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ΠΕΡΙΛΗΨΗ

Η εαĲαζκΰκπκέβıβ κηδζβĲά İέθαδ β įδαįδεαıέα Ĳβμ αθαΰθυλδıβμ Ĳκυ «πκδκμ 
ηέζβıİ πσĲİ» ıİ Ϋθα εκηηΪĲδ άξκυ ά ίέθĲİκ ξπλέμ θα İέθαδ ΰθπıĲΪ β įδΪλεİδα Ĳβμ κηδζέαμ
ά Ĳκ πζάγκμ Ĳπθ κηδζβĲυθ. Γδα θα İπδĲİυξγİέ, αυĲσ β įδαįδεαıέα Ĳβμ εαĲαζκΰκπκέβıβμ 
ξπλέαİĲαδ ıİ Ĳλέα ηΫλβ, Ĳβθ İιαΰπΰά ξαλαεĲβλδıĲδευθ, Ĳβθ εαĲβΰκλδκπκέβıβ, εαδ ĲΫζκμ 
Ĳβθ αιδκζσΰβıβ Ĳβμ εαĲαζκΰκπκέβıβμ.

ΚαĲΪ Ĳβ įδΪλεİδα Ĳβμ İιαΰπΰάμ ξαλαεĲβλδıĲδευθ, ıυΰεİελδηΫθα ξαλαεĲβλδıĲδεΪ 
İπδζΫΰκθĲαδ απσ Ĳα įİįκηΫθα άξκυ εαδ ίέθĲİκ πκυ ıĲβ ıυθΫξİδα γα ξλβıδηκπκδβγκτθ πμ 
İέıκįκμ ıĲκ ıτıĲβηα. ǹλξδεΪ, σıκθ αφκλΪ Ĳα İδεκθδεΪ ξαλαεĲβλδıĲδεΪ, İπδζΫΰİĲαδ πμ 
πİλδκξά İθįδαφΫλκθĲκμ β İυλτĲİλβ πİλδκξά ΰτλπ απσ Ĳκ ıĲσηα Ĳκυ κηδζβĲά εαδ 
εαĲαΰλΪφİĲαδ εαλΫ-εαλΫ. ǻτκ įδαφκλİĲδεΫμ ηΫγκįκδ İθĲκπδıηκτ Ĳβμ πİλδκξάμ 
İθįδαφΫλκθĲκμ αθαπĲτξγβεαθ, κ Ϋθαμ İέθαδ ıĲβλδΰηΫθκμ ıĲβθ Ǽπİιİλΰαıέα Ǽδεσθαμ İθυ 
κ Ϊζζκμ ίαıέαİĲαδ ıĲβ ǺαγδΪ ΜΪγβıβ. ΢Ĳβ ıυθΫξİδα İφαλησαİĲαδ įδαελδĲσμ 
ηİĲαıξβηαĲδıησμ ıυθβηδĲσθκυ (DCT) εαδ İπδζΫΰκθĲαδ πμ ξαλαεĲβλδıĲδεΪ κδ πλυĲκδ 30 
ıυθĲİζİıĲΫμ Ĳκυ ηİĲαıξβηαĲδıηκτ. ǹθĲέıĲκδξα, 39 ıυθĲİζİıĲΫμ MFCC İπδζΫΰκθĲαδ πμ Ĳα 
βξβĲδεΪ ξαλαεĲβλδıĲδεΪ.

Γδα Ĳβθ εαĲαζκΰκπκέβıβ İφαλησαİĲαδ β ηΫγκįκμ Ĳβμ αθΪζυıβμ εαθκθδεκπκδβ-
ηΫθβμ ıυıξΫĲδıβμ (CCA) πκυ ξλβıδηκπκδİέĲαδ ΰδα Ĳβθ İτλİıβ ıυıξΫĲδıβμ ηİĲαιτ Ĳπθ 
ξαλαεĲβλδıĲδευθ άξκυ εαδ İδεσθαμ. Χμ ηΫĲλκ Ĳβμ ıυıξΫĲδıβμ İπδζΫξĲβεİ  κ ıυθĲİζİıĲάμ 
ıυıξΫĲδıβμ Ĳκυ Pearson (PPMCC), εαδ ηİ Ĳβ ίκάγİδα ηδαμ Ĳδηάμ εαĲπφζέκυ ΰέθİĲαδ β 
εαĲβΰκλδκπκέβıβ.

΢Ĳκ Ĳİζδεσ ıĲΪįδκ, αυĲσ Ĳβμ αιδκζσΰβıβμ Ĳβμ εαĲαζκΰκπκέβıβμ, İφαλησακθĲαδ 
įτκ įδαφκλİĲδεΫμ ηΫγκįκδ, Ĳκ įβηκφδζΫμ F1-score εαδ κ Ρυγησμ ΢φΪζηαĲκμ ΚαĲαζκ-
ΰκπκέβıβμ (DER). Ο DER υπκζκΰέαİĲαδ πμ Ĳκ πκıκıĲσ Ĳκυ ξλσθκυ πκυ įİθ απκįέįİĲαδ 
ıπıĲΪ ıİ εΪπκδκθ κηδζβĲά.

Γδα Ĳβ įδαįδεαıέα Ĳβμ εαĲαζκΰκπκέβıβμ αθαπĲτξγβεİ ηδα İλΰαζİδκγάεβ πκυ 
ίαıέıĲβεİ ıĲβ ίδίζδκγάεβ υπκζκΰδıĲδεάμ σλαıβμ OpenCV, ıĲβ ΰζυııα 
πλκΰλαηηαĲδıηκτ Python εαδ ıİ įδΪφκλα ıĲκδξİέα αυĲάμ σππμ Ĳκ numpy, Ĳκ sklearn, Ĳκ 
scipy, εαδ Ĳκ matplotlib.

ΣΫζκμ β ίΪıβ įİįκηΫθπθ πκυ ξλβıδηκπκδάγβεİ ΰδα Ĳα πİδλΪηαĲα İέθαδ β 
κπĲδεκαεκυıĲδεά ίΪıβ οβφέπθ ıİ δįαθδεσ πİλδίΪζζκθ Ĳβμ IBM, β κπκέα ζİδĲκτλΰβıİ πμ 
ίΪıβ ΰδα Ĳβθ αθΪπĲυιβ Ĳλδυθ ıυθσζπθ įİįκηΫθπθ πκζζαπζυθ κηδζβĲυθ πκυ 
įδαφκλκπκδκτθĲαδ ηİĲαιτ Ĳκυμ ηİ ίΪıβ Ĳβθ εέθβıβ Ĳπθ κηδζβĲυθ.
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ABSTRACT 

Speaker diarization is the task of determining “who spoke when” in an audio or 
video recording that contains an unknown amount of speech and also an unknown 
number of speakers. In order to achieve this, the diarization process is divided to three 
parts: feature extraction, diarization, and evaluation. 

During feature extraction, specific features are selected from the visual and audio 
data and fed into the diarization system. For the visual features, the selected region of 
interest (ROI) is the lower part of each speaker’s face where the mouth is detected and
tracked frame by frame. Two different methods were implemented and are presented 
here for the ROI detection: one based on Image Processing (IP) and one on Deep 
Learning (DL). The discrete cosine transform (DCT) of this ROI is finally selected as the 
visual features. Likewise, 39 Mel-frequency cepstral coefficients (MFCCs) are selected 
as the audio feature. 

For the diarization process, the audio-visual features are fused through a simple 
linear interpolation and Canonical Correlation Analysis (CCA) is applied through a 
windowed operation in order to find a meaningful correlation between the visual 
information from each speaker and the audio stream. As a measure of correlation the 
Pearson product-moment correlation coefficient (PPMCC) is used and a threshold value 
is utilized to classify each window/segment. 

The last stage is the evaluation, where the system’s classification is compared to 
the dataset’s ground truth. Two methods were utilized for the diarization evaluation, the 
commonly used F1-score metric and the Diarization Error Rate (DER) as described by 
the National Institute of Standards and Technology in the NIST Rich Text (RT) 
Diarization evaluations. The DER is computed as the fraction of speaker time that is not 
correctly attributed to that specific speaker.  

The diarization process was developed as a toolkit using the popular computer 
vision library OpenCV and the Python programming language accompanied with a 
collection of modules such as numpy, sklearn, scipy, and matplotlib. 

Finally, the database used for the experiments is the IBM audio-visual databases 
of connected digits collected in a studio-like environment, which was the basis for three 
manually developed multiple speaker datasets differing in by the amount of speaker’s 
motion in the video. 
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CHAPTER 1: Introduction 

1.1 Speaker Diarization 

Speaker diarization has become a fundamental quest in the realm of machine 
learning in recent years. Its main goal is to find the answer to the question of “who spoke 
when” in an audio or video. The main building blocks of a diarization system include the 
components for audio segmentation, speech detection, speaker clustering, and speaker 
identification in an audio-visual stream. In order to develop such system, a combination 
of machine learning methods is employed for the audio and video manipulation.  

In any modality (video or audio) a very important factor in diarization is the choice 
of feature space so that it contains information that allows differentiating between 
speakers, and ideally no other kind of information. At first the audio stream has to be 
segmented between the speech and the non-speech parts. Afterwards, it is divided in to 
speech segments through a diarization window, and each segment is classified to the 
corresponding speaker. As far as manipulating the visual information, a subsystem is 
required to be developed in order to identify and track certain visual features in each 
speaker. Finally, the diarization system using the information acquired by the audio-
visual processing makes an educated guess of who is speaking in each segment. 

The boom of smart devices such as cameras, phones, and wearables has 
triggered an increase in the means of capturing audio and video and a consequent 
increase into vast amounts of data that need to be interpreted in a more cohesive way. 
That is why, as stated above, speaker diarization is a popular task and it has many 
commercial and forensic applications. In the audio-only domain it can be used in 
assisting speech recognition systems and facilitate the searching and indexing of audio 
archives, such as telephone communications, podcasts, and radio interviews. Likewise 

some of the most common applications, when multimodal information is available, are 
speaker identification in multi-speaker environments, such as broadcast news, multi-
panel conferences, lectures, and meetings. Thus, speaker diarization is an extremely 
important area of audio-visual processing research. 

