
Multi-tier program deployment and execution
over the cloud, edge and end-devices

Thesis by
Alexandros Patras

For Graduation of Bachelor of Science
Department of Electrical and Computer Engineering

supervised by:
Spyros Lalis, Associate Professor

Christos D. Antonopoulos, Assistant Professor

UNIVERSITY OF THESSALY
Volos, Greece

12th October
2017

ii

© 2017

All rights reserved

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my thesis supervisor, Dr. Spyros Lalis.
His guidance was the most valuable and essential for the completion of my thesis as
well as for the years of my studies. He was always available for support and advice,
not only for academic affairs, but also for my life and my future career. His active
and enthusiastic involvement in the projects we collaborated on, encouraged and
enabled me to be a better engineer.

I would also like to show my gratitude to my second supervisor, Dr. Christos D.
Antonopoulos for his participation and support on my research work. His advice
and comments on crucial aspects of the research helped to improve the quality of
the results.

I am also grateful to my Department’s systems administrator, Mr. Athanasios
Fevgas. His support and work allowed me to use the necessary network resources
of the University for the purposes of my research.

A very special gratitude goes to Manos Koutsoubelias, Nasos Grigoropoulos and
Christos Kalogirou, PhD students of the Computer Systems Lab of my Department.
Their support and encouragement to important stages of my research can not be
disregarded, and for that, I thank them.

And finally, last but by no means least, i would like to thank the people that were
close to me, my family and my friends: My parents that were by my side all the time
with their remarkable patience. My siblings for their support with every mean they
could. And my friends for the encouragement to go on.

This research work was supported in part by the Horizon 2020 Programme of the
European Union, project UniServer, contract number 688540.

iv

ABSTRACT

The emergence of the edge/fog computing paradigm has increased the programming
complexity of applications so that they can work seamlessly in the new distributed
and heterogeneous system landscape. In this research, we investigate a structured
dataflow approach which simplifies application development and offers great flex-
ibility regarding the deployment of the application across end-devices, edge com-
puting infrastructure and remote cloud systems. Our prototype is built on top of the
Node-RED framework, with extensions in order to support the transparent deploy-
ment and distributed execution of application flows. We use a real-world application
example to illustrate our approach as well as to explore the performance trade-offs
for different deployment scenarios on real distributed computing setups.

v

ΠΕΡΙΛΗΨΗ

Η εμφάνιση του παραδείγματος του edge/fog computing έχει αυξήσει την πολυ-
πλοκότητα προγραμματισμού εφαρμογών έτσι ώστε να μπορούν να λειτουργούν

άψογα στο νέο τοπίο των κατανεμημένων και ετερογενών συστημάτων. Σε αυτήν

την έρευνα, διερευνάμε μια προσέγγιση δομημένης ροής δεδομένων, η οποία

απλοποιεί την ανάπτυξη εφαρμογών και προσφέρει μεγάλη ευελιξία όσον αφορά

την ανάπτυξη και εκτέλεση της εφαρμογής σε τελικές συσκευές, σε υπολογισ-

τικές υποδομές στα άκρα του δικτύου καθώς και σε απομακρυσμένα συστήματα

στο νέφος. Το πρωτότυπο μας είναι χτισμένο πάνω από το εργαλείο Node-RED,
κάνοντας χρήση των επεκτάσεων του για να υποστηρίξουμε τη διαφανή ανάπτυξη

και τη κατανεμημένη εκτέλεση ροών εφαρμογών. Χρησιμοποιούμε ένα παράδειγμα

εφαρμογής που χρησιμποιείται στον πραγματικό κόσμο για να καταδείξουμε την

προσέγγισή μας καθώς και για να διερευνήσουμε τους διάφορους συμβιβασμούς

που πρέπει να γίνουν για την απόδοση της εφαρμογής σε διαφορετικά σενάρια

ανάπτυξης σε μια πραγματική κατανεμημένη υπολογιστική υποδομή.

vi

CONTENTS

Acknowledgements . iii
Abstract . iv
Περίληψη . v
Contents . vi
List of Figures . vii
List of Tables . viii
Chapter I: Introduction . 1
Chapter II: Motivation . 3

2.1 The transition from cloud to edge/fog computing 3
2.2 Application Example: Camera-based Security 4
2.3 Development issues . 5

Chapter III: An IoT programming tool: Node-RED 7
3.1 Node-RED Overview . 7
3.2 Custom node implementation . 8
3.3 User Interaction . 9

Chapter IV: Extending the Node-RED . 12
4.1 Extending Node-RED for Flexible Distributed Computing 12
4.2 Extension Overview . 12
4.3 User Interaction . 12
4.4 Sub-flow Deployment . 13

Chapter V: Evaluation . 16
5.1 Purpose . 16
5.2 Application implementation & datasets 16
5.3 Bandwidth Measurements . 17
5.4 Notification delay . 18
5.5 Summary . 24

Chapter VI: Related Work . 25
Chapter VII: Conclusion . 27
Bibliography . 28

vii

LIST OF FIGURES

Number Page
2.1 An illustration of the cloud architecture. 3
2.2 An illustration of the edge architecture. 4
2.3 High-level functional diagram for the camera-based security appli-

cation. 4
3.1 Node-RED flow graph for the camera-based security application. . . 7
3.2 JavaScript sample file that implements a custom node. 8
3.3 HTML sample file that implements the graphical configuration set-

tings of a custom node. 9
3.4 Screenshot from the GUI for a Hello World flow. 10
3.5 Step-by-step flow construction. 10
3.6 Two flows that communicate with each other through suitable trans-

port nodes. 11
4.1 High-level view of the system architecture. Our extensions to the

Node-RED framework are marked in grey. The protocol for the
deployment of node flows is already supported by Node-RED. 13

