
 

 

 

 

 

UNIVERSITY OF THESSALY 

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 

 

 

Πρόβλεψη και ρύθμιση χρονικά μεταβαλλόμενης οδηγικής 

συμπεριφοράς και αξιοποίησή της από αυτο-οδηγούμενα οχήματα 

 

Prediction and calibration of temporal driving behavior and its 

deployment by self-driving cars 

 

 

Diploma thesis  

by 

Christos Markos 

 

 

Head Supervisor Second Supervisor 

Dr. Dimitrios Katsaros Dr. Aspassia Daskalopulu 

 

Volos, 2017 



 

 

 

 

Διπλωματική Εργασία για την απόκτηση του Διπλώματος του Ηλεκτρολόγου Μηχανικού και 

Μηχανικού Υπολογιστών του Πανεπιστημίου Θεσσαλίας, στα πλαίσια του Προγράμματος 

Προπτυχιακών Σπουδών του Τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών 

Υπολογιστών του Πανεπιστημίου Θεσσαλίας.  

 

…………………………… 

Χρήστος Μάρκος 

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Πανεπιστημίου 

Θεσσαλίας  

 

 

Εγκρίθηκε από τη διμελή Εξεταστική Επιτροπή στις …/…/ 2017. 

 

…………………………… …………………………… 

Δρ. Δημήτριος Κατσαρός Δρ. Ασπασία Δασκαλοπούλου 

Επιβλέπων καθηγητής Δεύτερο μέλος επιτροπής 

 

 

Copyright © Christos Markos, 2017  

Με επιφύλαξη παντός δικαιώματος. All rights reserved.  

 

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου 

ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή 

για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να 

αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν 

τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.  

 

Permission to make digital or hard copies of all or part of this work for personal or classroom 

use is granted without fee provided that copies are not made or distributed for profit or 

commercial advantage and that copies bear this notice and the full citation on the first page. To 

copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific 

permission and/or a fee.  

Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$15.00 



 

 

i 

 

ACKNOWLEDGEMENTS 

 

Foremost, I would like to express my sincere gratitude to my supervisors Dr. Dimitrios 

Katsaros and Dr. Aspassia Daskalopulu, for their unlimited guidance and constant support 

throughout not only the undertaking of my diploma thesis, but also the rest of my undergraduate 

studies at the Department of Electrical and Computer Engineering of the University of 

Thessaly. I am also indebted to Mr. Athanasios Fevgas, for his assistance in overcoming several 

of this project’s resource limitations. Last, but certainly not least, I would like to thank my 

family and friends, for their invaluable support, love, and encouragement during all these years 

that ultimately shaped who I am. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ii 

 

ΠΕΡΙΛΗΨΗ 

 

Τα αυτοκινητιστικά δυστυχήματα ευθύνονται για την απώλεια περίπου 1,25 εκατομμύρια 

ζωών ετησίως σε όλο τον κόσμο. Οι επιζώντες επιβαρύνονται όχι μόνο με φυσικά και ψυχικά 

τραύματα, αλλά και με υψηλά ιατρικά και υλικά κόστη. Θανατηφόρα ή μη, τα αυτοκινητιστικά 

δυστυχήματα επιφέρουν τεράστιες αθροιστικές απώλειες στην κοινωνία. Η ενίσχυση της 

οδικής υποδομής και των οχημάτων ώστε να αυξάνουν την οδική ασφάλεια είτε παθητικά είτε 

ενεργά έχει συγκεντρώσει σημαντικό ερευνητικό ενδιαφέρον τις τελευταίες δεκαετίες. Τα 

σύγχρονα επιβατικά οχήματα είναι εφοδιασμένα με διάφορους αισθητήρες, οι οποίοι 

επιτρέπουν επικοινωνία μεταξύ οχημάτων, αλλά και μεταξύ οχημάτων και έξυπνης οδικής 

υποδομής. Αυτό επιτρέπει το σχηματισμό ad hoc δικτύων οχημάτων, επιτρέποντας ποικίλες 

εφαρμογές μέσω διάχυσης κρίσιμων παραμέτρων. 

Ο σκοπός αυτής της έρευνας είναι να συμβάλει στις τρέχουσες έρευνες σχετικά με την 

οδική ασφάλεια, χρησιμοποιώντας πρόβλεψη τοποθεσίας σε ad hoc δίκτυα οχημάτων. Για 

αυτό το σκοπό, εξετάζουμε την επίδοση του LeZi-Update, ενός αλγορίθμου πρόβλεψης 

τοποθεσίας αρχικά σχεδιασμένου για κινητά δίκτυα, αυτή τη φορά δουλεύοντας σε δίκτυο 

οχημάτων όπου τα πρότυπα κινητικότητας διαφέρουν. Επιπλέον, επινοούμε δύο διαφορετικούς 

τρόπους να συνυπολογιστεί ο χρόνος της ημέρας κατά την πρόβλεψη, και εξετάζουμε το κατά 

πόσο επηρεάζεται η ακρίβεια της πρόβλεψης.  

Τα πειράματά μας εκτελέστηκαν χρησιμοποιώντας πραγματικά δεδομένα οδήγησης, τα 

οποία περιλαμβάνουν χρονοσφραγίδες και συντεταγμένες GPS που λήφθηκαν από ταξί στη 

Ρώμη κατά τη διάρκεια ενός μήνα. Αρχικά, οι GPS συντεταγμένες ομαδοποιήθηκαν με βάση 

το όνομα οδού, χρησιμοποιώντας τη διαδικασία της αντίστροφης γεωκωδικοποίησης. Έπειτα, 

αυτές οι οδοί χωρίστηκαν σε τμήματα 30 μέτρων, και σε κάθε τμήμα ανατέθηκε ένα μοναδικό 

σύμβολο. Εν τέλει, ο αλγόριθμός μας αξιοποίησε αυτά τα σύμβολα σε συνδυασμό με τις 

παρεχόμενες χρονοσφραγίδες ώστε να πραγματοποιήσει επανειλημμένες προβλέψεις του 

επόμενου συμβόλου. 

Σύμφωνα με τα αποτελέσματά μας, ο LeZi-Update διατηρεί υψηλή ακρίβεια πρόβλεψης 

σε ad hoc δίκτυα οχημάτων. Η ακρίβεια αυτή αυξάνεται με τη χρήση μεγαλύτερου μήκους 

συμφραζόμενων, φτάνοντας ποσοστά επιτυχίας μέχρι και 100%. Επιπλέον, η ώρα της ημέρας 

αποδεικνύεται πρακτικά ασήμαντος παράγοντας στην πρόβλεψη του επόμενου τμήματος 

δρόμου, και θα μπορούσε να αγνοηθεί εξ ολοκλήρου ώστε να μειωθεί η συνολική 

περιπλοκότητα της υλοποίησης. Θα θέλαμε να επεκτείνουμε την έρευνά μας όταν υπάρξει 



 

 

iii 

 

διαθεσιμότητα πιο πλούσιων δεδομένων, τα οποία να περιέχουν περισσότερες παραμέτρους 

όπως ταχύτητα ή γωνία τιμονιού, ώστε αυτές να εξεταστούν ξεχωριστά ως προς την επίδρασή 

τους στην ακρίβεια πρόβλεψης. Επιπλέον, εφόσον έχουμε περισσότερους υπολογιστικούς 

πόρους στη διάθεσή μας, θα θέλαμε να χρησιμοποιήσουμε cross-validation, μια ακριβέστερη 

μέθοδο μέτρησης σφάλματος. 
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ABSTRACT 

 

Every year, road traffic accidents claim nearly 1.25 million lives worldwide. Survivors are 

often burdened with not only disability and trauma, but also high medical and property damage 

costs. Fatal or non-fatal, these accidents befall society with immense cumulative loss. 