Consequently, the different application domains of speaker diarization vary 
greatly and pose different problems that are dependent upon the recording environment, 
recording quality, lighting, number and positioning of speakers, noise, and overlapping 
speech. It becomes clear that different practices need to be applied to confront those 
issues and are very dependent on the means available for capturing audio-visual 
information. For instance special green-backgrounds rooms are developed to assist in 
speaker detection through background subtraction, and multiple cameras and 
microphones are used to capture multimodal information and tackle lighting issues and 
overlapping speech respectively.  
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1.2 Relevant Work 

A great contribution to the field of speaker diarization has been made by the 
National Institute of Standards and Technology (NIST), through the NIST Rich Text (RT) 
Diarization Evaluations [2]. In this work, NIST organized evaluations of with transcribed 
data from conferences and lectures, and documented significant advancements in the 
domain of speech processing such as Speech-To-Text (STT) conversion, Speech 
Activity Detection (SAD) and Speaker Diarization. Most importantly, NIST established 
the standards for the evaluation of speaker diarization by introducing the Diarization 
Error Rate (DER), a metric that measures the fraction of speaker time that is not 
correctly attributed to the correct speaker. Naturally, DER has become the most 
common measure of diarization in the literature. 

Furthermore, the necessity of commercial applications has led the development 
of on-line diarization systems as the ones presented in [3] and [4]. In [3], Hung and 
Friedland propose a Gaussian Mixture Model GMM-based, bimodal, multi-camera 
system with a single stationary microphone, applied on over 4.5 hours of non-scripted 
audio-visual meeting data. Initially, a GMM is trained on audio data, creating speaker 
models in an off-line speaker pool. During the on-line operation, each audio segment is 
matched with a speaker from the speaker model pool. Lastly, the multichannel visual 
stream is processed through a visual activity quantification system that detects the 
speaker’s presence with a GMM that models the distribution of chrominance coefficients 
in the YUV color-space and finally displays the potential speaker. On a similar note in 
[4], Noulas et al. integrated audio-visual features for on-line speaker diarization using a 
Dynamic Bayesian network (DBN). Their model describes the causal relationship 
between the system state and observations extracted from the data, but tests were 
limited only to two-person camera views. 

Another interesting approach was found in [5], where audio-visual synchrony was 
used to match speech with speaker. Initially, the authors of [5] applied a Hidden Markov 
Model (HMM) to achieve an agglomerative clustering of speakers. Next, for the visual 
features extraction of their system they used a combination of luminance variations of 
skin color, detected through the YUV histogram, and vertical pixel displacement, 
calculated with the Lucas-Kanade-Tomasi optical flow algorithm. Finally the audio-visual 
synchrony is detected and measured using two different methods: Mutual Information 
(MI) and Canonical Correlation Analysis (CCA). The later of is also employed in this 
Thesis.  

 

 

1.3 Thesis Contribution 

This Thesis investigates the idea of “audio-visual synchrony”, which considers 
the strength of relationship between audio signals and video image sequences. Much 
like in [5], in this Thesis, speaker diarization is treated as a synchronization problem. The 
premise behind this approach is that once the number of speakers and their positioning 
has been detected in the visual data, the task of diarization is to find the speaker whose 
motion has the highest correlation with the audio stream. In other words, the intensity of 
someone’s gestures, facial expressions, and lip motion should be consistent with the 
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energy of the audio signal. Exploiting this relationship can allow us to identify the 
speaker. 

  

 

1.4 Method Description 

The task of audio-visual speaker diarization described in this Thesis is 
approached as a speaker-to-speech correlation problem. This logic is applied to a 
manually created dataset based on the IBM studio recordings database of connected 
digits. Unfortunately, this database contains only data. Therefore, to overcome this 
issue, three dual speaker datasets were developed from the original database consisting 
of 602 videos each. During every video both speakers follow one after the other to utter 
digits. Additionally, over the duration of one’s speech, the other remains silent, and by 
the end of the video there is a five second segment of overlapping speech. The 
difference between each dataset is in the type of motion on the part of the silent 
speaker. Namely there are three types of motion: 

 

 Constant motion –where both speakers appear to be talking. 
 Silent motion –where the silent speaker moves but appears to be silent. 
 No motion –where the silent speaker remains motionless. 

  

The manual construction of these experimenting datasets allowed for the 
effortless establishment of the system’s ground truth and thus a confident evaluation of 
the diarization. As for the diarization operation, it undergoes three stages in each 
dataset:  

 

 audio feature extraction 
 visual feature extraction 
 audio-visual fusion and diarization 

The whole speaker diarization process is explained below and illustrated in 
Figure 1.  

For the audio feature extraction, the well established Mel-frequency cepstral 
coefficients (MFCCs) were used. In particular, during audio preprocessing, a 39–
dimensional acoustic feature was extracted, consisting of 12 MFCCs, the normalized 
log-energy, and their first and second derivatives (delta and delta-delta). 



4 | P a g e  

 

As far as the visual feature extraction is concerned, the area around the speaker's 

mouth was selected as a region of interest (ROI). In that direction two methods were 
implemented for capturing the ROI. The first is based on traditional Image Processing 
(IP), while the other involves Deep Learning (DL). 

As far as the IP method is concerned, a series of computer vision algorithms was 
implemented in order to detect the face area and track the lip movement. Firstly, the 
popular Adaboost algorithm with Haar Cascades [6] is applied to detect the face. Next, 
the HSV color space is used to develop a skin mask to be used for eliminating false 
faces detected by the Adaboost algorithm and for background subtraction, by 
establishing a skin color region and removing with the pixels outside that region. 
Secondly, that initial detection is used to track the face with Meanshift algorithm [7] by 
moving the ROIs bounding box, following the face's motion reflected in the histogram of 
the back-projected image, to the area with maximum pixel density. Furthermore, a Sobel 
filter is applied in the vertical axis to detect potential lip lines, and the lip motion is 
tracked by employing a simple frame difference method [8]. Lastly, all the 
aforementioned methods were combined through a weighted sum in an aggregate mask 
while median and dilation filters were applied to reduce the noise and amplify the mask.  

With regards to the second method, it was the product of the work of Alexandros 
Koumparoulis as a part of an audio-visual speech recognition system.  The process is 
described in detail in his Thesis [28]. His ROI detection mechanism involves the 
implementation and training of various convolutional neural networks (CNNs) based on 
the manually annotated facial features of the original dataset. 

In the final step of the visual feature extraction, in every video frame the broader 
mouth ROI is used as input for the two dimensional Discrete Cosine Transformation (2-D 
DCT). The first 30 DCT coefficients, selected in a zigzag fashion [9], are used as the 
visual feature vector. 

For the purpose of the audio-visual fusion, the DCT coefficients of the visual 
features are interpolated to the audio feature frame rate. Ultimately, canonical correlation 
analysis (CCA), a common approach to detect the underlying relationship between two 
different signals, is used to measure whose speaker’s visual features has the highest 

Fig. 1: The proposed audio-visual diarization system consists of an off-line and an on-line stage. Acoustic and 
visual feature extraction constitute the off-line stage, while the diarization process occurs on-line. 

http://83.212.101.34/Speaker-Diarization-Presentation/#4
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correlation with the audio features.  The concept of CCA implies that high audio-visual 
correlation translates to audio-visual synchrony, and thus facilitates speaker detection 
and diarization.  

 

 

1.5 Thesis Overview 

This Thesis is divided into 7 chapters, each dedicated to describing the different 
stages leading to audio-visual speaker diarization. After this first introductory chapter, a 
breakdown of the content of the rest of the Thesis is presented: 

 

Chapter 2:  this chapter contains a detailed description of the original IBM studio 
dataset, as well as the process of creating the three dual-speaker datasets from it. 
Additionally the logic behind the system’s ground truth is presented along with a 
description the voice activity detection system. 
 
Chapter 3:  here is attempted a more in-depth analysis of the feature extraction 
process. The chapter is divided between acoustic and the visual feature extraction, and 
the mathematic formulas of MFCC and DCT are explained in detail. In addition, an 
exhaustive overview of the ROI extraction process is presented along with figures 
relative to the different stages.   
 
Chapter 4:  a comprehensive and thorough explanation of the definition of CCA, 
along with its mathematic interpretation is offered in this chapter. Lastly, the reasoning 
behind using CCA in a speaker diarization system is revealed. 
 
Chapter 5:  this chapter introduces the two metrics used for the evaluation of the 
diarization system. The Diarization Error Rate and F-score are utilized to measure the 
performance of diarization on each of the datasets. 
 
Chapter 6:  the results of the speaker diarization experiments are presented in this 
chapter. The results are provided in tables and figures and explained with comments 
and examples. 
 
Chapter 7:  the final chapter contains a summary and discussion of the results of 
chapter 6, along with a meaningful discussion about future prospects and improvements 
of the speaker diarization pipeline. 
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CHAPTER 2: Database 

2.1 Database Description 

The experiments and the evaluation of the described speaker diarization process 
were conducted on the IBM audio-visual studio database of connected digits, which was 
also used in [10]. This database consists of a single speaker at a time, recorded in 
frontal head pose under a controlled environment with uniform background and lighting. 
In each video of the database the speaker pronounces short strings of connected digit 

from zero to nine. A total number of 50 unique speakers appear in the recordings 
creating a set of 6689 videos with a total duration of approximately 10 hours. 

As far as the technical characteristics of the database, are connected each video 
is MPEG2-encoded, at 30 frames per second and in 704x480 pixel resolution. Regarding  
the audio, it is recorded in a single audio channel with a 16 kHz sampling rate. 

 

2.2 Dataset Construction 

Unfortunately, the original database contained single speaker recordings only. 
Consequently, a database appropriate for speaker diarization needed to be created. 
Working towards that direction meant combining the audio-visual data from the original 
database, creating a multi-speaker database. 

The first step was to combine all the 6689 short, single speaker videos into 
longer, single speaker videos. Therefore, for every five short videos of every subject, 
one longer was generated, by concatenating multiple short ones, thus resulting in 1205 
new videos, which would be the bedrock of the new database. Naturally, the same 
process was used for the audio data as well.  

After establishing the foundations of the new database, the generated videos 
needed to be combined further in order to create the multi-speaker bimodal audio-visual 
data for the purpose of speaker diarization. With this intention, three unique dual-
speaker datasets were developed. The basis of these three datasets was formed by 
running a script that randomly combined two unique subjects thus creating 602 new 
dual-speaker, frontal face videos. Additionally, each video was divided into three parts: 

 

 

Fig. 2: Example video frames of four subjects of the original database 
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 A part where the left speaker is talking and the right remains silent for the 
duration of the left speaker’s speech. 

