and logic function (.lib file), and value
changes for specified variables or all variables (.ved file). Basic
software architecture and data structures are based on CCSOpt,
which is a stand-alone cell resizing tool.

lib File v File .ved File
Y Y Y
; Gate-Level
Liberty Parser Netlist Parser .ved Parser

Y Y Y
Logical Function Circuit Topology Primary Events
Extraction Graph Parsed

--------------------------------------

Event-Driven
Simulator

. S

.......................................

Figure 7 The Software Architecture
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Files parsed

Verilog (.v) File

The Verilog file specifies the top-level hierarchy of the design. For
this thesis, we will be using a small set of keywords with the Verilog
language. Our Verilog parser supports the set of keywords found
within the simple.v file (reproduced below for clarity). It also supports
comments that start with °//’. The expected syntax is shown below.

module <circuit name> (
<input 1>,
<input n>,
<output 1>,

ey

<output m> );
input <input 1>;

input <input n>;
output <output 1>;

output <output m>;

// begin wire definitions
wire <wire 1>;
// end wire definitions

// begin cell definitions
<cell type> <cell instance name> (.<pin name> (<net name) );
// end cell definitions
endmodule
Figure 8 Expected Syntax for .v files

18



The expected structure of the Verilog file is to start with the module
declaration, defining the interface of the module with name <circuit
name>. The inputs and output pins are explicitly declared; the initial
wires are optionally declared with the keyword wire. For each
cell definition, every <cell type> (.<pin name>) should be a specified
cell type (pin) in the library file, and every <cell instance name> and
<net name> should be found in the design specification. Each field
is considered a string.

01. module c17 (
02. N1, N2, N3, N6, N7,

03. N22, N23
04. );
05.

06. // Start Pls

07. input N1, N2, N3, N6, N7;

08.

09. // Start POs

10. output N22, N23;

11.

12. // Start wires

13.  wire NO, N4, N5, N8, N9, N12, N10, N11, N16, N19;
14.

15.  //Startcells

16. INV_X21 5(.A(N12),.ZN(N23));

17. AND2_X2 NAND2 6 (.A1(N16), .A2(N19), .ZN(N12) );
18.  INV_X21 4 (.A(N9), .ZN(N22));

19. AND2_X2 NAND2_5(.A1(N10), .A2(N16), .ZN(N9) );
20.  INV_X21 3 (.A(N8), .ZN(N19));

21.  AND2_X2 NAND2_4 (.A1(N11), .A2(N7), ZN(N8));
22.  INV_X21 2 (.A(N5), .ZN(N16));

23.  AND2_X2 NAND2| 3 (.A1(N2), .A2(N11), .ZN(N5) );
24.  INV_X21_1(.A(N4), .ZN(N11));

25.  AND2_X2 NAND2_2 (.A1(N3), .A2(N6), .ZN(N4));
26.  INV_X21 0(.A(NO), .ZN(N10));

27. AND2_X2 NAND2_1(.A1(N1), .A2(N3), .ZN(NO));
28.

29. endmodule

Figure 9 More specific example of a .v file
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Consider the example given above.

Lines 01 and 29 define the start and end of the specified design with
the keywords module and endmodule. Lines 01-04 specity the input
and output connection names of the module (note that the direction
is not specified here). Line 07 specifies the primary inputs (Pls) of
the module with the keyword input. These names must match the
ones started with module (lines 01-04). Line 10 specifies the primary
output (PO) of the module with the keyword output. This name
must match the one stated with the module (lines 01-04). Line 13
specifies the connections or nets within the module with the
keyword wire. These connections specify both the external Pls and
POs as well as the internal connections between gates (explained
turther after lines 16-27). Lines 17-27 specify the cells used in the
design, as well as how the cells are connected. For example, on line
16, an INV_X2-type cell instance of I_5 is specified, it’s A pin is fed
by primary input N12, and its ZN pin feeds the primary output
N23. On line 27, N1 feeds the Al pin of the AND2_X2-type cell
instance NAND2 1. Line 29 terminates the module definition.