Enhancing road infrastructure and vehicles to either passively or actively increase road safety 

has gathered significant research focus over the last few decades. Modern passenger vehicles 

are equipped with various sensors that allow vehicle-to-vehicle and vehicle-to-infrastructure 

communication. This enables formation of vehicular ad hoc networks, in turn allowing for 

various applications through dissemination of numerous critical parameters.  

The aim of this study is to contribute to current research on road traffic safety, using 

location prediction in vehicular ad hoc networks. To this end, we survey the performance of 

LeZi-Update, a location prediction algorithm originally designed for mobile networks, this 

time working with a vehicular network where mobility patterns and dynamics are different. We 

also devise two different ways to factor the time of day into prediction, and investigate the 

extent to which prediction accuracy is affected.  

Our experiments were conducted using real driving data, including timestamps and GPS 

coordinates obtained from taxis in Rome over the span of one month. First, the GPS coordinates 

were clustered by street name using the process known as reverse geocoding. Then, these 

streets were divided into 30-meter segments, and each segment was assigned a unique symbol. 

Finally, our algorithm leveraged these symbols along with the provided timestamps to 

repeatedly perform next-symbol predictions.  

According to our results, LeZi-Update maintains high prediction performance in vehicular 

ad hoc networks. Prediction accuracy increases when using longer contexts, reaching levels as 

high as 100% in our tests. Furthermore, time of day is proven to be an insignificant factor in 

predicting the next street segment, and could be entirely ignored to reduce overall 

implementation complexity. Further research could be conducted upon availability of richer 

datasets, containing more parameters such as velocity, gear, or steering angle, to be evaluated 

individually regarding their effect in prediction accuracy. If more hardware resources are 

available, we would also like to use cross-validation as a more accurate error-measuring 

method. 
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1 INTRODUCTION 

 

According to a recent report published by the World Health Organization, approximately 

1.25 million deaths occur every year as a result of road traffic accidents [1]. In fact, this was 

found to be the leading cause of death among people under 30 years of age. Furthermore, the 

National Safety Council estimates that 2016 may have been the deadliest year on U.S. roads 

since 2007 [2]. It is predicted that, unless preventive action is taken, such incidents will become 

the seventh leading cause of death worldwide in the next decade [1]. 

The effects of road traffic accidents can be observed on both an individual and a societal 

level. Regarding the former, people may make a full recovery from their injuries following an 

accident; often, the damage they undergo may lead to permanent disability or emotional 

trauma. Another aspect of the consequences of motor vehicle crashes is the economic cost, 

usually related to medical care. As far as society is concerned, there are also substantial 

financial losses, such as medical and emergency service costs, legal and court costs, as well as 

insurance and property damage costs [3]. 

A variety of elements have been found to cause road traffic accidents. Human factors such 

as sub-optimal driving, failure to check blind spots, intoxication, fatigue, distraction by 

scenery, mobile devices or advertising, have been attributed to the majority of crashes [4]. 

Defective road design, such as badly designed intersections and reduced visibility, has also 

been deemed a contributing factor to a substantial number of collisions. Proper vehicle design 

and maintenance are crucial as well; newer vehicles offer better protection in case of a crash, 

while well-maintained vehicles mean improved handling, and therefore a better chance of 

avoiding an accident. 

In general, one could discern three different approaches to mitigating road traffic 

accidents; modifying human behavior, enhancing vehicles to assist human drivers or prevent 

accidents themselves, and upgrading existing road infrastructure to either passively or actively 

aid in maintaining safety. However, changing behavior entails education, information, as well 

as enforcement, largely depending on government initiatives and usually without lasting 

effects.  

In the early years of automotive safety research, mitigation of collision or crash impact 

was the main focus. Some works [5] argued in favor of seat belts as the single most effective 

mechanism in reducing physical damage, while some [6] suggested that their use could 

ultimately lead to an increase in road casualties, as people tend to be less careful when feeling 
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more protected. Other works stressed the importance of air bags [7], padded dashboards, or an 

enhanced roof structure [8], which could reduce injury caused by rollover and side collisions. 

However, the next generation of automotive safety solutions are engineered to eliminate the 

possibility of collision altogether.  

In this work, we tackle the problem of road traffic safety using vehicular location 

prediction. We believe that dissemination of such information through road infrastructure or 

other vehicles could help prevent traffic accidents. To this end, we use real driving data to 

survey the performance of a location prediction algorithm originally designed for mobile 

networks, this time working with a vehicular network. We also investigate how the time of day 

might influence location prediction by devising two different ways to incorporate it into the 

prediction process. Our aim is to show that this model could positively contribute to current 

research on autonomous vehicles in conjunction with road traffic safety. 

Chapters 2, 3, and 4 provide the reader with the necessary background information on self-

driving cars, wireless networks and discrete sequence prediction. Chapter 5 comprises a review 

of the literature on location prediction, while Chapter 6 offers a detailed description of the 

methods employed to process our data and obtain our results. Our findings are presented and 

thoroughly discussed in Chapter 7. Finally, our research limitations, implications, and 

suggestions are documented in Chapter 8, while our references are listed in Chapter 9.  
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2 SELF-DRIVING CARS 

 

2.1 Introduction 

 

A self-driving or autonomous car is a vehicle that is designed to travel between 

destinations without a human driver. To qualify as fully autonomous, a vehicle must be able to 

navigate to a predetermined destination without human intervention, over roads that it may not 

have been trained to use. While such cars are not yet commercially available, highly automated 

cars with self-driving features are already on the road. Both types of vehicle rely on the input 

of various on-board sensors to manage navigation, safety, and handling. In the case of partially 

automated vehicles, this input is processed by the on-board driver assistance systems, in order 

to facilitate the driving experience. These systems are more thoroughly presented in section 

2.2, while a clearer distinction between vehicular automation levels is made in section 2.3. 

While fully automated vehicles are expected to become commercially available within the 

next few years, they have in fact been envisioned since the early 20th century. The world’s first 

driverless car was presented by engineer Francis P. Houdina in 1925. Even though the driver’s 

seat was unoccupied, this car was actually radio-controlled by a second car following close 

behind. During a demonstration in Manhattan, however, the vehicle’s control system failed to 

establish communication, eventually causing it to crash into another vehicle. The GM Firebird 

II, released in 1956, featured a sophisticated guidance system which was meant to be used with 

what was imagined as the future of roadway infrastructures. Electronic roadways were 

expected to have embedded detector circuits, which would guide autonomous vehicles based 

on the determined location and velocity of other vehicles. Based on this idea, a driverless car 

that could move at 130 km/h on a specific trajectory was demonstrated in 1971, with research 

claiming that a switch to automation could prevent nearly 40% of road traffic accidents. 

Unfortunately, electronic roadways never became widespread enough for this type of driverless 

car to be publicly adopted. 

A great deal of progress towards truly autonomous vehicles has been made since the 1980s, 

notably with Carnegie Mellon University's Navlab and ALV projects in 1984 and Mercedes-

Benz and Bundeswehr University Munich's EUREKA Prometheus Project in 1987. Numerous 

automaker companies and research organizations have since presented their own working 

prototypes. Interest in autonomous vehicles has increased to the point that even companies 
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from seemingly unrelated industries have invested in this domain. Google’s self-driving car 

project, started in 2009, has traveled over two million miles without a driver in the US. As of 

recently, the project has been assigned to Google’s subsidiary, Waymo, as it is estimated to be 

ready for production in the near future. 

 

2.2 Advanced Driver Assistance Systems 

 

Advanced Driver Assistance Systems (ADAS) are systems that prepare vehicles for unsafe 

road conditions and alert drivers to dangerous maneuvers. ADAS are able to identify 

pedestrians [9], road signs, or discern a police car from a taxi or regular passenger car. These 

systems are available in various forms; their features are built-in or can later be installed as an 

add-on package. Some of their features are presented in Table 1. 