 A part where the right speaker is talking and the let remains silent for the duration 
of the right speaker’s speech. 

 A part where both speakers are talking, creating an overlapping speech segment 
of 5 seconds. 

Despite the fact that the new datasets share some common traits in terms of 
structure and content, they vary greatly in terms of speaker motion. Following is a 
presentation of the three datasets that were developed in order to test the limits of the 
diarization system: 

 

2.2.1. Single Speaker Motion Dataset (SSM): This is the most straightforward of the 
three datasets. In these videos only the speaker who is currently talking is allowed 
to be in motion, while the other one remains motionless, excluding the 5 seconds 
of overlapping speech segment where both subjects move and talk. This dataset is 
expected to yield the best results in terms of diarization since the speech is likely 
going to be correlated with the speaker in motion. Each video is divided in 3 
segments as described in Table 1. 

Currently 
Speaking 

Left Speaker Right Speaker Duration 

left speaker in motion motionless left speaker’s audio track 

right speaker motionless in motion right speaker’s audio track 

both in motion in motion 5 seconds 

Table 1: SSM dataset description 

 
2.2.2. Mutual Constant Motion Dataset (MCM): This dataset was developed with a 

little more novelty introducing motion to both subjects. In other words both 
speakers are in constant motion, regardless of who is actually talking, excluding 

Fig. 3: An example of a dual-speaker video. This video belongs to the SSM dataset. 
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again the 5 seconds of mutual speech and motion segment. This dataset is 
developed to test the extremes of the diarization system and naturally is expected 
to yield the worst results, since the diarization process could become problematic 
when both subjects are in constant motion. Each video is divided into 3 segments 
as described in Table 2. 

Currently 
Speaking 

Left Speaker Right Speaker Duration 

left speaker in motion in motion left speaker’s audio track

right speaker in motion in motion right speaker’s audio track

both in motion in motion 5 seconds 

Table 2: MCM dataset description 

2.2.3. Mutual Constant Motion with Silence Dataset (MCMS): This dataset was 
developed with a more nuanced approach, taking into consideration the silence of 
the no-talking speaker. The idea behind this was to attempt and capture the motion 
of each subject while not talking, with the purpose of simulating the motion of a 
silent person. In order to achieve this, a voice activity detection (VAD) system was 
developed and employed to capture the silent parts in each speaker's audio 
stream. The VAD system is a simple thresholding algorithm that parses the audio 
stream and detects sequential silent segments and it is further below. Afterwards, 
the timestamps of these silent segments were used to capture clips of the original 
video where the subject remained silent. Finally these clips were sequentially 
concatenated and projected iteratively for the duration of the other subject’s 
speech. This is the most interesting dataset and is expected to test the quality of 
the diarization system. Each video is divided in 3 segments as described in Table 
3. 

Currently 
Speaking 

Left Speaker Right Speaker Duration 

left speaker in motion in “silent motion” left speaker’s audio track

right speaker in “silent motion” in motion right speaker’s audio track

both in motion in motion 5 seconds 

Table 3: MCMS dataset description 
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2.3 Voice Activity Detection System 

Voice activity detection (VAD), is a very important component in any 
speech/audio processing system including speech coding, speech recognition, speech 
enhancement, and audio indexing. The required characteristics of an ideal VAD system 
are: accuracy, robustness, simplicity, and resistance to noise. In this particular 
diarization system the voice activity detector enjoyed a twofold application. Firstly, it was 
used in order to determine the ground truth of the diarization system, a subject 
discussed later on. Additionally, in similar manner, it was utilized in the development of 
the MCMS dataset as described above in section 2.2.3.   

The concept behind the development of the VAD system was to find a certain 
value in the energy of the audio signal that would function as a threshold and service in 
classifying the audio signal into speech and non-speech segments. Specifically, the VAD 
algorithm included two tasks: defining a silence threshold and detecting the silence. 

In this direction, the silence threshold is established by selecting a 500 ms audio 
sample located at the beginning of each recording. Since there is a lack of speech in the 
beginning of every recording, the threshold is defined by calculating the average energy 
of said sample. Afterwards, the 
audio signal gets segmented and 
parsed through a 250 ms window, 
and if the average energy of the 
window exceeds the threshold, it is 
designated as a potential silent 
segment. Finally, if three or more 
consecutive audio segments are 
found to contain low energy values, 
they are classified as silence. 
During the VAD system 
implementation two problems were 
encountered.  

The first and major problem 
was an increased noise spike 
observed at the beginning of each 
audio track, which had an effect in 
determining the VAD threshold 
value. That meant that there were 5 
such spikes in every audio track, 
Figure 4(a), since each track 
consists of 5 separate clips, 
containing speech from the same 
speaker. These effects of short time 
impulsive disturbances in the signal 
are called impulse noise or click 
effect and are usually attributed 
to electromagnetic interference, 
poorly maintained recording 
equipment, or digital manipulation. 
In order to overcome this obstacle a 

(a) 

(c) 

(d) 

(b) 

Fig. 4: Click Detection and Elimination. (a) Click 
effect observed in audio signal, the horizontal 
red line indicates the threshold; (b) enhanced 
view of click effect before elimination; (c) 
enhanced view of click effect after elimination; 
(d) audio signal after click elimination 

https://en.wikipedia.org/wiki/Electromagnetic_interference
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click detection and elimination (CDE) algorithm was developed. The CDE algorithm 
defines a threshold value that labels signal values above that threshold as impulse 
noise. After the click detection, a median filter is applied to eliminate the effect. With 
regards to the details of the CDE implementation, initially the half point of the maximum 
impulse peak is set as the threshold value. In addition, the audio is parsed through a 100 
ms window, and if the maximum signal value of the audio segment in the window 
exceeds the threshold value, the segment contains a potential click. If three or more 
consecutive audio segments are found to contain a potential click, then all those 

segments are 
labeled as an 

inconsistency.  
Finally in order to 
remove that 
inconsistency, a 
median filter of the 
windows before and 
after the designated 
click is calculated 
and applied over the 
conflicting area, 
thus removing the 
click.  The whole 
process is fast and 
efficient, and no 
preprocessing is 
required. 

The second 
problem in 
developing the VAD 
system had to do 
with calculating the 
silence threshold 
value. Specifically, 
each dual-speaker 
audio track consists 
of two different 
subjects being 
recorded at different 
conditions, thus 
creating varying 
noise effects 
between each 

speakers’ speech, hindering establishing an efficient silence threshold value. As a result, 
in order to overcome this obstacle, the VAD algorithm had to be applied in both audio 
segments separately and combine the results at the end. The process is illustrated in 
Figure 5. The horizontal green lines in the figures indicate the potential silence threshold, 
and the red color indicates silent audio segments.  Initially in Figure 5(b) the algorithm 
sets a silence threshold that depends on the speech frequency of the first part of the 
audio signal (speaker 1). That threshold is too high resulting in the second part of the 

(a) 

(c) (d) 

(e) (f) 

(g) 

Fig. 5: Problematic initial silence threshold: (a) audio signal with 
inconsistent frequency levels between the combined audio tracks: (b) 
failed VAD attempt to detect silence; (c) silence detection only on the 
first part; (d) the effect of processing the first part; (e) silence detection 
only on the second part; (f) the effect of processing the second part; 
(g) combined result of VAD 

 (b) 
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signal (speaker 2) being identified as silence. In order to repair this behavior the VAD 
algorithm processes the two parts separately by setting a different threshold for each 
part, as it is observed in figures 5(c) and 5(e). Finally, the detected silence intervals from 
both parts are merged and projected on the original signal. The outcome can be seen in 
Figure 5(g). 

The proposed VAD, as stated above, is applied in both the preprocessing stage 
(off-line) by creating the MCMS dataset and in the on-line stage by defining the ground 
truth. The advantages of the system are its simplicity, its efficiency   and the fact that it 
offers real-time audio processing. 

 

 

2.4 System’s Ground Truth  

This section is important in order to understand the evaluation process of the 
diarization system. During the evaluation, the classification produced by the diarization 
system is compared with the system’s ground truth and updates the system’s metrics.  

For the purpose of establishing the ground truth, the speech duration of each 
subject is necessary along with the duration of the overlapping speech part. This can be 
calculated by measuring the duration of each single speaker video from the original 
database. During the diarization process, the total duration of the video is divided into 
segments, but only the segments containing speech are taken into consideration. In 
other words, during the audio-visual fusion the audio is being processed by the VAD 
system in order to recognize the silent segments and ignore them. To summarize, the 
system’s ground truth consists of the speech-only segments of each speaker along with 
the overlapping speech part. 
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CHAPTER 3: Feature Extraction 

Feature extraction is a crucial preprocessing step in pattern recognition, audio-
visual processing, and machine learning problems. A feature can be described as “a 
prominent or distinctive part, an attribute or aspect of a greater body of information”. In 
essence, feature extraction is a medium for evoking meaningful, informative and non-
redundant values (features) from an initial set of data that will later facilitate the learning 
mechanism.   

When performing analysis of complex data, such as audio or video, one of the 
major problems derives from the number of variables involved. Analysis with a large set 
of variables generally requires a large amount of memory and computation power; also it 
may cause a classification algorithm to overfit to training samples and generalize poorly 
to new samples. Thus, feature extraction involves reducing the amount of resources 
required to describe a large set of data. It is a general term for methods of constructing 
combinations of the variables to get around these problems, while still describing the 
data with sufficient accuracy. In this regard, feature extraction can be described as a 
case of dimensionality reduction. 

 

 

3.1 Audio Feature Extraction 

Speech is based on a sequence of discrete sound segments that are linked in 
time, these segments are called phonemes. Phonemes are assumed to have unique 
articulatory and acoustic characteristics. In a speech detection system it is paramount to 
engulf these characteristics as a part of the audio feature extraction process. Therefore, 
Mel frequency cepstral coefficients (MFCCs) are employed in this particular diarization 
system, a feature widely utilized in many automatic speech and speaker recognition 
systems [13]. In order to illustrate the relationship between phonemes and Mel-
frequency cepstrum, a brief introduction to phonology and signal processing is 
necessary. 

