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Περίληψη
Τα SDN είναι μια νέα ανερχόμενη αρχιτεκτονική δικτύων 
υπολογιστών. Σε ένα δίκτυο υπολογιστών έχουμε τις έννοιες του 
data plane και του control plane. Σήμερα, η διεπαφή μεταξύ του 
control plane και του data plane είναι κλειστή και βρίσκεται στο 
εσωτερικό δρομολογητών και μεταγωγέων με αποτέλεσμα να μην 
μπορεί κάποιος να αλλάξει εύκολα τα πρωτόκολλα δρομολόγησης 
που χρησιμοποιούνται σε ένα δίκτυο υπολογιστών. Η βασική ιδέα 
της αρχιτεκτονικής SDN είναι η αποσύνδεση του control plane από 
το data plane και η δημιουργία μιας ανοιχτής διεπαφής μεταξύ τους. 
Το control plane τρέχει εξωτερικά από τους δρομολογητές πάνω από 
ένα λεγόμενο network operating system (NOS), το οποίο 
διαχειρίζεται τους πίνακες προώθησης των δρομολογητών και 
μεταγωγέων ενός δικτύου. Με αυτή την προσέγγιση γίνεται πολύ 
πιο εύκολο να εφαρμόσει κανείς καινοτόμες τεχνικές δρομολόγησης 
και διαχείρισης της κίνησης / κυκλοφορίας . Επίσης προσφέρουνε 
απλούστερη διαχείρηση του δικτύου καθώς και καλύτερη χρήση των 
πόρων και των συσκευών του δικτύου. Παρά τις ευκολίες υπάρχουν 
και πολλοί περιορισμοί ένας εκ των οποίων και πολύ σημαντικός 
είναι η ενεργοβόρα και υψηλού κόστους μνήμη που φέρουν οι 
συσκευές ενός SDN. Γι αυτό και η μνήμη των συσκευών ενός SDN 
είναι πολύ περιορισμένη. Για να αντιμετωπιστεί αυτή η δυσκολία 
αναπτύσσονται νέες πιο έξυπνες και πιο αποδοτικές 
τεχνικές/αλγόριθμοι χρήσης της μνήμης. Σκοπός αυτής της 
διπλωματικής εργασίας είναι να υλοποιήσει και να παρουσιάσει μια 
υπηρεσία-μηχανισμό που θα στοχεύει στην αποδοτικότερη χρήση 
της μνήμης αυτών των συσκευών.
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Abstract
Software Defined Networking (SDN) is an emerging networking 
paradigm that separates the network control plane from the data 
forwarding plane with the promise to dramatically improve network 
resource utilization, simplify network management, reduce 
operating cost, and promote innovation and evolution. Although one 
of the biggest limitations in OpenFlow-driven SDN is the expensive 
and power demanding memory. Due to this the network devices and 
commodity switches suffer from limited amount of memory. To 
overcome this limitation, sophisticated techniques and 
memory-efficient algorithms have to be developed. The purpose of 
this thesis is to implement a traffic engineering service to deal with 
this problem by focusing on the reduction of flow table size.

Keywords: SDN, OpenFlow, Traffic Engineering

5



Table of Contents
1 In troduction ................................................................................................................ 9

1.1 O rgan ization ................................................................................................... 10

2 Background & M otivation.................................................................................... 11

2.1 Softw are Defined N etw orks....................................................................... 11

2.2 OpenFlow Protocol........................................................................................16

2.2.1 OpenFlow A rch itec tu re ...................................................................... 17

2.2.2 C ontro ller .............................................................................................  20

2.2.3 OpenFlow S w itch ................................................................................ 25

2.3 The P ro b lem ................................................................................................... 31

3 Im plem enta tion .......................................................................................................34

3.1 Flow M ultip lex ing .........................................................................................34

3.2 IEEE 8 0 2 .1 q ................................................................................................... 35

3.3 S tructu re  of the  M echanism  ....................................................................  37

3.4 Algorithm Analysis ......................................................................................  39

3.5 Tool S e lec tion .................................................................................................40

3.5.1 SDN C ontroller S e lec tio n .................................................................40

3.5.2 M onitoring Tools ................................................................................  41

3.5.3 N etw ork S im u la to rs ........................................................................... 42

3.6 Experim ents and E q u ip m en t.................................................................... 43

3.6.1 The E q u ipm en t................................................................................... 43

4 R esu lts ....................................................................................................................... 45

5 R elated W ork........................................................................................................... 49

6 C onclusion................................................................................................................ 50

6.1 F u ture  W o rk ..................................................................................................51

Bibliography .......................................................................................................................  52

6



List of Figures

Figure 1: The SDN stack

Figure 2: The OpenFlow Architecture

Figure 3: Flow table entry

Figure 4: SDN Controller

Figure 5: The OpenFlow Switch

Figure 6: Components of a flow entry in a flow table

Figure 7: Components of a group entry in the group table

Figure 8: Flow table processing

Figure 9: the 12-tuple of fields of every packet used for flow 
matching

Figure 10: Ternary CAM OpenFlow operation example 

Figure 11: The VLAN frame 

Figure 12: SDN Controller Anatomy 

Figure 13: Mechanism Structure

7



List of Tables & Graphs

Table 1: OpenFlow Controllers features. 

Table 2: comparison of Mininet, ns-3. 

Graph 1: Ring Topology.

Graph 2: Tree Topology 

Graph 3: Hybrid Topology 

Graph 4: Overall

8



1
Introduction

Software-defined Networking (SDN) is an emerging networking 
paradigm with a great potential to foster innovation through 
programmable networks. SDN has gained a lot of popularity, 
attention and adaptation from network operators, equipment 
vendors and over-the-top application service providers. SDN 
networks are characterized by the separation of the control and data 
planes wherein a logically centralized controller performs routing 
decisions on behalf of forwarding elements. This separation of 
control and data plane exposes the capabilities of network devices 
and thus it provides great potentials and high flexibility in managing 
and deploying network services. However, this flexibility comes at 
the cost of placing significant stress on switch state size because it 
requires installation of flow rules in a limited capacity switch 
memory. Increasing the memory size to accommodate flow rules for 
these large number of flows is not a viable solution since the specific 
memory is costly and power hungry.

