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UNIVERSITY OF THESSALY

Abstract

Department of Electrical and Computer Engineering

Doctor of Philosophy

Energy Management and Consumer Modeling in Smart Grid Systems

by Vassiliki Hatzi

In the last decades, energy efficiency has turned into a major research issue, since the

energy requirements of modern societies are growing continuously. Researchers have

focused on optimizing the efficiency of the modernized power grid, i.e., the smart grid,

which has evolved into a complex ecosystem with different actors such as consumers,

operators and generators having different active roles in the system. They have also

focused on improving the energy efficiency of ICT which is a prerequisite for efficient

smart grids. Moreover, the advance of key technologies such as energy storage, renewable

energy sources (RESs), communication and control has opened the way to new research

directions. In this thesis, we present some key research problems in the context of this

area, and we explore the use of control and optimization methods toward approaching

them. Specifically, our goal is to address i) system challenges pertaining to the integra-

tion of energy storage and RESs into the smart grid and ii) challenges related to the

energy consumer aspect.

Energy storage devices, like uninterrupted power supply (UPS) or batteries, and Plug-in

Hybrid Electric Vehicles (PHEVs), are prime resources for smart-grid efficiency improve-

ment which need to be appropriately managed and incorporated into smart grid systems.

In this context, we study two fundamental problems in energy storage management and

dimensioning in smart grids. Specifically, first, we introduce the optimal energy storage

control problem faced by an energy supplier, which amounts to deciding when and how

much to charge and discharge a storage device in order to achieve a certain optimization

objective in terms of energy generation cost. We address the problem above, first for a

single storage device, and then for multiple storage devices that are shared among mul-

tiple micro-grids. Our optimization objective leads us to policies which attempt to keep

balanced grid power consumption at all times. Next, we study a joint energy storage

placement, dimensioning and management problem, given an available storage budget,

where the goal is to minimize the power generation cost. We are interested in the way

storage capacity placement and control impact the overall cost of energy generation.
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The solution policy for this problem involves various parameters such as the demand

profiles of consumers, and power flow and balance constraints.

RESs rely mainly on energy that flows naturally through the environment on a continual

but time-varying basis and have received major attention in the last years due to their

significant potential in reducing the carbon footprint. In this thesis, we study the use of

renewable energy sources and scheduling techniques toward reducing the carbon foot-

print induced by an ICT system, namely, the web crawling component of a web search

engine. This component discovers and downloads new pages on the Web as well as re-

freshes previously downloaded pages in the web repository. We introduce the problem

of green web crawling, where the objective is to devise a page refresh policy that keeps

the web pages as much as possible fresh and the carbon emissions that the web crawling

process incurs on remote web servers low enough. We devise an optimal policy, which

can be implemented in an online fashion, based only on the type of energy consumed by

the servers and the staleness of the pages in the web repository. We also devise heuristics

along the lines of the optimal policy and study their performance through experiments

with real data.

Demand-side management (DSM) activities for the smart grid aim to reduce or smoothen

energy consumption by providing dynamic prices or incentives in the form of monetary

or non-monetary rewards to consumers. Different DSM techniques have been proposed,

however, a fundamental issue in their design and operation is the recruitment of users.

Serious-games design is an emerging area that can address precisely the issue of maxi-

mizing user engagement in various contexts. In this thesis, we discuss the use of serious

games for demand-side management in smart grids. We introduce the problem of op-

timal serious-games design for the purpose of enforcing prudent energy consumption.

We present a mathematical model of a simple gamification mechanism through which a

serious-game designer (e.g., a demand-side management entity) aims to motivate con-

sumers to reduce their energy consumption at peak hours by setting up a contest and

by providing them incentives in the context of a serious game. The game designer opti-

mally selects the game parameters, so as the utility-maximizing choices of consumers to

minimize the energy generation cost of the energy supplier. We demonstrate that even

such a simple serious-game design can provide adequate incentives to users for engaging

in demand-side management.

Finally, most proposed DSM schemes assume that consumers are rational decision mak-

ers which select their actions by solving complex optimization problems. However, con-

sumers are humans and their decisions, which are driven by different factors, are far from

rational. In this direction, we discuss the role of data in building behavior-based mod-

els for profiling energy consumers and predicting their behavior in DSM programs and
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energy consumption curtailment campaigns. Our ultimate goal is to discover through

these models the different factors that determine consumer actions and the different im-

portance placed on them. We present two different data-driven approaches for consumer

modeling which are based on a popular machine-learning tool and a cognitive heuristic.

We show that both approaches succeed in capturing the different importance that each

consumer places on different factors and the uncertainty on consumer actions. We also

introduce the optimal load-reduction task and incentive allocation problem faced by the

designer of an energy consumption reduction campaign. The aim of the designer is to

target tasks and incentives appropriately based on the different consumer profiles, so as

to best fulfill the purpose of the campaign.
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ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ 

Περίληψη 

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών 

Διδακτορικό Δίπλωμα 

Διαχείριση Ενέργειας και Μοντελοποίηση Καταναλωτών σε Έξυπνα Δίκτυα 

Ηλεκτρικής Ενέργειας 

Βασιλική Χατζή 

 

Τις τελευταίες δεκαετίες, η ενεργειακή αποδοτικότητα αποτελεί μείζον ερευνητικό θέμα, 

καθώς οι ενεργειακές απαιτήσεις των σύγχρονων κοινωνιών αυξάνονται συνεχώς. Οι 

ερευνητές έχουν επικεντρωθεί στην βελτιστοποίηση της αποδοτικότητας του 

εκμοντερνισμένου δικτύου ισχύος, δηλαδή του έξυπνου δικτύου ηλεκτρικής ενέργειας, το 

οποίο έχει εξελιχθεί σε ένα πολυσύνθετο οικοσύστημα με διάφορους παράγοντες/φορείς 

όπως καταναλωτές, φορείς εκμετάλλευσης (διαχειριστές) και παραγωγούς ηλεκτρικής 

ενέργειας οι οποίοι έχουν διαφορετικούς ενεργούς ρόλους στο σύστημα. Έχουν επίσης 

επικεντρωθεί στην βελτιστοποίηση της ενεργειακής αποδοτικότητας των Τεχνολογιών 

Πληροφορίας και Επικοινωνιών (ΤΠΕ), οι οποίες αποτελούν απαραίτητη προϋπόθεση για 

την ανάπτυξη αποδοτικών έξυπνων δικτύων ηλεκτρικής ενέργειας. Επιπλέον, η εξέλιξη 

βασικών τεχνολογίων, όπως η αποθήκευση ενέργειας, οι ανανεώσιμες πηγές ενέργειας 

(ΑΠΕ), η επικοινωνία και ο έλεγχος, άνοιξε τον δρόμο σε νέες ερευνητικές κατευθύνσεις. 

Στην παρούσα διδακτορική διατριβή, παρουσιάζουμε μερικά καίρια ερευνητικά 

προβλήματα στο πλαίσιο αυτής της ερευνητικής περιοχής, και διερευνούμε τη χρήση 

μεθόδων ελέγχου και βελτιστοποίησης για την προσέγγιση τους.  Συγκεκριμένα, στόχος 

μας είναι να αντιμετωπίσουμε α) προκλήσεις σε επίπεδο συστήματος που αφορούν την 

ενσωμάτωση αποθηκών ενέργειας και ΑΠΕ στο έξυπνο δικτύο ηλεκτρικής ενέργειας και  

β) προκλήσεις που σχετίζονται με τον ίδιο καταναλωτή. 

Οι συσκευές αποθήκευσης ενέργειας, όπως η αδιάλειπτη παροχή ηλεκτρικού ρεύματος 

(UPS) ή οι μπαταρίες, και τα επαναφορτιζόμενα υβριδικά ηλεκτρικά αυτοκίνητα (PHEVs), 

είναι πρωταρχικοί πόροι για την βελτιστοποίηση της αποτελεσματικότητας του έξυπνου 

δικτύου ηλεκτρικής ενέργειας, οι οποίοι πρέπει να ενσωματωθούν και να διαχειρισθούν 

κατάλληλα σε συστήματα έξυπνων δικτύων ηλεκτρικής ενέργειας. Σε αυτό το πλαίσιο, 

μελετούμε δύο θεμελιώδη προβλήματα που αφορούν την διαχείριση και διαστασιολόγηση 

αποθηκών ενέργειας σε έξυπνα δίκτυα ηλεκτρικής ενέργειας. Συγκεκριμένα, αρχικά, 

παρουσιάζουμε το πρόβλημα βέλτιστου ελέγχου αποθήκευσης ενέργειας που 

αντιμετωπίζει  ένας προμηθευτής ενέργειας, το οποίο αφορά την λήψη αποφάσεων σχετικά 
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με το πότε και πόσο να φορτίσει και να αποφορτίσει μια συσκευή αποθήκευσης έτσι ώστε 

να επιτύχει έναν συγκεκριμένο αντικειμενικό σκοπό βελτιστοποίησης σε όρους κόστους 

παραγωγής ενέργειας. Επιλύουμε το παραπάνω πρόβλημα, αρχικά για μία μοναδική 

συσκευή αποθήκευσης και έπειτα για πολλαπλές συσκευές αποθήκευσης οι οποίες 

χρησιμοποιούνται από κοινού από πολλαπλά μικρο-δικτύα. Ο αντικειμενικός στόχος του 

προβλήματος μας οδηγεί σε πολιτικές που προσπαθούν να διατηρήσουν μια ισορροπημένη 

κατανάλωση ισχύος στο δίκτυο ανά πάσα στιγμή. Έπειτα, μελετούμε ένα πρόβλημα 

τοποθέτησης, διαστασιολόγησης και διαχείρισης αποθηκών ενέργειας με δεδομένο ένα 

διαθέσιμο μπάτζετ αποθήκευσης, όπου ο στόχος είναι να ελαχιστοποιηθεί το κόστος 

παραγωγής ενέργειας. Μας ενδιαφέρει ο τρόπος με τον οποίο η τοποθέτηση και ο έλεγχος 

της χωρητικότητας αποθήκευσης επηρεάζουν το συνολικό κόστος παραγωγής ενέργειας. 

Η πολιτική που προκύπτει από την επίλυση του προβλήματος εμπλέκει διάφορες 

παραμέτρους όπως τα προφίλ ζήτησης των καταναλωτών, και περιορισμούς ροής και 

ισορροπίας ισχύος. 

Οι ΑΠΕ βασίζονται κυρίως σε ενέργεια που ρέει φυσικά μέσω του περιβάλλοντος σε 

συνεχή αλλά χρονικά μεταβαλλόμενη βάση, και τα τελευταία χρόνια έχουν προσελκύσει 

το ενδιαφέρον λόγω της σημαντικής τους προοπτικής να μειώσουν το αποτύπωμα 

άνθρακα. Στην παρούσα διατριβή, μελετούμε τη χρήση ΑΠΕ και τεχνικών 

χρονοπρογραμματισμού με στόχο την μείωση του αποτυπώματος άνθρακα που 

προκαλείται από ένα σύστημα ΤΠΕ, συγκεκριμένα, από το πρόγραμμα ανίχνευσης 

παγκόσμιου ιστού μιας μηχανής διαδικτυακής αναζήτησης. Αυτό το πρόγραμμα 

ανακαλύπτει και κατεβάζει νέες ιστοσελίδες του παγκόσμιου ιστού καθώς επίσης, 

ανανεώνει σελίδες που έχουν κατεβεί προηγουμένως στον αποθηκευτικό χώρο του ιστού 

(web repository). Eισάγουμε το πρόβλημα της πράσινης (οικολογικής) ανίχνευσης 

παγκόσμιου ιστού, όπου αντικειμενικός σκοπός είναι να αναπτύξουμε μια πολιτική 

ανανέωσης σελίδων η οποία να διατηρεί τις ιστοσελίδες όσο το δυνατόν περισσότερο 

ανανεωμένες και τις εκπομπές διοξειδίου του άνθρακα, που η διαδικασία ανίχνευσης ιστού 

προκαλεί σε απομακρυσμένους διακομιστές διαδικτύου, αρκετά χαμηλές. Εξάγουμε μια 

βέλτιστη πολιτική η οποία μπορεί να εφαρμοστεί σε πραγματικό χρόνο βασιζόμενη μόνο 

στον τύπο της ενέργειας που καταναλώνεται από τους  διακομιστές διαδικτύου και στην 

παλαιότητα των σελίδων που βρίσκονται στον αποθηκευτικό χώρο του ιστού. 

Αναπτύσσουμε επίσης ευριστικές πολιτικές έχοντας ως πρότυπο την βέλτιστη πολιτική και 

μελετούμε την απόδοση τους μέσω πειραμάτων με πραγματικά δεδομένα. 

Οι δραστηριότητες διαχείρισης ζήτησης για το έξυπνο δίκτυο ηλεκτρικής ενέργειας έχουν 

ως στόχο να μειώσουν ή να εξομαλύνουν την κατανάλωση ενέργειας παρέχοντας στους 

καταναλωτές δυναμικές τιμές ή κίνητρα υπό την μορφή χρηματικών ή μη χρηματικών 

ανταμοιβών. Διάφορες τεχνικές διαχείρισης ζήτησης έχουν προταθεί, ωστόσο, ένα βασικό 

θέμα στον σχεδιασμό και στην λειτουργία τους είναι η στρατολόγηση των χρηστών. Ο 

σχεδιασμός σοβαρών παιγνίων είναι μια αναδυόμενη περιοχή που μπορεί να αντιμετωπίσει 
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με ακρίβεια το ζήτημα της μεγιστοποίησης της συμμετοχής των χρηστών σε διάφορα 

πλαίσια. Στην παρούσα διδακτορική διατριβή, συζητούμε την χρήση των σοβαρών 

παιγνίων στο ζήτημα της διαχείρησης της ζήτησης στα έξυπνα ηλεκτρικά δίκτυα. 

Εισάγουμε το πρόβλημα του βέλτιστου σχεδιασμού σοβαρών παιγνίων έχοντας ως στόχο 

την επιβολή συνετής κατανάλωσης ενέργειας. Παρουσιάζουμε ένα μαθηματικό μοντέλο 

ενός απλού μηχανισμού παιχνιδοποίησης μέσω του οποίου ένας σχεδιαστής σοβαρού 

παιγνίου (π.χ. μια οντότητα διαχείρισης ζήτησης) επιδιώκει να παρακινήσει τους 

καταναλωτές να μειώσουν την ενεργειακή τους κατανάλωση σε ώρες αιχμής (υψηλής 

ζήτησης) στήνοντας έναν διαγωνισμό και παρέχοντας τους κίνητρα στο πλαίσιο ενός 

σοβαρού παιγνίου. Ο  σχεδιαστής επιλέγει βέλτιστα τις παραμέτρους του παιγνίου έτσι 

ώστε οι επιλογές των καταναλωτών, οι οποίες μεγιστοποιούν την χρησιμότητα/όφελος των 

καταναλωτών, να ελαχιστοποιούν το κόστος παραγωγής ενέργειας του προμηθευτή 

ενέργειας. 

Τέλος, οι περισσότερες προτεινόμενες στρατηγικές διαχείρισης ζήτησης υποθέτουν ότι οι 

καταναλωτές λαμβάνουν αποφάσεις ορθολογικά και ότι επιλέγουν τις δράσεις τους 

λύνοντας πολύπλοκα προβλήματα βελτιστοποίησης. Ωστόσο, οι καταναλωτές είναι 

άνθρωποι και οι αποφάσεις τους, οι οποίες οδηγούνται από διάφορους παράγοντες, 

απέχουν πολύ από τη λογική. Προς αυτή την κατεύθυνση, συζητούμε τον ρόλο των 

δεδομένων στο χτίσιμο μοντέλων που βασίζονται στην ανθρώπινη συμπεριφορά, τα οποία 

χρησιμοποιούνται για την δημιουργία προφίλ των καταναλωτών ενέργειας και την 

πρόβλεψη της συμπεριφοράς τους σε προγράμματα διαχείρησης ζήτησης και σε 

καμπάνιες/εκστρατείες μείωσης της κατανάλωσης ενέργειας. Στόχος μας είναι να 

ανακαλύψουμε μέσω αυτών των μοντέλων τους διαφορετικούς παράγοντες που 

καθορίζουν τις πράξεις/δράσεις των καταναλωτών και την διαφορετική βαρύτητα που 

δίνεται σε αυτούς. Παρουσιάζουμε δύο διαφορετικές προσεγγίσεις για την μοντελοποίηση 

των καταναλωτών, οι οποίες έχουν ως γνώμονα τα δεδομένα και βασίζονται σε ένα 

δημοφιλές εργαλείο μηχανικής μάθησης και σε ένα γνωσιακό ευριστικό μοντέλο. 

