
IMPLEMENTING A TRAFFIC
ENGINEERING SERVICE IN

SDN
Athanasios Xirofotos

University of Thessaly

Department of Electrical and Computer
Engineering

VOLOS 2017, GREECE

Title of Thesis: Implementing a traffic engineering service in SDN

(Υλοποίηση υπηρεσίας κυκλοφορίας με χρήση δικτύωσης ορισμένης από
λογισμικό (SDN))

Author: Xirofotos Athanasios / =ηροφώτος Αθανάσιος

Supervisors:

Athanasios Korakis , assistant Professor

Antonios Argyriou, assistant Professor

University of Thessaly

Department of Electrical and Computer Engineering

Volos 2017, Greece

1

Dedicated to my Family and Friends

2

Words of Appreciation

First and foremost, I would like to thank my supervisor Thanasis
Korakis as well as Kostas Choumas for giving me the chance to
cooperate with them. I also would like to thank them for the overall
support and their guidance throughout this work. An extra special
thanks to K.Choumas for helping me out with academic difficulties I
had faced during my military obligations.

A huge thanks to all of my friends for the unwavering and
unconditional support they have shown me throughout all these
years we are together.

Lastly, I would like to thank my family for the constant support.

3

Περίληψη
Τα SDN είναι μια νέα ανερχόμενη αρχιτεκτονική δικτύων
υπολογιστών. Σε ένα δίκτυο υπολογιστών έχουμε τις έννοιες του
data plane και του control plane. Σήμερα, η διεπαφή μεταξύ του
control plane και του data plane είναι κλειστή και βρίσκεται στο
εσωτερικό δρομολογητών και μεταγωγέων με αποτέλεσμα να μην
μπορεί κάποιος να αλλάξει εύκολα τα πρωτόκολλα δρομολόγησης
που χρησιμοποιούνται σε ένα δίκτυο υπολογιστών. Η βασική ιδέα
της αρχιτεκτονικής SDN είναι η αποσύνδεση του control plane από
το data plane και η δημιουργία μιας ανοιχτής διεπαφής μεταξύ τους.
Το control plane τρέχει εξωτερικά από τους δρομολογητές πάνω από
ένα λεγόμενο network operating system (NOS), το οποίο
διαχειρίζεται τους πίνακες προώθησης των δρομολογητών και
μεταγωγέων ενός δικτύου. Με αυτή την προσέγγιση γίνεται πολύ
πιο εύκολο να εφαρμόσει κανείς καινοτόμες τεχνικές δρομολόγησης
και διαχείρισης της κίνησης / κυκλοφορίας . Επίσης προσφέρουνε
απλούστερη διαχείρηση του δικτύου καθώς και καλύτερη χρήση των
πόρων και των συσκευών του δικτύου. Παρά τις ευκολίες υπάρχουν
και πολλοί περιορισμοί ένας εκ των οποίων και πολύ σημαντικός
είναι η ενεργοβόρα και υψηλού κόστους μνήμη που φέρουν οι
συσκευές ενός SDN. Γι αυτό και η μνήμη των συσκευών ενός SDN
είναι πολύ περιορισμένη. Για να αντιμετωπιστεί αυτή η δυσκολία
αναπτύσσονται νέες πιο έξυπνες και πιο αποδοτικές
τεχνικές/αλγόριθμοι χρήσης της μνήμης. Σκοπός αυτής της
διπλωματικής εργασίας είναι να υλοποιήσει και να παρουσιάσει μια
υπηρεσία-μηχανισμό που θα στοχεύει στην αποδοτικότερη χρήση
της μνήμης αυτών των συσκευών.

4

Abstract
Software Defined Networking (SDN) is an emerging networking
paradigm that separates the network control plane from the data
forwarding plane with the promise to dramatically improve network
resource utilization, simplify network management, reduce
operating cost, and promote innovation and evolution. Although one
of the biggest limitations in OpenFlow-driven SDN is the expensive
and power demanding memory. Due to this the network devices and
commodity switches suffer from limited amount of memory. To
overcome this limitation, sophisticated techniques and
memory-efficient algorithms have to be developed. The purpose of
this thesis is to implement a traffic engineering service to deal with
this problem by focusing on the reduction of flow table size.

Keywords: SDN, OpenFlow, Traffic Engineering

5

Table of Contents
1 In troduction .. 9

1.1 O rgan ization ... 10

2 Background & M otivation.. 11

2.1 Softw are Defined N etw orks... 11

2.2 OpenFlow Protocol..16

2.2.1 OpenFlow A rch itec tu re .. 17

2.2.2 C ontro ller ... 20

2.2.3 OpenFlow S w itch .. 25

2.3 The P ro b lem ... 31

3 Im plem enta tion ...34

3.1 Flow M ultip lex ing ...34

3.2 IEEE 8 0 2 .1 q ... 35

3.3 S tructu re of the M echanism .. 37

3.4 Algorithm Analysis .. 39

3.5 Tool S e lec tion ...40

3.5.1 SDN C ontroller S e lec tio n ...40

3.5.2 M onitoring Tools .. 41

3.5.3 N etw ork S im u la to rs ... 42

3.6 Experim ents and E q u ip m en t.. 43

3.6.1 The E q u ipm en t... 43

4 R esu lts ... 45

5 R elated W ork... 49

6 C onclusion.. 50

6.1 F u ture W o rk ..51

Bibliography ... 52

6

List of Figures

Figure 1: The SDN stack

Figure 2: The OpenFlow Architecture

Figure 3: Flow table entry

Figure 4: SDN Controller

Figure 5: The OpenFlow Switch

Figure 6: Components of a flow entry in a flow table

Figure 7: Components of a group entry in the group table

Figure 8: Flow table processing

Figure 9: the 12-tuple of fields of every packet used for flow
matching

Figure 10: Ternary CAM OpenFlow operation example

Figure 11: The VLAN frame

Figure 12: SDN Controller Anatomy

Figure 13: Mechanism Structure

7

List of Tables & Graphs

Table 1: OpenFlow Controllers features.

Table 2: comparison of Mininet, ns-3.

Graph 1: Ring Topology.

Graph 2: Tree Topology

Graph 3: Hybrid Topology

Graph 4: Overall

8

1
Introduction

Software-defined Networking (SDN) is an emerging networking
paradigm with a great potential to foster innovation through
programmable networks. SDN has gained a lot of popularity,
attention and adaptation from network operators, equipment
vendors and over-the-top application service providers. SDN
networks are characterized by the separation of the control and data
planes wherein a logically centralized controller performs routing
decisions on behalf of forwarding elements. This separation of
control and data plane exposes the capabilities of network devices
and thus it provides great potentials and high flexibility in managing
and deploying network services. However, this flexibility comes at
the cost of placing significant stress on switch state size because it
requires installation of flow rules in a limited capacity switch
memory. Increasing the memory size to accommodate flow rules for
these large number of flows is not a viable solution since the specific
memory is costly and power hungry.