Figure 10 Internal Representation
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This file contains the set of all cells or gates that are available to

the design. All cell instances found in the .v file will have
corresponding cell type that is located in this file. Gate-level delay and
output slew calculations will use the relevant timing information
tound for the appropriate cell type. For this thesis, we will be using
the NanGate 45nm Open Cell Library and the Open Source Liberty
parser. The parser supports the full logical (lib) set of constructs
including Composite Current Source (CCS) Modelling Technology,
and noise, plus syntax, and common semantic checks.
The relevant portions of the .1lib file are explained below. The library
consists of (i) a header, (ii) a set of lookup-table definitions, and (1ii)
a set of cell definitions, where a cell will be a combinational element
(e.g., NAND2) or a sequential element (e.g., flip-flop DFF). While
there are many keywords available, this thesis will only use the
tollowing set.
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HEADER. The header sets the general information about the

library, and is defined in
the following format:

/% Documentation Attributes x/
date 3
revision
comment

/% General Attributes x/
technology

delay_model
in_place_swap_mode
library_features

/% Units Attributes x/
time_unit
leakage_power_unit
voltage_unit
current_unit
pulling_resistance_unit
capacitive_load_unit

/* Operation Conditions x/
nom_process
nom_temperature
nom_voltage

voltage_map (VDD,1.19);
voltage_map (VSS,0.00);

the NanGate 45nm Open Cell Library with

"Thu 1@ Feb 2011, 18:11:20";

: "revision 1.0";
: "Copyright (c) 2004-2011 Nangate Inc. All Rights Reserved.";

(cmos);

: table_lookup;
: match_footprint;

(report_delay_calculation,report_power_calculation);

o ins”;

¢ "1lnW";

S A

: "1mA";

¢ "1lkohm";

(1,F%);

: 1.00;
1 25.00;
$1.10;

define(process_corner, operating_conditions, string);

operating_conditions (typical) {
process_corner : "TypTyp";
process ::1.00;
voltage : 1.10;
temperature : 25.00;
tree_type : balanced_tree;
3
default_operating_conditions : typical;
Figure 11 Header section in .lib file

LOOKUP TABLES. Most of the cell libraries include table models

to specify the delays and

timing checks for various timing arcs of the

cell. The table models are referred to as NLDM (Non-Linear Delay
Model) and are used for delay, output slew, or other timing checks.
The table models capture the delay through the cell for various
combinations of input transition time at the cell input pin and total
output capacitance at the cell output.
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CELL DEFINITIONS. A cell specifies a gate that could be used
as part of a design, e.g., combinational gate NAND2 and flip-flop
DFF. Its relevant specified syntax in the .lib format is:

T L e e e e e e e e
Module : AND2_X1

Cell Description : Combinational cell (AND2_X1) with drive strength X1
R R R RS S R R R S R R B S R R R R R S S R R R R S R R E S S S R R E S S R R E R S S R R R E S S S R R E S S R R E R E S R R T ]

cell (AND2_X1) {
drive_strength : 1;

area : 1.064000;
pg_pin(vDD) {

voltage_name : VDD;

pa_type : primary_power;
}
pg_pin(vss) {

voltage_name : VSS;

pa_type : primary_ground;
}
cell_leakage_power : 25.066064;
leakage_power () {
when : "IA1 & 'A2";
value : 20.324370;
}
leakage_power () {
when : "IAL & A2";
value : 30.850688;
}
leakage_power () {
when : "A1 & 'A2";
value : 20.622958;
}
leakage_power () {
when : "A1 & A2";
value : 28.466240;
}

Figure 12 Cell Description of .lib file

In a cell, multiple pins can be defined, e.g., a standard NAND2 will
have 3 pins — two inputs and one output. For each pin, the direction
tield indicates the type of pin: (i) input, (i) output, or (iif) internal.
The capacitance, max capacitance, and min capacitance fields specity
the respective pin capacitance, maximum and minimum expected pin
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loads. A timing( ) definition creates a timing arc (directed pin-to-pin)
inside a cell.

Combinational timing arcs. Combinational arcs propagate delay and
output slew from a source pin to a sink pin. They are found in
common combinational logic gates, e.g., NAND2 or as a clock-
trigger segment in flip-flops.