Δείχνουμε ότι και οι δύο προσεγγίσεις επιτυγχάνουν στο να συλλάβουν την διαφορετική 

βαρύτητα/σημασία που ο κάθε καταναλωτής δίνει στους διαφορετικούς παράγοντες και 

την αβεβαιότητα στις πράξεις των καταναλωτών. Εισάγουμε επίσης το πρόβλημα της 

βέλτιστης κατανομής κινήτρων και εργασιών μείωσης φορτίου που αντιμετωπίζει ο 

σχεδιαστής μιας καμπάνιας μείωσης της κατανάλωσης ενέργειας. Στόχος του σχεδιαστή 

είναι να κατευθύνει εργασίες και κίνητρα κατάλληλα βάσει των διαφορετικών προφίλ των 

καταναλωτών, έτσι ώστε να εκπληρώσει βέλτιστα τον σκοπό της καμπάνιας.   

 

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Acknowledgements

This thesis represents the culmination of research that was conducted towards my PhD

degree from the Department of Electrical and Computer Engineering, University of

Thessaly, Greece.

First and foremost, I would like to thank Associate Prof. Iordanis Koutsopoulos for not

only giving me the opportunity to work with him but also being a great mentor. I am

deeply indebted to him for first taking me as an undergraduate and Master’s student,

and for offering constructive criticism and advice throughout my time as his student.

His patient guidance and understanding have been a great support in this long journey.

I would like to express my thanks and appreciation to the members of the thesis com-

mittee; Assistant Prof. Aspassia Daskalopulu, Associate Prof. Iordanis Koutsopoulos,

Assistant Prof. Athanasios Korakis, Prof. Lefteris Tsoukalas, Prof. Emmanouil Vavalis,

Assistant Prof. Dimitrios Katsaros and Assistant Prof. Antonios Argyriou.

I would like to thank Prof. Leandros Tassiulas for co-supervising the energy storage

management problem presented in Chapter 2. One of the problems, the green web-

crawling one presented in Chapter 3 was studied in collaboration with Yahoo! Labs

Barcelona. I would like to thank Dr. Berkant Barla Cambazoglu (Yahoo! Labs) for the

fruitful cooperation in the context of this work and for providing real data (sampled

from a large web crawl performed by Yahoo!).

Finally, special thanks go to my parents, my sister and my husband for their love and

patience all these years. Their continuous support made the accomplishment of this

thesis possible. The least I can do in return is to dedicate this thesis to them.

ix

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Publications

The results of this thesis are included in the following publications:

International Conferences

[C.1 ] V. Hatzi, B. B. Cambazoglu and I. Koutsopoulos, “Web Page Download Schedul-

ing Policies for Green Web Crawling”, Proc. 22nd International Conference on

Software, Telecommunications and Computer Networks (SoftCOM), September

2014.

[C.2 ] T. G. Papaioannou, V. Hatzi and I. Koutsopoulos, “Optimal Design of Serious

Games for Demand Side Management”, Proc. IEEE International Conference on

Smart Grid Communications (SmartGridComm), Venice, Italy, November 2014.

[C.3 ] I. Koutsopoulos, V. Hatzi, and L. Tassiulas, “Optimal Energy Storage Control

Policies for the Smart Power Grid”, Proc. IEEE International Conference on

Smart Grid Communications (SmartGridComm), pp. 475-480, Brussels, 2011.

International Journals and Magazines

[J.1 ] V. Hatzi, B. B. Cambazoglu, and I. Koutsopoulos,“Optimal Web Page Download

Scheduling Policies for Green Web Crawling”, IEEE Journal on Selected Areas in

Communications, vol. 34, no. 5, pp. 1378-1388, May 2016.

[J.2 ] T. Papaioannou, V. Hatzi, and I. Koutsopoulos, “Optimal Design of Serious

Games for Consumer Engagement in the Smart Grid”, IEEE Transactions on

Smart Grid, June 2016.

Participation in Books

[B.1 ] I. Koutsopoulos, T. Papaioannou, and V. Hatzi, “Modeling and Optimization of

the Smart Grid Ecosystem”, Foundations and Trends in Networking, vol. 10, no.

2-3, pp. 115-316, June 2016.

x

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Publications xi

In Preparation for Submission

[S.1 ] V. Hatzi, I. Koutsopoulos, and L. Tassiulas, “Optimal Energy Storage Manage-

ment Policies for Smart Grid Systems”.

[S.2 ] V. Hatzi, and I. Koutsopoulos, “Optimal Design of Energy Consumption Reduc-

tion Campaigns Through Behavioral Data-Driven Consumer Profiling”.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Contents

Declaration of Authorship i

Abstract iii

Greek Abstract vi

Acknowledgements ix

Publications x

Contents xii

List of Figures xvi

List of Tables xviii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Optimal Energy Storage Management and Dimensioning in Smart Grid
Systems 8

2.1 Introduction to the Employment of Energy Storage Devices in the Smart
Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Optimal Energy Storage Control Policies for the Energy Supplier . . . . . 11

2.2.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 An Asymptotically Optimal Control Policy . . . . . . . . . . . . . 16

2.2.4 Extension to the model: Renewable source . . . . . . . . . . . . . 18

2.2.5 Multiple Storage Devices and Grid Entities . . . . . . . . . . . . . 19

2.2.5.1 Case A: Minimization of cost of aggregate demand . . . . 22

2.2.5.2 Case B: Minimization of sum of individual GE costs . . . 23

2.2.5.3 Asymptotically Optimal Control Policy . . . . . . . . . . 24

2.2.6 Extensions to the model . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.6.1 Non-Stationarity of Renewable Energy Generation . . . . 25

xii

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Contents xiii

2.2.6.2 Storage Device Modeling . . . . . . . . . . . . . . . . . . 26

2.2.6.3 Transmission Losses . . . . . . . . . . . . . . . . . . . . . 26

2.2.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.7.1 One Storage Device . . . . . . . . . . . . . . . . . . . . . 27

2.2.7.2 Two storage devices and GEs . . . . . . . . . . . . . . . . 29

2.3 Storage Placement and Power Flow . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Power flow analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 Storage and power flow model . . . . . . . . . . . . . . . . . . . . . 32

2.3.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.4 Numerical Example 1: Storage placement for N=2 buses . . . . . . 35

2.3.5 Numerical Example 2: Storage dimensioning for N=2 buses . . . . 38

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Green Web Crawling 43

3.1 Introduction to the Energy Efficiency of Web Search Engines . . . . . . . 44

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Web Crawler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Web Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Greenness of Server Energy Consumption . . . . . . . . . . . . . . 48

3.2.4 Web Page Staleness . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Single Web Server, Single Thread Scheduling Problem . . . . . . . 49

3.3.2 Optimal Web Page Download Scheduling Policy . . . . . . . . . . 51

3.3.3 Extensions to the Model . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3.1 Many Web Servers . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3.2 Many Web Servers, Multiple Crawling Threads . . . . . . 54

3.3.3.3 Web Pages with Variable Freshness Requirements . . . . 54

3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 Greenness and Staleness Computation . . . . . . . . . . . . . . . . 55

3.4.3 Heuristic Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.4.1 Performance of the Optimal Policy . . . . . . . . . . . . . 59

3.4.4.2 Performance of the Heuristic Policies . . . . . . . . . . . 60

3.4.4.3 Performance Comparison . . . . . . . . . . . . . . . . . . 62

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Refreshing Web Repositories . . . . . . . . . . . . . . . . . . . . . 63

3.5.2 Job and Packet Processing . . . . . . . . . . . . . . . . . . . . . . 63

3.5.3 Energy Efficiency and Greenness of Data Centers . . . . . . . . . . 64

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Optimal Design of Serious Games for Smart Grid Consumer Engage-
ment 66

4.1 Introduction to the Concept of Serious Games for Demand-side Management 67

4.2 Serious Game Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Contents xiv

4.3.1 Consumer’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1.1 Dissatisfaction . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1.2 Social recognition . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1.3 Feedback to consumers . . . . . . . . . . . . . . . . . . . 73

4.3.1.4 Probability of inclusion in the top-K and the bottom-M
lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1.5 User utility function . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 Game Designer’s Problem . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2.1 Full information of consumer utility functions . . . . . . . 77

4.3.2.2 Historical information about consumer actions . . . . . . 79

4.3.3 Equilibrium of the Stackelberg game arising from serious-game
interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.2 Steady-State Convergence and Wear-off Effects . . . . . . . . . . . 81

4.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Optimal Design of Energy Consumption Reduction Campaigns Through
Behavioral Data-Driven Consumer Profiling 88

5.1 Introduction to Data-driven Energy Consumer Profiling and Behavior
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.1 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Energy Consumption Reduction Campaign: A simple scenario . . . . . . . 92

5.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Incentive and load-reduction task allocation: Problem formulation . . . . 94

5.5 Consumer profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5.1 Logistic Regression model, and Optimal Task and Incentive Allo-
cation Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5.1.1 Optimal allocation of incentives and load reduction tasks
in the case of LR: A sigmoid optimization problem . . . . 96

5.5.2 Fast-and-Frugal Tree model, and Optimal Task and Incentive Al-
location Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.2.1 Optimal allocation of incentives and load reduction tasks
in the case of FFTs: An integer linear programming
(ILP) problem . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Concluding Remarks and Future Challenges 111

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Future challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A Training the Logistic Regression models 116

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Contents xv

B Training the Fast-and-Frugal Trees 118

C Building procedure details and performance analysis of the fitted LR
and FFT models of section 5.6 121

Bibliography 126

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



List of Figures

1.1 Example electricity demand curve showing the effect of DR actions. Image
source: [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Electricity consumption forecasts of ICT equipment during use [5]. . . . . 3

1.3 Main components of electricity consumption for the ICT sector. Image
source: [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Estimated distribution of global CO2 emissions from ICT. Image source:
[9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Overview of system model with the energy storage device, the charging
and discharging process, and the interaction with grid consumption. . . . 12

2.2 Power generation cost as a piece-wise linear convex function of demand
load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Extension to the model, with a renewable source feeding the battery. . . . 17

2.4 System with multiple storage devices and appended renewable energy
sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Performance of the proposed energy storage control policy as a function
of available storage capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Amount of stored energy for A) Emax = 10 kWh and B) Emax = 24 kWh. 28

2.7 Total instantaneous grid load for A) Emax = 10 kWh and B) Emax = 24
kWh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Minimum required capacity Emax for which the policy is optimal, versus
the demand load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Performance of the proposed policy for the case of multiple batteries as a
function of available storage capacities with λ1 6= λ2, E1

max = E2
max. . . . 30

2.10 Power balance at node k. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.11 A power network consisting of two buses. It must hold E1
max +E2

max ≤ SB 35

2.12 The optimal system performance for different values of the available stor-
age SB and line capacity f12. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Our system model for the crawler: m crawling threads concurrently re-
trieve pages from N web servers at time slot t. . . . . . . . . . . . . . . . 47

3.2 The variation in (a) the solar irradiance [52] and (b) the gi(t) values
during the day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 The performance of the optimal policy in comparison with that of the
EDD-like policy in terms of a) total staleness, and b) carbon emissions as
a function of λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 a) The average amount of carbon emissions (measured in grams (g)) gen-
erated by the proposed heuristic policies, and b) the performance of all
heuristics in terms of staleness reduction. . . . . . . . . . . . . . . . . . . 59

xvi

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



List of Figures xvii

3.5 The average page staleness of a) the first four heuristic policies and b) all
heuristics at the end of the simulation. . . . . . . . . . . . . . . . . . . . . 61

4.1 The serious-game interactions among consumers, the serious-game de-
signer and the utility company. . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 The Stackelberg game structure arising from serious-game interactions. . . 71

4.3 Sample performance histograms of players at a time slot; δ=0.125. . . . . 73

4.4 (A) Probability of consumer i to be included in the top-K or in the
bottom-M lists with respect to ri. (B) Expected utilities of consumer
i based on equation (4.3) (“probability-based”) and on equation (4.6)
(“indicator function-based”) with respect to ri. Parameters values: X ∼
U [0, 1], N = 100, K = M = 10, ai = 1.5, hi = 1.01, p0 = 6 kWh, q = 0.124. 75

4.5 The steady (set of) states <(rl,ru)> for different K=M . . . . . . . . . . . 80

4.6 The percentage of operational-cost reduction achieved by our approach
for different percentages of consumers leaving the game. . . . . . . . . . . 81

4.7 Utility functions of two players for K = 4 and two different states. . . . . 82

4.8 Operational cost for different values of K=M . . . . . . . . . . . . . . . . . 82

4.9 Social welfare for different values of K=M . . . . . . . . . . . . . . . . . . 83

4.10 Distribution of ri for different pairs (rl, ru) in the cases of a) K = 4 and
b) K = 350. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 (a) An example FFT and (b) its alternative form for a consumer i that
prioritizes the cue d′i of the suggestion ri over the cue pi. APi,l/Ni,l is
the estimate of the probability that an instance (i.e., suggestion) assigned
to leaf l belongs to class C1. APi,l is the number of training instances
of (actual) class C1 at leaf l, and Ni,l is the total number of training
instances at that leaf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 An example FFT that prioritizes the cue pi of the suggestion ri over the
cue d′i. Its cue ranking and exit location are different from those of the
FFT in Fig. 5.1a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 The resulting FFT of consumer 1: priotity to the payment attribute p1. . 104

5.4 The resulting FFT of consumer 2: exclusive reliance on the percentage
load reduction cue d̃2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C.1 Classification tables for (a) the LR model and (b) the regularized LR
model of consumer 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.2 Classification tables for (a) the LR model and (b) the regularized LR
model of consumer 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

C.3 Classification tables for (a) the FFT of consumer 1, and (b) the FFT of
consumer 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

C.4 Performance comparison of the FFT and LR models of (a) consumer 1
and (b) consumer 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



List of Tables

2.1 Average cost of the proposed policy for M = 2 storage devices . . . . . . . 30

2.2 Optimal storage dimensioning, charging/discharging and power flow for
SB = 5 and f12 = 0.5, 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Performance results as the impact of cold-start is reduced . . . . . . . . . 61

3.2 Performance comparison of the proposed policies . . . . . . . . . . . . . . 62

B.1 Contigency table over an abstract attribute x. . . . . . . . . . . . . . . . . 118

C.1 Example questionnaire and consumers’ responses. . . . . . . . . . . . . . . 121

C.2 Contingency table over cue p1. . . . . . . . . . . . . . . . . . . . . . . . . 122

C.3 Contingency table over cue d̃1. . . . . . . . . . . . . . . . . . . . . . . . . 122

C.4 Contingency table over cue p2. . . . . . . . . . . . . . . . . . . . . . . . . 122

C.5 Contingency table over cue d̃2. . . . . . . . . . . . . . . . . . . . . . . . . 122

C.6 Performance statistics of the fitted LR and FFT models. . . . . . . . . . . 123

xviii

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Dedicated to my husband, Dimitris and to my family, Aristeidis,
Evaggelia, Marianthi.

xix

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions of this thesis . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation

Electricity is the most widely used form of energy and global demand is constantly

increasing. World electricity demand is projected to double between 2000 and 2030,

growing at an annual rate of 2.4%. Also, electricity’s share of total final energy con-

sumption rises from 18% in 2000 to 22% in 2030 [1]. Our modern societies rely on the

power grid system to satisfy their energy needs. The power grid must respond quickly

to the increasing demand and continuously generate and route electricity to where it’s

needed the most. However, the generation of electrical energy makes a significant contri-

bution to climate change since it relies on fossil fuels and is currently the largest source

of carbon dioxide emissions. To satisfy both the increasing demand for energy and the

need to reduce carbon dioxide emissions, we need a power grid system that can handle

these challenges in a reliable and economic way [2].