In this thesis we develop a traffic engineering service to
overcome the limitations stated above by dynamically multiplexing
some flows into fewer whenever this is a viable option.

9

1.1 Organization

The rest of this dissertation is organized as follows. The first part
deals with background information. More specifically we present a
comprehensive overview of Software Defined Networks. In
particular, Chapter 2 presents both traditional and SDN
architectures and presents the critical role of the OpenFlow
standards in SDN. In addition, it describes the function of OpenFlow
controllers and OpenFlow switches and depicts the problem this
thesis deals with by analyzing more technical details.

Implementation details provided in Chapter 3. Specifically we
analyze the multiplexing technique as well as the frame tagging. We
explain the algorithm behind the module and present the tool
selection and the equipment we used for the experiments.

The results of our proposed scheme as well as the evaluation of
the results are discussed in Chapter 4.

Chapter 5 presents some related works. Finally, we summarize
and conclude this dissertation in Chapter 6, and propose some
potential directions to follow up this research in the future.

10

2
Background & Motivation
2.1 Software Defined Networks

The Internet as we know it today, shows limitations due to the
widespread and rapid expansion, thus limiting the scope for
developing and implementing innovations. The "software-defined"
networks (Software-Defined Networks) are the future of computer
networking. This architecture provides researchers an easier
method to test new technologies and protocols. One of the most
important things is that SDN can be a main substrate for Cloud
Computer networking (Cloud Computing) [1].

To begin with Software-Defined Networking (SDN) concept was
first time introduced in 2010 [2] as the new networking paradigm
which aims to ease the control and the management of a computer
network environment.

SDN can be explained as an architectural principle where the
networks control and the management are centralized and
decoupled from data plane, thus making the network programmable.
Traditionally, the data and the control planes in the Ethernet
networking devices (and most of the communication principles) have
been tied together. This means, the prevailing operating system and
its features with the provided hardware are implemented in a single
device. Therefore, network devices, such as switches, routers,
firewalls, etc., are built with the intelligence of handling traffic

11

relative to the adjacent devices. This makes the intelligence
distributed and scattered in the network. In addition, most of the
network devices are Command Line Interface (CLI) based and
configuration is done separately per device, making configuration
slow and prone to errors. This prevents the networking industry of
responding quickly to feature requests or innovate new management
abilities.

The data plane has a sensible layering model which is known by the
name Open Systems Interconnection model (OSI model) [3]. It is
well known model in the networking industries and academies. It is
standardized by the International Organization for Standardization
(ISO). The OSI model enables network applications and services to
isolate the data operations to a single layer and provide interfaces
between layers. This has enforced developers to develop and
improve the operations without concerning the other layers. This
type of layering models are used in many other fields (e.g. operating
system) and it has provided simplicity to understand the overall view
and the interactions. As a result, we can witness increase in the
development and research in these fields. As it seems, similar
layering model is essentially needed for networks control and
management plane, which was not available. This creates the need
to invent a new networking architecture, SDN.

The basic idea of the SDN architecture is the decoupling of the
control plane from the data plane and the creation of an open
interface between them. The control plane runs outside of the
routers over a so-called network operating system (NOS), which

12

manages the forwarding tables of the routers and switches of a
network. This approach is much easier to implement innovative
routing and traffic management techniques since a new routing
protocol can be implemented very quickly, simply by using new
software over the NOS, without requiring changes to routers and
switches. The SDN architecture has approached much interest
from industry in the last 2-3 years, already supported by many
companies producing routers and switches, such as Cisco and
Juniper, and is already used in some networks, such as Google
inter-data-center network [4].

Figure 1: The SDN stack.

As seen from the Figure 1, SDN architecture is divided into three
layers: application layer, control layer, and infrastructure layer. This
architecture and arrangement of control and management, provides
the possibility to centralize the state of the network and the

13

intelligence into one part of the network. This, enhances the
property of network programmability, the network industry can start
to innovate and enable differentiation in the developing process.
Furthermore, programmability accelerates creativity and
introduction of new network features and services. With
centralization, SDN simplifies provisioning while optimizing
performance and granularity of the policy management. Therefore,
SDN can make networks become more scalable, flexible and
proactive. SDN architecture stack abstracts and decouples
hardware from software, control plane from forwarding plane, and
physical from logical configuration.

Infrastructure layer is the layer where all the hardware exists and
are connected physically. On these hardware devices runs a software
which provides a control data plane interface (Southbound API)
which is used to communicate with the upper level: Control layer.

Control layer is the most important layer in the architecture. There
is a controller which talks to all the network devices in the
infrastructure and keeps track of the topology. While exchanging
information of the network state with upper layer applications
(through Northbound API), the controller translates their commands
to the network devices to have respective and desired network
behavior.

Application layer is the layer where all the features, services and
policies are defined. Applications request the information of network
devices and the topology in order to act upon it. These applications
can create features end-to-end and make big picture decisions
according to the changes in the network. When the network topology,
feature, or policy requirements changes, applications have the
control to change dynamically the network behavior from one single

14

point.

Between these layers, there are Application Programming Interfaces
(APIs) which provide the essential communication tools between the
layers. The Northbound API is provided by the controller and the
applications have to manage their communication to the controller
through it. Many SDN controllers were settling down with REST API
[5]. Other popular API's are C++, JAVA and Python. The Southbound
API is the communication between the controller and the network
devices.

There are a lot of cases that Software Defined Networks can find
application, showing the great capability SDN have. Some of them
are:

• Network Access Control
• Sets the appropriate privileges for any user or device of the

network. It controls how someone accessing the networks,
including access control limits, and the incorporation of
service chains as well as appropriate quality of service (QoS).

- Network Virtualization
• Virtual network on top of a physical network, allowing a large

number of multi-tenant networks to run over a physical
network, spanning multiple racks in the datacenter or
locations if necessary, including fine-grained controls and
isolation as well as insertion of acceleration or security
services.

15

Service Velocity
Virtual edge, Distributed app testing environments,
application development workflows.

- Application Enhancement
• Specific SDN application, reserved bandwidth for application

needs, geo-distributed applications, intelligent network
responses to application needs.

So, SDN brings new challenges in networking technology and in
this thesis the focus is set on traffic engineering. A programmable
network provides full control of a network. Thus, bringing more
capabilities to handle traffic in the network, whether in a local
area network (LAN) or in the core. Similarly, new unexplored
challenges can be unveiled or discovered. Nevertheless, SDN has
gained rapidly its reputation and is the biggest hype word in
networking business.