While the human vocal mechanism can produce an almost infinite number of 
articulatory gestures (mouth movements), the number of phonemes produced is finite. 
English for instance, as spoken in the United States, contains 16 vowel and 24 
consonant phonemes [11], while the Greek language consists of 25 phonemes in total 
[12]. Each phoneme has distinguishable acoustic characteristics, and in combination 
with other phonemes, forms larger units such as syllables and words. Knowledge about 
the acoustic differences among these sound units is essential to distinguish one word 
from another in a speech recognition system. When speech sounds are connected to 
form larger linguistic units, the acoustic characteristics of a given phoneme will change in 
correlation with the shape of its immediate phonetic environment, because of the 
interaction among various anatomical structures (such as the tongue, lips, and vocal 
chords). The shape of the vocal tract determines what sound is uttered and manifests 
itself in the envelope of the short time power spectrum [11].  

https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Overfitting
http://www.thesaurus.com/browse/in%20this%20regard
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MFCCs are dominant features for speech 
recognition since the Mel-frequency cepstrum (MFC) is 
the representation of the short term power spectrum of 
a sound in the Mel-scale. The Mel-scale relates the 
perceived frequency, or pitch, of a pure tone to its 
actual measured frequency. Humans are much better 
at discerning small changes in pitch at low frequencies 
than they are at high frequencies. Incorporating this 
scale makes the audio features match more closely 
what humans hear. The formula for converting from 
frequency to Mel scale is [13]: ܯሺ݂ሻ = ͳͳʹͷ ݈݊ሺͳ + ݂͹ͲͲሻ   ሺ͵.ͳሻ 
To transition from Mels to frequency is given by: ܯ−ଵ ሺ݉ሻ = ͹ͲͲ ݁݌ݔሺ ݉ͳͳʹͷሻ − ͳ   ሺ͵.ʹሻ 
where ݂ is the frequency in Hertz (Hz) and ݉ the 
frequency in Mels. The calculation of the MFCC 
features is a multistep process that is described below: 
 

a) Framing: This is a signal quantization step. 
The speech signal is non-stationery but can 
exhibit quasi-stationary behavior in shorter 
intervals. This is why the signal is 
segmented in frames. Each frame is 25ms 
with a 10ms step. If the frame is much 
shorter, the included samples are not 
enough to get a reliable spectral estimate, if 
it is longer the signal changes too much 
throughout the frame. In a 16 kHz signal 
with a 25ms frame each frame contains Ͳ.Ͳʹͷ ∗ ͳ͸ͲͲͲ = ͶͲͲ ݏ𝑎݉ݏ݈݁݌ , while 
each step is 160 samples. 

 

b) Windowing: This step has to do with tapering the previous sampling process 
through a window function. For that purpose, the Hamming window is used. 
The effect of a Hamming window on a signal can be seen in Figure 6, while 
its effect on the whole audio signal is presented in Figure 7(b). The formula of 
the Hamming window is: 

[݊]ݓ  = {Ͳ.ͷͶ − Ͳ.Ͷ͸ܿݏ݋ሺʹܮ݊ߨ ሻ    Ͳ ≤ ݊ ≤ ܮ − ͳ   ሺ͵.͵ሻͲ     ݐ݋ℎ݁ݓݎ𝑖݁ݏ  

   
c) Discrete Fourier Transform (DFT): This step is used to calculate the power 

spectrum density (PSD) of each frame by using DFT on the windowed signal. 

Direct computation of the DFT takes ܱሺܰଶሻ complex multiplication so other 
algorithms are used, known as the Fast Fourier Transforms (FFT), that take ܱሺ݈ܰ݃݋ଶ ܰሻ  complex multiplications and calculate DFT indirectly. This is 
motivated by the human cochlea (an organ in the ear) which vibrates at 

Fig. 6: Example of Hamming 
windowing: (a) initial signal 
sample; (b) Hamming window; 
(c) Hamming window output 

(b) 

(c) 

(a) 
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different locations depending on the frequency 
of the incoming sounds. Each location of the 
cochlea that vibrates, fires different nerves 
informing the brain that certain frequencies are 
present. A 512 point FFT is performed in the 
system but only the first 257 coefficients are 
kept. The process up until this step is 
displayed on figure 7. 

 

d) Mel filtering: This step applies the Mel 
filterbank to the power spectra. In signal 
processing, a filterbank is an array of band-
pass filters that separates the input signal into 
multiple components, each one carrying a 
single frequency sub-band of the original 
signal. In this case a 26-filter Mel filterbank is 
used (Figure 8(a)); the first filter is very narrow 
and gives an indication of how much energy 
exists near 0 Hz. As the frequencies get higher 
the filters get wider as they become less 
susceptible to variations. The effect of the 
different filters is observed in Figures 8.(c) and 
(d). 

 

e) Logarithm of all filterbank energies: This is 
a compression operation that makes the 
features match more closely to what humans 
actually hear. The logarithm allows the use of 
cepstral mean subtraction, which is a channel 
normalization technique.  

 

f) Discrete Cosine Transform (DCT): A discrete 
cosine transform (DCT), expresses a finite 
sequence of data points in terms of a sum of 
cosine functions oscillating at different 
frequencies. In essence DCT is a 
dimensionality reduction and compression 
process because only the first 12 coefficients 
are kept since they are of the most important. 
These are the MFC coefficients. 

 

g) Deltas calculation: Deltas and delta-deltas are known as velocity and 
acceleration coefficients. MFCCs contain the power spectrum of a single 
frame but significant information can also be found in the trajectories of the 
MFCCs over time. This is why the first and second MFCC derivatives are also 
included in the audio feature vector. The formula for the calculation of deltas 
is: 

Fig. 7: Calculating the PSD 
of a single speaker audio 
track; (a) original signal; (b) 
the signal through a 25ms 
Hamming window with 10ms 
window step; (c) FFT of 
windowed signal; (d) PSD of 
signal 

(b) 

(c) 

(a) 

(d) 
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𝒕ࢊ   = ∑ 𝒏ሺࢉሺ𝒕−𝒏ሻ  − 𝒕+𝒏 ሻ૛𝒏=૚ࢉ ૛∑ 𝒏૛  ૛𝒏=૚    ሺ͵.͸ሻ 
 

where ݀௧ is the first derivative coefficient of the 12 ܿ௧ coefficients produced in 
stage (f). The second derivative coefficients are calculated by the same 

formula by replacing ܿ௧ with the first derivative coefficients. 

To summarize, the 12 first MFCCs along with the energy and their first and 
second derivatives are selected. In total, 39 are the selected features for the acoustic 
feature extraction. 

 

 Energy index 0 Indices 1-12 
MFCC 1 12 

Delta 1 12 

Delta-Deltas 1 12 

39 acoustic 
features 

3 36 

Table 4: Acoustic feature vector details 

 

3.2 Visual Feature Extraction 

A crucial step towards speaker diarization is the detection of the subjects in a 
visual stream. The face of a subject contains the necessary information to determine 
whether the subject is talking. For this reason, the face of each subject in a video is the 
region of interest (ROI) for the system’s visual feature extraction.  

  Much like [3] and [4], this diarization system has a preprocessing stage (off-line 
training), in which the ROI extraction occurs. In that direction, two different methods 
were used to test the robustness of the diarization system. The first applies the popular 
Adaboost and Meanshift algorithms along with a combination of image processing 
techniques for lip tracking. The second method involves deep learning and the usage of 
convolutional neural networks (CNNs). This method was developed and implemented by 
Alexandros Koumparoulis [28] as a part of his diploma Thesis.  

Both ROI extraction methods are examined, tested, and compared in the 
diarization system, and the results are presented in chapter 6. 

Fig. 8: Demonstration of  filterbanks on PSD: (a) The full 26 filterbanks; (b) power spectrum on windowed 
frame; (c) power spectrum using filter 2; (d) power spectrum using filter 10 

(a) (b) (c) (d) 
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3.2.1 Image Processing Method 

In machine learning, computer vision is the science field that tries to imitate the 
part of human cognition that understands and interprets visual stimuli and reproduce it to 
a machine or computer in order to gain high-level understanding from digital 
images or videos. In essence, it involves the development of a theoretical and 
algorithmic basis to achieve automatic visual understanding from a single image or a 
sequence of images.  

A popular   computer vision framework is OpenCV [18], a programming library 
developed for functions mainly aimed at real-time computer vision. OpenCV was 
originally developed by Intel's research center in Nizhny Novgorod (Russia), it was later 
supported by Willow Garage, and is now maintained by Itseez. The library is cross-
platform and free for use. The library version for the Python programming language was 
used for implementing the ROI extraction along with a collection of Python modules such 
as numpy, sklearn, scipy, and matplotlib.  

The ROI extraction task is divided into three parts. The detection of the subject’s 
face, the detection of the subject’s facial features of interest (i.e. mouth, eyes, etc.),  and 
the tracking of these features. The process was executed on the individual single 
speaker data, and the results were later integrated to the three multi-speaker datasets. 
The different methods involved in the ROI extraction are illustrated next. 

a) Adaboost Algorithm: Boosting is an approach to machine learning based on 
the idea of creating a highly accurate prediction rule by combining many 
relatively weak and inaccurate rules. The output of the other learning rules ('weak 
learners') is combined into a weighted sum that represents the final output of the 
boosted classifier. The AdaBoost (Adaptive Boost) algorithm of Freund and 
Schapire [14] was the first practical boosting algorithm, and remains one of the 
most widely used and studied, with applications 
in numerous fields.  
One major application of Adaboost comes from 
the work of Viola and Jones [6] in the field of 
visual object detection using a Haar-like feature 
classifier. Haar-like features are conceptually 
based on the Haar wavelets, a step function 

taking values ͳ and −ͳ, on [Ͳ, ଵଶ ሻ and [ଵଶ , ͳ ሻ, 
respectively. The graph of the Haar wavelet is 
given in Figure 9. It is known that any continuous 
function can be approximated uniformly by Haar 
functions [15]. In the same sense any visual information can be described by 
Haar-like features.  Instead of working with pixel intensities (RGB pixel values), 
which is computationally heavy, Viola and Jones proposed working at specific 
locations of an image through a detection window. By dividing the window in 
rectangular adjacent regions they sum up the pixel intensities in each region and 
calculate the difference of these sums. These differences are used to broadly 
classify image subregions. Two Haar classification examples can be seen in 
Figure 10. A single Haar-like feature, classifying a small region of an image, is a 
weak classifier and cannot by itself recognize an object. That is where the 