 

Table 1 – ADAS Features 

Feature Description 

Adaptive cruise control 
Automatic control of speed and distance in relation to the proceeding vehicle in 

the same lane. 

Blind spot monitoring 
Human driver warning regarding other vehicles located to the vehicle’s side and 

rear. 

Lane departure warning Human driver warning in case of deviation from lane boundaries. 

Automatic parking 
Parallel, perpendicular, or angle parking by seizing control of the steering angle 

and speed. 

Drowsiness monitoring 
Prevention of accidents caused by human driver fatigue. Detection using steering 

input, lane monitoring camera, eye/face monitoring, or body sensors. 

Tire pressure monitoring 
Air pressure information reporting, usually via gauge or low-pressure warning 

light.  

Night vision 
Improvement of human driver’s perception in darkness or poor weather, through 

the use of infrared cameras and active illumination techniques. 

Intelligent speed adaptation 
Human driver warning or automatic speed reduction in case of speed limit 

violation. 

 

In general, ADAS features rely on a combination of inputs generated by various installed 

sensors, as shown in Figure 1. The latter provide ADAS with the necessary awareness of their 

surroundings, offering advantages such as high resolution, identification and classification of 

objects, and the ability to obtain measurements at any time during the day. However, the 

performance of these sensors is affected by the amount of available light, as well as weather 
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conditions; for instance, heat may cause image degradation due to noise [10]. The most 

commonly used sensors are: 

 

• Radar. Emits radio waves that bounce of an object, determining its distance from the 

sensor, as well as direction and speed. 

• Ultrasonic. Emits ultrasonic sound waves that bounce off an object, determining its 

distance from the sensor.  

• Light Detection and Ranging (LIDAR). Emits light in the form of a pulsed laser that 

bounces off an object, determining its distance from the sensor. 

• Time of Flight. Using a camera, this method measures the time it takes for an emission 

of infrared light to bounce off an object and return to the sensor, determining the 

distance to that object. 

• Structured Light. A known pattern is projected on to an object, and the deformation 

of the former is captured by a camera and analyzed to determine the distance to that 

object. 

 

Figure 1. ADAS features and their enabling sensors. [11] 
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Even though ADAS applications are still at a relatively early stage, manufacturers and 

their suppliers estimate that they could gradually become the main feature distinguishing 

automotive brands, and most importantly, one of their biggest revenue sources. Moreover, it is 

the same technologies that enable today’s ADAS that could also be used to create fully 

autonomous vehicles, which are now a major focus of research and development. Hence, any 

ADAS technology that gains early support could have an advantage when self-driving cars 

reach the market. 

 

2.3 Classification 

 

According to SAE International’s J3016 standard [12], driving automation can be 

classified into six levels, ranging from no automation (level 0) to full automation (level 5), as 

shown in Table 2. 

 

Table 2 – SAE Levels 

SAE 

Level 
Name Description 

0 
No 

Automation 

The dynamic driving task is entirely performed by the human driver, even in the 

presence of ADAS. 

1 
Driver 

Assistance 

Steering, acceleration/deceleration are controlled by both the human driver & ADAS, 

but ADAS are expected to execute the remaining aspects of the dynamic driving task. 

2 
Partial 

Automation 

Steering, acceleration/deceleration are controlled by ADAS, while the human driver 

is expected to execute the remaining aspects of the dynamic driving task. 

3 
Conditional 

Automation 

ADAS perform all aspects of the dynamic driving task, but the human driver is 

expected to intervene upon request. 

4 
High 

Automation 

ADAS perform all aspects of the dynamic driving task, even if the human driver fails 

to intervene upon request. 

5 
Full 

Automation 
The dynamic driving task is entirely performed by ADAS. 

 

The dynamic driving task is defined as the set of operational (steering, accelerating, 

decelerating, vehicle and road monitoring) and tactical (deciding when to change lanes, make 

a turn, use signals, etc.) aspects of driving, excluding all strategic aspects (choosing 

destinations and routes). In the first three levels, the driving environment is monitored by the 

human driver, whereas in the remaining levels, this is done by ADAS. The importance of the 

SAE levels is that they serve as general guidelines in determining how technologically 
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advanced a vehicle is, making distinctions that could matter in cases like car insurance, which 

is expected to undergo major changes when self-driving cars become the norm [13]. 

 

2.4 Benefits 

 

Perhaps the most anticipated benefit of self-driving cars is the potential decline of road 

traffic accidents caused by human driver error. It is estimated that widespread use of 

autonomous vehicles could eliminate as much as 90% of all road traffic accidents in the U.S., 

saving thousands of lives and preventing billions of dollars in annual damage and health costs 

[14]. Moreover, self-driving cars could allow for a smoother driving experience with higher 

speed limits, increased roadway capacity and minimal traffic congestion, due to decreased need 

for safety gaps between vehicles. Car sharing could reduce the need for parking space in urban 

areas, allowing for more parks, public spaces, or housing. This is expected to make dense cities 

much more efficient and habitable. 

Self-driving cars could effectively reduce stress caused by driving. It has been shown that 

more driving may lead to decreased tolerance for others, as well as lower overall productivity. 

Furthermore, daily car commuting has been found to raise blood sugar, cholesterol, depression 

risk, and to negatively affect fitness and sleep quality. According to [15], traffic jams, road 

constructions, and long driving distances are key stress factors; in particular, the elements of 

unpredictability and loss of control. By either partially or fully assuming control of the vehicle, 

self-driving cars could remove a substantial amount of anxiety from the human driver. 

Self-driving cars could increase mobility for those who are hindered by health-related 

issues. According to the World Health Organization [16], over a billion people are estimated 

to be living with disability; that is, about 15% of the world’s population. People with disabilities 

generally have poorer health, lower academic achievements, fewer economic opportunities and 

higher rates of poverty than people without disabilities. This is mostly attributed to the lack of 

services available to them and the many obstacles they face in their daily lives. Therefore, self-

driving cars could be detrimental in improving those people’s quality of life. 

Minimization of congestion, stop-and-go, and idling could lead to a drastically lower 

environmental footprint [17]. Environmental concerns have continuously grown in the past few 

decades, and numerous densely populated cities have increasingly invested towards reducing 

pollution caused by the burning of fossil fuels. Beijing, largely considered the most congested 

city in the world, has recently implemented a driving restriction policy to address traffic 
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congestion and air pollution. However, despite leading to a significant drop of nearly 30% in 

the daily average concentration of particulate matter, these measures have been met with high 

levels of non-compliance and accusations of being unjust. It is clear that any satisfactory 

solution to the problem of traffic-induced pollution would require a non-restrictive basis, and 

self-driving cars may prove to be a step in the right direction.  

 

2.5 Limitations 

 

The safety performance of self-driving cars could, in essence, be perfect. However, they 

would have to compensate for additional, non-driver factors. In [18], pedestrians were deemed 

responsible for 80% of pedestrian crashes at intersections. A person suddenly stepping in front 

of a self-driving car might inevitably cause a crash, despite the vehicle responding optimally, 

due to the car’s stopping distance which is subject to braking restrictions. Hence, an expectation 

of zero fatalities would probably not be realistic. Furthermore, it is unlikely that any significant 

increase in road traffic safety could be achieved until widespread adoption of self-driving cars. 

In fact, it might even deteriorate during the transition period when self-driving cars and regular 

cars would coexist, at least as far the latter are concerned. 

As previously stated, a significant percentage of crashes is attributed to vehicular failures. 

It would be reasonable to expect that self-driving cars could mean mitigation for some of them. 