In this thesis we develop a traffic engineering service to 
overcome the limitations stated above by dynamically multiplexing 
some flows into fewer whenever this is a viable option.
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1.1 Organization

The rest of this dissertation is organized as follows. The first part 
deals with background information. More specifically we present a 
comprehensive overview of Software Defined Networks. In 
particular, Chapter 2 presents both traditional and SDN 
architectures and presents the critical role of the OpenFlow 
standards in SDN. In addition, it describes the function of OpenFlow 
controllers and OpenFlow switches and depicts the problem this 
thesis deals with by analyzing more technical details.

Implementation details provided in Chapter 3. Specifically we 
analyze the multiplexing technique as well as the frame tagging. We 
explain the algorithm behind the module and present the tool 
selection and the equipment we used for the experiments.

The results of our proposed scheme as well as the evaluation of 
the results are discussed in Chapter 4.

Chapter 5 presents some related works. Finally, we summarize 
and conclude this dissertation in Chapter 6, and propose some 
potential directions to follow up this research in the future.
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2
Background & Motivation
2.1 Software Defined Networks

The Internet as we know it today, shows limitations due to the 
widespread and rapid expansion, thus limiting the scope for 
developing and implementing innovations. The "software-defined" 
networks (Software-Defined Networks) are the future of computer 
networking. This architecture provides researchers an easier 
method to test new technologies and protocols. One of the most 
important things is that SDN can be a main substrate for Cloud 
Computer networking (Cloud Computing) [1].

To begin with Software-Defined Networking (SDN) concept was 
first time introduced in 2010 [2] as the new networking paradigm 
which aims to ease the control and the management of a computer 
network environment.

SDN can be explained as an architectural principle where the 
networks control and the management are centralized and 
decoupled from data plane, thus making the network programmable. 
Traditionally, the data and the control planes in the Ethernet 
networking devices (and most of the communication principles) have 
been tied together. This means, the prevailing operating system and 
its features with the provided hardware are implemented in a single 
device. Therefore, network devices, such as switches, routers, 
firewalls, etc., are built with the intelligence of handling traffic
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relative to the adjacent devices. This makes the intelligence 
distributed and scattered in the network. In addition, most of the 
network devices are Command Line Interface (CLI) based and 
configuration is done separately per device, making configuration 
slow and prone to errors. This prevents the networking industry of 
responding quickly to feature requests or innovate new management 
abilities.

The data plane has a sensible layering model which is known by the 
name Open Systems Interconnection model (OSI model) [3]. It is 
well known model in the networking industries and academies. It is 
standardized by the International Organization for Standardization 
(ISO). The OSI model enables network applications and services to 
isolate the data operations to a single layer and provide interfaces 
between layers. This has enforced developers to develop and 
improve the operations without concerning the other layers. This 
type of layering models are used in many other fields (e.g. operating 
system) and it has provided simplicity to understand the overall view 
and the interactions. As a result, we can witness increase in the 
development and research in these fields. As it seems, similar 
layering model is essentially needed for networks control and 
management plane, which was not available. This creates the need 
to invent a new networking architecture, SDN.

The basic idea of the SDN architecture is the decoupling of the 
control plane from the data plane and the creation of an open 
interface between them. The control plane runs outside of the 
routers over a so-called network operating system (NOS), which
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manages the forwarding tables of the routers and switches of a 
network. This approach is much easier to implement innovative 
routing and traffic management techniques since a new routing 
protocol can be implemented very quickly, simply by using new 
software over the NOS, without requiring changes to routers and 
switches. The SDN architecture has approached much interest 
from industry in the last 2-3 years, already supported by many 
companies producing routers and switches, such as Cisco and 
Juniper, and is already used in some networks, such as Google 
inter-data-center network [4].

Figure 1: The SDN stack.

As seen from the Figure 1, SDN architecture is divided into three 
layers: application layer, control layer, and infrastructure layer. This 
architecture and arrangement of control and management, provides 
the possibility to centralize the state of the network and the
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intelligence into one part of the network. This, enhances the 
property of network programmability, the network industry can start 
to innovate and enable differentiation in the developing process. 
Furthermore, programmability accelerates creativity and 
introduction of new network features and services. With 
centralization, SDN simplifies provisioning while optimizing 
performance and granularity of the policy management. Therefore, 
SDN can make networks become more scalable, flexible and 
proactive. SDN architecture stack abstracts and decouples 
hardware from software, control plane from forwarding plane, and 
physical from logical configuration.

Infrastructure layer is the layer where all the hardware exists and 
are connected physically. On these hardware devices runs a software 
which provides a control data plane interface (Southbound API) 
which is used to communicate with the upper level: Control layer.

Control layer is the most important layer in the architecture. There 
is a controller which talks to all the network devices in the 
infrastructure and keeps track of the topology. While exchanging 
information of the network state with upper layer applications 
(through Northbound API), the controller translates their commands 
to the network devices to have respective and desired network 
behavior.

Application layer is the layer where all the features, services and 
policies are defined. Applications request the information of network 
devices and the topology in order to act upon it. These applications 
can create features end-to-end and make big picture decisions 
according to the changes in the network. When the network topology, 
feature, or policy requirements changes, applications have the 
control to change dynamically the network behavior from one single
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point.

Between these layers, there are Application Programming Interfaces 
(APIs) which provide the essential communication tools between the 
layers. The Northbound API is provided by the controller and the 
applications have to manage their communication to the controller 
through it. Many SDN controllers were settling down with REST API 
[5]. Other popular API's are C++, JAVA and Python. The Southbound 
API is the communication between the controller and the network 
devices.