4.2 A distributed flow on the canvas of the master Node-RED environ-
ment. 14

4.3 Sequence diagram for the sub-flow deployment/orchestration process. 15
5.1 Indicative frames of the input video footage. 17
5.2 Faces samples from the database. 17
5.3 Notification delay for motion detection and face recognition for the

setup with the ADSL link and a fast edge machine. 20
5.4 Notification delay for motion detection and face recognition for the

Fiber link and the slow edge machine. 22
5.5 Slow edge machine CPU load. 24
5.6 Fast edge machine CPU load. 24

viii

LIST OF TABLES

Number Page
5.1 Data traffic between the components of the camera-based security

application. The bandwidth is estimated for the frame rate of the
original video footage without employing compression. 18

5.2 Deployment scenarios. 19
5.3 Host platform characteristics for the setup with the ADSL link and a

fast edge machine. 20
5.4 Communication characteristics for the setup with the ADSL link to

the Internet. 20
5.5 Host platform characteristics for the setup with the fiber link and a

slow edge machine. 22
5.6 Communication characteristics for the setup with the fiber link to the

Internet. 22

1

C h a p t e r 1

INTRODUCTION

A large number of IoT and pervasive computing application scenarios revolve around
a rather simple architectural approach, whereby low-end and/or mobile devices
send data to and receive actuation/control requests from powerful server machines
in the cloud. This approach, though straightforward to implement, has several
drawbacks. Firstly, a large amount of low-level data are routed over the Internet
to remote machines, leading to scalability issues. Secondly, due to the latency of
the Internet, it may not be possible to support control/feedback loops with tight
real-time constraints. Last but not least, privacy-sensitive data ends-up in the cloud
from where it may leak to third parties, either intentionally for business purposes or
unintentionally as a result of attacks.

An alternative approach is to adopt a more complex system architecture, which
allows part of the data processing and decision making to be performed at the
edge, on machines close to the end-devices, or in part even directly on the end-
devices themselves. However, writing applications that span across end-devices,
edge computing infrastructure and remote cloud systems is a non-trivial task: the
developer has to structure the application in different parts; each part must be
written/prepped so that it can run on the target host; the interface between the
different parts of the application has to be cleanly defined and implemented so that
it can be performed over a network; finally, each part must be installed on its host,
and be properly instantiated and linked together with other parts of the application.
And this process has to be repeated, in the worst case from scratch, if one wishes to
apply / experiment with a different deployment.

This thesis presents the work that we have done to support the programmer in the
above task, by adopting a combination of component-based and dataflow-oriented
programming. More specifically, we let an application be expressed as a graph,
where the nodes represent components and the edges between them represent uni-
directional links used for data exchange. The developer also provides hints on how
components should be placed on the hosts of the system. At deployment time,
the sub-graphs are instantiated on the target hosts, along with automatically gener-
ated connector logic that takes care of inter-component binding and communication

2

over the network. To accelerate prototyping, we have built our support on top of
Node-RED [1], which provides several features that are in line with our vision. Our
contribution is in the extensions that support transparent component deployment
and inter-component binding and communication over the network, without touch-
ing the Node-RED core. Moreover, we perform experiments on two real distributed
setups and provide performance results that show the benefits and trade-offs of a
more flexible application deployment that exploits computing resources at the edge
with different computing capabilities and network links.

The rest of the thesis is structured as follows. Chapter 2 describes an indicative
application example, where the edge computing paradigm is particularly appropriate.
Chapter 3 gives an overview of the Node-RED framework. Chapter 4 presents the
extensions made to Node-RED to enable a more flexible application deployment and
execution, while Chapter 5 discusses the results of our performance experiments.
Chapter 6 outlines related work. Finally, Chapter 7 concludes the thesis and defines
directions for future work.

3

C h a p t e r 2

MOTIVATION

2.1 The transition from cloud to edge/fog computing
The cloud computing industry is currently searching ways to better accomodate the
large number of connected devices and to providemore reliable and scalable services
to Internet of Things (IoT) applications. However, the current approach, illustrated
in Figure 2.1, has significant scalability limitations. The data that is produced at
the periphery of the Internet grows rapidly due to the ever increasing number of
sensors found in smart cities, smart buildings, smart vehicles and portable/wearable
personal devices. The data volume is expected to grow from 1.1 zettabytes per year
in 2016 to 2.3 zettabytes per year by 2020 [2]. Sending all this data across the
Internet to the cloud is clearly not a viable option. This is not just a bandwidth
problem. Some of the applications have rather strict latency/reaction requirements,
which may be hard or even impossible to meet if data travels a long way in order to
be processed by machines in a distant location.

Figure 2.1: An illustration of the cloud architecture.

The problem can be addressed by adding a layer between the endpoint devices and
the cloud, as shown in Figure 2.2. This has two advantages. On the one hand, one
can take advantage of high-speed and/or low-latency network links between edge
and end-devices to reduce the delay of notifcations or actuation actions. On the
other hand, it becomes possible to offload part of the processing that would have
been performed on the cloud, to computing infrastructure at the edge.

4

Figure 2.2: An illustration of the edge architecture.

2.2 Application Example: Camera-based Security
Several applications have been identified in the literature as typical examples where
edge/fog computing can be advantageous compared to conventional cloud comput-
ing. Here we focus on one such application, which is based on the Airport Visual
Security System case study that is described in the OpenFog Reference Architec-
ture [2]. For the purpose of our work we have simplified and adapted the application
while keeping its most salient features and performance-critical aspects.

Figure 2.3: High-level functional diagram for the camera-based security application.

In a nutshell, the purpose of the application is to monitor a security-sensitive area
by processing camera feeds in order (a) to recognize movement and (b) unwanted
persons entering the area, and issue respective notifications to nearby personnel or
even take an automated action, such as raising an alarm or locking a door. As shown
in Figure 2.3, the application can be partitioned in severel high-level functions:

5

(F1) take video of the area of interest; (F2) detect motion in the video frames;
(F3) detect individual faces and crop the respective frame areas; (F4) match the
cropped images against the images of different persons stored in a database; (F5)
raise soft/hard alarms in casemovement or an unwanted person is detected. Function
F1 is achieved using camera sensors, F2, F3 and F4 are implemented using suitable
image processing and face recognition algorithms, while F5 will typically trigger
an actuator or user interface on some end-device.