Fig. 9: The Haar wavelet [16] 

https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Video
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Intel_Corporation
https://en.wikipedia.org/wiki/Nizhny_Novgorod
https://en.wikipedia.org/wiki/Willow_Garage
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Cross-platform
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AdaBoost algorithm comes   into play by 
combining several Haar-like features into 
an organized body of classifiers called 
Haar cascade.  
The OpenCV library proposes a nuance in 
its implementation of the Viola-Jones 
algorithm by adding a feature that allows 
object detection through a multi-scale 
image pyramid, such that the face 
detection can be scale-invariant. Finally, in 
the speaker diarization system the Viola 
and Jones method is used in two 
occasions; for an initial detection of the 
subject’s face through a frontal face pre-
trained Haar cascade, and for a detection 
of the subject’s mouth in the region of 
interest of the lower half of the subject’s 
face. 

b) Mouth Detection with Computer Vision: In the case of failing mouth detection
by Adaboost, a series of image processing steps occurs on the lower part of the
detected face.
Initially a vertical Sobel edge detection filter is applied on the lower part of the
face. Sobel filter or Sobel operator is an image processing technique that
convolves two 3x3 kernels with the original image. Of the two kernels one is
responsible for horizontal edge detection and the other is for vertical. Supposing𝐴 is the array representing the original image the Sobel operation is described by
the following formula:

௫ܩ = [−ͳ Ͳ +ͳ−ʹ Ͳ +ʹ−ͳ Ͳ +ͳ] ∗ 𝐴      𝑎݊݀ 
௬ܩ = [+ͳ +ʹ +ͳͲ Ͳ Ͳ−ͳ −ʹ −ͳ] ∗ 𝐴     ሺ͵.͹ሻ

The idea behind using the 
horizontal Sobel filter is to attempt 
a detection of the lips outline and 
create a mask around it. A 
hindering factor to that process can 
be facial hair presence. The effect 
of the horizontal Sobel filter is seen 
on Figure 11(c).  

c) Skin Detection: Next, a skin
detection algorithm is applied on
the image of the lower half of the

Fig.10: Haar-like feature 
classification: (a) Haar feature that 
looks similar to the eye region, which 
is darker than the upper cheeks, is 
applied onto a face; (b)   Haar feature 
that looks similar to the bridge of the 
nose is applied onto the face [16]. 

(a) 

(b) 

Fig. 11: Effects of the Sobel filter: (a) original 
image; (b) lower half of detected face; (c) 
vertical Sobel edge detector. 

(a) (b) 

(c) 
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detected face, in order to amplify 
the confidence of the lip 
detection. This technique is 
based on the lip detection 
algorithm described on [17].  
Initially, histogram equalization is 
applied on the lower part of the 
face. Histogram equalization is a 
technique used to enhance the 
contrast in an image by 
redistributing the image 
intensities across its histogram. 
The distribution of the histogram 
is divided in a range of values 
called bins, the aim is to 
redistribute those bins in a 
uniform distribution; the effect 
can be seen on Figure 13.  
Afterwards, the selected image region is transformed to the HSV color space 
from the original RGB. The HSV color space modifies the image pixel from the 
red (R), green (G) and blue (B) channels to the hue (H), saturation (S) and value 
(lightness) (V) channels. The idea behind this, as mentioned in [19], is that in the 
RGB color space the human skin color information is divided between the red 
and blue channels in a color scale from 
yellow to brown. Whereas in the HSV color 
space, skin color information, regardless of 
the other channels, resides solely in a low 
range of hue channel values. These low hue 
values are thresholded and classified into 
binary values (0, 255), thus creating a skin 
mask, that is later applied on the original 
image. The procedure can be seen in 
Figure 12.  

d) Frame Difference: The final visual
manipulation on the lower part of the face is
a frame difference technique used to detect
pixel dispositions from frame to frame as
described on [8]. The technique is
straightforward. A gray-scale filter is applied
to both the previous and the next frame and
their absolute difference is calculated. Next,
the subtraction result is thresholded in order
to create a mask, and finally a median filter
and a dilation effect is added to remove
noise and amplify the result. The final frame difference mask can be seen in
Figure 14.

Fig. 13: Histogram equalization [18]: 
(a) original gray-scale image with low 
contrast and its narrow histogram; 
(b) image after equalizing the 
distribution of its histogram. 

(a) 

(b)

Fig. 12: Skin detection: (a) original lower half 
face; (b) HSV color space transition; (c) skin color 
mask; (d) mask application. 

(a) (b) 

(c) (d) 
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At the final stage, all the aforementioned techniques are fused together in the 
aggregated weighted mask displayed on Figure 15(b). Afterwards, the aggregated mask 
gets thresholded (Figure 
15(c)) to binary values (0, 
255). Next a connected 
component algorithm is 
applied that allows blob 
detection (Figure 15(d)). It 
implements 8-point pixel 
connectivity [21], detects the 
different white blobs in the 
mask and calculates their 
centroids. The Manhattan 
distance between each 
centroid defines their affinity 
and whether the blobs should 
be connected. Finally the 
widest blob with the greater 
area is identified as the mouth and a rectangle is drawn around the general region of 
interest. The result of the detection can be seen on Figure 15(e).  

Having described the region of interest detection process, the subject has to shift 
to its tracking. Tracking the region of interest is a result of Meanshift Algorithm, a 
powerful and versatile non-parametric iterative algorithm that can be used in many 

applications like finding modes in data, clustering, color segmentation and image 
processing. Meanshift was introduced in 1975 by Fukunaga and Hostetler [22] as a 
clustering technique and has been extended to be applicable in other fields like 
Computer Vision, an extension that allowed its use in this speaker diarization system.  

From the clustering point of view, meanshift builds upon the concept of kernel 
density estimation (KDE). KDE is a method to estimate the probability density function of 
a set of data. In order to achieve that meanshift uses a kernel on a set of points, as a 
weighted function and a window for the calculations. The sum of all the kernels 
constitutes the probability density function. A Gaussian kernel is most commonly used. 

Meanshift works by placing a circular window ܥ on a set of data defined by a kernel; it

(a) 

(c) (d) (e)

(b)

Fig. 14: Frame difference: (a) current frame in gray scale; 
(b) old frame in gray scale; (c) frame subtraction; (d) frame 
mask after thresholding and dilation; (e) mask application. 

(a) (b) 

(c) (d) 

(e) 

Fig. 15: Mouth detection: (a) original half face frame; (b) aggregated mask; (c) frame mask after 
thresholding; (d) mask after blob connection; (e) final mouth ROI detection 
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exploits KDE by finding local maxima in the 
density function and applying a hill climbing 
algorithm iteratively on the window, thus 
shifting it towards the peak. The local 
maximum is considered as the area with the 
highest density. The hill climbing process is 
based on iteratively finding the mean (center 
of the circle) and centroid inside the window 
and shifting the center towards that centroid 
until convergence to the local peak. An 
iteration of the algorithm can be seen in 
Figure 16; ܥͳ is the initial position of the 

circular window and ܥͳ_݋ its center. If the
window’s centroid -point ܥͳ_ݎ - is different
from the center, the window and its center moves to that centroid and so forth until the 
window engulfs the region with the highest density. Finally, meanshift is cluster-agnostic, 
in the sense that it does not require any assumptions about the number and size of 
clusters and depends only on the bandwidth parameter of the kernel which in the case of 
a Gaussian kernel is the standard deviation.  

Apart from clustering, Meanshift can showcase its robustness in the realm of 
image processing and especially visual tracking objects in a video. The intuition behind 
the tracking is the same as in clustering. That is to move the region of interest (window) 
towards the peak of the probability density function. In a more detailed approach, 
Meanshift commences by selecting a ROI in an initial image in a visual sequence. In the 
next image the algorithm will try to construct a confidence map usually based on the 
color histogram of the initial image. That 
confidence map is in essence the 
probability density function of the color 
of the ROI. Afterwards, meanshift will try 
to move the ROI towards the area with 
the highest density; that is the area 
whose histogram matches the ROI 
histogram best.  

In the implementation of the 
speaker diarization system, meanshift 
algorithm is used to track the subject’s 
face ROI. The initial ROI detection is 
performed by the Viola and Jones Haar 
cascades method. The essential 
property that is attempted to get tracked 
is the subject’s skin color. In order to 
achieve that, the ROI of the initial image 
is converted into the HSV color space 
which, as mentioned above, is capable 
of accommodating the skin color 
information in its hue channel. 
Afterwards, the histogram of the HSV 
ROI is extracted and normalized and a 

Fig. 17: Meanshift tracking: (a)  initial frame; (b) 
HSV color of frame; (c) face (ROI); (d) HSV color 
of ROI; (e) skin color mask; (f) color distribution 
before and after skin color mask; (g) the product 
of backprojection.  

(a) (b)

(c) (d) (e)

(f) (g) 

Fig. 16: Meanshift algorithm [23] 
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skin mask is produced and applied on the HSV ROI. Subsequently, a process called 
histogram backprojection [24] is executed. Backprojection takes the HSV color space of 
the next frame and calculates the probability of whether a pixel’s intensity value in the
next frame belongs to the ROI histogram of the previous frame; thus creating a density 
map that represents the possibility of skin or skin-like features. Finally, the meanshift 
algorithm is applied in order to shift the ROI towards the area with the highest density of 
skin-like pixels. The process is displayed on Figure 17. The Figure 17(g) presents the 
product of backprojection, a skin or skin-like color density map on the next frame. The 
lighter colors in the image represent the highest color intensity which translates to 
greater the skin color density. When the subject moves, this movement is depicted on 
the backprojection map, and the meanshift algorithm will attempt to track that movement 
by shifting the ROI towards the new area with the greater density. 

3.2.2 Deep Learning Method 

Machine learning is a type of artificial intelligence (AI) that facilitates a computer’s 
ability to learn and essentially teach itself to evolve as it becomes exposed to new and 
ever-changing data. Deep learning (DL) is one paradigm of performing machine 
learning, and the technology has become a hot topic due to the unparalleled results it 
has yielded in applications such as computer vision (object/face recognition), speech 
recognition, natural language understanding, and cyber threat detection. In addition, 
most of the top companies in the computer industry, including Google, Facebook, Baidu, 
and Microsoft have already developed commercial applications based on this 
technology, thus setting a trend for more to follow. 