According to [2], “a smart grid is an evolved power grid system that manages electricity

demand in a sustainable, reliable and economic manner, built on advanced infrastructure

and tuned to facilitate the integration of all involved”. Smart power grids harness

ICT and smart metering in order to enhance their reliability, enforce sensible use of

energy, reduce CO2 emissions, and efficiently incorporate and control components such

as renewable energy sources (RESs), distributed micro-generators and energy storage

entities (e.g. plug-in electric vehicles, batteries, etc.) [3]. These modernized electricity

1
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Chapter 1. Introduction 2

Figure 1.1: Example electricity demand curve showing the effect of DR actions. Image
source: [4].

networks are complex ecosystems which are composed of new entering actors such as

prosumers, and traditional ones like consumers, operators and generators each having a

fundamentally different, active role in the system. In this thesis, we focus on developing

efficient mechanisms that optimally incorporate and manage energy storage devices in

smart grid systems so as to exploit their potential in reducing the energy generation cost

of energy supplier/s (utility operator).

Smart grids possess demand-side management (DSM) capability, also known as Demand

Response (DR), to better match the demand for energy with the supply and avoid energy

overconsumption. The goal of DR is to encourage consumers, through various methods

such as financial incentives and behavioral change through education, to use less energy

during peak hours, or to move non-emergency power demands to off-peak times such as

nighttime and weekends (Fig. 1.1). By smoothing out the system power demand profile

across time, grid reliability is enhanced as instabilities are reduced, power outages due

to sudden increases of demand are avoided, and the need for activating supplementary

power generation sources so as to satisfy high demand is eliminated. This supplementary

power may be generated from expensive sources, or it may be imported at high prices

from other countries. Therefore, in DR programs, end-users enjoy reduced electricity

bills due to lower real-time electricity prices, while the operator enjoys reduced operating

cost.

Current DR schemes provide incentives to the users, usually in the form of dynamic prices

and monetary or non-monetary rewards. They rely on strong rationality assumptions

about consumers, and they assume that the response of consumers to incentives is gov-

erned by the mathematics of optimization theory. However, it is known from behavioral
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Figure 1.2: Electricity consumption forecasts of ICT equipment during use [5].

science that human behavior is far from rational due to the fact that humans often make

decisions under certain cognitive biases, various natural predispositions, social norms,

various sentiments and prejudices, or even in the presence of limited information and

limited information processing capacity. Various DR schemes may often see hesitation

and even negativity of consumers, primarily because they are not presented to consumers

in an appropriate context. This means that the efficiency of the above programs mainly

depends on the participation of consumers and their behavior. The interfaces with which

such DR schemes are delivered to consumers should respect the limited time and atten-

tion of consumers and should make the interaction worthwhile and entertaining. In this

thesis, we focus on designing efficient mechanisms that exploit the concept of serious

games in order to encourage consumers to save energy by means of competition, and

increase consumer engagement in DR programs by creating a more enjoyable experience

for consumers. We also focus on providing behavior-based data-driven models for build-

ing personalized decision-making profiles for end-users, predicting consumer behavior,

and optimally providing incentives in DR programs.

Toward the aforementioned goal of energy consumption and carbon emissions reduction,

we also need to focus on the energy efficiency of large energy-consuming entities. Infor-

mation and communication technologies (ICT) and networked systems have been proved

to be big energy consumers with a large carbon footprint [5], [6] and thus, they need

to undergo significant adjustments. ICT is a prerequisite for efficient smart grids but it

is also responsible for a quick increase in worldwide energy consumption. The authors

of [5] argue that the relative contribution of ICT in energy consumption is expected

to grow from 8% in 2008 to more than 14% in 2020 (Fig. 1.2). Networks and data
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Figure 1.3: Main components of electricity consumption for the ICT sector. Image
source: [8].

Figure 1.4: Estimated distribution of global CO2 emissions from ICT. Image source:
[9].

centers have been proved to be major energy consumers and their energy consumption

is estimated to reach 29% and 21%, respectively, of the ICT sector’s electricity usage in

2017 [7]. (Fig. 1.3)

Moreover, the increased use of ICT contributes to global warming. According to [6],

the ICT sector itself (telecommunications, computing and the Internet, but excluding

broadcasting transmitters and receivers) contributes around 2.5% of greenhouse gas

emissions, at just under 1 Gigatonne of CO2 equivalent, and this share may well increase

over time. A portion 23% of this share is caused by data centers, while communication

networks (fixed and mobile) contribute a 24% of the total (Fig. 1.4). Therefore, it

is clear that the need for green energy-efficient ICT will be more and more evident in

the next years. This thesis investigates energy efficiency and greenness at the level of

the Internet, data centers and web servers. Specifically, we study the use of RESs and

scheduling techniques toward reducing the carbon footprint induced by an ICT system,
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Chapter 1. Introduction 5

namely, the web crawling component of a web search engine. We focus on the reduction

of the carbon emissions that this component incurs on remote web servers, that do not

belong to the search engine, during its operations. Our approach exploits the time-

varying renewable energy availability (i.e., the dynamic RES generation patterns) at

remote servers in order to schedule the search engine workload in a greener way.

1.2 Contributions of this thesis

We briefly describe the main contributions of this thesis which are analytically presented

in the following chapters:

In Chapter 2, we study two fundamental problems in energy storage management

and dimensioning. First, we address the optimal energy storage control problem from

the side of an energy supplier with the aim to minimize the long-term average cost of

generated power. The energy supplier controller receives power demand requests which

are immediately activated and controls one or more energy storage devices, each of which

is attached to a renewable energy source (RES). The supplier uses these storage devices

to mitigate time variations in demand load and RESs. For a single storage device, we

derive a threshold-based control policy that maintains balanced grid power consumption

at all times, and it is shown to be asymptotically optimal as the storage device capacity

becomes large. The optimal policy is then extended to the case of multiple storage

devices that are shared among multiple micro-grid entities each with its own demand

load. Our results provide evidence about the potential of our approaches in terms of

operational cost efficiency, in that they approach a cost global lower bound. Next, we

study the joint energy storage placement, dimensioning and management problem. We

are interested in the way storage capacity placement and control impacts the overall cost

of energy generation. It turns out that various aspects of power flow need to be taken

into account in the determination of the optimal policy. We discuss some simple special

cases of the problem by presenting two numerical examples. Our results show that the

solution policy entails various parameters such as the demand profiles of prosumers and

power flow constraints.

In Chapter 3, motivated by a real-world problem, we consider energy efficiency in the

context of a concrete application. Namely, we study the carbon footprint induced by the

web crawling component of a large-scale web search engine. This component, during its

page refresh operations, issues a large number of HTTP requests to remote web servers

that do not belong to the search engine. These requests increase the energy consumption

and carbon footprint of the web servers since computational resources are used while

serving the requests. We focus on reducing the induced carbon footprint by exploiting
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Chapter 1. Introduction 6

the renewable energy availability at remote servers. We model the dynamics of renewable

energy generation by means of an appropriately defined time-varying (greeness) index.

We introduce the problem of green web crawling, where the objective is to devise a

page refresh policy that minimizes the total staleness of pages in the repository of a web

crawler, subject to a constraint on the amount of carbon emissions due to the processing

on web servers. For the case of one web server and one crawling thread, the optimal

policy turns out to be a greedy one. At each iteration, the page to be refreshed is

selected based on a metric that considers the page’s staleness, its size, and the greenness

of the energy consumed at the web server premises. We then extend the optimal policy

to the cases of (i) many servers, (ii) multiple threads, and (iii) pages with variable

freshness requirements. We present experimental results for the optimal page refresh

policy as well as for various heuristics, in an effort to study the effect of different factors

on performance. This work was done in collaboration with Yahoo! Labs Barcelona

which provided us with a large, real-life dataset in order to evaluate the performance of

the proposed policies.

Next, in Chapter 4, we theoretically model and study a simple gamification mechanism

through which a demand-response entity aims to motivate consumers to adopt prudent

energy consumption patterns by setting up a contest and by providing them incentives

in the context of a serious game. Serious games are a promising approach for demand-

side management, and they aim at increasing user engagement and active participation.

We mathematically formulate the problem of optimal serious-game design for energy

consumption reduction. The serious game designer presents publicly to consumers a

list of top-K consumers and a list of bottom-M consumers according to their respective

energy-consumption reduction at peak hours. The consumer parameters that determine

user consumption behavior are the user discomfort due to demand load reduction, the

user desire for social approval, and the user sensitivity to social outcasting. The con-

sumer aims at maximizing her net expected utility function, while the game designer

aims at minimizing the total power generation cost. Central in the selection of the game

designer is the choice of parameters K, M as well as the statistical feedback provided

to the consumers. We experimentally show how the choices of K,M affect the energy

consumption reduction for different types of customers.

In Chapter 5, we migrate from conventional rational models for the consumer, and

we bring into the foreground behavior-based data-driven models for modeling and pre-

dicting consumer behavior. We aim at understanding the different criteria under which

consumers reach decisions regarding their participation in an energy consumption re-

duction campaign, and the different importance placed on them. Such criteria may be

monetary incentives, social or community recognition, environment-friendly behavior,

perceived dissatisfaction from consumption reduction, and willingness for cooperation.
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They are expressed by means of attributes that characterize the consumption reduction

suggestions made by the campaign designer to consumers. We consider that a consumer

profile and her/his decision on whether to participate in the campaign, are determined

by two controllable attributes of the suggestion made to her/him. We use a logistic

regression model from machine learning and a fast-and-frugal tree model inspired from

cognitive psychology and behavioral science to model the consumer decisions. We also

introduce the optimal task and incentive allocation problem faced by the designer of the

campaign which amounts to appropriately controlling the suggestion attributes in order

to achieve a certain expected load saving at minimum economic cost. We show that in

the case of LR the optimization problem turns out to be a sigmoid optimization one,

while in the case of FFTs it is an integer linear programming one.

We conclude with Chapter 6, where we summarize our findings and discuss various

future directions that warrant further investigation.
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2.1 Introduction to the Employment of Energy Storage

Devices in the Smart Grid

The smart power grid relies on information and communication technologies and ad-

vanced control methods to manage the dynamic demand load and to ensure efficient use

of electric energy [10]. Smart metering and bidirectional communication enable real-

time interconnection of the consumer and operator premises through IP addressable

components over the Internet. These technologies allow power-consumption monitoring,

automated control of consumption of customer appliances through messages from the

operator Command and Control center, real-time electricity price signaling, and fault

diagnosis.

Demand-load management is primarily employed by utility operators so as to reduce

the grid operational costs. The rationale of demand-load control is to alleviate high

demand load at peak times. This can be achieved for instance by using the time slack

of delay-tolerant demands so as to temporally shift part of the peak load in time when

it is feasible to do so [3]. Thus, the risk of a potential grid failure is reduced, while the

operational cost is lowered by avoiding the use of more expensive or less efficient power

generation sources.

Recent advances in electric energy storage technologies have rendered backup devices

like uninterrupted power supply (UPS) or batteries, and Plug-in Hybrid Electric Vehi-

cles (PHEVs) prime candidates for demand-load management. With appropriate storage

management policies, these devices can be quite advantageous for electric utility oper-

ators and consumers. If stored energy control is delegated to the grid operator, a valid

objective is to minimize the grid operational cost. Batteries can be charged at off-peak-

load times, and this stored energy can be used to satisfy increased demand load at peak

times. If energy storage management is performed at the consumer level (e.g. through

PHEVs), the goal is to minimize the cost of power consumption (i.e., the electricity

bill), assuming that an instantaneous time-of-use price per unit of consumed power is

fed back. Thus, energy can be stored when the price per unit of consumed power is low,

and it can be used to satisfy part of the demand when the price is high.

In future smart grid architectures, we anticipate the existence of multiple consumer

entities, oftentimes organized as micro-grids, each with its own power demand, and its

own power generation sources. In addition, energy storage devices with attached RESs

are also expected to be part of the architecture. RESs rely mainly on energy that

flows naturally through the environment on a continual but time-varying basis and have

received major attention in the last years due to their significant potential in reducing

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Chapter 3. Optimal Energy Storage Management and Dimensioning in Smart Grid
Systems 10

the carbon footprint. The potential of RESs is amplified when used in synergy with

energy storage devices.

In this chapter, first, we address the problem of optimal energy storage control faced

by the utility operator (energy supplier), which has a number of storage devices under

its control. The objective is to find a policy for managing the charging and discharging

processes of storage devices such that the long-term average cost of generated power

is minimized. This cost is modeled as a convex function of instantaneous total power

consumption. We study the problem above, first for a single storage device, and then for

multiple storage devices that are shared among multiple micro-grids. Next, we review

a joint energy storage placement, dimensioning and control problem, given an available

storage budget [11], where the goal is to minimize the energy generation cost.

2.1.1 Our contribution

Our work contributes on several levels to the literature.

� For the case of a single energy storage device, we formulate the online storage

control problem by devising a stochastic model for continually generated demands

and completions, and we consider minimizing long-term average cost. A threshold-

based control policy is derived that attempts to maintain balanced power consump-

tion from the grid by adaptively managing the storage device charge/discharge

processes. We prove that this policy is asymptotically optimal as the battery

capacity becomes large, and we show that it performs quite well even for finite

capacity.

� We also extend the model and structure of the optimal policy to account for the

case that one renewable energy source feeds the battery.

� The approach is then extended to the case of multiple storage devices that are

shared among multiple micro-grids each with its own demand load. First, we study

the problem of minimizing the grid operational cost in the case that micro-grids

act cooperatively in the sense that the total consumed load of micro-grids from the

main grid is aggregated, and the total cost is due to this aggregate load. Then, we

study the same problem in the case that each micro-grid is treated as a separate

grid with its own consumed load and operational cost, and the total system cost

is the sum of individual micro-grid operational costs. The proposed policy which

is common for both problems is again of threshold type and is asymptotically

optimal as storage capacities of batteries become large. These policies for the

different cases we consider provide a systematic way of handling storage facilities.
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� We study the problem of how much storage capacity should be placed on each node

of a power network given an available storage capacity budget. It turns out that

various aspects of power flow need to be taken into account in order to determine

the optimal policy. Our objective is to minimize the total average generation cost

through optimal storage dimensioning, storage management, and power flow. We

provide two simple numerical examples in order to present the optimal solutions

for some special cases of the problem.

The rest of the chapter is organized as follows. In section 2.2, first, we study the online

control problem for a single storage device, we show the optimality of the proposed

threshold policy, and we present an extension to the model that includes a RES which

feeds the storage device. Then, we study the problem with multiple storage devices and

multiple grid entities. Subsection 2.2.6 provides hints for extensions of the proposed

models. In subsection 2.2.7, we evaluate the performance of our policies and present

numerical results. In section 2.3, the joint energy storage placement, dimensioning

and control problem is studied. Finally, section 2.4 presents the related literature and

section 2.5 concludes our study. This chapter contains material from works [12], [13]

and [14]. The terms “battery” and “storage device” are used interchangeably with the

same meaning in the chapter.