This application can be implemented using a low-cost local infrastructure, deploy-
ing only the video cameras and alarms in the area of interest. The core image
processing and face recognition functions can be performed by employing ready-
to-use services offered by cloud providers like [3]–[5], or by running own/custom
computer vision software such as [6], [7] on powerful server machines in the cloud.
While this approach has the well-known advantages of cloud computing, it also
comes with important scalability and responsiveness issues. Firstly, the available
network bandwidth may not suffice to push a large number of video streams all the
way to the cloud. Secondly, the latency of the Internet and the relaxed quality of
service guarantees of cloud systems may introduce large end-to-end actuation and
user notification delays.

As an alternative approach, the core processing functions of the application can
be implemented in a modular fashion, as independent components that can run, if
desired, on different machines —some of them located at the edge of the Internet—
leading to better performance and scalability. In this particular case, while F2 takes
as input a continuous stream of frames which can arrive at a high rate, it only outputs
selected frames when motion is detected. Also note that F3 and F4 are activated
only when F2 actually produces some output. Therefore placing F2 close to F1, for
instance on a machine with a fast wired/wireless connection to the camera devices,
which may also feature special hardware acceleration, might be a better choice in
terms of both scalability and responsiveness of the application. To further reduce
bandwidth requirements, F3 could be at the edge as well. On the other hand, if the
network latency is sufficiently small, F4 could be hosted in the cloud on machines
with lots of storage and powerful database support.

2.3 Development issues
In order to develop an application that can span across end-devices, the edge and
the cloud, the developer must consider several aspects like software dependencies,

6

demands in terms of processing power and network latency, as well as the available
capacity of the network links.

The developer must then partition the application into smaller pieces, and decide
where each piece should be deployed. This typically translates into identifying core
functionalality that can be cleanly split into distinct parts, in the spirit of the above
application example (Figure 2.2). Moreover, the problem of machine and runtime
platform heterogenity has to be addressed, depending on the desired partioning and
deployment. A programming language or runtime framework that might be suitable
on a cloudmachine, is not necessarily suitable or even available for an edgemachine,
let alone an end-device. In the worst case, parts of the application may have to be
re-written to be able to execute on the target platform.

Finally, communication logic must be developed to enable the interactions between
the parts of the application that may be deployed and run on different machines. For
each such interaction, one should consider the requirements in terms of reliability,
and choose coresponding transport mechanisms/protocols. For instance, if the
communication between two parts of the application is in the form of a stream (the
communication between F1-F2 as well as between F2-F3 in the above example),
this can be implemented using an unreliable datagram transport such as UDP/IP. In
contrast, if two parts require reliable communication (the communication between
F2-F5 and F4-F5), one would need to employ a reliable transport such as TCP/IP.

7

C h a p t e r 3

AN IOT PROGRAMMING TOOL: NODE-RED

3.1 Node-RED Overview
Node-RED [1] is built on top of NodeJS [8], with the purpose of enabling rapid and
simple development of IoT applications. It consists of (i) a collection of runnable
software components called nodes, (ii) a graphical user interface (GUI) for picking
nodes and linking them together into a flowgraph, and (iii) a runtime environment for
deploying and executing such flows. The collection of nodes can be enriched in an
open-ended manner, and developers are free to write their own nodes that implement
missing functions or custom glue-logic needed for the target applications. A large
number of nodes embodying a wide range of different functions have already been
contributed by the community, making Node-RED a very powerful component
ecosystem.

The GUI allows the developer to interactively browse the list of available nodes, also
referred to as node pallete, choose the ones to be used in the application, drag and
drop them on the so-called canvas, and link them together into a flow that achieves
the desired functionality. The linking between nodes is done by drawing a line that
connects an output port of the source node with the input port of the destination
node. When the application flow graph is finalized, it can be deployed by pressing
a button. To give a concrete example, Figure 3.1 shows a Node-RED flow for the
camera-based security application, following the component structure of Figure 2.3.

Figure 3.1: Node-RED flow graph for the camera-based security application.

Node components are written in JavaScript. According to the conventions of the
Node-RED framework, nodes can have at most one input port and zero or more
output ports; they may also communicate through shared objects stored in a global
or flow-specific context. The actual node logic resides in a handler function, which
is invoked by the Node-RED runtime environment when a message arrives at the
input port in order to processes it and produce messages for the output ports. Apart

8

Figure 3.2: JavaScript sample file that implements a custom node.

from simple functions, nodes can implement more complex data processing directly
in JavaScript or by proxying other programs that are invoked through suitable
middleware. One may also exploit the node-gyp [9] tool of NodeJS to create
bindings between external libraries and nodes, and the NodeJS Package Manager
to install contributed modules. Meta-information on the functionality, input/output
ports and configuration options of a node is provided in a separate HTML file,
which is accessed by the GUI in order to guide the user during the interactive node
selection, linking and configuration process.

Finally, the Node-RED runtime environment takes as input a flow graph and deploys
it on the local machine. More specifically, it creates an instance for every node in the
graph, and routes messages between the nodes as dictated via the respective links.

3.2 Custom node implementation
The implementation of custom nodes is simple, andNode-RED [1] provides samples
of the two necessary files that are shown in Figure 3.2 and Figure 3.3. The user
needs to implement the message handler to respond to inputs, and configure the
HTML file for the needed configuration settings.

9

Figure 3.3: HTML sample file that implements the graphical configuration settings
of a custom node.

3.3 User Interaction
We illustrate the capabilities and usage of Node-RED, through a simple example of
a "Hello world" flow, shown in the canvas area of the GUI in Figure 3.4.