For instance, lighting failures might not affect safety in terms of vehicle control, as self-driving 

cars could depend on multiple inputs. Still, the same might not hold true for brake or tire faults; 

in fact, there would be no reason to expect otherwise, given the additional complexity of the 

vehicle. Similarly, self-driving cars will probably be able to detect and avoid road anomalies 

and debris. However, they might have difficulty handling flooded roads or other environmental 

factors. Weather conditions such as fog, snow, or heavy rain might still hinder the provision of 

sufficient information for safe travel. 
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3 WIRELESS NETWORKS 

 

3.1 Introduction 

 

Wireless networking is one of the fastest growing technologies supporting pervasive 

computing. Technological advances during the last two decades have produced mobile hosts 

and wireless networking, and therefore, a need for wireless mobile units to communicate with 

each other. Wireless mobile networks have traditionally been based on the concept of cells and 

relied on effective infrastructure support. In infrastructure mode, nodes communicate through 

a base station that acts as a wireless access point hub. Access points are typically fixed, have a 

wired or fiber network connection, and provide service to client nodes within range. Wi-Fi 

networks are commonly deployed in infrastructure mode, as it holds the advantage of 

scalability, improved reach, and centralized security management. Other common examples of 

infrastructure-based wireless networks are GSM and WLAN. 

In recent years, the extensive availability of wireless communication and handheld devices 

has resulted in research on self-organizing networks that do not need a pre-established 

infrastructure. In ad hoc networks, as they are known, nodes may only communicate peer to 

peer, with no requirement for central access points. Wireless devices can discover others in a 

certain radius and communicate with them directly; therefore, ad hoc mode can be used to 

establish a network without wireless infrastructure. Ad hoc networks can be classified into two 

categories: static and mobile. In static ad hoc networks, a node’s position may not be altered 

once it becomes part of the network, while in mobile ad hoc networks (MANETs), nodes are 

free to move arbitrarily. 

 

3.2 Vehicular ad hoc networks (VANETs) 

 

Vehicular ad hoc networks (VANETs) are a variation of MANETs in which the nodes are 

vehicular. They work with little or no permanent infrastructure and are characterized by high 

mobility, fixed road networks, predictable speed and traffic patterns, and minimal power or 

storage constraints. The primary requirements in VANETs are reliability and fast 

dissemination, as opposed to other communication systems where high message throughput is 

the main concern [19]. VANETs in the US will employ the “Wireless Access for Vehicular 
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Environments” (WAVE) standard, which will enable secure, high speed (up to 27 MB/s), short 

range (up to 1000 meters), and low latency wireless communication. WAVE uses a region of 

the 5.9 GHz band, and is based on the IEEE 802.11p standard. 

VANETs rely on real-time communication among vehicles, pedestrians, and roadside 

sensors located along transportation systems, using advances in wireless communications, 

computing, and vehicular technologies. For this communication to be possible, On-Board Units 

(OBUs) and Roadside Units (RSUs) are installed in vehicles and roads respectively. Depending 

on the communication mode, data is generally exchanged either between OBUs or between 

OBUs and RSUs. The former case is quite different than what happens in MANETs, where a 

mobile station may only communicate with another through a base station. This direct 

communication reduces message latency, which is essential for safety applications such as 

collision avoidance. If a vehicle cannot communicate directly with an RSU, it can relay its data 

to other vehicles until the data finally reaches that RSU. 

In principle, VANETs could help prevent accidents, facilitate eco-friendly driving, and 

provide better and more accurate real-time traffic information. However, concerns about 

security, liability, and privacy might decelerate progress toward large-scale implementation 

and deployment. Self-driving vehicles could help overcome these obstacles and motivate the 

widespread development and implementation of VANETs. 

 

3.3 VANET communication modes 

 

Until recently, vehicular communication primarily consisted of exchanges between 

various electronic control units (ECUs) and their corresponding sensors distributed over a 

vehicle. Communication would usually not reach the outside world, with the exception of some 

vehicle-to-device communication interfaces such as workshop fault diagnosis, ECU firmware 

updates, and mobile phone integration to allow hands-free calling. However, manufacturers are 

already equipping their vehicles with the required technology to communicate with other 

vehicles, surrounding infrastructure, or even pedestrians. These communication modes, along 

with some applications being developed, are introduced in the following subsections. 
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3.3.1 Vehicle-to-vehicle (V2V) 

 

In vehicle-to-vehicle (V2V), messages are transmitted between nearby vehicles. 

Communication may be achieved through omnidirectional radio signals, either directly (one-

hop) or through intermediary vehicles (multi-hop). V2V devices use dedicated short-range 

communications to broadcast data such as the vehicle’s location, direction and velocity to 

nearby vehicles, up to ten times per second.  This allows vehicles to be aware of each other, in 

turn identifying potential hazards and alerting drivers to their presence. V2V could be used to 

issue warnings such as: 

 

• Forward Collision Warning. Issued when approaching a decelerating or stopped 

vehicle. 

• Emergency Electronic Brake Light Warning. Issued when approaching a vehicle 

stopped in roadway, but not visible due to obstructions. 

• Blind Spot Warning. Issued when beginning a dangerous lane departure that could 

place the vehicle on the travel lane of another vehicle following the same direction. 

Can also detect vehicles not yet in the blind spot. 

• Do Not Pass Warning. Issued when beginning a dangerous lane departure that could 

place the vehicle on the travel lane of another vehicle following the opposite direction. 

Can also detect vehicles not yet in the blind spot. 

• Blind Intersection Warning. Issued when crossing paths at a blind intersection, or an 

intersection without a traffic signal. 

 

Even though there have been few real-world V2V trials to date, their results have been 

encouraging.  In 2011, BMW equipped a car and a motorcycle with V2V safety technology, 

with a view to improving the safety of left turns [20]. This study was motivated by the large 

number of cars involved in such crashes with motorcycles. A camera and a laser scanner were 

installed on the front of both vehicles, to detect oncoming traffic and prevent cars traveling less 

than 10 km/h from moving in front of oncoming motorcycles or other vehicles. In case of the 

driver continuing to turn in front of the oncoming vehicle, both automatic braking and visual 

and audio warnings were activated. If the oncoming vehicle was a motorcycle, its headlights 

would first adjust to increase its visibility, and then it would sound its horn if the car still 
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proceeded to enter the intersection. In this case, the safety system would finally engage the 

car’s brakes.  

 

3.3.2 Vehicle-to-infrastructure (V2I)  

 

In vehicle-to-infrastructure (V2I), messages are exchanged between vehicles and roadside 

units installed on nearby arterial road intersections or highway on-ramps. V2I communications 

are intended primarily to circumvent crash scenarios that V2V cannot address, while also 

allowing for a wide range of mobility and environmental benefits. An illustration of how these 

two communication modes work in synergy is presented in Figure 2. The following are some 

of the V2I safety applications currently under consideration: 

 

• Red Light Violation Warning. This technology will leverage the vehicle’s speed and 

distance from an intersection to alert drivers about possible violations of upcoming red 

lights. 

• Curve Speed Warning. This technology will inform the driver to slow down if the 

current speed is unsafe for traveling through an upcoming road curve. 

• Stop Sign Gap Assist. This technology will detect vehicle gaps at STOP-sign-

controlled intersections and alert drivers if it is unsafe to proceed. 

• Reduced Speed Zone Warning. This technology will warn drivers in work zones to 

reduce speed, change lanes, or prepare to stop. 

• Spot Weather Information Warning. This technology will provide in-vehicle alerts to 

drivers about real-time weather events, leveraging information from RSU connections 

with weather data collection services. 

• Railroad Crossing Violation Warning. This technology will alert drivers at controlled 

railroad crossings when it is unsafe to cross the railroad tracks, using RSE connections 

with existing train detection equipment. 