2.2 OpenFlow Protocol

OpenFlow is the first open standard communication interface
defined between the control plane and the data plane in order to
enable the implementation of a flexible SDN architecture. OpenFlow
provides direct access and manipulation of the data plane of virtual
or physical network devices, such as switches and routers. This
means that OpenFlow is a communication protocol which gives
access to the forwarding plane of a network switch or router through
the network. This allows network packet forwarding to be defined by
software.

OpenFlow began to be developed in 2007, being a collaboration
16

between the commercial and academic worlds. Initially developed by
Stanford University and California University in Berkley, the
standardization is being conducted by the Open Network Foundation
(ONF). ONF is an organization dedicated to the promotion and
adoption of SDN through open standards development. OpenFlow is
a follow up on previous projects on programmable networks, namely
Ethane[6] , GENI [7] and SANE [8] which were one of the first
projects to decouple control and data plane. OpenFlow shortly
started to become more popular and as an open standard, it
developed quickly to support more and more functionalities. This
project has been developed using the latest version of OpenFlow the
1.3.

2.2.1 OpenFlow Architecture

As stated before, OpenFlow is based on the separation between the
data plane and the control plane and executes a flow-based control.

Figure 2: The Openflow Architecture

17

This flow is defined by the information contained in the packet, from
layer 1 to layer 4.OpenFlow defines the messaging protocol and also
the semantics for changing switch states. OpenFlow networks
consist of an OpenFlow Controller, OpenFlow switches (devices) and
the OpenFlow Protocol, as shown in figure 2.

Communication between the switch and the Controller is done
through a secure, Transport Layer Security (TLS) / Secure Sockets
Layer (SSL) based, channel. Both the Controller and the switch
interface implement the OpenFlow Protocol [9].

Packet forwarding is executed in the OpenFlow switch based on the
flow table entries, where forwarding and routing decisions are
defined the Controller. When a switch receives a packet that does
not have a matching flow table entry, it sends the packet to the
Controller. The Controller can then dispose of the packet or add the
packet to an entry in the switch flow table [9].

Rule Action Stats

L Packet + byte counters

1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline

Switch 1
.. Port IT] MAC |

I dst |
Eth

type I
VLAN

ID 1X I IP
Dst |

■P
Prot |

TCP I TCP
sport l dport

I MASKS
Ethernet
Switching * * ! 122E * * * : * * * * :
IP
Routing

* * * * * * ' 1.2.3.4 * * ; * ;
App
Firewall * * * * * * ' * ; * 443

Flow
Switching

Port6 12:2E 17:FF 0800 VLAN 7 1 2.3.4 4.3.2.1 06 11317 80
:

VLAN
♦ App

* * . * VLAN 7 * * * 80

Port
♦ Ethernet Port6 12:2E : * 0800 * * :4.3.2.1 06 * *

Figure 3: Flow table entry

18

As seen in figure 3 each entry in the flow table of an OpenFlow
switch is divided in three parts: Rule, Action and Statistics.

• Rule: a header to match with the frames of the flows. There
are several supported Ethernet headers in OpenFlow
specification [9] but as OpenFlow is made to be extensible,
custom headers can be additionally defined. The switch
merely performs a bit mask match. Therefore, OpenFlow
switch is open for innovative non-IP traffic.

• Action: as a rule is matched with traffic, the action which
should be performed for it has to be defined. The actions are
also open for extensions, but some basic actions are already
provided in the specification. Such as, forwarding to one or
more ports, forward to the controller, drop the frame, and
modify frame fields. The only requirement for adding
customized actions is that the data path must have flexibility
while providing high performance and low cost. •

• Statistics: Each and every time when a flow rule is matched,
the switch has to update the frame counters, which indicates
the popularity of a specific flow. There are counters for every
table, each flow, all the ports and every queue. Also a timer of
last activity and initial set of the flow are maintained.

19

2.2.2 Controller

OpenFlow Controller an independent software application running
in a dedicated server which is responsible for managing OpenFlow
switches. In other words, this Controller is responsible for
everything happening in the network. The Controller can add,
remove or update the flow table entries statically or dynamically,
using the OpenFlow Protocol.

As Figure 4 shows SDN Controllers can simplify network
management, handling all communications between applications
and devices to effectively manage and modify network flows to
meet changing needs. When the network control plane is
implemented in software, rather than firmware, administrators
can manage network traffic more dynamically and at a more
granular level. An SDN Controller relays information to the
switches/routers (via southbound APIs) and the applications and
business logic (via northbound APIs). In particular, OpenFlow
Controllers create a central control point to oversee a variety of
OpenFlow-enabled network components. The OpenFlow protocol
is designed to increase flexibility by eliminating proprietary
protocols from hardware vendors.

Flow tables are a database that stores all flow entries associated
with an action, so the switch can apply that action to a certain flow.

Every functions of the control plane and management are
executed by the Controller. The Controller configures every device,
maintains topology information and monitors the state of the
whole network.

The OpenFlow Controller can have a reactive behavior or a

20

proactive one.

• Reactive flow instantiation - When a new flow comes into the
switch, the OpenFlow agent SW on the switch, does a lookup in
the flow tables, either in a search ASIC if in hardware or a
software flow table in the case of a vSwitch. If no match for the
flow is found, the switch creates an OFP packet-in packet and
fires it off to the controller for instructions. Reactive mode
reacts to traffic, consults the OpenFlow controller and creates
a rule in the flow table based on the instruction. The problem
with reactive is today's hardware has laughable amounts of
CPU in it.

• Proactive flow instantiation - Rather than reacting to a packet,
an OpenFlow controller could populate the flow tables ahead
of time for all traffic matches that could come into the switch.
Think of a typical routing table today. You have longest prefix
matching that will match the most granular route to a
destination prefix in a prefix tree lookup. By pre-defining all of
your flows and actions ahead of time in the switches flow
tables, the packet-in event never occurs. The result is all
packets are forwarded at line rate, if the flow table is in TCAM,
by merely doing a flow lookup in the switches flow tables. That
is the same hardware that populates its forwarding tables
today from "routing by rumor" in today's routing protocols and
"flood and spray" layer2 learning standards. Proactive
OpenFlow flow tables eliminates any latency induced by
consulting a controller on every flow.

21

Figure 4: SDN Controller

There are different types of OpenFlow Controller software, each
one has its own identity. Besides software performance, the
programming language that each software implements is
different.

• NOX [10] - is an open-source development platform for
application control in SDN networks based in C++. It
provides an OpenFlow 1.0 API and a fast and asynchronous
I/O. NOX's primary targets are Linux distributions, it
supports multithreading and the platform includes
examples, such as Topology discovery, learning switch and
network-wide switch.