This flow is created step by step. First, the user must drag and drop each node
into the canvas, and configure each node according to the options dictated by the
corresponding HTML file, as shown in Figure 3.5a. Then, the nodes need to be
linked, by connecting an output port of the source/sender with the input port of the
destination/receiver, as shown in Figure 3.5b. Of course, in order for this to work,
the ports must be compatible, i.e., the messages sent over the output port must be of
the same type as the messages that are expected to be received via the input port.

10

Figure 3.4: Screenshot from the GUI for a Hello World flow.

(a) Dropping and configuring nodes.

(b) Linking the nodes.

Figure 3.5: Step-by-step flow construction.

11

(a) Flow on process 1. (b) Flow on process 2.

Figure 3.6: Two flows that communicate with each other through suitable transport
nodes.

Finally, when the flow has been constructed, the user presses the Deploy button, and
the Node-RED runtime system handles the instantation and the running of each node
as well as the message routing between connected nodes. Note that Node-RED is
single-threded, so all nodes of a flow runs within a single instance of the Node-RED
process.

To facilitate an interaction between nodes that reside on different Node-RED pro-
cesses, on the same or on different machines, Node-RED offers built-in communi-
cation / data transport components. As an example, Figure 3.6 shows two distinct
flows that can run on different processes/machines, with their respective UDP com-
munication nodes and the appropriated configuration settings.

However, these communication components have to be manually added into each
flow. They must also be appropriately configured by hand, in order to be able
to communicate with each other; since they do not belong to the same flow, the
usual drag-drop-configure process cannot be applied to them. Furthermore, Node-
RED communication nodes only support the transfer of String, Buffer and Base64
encoded Strings objects. If two flows that run on separate processes/machines need
to exchange any other type of data, the developer has to introduce corresponding
data types and provide suitable data serialization code/methods. Last but not least,
the two flows have to be instantiated separately on the target machines. So, while in
principle it is possible to write distributed applications/flows, the process for doing
this is not very smooth and introduces some hassle. What is worse, this needs to be
repeated if it is desired to support/investigate a different deployment scenario.

12

C h a p t e r 4

EXTENDING THE NODE-RED

4.1 Extending Node-RED for Flexible Distributed Computing
Node-RED is intended primarily for running application logic on the same machine,
and the runtime environment takes care of component instantiation and message
forwarding at a local scope only. While it is possible for an application to exploit
functions running on remote machines, the respective software management and
communication becomes the responsibility of the developer, and has to be done in a
manual way, separately from the application flow that is built/run using Node-RED.

We have extended Node-RED so that it can be used to build applications that can
span acrossmachine boundaries in a transparent way. Themain difference compared
to regular Node-RED flows is that the developer has to specify the placement of
nodes on hosts according to the desired deployment. Doing this is trivial, and one
can explore different deployments scenarios with practically zero effort. For our
prototyping purposes, we leave the core of theNode-RED framework untouched, and
introduce our extensions on top of it while exploiting the out-of-the-box functionality
as much as possible.

4.2 Extension Overview
For the orchestration of the systemwe adopt a centralized approachwhereby a distin-
guished machine, called themaster, acts as the application manager and coordinator
for the distributed execution environment. Themachines that can be used to host/run
one or more application nodes, called slaves, run the conventional Node-RED en-
vironment. Slaves register with the master using a simple directory protocol, and
accept requests for configuring and executing flows locally. This master-slave inter-
action is performed using the HTTPmanagement API of the Node-RED framework.
Figure 4.1 shows the high-level system architecture.

4.3 User Interaction
The developer builds the application flow on the master environment, by dragging-
dropping nodes on the canvas and linking them together as usual. The user can
find the machines that are available for hosting nodes and inspect their properties
by interactively browsing the master directory. The placement of the nodes on hosts

13

Figure 4.1: High-level view of the system architecture. Our extensions to the Node-
RED framework are marked in grey. The protocol for the deployment of node flows
is already supported by Node-RED.

is specified via a syntactical convention, namely by appending the host identifier as
a suffix in the name of the node. For example, if node Node should run on host
Host, the full name of the node component should be Node_Host. It is thus easy to
define and change node placement, by setting these suffixes accordingly. Once the
application flow is defined, the user can deploy and run it by pressing a button of
the GUI.

As an example, Figure 4.2 shows the flow for the camera-based security application
example (Figure 2.3). In this case, the developer has decided to place the nodes for
F1 and F5 on the same endpoint device. Similarly, the nodes for F2 and F3 are also
to be placed on the same edge machine, whereas the node for F4 on the cloud (the
host names are intentionally kept simple).

4.4 Sub-flow Deployment
Based on the node placement information, the master splits the global application
flow into sub-flows each comprising only nodes that should be co-located on the
same host. For each link that spans across hosts, additional connector logic is gener-
ated, which comprises a communication endpoint and suitable data serialization for
each side. This is implemented via proper nodes, re-using the networking and seri-
alization support of Node-RED (plus application-specific serialization add-ons for
custom data types, if any), which are then linked to the corresponding application-

14

Figure 4.2: A distributed flow on the canvas of the master Node-RED environment.

level nodes in the respective local sub-flows. Finally, the master describes each
sub-flow independently, in the form of a JSON file that follows the standard Node-
RED flow specification format, and sends it for execution to the respective host. The
allocation of the UDP/TCP ports for the communication endpoints on the hosts is
done by the master via a suitable configuration protocol, before activating the indi-
vidual sub-flows. The entire process, including the generation of the connector logic
and required nodes installation, is automated and does not require any involvement
of the application developer. Figure 4.3 shows the deployment/orchestration process
between the master and the salves, in the form of a message sequence diagram.

15

Figure 4.3: Sequence diagram for the sub-flow deployment/orchestration process.

16

C h a p t e r 5

EVALUATION

5.1 Purpose
We conducted several experiments to check the robustness of our prototype, as well
as to observe the performance of different deployments that combine computing
resources at the edge and remote cloud infrastructures. In particular, we wanted
to investigate the effects of edge environments with different communication links
and different hardware platforms. To this end, we used two symmetrically opposite
setups, which clearly demonstrate the importance of both factors.