2.2 Optimal Energy Storage Control Policies for the En-

ergy Supplier

2.2.1 System model

Power demand arrival and service processes. We consider an energy supplier

(energy generation facility) that needs to serve the power demand tasks generated by

a pool of consumers. In the online version of the problem, power demand requests are

generated continually by consumers and arrive at a central controller at the supplier

premises according to a Poisson process, with rate λ.2 The time duration sn of each

request n is a random variable that is exponentially distributed with parameter s, i.e.,

Pr(sn ≤ x) = 1− e−sx, x ≥ 0. (2.1)

2A non-homogeneous Poisson process with time-varying request arrival rate λ(t) could model time-
variation of the demand load and affect load variation and peaks at different times. Here, we choose to ad-
here to a homogeneous Poisson process assumption with average rate λ. Since we study the system in an
infinite time-horizon, our approach encompasses the case of time-varying λ(t) if limT→+∞

1
T

∑T−1
t=0 λ(t)

exists and is equal to λ.
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Figure 2.1: Overview of system model with the energy storage device, the charging
and discharging process, and the interaction with grid consumption.

Equivalently, the mean duration of demand requests is 1/s time units, and s may be seen

as the average service rate of power demand tasks by the supplier. These assumptions are

motivated for mathematical tractability as they facilitate the derivation of the structure

of the optimal policy. However, they are quite close to reality since they capture (i) the

burst of arriving demand requests, (ii) the different durations of requests and (iii) the

fact that the chances of having large durations decrease fast. Further, let pn denote the

power requirement (in Watts) of demand n. Denote by P (t) the demand load on the

system at time t as a result of the demand arrival and completion processes above.

Consider the system above, first without the storage device. Let At denote the set of

active demands at time t. If the power requirement pn of each task n, is fixed and equal

to 1 unit of power, then the instantaneous demand load P (t) equals N(t) = |At|, i.e.

the number of active demand tasks at t, and it is a Markov chain. Since each power

demand task is activated upon arrival and there exists no waiting time or loss, P (t) is the

occupation process of an M/M/∞ service system. From state P (t), there are transitions

to state:

� P (t) + 1 with rate λ, when a new demand request arrives.

� P (t)−1 with rate sP (t), when one of the current P (t) active demands is completed.

The steady-state probabilities of P (t), qi = limt→∞ Pr
(
P (t) = i

)
, for i = 1, 2, . . . , are

derived from equilibrium equations [15, Sec.3.4.2] as

qi =

(
λ

s

)i e−λ/s
i !

. (2.2)
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Thus, P (t) is Poisson distributed with parameter λ
s , and the expected number of active

requests at steady state is E[P (t)] = λ
s , where the expectation is with respect to the

stationary Poisson distribution of P (t).

The extension to different power requirements goes as follows. Suppose that the power

requirement P̂n of each demand n is a random variable with a discrete probability dis-

tribution on set {p1, . . . , pL}, with associated probabilities w1, . . . , wL (the case of con-

tinuous distribution of P̂n is tackled similarly). Random variables P̂n, are independent

from process N(t). Let P̂ denote the random power requirement of a demand. Also,

let E[P̂ ] = E[P̂n] =
∑L

k=1wkpk be the expected power requirement of a demand n. The

power consumption at slot t is P (t) =
∑

n∈At
P̂n, and the average power consumption

at steady state is E[P (t)] = E[N(t)]E[P̂ ] = λ
sE[P̂ ].

Time-slotted model : We turn the continuous-time model above to a time-slotted one.

Let A(t) be the process that describes the total number of request arrivals from time 0

to time t. Then, the number of arrivals at time interval (t1, t2] is A(t2)−A(t1). Assume

a slotted system with slot length τ = 1. The number of arrivals is Poisson distributed

with parameter λ, that is

Pr[A(t+ 1)−A(t) = n] = e−λ
λn

n!
. (2.3)

Similarly, let D(t) be the process that describes the total number of request completions

from time 0 to time t. The number of completions is Poisson distributed with parameter

s, that is

Pr[D(t+ 1)−D(t) = n] = e−s
sn

n!
. (2.4)

Energy Storage Device. There exists an energy storage device (battery) of storage

capacity Emax kWh that is located at the supplier premises and is controllable by the

energy supplier. At each time slot t, the battery may be charging or discharging. Let

E(t) be the stored amount of energy at the battery at the beginning of slot t. Define

the decision variable h(t) as the rate at which the battery is charged/discharged at slot

t, with the following convention. If h(t) > 0, the battery charges, and energy flows into

it from the energy generation facility with rate h(t). This in turn implies that the total

power demand load to be served from the grid is h(t) plus the power demand P (t),

i.e. P (t) + h(t). If h(t) < 0, the battery is discharged, namely energy flows out of the

battery at rate |h(t)|, and it is used to serve part of the demand load P (t). Hence, the

amount of demand load that is actually served through the energy generation facility is

P (t) + h(t) < P (t), since an amount |h(t)| of the power demand is served directly from

the battery. The system model is depicted in Fig. 2.1.
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The level of stored energy at the battery evolves with time as:

E(t+ 1) = E(t) + h(t) . (2.5)

Since it is 0 ≤ E(t) ≤ Emax at all slots t, and time slots are of unit size, it becomes

evident that h(t) must satisfy:

− E(t) ≤ h(t) ≤ Emax − E(t) ,∀ t . (2.6)

Remark: In order to demonstrate the structure of our approach, we assume there are

no constraints on the maximum charge and discharge rate other than those implied by

(2.6). We also neglect the power losses during the charge and discharge process as these

could be easily absorbed in the charge and discharge rate. Finally, we assume that there

exists no switching delay for transferring power demands from the grid to the battery

and vice versa. The former transfers take place when we decide to discharge the battery,

and the latter occur when the battery empties while some tasks are served. We discuss

later how these and other modeling constraints can be incorporated in the problem and

affect the policy.

Cost Model. Let X(t) = P (t) + h(t) denote the total demand load to be served from

the energy supplier at slot t. We denote the instantaneous operational/generation cost

associated with load X(t) as C(X(t)), where C(·) is an increasing, differentiable convex

function. Convexity of C(·) reflects the fact that the differential or marginal cost of

power generation for the supplier increases as the demand load increases. That is, each

unit of additional power that is needed to satisfy the increasing demand becomes more

expensive to generate/obtain and make available to the consumers.

For example, the following average energy generation marginal costs are reported in

United States: Geothermal, 47 $/MWh; wind on-shore, 73 $/MWh; natural gas with

combined cycle, 75 $/MWh; hydro, 83 $/MWh; nuclear, 95 $/MWh; natural gas with

combustion turbine, 141 $/MWh; solar photo-voltaic, 125 $/MWh; wind offshore 197

$/MWh. Electricity suppliers have several different generation units at their disposal.

In order to cover the demand, suppliers activate units in increasing order of marginal

energy generation cost. Namely, when the energy generation capacity of one unit is

reached, they activate the next more expensive one. Thus, supplementary power for

serving high demand may be generated from expensive sources, or it may be imported

at high prices from other countries.

The form of the convex cost function may be considered as a piecewise linear one (differ-

entiable at every point), in which each linear segment represents one alternative energy
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Figure 2.2: Power generation cost as a piece-wise linear convex function of demand
load.

generation source, and the slopes of linear segments are the respective marginal gener-

ation costs (Fig. 2.2).

2.2.2 Problem formulation

At the beginning of each slot t, the controller observes the total grid consumption level

X(t) (and thus, also P (t)), as well as the current energy level E(t) in order to decide

whether it will charge or discharge the battery and how much.

Denote the system state at slot t as x(t) = (P (t), E(t)). For now, assume that all

quantities are restricted to positive integer values. Let the initial state be (P (0), E(0)).

A horizon of T time slots is assumed. The objective is to find a battery charge-discharge

control policy that minimizes the long-term average operational cost,

lim
T→+∞

1

T

T−1∑
t=0

Et
[
C(X(t))

]
= E[C(X(t))] , (2.7)

where the first expectation above is with respect to the randomness of P (t), and the

second one is with respect to the stationary distribution of {P (t)}. A policy π selects

control variables {h(t)}t=0,1,..., subject to the evolution equation (2.5) and constraint

(2.6). A policy π∗ is optimal if it minimizes the long-term average cost (2.7) over all

policies that satisfy the constraints above.

Under the assumptions above on arrival and completion processes, the problem of may

be cast as a Markov Decision Process (MDP) one. Instead of tackling the problem

through solving an MDP formulation, our focus here will be on simple control policies
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that operate based on P (t) as the system state. We obtain a simple policy and show

that it is asymptotically optimal for large storage capacity values.

2.2.3 An Asymptotically Optimal Control Policy

Consider the following battery charge-discharge control policy, which we refer to as

Policy (P). There exists a demand threshold, P0. At the beginning of each slot t, the

controller checks the amount of current demand to be fulfilled, P (t). Recall that the

current demand consists of all demand requests that are active, i.e., they are not yet

completed.

� If P (t) ≤ P0, then all current demand load is served with the available energy from

the grid, and a decision to charge the battery is taken, at a rate

h(t) = P0 − P (t) ≥ 0 . (2.8)

� If P (t) > P0, a decision to discharge the battery is taken, at a rate

h(t) = P (t)− P0. (2.9)

Hence, a portion P0 of the demand load is served by the available energy from the

grid, while the rest, P (t)− P0 is satisfied by the battery.

Whenever the battery energy level becomes zero during discharging, the controller serves

from the grid the rest of the load that the battery was serving at that slot t, and it holds

E(t+ 1) = 0. Since P0−P (t) can take positive or negative values, the policy above can

be succinctly described as:

h(t) = max{−E(t),min{P0 − P (t), Emax − E(t)}} . (2.10)

Theorem 2.1. Policy (P) is asymptotically optimal, in the sense that its performance

converges to the lower bound (2.11) as Emax →∞, and therefore it minimizes the long-

term average cost (2.7).

Proof. We provide an intuitive sketch of the proof. We need to realize that, regardless of

the charging/discharging decisions, it is E[X(t)] = E[P (t)] = λ
s . That is, charging/dis-

charging decisions may change the instantaneous values and steady-state probabilities

of process X(t), however the average total active demand will remain fixed and equal to
λ
s . This is because there are no charging or discharging losses; such losses would exist if

the battery was empty during discharge or it was full during charge.
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Figure 2.3: Extension to the model, with a renewable source feeding the battery.

To make this more intuitive, note that as the available storage capacity grows larger,

more energy can be stored when there is opportunity to do so (i.e. the values of process

{E(t)} increase in general as well), which in turn implies that there will almost always

exist enough stored energy to discharge. Thus, as Emax increases, the process h(t) takes

values in the respective set of feasible controls such that−E(t) ≤ h(t) ≤ Emax−E(t) with

probability that approaches 1.Hence, the events {P (t) − P0 ≥ E(t)} and {P0 − P (t) ≥
Emax − E(t)} have diminishing probability as Emax → ∞. Thus, h(t) < Emax − E(t)

and h(t) > −E(t) almost surely as Emax →∞. These imply that the battery will almost

never go empty during discharge and it will almost never get full during charge.

From Jensen’s inequality, for a random variable X and a convex function C(·), it is

E[C(X)] ≥ C(E[X]). Equality holds if and only if X = E[X], i.e., when random variable

X is constant. In our setup, Jensen’s inequality implies:

E[C
(
X(t)

)
] ≥ C

(
E[X(t)]

)
. (2.11)

The policy above maintains E[X(t)] = P0. If we combine this with the rationale above,

we get that the optimal threshold must be P0 = E[P (t)] = λ
s .

As a byproduct of the above, we have that limEmax→∞ E[h(t)] = 0, since the battery

charges with rate P0 − P (t) whenever P (t) < P0, and it discharges with rate P (t)− P0

whenever P (t) > P0. For P0 = λ
s , the charging and discharging events take place for

half the amount of time each on average in the long-run, and thus E[h(t)]→ 0.
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2.2.4 Extension to the model: Renewable source

We now consider the following extension to the model. There exists a RES which feeds

the battery. Denote by R(t) the renewable energy generation process, which is assumed

to be an arbitrary (wide-sense) stationary process with expectation R̄ = E[R(t)]. The

rest of the model is the same as the one presented in subsection 2.2.1, and the system

is depicted in Fig. 2.3.

Now, the battery energy level evolution equation is,

E(t+ 1) = E(t) +R(t) + h(t) , (2.12)

and the feasible control set at slot t is such that,

−R(t)− E(t) ≤ h(t) ≤ Emax − E(t)−R(t). (2.13)

Note that this system is equivalent to one without the RES, where h(t) is substituted

by h(t)−R(t).

Again, our objective is to minimize the long-term average energy generation cost E[C
(
X(t)

)
].

From Jensen’s inequality, it is E[C
(
P (t) + h(t)

)
] ≥ C

(
P̄ + h̄

)
, where h̄ = E[h(t)] and

P̄ = E[P (t)]. From (2.12), we have:

lim
T→+∞

1

T

T−1∑
t=0

Et[E(t+ 1)]− lim
T→+∞

1

T

T−1∑
t=0

Et[E(t)] = R̄+ h̄⇒

lim
T→+∞

1

T

(
E[E(T )]− E[E(0)]

)
= R̄+ h̄⇒ h̄ = −R̄ .

(2.14)

which means that in the long run, the average amount (dis)charged from the battery

is equal to the average amount of energy generated from the renewable source. Note

also that for R̄ = 0, equation (2.14) is a rigorous way of showing h̄ = 0 in the Theorem

above. Thus,

E[C
(
P (t) + h(t)

)
] ≥ C

(
P̄ − R̄

)
. (2.15)

This holds with equality if and only if:

P (t) + h(t) = P̄ − R̄⇒ h(t) = P̄ − R̄− P (t).

Therefore, the policy that minimizes long-term average cost for the setup with a RES is

as follows:

� If P (t) ≤ P̄ − R̄, charge the battery at rate P̄ − R̄− P (t).
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Figure 2.4: System with multiple storage devices and appended renewable energy
sources.

� If P (t) > P̄ − R̄, discharge the battery at rate P (t)− P̄ + R̄.

Observe that if P̄ − R̄ < 0, battery (dis)charge does not take place since in that case

the RES output fully covers the power demand load requirements.

2.2.5 Multiple Storage Devices and Grid Entities

System Architecture. Consider now N grid entities (GEs). A first instance of GE

may be an aggregator that aggregates demand load requests of consumers and acts as

an intermediary between the utility operator and consumers. The set of all GEs results

in a total consumed load from the main grid (and hence the need to generate this load),

and the total cost is due to the needed amount of energy in order to satisfy this total

load. A second instance of GE may be that of a micro-grid with its own power demand

and autonomous power generation, and hence its own operational cost. In that case,

each micro-grid is treated as a separate grid with its own demand load and operational

cost, and the cost of total generated power for the entire system is the sum of individual

micro-grid (GE) operational costs. There also exist M energy storage devices, each

with an attached RES. These storage devices are shared among the N GEs, but they
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are owned and controlled by the central operator. That is, they can be charged from

power generated by the GEs, or they can be discharged to satisfy demand load in GEs.

Continual arrival and completion of power demands takes place at each GE location.

The system is depicted in Fig. 2.4.

Power Demand Model. Power demand requests arrive at each GE i according to

a Poisson process, with average arrival rate λi requests per unit of time. The time

duration sn of each power demand task n is exponentially distributed with parameter s

and pn = 1, ∀n. With no loss of generality, the average service rate s is taken to be the

same for demand tasks of all GEs. Since pn = 1, ∀n, let Pi(t) be the number of active

requests on GE i at time t and it is a continuous-time Markov chain. Therefore, the

expected number of active requests on GE i at steady state is P̄i = E[Pi(t)] = λi
s . The

extension to different power requirements is similar to the one described in section 2.2.

In this case, the average power consumption on GE i at steady state is P̄i = E[Pi(t)] =

E[Ni(t)]E[P̂ ] = λi
s E[P̂ ], where Ni(t) is the number of active requests on GE i at t.

The process to turn the continous-time model to a time-slotted one is similar to that

described in section 2.2.