• POX [11] - consists in a NOX implementation written in
Python, allowing rapid development and prototyping of
network control software components. POX has as
characteristics, the reuse of component samples from a
selected path, topology discovery, runs in any operating
system and supports the same visualization tools as NOX. It

22

can be said that POX is a good platform for people starting
out in programmable networks, it is also a good platform for
research, academic applications and network prototyping.
While NOX is good for configuring big system networks, or
for when Controller performance has to be fast. A
disadvantage of POX is it does not support multithreading, it
is used to explore and distribute prototypes, to run SDN, for
virtualizing the network, designing Controllers and
programming models.

• Floodlight [12] - is enterprise-class and apache-licensed,
based in Java, but for people who do not like writing in Java,
these people have the option of programming in Jython.
Floodlight derived from Beacon, originally developed by
David Erickson, it is now supported by the programmer team,
including engineers, of Big Switch Networks. It supports
multithreading, was developed to work with an increasing
number of network devices that support OpenFlow and deals
with a mix of OpenFlow and non-OpenFlow networks - able
to manage multiple islands of OpenFlow hardware switches. •

• ONOS [13] - was developed in 2014, The ONOS (Open
Network Operating System) project is an open source
community hosted by The Linux Foundation. The goal of the
project is to create a software-defined networking (SDN)
operating system for communications service providers that
is designed for scalability, high performance and high
availability.

23

• Trema [14] - is a framework that includes everything
necessary to create an OpenFlow Controller, it was developed
by NEC and is based on the Ruby platform or C. This platform
was only tested in a UNIX environment, only supporting
GNU/Linux and version 1.0 of OpenFlow, plus the latest Ruby
version still does not support the OpenFlow Controller
library. The Trema framework can emulate an OpenFlow
based network and end-hosts and provides tests for the
Controller. Contains a plugin for Wireshark, allowing it to
monitor data-flows through functional modules.

• OpenDaylight (ODL) [15] is an open-source SDN controller
project maintained as part of the Linux foundation. The ODL
project was started in 2013 and is widely supported by
industry members and researchers, with the goal to make
SDN more transparent and to act as basis for Network
Function Virtualization (NFV). The controller is written in
Java with the main development decisions voted on by an
elected Technical Steering Committee. One of the main
non-commercial use cases for ODL is providing network
services for the OpenStack cloud platform. It is a highly
available, modular, extensible, scalable and multi-protocol
controller infrastructure built for SDN deployments on
modern heterogeneous multi-vendor networks. OpenDaylight
provides a model-driven service abstraction platform that
allows users to write apps that easily work across a wide
variety of hardware and south-bound protocols.

24

2.2.3 OpenFlow Switch

The OpenFlow switch is basically an Ethernet switch that supports
the OpenFlow Protocol. OpenFlow is based on switching devices
with one or more flow tables, a group table and an OpenFlow
Channel to an external Controller, that is, a standard interface to add
or remove flow entries, as can be seen in Figure 5.

Controller

--------1—
i

OpenFlow Protocol

i
Secure
Channel

1
1
1

Group
Table

II

Flow
Table - Flow

Table

Pipeline

OpenFlow Switch

Figure 5: The OpenFlow Switch

Each device maintains a flow table that contains a set of flow
entries. Each consists of match fields, counters and a set of
instructions to apply on the matching packets.

25

Figure 6: Components of a flow entry in a flow table

As can be seen in Figure 6 each flow entry contains:

• Match fields: to match against packets. These consist of the
ingress port and packet headers, and optionally metadata
specified by a previous table.

• Priority : matching precedence of the flow entry.

• Counters : updated when packets are matched.

• Instructions : to modify the action set or pipeline processing.

• Timeouts : maximum amount of time or idle time before flow is
expired by the switch. •

• Cookie : opaque data value chosen by the Controller. May be
used by the Controller to filter flow statistics, flow modification

26

and flow deletion. Not used when processing packets.

The flow table entry is identified by the Match Field and Data
Priority, these two fields identify a single flow entry in the flow
table.

The group table consists of group entries. The ability of a flow
entry to point to a group allows the representation of additional
forwarding methods. As can be seen by figure 7 each entry group is
identified by four fields.

• Group Type - All, Select, Indirect, Fast Failover
• Counters - Updated when packets are matched

Figure 7: Components of a group entry in the group table

Each group entry consists of:

• Group Identifier: a 32 bit unsigned integer uniquely
identifying the group.

27

• Group Type: to determine group semantics, meaning that a
switch does not need to support every group type, it only
needs to support those marked as "Required" the other group
types the switch may support are "Optional".

"Required" groups have two types:

❖ all: This executes all buckets in a group, with this group
being used for broadcast or multicast forwarding, in
other words, the packet is cloned for each bucket, then
processed by each bucket in the group.

❖ indirect: Executes a bucket defined in a determined
group. This group only supports one bucket.

"Optional" groups also have two types:

❖ select: Executes a bucket in a group. The packets are
processed by a single bucket in the group, based on
switch-computed selection algorithm.

❖ fast failover: Executes the first bucket in real-time.
Each bucket action is associated to a specific port and/or
to a group that controls this liveness.

• Counters: updated when packets are processed by a group.

• Action Buckets: an ordered list of action buckets, where
each action bucket contains a set of actions to execute and
associated parameters.

28

The OpenFlow Pipeline process defines how the packet interacts
with flow tables (Figure 8). For this procedure, the device has to
have at least one flow table.

(a) P a c k e ts a re m atch ed ag a in st m u ltip le ta b le s in th e pipeline

Match fields: C2) Match fields:
Ingress port + _ - * - Ingress port +

m etadata +
pkt hdrs Flow

Table

m etadata +
pkt hdrs

Action set Action set

C D

CD Find h ighest-p rio rity m atching flow entry

(I) Apply instructions:
i. M odify packet & update match fields

(apply actions instruction)
ii. Update action set (clear actions a n d /o r

w rite actions instructions)
iii. Update m etadata

CD Send m atch data and action set to
next table

Figure 8: Flow table processing

Flow tables are sequentially numbered, starting at 0. Processing
is always initiated at flow table 0. When a switch receives a packet,
the packet's match field is compared with the flow entry match
field. The packet may match more than one entry of a flow table. In
this case, the chosen flow entry is the one with the highest priority.

When the packet matches a flow entry, the flow table executes
the instructions stored in the corresponding flow entry, these
instructions may be to send the packet directly to another flow
table (Goto instruction), the packet's header, metadata, packet/
match set fields and action set are updated and it is then sent to
the flow table indicated by the Goto instruction and the process

29

repeats successively. If the flow entry does not have a Goto
instruction, then the pipeline processing terminates and the
packet is processed according to the associated actions

When the packet has no match with any flow entry of the flow
table, the packet is then disposed if the flow table has no
table-miss flow entry. If not the flow table has a table-miss flow
entry, then the packet is processed according to the table-miss
configurations, it can be disposed using Clear-Actions and sent to
the Controller (via packet-in message) using the Controller
reserved port. The table-miss processes the non-existing tables,
meaning that it specifies how the packet is processed when it has
no match with the flow entries. The flow entries are removed if
specified by the Controller, or by the switch flow expiry
mechanism. This mechanism is based on the state and
configuration of the flow entry.