5.2 Application implementation & datasets
Our experiments are performed for the camera-based security application described
in Chapter 2. The application is structured as a Node-REDflow, as already discussed
in Chapter 4.

We implement function F1 using a node that reads a sequence of video frames
that are stored in JPEG format, simulating a video stream. The individual frames
are transmitted “as is” without employing any compression technique. The node
for F2 is based on existing software that compares subsequent frames [10]. If the
difference between them is above a threshold, the node outputs the last frame and a
corresponding notification towards F5. F3 runs a face detection algorithm that uses
Haar Feature-based Cascade Classifiers on the input frames and produces cropped
frames that contains a face in gray-scale color. F4 is implemented using the Local
Binary Patterns Histograms face recognition algorithm on the incoming cropped
frames, generating a notification in case a positive match is found. These algorithms
are already implemented as part of the OpenCV library [6], and are accessed via
respective NodeJS bindings [11]. Finally, F5 is a simple node that consumes the
notifications coming from F2/F4 and prints a warning.

We use a small part of the ChokePoint [12] video dataset as input, with a duration
of 22 seconds: the first 5.5 seconds show an empty corridor without any movement;
during the next 5.5 seconds a person passes through the corridor facing the camera,
but this face is not in the face database; the following 5.5 seconds are identical to the
first phase; the last 5.5 seconds show another person whose face is included in the

17

(a) No motion. (b) Person entering the
scene.

(c) Person leaving the
scene.

Figure 5.1: Indicative frames of the input video footage.

(a) A (familiar) face from
the database.

(b) Cropped frame gener-
ated by F3.

Figure 5.2: Faces samples from the database.

face database. The original video dataset has an image resolution of 800x600 pixels
at 30 frames per second. To let each frame fit into a single UDP/IP packet and avoid
frame fragmentation and reassembly at the application level, the video was cropped
to 550x500 pixels. The cropped frames produced by F3 vary in size. We train
the face recognition model using the Labeled Faces in the Wild face database that
contains faces of 5,749 people in 13,233 images [13]. Figure 5.1 shows indicative
frames of the video footage used. Figure 5.2 shows samples from the face database
and the cropped frames generated by F3.

5.3 Bandwidth Measurements
In a single run that is performed on a single machine, we record the amount of data
that would travel over the network if each of the application components were de-
ployed on a different host. This is done by adding serialization and de-serialization
nodes for each link between two components, along with the corresponding com-
munication/transport nodes. We measure the size of application-level messages as

18

Table 5.1: Data traffic between the components of the camera-based security appli-
cation. The bandwidth is estimated for the frame rate of the original video footage
without employing compression.

Application UDP/IP Bandwidth @ 30 fps
F1 -> F2 27.5 MB 55 MB 20 Mbps
F2 -> F3 10.3 MB 20.6 MB 3.7 Mbps
F3 -> F4 0.5 MB 1.1 MB 0.2 Mbps

well as the traffic at the level of the transport (in our case, UDP/IP) using the iptraf
Linux tool [14]. Table 5.1 presents the results. We observe that the placement of
application components significantly affects the amount of data that travels over the
Internet. More specifically, placing F2 at the edge rather than on a remote cloud
reduces the number of frames and total amount of data sent over the Internet by
60%. If F3 is placed at the edge as well, the outbound traffic drops by more than
95% (fewer frames, which are also much smaller in size due to face cropping).

These numbers are for uncompressed video, but also for just one camera. In a real-
world setting, there could be numerous such video streams that need to be processed
concurrently, leading to very high bandwidth requirements even if compression is
employed. For instance, a H.264 or H.265 IP camera generates 12 Mbps at 30
fps [2]. This still amounts to approximately 1 TB/day, and to support just 10 such
cameras with a pure cloud-based approach one would already require more than
100 Mbps of bandwidth. According to a recently published Akamai report on the
state of the Internet, the global average peak speed of Internet connectivity stands
at 44.6 Mbps at an average speed of just 7.2 Mbps [15]. Clearly, to support such an
application at scale, one would have to run F2 and probably also F3 at the edge.

5.4 Notification delay
We measure the end-to-end delay for the motion detection notification issued by F2
and the face recognition notification issued by F4. Both delays are recorded at F5,
when the respective notification messages arrive, using as a reference the time when
F1 outputs frames with motion (we know the sequence numbers of those frames
through manual inspection).

The deployment scenarios used in our tests are summarized in Table 5.2. In all cases,
the nodes for F1 and F5 are co-located on a laptop computer that represents an end-
device. The nodes for F2, F3 and F4 run either on a local personal computer that
stands for the edge computing infrastructure, or on a remote cloud system, depending

19

Table 5.2: Deployment scenarios.

End-Device Edge Computer Remote Cloud
Cloud F1, F5 none F2, F3, F4

Edge/Cloud 1 F1, F5 F2 F3, F4
Edge/Cloud 2 F1, F5 F2, F3 F4

Edge F1, F5 F2, F3, F4 none

on the deployment scenario. The laptop (end-device) and edge host are connected
to a LAN with a small ping latency, less than 3 milliseconds. The communication
latency between the edge and cloud host depends on the configuration (see next).

To see howmuch time of the notification delay is due to processing, we also measure
the computing time of each application component by recording the time that is spent
in the respective message handler. Recall that Node-RED runs all application nodes
of a local flow within a single thread, and thus all nodes that reside on the same
host run within the same process. As a consequence, our experiments do not
exploit/investigate the multi-core capability of the host machines.

To get a feeling of the communication overhead between application components
that reside on different hosts, we measure the round-trip-time (RTT) for respective
application-level ping-pongs using messages of the same size as the ones that are
exchanged during the actual experiments. As an estimate for the one-way commu-
nication latency, we use RTT/2.