• Oversize Vehicle Warning. This technology will warn drivers of oversized vehicles to 

pick an alternate route or stop, using information from RSE connections to 

infrastructure installed at bridges or tunnels. 
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Figure 2. Combined V2V and V2I communication. [21] 

 

In December 2016, Audi successfully launched the first V2I technology in the U.S., which 

allows cars to receive real-time signal information from the advanced traffic management 

system that monitors traffic lights via the on-board 4G LTE data connection [22]. The first 

available feature informs the driver about the time remaining until the signal changes to green, 

effectively reducing stress. This technology could be used in the future by smart cities to gain 

a better understanding of traffic patterns and possibly adjust traffic signal performance to 

minimize congestion and improve traffic flow. 

 

3.3.3 Vehicle-to-pedestrian (V2P) 

 

In vehicle-to-pedestrian (V2P), messages are transmitted between vehicles and pedestrians 

who send and receive messages using their mobile phones or other wireless devices. This will 

benefit a broad set of vulnerable road users, including people walking, children being pushed 
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in strollers, people using wheelchairs or other mobility devices, passengers entering or exiting 

buses and trains, and bicyclists. V2P is expected to reduce road accidents by alerting vehicles 

of nearby pedestrians crossing the road, and vice versa. Some of the V2P applications currently 

in development by the US Department of Transportation [23] are:  

 

• Mobile Accessible Pedestrian Signal System. This application allows for an automated 

call from the mobile device of a vision-impaired pedestrian to the traffic signal. 

Moreover, drivers attempting to make a turn are alerted to the presence of a pedestrian 

at the crosswalk.  

• Pedestrian in Signalized Crosswalk Warning (Transit). This application warns bus 

operators when there are pedestrians in the intended path of the bus, as long as the 

pedestrians are within the crosswalk limits of a signalized intersection. 

 

As shown in [24], Wi-Fi-based V2P provides satisfactory results, on condition that 

transmission frequency is set to a value larger than 1 Hz, and that 10 meters of GPS error are 

considered. However, there are still some challenges to be overcome, such as the drastic 

reduction of communication range when the signal is blocked by the human body, as well as 

the need for highly secure, high-speed wireless communication, perhaps using the WAVE 

standard. 

 

3.3.4 Vehicle-to-device (V2D) 

 

In vehicle-to-device (V2D), messages are transmitted between a vehicle and any electronic 

device that may be connected to the vehicle itself, such as diagnostic or programming devices, 

mobile phones, or computers [25]. To accomplish this, the vehicle may be equipped with 

hardware interfaces, or wireless interfaces such as Bluetooth or WLAN. For instance, the driver 

of an electric car can use a smartphone app to check the battery capacity of his vehicle while it 

is being topped up at a recharging station. As another example, the ParkMe app allows a driver 

to exit the car and use his smartphone to have the vehicle park itself. 

As far as hardware interfaces are concerned, V2D communication can be used to connect 

external test devices for vehicle fault diagnosis, or scanning the internal communication 

system. It is also used to perform ECU software upgrades, after-sale feature activation, or 
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retrieval of collected data. On the other hand, wireless V2D communication is used to connect 

the driver’s mobile electronic devices with the vehicle. This allows for hands-free calling, or 

the integration of mobile navigation systems and audio players into the vehicle’s corresponding 

systems.   

V2D could particularly help prevent accidents involving bicycles, motorcycles, and other 

such vehicles. According to the U.S. Census Bureau [26], the number of Americans commuting 

by bicycle increased by 60% over the last decade, making it the largest percentage increase of 

all commuting modes. V2D would allow cars to communicate with bicycles, alerting them to 

traffic or potential dangers ahead. 
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4 DISCRETE SEQUENCE PREDICTION 

 

4.1 Introduction 

 

Discrete sequence prediction is defined as the task of predicting the next element in a 

sequence of data over a finite alphabet, where all possible outputs are known beforehand. In 

practice, this is usually achieved by providing the predictor with a dataset, then using part of 

that dataset to train the predictor, and part to perform prediction and evaluate its accuracy. 

Since the output belongs to a finite alphabet, and given that prediction is guided by a training 

stage, discrete sequence prediction describes a classification problem in the machine learning 

domain of supervised learning.  

Suppose an alphabet 𝛴 with a finite number of symbols 𝑠1, 𝑠2, … , 𝑠𝑛, where 𝑛 indicates the 

alphabet length. A predictor collects phrases of various lengths, each consisting of symbols 

in 𝛴. These phrases represent the knowledge of the predictor, which it uses to build a model 

that calculates the probability for every possible outcome, based on part of the past [27]. 

Implementations of discrete sequence prediction commonly involve application of Markov 

models. A Markov model is a stochastic model used to describe randomly changing systems, 

under the assumption that the future only depends on some portion of the past. The latter is 

known as the Markov property. Markov chains, the simplest type of Markov model, are 

presented in the following section. 

 

4.2 Markov chains 

 

A Markov chain is a stochastic process satisfying the Markov property, where the system 

is autonomous and its state is fully observable. In probability theory, stochastic processes are 

collections of random variables, each corresponding to different system parameters. The 

system is modeled with a random variable which changes over time. PageRank, an algorithm 

which ranks websites in Google’s search engine results according to their estimated 

importance, is based on a Markov process.   

A time series of a random variable is said to have serial dependence if the value at some 

time t1 is statistically dependent on the value at another time t2. The term “chain” denotes the 

traversal of a sequence of random variables, where serial dependence only applies to 
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neighboring events, according to the Markov property. The system’s state space may be 

countable or continuous, and time may be discrete or continuous. The changes of state of the 

system are called transitions, while the probabilities corresponding to these state changes are 

called transition probabilities. Overall, the process is characterized by a state space, a transition 

matrix describing the probabilities of all transitions, as well as an initial state.  

Let 𝑆 = {1, … , 𝑚} denote the state space of the Markov process, for some positive 𝑚 ∈ ℤ. 

A Markov chain is defined by its transition probabilities 𝑝𝑖𝑗 as follows: 

 

𝑝𝑖𝑗 = 𝑃(𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖), 𝑖, 𝑗 ∈ 𝑆. 

 

Of course, transition probabilities 𝑝𝑖𝑗 are required to be non-negative and their sum must be 1: 

 

∑ 𝑝𝑖𝑗 = 1, ∀𝑖.       

𝑚

𝑗=1

 

 

The transition matrix is merely a 2D matrix where the element at the 𝑖-th row and 𝑗-th column 

is the transition probability 𝑝𝑖𝑗: 

 

[

𝑝11 𝑝12 ⋯ 𝑝1𝑚

𝑝21 𝑝22 ⋯ 𝑝2𝑚

⋮ ⋮ ⋮ ⋮
𝑝𝑚1 𝑝𝑚2 ⋯ 𝑝𝑚𝑚

] . 

 

A discrete-time random process models a system which is in a certain state at each step, 

with the state changing randomly between steps. The transition probabilities 𝑝𝑖𝑗 hold whenever 

the process is in state 𝑖, regardless of any past events or how the process has transitioned to this 

state. The Markov property states that, for any time index 𝑛, for any state 𝑖, 𝑗 ∈ 𝑆, and for all 

possible state sequences 𝑖0, … , 𝑖𝑛−1: 

 

𝑃(𝑋𝑛+1 = 𝑗 |𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑖𝑛−1, … , 𝑋0 = 𝑖0) = 𝑃(𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖) = 𝑝𝑖𝑗  

 

This shows that the conditional probability distribution for the system at the next step depends 

only on the current state of the system, and not additionally on the state of the system at 

previous steps. Given that the probabilities are not time-dependent, the above model is defined 
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as a stationary Markov chain, while the history 𝑖, 𝑖𝑛−1, … is termed the context of the predictor. 