There are a lot of cases that Software Defined Networks can find 
application, showing the great capability SDN have. Some of them 
are:

• Network Access Control
• Sets the appropriate privileges for any user or device of the 

network. It controls how someone accessing the networks, 
including access control limits, and the incorporation of 
service chains as well as appropriate quality of service (QoS).

- Network Virtualization
• Virtual network on top of a physical network, allowing a large 

number of multi-tenant networks to run over a physical 
network, spanning multiple racks in the datacenter or 
locations if necessary, including fine-grained controls and 
isolation as well as insertion of acceleration or security 
services.
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Service Velocity
Virtual edge, Distributed app testing environments, 
application development workflows.

- Application Enhancement
• Specific SDN application, reserved bandwidth for application 

needs, geo-distributed applications, intelligent network 
responses to application needs.

So, SDN brings new challenges in networking technology and in 
this thesis the focus is set on traffic engineering. A programmable 
network provides full control of a network. Thus, bringing more 
capabilities to handle traffic in the network, whether in a local 
area network (LAN) or in the core. Similarly, new unexplored 
challenges can be unveiled or discovered. Nevertheless, SDN has 
gained rapidly its reputation and is the biggest hype word in 
networking business.

2.2 OpenFlow Protocol

OpenFlow is the first open standard communication interface 
defined between the control plane and the data plane in order to 
enable the implementation of a flexible SDN architecture. OpenFlow 
provides direct access and manipulation of the data plane of virtual 
or physical network devices, such as switches and routers. This 
means that OpenFlow is a communication protocol which gives 
access to the forwarding plane of a network switch or router through 
the network. This allows network packet forwarding to be defined by 
software.

OpenFlow began to be developed in 2007, being a collaboration
16



between the commercial and academic worlds. Initially developed by 
Stanford University and California University in Berkley, the 
standardization is being conducted by the Open Network Foundation 
(ONF). ONF is an organization dedicated to the promotion and 
adoption of SDN through open standards development. OpenFlow is 
a follow up on previous projects on programmable networks, namely 
Ethane[6] , GENI [7] and SANE [8] which were one of the first 
projects to decouple control and data plane. OpenFlow shortly 
started to become more popular and as an open standard, it 
developed quickly to support more and more functionalities. This 
project has been developed using the latest version of OpenFlow the 
1.3.

2.2.1 OpenFlow Architecture

As stated before, OpenFlow is based on the separation between the 
data plane and the control plane and executes a flow-based control.

Figure 2: The Openflow Architecture
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This flow is defined by the information contained in the packet, from 
layer 1 to layer 4.OpenFlow defines the messaging protocol and also 
the semantics for changing switch states. OpenFlow networks 
consist of an OpenFlow Controller, OpenFlow switches (devices) and 
the OpenFlow Protocol, as shown in figure 2.

Communication between the switch and the Controller is done 
through a secure, Transport Layer Security (TLS) / Secure Sockets 
Layer (SSL) based, channel. Both the Controller and the switch 
interface implement the OpenFlow Protocol [9].

Packet forwarding is executed in the OpenFlow switch based on the 
flow table entries, where forwarding and routing decisions are 
defined the Controller. When a switch receives a packet that does 
not have a matching flow table entry, it sends the packet to the 
Controller. The Controller can then dispose of the packet or add the 
packet to an entry in the switch flow table [9].

Rule Action Stats

L Packet + byte counters

1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline

Switch 1 
.. Port IT] MAC |

I dst |
Eth

type I
VLAN 

ID 1X I IP
Dst |

■P
Prot |

TCP I TCP 
sport l dport

I MASKS
Ethernet
Switching * * ! 122E * * * : * * * * :
IP
Routing

* * * * * * ' 1.2.3.4 * * ; * ;
App
Firewall * * * * * * ' * ; * 443

Flow
Switching

Port6 12:2E 17:FF 0800 VLAN 7 1 2.3.4 4.3.2.1 06 11317 80
:

VLAN 
♦ App

* * . * VLAN 7 * * * 80

Port
♦ Ethernet Port6 12:2E : * 0800 * * :4.3.2.1 06 * *

Figure 3: Flow table entry
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As seen in figure 3 each entry in the flow table of an OpenFlow 
switch is divided in three parts: Rule, Action and Statistics.

• Rule: a header to match with the frames of the flows. There 
are several supported Ethernet headers in OpenFlow 
specification [9] but as OpenFlow is made to be extensible, 
custom headers can be additionally defined. The switch 
merely performs a bit mask match. Therefore, OpenFlow 
switch is open for innovative non-IP traffic.

• Action: as a rule is matched with traffic, the action which 
should be performed for it has to be defined. The actions are 
also open for extensions, but some basic actions are already 
provided in the specification. Such as, forwarding to one or 
more ports, forward to the controller, drop the frame, and 
modify frame fields. The only requirement for adding 
customized actions is that the data path must have flexibility 
while providing high performance and low cost. •

• Statistics: Each and every time when a flow rule is matched, 
the switch has to update the frame counters, which indicates 
the popularity of a specific flow. There are counters for every 
table, each flow, all the ports and every queue. Also a timer of 
last activity and initial set of the flow are maintained.
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2.2.2 Controller

OpenFlow Controller an independent software application running 
in a dedicated server which is responsible for managing OpenFlow 
switches. In other words, this Controller is responsible for 
everything happening in the network. The Controller can add, 
remove or update the flow table entries statically or dynamically, 
using the OpenFlow Protocol.

As Figure 4 shows SDN Controllers can simplify network 
management, handling all communications between applications 
and devices to effectively manage and modify network flows to 
meet changing needs. When the network control plane is 
implemented in software, rather than firmware, administrators 
can manage network traffic more dynamically and at a more 
granular level. An SDN Controller relays information to the 
switches/routers (via southbound APIs) and the applications and 
business logic (via northbound APIs). In particular, OpenFlow 
Controllers create a central control point to oversee a variety of 
OpenFlow-enabled network components. The OpenFlow protocol 
is designed to increase flexibility by eliminating proprietary 
protocols from hardware vendors.