Slow uplink, fast edge machine
In a first set of experiments, we test all deployment configurations of the application
using setup where the edge has an ADSL link to the Internet but features a powerful
machine as a host for application components. Table 5.3 shows the key characteris-
tics of the platforms used for the end-device, the edge host and the cloud host, while
Table 5.4 reports the characteristics of the ADSL link and the latency between the
edge and the remote cloud host. In order not to over-stress the (slow) uplink, the
rate at which F1 produces frames towards F2 is artificially reduced to 1.25 frames
per second.

Figure 5.3 shows the results (median over ten runs for each deployment). The whole
bar shows the recorded notification delays. The blue part shows the delay due to
the processing that is performed by the involved application components for each
notification. The notification for the motion detection includes the processing that is
performed from the application component F2, whereas the notification for the face

20

Table 5.3: Host platform characteristics for the setup with the ADSL link and a fast
edge machine.

End-Device Edge Remote Cloud
Linux

Atom CPU, 2C@1.66 Ghz
512 KB Cache, 1 GB RAM

Linux Image in VM
I7 CPU, 4C@4.2 Ghz

8 MB Cache, 8 GB RAM

Linux via Docker
I7 CPU, 8C@3.4 Ghz

8 MB Cache, 32 GB RAM

Table 5.4: Communication characteristics for the setup with the ADSL link to the
Internet.

Download/Upload bandwidth Ping latency 60 B Ping latency 60 KB
24/1 Mbps 70 ms 750 ms

Figure 5.3: Notification delay for motion detection and face recognition for the setup
with the ADSL link and a fast edge machine.

recognition includes the aggregated processing time of application components F2,
F3 and F4. In either case, in the processing time is also included the aggregated time
that is spent inside the serialization/de-serialization components. The orange part
shows the aggregated end-to-end communication delay for the notifications, which
is estimated based on the RTTs for the respective application-level ping-pong. The
network delay for the motion detection includes the delay for the link F1-F2 and the
link F2-F5, whereas the network delay for the face recognition includes the network
delays for all the links that are between F1 and F5.

The notification for motion detection is much faster in all cases where F2 is hosted
at the edge (Edge and both Edge/Cloud variants) vs. on the remote cloud system
(Cloud). This is expected, because in all deployments F2 is hosted on equally fast

21

machines, but in the Cloud deployment it is further away from the end-device where
F5 resides.

However, the results for the face recognition notification delay are not that intuitive.
On the one hand, as expected, the Edge deployment has the lowest delay. On the
other hand though, the face notification delay for the Edge/Cloud 1 deployment
is slightly larger than that of the Cloud deployment, despite the fact part of the
application (F2) runs at the edge on a host machine that is as powerful as the cloud
host. This is due to the extra overhead of passing the data flow through the host at the
edge before going to the cloud. While F2 reduces the number of frames that travel
upstream towards F3, the amount of processing done by F2 (just 5 milliseconds per
frame, in all configurations) is too small to outweigh the time it takes to relay a
frame via the application layer (about 7 ms). This overhead is not visible in the
Edge/Cloud 2 deployment because of the heavier aggregated processing of F2 and
F3 on the edge host (a total of 55 ms per frame) but also due to the very significant
reduction by F3 in the number and size of frames that flow out of the edge host to the
cloud, leading to a lower face notification delay compared to the Cloud deployment.

Note that for the Cloud and both Edge/Cloud variants, the measured notification de-
lays are significantly larger than the sum of the recorded application-level processing
time and the estimated communication latency. This difference, which corresponds
to the gray part of the bars in Figure 5.3, is attributed to the asymmetry of the
ADSL link, which presumably results in a an uplink latency that is much larger than
the RTT/2 that was measured for the application-level communication between the
end-device and the cloud. No such gap exists for the Edge measurements, as in this
case no communication takes place over the ADSL link.

Fast uplink, slow edge machine
In a second set of experiments, we test all deployment configurations of the ap-
plication using setup where the edge has fast, fiber-optic link to the Internet but
features a much weaker machine as a host for application components. Table 5.5
shows the key characteristics of the platforms used for the end-device, the edge host
and the cloud host, while Table 5.6 reports the characteristics of the fiber link and
the latency between the edge and the remote cloud host. To avoid over-stressing
the (slow) edge machine, in this experiments the frame rate of F1 was artificially
reduced to 1 frames per second (25% lower that in the previous experiments).

Figure 5.4 shows the results (median over ten runs for each deployment). As in

22

Table 5.5: Host platform characteristics for the setup with the fiber link and a slow
edge machine.

End-Device Edge Computer Remote Cloud
Linux Image in VM

Core2 Duo CPU, 2C@2.20 Ghz
2 MB Cache, 1 GB RAM

Linux Image in VM
I5 CPU, 4C@2.2 Ghz

3 MB Cache, 4 GB RAM

Linux via Docker
I7 CPU, 8C@3.4 Ghz

8 MB Cache, 32 GB RAM

Table 5.6: Communication characteristics for the setup with the fiber link to the
Internet.

Download/Upload bandwidth Ping latency 60 B Ping latency 60 KB
100/100 Mbps 59 ms 71 ms

Figure 5.4: Notification delay for motion detection and face recognition for the Fiber
link and the slow edge machine.

the previous experiments, we see that the notification for motion detection is lower
for every configuration where F2 resides on the edge machine (Edge, Edge/Cloud
1 and Edge/Cloud 2). Even though the fiber link is fast, it still introduces a small
delay, which in turn leads to a slower notification for motion detection in the Cloud
configuration.

The notification delay for the face recognition shows a different pattern. A first,
general observation is that for all configurations, expect Edge, this is significantly
lower than in the previous setup, even though the edge machine is slower. This can
be explained due to the much faster link to the Internet. Further, we see that in
those configurations the sum of the recorded processing delay (blue) and estimated
communication delay (orange) is practically the same with the recorded notification
delay. This is because in this case the network link between the edge and the cloud

23

hosts is symmetrical and thus the RTT/2 estimate for the one-way latency is much
more accurate than for the ADSL link.