Energy Storage Devices. Each storage device j, j = 1, . . . ,M has storage capacity

Ejmax kWh, j = 1, . . . ,M , and it is accessible by some or all GEs. Denote by Ki the

subset of storage devices that are accessible to GE i. Let Rj(t) be the time-varying

amount of generated energy at RES j which is appended to storage device j. This

is assumed to be an arbitrary (wide-sense) stationary process with expectation R̄j =

E[Rj(t)]. Renewable source j is appended to storage device j in the sense that its

energy feeds storage device j. At the beginning of each slot t, the central controller

decides whether each GE i will charge or discharge each storage device j, and by how

much. The charging and discharging processes for each battery are determined based on

the GE power demand levels and the renewable energy generation levels. Specifically,

when the demand load of a GE i is low, it may charge one or more batteries, since the

energy generation cost is low. On the other hand, at peak consumption, when the cost

of power generation is high, GE i may satisfy part of its increased demand load using

part of the stored energy of its accessible batteries.

Let Ej(t) be the amount of stored energy at storage device j at the beginning of slot

t. Define the decision variable hij(t) as the charging/discharging rate for storage device

j and GE i at slot t. If hij(t) > 0, battery j is charged, and energy flows into it from

GE i with rate hij(t). If hij(t) < 0, battery j discharges, namely energy flows out of

the battery with rate |hij(t)|, and it is used to serve part of the demand load of GE i.
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Define hi(t) as the total charging rate of all batteries that are accessible by GE i,

hi(t) =
∑
j∈Ki

hij(t) , (2.16)

and expectation h̄i = E[hi(t)]. Hence, for GE i, the amount of demand load that is

actually served by the grid (or GE i) at slot t is Xi(t) = Pi(t) + hi(t), with expectation

X̄i = E[Xi(t)].

Further, let htot,j(t) be the net rate at which energy flows into the storage device j at

slot t,

htot,j(t) =

N∑
i=1

hij(t) . (2.17)

Note that a battery j may be charged from some GEs and discharged from some others

at the same time, which means that it can be used in a different way by each GE at each

slot t. For instance, for battery j it can be hkj(t) < 0 and hlj(t) > 0 for two different

GEs k and l. The energy level of storage device j evolves as,

Ej(t+ 1) = Ej(t) +Rj(t) + htot,j(t) (2.18)

and the feasible control set at slot t is such that,

−Rj(t)− Ej(t) ≤ htot,j(t) ≤ Ejmax − Ej(t)−Rj(t), ∀t . (2.19)

By using a similar argument as for the case of a single storage device, we get

N∑
i=1

h̄i = −
M∑
j=1

R̄j . (2.20)

We distinguish two different objectives that make sense in future smart grid architec-

tures. In case A, the different micro-grids receive energy from one energy generator

entity. In this case, the total energy generation cost amounts to the generation cost

of the aggregate demand load of all micro-grids. In case B, each micro-grid is treated

as a separate grid with its own energy generation facility. Now a plausible objective

is to minimize the total cost of energy generation for the system, which is the sum of

individual generation costs for each micro-grid (GE). In the sequel, we formulate and

discuss the two corresponding optimization problems.
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2.2.5.1 Case A: Minimization of cost of aggregate demand

In case A, the demand loads of all GEs are aggregated, and the controller aims to

minimize the energy generation cost so as to satisfy the total demand, by determining

appropriate charging and discharging rates for each battery.

The generation cost associated with total power consumption X(t) =
∑N

i=1Xi(t), is

given as:

C(X(t)) = C(

N∑
i=1

Xi(t)) = C
( N∑
i=1

(
Pi(t) + hi(t)

))
. (2.21)

Moreover, for the long-term average cost, we have the following lower bound from

Jensen’s inequality:

E[C
( N∑
i=1

Xi(t)
)
] ≥ C

( N∑
i=1

(
E[Pi(t)] + E[hi(t)]

))
=

(2.20)
= C

( N∑
i=1

P̄i −
M∑
j=1

R̄j
)
. (2.22)

Optimal policy for N = 2 GEs and M = 2 storage devices:

From (2.22),

E[C
(
X1(t) +X2(t)

)
] ≥ C

(
P̄1 + P̄2 − R̄1 − R̄2

)
, (2.23)

and equality holds if

X1(t) +X2(t) = P̄1 + P̄2 − R̄1 − R̄2. (2.24)

The conditions that make the inequality above hold with equality are:

P1(t) + h1(t) = P̄1 − α(R̄1 + R̄2)⇒

h1(t) = P̄1 − α(R̄1 + R̄2)− P1(t)
(2.25)

and

P2(t) + h2(t) = P̄2 − (1− α)(R̄1 + R̄2)⇒

h2(t) = P̄2 − (1− α)(R̄1 + R̄2)− P2(t) ,
(2.26)

where α ∈ [0, 1]. The quantities

P 1
0 = P̄1 − α(R̄1 + R̄2) (2.27)

and

P 2
0 = P̄2 − (1− α)(R̄1 + R̄2) (2.28)
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show one possibility for setting the thresholds for the optimal policy for GE 1 and GE

2, respectively for charging and discharging. For α = 1/2, the thresholds are:

P 1
0 = P̄1 −

R̄1 + R̄2

2
(2.29)

and

P 2
0 = P̄2 −

R̄1 + R̄2

2
(2.30)

2.2.5.2 Case B: Minimization of sum of individual GE costs

We assume that each GE represents an separate entity with its own power generation

capabilities and power demand, and thus its own operational cost. Hence, the demand

loads of the different GEs cannot be aggregated, and the meaningful objective for the

controller is to minimize the sum of individual GE costs. The cost model is the same as

the one above, but now each GE i has its own operational cost function, Ci(·).

The instantaneous generation cost for GE i associated with power consumption Xi(t) is

Ci(Xi(t)), and the total long-run average total cost is limT→+∞ E[ 1
T

∑T−1
t=0

∑N
i=1Ci

(
Xi(t)

)
].

From Jensen’s inequality, we get:

E[
N∑
i=1

Ci(Xi(t))] =
N∑
i=1

E[Ci
(
Pi(t) + hi(t)

)
] ≥

≥
N∑
i=1

Ci
(
P̄i + h̄i

)
≥

≥ min
h̄i

{ N∑
i=1

Ci
(
P̄i + h̄i

)}
, (2.31)

where the last inequality follows from the selection of values for h̄i, i = 1, . . . , N that

minimize
∑N

i=1Ci(P̄i + h̄i).

Optimal policy for N = 2 GEs with the same cost function and M = 2 storage

devices:

From (2.20), it is

h̄1 + h̄2 = −R̄1 − R̄2. (2.32)

Substituting from (2.32), the right side of (2.31) becomes:

min
h̄1

{
C
(
P̄1 + h̄1

)
+ C

(
P̄2 − R̄1 − R̄2 − h̄1

)}
. (2.33)
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Setting the derivative of the term above with respect to hi equal to zero and assuming

that C ′(·) is a one-to-one function, we get

h̄∗1 =
P̄2 − P̄1 − R̄1 − R̄2

2
(2.34)

and

h̄∗2 =
P̄1 − P̄2 − R̄1 − R̄2

2
. (2.35)

From (2.31), we have

2∑
i=1

E[C
(
Pi(t) + hi(t)

)
] ≥

2∑
i=1

C
(
P̄i + h̄∗i

)
(2.36)

and equality holds if

P1(t) + h1(t) = P̄1 + h̄∗1 (2.37)

and

P2(t) + h2(t) = P̄2 + h̄∗2. (2.38)

Therefore, using (2.34) and (2.35), we have the charging / discharging decision control

for the two micro-grids given by

hi(t) =
P̄1 + P̄2 − R̄1 − R̄2

2
− Pi(t), i = 1, 2. (2.39)

The quantity P i0 = P̄1+P̄2−R̄1−R̄2
2 , which is the same for both GEs, will be the threshold

for the asymptotically optimal policy.

2.2.5.3 Asymptotically Optimal Control Policy

We now describe some meaningful policies for a system with multiple GEs. There exist

N thresholds, P i0, one for each GE i. At the beginning of each slot t, the controller

checks each Pi(t). If Pi(t) ≤ P i0, then all active demand requests on GE i are served by

the grid (or GE i), and a decision to charge one or more batteries is taken, with total

charging rate hi(t) = P i0−Pi(t). On the other hand, if Pi(t) > P i0, a decision to discharge

one or more batteries is taken, with total rate hi(t) = Pi(t)−P i0. Whenever the battery

j energy level becomes zero during discharging, the controller sets hij(t) = 0 for all GEs

i that were discharging battery j at that slot t (namely, it serves from these GEs the

rest of their loads that battery j was serving at slot t), and it holds Ej(t+ 1) = 0.

The key difference between the policy presented in section 2.2 and the one presented

here is that each charging (or discharging) rate hi(t) must now be allocated among
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the different batteries based on certain criteria pertaining to the storage devices. For

instance, each charging or discharging rate may be split equally among the batteries.

In this case, it is hij(t) = hi(t)
|Ki| , ∀j ∈ Ki. As a second case, we may use the amount of

stored energy Ej(t) as a criterion. We may also use the intuition that batteries with

smaller amount of stored energy and larger capacity need to be charged with higher

charging rate, and that batteries with higher battery energy level should be discharged

with a higher rate so as to avoid the case of empty or fully charged batteries that cannot

be further discharged or charged, respectively. Based on the criterion above, each GE

i could assign time-varying weights wcij(t) and wdij(t) to each storage device j ∈ Ki in

case of charging and discharging, respectively that take values between 0 and 1. For one

GE i, the controller would then set hij(t) = hi(t)w
c
ij(t) or hij(t) = hi(t)w

d
ij(t),∀j ∈ Ki,

taking also into account constraint (2.19). Observe that
∑

j∈Ki
hij(t) = hi(t) since∑

j∈Ki
wcij(t) = 1 and

∑
j∈Ki

wdij(t) = 1.

The expressions for the thresholds that we have provided in subsections 2.2.5.1 and

2.2.5.2 can be generalized for N,M > 2, and they are:

P i0 = P̄i −
∑M

j=1 R̄j

N
, ∀i (2.40)

and

P i0 =

∑N
i=1 P̄i −

∑M
j=1 R̄j

N
, ∀i (2.41)

for the first and second problem, respectively.

Theorem 2.2. For both the cases above, the proposed policy with the above-mentioned

thresholds is asymptotically optimal, in the sense that its performance converges to the

lower bound as Ejmax → ∞, ∀j, and therefore it minimizes the long-term average total

cost.

2.2.6 Extensions to the model

2.2.6.1 Non-Stationarity of Renewable Energy Generation

In subsection 2.2.4, we assumed that the RES that feeds the battery, is characterized by

a (wide-sense) stationary energy generation process. This assumption does not affect the

generality of the model, since for time-varying average generated power R̄(t) we assume

that it holds R̄ = limT→+∞
1
T

∑T−1
t=0 R̄(t) and that the limit exists.

However, some RESs like solar and wind are characterized by variations of energy gener-

ation and might exhibit non-stationary behavior. In order to tackle this non-stationary
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behavior, we propose an approach similar to that presented in [16]. Namely, we derive

an empirical estimate for the time-varying average of generated power based on the most

recent historical data, by using a moving time window of length L.

Let us denote by P̃ and R̃ the empirical estimate of the average of power demand P (t)

and the empirical estimate of the average of generated energy R(t), respectively. These

quantities are estimated from the data gathered over the L most recent observation

periods, i.e. the actual average power demands P̄d1 , · · · , P̄dL , and the actual average

amounts of generated energy R̄d1 , · · · , R̄dL , respectively. We have: P̃ = (P̄d1 + · · · +
P̄dL)/L and R̃ = (R̄d1 + · · ·+ R̄dL)/L.

Based on the above, a heuristic extension of the optimal energy storage control policy

can be provided by keeping the structure of the optimal policy, and by setting P̄ = P̃

and R̄ = R̃. In the same sense, a heuristic policy can be devised for multiple GEs and

batteries.

2.2.6.2 Storage Device Modeling

Charge/discharge rate bounds and losses: In this work, we assumed that there are no

constraints on charge/discharge rates other than those implied by (2.6), (2.13) or (2.19),

and we neglected losses during the charge and discharge process. In reality, a storage

device has bounded charge and discharge rate. One could derive various extensions to

the basic policy presented above that are expected to perform close to the optimal. For

instance, if hB > 0 denotes the absolute upper bound on charge or discharge rate, i.e.

|h(t)| < hB, then one could consider the following policy:

h(t) = max{−E(t), P0 − P (t), hB} , (2.42)

whose performance approaches the optimal one as hB increases. Furthermore, a storage

device may have charge and discharge power losses. Battery performance is affected

by the charging and discharging efficiencies ηc, ηd ∈ (0, 1] of the storage technology

used. Namely the power flowing in or out of the battery at slot t is ηch(t) or 1
ηd
h(t),

respectively.

2.2.6.3 Transmission Losses

One could incorporate to the model possible transmission losses as the power is trans-

ported from storage devices to GEs. The power loss function for transported amount of

power x is P loss(x) = βx2, where β = Rd
V 2 . In this expression, R is the ohmic resistance
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Figure 2.5: Performance of the proposed energy storage control policy as a function
of available storage capacity.

per unit distance of the transmission line, V is the operating voltage of the transmission

line that connects the two end-points of the transport, i.e the storage device and the

GE, and d is the distance between them. Typical values of R range from 0.1 to 0.5

Ohm/km, while V could be 220V or tens of kV. Depending on the distance considered,

the losses could be either ignored or incorporated in the model. The structure of the

optimal policy will not change.

2.2.7 Numerical Results

2.2.7.1 One Storage Device

In order to evaluate the performance of the proposed policy (P) for a single storage

device, we first compute the long-term average energy generation cost and compare it

to the lower bound (2.11). Our simulation scenario ran for a horizon of 240 hours. The

power demand arrival and completion processes are Poisson with λ = 200 requests /

hour and s = 2 requests / hour, i.e. the average demand duration is 1/s = 1/2 hour.

Also, the average power requirement per demand is 1 kW. Thus, the average demand

load is E[P (t)] = λ
s = 100 kW. We consider here the cost function C(x) = x2 for

simplicity.

Fig. 2.5 shows the average generation cost resulting from policy (P) for different values

of storage capacity Emax. As anticipated, the average cost decreases as Emax increases,

and it ultimately converges to the lower bound (λ/s)2. It can be observed that the
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(a) (b)

Figure 2.6: Amount of stored energy for A) Emax = 10 kWh and B) Emax = 24
kWh.

(a) (b)

Figure 2.7: Total instantaneous grid load for A) Emax = 10 kWh and B) Emax = 24
kWh.

performance of the policy is optimal at Emax ≥ 24 kWh, when the resulting average

generation cost reaches the lower bound.

Next, we compare two scenarios, one with storage capacity Emax = 10 kWh and one

with Emax = 24 kWh. In Fig. 2.6a and 2.6b, we show the instantaneous residual stored

energy across the time horizon for the two scenarios. When Emax = 10 kWh, the battery

empties (E(t) = 0) for a total of 69 times, whereas for Emax = 24 kWh, the battery

is never fully discharged. In Fig. 2.7a and 2.7b we depict the total instantaneous load
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Figure 2.8: Minimum required capacity Emax for which the policy is optimal, versus
the demand load.

on the grid, X(t), for the two cases above. Observe that if Emax = 10 kWh, the total

load exceeds P̄ = 100 for a total of 69 times as well. Clearly, these are the times when

the battery empties, and the load that the battery was serving is moved to the grid.

On the contrary, for Emax = 24 kWh, X(t) remains constant and equals P̄ = 100,

since the battery is never fully discharged. These findings verify the earlier theoretical

investigation.

We also seek the value of the minimum required storage capacity for which our policy

reaches the lower bound in (2.11), as a function of demand load λ/s. Fig. 2.8 presents

our findings. The minimum required capacity can be seen to increase in a concave-like

fashion in four out of the five test points as the demand load increases. This seems to

imply that the additional amount of capacity needed to fulfill an additional unit of load

decreases as the load increases, which is in accordance to the existence of a limiting

value of storage capacity derived above.