Flow tables are a database that stores all flow entries associated 
with an action, so the switch can apply that action to a certain flow.

Every functions of the control plane and management are 
executed by the Controller. The Controller configures every device, 
maintains topology information and monitors the state of the 
whole network.

The OpenFlow Controller can have a reactive behavior or a
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proactive one.

• Reactive flow instantiation - When a new flow comes into the 
switch, the OpenFlow agent SW on the switch, does a lookup in 
the flow tables, either in a search ASIC if in hardware or a 
software flow table in the case of a vSwitch. If no match for the 
flow is found, the switch creates an OFP packet-in packet and 
fires it off to the controller for instructions. Reactive mode 
reacts to traffic, consults the OpenFlow controller and creates 
a rule in the flow table based on the instruction. The problem 
with reactive is today's hardware has laughable amounts of 
CPU in it.

• Proactive flow instantiation - Rather than reacting to a packet, 
an OpenFlow controller could populate the flow tables ahead 
of time for all traffic matches that could come into the switch. 
Think of a typical routing table today. You have longest prefix 
matching that will match the most granular route to a 
destination prefix in a prefix tree lookup. By pre-defining all of 
your flows and actions ahead of time in the switches flow 
tables, the packet-in event never occurs. The result is all 
packets are forwarded at line rate, if the flow table is in TCAM, 
by merely doing a flow lookup in the switches flow tables. That 
is the same hardware that populates its forwarding tables 
today from "routing by rumor" in today's routing protocols and 
"flood and spray" layer2 learning standards. Proactive 
OpenFlow flow tables eliminates any latency induced by 
consulting a controller on every flow.
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Figure 4: SDN Controller

There are different types of OpenFlow Controller software, each 
one has its own identity. Besides software performance, the 
programming language that each software implements is 
different.

• NOX [10] - is an open-source development platform for 
application control in SDN networks based in C++. It 
provides an OpenFlow 1.0 API and a fast and asynchronous 
I/O. NOX's primary targets are Linux distributions, it 
supports multithreading and the platform includes 
examples, such as Topology discovery, learning switch and 
network-wide switch.

• POX [11] - consists in a NOX implementation written in 
Python, allowing rapid development and prototyping of 
network control software components. POX has as 
characteristics, the reuse of component samples from a 
selected path, topology discovery, runs in any operating 
system and supports the same visualization tools as NOX. It
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can be said that POX is a good platform for people starting 
out in programmable networks, it is also a good platform for 
research, academic applications and network prototyping. 
While NOX is good for configuring big system networks, or 
for when Controller performance has to be fast. A 
disadvantage of POX is it does not support multithreading, it 
is used to explore and distribute prototypes, to run SDN, for 
virtualizing the network, designing Controllers and 
programming models.

• Floodlight [12] - is enterprise-class and apache-licensed, 
based in Java, but for people who do not like writing in Java, 
these people have the option of programming in Jython. 
Floodlight derived from Beacon, originally developed by 
David Erickson, it is now supported by the programmer team, 
including engineers, of Big Switch Networks. It supports 
multithreading, was developed to work with an increasing 
number of network devices that support OpenFlow and deals 
with a mix of OpenFlow and non-OpenFlow networks - able 
to manage multiple islands of OpenFlow hardware switches. •

• ONOS [13] - was developed in 2014, The ONOS (Open 
Network Operating System) project is an open source 
community hosted by The Linux Foundation. The goal of the 
project is to create a software-defined networking (SDN) 
operating system for communications service providers that 
is designed for scalability, high performance and high 
availability.
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• Trema [14] - is a framework that includes everything 
necessary to create an OpenFlow Controller, it was developed 
by NEC and is based on the Ruby platform or C. This platform 
was only tested in a UNIX environment, only supporting 
GNU/Linux and version 1.0 of OpenFlow, plus the latest Ruby 
version still does not support the OpenFlow Controller 
library. The Trema framework can emulate an OpenFlow 
based network and end-hosts and provides tests for the 
Controller. Contains a plugin for Wireshark, allowing it to 
monitor data-flows through functional modules.

• OpenDaylight (ODL) [15] is an open-source SDN controller 
project maintained as part of the Linux foundation. The ODL 
project was started in 2013 and is widely supported by 
industry members and researchers, with the goal to make 
SDN more transparent and to act as basis for Network 
Function Virtualization (NFV). The controller is written in 
Java with the main development decisions voted on by an 
elected Technical Steering Committee. One of the main 
non-commercial use cases for ODL is providing network 
services for the OpenStack cloud platform. It is a highly 
available, modular, extensible, scalable and multi-protocol 
controller infrastructure built for SDN deployments on 
modern heterogeneous multi-vendor networks. OpenDaylight 
provides a model-driven service abstraction platform that 
allows users to write apps that easily work across a wide 
variety of hardware and south-bound protocols.
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2.2.3 OpenFlow Switch

The OpenFlow switch is basically an Ethernet switch that supports 
the OpenFlow Protocol. OpenFlow is based on switching devices 
with one or more flow tables, a group table and an OpenFlow 
Channel to an external Controller, that is, a standard interface to add 
or remove flow entries, as can be seen in Figure 5.

Controller

--------1—
i

OpenFlow Protocol

i
Secure
Channel

1
1
1

Group
Table

II

Flow
Table - Flow

Table

Pipeline

OpenFlow Switch

Figure 5: The OpenFlow Switch

Each device maintains a flow table that contains a set of flow 
entries. Each consists of match fields, counters and a set of 
instructions to apply on the matching packets.
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Figure 6: Components of a flow entry in a flow table

As can be seen in Figure 6 each flow entry contains:

• Match fields: to match against packets. These consist of the 
ingress port and packet headers, and optionally metadata 
specified by a previous table.

• Priority : matching precedence of the flow entry.

• Counters : updated when packets are matched.

• Instructions : to modify the action set or pipeline processing.