Since the system changes randomly, it is generally impossible to predict with certainty the state 

of a Markov chain at a given point in the future. However, the statistical properties of the 

system's future can be predicted. In many applications, it is these statistical properties that are 

important. 

Markov models are commonly used to model randomly changing systems in various 

application areas, including telecommunications, physics, chemistry, medicine, music, and 

game theory. Board games such as backgammon, where moves are determined only by dice, 

represent Markov chains. The same, however, does not hold for card games such as blackjack, 

where cards signify memory. For instance, let us consider the probability for a certain event in 

the game. In dice games, the only thing that determines the next state is the current state, in 

conjunction with the next roll of the dice. On the other hand, in a game of cards such as 

blackjack, one may increase their chances of winning by tracking which cards have been 

played. 

Text prediction systems are another case where Markov models are vastly preferred. In 

this context, the predictor tries to anticipate the next block of characters, such as individual 

letters, syllables, words, or sentences. Prediction generally relies on the previously encountered 

blocks. If the system makes a correct guess, the number of keystrokes required to form a 

sentence decreases, thereby enhancing the speed of communication. In addition, text prediction 

may improve the overall quality of composed messages by correcting spelling mistakes and 

reordering words or sentences. 

 

4.3 LeZi-Update 

 

The LeZi-Update framework is an online adaptive location management scheme originally 

proposed for MANETs by Bhattacharya and Das [28].  The system accumulates each mobile 

device’s movement history in a digital search tree (trie), building a universal model that allows 

for prediction of future locations with high accuracy. Location areas are represented by 

alphabetic symbols, therefore describing users’ movement history as a symbol string and 

achieving application universality across different networks. The mobile device essentially acts 

as an encoder, while the system acts as a decoder. The symbols are processed in chunks, and 

the sequence of symbols that have occurred since the last update is finally reported in an 

encoded form, similarly to the dictionary-based LZ78 compression algorithm. 
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A new dictionary entry may only be created through concatenation of a single symbol to 

an already existing phrase. For example, the movement history “aaababbbbbaabccddcbaaaa…” 

will be parsed as “a, aa, b, ab, bb, bba, abc, c, d, dc, ba, aaa, …”, with commas indicating 

location updates on behalf of the encoder. Apart from storing the dictionary, the trie also holds 

the frequency of occurrence for each symbol, incrementing it for every suffix of each decoded 

phrase. The resulting trie following the above sequence of symbols is depicted in Figure 3, with 

corresponding frequencies shown in parentheses. 

 

 

Figure 3. Trie for the sequence “aaababbbbbaabccddcbaaaa…”. [28] 

 

The probability assignments are performed using the exclusion technique, often 

encountered in text compression schemes of the prediction by partial match family. Let “aaa” 

be the last update message received. The contexts that can be used for prediction are all suffixes 

of this phrase, excluding itself; that is, “aa” (order-2), “a” (order-1), and “Λ” (order-0). A list 

of all paths and their frequencies with respect to these orders are presented in Table 3.  
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Table 3 – Phrases and their frequencies at contexts “aa”, “a” and “Λ” 

aa (order-2) a (order-1) Λ (order-0) 

a | aa (1) a | a (2) a (5) ba (2) d (1) 

Λ | aa (2) aa | a (1) aa (2) bb (1) dc (1) 

 b | a (1) ab (1) bba (1) Λ (1) 

 bc | a (1) abc (1) bc (1)  

 Λ | a (5) b (3) c (3)  

 

 

Starting from the highest order, the phrase “a” occurs once out of three possible 

occurrences, while the rest produce null predictions. Therefore, it can be predicted with 

probability 
1

3
 at context “aa” and fall back to the next order with probability 

2

3
 . At order 1, “a” 

occurs twice out of ten possible occurrences, hence it can be predicted with probability 
1

5
 at 

context “a” and fall back to order 0 with probability 
1

2
 . Finally, “a” occurs five times out of 

twenty-three possible phrases, which means a probability of 
5

23
 . Therefore, the blended 

probability of occurrence for the phrase “a” is: 

 

1

3
+

2

3
{

1

5
+

1

2
(

5

23
)} = 0.5319. 

 

Given that the phrase consists of one different symbol, the probability mass is entirely assigned 

to it. In the same manner, the probability of occurrence for phrase “bba” is calculated as: 

 

1

3
+

2

3
{

1

5
+

1

2
(

5

23
)} = 0.5319. 

 

Since there is one ‘a’ and two ‘b’s in “bba”, the individual probabilities of these symbols are 

computed as 
1

3
×0.0145 = 0.0048 and  

2

3
×0.0145 = 0.0097 respectively. This procedure of 

frequency blending and distribution among individual symbols is performed for all order-0 

phrases. Finally, the symbols are paged by the system in decreasing order of occurrence 

probability. 
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5 LITERATURE REVIEW 

 

In recent years, with the constantly increasing integration of ADAS in the driving task and 

the imminent commercialization of autonomous vehicles, the subject of location prediction in 

VANETs has been gathering significant scientific interest. Most studies construct models based 

on frequently observed patterns and describe trajectories as an ordered sequence of locations, 

timestamps, weather conditions, and various other factors. Krumm [29] used a Markov chain 

to perform short-term route prediction, considering a context of up to ten street segments, 

finally reaching approximately 90% prediction accuracy. Simmons et al. [30] used a hidden 

Markov model trained with 46 trips, predicting destinations based on knowledge of the road 

network. Even though in their work prediction accuracy is estimated to be around 98%, it 

should be noted that in 95% of all cases, the next street segment is only connected to the current 

one. While this could work adequately with highway networks, it might be somewhat 

unrealistic for big cities, where road intersections are more frequent.   

Not all studies have approached the issue of location prediction using Markov models. 

Karbassi and Barth [31] proposed a car-sharing application that works when the driving start 

and end points are specified. However, such methods have been found to not perform well 

when location data is temporally sparse. Another practical problem is the fact that the driver 

cannot always be expected to specify the exact destination beforehand. Ye et. al. [32] used 

graph theory, representing roads as nodes and their connections as weighted edges, whose 

weights signify the number of times a vehicle has traversed the corresponding street segment. 

This allowed them to leverage the concept of point centrality, thereby assigning measurable 

importance to street segments, and achieving about 80% prediction accuracy. 

Other works have used data mining algorithms to perform location prediction for a single 

moving object, by either considering all other objects in a database [33], or solely relying on 

the movement history of the object itself [34]. In [33], Morzy constructed a probabilistic model 

of all possible object locations by dividing the movement area into a grid, transforming 

movement paths into trajectories with respect to the grid, determining frequent trajectories, and 

extracting movement rules which would finally be matched with the history of an object. 

However, while achieving satisfactory results, this work did not involve either temporal or 

spatial information, which would have rendered decisions more informed. 

 



 

 

22 

 

6 METHODS 

 

6.1 Data analysis 

 

To test our hypothesis, we used a dataset containing mobility traces of 315 taxis in Rome, 

Italy [35], collected over 30 days in 2014. The dataset was provided in the form of a simple 

text file, comprising approximately 22 million lines of taxi IDs, timestamps, and GPS 

coordinates (latitude, longitude). The content of this file was then split into a new text file for 

every taxi, so that each could be processed separately. This dataset was chosen due to its 

considerable time span, the number of different trajectories, but most importantly, the high 

probability of trajectories displaying some level of overlap and repeatability. The last two 

characteristics are particularly significant in location prediction, as opposed to other types of 

prediction (i.e. steering angle prediction,), where longer trajectories from one point to another, 

usually on highways, might be preferred. 