2.2.7.2 Two storage devices and GEs

Now, we study the performance of the policy presented in section 2.2.5 for the case of

minimization of the sum of individual GE costs, by evaluating the long-term average

cost for the optimal policy and comparing it to the lower bound. We consider N = 2

GEs and M = 2 storage devices with no renewable resources attached, and a cost

function C(x) = x2 for both GEs. We also assume λ1 = 200 requests/hour, λ2 = 100

requests/hour, and s = 2 requests/hour. The average power requirement per demand
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Figure 2.9: Performance of the proposed policy for the case of multiple batteries as
a function of available storage capacities with λ1 6= λ2, E1

max = E2
max.

Table 2.1: Average cost of the proposed policy for M = 2 storage devices

E1
max(kWh) E2

max(kWh) average cost

1 4 11479

4 7 11323

7 10 11267

10 13 11251

13 16 11250

is 1 kW and the batteries have equal storage capacities, E1
max = E2

max = Emax. The

threshold values are computed to be P 1
0 = P 2

0 = 75.

In Fig. 2.9, we show the values of the total long-term average cost for different values

of the common storage capacity Emax. We observe that, as storage capacities increase,

the average total cost converges to the lower bound which is 11250. Specifically, for

Emax ≥ 12 kWh the cost reaches the lower bound. Finally, we ran the same experiment

for E1
max 6= E2

max. Some of the resulting average costs are depicted in Table 2.1. Again,

it can be observed that as storage capacities increase, the average total cost converges

to the lower bound (11250).

2.3 Storage Placement and Power Flow

In this section, we study the problem of how much storage capacity should be placed

on each node –prosumer entity or bus– of a power network given an available storage

capacity budget. We are interested in the way storage capacity placement impacts the
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overall cost of energy generation. In determining the optimal policy, it turns out that

various aspects of power flow need to be taken into account. The solution policy for this

energy storage dimensioning problem entails various parameters such as the demand

profiles of prosumers and the power flow constraints. This section is based on work [11].

The references for the power flow analysis are [17], [18] and [19].

2.3.1 Power flow analysis

We consider a power network which consists of a set N = 1, 2, ..., N of N prosumer

nodes. Each node may be connected to other nodes through power distribution links.

We also use the equivalent, smart-grid term “bus” to refer to a node. Let (k, `) denote

the power distribution link between nodes k, l ∈ N . For each link (k, `), let Yk` be its

admittance, which is a complex number. Each node can be a power supplier (generator)

through some renewable energy source (RES) (e.g., a solar panel or a wind-turbine), or

a power consumer, both or neither.

Let Vk be the complex voltage at bus k ∈ N and |Vk| denote its magnitude. Let Ik

denote the current injected at bus k. The node equation at bus k is,

Ik =
N∑
l=1

YklVl . (2.43)

Define Sk to be the net complex power injection (generation minus load) at bus k ∈ N .

This is written as,

Sk = Pk + jQk = VkI
∗
k , (2.44)

where I∗k is the complex conjugate of the current at bus k, and Pk, Qk are the active

(real) and reactive powers. We can write,

I∗k =
Pk + jQk

Vk
⇒ Ik =

Pk − jQk
V ∗k

(2.45)

and thus

Pk − jQk = V ∗k

N∑
l=1

YklVl =

N∑
l=1

YklV
∗
k Vl . (2.46)

Now let Ykl = |Ykl|ejδkl and Vk = |Vk|ejθk . Since

Pk − jQk =

N∑
l=1

|Ykl||Vk||Vl|ej(δkl+θl−θk) (2.47)
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we have

Pk =
N∑
l=1

|Ykl||Vk||Vl| cos(δkl + θl − θk) (2.48)

and

Qk = −
N∑
l=1

|Ykl||Vk||Vl| sin(δkl + θl − θk) (2.49)

Here, we use the linearized DC approximation. In this approximation, the network is

assumed to be lossless, the voltage magnitudes |Vk| are assumed to be at their nominal

values at all nodes k ∈ N , and the voltage phase angle differences (θk − θl) between

end-points of a link (k, l) are small.

The first step to this approximation is to neglect the reactive power, i.e., Qk ≈ 0.

Through standard trigonometry, we obtain

Pk =
N∑
l=1

|Ykl||Vk||Vl|(cos δkl cos(θl − θk)− sin δkl sin(θl − θk)) . (2.50)

The second step is to neglect the real part of the admittance, i.e., δkl ≈ π/2. Then

Pk =
N∑
l=1

|Ykl||Vk||Vl| sin δkl sin(θk − θl) . (2.51)

Finally, we assume that |Vk| = |Vl| = 1, and that the voltage angle differences (θk − θl)
between end-points of a link (k, l) are very small, so that sin(θk − θl) ≈ θk − θl. We

also set Bkl = |Ykl| sin δkl for the imaginary part of the admittance, which is also called

reactance, and we get the power flow equation

Pk =

N∑
l=1

Bkl(θk − θl) . (2.52)

This power-flow equation is called direct-current (DC) one because of its analogies with

the flow equation in a DC circuit.

If we denote with Pkl ≥ 0 the real power flowing from node k to node l through line

(k, l), and k, l ∈ N , it is

Pkl = Bkl(θk − θl) . (2.53)

2.3.2 Storage and power flow model

For the power flow model, we use the linearized DC approximation described above.

For our model, we assume a time-slotted system with slots of unit length, and study
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its operation for an horizon of T time slots. The value of power flow Pkl(t), for nodes

k, l ∈ N , at different times t is limited by stability constraints and thermal effects, and

we have:

|Pkl(t)| ≤ fkl, (2.54)

where fkl is the capacity of the line connecting nodes k and l.

Let Lk(t) be the instantaneous demand load at node k ∈ N at time slot t and let Gk(t)

be the amount of generated power at node k at slot t. We denote the instantaneous

operational cost associated with power generation Gk(t) as Ck(Gk(t)), where Ck(·) is an

increasing, differentiable convex function.

Typically, the energy demand of prosumers follows specific patterns such as periodic

ones [20], [21]. Thus, the energy demand patterns of buses can be characterized. In

order to extract these patterns, estimation techniques from historical data regarding the

power demand of buses may be used. Here, we will assume that the demand profiles

for a finite horizon T , which we denote here as vectors Lk = (Lk(t) : t = 1, . . . , T ), for

k ∈ N , are obtained and known in advance.

The decision variable hk(t) is the charging/discharging rate of the battery of bus k at

slot t, respectively. Also, let Ek(t) be the stored amount of energy at the battery of

node k at the beginning of slot t. Define Ekmax ≥ 0 as the storage capacity allocated at

node k. Clearly, ∑
k∈N

Ekmax ≤ SB (2.55)

where SB is the total available storage budget, and 0 ≤ Ek(t) ≤ Ekmax for t = 1, . . . , T .

The level of stored energy Ek(t) at the battery of node k evolves with time as:

Ek(t+ 1) = Ek(t) + hk(t). (2.56)

Since 0 ≤ Ek(t) ≤ Ekmax at all slots t and time slots are of unit size, the quantity hk(t)

must satisfy,

− Ek(t) ≤ hk(t) ≤ Ekmax − Ek(t) (2.57)

Here, we assume that each battery is empty at installation time t = 0, i.e., Ek(0) = 0.

We have the following succinct time-evolution formula:

Ek(t+ 1) = min{Ekmax,max{Ek(t) + hk(t), 0}} . (2.58)

Clearly, if Gk(t) > Lk(t) there exists a power surplus and the excess energy Gk(t)−Lk(t)
of prosumer k can be used to charge her installed battery with rate hk(t) > 0, and/or
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Figure 2.10: Power balance at node k.

satisfy any energy needs of another prosumer l 6= k through transferring power Pkl(t)

to her. On the other hand, if Gk(t) < Lk(t), then there exists a power deficit and

thus prosumer k may satisfy her residual demand load Lk(t)−Gk(t) by discharging her

battery at rate |hk(t)|, and/or by receiving power |Pkl(t)| from a prosumer l .

At each time t, the power that flows in and out of a bus k should be balanced, i.e., it

must hold:

Gk(t) = Lk(t) + hk(t) +
∑
l 6=k

Pkl(t) (2.59)

This power balance constraint can be observed in Fig. 2.10.

2.3.3 Problem formulation

In the system design phase, there exists an amount SB of available storage budget/ca-

pacity which should be allocated among buses. The charging/discharging and energy

exchange decisions of the nodes would need to be considered as well.

Given the energy demand pattern Lk for each prosumer k, we need to decide at each

time slot: (i) whether and how much the battery will be charged or discharged, and (ii)

whether power |Pkl(t)| will flow from or to some other prosumer l. Further, partitioning

the finite storage capacity across buses and placing corresponding storage facilities there

to optimize the generation cost is needed. The jointly optimal policy will encompass

the variables above and can be derived from the solution of the following optimization

problem:
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Figure 2.11: A power network consisting of two buses. It must hold E1
max +E2

max ≤
SB

min

T∑
t=1

∑
k∈N

Ck(Gk(t)) (2.60)

over (hk(t), Pkl(t), E
k
max), t = 1, . . . , T, k, l ∈ N

subject to: (2.54), (2.55), (2.58), (2.57), (2.59),

where constraint (2.54) should be satisfied by a feasible power flow, constraint (2.55)

stands for the limited storage capacity over all storage devices, constraint (2.58) repre-

sents the constraint on the stored amount of energy at each battery, constraint (2.57)is

about the charging/discharging rates of the energy storage devices, and constraint (2.59)

represents the power balance constraint at each node of the network.

In the sequel, we present and discuss some simple special cases of the problem.

2.3.4 Numerical Example 1: Storage placement for N=2 buses

Consider a toy power network with two nodes, which is depicted in Fig. 2.11. Both

buses k = 1, 2 have generator units and loads, and let Ḡk, L̄k denote the average power

generation and consumption load respectively at bus k. To simplify the scenario, we

assume that storage capacity and power link capacity are unlimited, and we focus on

the impact of placing the entire storage at bus 1 or 2. If storage is placed at bus 1, the

power conservation equations at the two buses are

Ḡ1 − P12 − h1 = L̄1 (2.61)
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and

Ḡ2 + P12 = L̄2 . (2.62)

Note that the average charging rate cannot exceed the total injected power in the bus,

and it cannot also exceed the load, i.e.

h1 ≤ Ḡ1 − P12 , and h1 ≤ L̄1 . (2.63)

The objective is to minimize the total generation cost, C(Ḡ1) +C(Ḡ2), which is written

as,

min
P12,h1

C(L̄1 + h1 + P12) + C(L̄2 − P12) . (2.64)

We can take the partial derivatives with respect to P12 and h1. We get

P12 =
1

2
(L̄2 − L̄1 − h1) , C ′(L̄1 + h1 + P12) = 0 . (2.65)

If for example C(x) = x2, we have h1 = −(L̄1 + P12). Finally,

h1 = min{−(L̄1 + P12), L1, Ḡ1 − P12} . (2.66)

Depending on the arithmetic values of the load and generation parameters involved, we

obtain the expressions. We can make similar computations for storage placed in bus 2,

and we then decide where to place storage. For a numerical illustration, let the cost of

generation at each bus k be C(Ḡk) = Ḡ2
k, and the average demand loads at nodes 1 and

2 be L̄1 = 10 and L̄2 = 20. Also, suppose that the line capacity f12 is infinite. If there

is an infinite storage budget, then:

� if the storage capacity is placed in bus 1, then h1 = −30, P12 = 20, Ḡ1 = 0, Ḡ2 = 0

and thus, C(Ḡ1) + C(Ḡ2) = 0

� if the storage capacity is placed in bus 2, then h2 = −30, P12 = −10, Ḡ1 = 0,

Ḡ2 = 0 and thus, C(Ḡ1) + C(Ḡ2) = 0 .

Thus, the average cost remains the same regardless of the bus at which storage is placed,

and this is true for other values of the loads as well. Even for a different set of values of

the average demand loads, the result is the same. Namely, for L̄1 = 15 and L̄2 = 5:

� if the storage capacity is placed in bus 1, then h1 = −20, P12 = 5, Ḡ1 = 0, Ḡ2 = 0

and C(Ḡ1) + C(Ḡ2) = 0

� if the storage capacity is placed in bus 2, then h2 = −20, P12 = −15, Ḡ1 = 0,

Ḡ2 = 0 and C(Ḡ1) + C(Ḡ2) = 0.
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This cost invariance holds even if the storage capacity available is finite, e.g. SB = 5,

and for example L̄1 = 10 and L̄2 = 20:

� if the storage capacity is placed in bus 1, then h1 = −5, P12 = 7.5, Ḡ1 = 12.5,

Ḡ2 = 12.5 and thus, C(Ḡ1) + C(Ḡ2) = 312.5

� if the storage capacity is placed in bus 2, then h2 = −5, P12 = 2.5, Ḡ1 = 12.5,

Ḡ2 = 12.5 and thus, C(Ḡ1) + C(Ḡ2) = 312.5,

and for L̄1 = 15 and L̄2 = 5 :

� if the storage capacity is placed in bus 1, then h1 = −5, P12 = −2.5, Ḡ1 = 7.5,

Ḡ2 = 7.5 and thus, C(Ḡ1) + C(Ḡ2) = 112.5

� if the storage capacity is placed in bus 2, then h2 = −5, P12 = −7.5, Ḡ1 = 7.5,

Ḡ2 = 7.5 and thus, C(Ḡ1) + C(Ḡ2) = 112.5.

Again, we observe that the total cost is independent of the placement location of the

storage capacity. It can be checked that the same holds for every possible value of SB.

However, for L̄1 = 10, L̄2 = 20, SB = 5 and finite line capacity f12 = 1, we calculate

that:

� if the storage capacity is placed in bus 1, then h1 = −5, P12 = 1, Ḡ1 = 6, Ḡ2 = 19

and thus, C(Ḡ1) + C(Ḡ2) = 397

� if the storage capacity is placed in bus 2, then h2 = −5, P12 = 1, Ḡ1 = 11, Ḡ2 = 14

and thus, C(Ḡ1) + C(Ḡ2) = 317,

which means that the storage capacity should be placed in bus 2.

On the other hand, for L̄1 = 15, L̄2 = 5, SB = 5 and f12 = 1 :

� if the storage capacity is placed in bus 1, then h1 = −5, P12 = −1, Ḡ1 = 9, Ḡ2 = 6

and thus, C(Ḡ1) + C(Ḡ2) = 117

� if the storage capacity is placed in bus 2, then h2 = −5, P12 = −1, Ḡ1 = 14,

Ḡ2 = 1 and thus, C(Ḡ1) + C(Ḡ2) = 197,

which means that the storage capacity should be placed in bus 1.
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Figure 2.12: The optimal system performance for different values of the available
storage SB and line capacity f12.

2.3.5 Numerical Example 2: Storage dimensioning for N=2 buses

Consider the same toy power network of Fig. 2.11. We assume that the demand load

profiles Lk(t) of nodes k = 1, 2 and the power flow capacity f12 of the line connecting

the two nodes are known. Further, we assume that there is an available storage budget

SB which can be split into amounts E1
max, E2

max and allocated at the two nodes, so that

E1
max + E2

max = SB. We study our system for a time horizon of T = 2 slots.

The objective is to minimize the total average generation cost through optimal storage

dimensioning, storage management, and power flow. Namely, we need to optimally share

the available storage budget SB among the two nodes, and find the charging/discharging

rates hk(t) and power flow P12(t) at each slot t, so as to minimize the total average

generation cost, 1
2

∑2
t=1

∑2
k=1Ck(Gk(t)), which can be written as

1

2

2∑
t=1

C1

(
L1(t) + h1(t) + P12(t)

)
+ C2

(
L2(t) + h2(t)− P12(t)

)
. (2.67)

We conduct a numerical study for different values of demand loads L1(t), L2(t), power

flow capacity f12 and storage budget SB. Here, we assume C1(·) = C2(·) = C(·) and

C(Gk(t)) = (Gk(t))
2. Our results are depicted in Fig. 2.12 and Table 2.2.