• Timeouts : maximum amount of time or idle time before flow is 
expired by the switch. •

• Cookie : opaque data value chosen by the Controller. May be 
used by the Controller to filter flow statistics, flow modification
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and flow deletion. Not used when processing packets.

The flow table entry is identified by the Match Field and Data 
Priority, these two fields identify a single flow entry in the flow 
table.

The group table consists of group entries. The ability of a flow 
entry to point to a group allows the representation of additional 
forwarding methods. As can be seen by figure 7 each entry group is 
identified by four fields.

• Group Type -  All, Select, Indirect, Fast Failover
• Counters -  Updated when packets are matched

Figure 7: Components of a group entry in the group table

Each group entry consists of:

• Group Identifier: a 32 bit unsigned integer uniquely 
identifying the group.
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• Group Type: to determine group semantics, meaning that a 
switch does not need to support every group type, it only 
needs to support those marked as "Required" the other group 
types the switch may support are "Optional".

"Required" groups have two types:

❖ all: This executes all buckets in a group, with this group 
being used for broadcast or multicast forwarding, in 
other words, the packet is cloned for each bucket, then 
processed by each bucket in the group.

❖ indirect: Executes a bucket defined in a determined 
group. This group only supports one bucket.

"Optional" groups also have two types:

❖ select: Executes a bucket in a group. The packets are 
processed by a single bucket in the group, based on 
switch-computed selection algorithm.

❖ fast failover: Executes the first bucket in real-time. 
Each bucket action is associated to a specific port and/or 
to a group that controls this liveness.

• Counters: updated when packets are processed by a group.

• Action Buckets: an ordered list of action buckets, where
each action bucket contains a set of actions to execute and 
associated parameters.
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The OpenFlow Pipeline process defines how the packet interacts 
with flow tables (Figure 8). For this procedure, the device has to 
have at least one flow table.

(a ) P a c k e ts  a re  m atch ed  ag a in st m u ltip le  ta b le s  in  th e  pipeline

Match fields: C2) Match fields:
Ingress port + _  - *  - Ingress port +

m etadata + 
pkt hdrs Flow

Table

m etadata + 
pkt hdrs

Action set Action set

C D

CD Find h ighest-p rio rity  m atching flow  entry

( I)  Apply instructions:
i. M odify packet & update match fields 

(apply actions instruction)
ii. Update action set (clear actions a n d /o r  

w rite actions instructions)
iii. Update m etadata

CD Send m atch data and action set to  
next table

Figure 8: Flow table processing

Flow tables are sequentially numbered, starting at 0. Processing 
is always initiated at flow table 0. When a switch receives a packet, 
the packet's match field is compared with the flow entry match 
field. The packet may match more than one entry of a flow table. In 
this case, the chosen flow entry is the one with the highest priority.

When the packet matches a flow entry, the flow table executes 
the instructions stored in the corresponding flow entry, these 
instructions may be to send the packet directly to another flow 
table (Goto instruction), the packet's header, metadata, packet/ 
match set fields and action set are updated and it is then sent to 
the flow table indicated by the Goto instruction and the process
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repeats successively. If the flow entry does not have a Goto 
instruction, then the pipeline processing terminates and the 
packet is processed according to the associated actions

When the packet has no match with any flow entry of the flow 
table, the packet is then disposed if the flow table has no 
table-miss flow entry. If not the flow table has a table-miss flow 
entry, then the packet is processed according to the table-miss 
configurations, it can be disposed using Clear-Actions and sent to 
the Controller (via packet-in message) using the Controller 
reserved port. The table-miss processes the non-existing tables, 
meaning that it specifies how the packet is processed when it has 
no match with the flow entries. The flow entries are removed if 
specified by the Controller, or by the switch flow expiry 
mechanism. This mechanism is based on the state and 
configuration of the flow entry.

To remove a flow entry from the flow table the Controller sends 
a delete flow entry message for the corresponding flow table 
(OFPFC DELETE or OFPFC DELETE STRICT) [9].

To remove a flow entry by the flow expiry mechanism, each flow 
entry contains an idle-timeout and a hard-timeout. If the 
idle-timeout is greater than zero, it means that the switch registers 
the arrival time of the last match packet, and if in the time 
specified by the idle-timeout no packet is associated to this flow 
entry, it is removed. If the hard-timeout is greater than zero, the 
switch registers the arrival time of the flow entry and removes it 
after the specified time, regardless if the flow entry has a lot of 
packet matching to it [9].
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OpenFlow switches are divided in two categories, Commercial 
switches and Software switches.

Commercial switches are physical switches that come with 
hardware that supports OpenFlow. Several vendors offer 
commercial switches that support OpenFlow, such as HP [16] ,Pica8 
[17] and NEC [18] .

Software switches are software that supports OpenFlow and can be 
installed in general purpose hardware. There are also several 
software switches available, such as Open-WRT [19] and 
OpenVSwitch [20].

2.3 The Problem

Figure 9: the 12-tuple of fields of every packet used for flow
matching

OpenFlow switches in any OpenFlow network consist of Ternary 
Content Addressable Memory (TCAM) memory. TCAM memory is a 
special type of memory that enables matching on the headers of 
received data packets during one clock cycle, regardless of the 
number of entries in memory. As stated before an OpenFlow 
network is composed of a controller and a group of OpenFlow 
switches. The controller and the OpenFlow switches communicate
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through a control plane on the network in order to maintain flow 
entries in the switches. The OpenFlow switches transfer data 
packets on the data plane of the network based on the flow entries. A 
flow entry includes definitions of the flows that are referred to as the 
matching fields. Figure 9 shows the matching fields include the 
ingress port number and the header fields from layers 2-4 that are 
specified in the OpenFlow switch specification [9]. Wildcards are 
allowed for any of the matching fields. An OpenFlow switch searches 
the flow entries that needed to be matched in the header fields of 
each data packet that is received (Figure 10). TCAM can have 
multiple matches and determine a best match. TCAM enables 
searching during on clock cycle, regardless of the number of the 
entries in the TCAM and regardless of whether wildcards are 
included or not included in the matching fields.