The method mentioned here exploits the great capabilities of DL in face 
recognition, and is based on convolutional neural networks (CCNs) an increasingly 
popular subclass of neural networks. The detection network presented in [28] was 
trained according to the widely held Oxford Visual Geometry Group (VGG) model. For 
more information on the implementation method and the VGG jargon, the reader is 
encouraged to study the original publication. 

3.2.3 Feature Selection 

The selection of the visual features is performed with the Discrete Cosine 
Transform (DCT), which as a mean of feature extraction is the most commonly used 
method in the examined bibliography [9, 25, 26, 27]. Apart from the realm of feature 
extraction for machine learning, DCT finds applications in a variety of technologies in the 
broader field of cognitive computing that encompasses artificial intelligence, signal and 
image processing. Amongst its numerous applications, the most popular are in lossy 
audio and image compression such as MP3 and JPEG. The use of cosine rather 
than sine functions is critical for compression, since it turns out that fewer cosine 
functions are needed to approximate a typical signal, whereas for differential equations 
the cosines express a particular choice of boundary conditions.  

In an attempt to dive into the mechanics of DCT, it can be described as a 
Fourier-related transform similar to DFT and the Fourier series, with the difference that it 
only uses real numbers. The main reason for the widespread use of DCT as a feature 
extraction method is the high compaction of the energy of the input signal onto a few 

https://en.wikipedia.org/wiki/Cosine
https://en.wikipedia.org/wiki/Sine
https://en.wikipedia.org/wiki/Signal_(electrical_engineering)
https://en.wikipedia.org/wiki/Boundary_condition
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DCT coefficients and the availability of fast implementations of 
the transform, similar to the Fast Fourier Transform (FFT).  

 The discrete cosine transform expresses a finite 
sequence of data in terms of a sum of cosine functions 
oscillating at different frequencies. There are 8 different types 
of DCT (DCT I -VIII), and by far the most commonly used in 
visual feature extraction is the 2D DCT-II. Assuming a ܷܸݔ
matrix of pixel intensities in an image the mathematic formula 
for 2D DCT is the following [9]: 

ܿ௠,௡ = ௠ܹ ௡ܹ  ∑∑݌௨,௩ ݏ݋ܿ  ݑʹሺߨ݉) + ͳሻʹܷ )௏−ଵ
௩=଴

௎−ଵ
௨=଴ ݏ݋ܿ ሺʹ𝜈ߨ݊) + ͳሻʹܸ )  ሺ͵.ͺሻ

Ͳ ≤ ݉ ≤ ܷ − ͳ, Ͳ ≤ ݊ ≤ ܸ − ͳ
= ௡ܹ  ݁ݎℎ݁ݓ { 

 √ͳ⁄ܸ√ʹ⁄ܸ  𝑖݂ ݊ = Ͳݐ݋ℎ݁ݓݎ𝑖݁ݏ  ሺ͵.ͻሻ
𝑎݊݀  ௠ܹ = { 

 √ͳ⁄ܷ√ʹ⁄ܷ  𝑖݂ ݊ = Ͳݐ݋ℎ݁ݓݎ𝑖݁ݏ
In the later formula, ݌௨,௩ refers to the intensity of the pixel in the ݑ௧ℎ row and  ݒ௧ℎ

column of the matrix ܲ that represents the ROI of the subject’s mouth. The DCT output is
a 2-dimensional coefficient matrix with 2 important properties: Firstly, it is revealed that 
the most visually significant information is concentrated in the upper left corner of the 
matrix decreasing in a zigzag manner [25] (Figure 18). This fact means that the less 
significant information, residing in the lower right corner of the matrix, can be ignored, 
resulting in information compression, with the tradeoff of some loss in quality. This 
technique is used for audio and image compression in MP3 and JPEG. The process can 
be seen in Figure 19(a). Secondly, in [27] it is proposed that lateral image symmetry can 
be achieved by discarding the odd frequency components of the resulting matrix (Figure 
19(b)). These properties brand DCT method of feature selecting in essence a 
dimensionality reduction algorithm. 

Fig. 18: Zigzag selection 
of DCT coefficients in a 
5x5 image block [9]. 
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After the ROI’s DCT according to [26], there are 3 different strategies of selecting
the type of features: 

 Energy features: the L features with the highest energy
 Variance features: the L features with the highest variance
 Relative variance features: the L features with the highest variance after

normalization to their mean value.

For this particular diarization system, the energy features are selected. Initially the 
detected mouth is scaled to a 64x64 rectangle and is used as input to the DCT function 
of OpenCV. Finally the energies of the first 30 coefficients of the resulting matrix are 
calculated and selected as the visual feature vector in every video frame. 

3.3 Visual Feature Upsampling 

Having concluded the process of feature selection, the next stage in the speaker 
diarization system is the visual feature upsampling to match the acoustic sampling rate. 
This is achieved through a simple linear interpolation of the visual to the audio features. 
The acoustic features are extracted with a 10ms sample rate while the video’s frame rate 
is 30 fps.  For the interpolation, the visual features have to be fitted to acoustic sample 
rate at 100 fps. 

Fig. 19: Zigzag scanning of the DCT matrix of a 64x64 image and the resulting visual information 
residing in the most significant coefficients. From left to right: (a) 10, 50, 500 coefficients and the whole 
DCT matrix (4096 coefficients ); (b) Lateral symmetry example, the odd components are discarded 
resulting in a symmetric mouth. 

(a) (b) 
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CHAPTER 4: Canonical Correlation Analysis 

4.1 Audio-visual Synchrony and Correlation 

The next stage in the speaker diarization system is the actual diarization 
mechanism itself. This mechanism is the heart of the diarization system and is based on 
finding the correlation between the extracted features. In particular, the process of 
canonical correlation analysis (CCA) is used 
to determine the degree of correlation 
between the acoustic and visual features. 
Canonical correlation analysis determines a 
set of canonical coefficients, orthogonal linear 
combinations of the variables within each set 
that best explain the variability both within and 
between sets. CCA is a common approach to 
detect the correlation between two different 
signals [5, 29, 30, 31, 34]. As proposed 
in [5] and [30], CCA can be employed by a 
speaker diarization system in order to detect 
the audio-visual synchronization. The general 
idea behind the utilization of CCA is that, if 
measurements in two different sensory 
modalities are correlated, then they are likely 
to be generated by a single underlying 
common cause. For example, a high 
correlation can emerge between the 
movement of the pixels around the mouth ROI 
and the acoustic energy during a speaking 
segment caused by the speaker talking. 

Hershey et. al. [32] pioneered the use 
of audio-visual synchrony for speech detection 
and sound localization. Their work was 
inspired by the ventriloquism effect, the 
intuitive observation that psychophysical and 
physiological evidence suggest that audio-
visual contingencies play an important role in 
the localization of sound sources. The 
ventriloquism effect suggests that there is important information about sound location 
encoded in the synchrony between the audio and video signals. In other words, sounds 
seem to emanate from visual stimuli that are synchronized with the sound. Ultimately 
synchrony is an effect of the causal relationship between visual and acoustic events. 

An example of audio-visual synchrony using CCA can be seen in Figure 20. This 
test was conducted on the mutual constant motion (MCM) dataset, where the audio-
visual features extracted from a 2 seconds segment were selected. Afterwards, The 
audio-visual correlation between the audio MFCC and the mouth ROI DCTs of the two 
subjects is examined by applying CCA. The speech segment belongs to ‘Subject1’ so its 

Fig. 20: Example of audio-visual 
synchrony and correlation: (a) audio-
visual correlation between source and 
audio; (b) uncorrelated audio and 
source 

(a) 

(b)

http://83.212.101.34/Speaker-Diarization-Presentation/#6
http://83.212.101.34/Speaker-Diarization-Presentation/#7
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acoustic features (MFCCs) are expected to correlate better with the visual feature 
extraction (DCT) from ‘Subject1’. This expectation is realized in the figure, where
‘Subject1’, as the original acoustic signal source, correlates much better with the audio
than ‘Subject2’. In this example the Pearson coefficient was used as a measure of
correlation and it indicates that ‘Subject1’ scored 0.81, while ‘Subject2’ scored -0.13 in a
scale from 1 to -1.  This example is a testimony to how well audio correlates with visual 
stimuli.  

Apart from canonical correlation analysis, other measures of detecting audio-
visual synchrony are mutual information (MI) [5, 32, 34], multiple linear regression [25, 
29] and co-inertia analysis (CoIA) [33, 34]. Irrelevant of the measure, the consensus is
that speech is intrinsically bimodal in the sense both signals contain information the 
dynamics of the articulators  

4.2 CCA Under the Hood 

In statistics, canonical correlation analysis (CCA) is a way of making sense 
of cross-covariance matrices of two vectors. CCA offers a measurement of how much 
and in what direction two given multidimensional variables are correlated. The formula of 

CCA is provided in [31]. Given two column vectors ܺ = ሺݔଵ ,… , ܻ ௡ሻ ் andݔ == ሺݕଵ ,… , ௑௒ܥ ௠ሻ ் of random variables, their cross-covariance is defined asݕ = ,ሺܺݒ݋ܿ ܻሻ,
which is a ݊݉ݔ matrix whose entries are the covariances ܿݒ݋ሺݔ௜ , ݕ௝ ሻ.

CCA aims to calculate the projection vectors ݑ௫ and ݑ௬, with dimensions ݊ and ݉
respectively,  so that their linear combinations with of ܺ and ܻ, ܺ′ = ′ܻ ௫்ܺ  andݑ = ௬்ܻݑ
maximize the correlation ߩ௑௒ as defined:ߩ௑௒ = ௬ݑ௒௒ܥ௬்ݑ√  ௫ݑ௑௑ܥ௫்ݑ√௬ݑ௑௒ܥ௫்ݑ  ሺͶ.ͳሻ

These ܺ′ and ܻ′ linear combinations are called first pair of canonical variables. In
order to find multiple pairs of canonical variables the process must be repeated with the 
constraint that they are to be uncorrelated with the first pair of canonical variables. The 
maximum number of canonical variables is ݉𝑖݊{݉, ݊}. The correlation between each pair
of canonical correlations creates the canonical component vector or correlation 
coefficients. 