Below, we can observe how the cell definition part looks like, giving
emphasis on the right illustration, as it contains the logic function that
characterises each gate. This very own function that we extract for
each gate, parse it in order to obtain a literal logic function, and route
successfully every suitable net/edge as input, so as we can calculate
the right output every time, and finally create a new event.

pin (A1) {
direction input;
related_power_pin "vDD";
related_ground_pin . "VSSsY;
capacitance : 0.918145;
fall_capacitance : 0.874832;
rise_capacitance : 0.918145;

}

pin (A2) {
direction input;
related_power_pin "vDD";
related_ground_pin : "Vvss";
capacitance : 0.974630;
fall_capacitance : 0.894119;
rise_capacitance : 0.974630;

}

pin (2ZN) {
direction : output;
related_power_pin "vDD";
related_ground_pin . "VSSY;
max_capacitance : 60.577400;
function "(A1 & A2)";

Figure 13 Function Section of each gate in .lib file
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Value change dump (also known less commonly as "Variable Change
Dump") is an ASCII-based format for dump files generated by EDA
logic simulation tools. The standard, four-value VCD format was
defined along with the Verilog hardware description language by the
IEEE Standard 1364-1995 in 1995. An Extended VCD format
defined six years later in the IEEE Standard 1364-2001 supports the
logging of signal strength and directionality. The simple and yet
compact structure of the VCD format has allowed its use to become
ubiquitous and to spread into non-Verilog tools such as the VHDL
simulator GHDL and various kernel tracers. A limitation of the
format is that it is unable to record the values in memories.

The VCD file comprises a header section with date, simulator, and
timescale information; a variable definition section; and a value
change section, in that order. The sections are not explicitly
delineated within the file, but are identified by the inclusion of
keywords belonging to each respective section.

VCD keywords are marked by a leading § (but variable identifiers can
also start with a §). In general, every keyword starts a section which
is terminated by an $end keyword.

All VCD tokens are delineated by whitespace. Data in the VCD file
is case sensitive.
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HEADER

The header section of the VCD file includes a timestamp, a simulator
version number, and a timescale, which maps the time increments
listed in the value change section to simulation time units.

VARIABLE DEFINITION

The variable definition section of the VCD file contains scope
information as well as lists of signals instantiated in a given scope.
Each variable is assigned an arbitrary, compact ASCII identifier for
use in the value change section. The identifier is composed of
printable ASCII characters from ! to ~ (decimal 33 to 126). Several
variables can share an identifier if the simulator determines that they
will always have the same value. The scope type definitions closely
follow Verilog concepts, and include the types module, task, function,

and fork.

$dumpvars
The section beginning with $dumpvars keyword contains initial
values of all variables dumped.

VALUE CHANGE

The value change section contains a series of time-ordered value
changes for the signals in a given simulation model. For scalar (single
bit) signal the format is signal value denoted by O or 1 followed
immediately by the signal identifier with no space between the value
and the signal identifier. For vector (multi-bit) signals the format is
signal value denoted by letter 'b' or 'B' followed by the value in binary
format followed by space and then the signal identifier. Value for real
variables is denoted by letter 't' or 'R' followed by the data using
%.16g printf( ) format followed by space and then the variable
identifier.

This last section, 1s the section where we parse the primary inputs.
Below we can observe a typical Value Change Dump file.
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Sdate

Date text.

Send
Svers

VCD generator tool version info text.

Send

ion

Scomment
Any comment text.

Send

S$timescale 1lps $end
$scope module logic $end

Svar
Svar
Svar
Svar
Svar
Svar
Svar

wire
wire
wire
wire
wire
wire
wire

8 data $end
data_valid $end
en $end

rx_en $end
tx_en $end

( empty $end

1 ) underrun $end

- R o W P

[ = = =

Supscope $end
Senddefinitions $end

Sdump

vars

DXXXXXXXX #

X$
0%
X&
o
1(
0)
Send
#0

b10000001 #

0%
1%
0&
1
0(
0)
#2211
0
#2296
b0 #
1$
#2302
0§
#2303

Figure 14 A typical .vcd file
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Classes Implemented

In order to achieve both an implementation and a visualisation in a
later stage, of a digital circuit, given as inputs it’s Verilog file, a Liberty
library and a Value Change Dump file we must resort to using some
classes to express our objects.