The next step of our analysis was to map each obtained geographic point to its 

corresponding street in Rome, a process known as reverse geocoding. Since our predictor’s 

input is symbols, our primary aim was to be able to assign a discrete symbol to all points within 

a certain street segment. To this end, we employed OpenStreetMap (OSM), a free mapping 

service that can handle reverse geocoding requests, which were made through Nominatim. 

Nominatim is a search engine that specifically works with OSM, and was found to provide 

accurate results throughout our tests. 

To the best of our knowledge, no mapping service provides reverse geocoding without 

limit or free of charge. Given that our project was not funded, and in order to have our millions 

of requests satisfied within a reasonable time frame, a local installation of Nominatim was 

made. This process involved downloading and compiling Nominatim, adding auxiliary data 

from Wikipedia, setting up a local database, and finally, importing and indexing Rome-specific 

OSM data. More setup details may be found in [36]. 

Following the local installation of Nominatim, a script was developed in Python to 

automate the handling of the reverse geocoding requests. This script parsed each of the 315 

taxi files sequentially. For each line, the local database was queried using the extracted latitude 

and longitude, and the resulting street name was saved along with the previously parsed hour 

of occurrence and GPS coordinates. Following a line, any successive identical lines were 
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ignored, as this was interpreted as a stationary vehicle. After execution of the script, each taxi 

file consisted of hours, street names, and GPS coordinates. 

The previous step was necessary in order to be able to divide each street into 30-meter 

segments. This segment length was used to increase prediction accuracy. Had we assigned the 

entirety of each street with a single symbol, some accuracy would certainly have been lost; for 

example, a vehicle currently on a specific street would be more likely to make a turn at an 

intersecting street a few meters away, as opposed to a much farther one. The latter would 

intuitively become more probable as the vehicle approached that particular street, ultimately 

finding itself on the segment intersecting that street. On the other hand, public squares were 

treated as a single street segment, given the limited number of intersecting streets which are 

also in close proximity. 

In turn, the Python script developed for the task of street segmentation parsed the taxi files 

produced by the previous script, collecting all encountered street names and grouping their 

corresponding GPS coordinates together. Without loss of generality, we chose integers to be 

our street segment symbols, due to the large expected number of street segments. We then 

devised an algorithm which, given both a set of points belonging to a particular street and the 

next available symbol, performs the segmentation as follows: as a preliminary step, the first 

point stored for the current street is set as the reference point Pref. Then, for each point Pi, the 

algorithm calculates the distance between Pi and Pref, and assigns the former to a temporary 

symbol as determined by our formula which is presented below. Since it relies on distance, 

however, our formula would inherently misclassify two diametrically opposite points by 

allocating them to the same symbol. Therefore, this assignment is only performed when the 

distance between Pi and the first point that has been allocated to the symbol in question is less 

than or equal to 30 meters. Any points that fail to satisfy this condition are examined in the 

next function call, and properly assigned to the symbol corresponding to the opposite street 

segment; there will be at most two function calls per examined street. A last step is performed 

in order for the final symbols to be allocated to street segments in increasing order. The Python 

code that describes the above algorithm is shown in Figure 4. 
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def street_segment(gps_points, cur_symbol, f_out):       

    segment_length = 30 

    radius = segment_length / 2 

 

    segments = [[]]       # Segments will either be on one or the other  

      # side of the reference point (p) 

     

    p = gps_points[0]     # Save the reference point (p) 

    gps_points.remove(p) 

    segments[0].insert(0, cur_symbol) 

    segments[0].insert(1, p) 

 

    for point in gps_points: 

        dist = haversine(p, point) 

        symbol = cur_symbol + int(ceil(dist / radius)) / 2 

        index = find_index(symbol, segments) 

 

        if index >= 0: 

            if haversine(point, segments[index][1]) > 30:                  

   continue    # Belongs to the other side, examine on next 

     # function call            

        else: 

            segments.append([]) 

            index = len(segments) - 1 

            segments[index].insert(0, symbol) 

         

        segments[index].insert(len(segments[index]), point) 

        gps_points.remove(point) 

 

    for segment in segments: # Final symbol assignment 

        segment.pop(0) 

        for point in segment: 

            f_out.write(str(point) + " " + str(cur_symbol) + "\n") 

            f_out.flush() 

        cur_symbol += 1 

 

    return cur_symbol 

Figure 4. Python code for our street segmentation algorithm. 

 

Consider the following example. Let P1, P2, P3, and P4 be points on the same street, with 

their respective distances from Pref having been calculated as 34, 16, 43, and 92 meters. 

Assuming that the next symbol to be assigned is 0, we have: 𝑠𝑦𝑚𝑏𝑜𝑙𝑃1
= 0 +

𝑐𝑒𝑖𝑙(
34

15
)

2
= 0 +

1 = 1, where “ceil” represents the mathematical ceiling function, and the division remainder 

is discarded. Likewise, 𝑠𝑦𝑚𝑏𝑜𝑙𝑃2
= 0, 𝑠𝑦𝑚𝑏𝑜𝑙𝑃3

= 1, and 𝑠𝑦𝑚𝑏𝑜𝑙𝑃4
= 3. However, while 

the temporary symbol for both P1 and P3 was calculated as 1, P3 is in fact diametrically opposite 

to P1 with reference to Pref. Therefore, the assignment for P3 is delayed until the next function 

call. After performing the final symbol assignment step in the first function call, the points and 

their respective symbols would look as follows: Pref  0, P1  1, P2  0, P4  2. Finally, 
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after the second final call, we would obtain P3  3. A visual representation of this example is 

provided in Figure 5. 

 

Figure 5. Illustration of our street segmentation algorithm running with 5 points. 

 

Our algorithm employs the haversine formula [37] to determine the great-circle distance 

between two points on a sphere, given their GPS coordinates. The great-circle distance is 

defined as the shortest distance between two points on the surface of a sphere, measured along 

the surface of the sphere, as opposed to a straight line through the sphere's interior. This formula 

has been proven to provide mathematically and computationally exact results, as opposed to 

the Pythagorean Theorem which, in our case, would result in minor computational error. 

 

6.2 Prediction model 

 

We survey the performance of the LeZi-Update prediction scheme presented in section 

4.3, as well as an enhanced version where prediction is also guided by time of occurrence. 

LeZi-Update was chosen as the basis of our work because, given that VANETs are 

characterized by high mobility, there is need for fast message dissemination. The LZ78-based 

update scheme employed by the LeZi-Update algorithm could reduce bandwidth usage by 

delaying update messages sent by vehicles, as it did in the case of mobile networks. Moreover, 

given that VANETs have little storage constraints, smart road infrastructures would be able to 

accumulate large amounts of data over time, therefore achieving high prediction accuracy.  
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In our modification of the LeZi-Update algorithm, the encoder parses the input, which 

contains pairs of timestamps and symbols as described in the previous section, and forms 

update phrases as per the original scheme. However, these update phrases consist not only of a 

sequence of symbols, but also the hour of occurrence, which is appended at the end. Therefore, 

if the encoder encounters a different timestamp while collecting symbols from the input, then 

this will mark the start of the next update phrase. Each encoder, which in this case is one of 

315 taxis, constructs its own trie; in contrast, the decoder builds a universal trie based on all 

messages received by the encoders. 

In the original LeZi-Update algorithm, each trie node stores a single dictionary symbol 

along with its frequency of occurrence. In our modification, this frequency is represented as an 

array of 24 cells, each corresponding to an hour of a day. When the decoder receives an update 

message from an encoder, it adds the symbol phrase and its suffixes to the trie, each time 

incrementing the cell matching the hour of occurrence by 1. For illustration purposes, consider 

the trie shown in Figure 6, built after some sequence of updates. The arrows starting from the 

leftmost nodes “100” and “101” point to their respective frequency arrays. Only these two 

nodes’ frequency arrays are displayed, for brevity.  