To remove a flow entry from the flow table the Controller sends
a delete flow entry message for the corresponding flow table
(OFPFC DELETE or OFPFC DELETE STRICT) [9].

To remove a flow entry by the flow expiry mechanism, each flow
entry contains an idle-timeout and a hard-timeout. If the
idle-timeout is greater than zero, it means that the switch registers
the arrival time of the last match packet, and if in the time
specified by the idle-timeout no packet is associated to this flow
entry, it is removed. If the hard-timeout is greater than zero, the
switch registers the arrival time of the flow entry and removes it
after the specified time, regardless if the flow entry has a lot of
packet matching to it [9].

30

OpenFlow switches are divided in two categories, Commercial
switches and Software switches.

Commercial switches are physical switches that come with
hardware that supports OpenFlow. Several vendors offer
commercial switches that support OpenFlow, such as HP [16] ,Pica8
[17] and NEC [18] .

Software switches are software that supports OpenFlow and can be
installed in general purpose hardware. There are also several
software switches available, such as Open-WRT [19] and
OpenVSwitch [20].

2.3 The Problem

Figure 9: the 12-tuple of fields of every packet used for flow
matching

OpenFlow switches in any OpenFlow network consist of Ternary
Content Addressable Memory (TCAM) memory. TCAM memory is a
special type of memory that enables matching on the headers of
received data packets during one clock cycle, regardless of the
number of entries in memory. As stated before an OpenFlow
network is composed of a controller and a group of OpenFlow
switches. The controller and the OpenFlow switches communicate

31

through a control plane on the network in order to maintain flow
entries in the switches. The OpenFlow switches transfer data
packets on the data plane of the network based on the flow entries. A
flow entry includes definitions of the flows that are referred to as the
matching fields. Figure 9 shows the matching fields include the
ingress port number and the header fields from layers 2-4 that are
specified in the OpenFlow switch specification [9]. Wildcards are
allowed for any of the matching fields. An OpenFlow switch searches
the flow entries that needed to be matched in the header fields of
each data packet that is received (Figure 10). TCAM can have
multiple matches and determine a best match. TCAM enables
searching during on clock cycle, regardless of the number of the
entries in the TCAM and regardless of whether wildcards are
included or not included in the matching fields.

Packet-ιη with match in TCAM - Action is forward to port 0/2

I

t l r TCAM Lookup 1

In g re s» P o r t E tb e c S*t jE th e r Os? E th e r T ype V la n ID IP D st :P Src TCP D st TC P Src IP P r o to

P o r t 0 /1 • · • 1* • 80 • •
• • r • !· 1 9 2 .1 6 8 1< V 20 * • * •
• • r ► 1· 1 92 1 6 8 1 <V2« * 2 5 * •
P o r t 0 /3 • > • 1· 1 9 2 1 6 8 1 1 /3 2 1 • .

• * •

t

TCAM Lookup

1 i I
T

A

Action Bucket

Send Packet,
to Port 0/2 j
in (n)RAM/

Action Bucket

Packet-in with NO match in TCAM - Action is Punt to Controller

Figure 10: Ternary CAM OpenFlow operation example

In an OpenFlow switch, the required TCAM space is large due to
the wide range of header fields that are supported in OpenFlow
(Figure 9.The problem with TCAM is that it is power hungry,

32

expensive and takes up quite a bit of silicon space. It is the most
expensive component on commodity switches. It has been noted that
TCAM is up to 80 times more expensive than static random access
memory (SRAM) [21] . Many vendors use a blend of BCAM memory,
SRAM, NPUs and software algorithms to perform ternary lookups in
order to avoid the usage of the extra-expensive TCAM.

Another big obstacle is that TCAM-based tables were limited to
just a few thousand entries. For example the HP5406zl
OpenFlow-enabled switch supports approximately 1500 OpenFlow
rules [22] due to the TCAM limitations and the NEC PF5820 is
capped to only 750 entries [23].

If the table was exceeded, the packets would be handled by the
switch's software .This severely limited the scalability and
performance of early OpenFlow switches.

Many techniques have been proposed in the research community
for reducing the number of OpenFlow rules in the OpenFlow tables
by investigating various configurations and characteristics of
possible hardware implementations for the flow tables (e.g. types of
memory) [24]. Other techniques focusing on decreasing the
frequency of the usage of TCAM by implementing smarter memory
accessing algorithms or restricting the packet matching on less
fields [25].

33

3
Implementation

In this chapter we will discuss and implement a mechanism who
will overcome the limitations TCAM introduced. As stated in the
previous chapter the most common underlying technology for
implementing OpenFlow flow tables is TCAM ,because it allows for
fast implementation of matching rules that can support flexible
Wildcarding, for any of the packet headers. Since this type of
memory is expensive and it consumes significant amounts of power,
it becomes costly to build and deploy forwarding devices that can
store a large number of OpenFlow rules. This further limits the
adoption of OF-based SDN for environments where there is a large
volume of traffic flows that must be processed (e.g. forwarded,
firewalled, etc.)
In this thesis we develop a service that reduces the number of
installed entries in the flow tables of OpenFlow network devices
based on dynamically applying aggregation of traffic flows at various
points in the network (flow aggregation).

3.1 Flow Multiplexing

An aggregate of traffic flows is a collection of traffic flows that
are grouped together for common treatment between two points in a
network. Packets from all flows in a trunk travel the same path and

34

are subject to the same traffic management policies. The concept of
aggregation brings the Layer-2 values of ATM into the layer-3
network. An identifier is needed in order for the controller to be able
to manage the aggregate as a single entity. The traffic flows that are
to be treated as a single aggregate will then be marked with the
identifier and processed accordingly in the network. These
aggregates can follow determined paths and be given a consistent
quality of service (QoS) treatment. A labelled path can exist between
any two points in the network and multiple paths can themselves be
aggregated within another label. This hierarchical aggregation
simplifies the management of network resource and facilitates
engineering of QoS.

Several identification mechanisms are possible such as
Multi-Protocol Label Switching (MPLS) labeling, VLAN tagging, and
other encapsulation formats. These mechanisms are well known
from traditional network architectures and they are well suited also
for the aggregation service proposed in this paper.
For real life deployments the choice of the identifier is very
important and it usually depends on several aspects such as support
from hardware, encapsulation overhead, number of available
identifiers, etc.
To encapsulate, identify the aggregates we had to choose between
VLAN tagging and MPLS techniques. The choice was VLAN tagging
and the reasons are described below.