Moreover, in contrast to the previous setup, the lowest face recognition notification
delay is now achieved in the Cloud configuration, whereas the Edge/Cloud 1 and
Edge/Cloud 2 configurations show a slightly higher notification delay. For the
Edge/Cloud 1 configuration, the reasoning is in part the same as in the previous
setup (the application-level relay overhead that is introduced by placing F2 on the
edge machine is higher than the gains). On top of that, since the edge host is slower
than the cloud host, F2 now takes (slightly) more processing time. The latter also
explains the increase of the notification delay for the Edge/Cloud 2 configuration,
where the additional 45 milliseconds are spent due to the longer time required by
F3 to process an incoming frame. Additionally, given the very fast uplink, the
reduction of the data that flows out of F3 to the cloud does not translate into any
tangible benefit in terms of notification latency.

Note that the Edge configuration has the highest face detection notification latency,
which is also much higher than in the previous setup. This is because the edge
machine is just too slow to handle F4 as well (together with F2 and F3), which
introduces an additional time of approximately 580 milliseconds due to heavy pro-
cessing, as opposed to approximately 355 milliseconds when using the faster edge
machine in the previous setup. Of course, this overload situation also affects the rest
of the application components that run on this host, and in fact leads to significant
frame loss (recall that we transport frames over UDP/IP).

Figure 5.5 and Figure 5.6 show the CPU load for the fast and slow edge machines in
the Edge configuration. Given that Node-RED runs on a single thread, the reported
load is given using as baseline the capacity of single CPU core (the fact that some
values exceed 100% indicate that parts of the Node-RED framework do use the
other cores, but this does not apply to the part that runs the application nodes). We
observe that the slow edge machine is overwhelmed as soon as F4 receives and
attempts to processes the first frame with a face (182th second in Figure 5.5). It
exceeds the 100% value and remains above that for a long period of time, leading
to a significant performance degradation. In contrast, Figure 5.6 shows that the fast
edge machine can handle the load (even though in this setup the frame rate is higher
by 25%) as it rarely exceeds the 100% value and then only for a short time.

24

Figure 5.5: Slow edge machine CPU load.

Figure 5.6: Fast edge machine CPU load.

5.5 Summary
The above results above show that, even in a relatively simple application scenario,
performance only improves by placing the right part of the application at the edge.
The machines used as hosts and the communication links between them also greatly
affect the performance, and in order to estimate the trade-offs for every configura-
tion, the developer must take in consideration many factors. Blindly placing some
application components at the edge can greatly degrade performance, even if the
communication link to the cloud is very fast. On the other hand, if the link to the
Internet is slow and the edge computing infrastructure is sufficiently powerful, there
is potential for significant improvement.

25

C h a p t e r 6

RELATED WORK

Another effort to support distributed computing based on Node-RED is Distributed
Node-RED (DNR) [16]. The ideas behind DNR are described in [17], but the system
was released and made available for testing just recently, at the same time when we
developed our own support. DNR follows a similar high-level approach to ours. An
important difference is that in order to support more flexible linking patterns the
communication between nodes running on different hosts revolves around a pub/sub
scheme via MQTT [18], with the master node acting as the broker. Given the results
of our experiments, we believe that this indirection is likely to be too costly in terms
of latency and perhaps even sheer throughput for streaming applications like the
one discussed here. DNR also changes to the core of the Node-RED framework,
whereas our functionality is introduced via extensions that leave the core untouched.
DNR offers some additional functionality for authentication, data encryption and
the formulation of node placement constraints (which call all be easily added in our
system too). We could not find any information about experimental deployments
and performance measurements for DNR.

Flogo [19] is a recent framework that is similar to Node-RED, allowing the developer
to build an application flow through a graphical interface. Themain difference is that
the application components are written in the Go programming language. Also, the
programmer has to take care of the deployment of the components on the respective
machines, but it is easy to do the wiring via the GUI. The creators of Flogo claim that
it is more lightweight and faster compared to other technologies like Node-RED.

There are several other frameworks that support programming with data streams
and dataflow graphs, like Apache Storm [20], Apache NiFi [21] and Cask [22].
These are mainly visualization and management tools intended for data analysis
and aggregation from many different data sources. Kura [23] and Fiware [24] are
centralized IoT middleware frameworks, with the end-devices running an agent that
communicates through a protocol gateway/adapter with the main application data
processing and control logic which runs on a remote server. The programmer is
offered a high-level API which hides the underlying communication with the end-
devices. However. there is no support for distributing the application logic across

26

different host environments.

TensorFlow [25] adopts a distributed dataflow computing model, but it is primarily
geared towards supporting the time-consuming training of neural networks. The
developer writes the application using a custom programming notation, while a
graphical representation is used to visualize (rather than specify) the program struc-
ture in a user-friendly way. However, the application can have a large number of
primitive function/operator components, as opposed to the much coarser software
components we target in our work. TensorFlow also enables the transparent ex-
ploitation of heterogeneous computing resources (GPUs) via abstract functions and
corresponding runtime support.

Yet another way for developing applications that can be distributed in a flexible way
is to compose them out of microservices [26]. Individual microservices could then
be grouped into larger clusters and be deployed on remote hosts through a suitable
container system like Docker [27] and deployment system like Kubernetes [28]. An
issue that would have to be addressed in this case is how to link together microser-
vices without going through some centralized glue logic or broker as in [29], [30],
for instance by using a decentralized message bus [31]. In our work inter-component
links are implemented without any intermediate broker, through direct UDP/IP or
TCP/IP transport channels. There are also proposals for new programming lan-
guages that ease the development of microservices and their communication via a
custom runtime environment [32]. We use the well known JavaScript language on
a fully supported runtime.