As a synchrony measure CCA involves computing and maximizing vectors ݑ௫
and ݑ௬  that solve Equation Ͷ.ͳ and then computing time-windowed estimates of the

correlation of the auditory and visual features projected on these vectors at each point in 
time. The final judgment to the quality of the correlation is passed according to threshold 
values of an overall measure based on the correlation coefficients. 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Cross-covariance_matrix
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4.3 CCA in the proposed Speaker Diarization System 

In the proposed diarization system, CCA is used to evaluate the correlation 
between the audio and the visual 
features in each speaker’s speech. After 
the audio and visual features are 
interpolated, the audio-visual sequence 
is parsed by a window, thus dividing the 
duration of the sequence in segments. 
As mentioned earlier (section 2.3), only 
the segments containing speech are 
taken into account. The silent segments 
are detected and discarded through the 
VAD system. 

Assuming now that the audio and video are 
synchronized, the main intuition behind the implementation is that each segment 
consists of time series of acoustic and visual feature vectors, ܺ𝑎 : ሺݔଵ𝑎,  … , ௡𝑎ݔ   ሻ andܺ௩ : ሺݔଵ௩ ,  … , ௡௩ݔ   ሻ with dimensions ݊ ݔ ͵ͻ  and ݊ ݔ ͵Ͳ respectively. CCA is employed to
calculate the first 10 correlation coefficients of the audio and visual features between 
both subjects by maximizing the correlation between the linear combinations of the 
feature vectors and their projections.  𝛸𝑎𝑖′ሺ௞ሻ = 𝑎𝑖ሺ௞ሻܺ𝑎   𝑎݊݀   𝛸௩𝑖′ሺ௞ሻܪ = ௩𝑖ሺ௞ሻܺ௩    ሺͶ.ʹሻܪ
where 𝑖 = ͳ,… ,ͳͲ indicates the computed component, ݉ = ͳ ݎ݋ ʹ is the current subject,𝛸𝑎𝑖′ሺ௞ሻand   𝛸௩𝑖′ሺ௞ሻ are the linear combinations or canonical variables and finally, ܪ𝑎𝑖  and ܪ௩𝑖  are the projection matrices with dimensions ݊ ݔ ͵ͻ and  ݊ ݔ ͵Ͳ respectively. The

formula to maximize is: ߩ௜  =  ݉𝑎ݔ   [ሺ ܪ𝑎𝑖ሺ௞ሻ𝑇ܺ𝑎 , ௩𝑖ሺ௞ሻ𝑇ܺ௩ ሻ]  ሺͶ.͵ሻܪ
The overall audio-visual correlation measure ݎ𝑎௩  is defined by the correlation, as

described by the Pearson Correlation Coefficient (PCC) or Pearson product-moment 
correlation coefficient (PPMCC), between each pair of canonical variables for all 
subjects.  ݎ𝑎௩𝑖ሺ௞ሻ = ሺ𝛸𝑎𝑖′ሺ௞ሻ𝛸௩𝑖′ሺ௞ሻ  ሻ       ሺͶ.Ͷሻܧ 

This operation produces two sets of CCA coefficients, one for each subject. The 
overall correlation measure ݎ𝑎௩   between  𝛸𝑎′   and  𝛸௩′    varies depending the dataset, the
diarization window and the number of CCA coefficients that are taken into account. The 
different variations used as diarization thresholds for each subject are: 

𝑎௩ሺ௞ሻݎ  = ͳͳͲ ଶ    ሺͶ.ͷሻଵ଴[𝑎௩𝑖ሺ௞ሻݎ]∑
௠=ଵ 𝑎݊݀    ݎ𝑎௩ሺ௞ሻ  = ͳͳͲ ∑ 𝑎௩𝑖ሺ௞ሻ   ሺͶ.͸ሻଵ଴ݎ

௠=ଵ

Classes Meaning 

Class 1 Subject 1 is speaking 

Class 2 Subject 2 is speaking 

Class 3 Overlapping Speech 

Class 4 Silence 

Table 5: Classification table. 
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Finally an educated guess of who is currently speaking is attempted based on 
the overall correlation measure. Much like in the synchronization example presented in 
Figure 20, the two values are compared and the greater value defines the potential 
speaker, unless their absolute difference is less than a predefined and tested threshold. 
In that case it is decided that the segment belongs in the overlapping speech part. An 
illustration of the diarization process, applied to the SSM dataset, is available on Figure 
21. The video in this example is 62 seconds long and is divided in segments of 1 second
each (1000ms diarization window). Every segment is classified into ‘Subject 1’, ‘Subject 
2’, both or silence, which correspond to classes 1, 2, 3, and 4 respectively. In this
particular example a segment is misclassified as ‘Subject 1’, when it actually belongs to
‘Subject 2’, and a segment is attributed to ‘Subject 2’, when it belongs to the overlapping
speech part. 

 For the evaluation of the diarization system, three window types of various 
lengths are tested namely 100ms, 500ms, and 1000ms. For every window, each 
segment is classified to either or both of the subjects or it is labeled as silent segment. 
The CCA process and the Pearson correlation coefficient are calculated with the popular 
Python modules scipy.sklearn, and numpy respectively.  

Fig. 21: Illustration of speaker diarization on the SSM dataset. 
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CHAPTER 5: Speaker Diarization Evaluation 

The performance of the speaker diarization system was evaluated using two 
popular metrics: the F1-score (also F-score or F-measure) and the diarization error rate 
(DER). It is important to state that while the classification of the segments was 
concluded in time intervals, according to the diarization window size (100ms, 500ms, 
1000ms), the evaluation was executed into the frame level. This was done in order to 
produce an overall and comparable evaluation result for all windows. Finally, for reasons 
of consistency with the established bibliography the phrases ground truth and reference 
or ground truth speaker and reference speaker are going to be used interchangeably. 

F-score is the main metric for evaluating binary classification; it provides a 
quantitative answer to how accurate a classification system is by comparing its decisions 
against the “gold standard” of the system ground truth. In this particular system, F-score
evaluates whether each frame was classified correctly or not. 

The diarization error rate is the main metric applied in speaker diarization 
experiments as described and used by NIST in the Rich Text (RT) evaluations [2]. The 
DER is measured as the fraction of time that is not attributed correctly to a speaker or to 
non-speech. In order to measure performance, an optimum one-to-one mapping of 
reference speaker IDs to system output speaker IDs needs to be computed. The 
measure of optimality will be the aggregation, over all reference speakers, of time that is 
jointly attributed to both the reference speaker and the (corresponding) system output 
speaker to which that reference speaker is mapped. This will always be computed over 
all speech, including regions of overlap but not regions of silence.  

5.1 F-score 

The calculation of F-score depends on the estimation of two variables, Precision 
and recall [20]. Precision (also called positive predictive value) is the fraction of retrieved 
instances that are relevant, while recall (also known as sensitivity) is the fraction of 
relevant instances that are retrieved.  

For classification tasks, the terms true positives, true negatives, false positives, 
and false negatives compare the results of the classifier under test with the system 
reference. The terms positive and negative refer to the classifier prediction, and the 
terms true and false refer to whether that prediction corresponds to the system 
reference. With all this in mind, the mathematic formulas for calculating precision and 
recall are the following: ܲܿ݁ݎ𝑖ݏ𝑖݊݋ = ݏ݁ݒ𝑖ݐ𝑖ݏ݋ܲ ݁ݑݎܶݏ݁ݒ𝑖ݐ𝑖ݏ݋ܲ ݁ݑݎܶ  + ݏ݁ݒ𝑖ݐ𝑖ݏ݋ܲ ݁ݏ𝑎݈ܨ  ሺͷ.ͳሻ

𝑅݁ܿ𝑎݈݈ = ݏ݁ݒ𝑖ݐ𝑖ݏ݋ܲ ݁ݑݎܶݏ݁ݒ𝑖ݐ𝑖ݏ݋ܲ ݁ݑݎܶ  + ݏ݁ݒ𝑖ݐ𝑎݃݁ܰ ݁ݏ𝑎݈ܨ  ሺͷ.ʹሻ

https://en.wikipedia.org/wiki/Positive_predictive_value
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
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As a measure, high precision means that 
the system classifying algorithm returns 
substantially more relevant results than 
irrelevant ones. High recall on the other hand 
means that an algorithm returned most of the 
relevant results. Since both measures are 
important, usually we measure our systems 
with F-score which is the harmonic mean of 
recall and precision. F-score has a parameter 
that sets the tradeoff between recall and 
precision. The standard F-measure is F1, which 
gives equal importance to recall and precision:  ܨͳ = ʹ ∙ 𝑅݁ܿ𝑎݈݈ ∙ 𝑅݁ܿ𝑎݈݈݊݋𝑖ݏ𝑖ܿ݁ݎܲ + ݊݋𝑖ݏ𝑖ܿ݁ݎܲ  ሺͷ.͵ሻ
The general formula for F-score is the following: 

𝛽ܨ = ሺͳ + 𝛽ଶሻ ∙ 𝑅݁ܿ𝑎݈݈ ∙ ሺ𝛽ଶ݊݋𝑖ݏ𝑖ܿ݁ݎܲ ∙ ሻ݊݋𝑖ݏ𝑖ܿ݁ݎܲ + 𝑅݁ܿ𝑎݈݈  ሺͷ.Ͷሻ
In the speaker diarization system presented here, each video frame is classified 

by the acoustic and visual information it contains. This means that when a frame is 
labeled as true positive, the correct number of speakers and their ID were identified so 
the classification is correct. On the other hand, when a frame is labeled as false positive, 
it means that either the number of speakers or their identity is wrong, so it is classified as 
false alarm. In addition, when a frame is labeled as false negative, it means that no 
speaker was identified on that frame, so it is classified as miss. Finally, the prediction of 
true negative frames is of no use to the system, because those frames would be 
describing the absence of acoustic events in the specific frame. This information has no 
application, since only frames containing speech are processed. 

5.2 Diarization Error Rate 

As proposed in the NIST RT Diarization evaluations [2], to measure the 
performance of the proposed systems, the diarization error rate (DER) will be computed 
as the fraction of speaker time that is not correctly attributed to that specific speaker. 
This score will be computed over the entire audio-visual sequence to be processed in a 
frame by frame basis, including regions where more than one speaker is present 
(overlapping speech regions).  