Packet-ιη with match in TCAM -  Action is forward to port 0/2

I

t l r TCAM Lookup 1

In g re s»  P o r t E tb e c  S*t jE th e r Os? E th e r  T ype V la n  ID IP D st :P Src TCP D st TC P Src IP P r o to

P o r t  0 /1 • · • 1* • 80 • •
• • r • !· 1 9 2 .1 6 8  1< V 20 * • * •
• • r ► 1· 1 92  1 6 8  1 <V2« * 2 5 * •
P o r t  0 /3 • > • 1· 1 9 2  1 6 8  1 1 /3 2 1 • .

• * •

t

TCAM Lookup

1 i I
T

A

Action Bucket

Send Packet, 
to Port 0/2 j 
in (n)RAM/

Action Bucket

Packet-in with NO match in TCAM -  Action is Punt to Controller

Figure 10: Ternary CAM OpenFlow operation example

In an OpenFlow switch, the required TCAM space is large due to 
the wide range of header fields that are supported in OpenFlow 
(Figure 9.The problem with TCAM is that it is power hungry,
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expensive and takes up quite a bit of silicon space. It is the most 
expensive component on commodity switches. It has been noted that 
TCAM is up to 80 times more expensive than static random access 
memory (SRAM) [21] . Many vendors use a blend of BCAM memory, 
SRAM, NPUs and software algorithms to perform ternary lookups in 
order to avoid the usage of the extra-expensive TCAM.

Another big obstacle is that TCAM-based tables were limited to 
just a few thousand entries. For example the HP5406zl 
OpenFlow-enabled switch supports approximately 1500 OpenFlow 
rules [22] due to the TCAM limitations and the NEC PF5820 is 
capped to only 750 entries [23].

If the table was exceeded, the packets would be handled by the 
switch's software .This severely limited the scalability and 
performance of early OpenFlow switches.

Many techniques have been proposed in the research community 
for reducing the number of OpenFlow rules in the OpenFlow tables 
by investigating various configurations and characteristics of 
possible hardware implementations for the flow tables (e.g. types of 
memory) [24]. Other techniques focusing on decreasing the 
frequency of the usage of TCAM by implementing smarter memory 
accessing algorithms or restricting the packet matching on less 
fields [25].
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3
Implementation

In this chapter we will discuss and implement a mechanism who 
will overcome the limitations TCAM introduced. As stated in the 
previous chapter the most common underlying technology for 
implementing OpenFlow flow tables is TCAM ,because it allows for 
fast implementation of matching rules that can support flexible 
Wildcarding, for any of the packet headers. Since this type of 
memory is expensive and it consumes significant amounts of power, 
it becomes costly to build and deploy forwarding devices that can 
store a large number of OpenFlow rules. This further limits the 
adoption of OF-based SDN for environments where there is a large 
volume of traffic flows that must be processed (e.g. forwarded, 
firewalled, etc.)
In this thesis we develop a service that reduces the number of 
installed entries in the flow tables of OpenFlow network devices 
based on dynamically applying aggregation of traffic flows at various 
points in the network (flow aggregation).

3.1 Flow Multiplexing

An aggregate of traffic flows is a collection of traffic flows that 
are grouped together for common treatment between two points in a 
network. Packets from all flows in a trunk travel the same path and
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are subject to the same traffic management policies. The concept of 
aggregation brings the Layer-2 values of ATM into the layer-3 
network. An identifier is needed in order for the controller to be able 
to manage the aggregate as a single entity. The traffic flows that are 
to be treated as a single aggregate will then be marked with the 
identifier and processed accordingly in the network. These 
aggregates can follow determined paths and be given a consistent 
quality of service (QoS) treatment. A labelled path can exist between 
any two points in the network and multiple paths can themselves be 
aggregated within another label. This hierarchical aggregation 
simplifies the management of network resource and facilitates 
engineering of QoS.

Several identification mechanisms are possible such as 
Multi-Protocol Label Switching (MPLS) labeling, VLAN tagging, and 
other encapsulation formats. These mechanisms are well known 
from traditional network architectures and they are well suited also 
for the aggregation service proposed in this paper.
For real life deployments the choice of the identifier is very 
important and it usually depends on several aspects such as support 
from hardware, encapsulation overhead, number of available 
identifiers, etc.
To encapsulate, identify the aggregates we had to choose between 
VLAN tagging and MPLS techniques. The choice was VLAN tagging 
and the reasons are described below.

3.2 IEEE 802.1q

The 802.1q standard was created by the IEEE group to address the 
problem breaking large networks into smaller and manageable ones
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through the use of VLANs. The 802.1q standard is of course an 
alternative to Cisco's ISL (inter switch link), and one that all vendors 
implement on their network equipment to ensure compatibility and 
seamless integration with the existing network infrastructure [26].

As with all 'open standards' the IEEE 802.1q tagging method is by 
far the most popular, easy to use and commonly used even in Cisco 
oriented network installations mainly for compatibility with other 
equipment and future upgrades that might tend towards different 
vendors.

In addition to the compatibility issue, there are several more reasons 
for someone to prefer this method of tagging. These include:

1. Simple to implement

2. Support o f up to 4096 VLANs
3. Insertion of a 4-byte VLAN tag with no encapsulation

Amazingly enough, the 802.1q tagging method supports a whopping 
4096 VLANs (as opposed to 1000 VLANs ISL supports), a large 
amount which is merely impossible to deplete in a local area network 
or software defined network. And the most amazing aspect of this 
method is its simplicity in development.

The 4-byte tag we mentioned is inserted within the existing Ethernet 
frame, right after the Source MAC Address as illustrated in the 
diagram below:
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Figure 11: The VLAN frame

3.3 Structure of the Mechanism

The idea behind this service is simple. The controller is a pack of 
applications modules. As figure 12 depicts the core functions of the 
controller are:

• device and topology discovery and tracking,
• flow management
• device management
• Statistics tracking.