1 h 4
Graph Edge

+ name: string +name: string

{ + int_nodes: node_map +connected_ to: Node *

| +inputs: node_map

Y +opposite_edge: Edge *
Y
CellInst
A +instance_name: string
+cell: Cell *
\ 4
; +inputs: vector<Node *>
Node
» +name: string f +outputs: vector<Node *>
+cell: Cellinst* +level: inmt

+forward: vector<Edge *>

+backward: vector<Edge *>

+int value
Cell
+ name: string
+ prefix: string <
Event . + Input_pins: vector<Pin *>
+ current: Cellinst* ‘ " | +output_pins: vector<Pin *>

{ + responsible: Node *

+ value: int

+ timestamp: int

Figure 15 Classes Implemented
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Below, one can find some explanatory information about the object-
oriented construction of classes.

Graph
We created a class called Graph which refers to the implementation
of a circuit as graph. Noteworthy information should be the following
tields: node-map inputs as to represent the Primary Inputs of the
circuit.

Celllnst

This class refers to gates as a unity, the exact instance of every gate
this time though. To put it in a simple way, each gate of the circuit is
represented in the program or the graph as an object of type Celllnst.
The main fields we need to focus right now are the ones concerning
the interaction of the particular nodes inside the Celllnst, inputs and
outputs. Thus, we can observe: vector < Node * > inputs, vector
< Node * > outputs, vector < Node * >& getInputs( ), vector <
Node * >& getOutputs( ) are the ones necessary for the time being.

Node

Moving on to the Node class representing the inputs and outputs of
each gate. This class allows us to further analyze the connectivity
between inner parts of a gate, such as inputs, outputs and edges that
exist. Some parts of this class that are important: vector < Edge * >
forward; vector < Edge * > getForwardEdges( ) which refer to
forward Edges from a gate’s output to another gate’s input, and the
field called int value and it’s suitable set and get method, referring to
the current value that a Node has. This value is set to 0 ***? Finally
there exist two fields celllnst * getCellInst( ) and string getName(
) whose role is to make us able to know which Celllnst contains the
Node currently being examined.
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Event

The main “Event” for this thesis. We constructed a class named
exactly after the object representing it. This class should fit exactly
ones’ purposes, thus for our current purposes we chose to implement
the following fields: Celllnst* current, Node* responsible , int
value , int timestamp as for the current Celllnstance, the responsible
tfor the event that happened, the value this time and the timestamp.
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Internal Representation

The Verilog files describe the circuit connectivity, in the abstract level
of cells and nets. In order to apply the simulation algorithm, that
connectivity information must be interpreted and mapped into a
graph, which is performed in the parsing module. For example,
visualizing the circuit c17.v, in the abstract model of cells and nets
will yield the following connectivity map.

Figure 16 Visualisation of connectivity map of circuit c17.v

Many of the algorithms used in the industry, consists of graph
explorations or different graph operations, which means that the
connectivity map must be transformed into a simple directed graph
representation (nodes/edges).
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The nodes of the graph will be the pins of each cell, and the ports
(Primary inputs/Primary outputs). The names of each node must be
unique, which means that the name of the pins cannot uniquely define
a node. In that case, an enhanced name must be used, which uses as
a prefix the instance name of the cell, which is already unique. The
ports are already unique, but for simplicity reasons, have a prefix of
input/output.

NANCR_1-:A1
<nput>N1 » NANDZ_ 1SN 4 DA < 0N _—
. . - - ®
S, NANDD 5>2N 4 4>A < 4>7N <output>N22
i . - - e
B MNR S
. <NAND2_3=:A1 =
<nput>N3 " NN BN 4 A 4N
. ’ . o . <NANDR 6>A1
Lo e " NANRE>N 4 SA < 45N <Output>N23
<nput>N5 e NANDR >N o 1>A < BN . Z * = %
o . . . NANDR 642
NANCR_2>A2 NANDZ_ &A1 -
anpuNT . * NANR SN 4 3A 43N
" NN e Y o .

Figure 17 The nodes of a pin based graph

The edges of the graph, that describe the connectivity between cells,
will be the nets of the circuit. There 1s no need for naming the edges,
but for simplification the actual name of the nets 1s used. These edges
are described as net edges.