3.2 IEEE 802.1q

The 802.1q standard was created by the IEEE group to address the
problem breaking large networks into smaller and manageable ones

35

through the use of VLANs. The 802.1q standard is of course an
alternative to Cisco's ISL (inter switch link), and one that all vendors
implement on their network equipment to ensure compatibility and
seamless integration with the existing network infrastructure [26].

As with all 'open standards' the IEEE 802.1q tagging method is by
far the most popular, easy to use and commonly used even in Cisco
oriented network installations mainly for compatibility with other
equipment and future upgrades that might tend towards different
vendors.

In addition to the compatibility issue, there are several more reasons
for someone to prefer this method of tagging. These include:

1. Simple to implement

2. Support o f up to 4096 VLANs
3. Insertion of a 4-byte VLAN tag with no encapsulation

Amazingly enough, the 802.1q tagging method supports a whopping
4096 VLANs (as opposed to 1000 VLANs ISL supports), a large
amount which is merely impossible to deplete in a local area network
or software defined network. And the most amazing aspect of this
method is its simplicity in development.

The 4-byte tag we mentioned is inserted within the existing Ethernet
frame, right after the Source MAC Address as illustrated in the
diagram below:

36

Figure 11: The VLAN frame

3.3 Structure of the Mechanism

The idea behind this service is simple. The controller is a pack of
applications modules. As figure 12 depicts the core functions of the
controller are:

• device and topology discovery and tracking,
• flow management
• device management
• Statistics tracking.

These are all implemented by a set of modules internal to the
controller and they comprise the core of the controller. As shown in
Figure 12 these modules need to maintain local databases
containing the current topology and statistics. The controller tracks
the topology by learning of the existence of switches (SDN devices)
and end-user devices and tracking the connectivity between them. It
maintains a flow cache that mirrors the flow tables on the various
switches it controls. The controller locally maintains per-flow
statistics that it has gathered from its switches.

37

Figure 12: SDN Controller Anatomy

The core modules are like a chain and each module defines
which one will follow up. Whenever an action triggers the controller,
this action is being processed by each module one by one in order to
be handled properly.

The aggregation mechanism is a standalone module for the
controller and it has been inserted in that chain described above just
before the forwarding module. Whenever an event (OpenFlow
message) reaches the controller the module run whether to decide if
traffic aggregation is a viable solution or just to do the normal
forwarding of the packet. The controller also utilizes the built-in
module Topology Manager, which allows for an up-to-date and

38

global view of the network's state. After processing the packet, the
controller sends back to the OpenFlow switch the required
instructions on how the packet should be processed, by using
OpenFlow. Also the controller sends instructions to all the OF
switches that are part of the packet's route through the network.

Figure 13: Mechanism Structure

3.4 Algorithm Analysis

As stated before whenever an OpenFlow message is sent to the
controller by one of OpenFlow switches, the mechanism is triggered.
When the packet arrives into the controller the mechanism extracts
the route of the packet, meaning the path the packet will follow. The
first step is to check whether or not the packet is an IP packet. If is
not an IP packet the algorithm terminates and the controller
continues with its standard procedure in order to treat the incoming
packet correctly. By examining the source and destination IP of the
packet, the controller calculates the route that will follow. The route
of each packet is registered and when a new packet arrives,
controller compares the new route with all the previous registries

39

(routes). If common route or common path is found then aggregation
is a possible option and so on the corresponding flow multiplexes
with the existing flows of the common route/path. The new
multiplexed flow is tagged with a VLAN id and gets installed on the
involved switches/devices replacing the previous ones. If common
route or path cannot be found then the algorithm stops and the
controller proceeds with its standard procedure. The aggregation
process is recursive this means that after every flow merging the
new multiplexed flow is compared with the previous registries also.
This secures that if common path exists the procedure must be
repeated.

3.5 Tool Selection

3.5.1 SDN Controller Selection

Table 1 below summarizes the different properties of the different
OpenFlow Controllers. It can be seen that Trema lacks of
documentation which makes the development using Trema a very
hard task. POX does not support multithreading which is a huge
drawback because imagine all the packets arrive in the controller
to be handled sequentially as well as every packets route-matching.
Consequently it has the weakest performance. Through table
analysis, it can be seen that NOX is a good choice although it has
the disadvantage of being written in C++ a programming language
which I am not familiar with. Beacon is rejected because the
documentation is poor and is outdated. The top 3 nominees are
Floodlight, OpenDayLight and ONOS which have a lot in common
but I select Floodlight due to the very good documentation.

40

ODL ONOS NOX POX Beacon Floodlight Trema

Programming
Language Java Java C++ Python Java Java C or Ruby

Compatibility
Linux

distributions
Linux

distributions
Linux

distributions
Linux, Mac

OS and
Windows

All Platforms,
from high end

multi-core Linux
servers to

Android phones

Linux, Mac
OS and

Windows

Linux
distributions

Documentation Poor Medium Good Medium Medium Very Good Poor

License
Eclipse Public

License 1.0
Apache 2.0

License
OpenFlow

v1.3 license
OpenFlow

v1.3 license

GPL v2 license
and FOSS
License

Exception v1.0

Apache 2.0
License

GPL v2
license, the
last version
of the Ruby

don’t
support the
OpenFlow
libraries

Open Source Yes Yes Yes Yes Yes Yes Yes

Multithread
Yes Yes Yes No No Yes Yes

GUI
Build in

Gui(DLUX) Web Gui
NoX Gui
(Only for
monitoring)

Pox Des
(only for
monitoring)

Web UI
Avior, Build

in Gui
No

Table 1: OpenFlow Controllers features.

3.5.2 Monitoring Tools

Network Monitoring has been an integral part of operating a
network. It not only provides the visibility into how well the network
performs, but also is an important tool when it comes to troubleshoot
problems. Given the distributed nature of switching or routing
devices in the network, a typical network monitoring tool usually
queries a set of devices via some network management protocol,
such as SNMP, and correlates results into reports or graphs.

sFlow [27] and OpenFlow provide complementary functions that
together offer exciting opportunities for delivering breakthrough
data center and cloud networking performance. The OpenFlow
protocol allows controller software running on a server to configure
the hardware forwarding tables in a network of switches. The sFlow

41

standard specifies instrumentation in the forwarding table hardware
that provides real-time, network-wide visibility into traffic flowing
across the network. In addition, sFlow also provides real-time
visibility into the performance of servers. Combined, sFlow and
OpenFlow can be used to construct feedback control systems that
optimize performance, automatically adapting the network to meet
changing demands.

For the reasons described above sFlow is the tool I use for
monitoring the flows and latencies in my experiments.

3.5.3 Network Simulators

To deploy a complete test bed containing multiple networked
computers, routers and data link to conduct the experiments we
need network simulators. Table 2 shows the comparison of two very
popular network simulators. It is obvious that Mininet wins the
battle in almost every category.