 

 

Figure 6. Example trie built by the decoder (before the update message). 

 

Let the next received update message be “100, 101, 102, 2”. In this phrase, “100”, “101”, and 

“102” are symbols, while “2” is the hour of occurrence. The decoder will then add the phrase 
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and its suffixes to the universal trie as previously explained. The resulting trie is shown below, 

in Figure 7.  

 

 

Figure 7. Example trie built by the decoder (after the update message). 

 

The reason for storing the frequency of occurrence in such an array is that this allows us 

to perform time blending upon prediction request. Instead of merely using a universal 

frequency for each trie node, as is done in the original LeZi-Update algorithm, our expanded 

model considers the time of day when prediction is to be performed. This is achieved by 

“blending” the individual frequencies stored in the previously described array, for each node 

in the trie. Let ℎ denote the cell matching the hour of prediction. After obtaining the entire 

value 𝑣 from cell ℎ, we iterate through the remaining cells as follows: in each iteration 𝑖, we 

add a fraction of the values at cells ℎ − 𝑖 and ℎ + 𝑖 to 𝑣, then reduce this fraction for the next 

iteration. These iterations are modular; when moving towards the last cell of the array, the next 

iteration will start from the first cell. Likewise, when moving towards the first cell of the array, 

the next iteration will examine the last cell. 

While describing the process of time blending, we mentioned that only a fraction of the 

value in each cell was included in the final sum. Two different types of blending were devised 

with respect to how this fraction is reduced after each iteration; namely, the “linear” and 



 

 

28 

 

“exponential” types. In the former, the fraction is reduced by 
1

12
, while in the latter, it is divided 

by 2. The Java code for time blending, using the linear and exponential methods, is presented 

in Figure 8 and Figure 9 respectively. After calculating the blended frequency for each node, 

the phrase probabilities are calculated and then distributed to individual symbols as per the 

LeZi-Update algorithm. In turn, the symbol with the highest probability of occurrence is 

selected as our algorithm’s prediction, which is evaluated when the decoder receives the next 

update phrase. 

 

double f = frequency[hour]; 

double factor = 1.0 - 1.0 / 12;                

                 

for (int i = 1; i < 12; i++) { 

    f += factor * frequency[((hour - i < 0) ? hour - i + 24 : hour - i)]; 

    f += factor * frequency[(hour + i) % 24]; 

    factor -= 1.0 / 12; 

} 

 

f += factor * frequency[((hour - 12 < 0) ? hour - 12 + 24 : hour -12)]; 

return f; 

Figure 8. Java code for linear time blending. 

 

double f = frequency[hour]; 

double factor = 0.5;            

                 

for (int i = 1; i < 12; i++) { 

    f += factor * frequency[((hour - i < 0) ? hour - i + 24 : hour - i)]; 

    f += factor * frequency[(hour + i) % 24]; 

    factor /= 2; 

} 

 

f += factor * frequency[((hour - 12 < 0) ? hour - 12 + 24 : hour -12)]; 

return f; 

Figure 9. Java code for exponential time blending. 

 

For accurate measurement of our prediction error, we employed the holdout set method. 

This technique has been found to provide highly accurate results when equipped with sufficient 

data, with the added benefit of simple implementation. The data is divided into two groups: 

one is used to train the model, while the second is used to measure the error of the resulting 

model. By holding out part of the dataset, we can directly measure the model’s true prediction 

error, which is how well it will predict new data. We chose 80% of our dataset as the training 

data, while the remaining 20% was the test data; this is a very common selection for the holdout 

set. 
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7 RESULTS 

 

The cumulative prediction accuracy for contexts up to length 10 is presented in Figure 10. 

Upon first examination, one may observe that all time blending strategies have a very low hit 

rate for contexts of unit length. As street segments were being traversed for the first time by 

each of the 315 encoders, given that each builds its own trie, a large number of predictions 

(61%) were performed using unit-length contexts. Whenever such contexts were used, the 

result was essentially the most frequently encountered street segment (universally) at the time 

of prediction. Since the encoder could be arbitrarily far from that segment when prediction was 

performed, and considering that Rome has a total area of 1,285 km², the corresponding hit rates 

are considered reasonable.  

 

 

Figure 10. Prediction accuracy for contexts up to length 10. 

 

As expected, higher orders provide increased prediction accuracy for all time blending 

modes. However, our results show that prediction accuracy is not very sensitive to the time of 

day. In fact, it seems to have a slightly negative impact on prediction, with the linear time 

blending mode performing better than its exponential counterpart in most cases. This 

performance difference seems sensible, given that the exponential mode is much stricter by 
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blending smaller fractions of frequencies.  It is possible that having more location data, as well 

as more features (i.e. day of the week, velocity, weather, etc.) would help trip patterns emerge 

more clearly, thereby refining prediction accuracy. For example, people usually commute to 

work or take their children to school during weekday mornings, but not on weekends. 

Unfortunately, currently available datasets containing such features were a bad fit for our 

purposes, as they usually comprised a car equipped with various sensors, performing a single 

trip from one point to another.   

 

 

Figure 11. Prediction accuracy for contexts of length 11 to 20. 

 

An illustration of the prediction results for contexts of length 11 to 20 is offered in Figure 

11, while the results for the remaining context lengths are shown in Figure 12. We found that 

as the context length increases, the number of such contexts decreases steadily, as shown using 

a logarithmic plot in Figure 13. We chose a logarithmic plot because the data was skewed 

towards large values, making smaller ones indistinguishable. For instance, there were 877061 

samples for context length 1, 430807 samples for context length 2, 76336 samples for context 

length 3, while there were only 7 samples for context length 27 and just 1 sample for context 

length 38. In fact, all contexts longer than 18 had fewer than 100 samples each. Given that 

longer contexts generally produce higher prediction accuracy, and considering that contexts 
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with size larger than 18 had so few samples in comparison with the rest, it falls well within 

expectations that hit rates as high as 100% are achieved. 

 

 

Figure 12. Prediction accuracy for contexts of length 21 to 38. 

 

 

Figure 13. Logarithmic plot showing how the number of samples decreases over increasing context lengths. 
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8 CONCLUSION 

 

In this work, our aim was to survey the prediction performance of LeZi-Update, an 

algorithm originally developed for MANETs, in a network where nodes are vehicular and 

therefore requirements and mobility dynamics are different. Moreover, in order to test whether 

the time of day affects prediction accuracy, we modified the algorithm to factor time into the 

prediction process in two ways. Our experiments indicate that the prediction accuracy of LeZi-

Update in VANETs remains high, increasing when using longer contexts, and reaching levels 

as high as 100%. We also show that time of day is insignificant in predicting the next street 

segment, and could be ignored to reduce overall complexity. 

We were presented with a number of challenges at different stages of our research. While 

we were able to overcome most of them, some proved to be insuperable due to either a lack of 

time or resources. Our predictor’s accuracy, while very satisfactory, would have certainly 

benefited from higher digital map precision, perhaps also containing lane and intersection 

information. While the Google Maps Geocoding API offers optimal map precision, its free use 

is limited. Since our project was not funded, we could not afford to make more than 2,500 

requests per day, and even if we could, use with our project would still not be permitted 

according to Google’s terms of service. Other Geocoding APIs, such as Bing Maps REST 

Services and Yahoo! PlaceFinder, often proved inaccurate or lacking details during tests.   

Currently available datasets containing more parameters (such as velocity, gear, steering 

angle, etc.) were far too large for the available hardware to handle, and did not contain 

sufficient location data or desirable trajectory overlap and repeatability. In our future work, we 

would like to blend more factors into the prediction process, and evaluate their contribution 

individually. We would also like to use cross-validation, a more accurate error-measuring 

method, which was unfortunately not employed due to being too computationally intensive for 

available hardware. 
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