In Fig. 2.12, the optimal total average generation cost (2.67) for SB ∈ [0, 5] and line

capacity f12 = 0, 0.5, 1, 1.5, 2 is depicted. For all values of f12, we observe that as the

available storage capacity SB increases, the optimal generation cost decreases, and for

storage larger than a certain value, i.e., for SB ≥ 1.4, it becomes constant. Also, as we
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Values for f12 = 0.5 Values for f12 = 1

L1(1) 5 1 7 3 5 1 7 3
L1(2) 7 7 1 7 7 7 1 7
L2(1) 1 5 5 5 1 5 5 5
L2(2) 3 3 3 1 3 3 3 1
h1(1) 1 2.5 0 1.67 1 2 0 1.33
h1(2) −1 −2.5 0 −1.67 −1 −2 0 −1.33
h2(1) 1 0 0 0 1 0.001 0 0
h2(2) −1 0 0 0 −1 −0.001 0 0
P12(1) −0.5 0.5 −0.5 0.17 −1 1 −1 0.33
P12(2) −0.5 −0.5 0.5 −0.5 −1 −1 1 −1
E1
max 2.67 3.54 2.77 3.22 2.66 3.33 2.78 3.11

E2
max 2.33 1.46 2.23 1.78 2.34 1.67 2.22 1.89

Table 2.2: Optimal storage dimensioning, charging/discharging and power flow for
SB = 5 and f12 = 0.5, 1.

allow larger line capacity, the optimal cost decreases, but it does not reduce beyond line

capacity f12 = 1.5.

Table 2.2 shows the optimal battery capacities, charging/discharging rates and power

flows of the two buses for different values of the demand profiles L1(t), L2(t) and for line

capacity f12 = 0.5, 1. It can be seen that for both values of f12, more storage capacity

is placed in buses which need greater charging/discharging rates. When the two buses

need to charge or discharge with the same rate, the available capacity is almost equally

shared among the two buses.

2.4 Related Work

There exists significant amount of work on leveraging stored energy in various contexts.

From a wireless networking perspective, the work [22] uses the stochastic dynamic pro-

gramming framework to obtain an optimal battery discharge policy for maximizing the

lifetime of power-limited wireless nodes. The problem of energy-aware routing is studied

in [23]. The designed algorithm computes an energy-weighted shortest path from the

source to the destination node of each service request. The wireless nodes are assumed

to have knowledge of the future short-term recharge process. However, this is an as-

sumption that the authors of [24] dispense with in their work. They present a modified

adaptive backpressure policy that maximizes throughput and whose asymptotic opti-

mality is shown using the notion of Lyapunov drift. A similar problem is considered in

[25] using a similar Lyapunov optimization approach. The proposed algorithms jointly

manage the stored energy and make power allocation decisions for packet transmissions
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without requiring any knowledge of the harvestable energy process and the channel

qualities.

One classic problem in the literature is the optimal stored energy control problem from

the consumer point of view, in the presence of time-varying prices. In [26], [27], for

instance, the proposed cost-minimizing storage control policy is shown to be a simple

threshold-based one, while [28] proposes SmartCharge, a charging/discharging system

that determines when and how much to store low-cost energy for use during high-cost

periods. SmartCharge’s algorithm leverages next-day electricity prices and a prediction

model which forecasts future demand. Based on the Lyapunov optimization technique,

the authors of [29] develop energy management schemes for load-serving and demand-

response. Each power consuming entity’s objective is to find a control policy for deter-

mining the load consuming, purchasing/selling, and charging/discharging actions, so as

to minimize her average cost. In [30], the authors proposed a threshold-based control

policy for a single battery and extended their policy to the multiple-battery case in order

to reduce the cost payed by users for energy supply.

In the context of game theory, two games are discussed in [31]. The first is a non-

cooperative one played between storage unit owners, who schedule their energy use to

minimize their energy cost. The second is a Stackelberg game played between the utility

provider and the energy consumers, in which the users minimize their cost, while the

utility maximizes its profit. Work [32], instead, introduces a prospect theory-based

framework which explains how real-life user decisions can deviate from those predicted

by conventional game theory. A non-cooperative game is formulated between storage

unit owners, which aim to maximize their utility functions that capture benefit-cost

tradeoffs.

Energy storage has also received significant attention as a way to efficiently integrate

renewables into the electricity grid. In particular, in [33] storage has been proposed as a

strategy for increasing the average energy sold and reducing curtailment of wind energy

in a wind-based system that trades electricity in electricity markets. The corresponding

problem is formulated as a Markov decision process and a triple-threshold policy is pro-

posed. The stochastic network calculus framework is extended in [34] to investigate the

effects of energy storage on the power supply reliability in configurations with different

levels of renewable generation.

In the same context, the impact of wind prediction quality on the performance of a

system equipped with a storage system and a set of wind sources is studied in [35]. The

authors present two production scheduling policies: a deterministic one, and a heuristic

one which is obtained using the statistics of wind-forecast errors. Two techniques to

mitigate the intermittent nature of renewables are considered in [36]: the use of storage
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and the concept of distributed generation combined with cooperation among distributed

sources. The objective is to minimize the time average cost of energy exchange among

the grid. An algorithm is developed using the technique of Lyapunov optimization.

The works [37] and [38] present ways to reduce power costs in data centers. Using the

technique of Lyapunov optimization, an online control algorithm is developed in [37] that

exploits UPS storage devices to minimize the time average electricity bill in a data center.

The proposed algorithm operates without any knowledge of the statistics of the workload

or electricity cost processes. The authors of [38] apply the same optimization technique

to solve the problem of optimal traffic distribution and battery charging/discharging

management in Internet data centers under location-varying and time-varying electricity

prices.

The problem of optimal dimensioning and placing of energy storage systems within the

distribution grid is studied in [11], [39]. In [11], the placement of storage is shown to

affect the power generation costs, and the objective is to minimize the power generation

cost, yet assuming that there is no cost for storage devices. The goal is to optimally

place and partition a given amount of storage capacity and to control the storage unit

across a power network so as to minimize the long-term average generation cost. The

work [39] proposes a model for collaborative prosumption of energy in a community of

prosumers that collectively use energy storage systems. The objective of the prosumers

is to minimize the total cost of battery deployment and that of power drawn from the

grid. The decisions amount to battery charging and discharging at each time slot as well

as partitioning of a storage budget among a set of candidate locations. Nash bargaining

theory is used to determine how the total cost should be shared in a fair fashion among

prosumers.

The benefits of cooperation are studied in [40] for the case of micro-grids that transfer

power among themselves. The proposed algorithm, based on coalitional game theory,

allows the microgrids to form coalitions so as to minimize the costs due to losses of power

over the distribution lines. However, the potential of energy storage is not addressed.

An other work that deals with micro-grid challenges is [41]. Leveraging the dual decom-

position method, a distributed power scheduling approach is developed, tailored for a

micro-grid with RESs. The objective is to minimize the microgrid net cost, but neither

cooperation among micro-grids nor sharing of storage resources is considered.

The majority of those works study the optimal energy storage management problem

from the perspective of the consumer. In the first part of this chapter, we study the

optimal energy storage control problem from the perspective of the utility operator, with

the goal of minimizing the long-term average grid operational cost. It turns out that

the convexity of cost gives rise to simple intuitive control policies.
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2.5 Conclusion

In this chapter, we studied the optimal stored energy control problem for the case of a

single storage device, and for multiple storage devices that are shared among multiple

micro-grid entities. Our objective of minimizing the average grid operational cost (or,

the sum of GE operational costs), led us to policies which attempt to keep balanced grid

power consumption at all times. Our numerical results demonstrate that the proposed

asymptotically optimal policies are excellent approximations even for finite storage ca-

pacity values, as small as a few tens of kWh. We also studied the joint energy storage

placement, dimensioning and control problem given an available storage budget, where

the goal is to minimize the power generation cost. We provided two simple numerical

examples in order to present the optimal solutions for some special cases of this problem.
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3.1 Introduction to the Energy Efficiency of Web Search

Engines

The operations of a web search engine can be grouped under three main components: web

crawling, indexing, and query processing [42]. Web crawling is responsible for traversing

the hyperlink structure among the web pages to discover and download the content in

the Web, as well as for refreshing already downloaded pages in the web repository. The

indexing component converts downloaded content into compact data structures that can

be easily searched. Finally, the query processing component evaluates user queries by

processing these data structures and matches each query to a set of pages deemed to be

relevant to the query.

Motivated by a real-world problem, in this chapter, we consider energy efficiency in

the context of a concrete application that comes from web crawling. Namely, we focus

on the greenness of the web crawling process. In search data centers, thousands of

computers are allocated to crawl the Web. Maintaining an infrastructure of this scale

results in certain implications in terms of energy consumption and carbon footprint. In

general, web crawlers lead to carbon emissions in two different ways, due to (i) local

operations performed on the crawling nodes in the data centers (e.g., parsing web pages)

and (ii) remote operations performed on the web servers while serving HTTP requests

(e.g., retrieving a page from disk). In this chapter, we are interested in the latter case,

i.e., the carbon emissions that the web crawler incurs on remote computers that do not

belong to the search engine.

In practice, a web crawler may lead to significant energy consumption on web servers

while the HTTP requests issued by the crawler are processed on the servers (e.g., during

disk accesses, processing in the CPU, and network operations). We motivate this by

some back-of-the-envelope calculations: Let us assume that there are five billion pages

in the Web [43]. According to a conservative estimate, we can assume an average of 200

J (0.055 Wh) of energy consumption per HTTP request [44]. Let us assume that each

page in the web repository is refreshed once per minute, on average. Now, refreshing only

one-tenth of the repository requires about 40 GWh of energy per day. Web crawling is

also a costly operation in terms of the carbon emissions of web servers. In our example,

if the carbon footprint of the fuel used to generate electricity is 0.85 kg/KWh [45], on

average, the carbon emissions due to web crawling can be estimated as 34,000 tons per

day.

Unfortunately, there is little a web crawler can do to reduce the energy consumption it

incurs to web servers without sacrificing the coverage or freshness of its web repository.

This is because the amount of energy consumed on web servers depends only on factors
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related to the hardware and software resources that are not managed by the search

engine company. Nevertheless, certain optimizations can be employed to reduce the

carbon emissions that a crawler incurs to web servers. Our main observation is that

the carbon footprint of a web server depends on the type (greenness) of the consumed

energy, which varies depending on the time of the day if the server is supported by a

RES (e.g., a solar panel). For example, a web server is more likely to consume green

energy in daytime, while it is more likely to consume brown energy during the night.

This intra-day variation creates an opportunity to reduce the carbon footprint of web

servers as HTTP requests may be scheduled such that pages are downloaded from web

servers that are more likely to be consuming green energy.

Motivated by the observation above, we devise a web repository refreshing technique

that takes into account both the greenness and staleness concepts when scheduling the

download of web pages. This technique aims to reduce the total staleness of pages in

the web repository while constraining web servers’ total carbon footprint resulting from

the activities of the crawler. The goal of our approach is to reduce/contraint the carbon

footprint of web servers by exploiting the dynamics of renewable energy generation,

which are here modeled by means of an appropriately defined time-varying (greeness)

index. Beyond creating an environment-friendly crawler, our work has implications

for large-scale web search engines, which should comply with regulations about carbon

footprint reduction.

The concept of staleness is unique to our green web crawling problem and it arises only in

the context of keeping the downloaded pages fresh enough. Our objective of minimizing

the total staleness of a web repository is related to the problem of minimizing the total

waiting time of scheduled jobs [46, 47]. However, our problem differs in that the crawler

needs to consider both the staleness and greenness aspects while making its scheduling

decisions. The concept of freshness could be related to a hard deadline constraint on

the refreshing of pages. However, the nature of the crawling process necessitates a softer

version of the deadline, that of staleness.

Due to the constraints on the amount of carbon emissions, the opportunities for schedul-

ing each page weigh differently, and the concept of greenness needs to be considered

explicitly in scheduling. To accommodate the average greenness constraints in our prob-

lem, we weigh them with the Lagrange multiplier λ and include them in the objective

function. In that respect, our work could be considered, in abstract terms, as a schedul-

ing problem under both deadline and average energy constraints. This same problem

could also be studied from the point of view of a smart grid system; continually gen-

erated power demand requests have to be scheduled under both timeliness and average
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greenness constraints taking into account the dynamic patterns of renewables. In con-

trast to works that present policies for time- or energy-efficient offline job scheduling

under constraints [48], our work proposes online policies, where the crawler makes its

decisions as the page download requests arrive. Finally, the concepts of page size and

page freshness requirement differentiate our work further from previous works.

Our main contributions are the following:

� We introduce the green web crawling problem, where we study a page refresh policy

that minimizes the total staleness of pages in the web repository of a crawler, while

keeping the amount of carbon emission on remote web servers low enough.

� For one web server and one crawling thread, we show that the optimal page refresh

policy is a greedy one. At each time slot, the page to be refreshed is selected based

on a metric that considers the staleness of the page, its size, and the greenness of

the energy consumed by the web server.

� We extend the optimal policy to the cases of (i) many web servers, (ii) multiple

crawling threads, and (iii) web pages with variable freshness requirements. We

also propose various heuristics along the lines of the optimal policy.

� We conduct simulations with a large-scale, real data set obtained from Yahoo.

The rest of this chapter is organized as follows. In section 3.2, we describe our system

model. In section 3.3, we formulate our core optimization problem, devise an optimal

policy, and provide some extensions. In section 3.4, we describe our experimental setup,

present some heuristics, and set forth numerical results obtained via simulations. Finally,

section 3.5 provides an overview of related work and section 3.6 concludes our study.

This chapter is based on works [49] and [50].

3.2 System Model

3.2.1 Web Crawler

In large-scale search engines, web crawling is performed by clusters of computers, where

each computer runs multiple crawling threads. A crawling thread either downloads

a newly discovered URL or re-downloads a previously stored page in the repository by

issuing HTTP requests to web servers. These two operations are known as discovery and

refresh, respectively. The discovery operations increase the size of the web repository

of the crawler. The refresh operations help to decrease the staleness of pages in the
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Figure 3.1: Our system model for the crawler: m crawling threads concurrently
retrieve pages from N web servers at time slot t.

repository. The focus of this work is on the page refresh operations only. Decreasing the

staleness of a page repository is important since this has a direct impact on the quality

of the search results presented to the users, thus affecting the monetization of the search

engine.

3.2.2 Web Servers

The system model is depicted in Fig. 3.1. We assume that there exists a set K of N

web servers. Also, let Wi be the set of web pages that are hosted in server i ∈ K and

thus, W =
⋃
i∈KWi be the set of all pages in the system. For each page j ∈ Wi, let pj

be the size of its content, in bytes. The hardware devices located in the remote servers

consume energy for serving the page download requests issued by the crawler. Fetching

the requested pages from the disk, processing them in the CPU, and transmitting them

through the server transmit circuit, all consume energy. To account for the factors

above, we assume that the amount of energy consumed to download a page j is a linear

function of pj , i.e., ej = αpj+β, with α, β > 0, known constants. These assumptions are

made to better expose the main characteristics of our approach, namely server greenness

and web page staleness, to be presented below.

We also assume that each page may have its own freshness requirement which is mainly

determined by two factors: (i) its PageRank and (ii) its likelihood of change. The

PageRank of a page measures its relative importance within the set of web pages [51].

On the other hand, the likelihood of change of a page is determined by the estimated

frequency of content change of the page. Pages with high PageRank value and high
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likelihood of change may have higher freshness requirements. We define weights γj ,

∀j ∈ Wi with i ∈ K, which indicate the different freshness requirements of pages. Web

pages with high γj should be refreshed more often. These weights can be estimated

based on crawler statistics and past crawling history.