Mininet ns-3

Compatibility with real Controllers Yes No

OpenFlow Specification all versions 0.8.9

Mode Emulation Simulation

Scalability High (by Multiple processes) High (by single process)

Performance and Result
Correctness

Good Performance No STP

Documentation Yes Poor

GUI Support Yes, Observation only Yes, Observation Only

Table 2: comparison of Mininet, ns-3.

42

3.6 Experiments and Equipment

In order to assess the performance of this thesis mechanism an
experiment must be set up. The selected controller (Floodlight), with
and without the aggregation module loaded, run in a set of
topologies in order to compare and evaluate the results. In order to
have deterministic and low-cost environments to test, a virtual
testbed was created that can run on a single computer and does not
require additional effort to be maintained and operated. The
selected network simulator is Mininet. The performance metric we
monitor is the total number of OpenFlow flow entries as well as the
latency on every network device involved.

3.6.1 The Equipment

For the experiment the Floodlight Controller was installed on a PC
with the following specifications:

• Cpu : Core i5-4440S 2.8GHz [28]
• Ram : 8 Giga, 1666MHz
• Hdd : 1 TB, 7200 Rpm
• Nic : 2 x Intel PRO/1000 PT dual port 1 Gbps PCI-Express [29]
• OS: Linux Ubuntu Server 16.10

Mininet was installed on a laptop with the following specifications:

• Cpu : Intel Core i3 7100U 2.4 GHz [30]
• Ram : 8 Giga, 1666MHz
• Hdd : 128 GB SSD
• Nic : Broadcom 802.11n Network Adapter [31]
• OS: Linux Ubuntu 16.04 LTS

The two devices were connected on the same LAN .The controller
and the network simulator were separated in order for the

43

http://www.game-debate.com/hardware/index.php?pid=1874&cpu=Core%20i5-4440S%202.8GHz

experiment/simulation to be closer to a real world network. All the
measurements was given by the chosen tool sFlow and for the sake
of validity the experiments was repeated many times.

44

4
Results

This chapter presents the results that allow a short evaluation on
SDN traffic comparing the results taken from network topologies
with the traditional Floodlight controller and with the enhanced
version of Floodlight. In order to find a correlation between the
number of flows, latency and the percentage of reduction
experiments must be done in a set of topologies.

The following graph shows the reduction in flows in a ring
topology. The percentage of reduction is significant as network
traffic escalates (traffic measured in number of flows).

Ring Topology
45

Graph 1: Ring Topology

45

The next topology we test is the tree topology. The results below
depicts a good percentage in flow reduction but not as good as in
ring topology.

Tree Topology
30

Graph 2: Tree Topology

Next we test the algorithm in a hybrid topology. The results
collected from the experiments are shown below but they cannot be
used to conclude safely because hybrid topologies have vast
formations and alterations and so the results could deviate.

Hybrid Topology
35

30

25

§ 20
-I—1O 15
CL)

10

5

0
0 20 40 60 80 100 120 140 160

Traffic

Graph 3: Hybrid Topology
46

Looking at the aggregate chart we see that in ring topology we
can achieve the highest reduction in flows this can be based on the
fact that in this topology the paths are common for the nodes and
there is no path separation and thus packets travel together. In tree
and hybrid topologies the performance is quite similar with hybrid
being in the lead. Tree has the worst performance because of its
multi-path structure.

Overall
45
40
35

=S 30
25
20
15

DC
10
5
0

0 20 40 60 80 100 120 140 160
Traffic

> Tree Φ Ring Φ Hybrid

Graph 4: Overall

Probing the latencies in every experiment there is a latency drop
every time the algorithm starts to kick in and that is when packets
share a common path and aggregation can happen. This latency drop
is about 30-40 ms for every flow we aggregate. The drop can be
substantial as the number of flows in the network escalates.
Although the fact that we cannot calculate the delay from the extra

47

lines of code of the module, makes our first calculation inaccurate so
we couldn't include it in this analysis.

48

5
Related Work

Until today, there has been some progress on the issue of traffic
engineering and aggregation on software defined networks. Some
examples are mentioned below.

Many different approaches on the subject like [32] which uses a
more algorithmic way to reduce the size of flow tables. The paper
presents a technique named Fast flow table aggregation in which
the rules are separated into prefix-permutable partitions and then to
each partition is applied to a modified prefix fusion and bit merging
(merge together rules that differ by a single bit iteratively).

The paper in [33] has a lot in common with this thesis using
actually the same concept and approaches the matter similarly.
Although they are very close, [33] lacks in implementation details.

Another study approaches the matter of diminishing the flow
entries, differently. The paper in [34] suggests a flow table reduction
scheme .The main idea of that is that congested switches' flow tables
may have common flow rules and characteristics. These common
entries are restructured in one new rule substituting the previous
registries leaving space for other rules to be installed.

49

6
Conclusion

Software Defined Networking as a considerably new principle
has evolved the way networks operate and has brought
unprecedented innovation pace into the field of computer networks.
However similar to almost any new concept, it has its own
challenges. In this paper we deal with a hot topic in Software
Defined Networks which is the resource management. Initially we
provide some basic information about the concept of SDN in order
for the reader to fully understand the purpose of this thesis. We
examine closely the special memory of OpenFlow devices and focus
on the problems and limitations it raises. To treat the memory
management problem and reduce the number of OpenFlow rules in
the devices we implement a mechanism that aggregates traffic
wherever it is possible and without changing or downgrading the
quality of that network. The experiments in chapter 4 verify the
effectiveness and the efficiency of the mechanism by achieving in
some topologies, significant flow reduction. Apart from the
noteworthy flow reduction during the experiments we also notice a
considerable latency drop which is not included in this thesis
because we could not verify the accuracy of that drop. Although this
latency drop is something to be taken under consideration for future
analysis and further investigation.

50

6.1 Future Work

The current implementation is finished although future development
must be done. The code needs to be optimized to reduce the delay of
the overhead it introduces in order to have accurate measurements
of latency drop. The SDN controller efficiently updates the network
with consistency in real-time and safety without packet drops, when
the synchronization overhead with the switches is low. Not often and
for reasons we haven't found yet we have faced a raise in
synchronization overhead which impacts the execution time and
brings in further delay we must deal with. There are other parts that
demand improvement like the failure recovery and resource
allocation to avoid some consistency issues during the experiments.

51

Bibliography
[1] CACM Staff, "A purpose-built global network," Commun. ACM, vol. 59, no. 3, pp. 46-54, Feb.

2016.

[2] G. Ganger, J. Wilkes, W. USENIX Association, G. ACM Special Interest Group in Operating

Systems., and A. S. ACM Digital Library., Proceedings of the 9th USENIX Conference on File and

Stroage Technologies. USENIX Association, 2011.