<NANDZ_1>A1
.,.,p.:/.a NANDZ_1>2N <4 D>A 4 02N NANDR_S> A1
NANDZ_1>:A2 N N0 T NANR SN 4 4A < 42N <output>N22
o - e——p>
" AANDR_S-A3 &
NANDZ_3>:A1 i fes

dapt: NANDR 32N o 22A < 22N

R = NANDR_6>:A1

NANDZ_2-A1 NANDR_3--A2

<nput>:Ns N3 e <NANDZ2 2>2N < 15A 4 2N N11 s T
-— > <NANDRZ_6=:A2
N‘Wm_bn - 2_4>:A1 Ni12 N23
> . Ni1 NANDZ 4>2N <4 A 4_3:Vv.
N19

dnput>N7 N8
e »e

NANDR_4>:A2
% -

Figure 18 The graph including the cell connectivity
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The tool cannot extract the total graph of the circuit by only using
the Verilog files. The connectivity information inside its cell, is
described in the .1ib file. Each output of a cell has a set of input related
pins, for which the timing information 1s specified. Those relations
specify the internal connectivity of a cell and the edges are described
as cell edges.

NANDR_1>A1
<nput>:N1 o NANDZ 1>N < A 4 2N NANDR 5>:A1
N e 122 N Ni0 T AANDR SN 4 A o 4N <Oulput>iN22
<nput>:N2 o S Bt - a —— »>
NANDR_3>A1 = " =
N1§
<nput> NANDR_3=2N 4 22A o 2N
= v NANDR_B>-Al
: NANDR_3-A2 ?
NANDZ_2>-At — NS N5 NN >N 4 SA < 4N <output>N23
anput>ng O NAND2 222N <4_1>A o_fo2N NII os B
— <NANDR_ 642
\m‘m_}-q ™ ' 4=A1 Ni2 N23
<dnput>N7 NG Ni1 NANDR 4>2N <4 A 4_3:V
- e N1%

<NANDR 4>A2
m\» NS

Figure 19 The graph including the cell internal connectivity
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The internal representation 1s further enhanced by grouping all the
associated pins in the same data structure, which is the cell instance,
Figure 20. The pins are also categorized by its type, input or output.

s aspes
puts  outouts
|~ autpes
L L s * nats _ousouts
. o me e oo
& W s = . e 14
' RO *»
*— NANZ 5
guts  aupes /.. 12
puts | outputs
;\\0 outs s N2 3
L \‘O ats  atps
\\' N\ e e —feTe] -
g 15
M2 \o routs  outputs -
e

|

Figure 20 The final internal representation including the Cellinstances

The nodes of the circuit store the transition and arrival times, as well
as its logical value. The net edges store the wire capacitance, the
resistance, and the calculated delay. The cell edges store the timing
tables and calculated delay.
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Theoretical Approach to our simulator

Unit Delay event-driven simulator design

The scheduler is an important component of an event-drive
simulator. It keeps track of event occurrences and schedules the
necessary gate evaluations. For zero-delay simulation, the event queue
is a good enough scheduler because timing is not considered. For
unit-delay simulation, however, a more sophisticated scheduler is
required to determine not only which gates to evaluate but also when
to evaluate them. Because events must be evaluated in chronological
order, the scheduler is implemented as a priority queue. Figure 20
depicts one possible priority queue implementation for a unit delay
event-driven simulator. In the priority queue, the vertical list is an
ordered list that stores the time stamps when events occur. Attached
to each time stamp t; is a horizontal list of events that occur at time
t. During simulation, a new event that will occur at time ti is
appended to the event list of time stamp ti. For example, in Figure 20,
the value of signal w will switch to v+w at ti. If ti is not in the time
stamp list yet, the scheduler will first place it in the list according to
the chronological order.

b » p.vp

'

1y S A7 > rv = 5 v
'

t; - w, v

——

Figure 21 Priority queue event scheduler
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The TimeWheel Concept