These are all implemented by a set of modules internal to the 
controller and they comprise the core of the controller. As shown in 
Figure 12 these modules need to maintain local databases 
containing the current topology and statistics. The controller tracks 
the topology by learning of the existence of switches (SDN devices) 
and end-user devices and tracking the connectivity between them. It 
maintains a flow cache that mirrors the flow tables on the various 
switches it controls. The controller locally maintains per-flow 
statistics that it has gathered from its switches.
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Figure 12: SDN Controller Anatomy

The core modules are like a chain and each module defines 
which one will follow up. Whenever an action triggers the controller, 
this action is being processed by each module one by one in order to 
be handled properly.

The aggregation mechanism is a standalone module for the 
controller and it has been inserted in that chain described above just 
before the forwarding module. Whenever an event (OpenFlow 
message) reaches the controller the module run whether to decide if 
traffic aggregation is a viable solution or just to do the normal 
forwarding of the packet. The controller also utilizes the built-in 
module Topology Manager, which allows for an up-to-date and
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global view of the network's state. After processing the packet, the 
controller sends back to the OpenFlow switch the required 
instructions on how the packet should be processed, by using 
OpenFlow. Also the controller sends instructions to all the OF 
switches that are part of the packet's route through the network.

Figure 13: Mechanism Structure

3.4 Algorithm Analysis

As stated before whenever an OpenFlow message is sent to the 
controller by one of OpenFlow switches, the mechanism is triggered. 
When the packet arrives into the controller the mechanism extracts 
the route of the packet, meaning the path the packet will follow. The 
first step is to check whether or not the packet is an IP packet. If is 
not an IP packet the algorithm terminates and the controller 
continues with its standard procedure in order to treat the incoming 
packet correctly. By examining the source and destination IP of the 
packet, the controller calculates the route that will follow. The route 
of each packet is registered and when a new packet arrives, 
controller compares the new route with all the previous registries
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(routes). If common route or common path is found then aggregation 
is a possible option and so on the corresponding flow multiplexes 
with the existing flows of the common route/path. The new 
multiplexed flow is tagged with a VLAN id and gets installed on the 
involved switches/devices replacing the previous ones. If common 
route or path cannot be found then the algorithm stops and the 
controller proceeds with its standard procedure. The aggregation 
process is recursive this means that after every flow merging the 
new multiplexed flow is compared with the previous registries also. 
This secures that if common path exists the procedure must be 
repeated.

3.5 Tool Selection

3.5.1 SDN Controller Selection

Table 1 below summarizes the different properties of the different 
OpenFlow Controllers. It can be seen that Trema lacks of 
documentation which makes the development using Trema a very 
hard task. POX does not support multithreading which is a huge 
drawback because imagine all the packets arrive in the controller 
to be handled sequentially as well as every packets route-matching. 
Consequently it has the weakest performance. Through table 
analysis, it can be seen that NOX is a good choice although it has 
the disadvantage of being written in C++ a programming language 
which I am not familiar with. Beacon is rejected because the 
documentation is poor and is outdated. The top 3 nominees are 
Floodlight, OpenDayLight and ONOS which have a lot in common 
but I select Floodlight due to the very good documentation.
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ODL ONOS NOX POX Beacon Floodlight Trema

Programming
Language Java Java C++ Python Java Java C or Ruby

Compatibility
Linux

distributions
Linux

distributions
Linux

distributions
Linux, Mac 

OS and 
Windows

All Platforms, 
from high end 

multi-core Linux 
servers to 

Android phones

Linux, Mac 
OS and 

Windows

Linux
distributions

Documentation Poor Medium Good Medium Medium Very Good Poor

License
Eclipse Public 

License 1.0
Apache 2.0 

License
OpenFlow 

v1.3 license
OpenFlow 

v1.3 license

GPL v2 license 
and FOSS 
License 

Exception v1.0

Apache 2.0 
License

GPL v2 
license, the 
last version 
of the Ruby 

don’t
support the 
OpenFlow 
libraries

Open Source Yes Yes Yes Yes Yes Yes Yes

Multithread
Yes Yes Yes No No Yes Yes

GUI
Build in 

Gui(DLUX) Web Gui
NoX Gui 
(Only for 
monitoring)

Pox Des 
(only for 
monitoring)

Web UI
Avior, Build 

in Gui
No

Table 1: OpenFlow Controllers features.

3.5.2 Monitoring Tools

Network Monitoring has been an integral part of operating a 
network. It not only provides the visibility into how well the network 
performs, but also is an important tool when it comes to troubleshoot 
problems. Given the distributed nature of switching or routing 
devices in the network, a typical network monitoring tool usually 
queries a set of devices via some network management protocol, 
such as SNMP, and correlates results into reports or graphs.

sFlow [27] and OpenFlow provide complementary functions that 
together offer exciting opportunities for delivering breakthrough 
data center and cloud networking performance. The OpenFlow 
protocol allows controller software running on a server to configure 
the hardware forwarding tables in a network of switches. The sFlow
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standard specifies instrumentation in the forwarding table hardware 
that provides real-time, network-wide visibility into traffic flowing 
across the network. In addition, sFlow also provides real-time 
visibility into the performance of servers. Combined, sFlow and 
OpenFlow can be used to construct feedback control systems that 
optimize performance, automatically adapting the network to meet 
changing demands.

For the reasons described above sFlow is the tool I use for 
monitoring the flows and latencies in my experiments.

3.5.3 Network Simulators

To deploy a complete test bed containing multiple networked 
computers, routers and data link to conduct the experiments we 
need network simulators. Table 2 shows the comparison of two very 
popular network simulators. It is obvious that Mininet wins the 
battle in almost every category.