[3] International Organization for Standardization, "ISO/IEC 7498-1:1994 Information Technology -

Open Systems Interconnection - Basic Reference Model: The Basic Model," International

Standard ISO IEC 7498-1. pp. 1-68, 1996.

[4] A. Vahdat, D. Clark, and J. Rexford, "A Purpose- Built Global Network: Google's Move to SDN,"

Commun. ACM, vol. 59, no. 3, pp. 46-54, 2016.

[5] W. Zhou, L. Li, M. Luo, and W. Chou, "REST API design patterns for SDN northbound API," in

Proceedings - 2014 IEEE 28th International Conference on Advanced Information Networking

and Applications Workshops, IEEE WAINA 2014, 2014, pp. 358-365.

[6] M. Berman et al., "GENI: A federated testbed for innovative network experiments," Comput.

Networks, vol. 61, pp. 5-23, Mar. 2014.

[7] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, "Ethane: taking

control of the enterprise," Sigcomm '07, pp. 1-12, 2007.

[8] M. Casado et al., "SANE: a protection architecture for enterprise networks," 15th USENIXSecur.

Symp., pp. 137-151, 2006.

[9] ONF, "OpenFlow Switch Specification Version: 1.2.0," Current, vol. 0. pp. 1-312, 2011.

[10] "McCauley, M.: About NOX," 2012. [Online]. Available:

http://www.noxrepo.org/nox/about-nox/.

[11] "McCauley, M.: About POX," 2012. [Online]. Available:

http://www.noxrepo.org/pox/about-pox/.

[12] "Floodlight Is an Open SDN Controller," 2013. [Online]. Available:

http://www.projectfloodlight.org.

[13] "The Open Network Operating System (ONOS) is a software defined networking (SDN) OS,"

2014. [Online]. Available: http://onosproject.org/.

[14] "Shimonishi, H.: Trema : Full-stack openflow framework in ruby and c," 2009. .

[15] Z. K. Khattak, M. Awais, and A. Iqbal, "Performance evaluation of OpenDaylight SDN

controller," in Proceedings of the International Conference on Parallel and Distributed Systems

- ICPADS, 2014, vol. 2015-April, pp. 671-676.

[16] "Hp 3800 switch series (2011)," 2011. [Online]. Available:

http://h17007.www1.hp.com/us/en/networking/products/ switches.

52

http://www.noxrepo.org/nox/about-nox/
http://www.noxrepo.org/pox/about-pox/
http://www.projectfloodlight.org
http://onosproject.org/
http://h17007.www1.hp.com/us/en/networking/products/

[17] "Pica8 (2011)," 2011. [Online]. Available:

http://www.pica8.com/open-switching/open-switching-overview.php.

[18] "Watanabe, H.: Nec programmableflow - univerge pf5820. Tech. rep., NEC," 2012. .

[19] "Yiakoumis, Y: Pantou: Openflow 1.0 for openwrt," 2011. [Online]. Available:

http://www.openflow.org/wk/index. php/OpenFlow_1.0_for_OpenWRT.

[20] "Open vSwitch: Production quality, multilayer open virtual switch," 2013. [Online]. Available:

http://openvswitch.org/ features/.

[21] J. Liao, "SDN system performance," 2012. [Online]. Available: http://pica8.org/blogs/?p=201.

[22] "NEC ProgrammableFlow Networking.," 2012. [Online]. Available:

http://www.necam.com/PFlow/.

[23] A. A. R. Curtis, J. C. J. J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee,

"DevoFlow: scaling flow management for high-performance networks," Proc. {ACM}

{SIGCOMM} 2011 Conf. Appl. Technol. Archit. Protoc. Comput. Commun. Toronto, {ON}, Canada,

August 15-19, 2011, pp. 254-265, 2011.

[24] Z. Guo et al., "JumpFlow: Reducing flow table usage in software-defined networks," Comput.

Networks, vol. 92, pp. 300-315, Dec. 2015.

[25] and S. S. Hiroaki Yamanaka, Eiji Kawai, Shuji Ishii, "OpenFlow Networks with Limited L2

Functionality," Network Testbed Research & Development Promotion Center National Institute

of Information and Communications Technology, 2013.

[26] "IEEE 802.1Q." [Online]. Available: https://en.wikipedia.org/wiki/IEEE_802.1Q.

[27] "sFlow: 2 Software defined networking." [Online]. Available:

http://blog.sflow.com/2012/05/software-defined-networking.html.

[28] Intel, "Intel® Core™ i5-4440S Processor." [Online]. Available:

http://ark.intel.com/products/75040/Intel-Core-i5-4440S-Processor-6M-Cache-up-to-3_30-GH

z.

[29] Amazon, "Intel PRO/1000 Pt Dual Port Server Adapter." [Online]. Available:

https://www.amazon.com/Intel-1000-Dual-Server-Adapter/dp/B000BMZHX2.

[30] Intel, "Intel® Core™ i3-7100U Processor." [Online]. Available:

http://ark.intel.com/products/95442/Intel-Core-i3-7100U-Processor-3M-Cache-2_40-GHz-.

[31] Amazon, "Boadcom-BCM94321MC-802-11n-Wireless." [Online]. Available:

https://www.amazon.com/Boadcom-BCM94321MC-802-11n-Wireless-Selected/dp/B00FA3NR

3E.

[32] L. M. L. Shouxi Luo, Hongfang Yu, "Fast incremental flow table aggregation in SDN," in

Proceedings - International Conference on Computer Communications and Networks, ICCCN,

2014.

[33] N. M. Saurav Das, Yiannis Yiakoumis, Guru Parulkar, "Application-Aware Aggregation and

53

http://www.pica8.com/open-switching/open-switching-overview.php
http://www.openflow.org/wk/index
http://openvswitch.org/
http://pica8.org/blogs/?p=201
http://www.necam.com/PFlow/
https://en.wikipedia.org/wiki/IEEE_802.1Q
http://blog.sflow.com/2012/05/software-defined-networking.html
http://ark.intel.com/products/75040/Intel-Core-i5-4440S-Processor-6M-Cache-up-to-3_30-GH
https://www.amazon.com/Intel-1000-Dual-Server-Adapter/dp/B000BMZHX2
http://ark.intel.com/products/95442/Intel-Core-i3-7100U-Processor-3M-Cache-2_40-GHz-
https://www.amazon.com/Boadcom-BCM94321MC-802-11n-Wireless-Selected/dp/B00FA3NR

Traffic Engineering in a Converged Packet-Circuit Network," in Proceedings of Optical Fiber

Communication Conference and Exposition, 2012.

[34] Y. Z. Bing Leng, Liusheng Huang, Xinglong Wang, Hongli Xu, "A Mechanism for Reducing Flow

Tables in Software Defined Network," in IEEE ICC 2015 - Next Generation Networking

Symposium, 2015.

54