In the original NIST publication, the DER evaluation is calculated by dividing the 
file in segments, then mapping each reference speaker to a segment, and finally 
comparing this mapping to the system prediction. In the speaker diarization system 
presented here, each dataset file is divided using three (3) different segmentation 
windows of 100ms, 500ms, and 1000ms. The diarization process is enforced on each 
segment individually through CCA (section 4.3). After diarization, for reasons of 
consistency, in order for every experiment to have the same evaluation base, the 

Fig. 22: Precision and recall [20]. 
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calculation of DER is applied to the video file frame by frame. Given the dataset to 
evaluate, in each video file, both the reference and the hypothesis need to be 

established frame-wise. The diarization error time for each frame ݊ is defined as:ܧሺ݊ሻ  =  ܶሺ݊ሻ[݉𝑎ݔሺ ௥ܰ௘௙ሺ݊ሻ, ௦ܰ௬௦ሺ݊ሻ ሻ  −  𝑐ܰ௢௥௥௘𝑐௧ሺ݊ሻ]  ሺͷ.ͷሻ
where ܶሺ݊ሻ is the amount of time between each frame (frame rate),  ௥ܰ௘௙ሺ݊ሻ  is the

number of reference speakers that are present in frame ݊,  ௦ܰ௬௦ሺ݊ሻ is the number of

system (detected) speakers that are present in frame ݊, and 𝑐ܰ௢௥௥௘𝑐௧ሺ݊ሻ is the number of

reference speakers in frame ݊ correctly assigned by the diarization system.

The mathematic formula for calculating DER in a given dataset  𝛺 is:

= 𝑅ܧܦ  ∑ 𝛦ሺ݊ሻ௡𝜖𝛺  ∑ ሺܶሺ݊ሻ ∙ ௥ܰ௘௙ሺ݊ሻሻ௡𝜖𝛺  ሺͷ.͸ሻ
The diarization error time includes the time that is assigned to the wrong 

speaker, missed speech time, and false alarm speech time: 

 Speaker Error Time: the speaker error time is the amount of time that
has been assigned to an incorrect speaker. This error can occur in frames
where the number of detected speakers is greater than the number of
reference speakers, but also in frames where the number of detected
speakers is lower than the number of reference speakers, whenever the
number of detected speakers and the number of reference speakers are
greater than zero.

 Missed Speech Time: The missed speech time refers to the amount of
time that speech is present but not labeled by the diarization system in
frames where the number of detected speakers is lower than the number
of reference speakers.

 False Alarm Time: The false alarm time is the amount of time that a
speaker has been labeled by the diarization system but is not present in
frames where the number of detected speakers is greater than the
number of reference speakers.
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CHAPTER 6: Evaluation Results 

After having discussed the acoustic and the two visual feature extraction 
systems, the diarization process and the evaluation metrics, this chapter is dedicated to 
the presentation and illustration of the experiments conducted on the three manually 
developed datasets. The structure of the presentation involves displaying and comparing 
the performance of both image processing and deep learning, as visual feature 
extraction methods, and how they cope with the different diarization windows, across 
each dataset. 

The experiments were conducted across a total of 1806 videos, with the same 
threshold values for both feature extraction methods. The results are the average values 
of precision, recall, F-score and DER for the 602 videos of each dataset. 

6.1 SSM Dataset 

Image Processing 

Diarization 
Window (ms) 

Precision Recall F-score DER (%) 

100 0.97 0.99 0.98 5.48 

500 0.94 1.0 0.97 8.13 

1000 0.97 1.0 0.98 3.46 

Table 6: Image processing SSM results. 

Deep Learning 

Diarization 
Window (ms) 

Precision Recall F-score DER (%) 

100 0.96 0.99 0.98 5.86 

500 0.94 1.0 0.96 8.88 

1000 0.97 1.0 0.98 4.38 

Table 7: Deep learning SSM results. 
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As expected, the diarization system produces good results for the SSM dataset. 
The nature of the dataset assists the detection processes since only the talking subject 

Fig. 24: Precision comparison of image processing 
vs deep learning for SSM dataset 
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Fig. 23: DER comparison of image processing vs 
deep learning for SSM dataset 
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Fig. 25: Recall comparison of image processing vs deep 
learning for SSM dataset 
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Fig. 26: F-score comparison of image processing vs 
deep learning for SSM dataset 
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is allowed to be in motion, while the silent subject remains motionless. This effect 
produces high correlation between the moving subject and the acoustic stimulus, which 
leads to its identification as the speaker. In terms of the feature extraction the results are 
comparable and no method has significant advantage over the other. Finally, as far as 
the diarization process is concerned, the 500ms window produces the worst DER for 
both methods, while the 1000ms window performs the best. 

6.2 MCM Dataset 

Image Processing 

Diarization 
Window (ms) 

Precision Recall F-score DER (%) 

100 0.59 1.0 0.74 52.26 

500 0.57 0.99 0.73 54.07 

1000 0.6 1.0 0.74 50.68 

Table 8: Image processing MCM results 

Deep Learning 

Diarization 
Window (ms) 

Precision Recall F-score DER (%) 

100 0.59 1.0 0.74 51.79 

500 0.58 0.99 0.73 53.22 

1000 0.59 1.0 0.74 51.3 

Table 9: Deep learning MCM results 
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Fig. 28: Precision comparison of image processing 
vs deep learning for MCM dataset 

0

0,2

0,4

0,6

0,8

1

Image
Processing

Deep Learning

100ms

500ms

1000ms

Fig. 29: Recall comparison of image processing vs deep 
learning for MCM dataset 
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Fig. 27: DER comparison of image processing vs 
deep learning for MCM dataset 
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Fig. 30: F-score comparison of image processing vs 
deep learning for MCM dataset 
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As far as the MCM dataset is concerned, the diarization system performance is 
moderate in comparison to its performance for the SSM dataset. The nature of the 
dataset hinders the detection processes, since both subjects are in motion. This effect 
produces correlation between both subjects and the acoustic stimulus, so the system 
speaker identification thresholds need to be adjusted accordingly. In terms of the feature 
extraction, the results are again comparable, and no method has significant advantage 
over the other. With regards to the diarization process, the 500ms window produces 
again slightly worse DER for both methods than the other windows, while the 1000ms 
window performs the best. 

 Finally, as for the F-score, it is important to notice that while the precision of the 
diarization is not particularly inspiring, the system’s recall remains good. This means that
although the system produces a significant number of false alarms (misclassification-
false positives), it succeeds in detecting almost all the segments containing speech, 
which results in low false negatives, thus high recall. 

6.3 MCMS Dataset 

Image Processing 

Diarization 
Window (ms) 

Precision Recall F-score DER (%) 

100 0.64 0.97 0.77 47.44 

500 0.73 1.0 0.84 35.31 

1000 0.58 1.0 0.73 52.58 

Table 10: Image processing MCMS results 

Deep Learning 

Diarization 
Window (ms) 

Precision Recall F-score DER (%) 

100 0.64 0.97 0.77 47.38 

500 0.76 1.0 0.86 31.23 

1000 0.58 1.0 0.73 52.52 

Table 11: Deep learning MCMS results 
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Fig. 32: Precision comparison of image processing vs 
deep learning for MCMS dataset 

0

0,2

0,4

0,6

0,8

1

Image
Processing

Deep Learning

100ms

500ms

1000ms

Fig. 31: DER comparison of image processing vs 
deep learning for MCMS dataset 
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Fig. 33: Recall comparison of image processing vs deep 
learning for MCMS dataset 
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Fig. 34: F-score comparison of image processing vs 
deep learning for MCMS dataset 
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As mentioned in section 2.1 the MCMS dataset is the most intriguing one, since it 
was designed as a natural conversation simulation between the two subjects. In these 
experiments although the diarization system failed to reach a performance similar to the 
one against SSM dataset, it managed to surpass the DER values the MCM dataset. This 
result was expected, since the SSM dataset was developed as the best case and the 
MCM as the worst case scenario. 

In terms of DER, the diarization system performs slightly worse than MCM for the 
1000ms window, but achieved better results for the 100ms window. On the other hand 
its function on the 500ms window has dramatically improved by almost 20% for both the 
visual extraction methods. 

As far as the extraction methods, it can be observed that both approaches are on 
par, with a slight advantage for deep learning. The two methods perform better with the 
500ms window while their performance decreases for the 100ms and the 1000ms 
window. 

 Finally in terms of the F-score, the results are similar to the DER. Both deep 
learning and image processing have increased performance in this dataset over the 
MCM especially for the 500ms window. In addition, as far as the precision and recall of 
the system, the same pattern as in the MCM dataset is observed, where the precision of 
the diarization is not particularly satisfactory, but the system recall remains excellent.  

The aggregate results and performance of the diarization process across all 
datasets and for the different diarization windows can be seen in Figure 35. 
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Fig. 35: DER variation across different diarization windows: (a) image processing; (b) deep learning 
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CHAPTER 7: Conclusions 

This Thesis has proposed a speaker diarization system based on acoustic and 
visual synchrony between two speakers, using canonical correlation analysis, and 
evaluated its robustness against a manually developed database of varying difficulty. 
The system was based on MFCCs for the acoustic and DCT for the visual feature 
extraction. The visual features were acquired using two different methods, one based on 
deep learning (DP) and one on image processing (IP). The performance of both 
methods was comparable producing highly accurate diarization for the less complicated 
dataset (SSM), achieving a DER as low as 3.46% for the IP and 4.38 for the DP method. 
In addition, the system produced satisfactory results -35.31% for the IP and 31.23% for 
the DP method - in the more challenging dataset (MCMS). Lastly, both methods 
performed subpar in the more challenging dataset (MCM) that contained constant 
motion from both subjects, with a 50.68% DER for the IP and 51.3 for the DL method.  

Furthermore, the CCA mechanism used for detecting the audio-visual synchrony 
confirmed the existence of a strong correlation between acoustic and visual 
representations of speech that can be exploited for resolving the diarization task. 
Additionally the results, illustrated in Figure 35, showcase an increased performance for 
smaller diarization windows, up to 500ms rather than a larger one in the scale of 
1000ms.  

In conclusion, the experiment results suggest that both visual feature extraction 
methods are up to par and capable of providing similar levels of visual information when 
dealing with the diarization task. Moreover, CCA, although performed in a manually 
developed database can be a useful tool in detecting audio-visual synchrony and 
correlation. 
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