Mininet ns-3

Compatibility with real Controllers Yes No

OpenFlow Specification all versions 0.8.9

Mode Emulation Simulation

Scalability High (by Multiple processes) High (by single process)

Performance and Result 
Correctness

Good Performance No STP

Documentation Yes Poor

GUI Support Yes, Observation only Yes, Observation Only

Table 2: comparison of Mininet, ns-3.
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3.6 Experiments and Equipment

In order to assess the performance of this thesis mechanism an 
experiment must be set up. The selected controller (Floodlight), with 
and without the aggregation module loaded, run in a set of 
topologies in order to compare and evaluate the results. In order to 
have deterministic and low-cost environments to test, a virtual 
testbed was created that can run on a single computer and does not 
require additional effort to be maintained and operated. The 
selected network simulator is Mininet. The performance metric we 
monitor is the total number of OpenFlow flow entries as well as the 
latency on every network device involved.

3.6.1 The Equipment

For the experiment the Floodlight Controller was installed on a PC 
with the following specifications:

• Cpu : Core i5-4440S 2.8GHz [28]
• Ram : 8 Giga, 1666MHz
• Hdd : 1 TB, 7200 Rpm
• Nic : 2 x Intel PRO/1000 PT dual port 1 Gbps PCI-Express [29]
• OS: Linux Ubuntu Server 16.10

Mininet was installed on a laptop with the following specifications:

• Cpu : Intel Core i3 7100U 2.4 GHz [30]
• Ram : 8 Giga, 1666MHz
• Hdd : 128 GB SSD
• Nic : Broadcom 802.11n Network Adapter [31]
• OS: Linux Ubuntu 16.04 LTS

The two devices were connected on the same LAN .The controller 
and the network simulator were separated in order for the
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experiment/simulation to be closer to a real world network. All the 
measurements was given by the chosen tool sFlow and for the sake 
of validity the experiments was repeated many times.
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4
Results

This chapter presents the results that allow a short evaluation on 
SDN traffic comparing the results taken from network topologies 
with the traditional Floodlight controller and with the enhanced 
version of Floodlight. In order to find a correlation between the 
number of flows, latency and the percentage of reduction 
experiments must be done in a set of topologies.

The following graph shows the reduction in flows in a ring 
topology. The percentage of reduction is significant as network 
traffic escalates (traffic measured in number of flows).

Ring Topology
45

Graph 1: Ring Topology

45



The next topology we test is the tree topology. The results below 
depicts a good percentage in flow reduction but not as good as in 
ring topology.

Tree Topology
30

Graph 2: Tree Topology

Next we test the algorithm in a hybrid topology. The results 
collected from the experiments are shown below but they cannot be 
used to conclude safely because hybrid topologies have vast 
formations and alterations and so the results could deviate.

Hybrid Topology
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Graph 3: Hybrid Topology
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Looking at the aggregate chart we see that in ring topology we 
can achieve the highest reduction in flows this can be based on the 
fact that in this topology the paths are common for the nodes and 
there is no path separation and thus packets travel together. In tree 
and hybrid topologies the performance is quite similar with hybrid 
being in the lead. Tree has the worst performance because of its 
multi-path structure.

Overall
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Graph 4: Overall

Probing the latencies in every experiment there is a latency drop 
every time the algorithm starts to kick in and that is when packets 
share a common path and aggregation can happen. This latency drop 
is about 30-40 ms for every flow we aggregate. The drop can be 
substantial as the number of flows in the network escalates. 
Although the fact that we cannot calculate the delay from the extra
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lines of code of the module, makes our first calculation inaccurate so 
we couldn't include it in this analysis.
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5
Related Work

Until today, there has been some progress on the issue of traffic 
engineering and aggregation on software defined networks. Some 
examples are mentioned below.

Many different approaches on the subject like [32] which uses a 
more algorithmic way to reduce the size of flow tables. The paper 
presents a technique named Fast flow table aggregation in which 
the rules are separated into prefix-permutable partitions and then to 
each partition is applied to a modified prefix fusion and bit merging 
(merge together rules that differ by a single bit iteratively).

The paper in [33] has a lot in common with this thesis using 
actually the same concept and approaches the matter similarly. 
Although they are very close, [33] lacks in implementation details.

Another study approaches the matter of diminishing the flow 
entries, differently. The paper in [34] suggests a flow table reduction 
scheme .The main idea of that is that congested switches' flow tables 
may have common flow rules and characteristics. These common 
entries are restructured in one new rule substituting the previous 
registries leaving space for other rules to be installed.
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6
Conclusion

Software Defined Networking as a considerably new principle 
has evolved the way networks operate and has brought 
unprecedented innovation pace into the field of computer networks. 
However similar to almost any new concept, it has its own 
challenges. In this paper we deal with a hot topic in Software 
Defined Networks which is the resource management. Initially we 
provide some basic information about the concept of SDN in order 
for the reader to fully understand the purpose of this thesis. We 
examine closely the special memory of OpenFlow devices and focus 
on the problems and limitations it raises. To treat the memory 
management problem and reduce the number of OpenFlow rules in 
the devices we implement a mechanism that aggregates traffic 
wherever it is possible and without changing or downgrading the 
quality of that network. The experiments in chapter 4 verify the 
effectiveness and the efficiency of the mechanism by achieving in 
some topologies, significant flow reduction. Apart from the 
noteworthy flow reduction during the experiments we also notice a 
considerable latency drop which is not included in this thesis 
because we could not verify the accuracy of that drop. Although this 
latency drop is something to be taken under consideration for future 
analysis and further investigation.
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6.1 Future Work

The current implementation is finished although future development 
must be done. The code needs to be optimized to reduce the delay of 
the overhead it introduces in order to have accurate measurements 
of latency drop. The SDN controller efficiently updates the network 
with consistency in real-time and safety without packet drops, when 
the synchronization overhead with the switches is low. Not often and 
for reasons we haven't found yet we have faced a raise in 
synchronization overhead which impacts the execution time and 
brings in further delay we must deal with. There are other parts that 
demand improvement like the failure recovery and resource 
allocation to avoid some consistency issues during the experiments.
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