For the priority queue scheduler in Figure 21, the time needed to
locate a time stamp to insert an event grows with the circuit size. To
improve the event scheduler efficiency, one may use, instead of a
linked list, an array of evenly spaced time stamps. Although some
entries in the array may have empty event lists, the overall search time
is reduced because the target time stamp can be indexed by its value.
Further enhancement is possible with the concept of timing wheel as
shown in Figure 22.

t+max
Current time
pointer t+0 1

tel Event link list
2 —{__H__]
t+4
t+5

t+6

Figure 22 A circular stack - TimeWheel - implementation of the priority queue
of our event-driven simulator

Let the time resolution be one time unit and the array size M. A time
stamp that is d time units ahead of current simulation time (with array
index 1) is stored in the array and indexed by (i+d) mod M if d is less
than M; otherwise, it is stored in an overflow remote event list similar
to that is shown in Figure 21. Remote event lists are brought into the
timing wheel once their time stamps are within M—1 time units from
current simulation time. A two-pass strategy for unit delay event-
driven simulation is depicted in Figure 23. When there are still future
time stamps to process, the event list Lg of next time stamp t is
retrieved. Lg 1s processed in a two-pass manner. In pass one (the left

36



shaded box), the simulator determines the set of gates to be evaluated.
The notation (g, v+g) indicates that the output of gate g is to become
v+g. For each event (g, vt+g), if vt+g is the same as g’s current value
vg, this event 1s false and is discarded. On the other hand, if v+g =
vg (Le., (g, vtg) is a valid event), then vg 1s updated to v+g, and the
tanout gates of g are appended to the activity list La. In the second
pass (the right shaded box), gates are evaluated and new events are
scheduled. While the activity list La is non-empty, a gate g is retrieved
and evaluated. Let the evaluation result be v+g. The scheduler will
schedule the new event (g, vt+g) at time stamp t+delay(g), where
delay(g) denotes the nominal delay of gate g. The two-pass strategy
avoids repeated evaluation of gates with events on multiple inputs.

get next time get naxt avent get next gate g
stamp ¢ (a. V_‘;) from L from L,
retrieve current yes evaluate g and
ovent list L { schedule (g.vg)

at t+delay(g)
no
1. Vg vg
| S 2. append g's fanout
gates to activity

Figure 23 Two-pass simulation strategy flowchart
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Implementation of the TimeWheel

After having successfully parsed the three aforementioned files (.v,
lib, .vcd), and having constructed the suitable objects, classes to
categorise and identify our circuits’ elements, we should have
obtained numerous information helping us have an algorithmic
approach to our problem. By now, from the .v file, we should have
constructed and “visualised” our circuit as a graph, upon which our
simulator is based. This graph should contain, as we have seen both
at the UML and the Internal Representation above, Celllnst(ances)
representing each time the respective gate, which should contain
input and output pins represented as Nodes and lists of inputs and
outputs. Nets that are outputs or inputs from gate to gate, that should
translate to Celllnst, are characterised as Edge-type.

Furthermore, parsing the .lib file, is the task that gives life and
meaning to Celllnst and Nodes. By browsing specific characteristics
about each gate and storing them properly we can simulate each time
the function we want to. One of these, is the logic function of each
gate, which we find and store as a type of string.

Traversing throughout the graph we can link the right nets to the
prototype’s function every time. That is obligatory in order to have
the right values inserted to the logical function in order to evaluate
the result. Linking the right inputs to each gate’s nodes, obtaining an
equivalent string as result, this time not with the formal logic function
but with the real inputs inserted.

As we earlier saw, inside the liberty library one can find the logic
function for each available gate. It is not only parsing that is needed
in this occasion though, as the function comes as a type of string.
Using a stack, we can turn that string to a fully functional logic
equation.
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There can be seen two main structures for creating the so-called
event-driven unit delay logic simulator. Besides the basic class created
(Event), one can find the vector < Event * > activity. This activity
list, withholds any events that are pending to happen. Every event
that is executed is removed from this list so as not to be executed
another time. Another major data structure used in this thesis is the
multimap < int, Event * > mymap. This is the history of all events
that happened during the simulation and until our circuit’s output has
stabilised. It is obvious that two variables are stored every time. The
first one is the timestamp — which every time increases by one unit —
and the second one is a pointer to the specific every time Event-
object that contains the information about the event, such as the
Node that the event happened, the responsible for the event, the
timestamp, and the value that caused the event.