27

C h a p t e r 7

CONCLUSION

We have presented extensions made to the Node-RED framework, enabling the
seamless distributed placement and execution of application flows on different ma-
chines. This, in turn, makes it possible to exploit computing resources at the edge
and remote cloud systems in a flexible way. We have also presented experimental
results using a realistic application, illustrating the functionality of our prototype
and the performance trade-offs for different deployment scenarios as well as with
different communication links and edge platforms.

In the future we wish to investigate the introduction of a logical layer via abstract
components, in order to support even more flexible deployment scenarios, such
as the exploitation of pre-installed components, the sharing of components among
different application flows, and the transparent scaling-out of components in order
to support deployment at different edges of the Internet. Another direction is to
investigate more thorougly the deployment trade-offs between a larger variety of
edge machines. Moreover, one could explore online component replacement and
migration schemes to support dynamic/context-sensitive workloads.

28

BIBLIOGRAPHY

[1] Node-RED. [Online]. Available: http://nodered.org.

[2] O.C.OpenFogConsortiumArchitectureWorkingGroup,OpenFogReference
Architecture for Fog Computing. 2017.

[3] Microsoft Azure cognitive services. [Online]. Available: https://azure.
microsoft.com/en-us/services/cognitive-services.

[4] Google Cloud Vision API. [Online]. Available: https://cloud.google.
com/vision.

[5] IBM Bluemix visual recogntion API. [Online]. Available: https://www.
ibm.com/watson/developercloud/visual-recognition.html.

[6] I. Culjak, D. Abram, T. Pribanic, H. Dzapo, andM. Cifrek, “A brief introduc-
tion to OpenCV”, in 2012 Proceedings of the 35th International Convention
MIPRO, 2012, pp. 1725–1730.

[7] D. E. King, “Dlib-ml: A machine learning toolkit”, J. Mach. Learn. Res.,
vol. 10, pp. 1755–1758, Dec. 2009, issn: 1532-4435. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1577069.1755843.

[8] NodeJS runtime. [Online]. Available: https://nodejs.org.

[9] Node-gyp tool. [Online]. Available: https://github.com/nodejs/node-
gyp.

[10] Motion detection for NodeJS using OpenCV. [Online]. Available: https:
//github.com/Daan-Grashoff/Motion-detection-node-opencv.

[11] NodeJS OpenCV bindings. [Online]. Available: https://github.com/
peterbraden/node-opencv.

[12] Y. Wong, S. Chen, S. Mau, C. Sanderson, and B. C. Lovell, “Patch-based
probabilistic image quality assessment for face selection and improved video-
based face recognition”, in IEEE Biometrics Workshop, Computer Vision and
Pattern Recognition (CVPR) Workshops, IEEE, 2011, pp. 81–88.

[13] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in
the wild: A database for studying face recognition in unconstrained environ-
ments”, University of Massachusetts, Amherst, Tech. Rep. 07-49, 2007.

[14] IPTraf. [Online]. Available: http://iptraf.seul.org.

[15] Akamai state of the internet report. [Online]. Available: https://www.
akamai.com/us/en/about/our-thinking/state-of-the-internet-
report.

[16] DistributedNode-RED. [Online].Available:https://github.com/namgk/
dnr-editor.

29

[17] N. K. Giang, M. Blackstock, R. Lea, and V. C. M. Leung, “Developing
iot applications in the Fog: A distributed dataflow approach”, in 2015 5th
International Conference on the Internet of Things (IOT), 2015, pp. 155–162.
doi: 10.1109/IOT.2015.7356560.

[18] Message Queue Telemetry Transport (MQTT). [Online]. Available: http:
//mqtt.org.

[19] Project Flogo. [Online]. Available: http://www.flogo.io.

[20] Apache Storm. [Online]. Available: http://storm.apache.org.

[21] Apache NiFi. [Online]. Available: https://nifi.apache.org.

[22] Cask. [Online]. Available: http://cask.co.

[23] Kura. [Online]. Available: http://www.eclipse.org/kura.

[24] Fiware connection to the Internet of Things. [Online]. Available: https:
//www.fiware.org.

[25] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X.
Zheng,TensorFlow: Large-scalemachine learning on heterogeneous systems,
Software available from tensorflow.org, 2015. [Online]. Available: https:
//www.tensorflow.org/.

[26] K. Bakshi, “Microservices-based software architecture and approaches”, in
2017 IEEE Aerospace Conference, 2017, pp. 1–8. doi: 10.1109/AERO.
2017.7943959.

[27] Docker. [Online]. Available: https://www.docker.com.

[28] D. K. Rensin, Kubernetes - Scheduling the Future at Cloud Scale. 1005
Gravenstein Highway North Sebastopol, CA 95472, 2015, All. [Online].
Available:http://www.oreilly.com/webops-perf/free/kubernetes.
csp.

[29] J. Innerbichler, S.Gonul,V.Damjanovic-Behrendt, B.Mandler, andF. Strohmeier,
“NIMBLE collaborative platform: Microservice architectural approach to
federated IoT”, in 2017 Global Internet of Things Summit (GIoTS), 2017,
pp. 1–6. doi: 10.1109/GIOTS.2017.8016216.

[30] L. Sun, Y. Li, and R. A. Memon, “An open IoT framework based on mi-
croservices architecture”, China Communications, vol. 14, no. 2, pp. 154–
162, 2017, issn: 1673-5447. doi: 10.1109/CC.2017.7868163.

30

[31] P. Kookarinrat and Y. Temtanapat, “Design and implementation of a decen-
tralized message bus for microservices”, in 2016 13th International Joint
Conference on Computer Science and Software Engineering (JCSSE), 2016,
pp. 1–6. doi: 10.1109/JCSSE.2016.7748869.

[32] C. Xu, H. Zhu, I. Bayley, D. Lightfoot, M. Green, and P.Marshall, “CAOPLE:
A programming language for microservices SaaS”, in 2016 IEEE Symposium
on Service-Oriented System Engineering (SOSE), 2016, pp. 34–43. doi: 10.
1109/SOSE.2016.46.