We proceed creating the starting events as parsed from the .vcd file.
These events concern the primary inputs at first. The primary inputs
can be found stored as type of node_map in the Graph class. These
events of course will have a timestamp of 0.

As of now, our simulation has just got started. We continue spinning
the timewheel, advancing the time plus one unit each time, exploring
the primary events the first time, the events that are caused because
of them, evaluating and executing.

Below we can observe two flow charts. The first one is more general,
as to the tasks that we must carry out in each cycle, while the second
one is more specific, on how we implemented a two pass strategy,
similar to the one explained above.
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S —-T Advance simulation time

h 4

Determine current events Done

Y

Propagate Events

h 4

Evaluate activated components

s 4

Schedule resulting events

Figure 24 Main Flow of Event-Driven Simulation. During simulation, these tasks
are carried out in each cycle until no events are left.
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activity = [ primary events ]
temp=[ ]

delete the event

events on activity?

does pushValue change
value?

> %e there any available m

event is executed, deleted from
activity and inserted into
multimap

Y

adding to listtemp [ ] new
events, responsible of which is
the under examination node

Figure 25 Two-pass simulation strategy flowchart implementation

is templ | empty?

copy temp to activity

empty temp
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Multimap Container

After an Event has been executed, it 1s deleted from the Activity List
and it is inserted into a multimap, as a kind of history, for further
verification and testing purposes. Multimap is a Sorted Associative
Container that associates objects of type Key with objects of type
Data. multimap is a Pair Associative Container, meaning that its value
type is pair<const Key, Data>. It is also a Multiple Associative
Container, meaning that there is no limit on the number of elements
with the same key.

Multimap has the important property that inserting a new element
into a multimap does not invalidate iterators that point to existing
elements. Erasing an element from a multimap also does not
invalidate any iterators, except, of course, for iterators that actually
point to the element that is being erased.

We have chosen to keep history of event that way, having in mind
that multimap is usually implemented as sorted binary tree. Such trees
can most commonly be a red black known for their good time
complexity in big O notation in searching insertion and deletion. In
this case, our concern for further debugging reasons is the searching
complexity, as we want to investigate events that happened in the past
and who was the responsible for the particular event plus the
timestamp of the event as well.
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A red-black tree 1s a kind of self-balancing binary search tree. Each
node of the binary tree has an extra bit, and that bit is often
interpreted as the colour (red or black) of the node. These colour bits
are used to ensure the tree remains approximately balanced during
insertions and deletions.

Balance is preserved by painting each node of the tree with one of
two colours (typically called 'red' or 'black') in a way that satisfies
certain properties, which collectively constrain how unbalanced the
tree can become in the worst case. When the tree is modified, the new
tree is subsequently rearranged and repainted to restore the colouring
properties. The properties are designed in such a way that this
rearranging and recolouring can be performed efficiently.

The balancing of the tree is not perfect, but it is good enough to allow
it to guarantee searching in O (log n) time, where n is the total number
of elements in the tree. The insertion and deletion operations, along
with the tree rearrangement and recolouring, are also performed in O
(log n) time.

Tracking the colour of each node requires only 1 bit of information
per node because there are only two colours. The tree does not
contain any other data specific to its being a red—black tree so its
memory footprint is almost identical to a classic (uncoloured) binary
search tree. In many cases, the additional bit of information can be
stored at no additional memory cost.
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Conclusion

As the era emerges, with the complexity of the circuits augmenting
so fast, CAD tools not only for design and verification but also for
designing and implementing circuits in general, have become as
aforementioned a viable replacement for physical prototyping. Aim
of this thesis was to design and implement an event-driven logic
simulator for digital circuits. After analysing different types of
simulators and the theoretical background we implemented the one
titting our purposes.

Studying in general about digital circuits has been intriguing, having
always in mind the scalability involved in VLSI circuits. It has been a
pleasure for me to have worked under the supervision of such a great
environment at the office E5.

Once again, I would like to attribute huge acknowledgements to all
the people in my life that assisted me and shared their wisdom with
me, through good and tough times, during my studies at the
University of Thessaly.
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