3.2.3 Greenness of Server Energy Consumption

For each server i, we define a time-varying value, gi(t), which indicates (on a given scale)

the amount of produced carbon emissions per unit of consumed energy (Wh). This value

denotes the “greenness” of the energy consumed to run the server. For example, in the

[0, 1] scale, the carbon emissions (or greenness) of a very green energy source is close to

zero (no carbon emissions, maximum greenness) and, as the value increases, the source

becomes more “brown”. For instance, a server may be powered entirely by clean nuclear

energy or wind power, or entirely by brown energy generated from coal or lignite, or by

a mixture of these. The gi(t) values may vary in time due to the time-varying power

output generated by renewable energy sources or because the local electricity company

increases the brownness due to high demand. We assume that there is no a priori

knowledge of the gi(t) values, and they can be communicated from the web servers to

the crawler only at the time that a decision needs to be made.

3.2.4 Web Page Staleness

We assume that time is divided into slots and that the slot size is large enough to cover

the download of the largest page. Hence, page downloads occur on a time slot basis. This

assumption is made to simplify the subsequent analysis and better expose the structure

of the optimal policy. Nevertheless, it is not restrictive since it still captures different

energy consumption incurred to remote web servers.

At the beginning of each slot, m threads are directed by the crawler toward m web

pages that are selected for download. For each page j, we need to define a measure of its

staleness. Let sj(t) be the staleness of a page j at the beginning of slot t. If this page is

selected for download, then at most by the end of the slot the page download will finish,

and at the end of the slot its staleness will be 0. However, if this page is not selected,

then its staleness will increase and at the end of the slot it will be sj(t) + 1. We observe

that as long as page j is not selected, it becomes more and more stale, which means

that the staleness of the page depends on the time elapsed since the last time it was

downloaded. It should be noted that the slot assumption above leads to a somewhat

conservative consideration in terms of the computed staleness, in the sense that it leads
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to larger staleness increase for pages that are not scheduled for download. However, even

if this assumption is relaxed, the structure of our analysis is not expected to change.

3.3 Problem Formulation

We are interested in scheduling the page download threads from the crawler to the web

servers with the objective to keep the web pages as much as possible fresh and the carbon

emissions due to page download requests low enough. The decision at each time t is to

pick a server i ∈ K and a page j ∈ Wi to download in such a way that the total staleness

of the pages is minimized and the amount of carbon emissions is kept below a given

threshold. On the one hand, we would like to choose pages with large staleness. On the

other hand, we would like to schedule downloads of pages from servers that have low gi(t)

values. Also, out of all pages it is not clear whether we should schedule for download the

ones with smaller size or the ones with larger size. Small-size pages consume less energy.

However, larger pages should also be downloaded at some point in order to reduce their

staleness. There may also be pages with high freshness requirements γj , which should

be given high priority in the download process.

The joint consideration of all parameters above and the conflicting objectives of keeping

the pages fresh and the carbon emissions at the remote servers low, make the thread

scheduling problem non-trivial. First, we formulate and solve the basic single-server,

single-thread problem presenting the various intuitions behind it. We then extend it to

the cases of many servers, multiple crawling threads, and pages with different freshness

requirements.

3.3.1 Single Web Server, Single Thread Scheduling Problem

First, we consider the simple case of one server that hosts a set W of web pages. A

horizon of (T + 1) time slots is assumed. As we mentioned above, the page download

time is one slot, and we assume that g(t) remains stable over the time slot. At each

time t, m = 1 thread is sent to fetch one web page. We define the vector variable

x(t) = (xj(t) : j ∈ W), where xj(t) = 1 if at time slot t the web page j ∈ W is

downloaded, else xj(t) = 0. Clearly,
∑

j∈W xj(t) = 1, ∀t = 0, . . . , T − 1, since at each

slot t, only one thread to a web page is allowed to be active to the server. We note that

the staleness of a web page j at the beginning of slot t+ 1 is:

sj(t+ 1) =

{
0 if xj(t) = 1

sj(t) + 1 if xj(t) = 0.
(3.1)
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The time evolution of the staleness of a page j can be written as sj(t + 1) = (sj(t) +

1)(1− xj(t)). Our goal is to find a policy x∗ = (x(t) : t = 0, . . . , T − 1) that minimizes

the total (over time and over pages) staleness of the server, i.e.,

min
x∗

T∑
t=0

∑
j∈W

sj(t) (3.2)

subject to the constraints that only one thread to a web page is allowed to be active to

the server at each time t, i.e.,

s.t.
∑
j∈W

xj(t) = 1, ∀t = 0, . . . , T − 1, (3.3)

and that the total amount of carbon emissions due to page download requests does not

exceed a given threshold Ḡ, i.e.,

s.t.

T−1∑
t=0

∑
j∈W

xj(t)ejg(t) ≤ Ḡ, (3.4)

where Ḡ is set by the agreement between the crawler and the remote server. Since

we estimate the total staleness (over pages) at the beginning of each slot t, we assume

that the last scheduling decision is made at the beginning of slot T − 1, the last page

download finishes by the end of slot T − 1, the last total staleness estimation is made at

the beginning of slot T , and no action is taken during slot T . We observe that the time

evolution of the total (over pages) staleness is:

∑
j∈W

sj(t+ 1) =
∑
j∈W

sj(t) + (|W| − 1)− sj∗(t)(t), (3.5)

where j∗(t) is the selected web page at time slot t with staleness sj∗(t)(t) (which becomes

zero at the beginning of slot t+ 1). We observe that for t = T − 1, and after a number

of calculations, equation (3.5) can be written as:

∑
j∈W

sj(T ) =
∑
j∈W

sj(0) + T (|W| − 1)−
T−1∑
t′=0

sj∗(t′)(t
′).

Therefore, for any t = 0, . . . , T − 1, we have:

∑
j∈W

sj(t) =
∑
j∈W

sj(0) + t(|W| − 1)−
t−1∑
t′=0

sj∗(t′)(t
′) , (3.6)
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and using the decision variable x(t), (3.6) can be written as:

∑
j∈W

sj(t) =
∑
j∈W

sj(0) + t(|W| − 1)−
t−1∑
t′=0

∑
j∈W

xj(t
′)sj(t

′). (3.7)

Using (3.7), the total staleness
∑T

t=0

∑
j∈W sj(t) can now be written as:

(T + 1)
∑
j∈W

sj(0) +
T (T + 1)

2
(|W| − 1)−

T∑
t=0

t−1∑
t′=0

∑
j∈W

xj(t
′)sj(t

′). (3.8)

In order to minimize (3.8) we just have to maximize the quantity∑T
t=0

∑t−1
t′=0

∑
j∈W xj(t

′)sj(t
′). Moreover, in order to accommodate constraint (3.4) in

our problem, we include it in the objective function parameterized by Lagrange multiplier

λ ∈ R+. Thus, we end up with the following objective:

max
x∗

T∑
t=0

t−1∑
t′=0

∑
j∈W

xj(t
′)sj(t

′)− λ
( T−1∑
t=0

∑
j∈W

xj(t)ejg(t)− Ḡ
)
. (3.9)

Parameter λ denotes the significance of greenness for the server. Its value, which is set

in consultation with the crawler, depends on the capability of using green energy at the

local server premises. If there is no such capability, then λ = 0 and the crawler’s goal is to

just minimize the total staleness. On the other hand, if there is high potential for energy

from renewable sources, the value of λ is high. In that case, besides minimizing staleness,

the crawler also wishes to keep the carbon footprint as low as possible, as suggested by

the values of λ and Ḡ. We observe that as λ increases, the amount of carbon emissions

becomes more and more important for the server and the page download scheduling is

largely determined by its value.

3.3.2 Optimal Web Page Download Scheduling Policy

Now, we will try to understand the structure of objective (3.9). We write (3.9) for T = 2

and after some algebra we get:

max
x∗

∑
j∈W

(
2sj(0)− λejg(0)

)
xj(0) +

∑
j∈W

(
sj(1)− λejg(1)

)
xj(1) + λḠ . (3.10)
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For T > 2, the objective is written as:

max
x∗

∑
j∈W

(
Tsj(0)− λejg(0)

)
xj(0) +

∑
j∈W

(
(T − 1)sj(1)− λejg(1)

)
xj(1) + . . .+

+
∑
j∈W

(
sj(T − 1)− λejg(T − 1)

)
xj(T − 1) + λḠ . (3.11)

Since g(t) is not known a priori, we study the online version of the problem. Objective

(3.11) can be decomposed to separate terms to be optimized with respect to the schedul-

ing decision only at slot t, which means that the crawler’s decision at t is independent of

the decisions made at the other slots. Thus, the optimal policy involves greedy decision

making.

Optimal policy: At the beginning of each slot t, the crawler chooses x(t) that maxi-

mizes ∑
j∈W

(
(T − t)sj(t)− λejg(t)

)
xj(t)

such that
∑

j∈W xj(t) = 1. For the selected web page j∗(t), it holds:

j∗(t) = arg max
j∈W

((T − t)sj(t)− λejg(t)),

which means that at each time t, given g(t), the crawler decides based on the values of

sj(t) and ej , for j ∈ W.

In the special case where all pages need the same energy to be downloaded, i.e., ej = e,

∀j ∈W , the crawler chooses the page j with the maximum staleness sj(t). On the other

hand, if all pages have the same staleness at t, i.e., sj(t) = s, ∀j ∈W , then the crawler

chooses the page j with the minimum required energy ej , i.e., the one with the minimum

size pj .

3.3.3 Extensions to the Model

3.3.3.1 Many Web Servers

Consider a set K of N > 1 web servers where each server is characterized by its own gi(t)

value. Again, we assume that at each slot t, only one thread to a web page is allowed

to be active to any server (m = 1).
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Our goal is to find a policy x∗ = (x(t) : t = 0, . . . , T − 1) that minimizes total staleness

(over time and all pages) of all servers, i.e.,

min
x∗

T∑
t=0

N∑
i=1

∑
j∈Wi

sj(t), (3.12)

subject to the constraints that only one thread to a web page is allowed to be active to

any server at each slot t, i.e.,

s.t.
∑
i∈K

∑
j∈Wi

xj(t) = 1, ∀t = 0, . . . , T − 1, (3.13)

and that the total amount of carbon emissions of each remote server i does not exceed

a given threshold Ḡi, i.e.,

s.t.

T−1∑
t=0

∑
j∈Wi

xj(t)ejgi(t) ≤ Ḡi, ∀i ∈ K. (3.14)

where Ḡi is set by the agreement between the crawler and the remote server i. Based

on (3.13), we observe that a policy x∗ is a sequence of vectors x(t), where for given t,

xj(t) = 1 for only one i and only one j ∈ Wi.

Similar to Section 3.3.1, objective (3.12) is converted to:

max
x∗

T∑
t=0

t−1∑
t′=0

N∑
i=1

∑
j∈Wi

xj(t
′)sj(t

′). (3.15)

By bringing (3.14) in the objective with Lagrange multipliers λλλ = (λ1, λ2, . . . , λN ) ∈ RN+ ,

our problem becomes:

max
x∗

[ T∑
t=0

t−1∑
t′=0

N∑
i=1

∑
j∈Wi

xj(t
′)sj(t

′)−
N∑
i=1

λi

( T−1∑
t=0

∑
j∈Wi

xj(t)ejgi(t)− Ḡi
)]
, (3.16)

subject to (3.13). As in Section 3.3.2, the objective can be decomposed to separate

objectives, where each objective needs to be optimized with respect to the scheduling

decision only at time slot t. Similarly, the optimal policy in the case of many web servers

involves greedy decision making.

Optimal policy for many web servers: At the beginning of each slot t, the crawler

chooses the server i and the web page j ∈ Wi with the maximum value of
(
(T − t)sj(t)−

λiejgi(t)
)
.

We observe that at each slot t, the crawler makes its decisions based on the values of

sj(t), ej , λi, and gi(t), for i = 1, . . . , N and j ∈ Wi. We identify some special cases here:
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� If at slot t, sj(t) = s, ∀i ∈ K, ∀j ∈ Wi, then the crawler chooses the server i ∈ K
and the web page j ∈ Wi with the minimum product λiejgi(t). If it is also λi = λ

and ej = e, ∀i ∈ K, ∀j ∈ Wi, then the crawler chooses randomly a page from the

server with minimum gi(t).

� If λi = λ and ej = e, ∀i ∈ K, ∀j ∈ Wi, then at slot t the crawler chooses the server

i ∈ K and the web page j ∈ Wi with the maximum sj(t)− gi(t). If also at slot t,

gi(t) = g(t), ∀i ∈ K, then the crawler chooses out of all pages the web page j with

maximum staleness sj(t).

3.3.3.2 Many Web Servers, Multiple Crawling Threads

Now, we assume that the crawler uses m > 1 threads at each slot. The problem is the

same as the one above but now, at each slot t, the crawler selects m pages for fetching.

This means that in the above problem, constraint (3.13) is transformed to:

∑
i∈K

∑
j∈Wi

xj(t) = m, ∀t = 0, . . . , T − 1. (3.17)

Again, the optimal policy turns out to involve greedy decision making.

Optimal policy for many web servers and multiple simultaneous crawling

threads: At the beginning of each time slot t, the crawler selects the m server-page

pairs (i, j) with largest values of (T − t)sj(t)− λiejgi(t).

3.3.3.3 Web Pages with Variable Freshness Requirements

Here, we incorporate into our problem the weights γj defined in Section 3.2, which

indicate the variable freshness requirements of web pages. Our optimization problem

becomes:

min
x∗

T∑
t=0

N∑
i=1

∑
j∈Wi

γjsj(t) , (3.18)

subject to constraints (3.14) and (3.17).

Optimal policy for many web servers, multiple threads and pages with vari-

able freshness requirements: At the beginning of each slot t the crawler chooses the

m server-page pairs (i, j) with largest values of (T − t)γjsj(t)− λiejgi(t).

The following simple example for m = 1 shows the influence of weights γj on the crawler’s

decisions: Assume that at slot t the crawler has to decide between two pages k, l hosted

in the same server (i.e., the same gi(t), λi). If sk(t) = sl(t), ek = el and γk > γl, the
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crawler gives priority to the one with the biggest freshness requirement, i.e., it selects

page k.

3.4 Performance Evaluation

3.4.1 Data Set

As a web collection, we used web pages sampled from a large web crawl performed by

Yahoo. The web crawling was a continuous process. Therefore, our data represents

only a snapshot of this crawl (the snapshot was obtained in November 2011). The data

contains the most important web servers (about 500,000 servers) and the pages hosted on

those servers (about two billion pages). The importance of a web server was estimated

by a proprietary link analysis metric. This metric is similar to PageRank in that the

importance of a server is computed based on the number of its inbound links and the

estimated importance of servers that provide those links. Hence, our collection is large

and also represents high-quality content that is of importance to a web search engine.

The scale of the collected dataset makes us confident that the numerical investigation

of our problem (Section 3.4.4) is realistic and gives a good sense of the performance in

a realistic system.

In our simulations, we estimate the greenness value of a web server based on the time-

zone of the country in which it is physically located and the time an HTTP request

is issued to the web server. We estimate the country information for each server by

means of a proprietary classifier. The classifier assigns each server to a country based

on a number of features, including the IP address of the server, some link features (e.g.,

the country information associated with the servers providing inbound links) and some

content features (e.g., the language of pages hosted on the server). For each server, we

also compute some information about the number of pages hosted on it as well as its

average page size p̄i =
(∑

j∈Wi
pj
)
/|Wi|.

3.4.2 Greenness and Staleness Computation

Estimation of Carbon Emissions: First, we assume that each server can be powered

by a mixture of solar (green) energy during the day and energy provided by the grid

(brown) during the night. The actual solar insolation/irradiance reaching a solar array

is strongly dependent on the solar array’s position on the Earth and on local weather

conditions [52]. It varies throughout the day from 0 kW/m2 at night to a maximum

of about 1 kW/m2. Fig. 3.2a shows an example in which the solar irradiance reaches
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Figure 3.2: The variation in (a) the solar irradiance [52] and (b) the gi(t) values
during the day.

its maximum value at noon when the sun is at its highest point in the sky. The actual

solar irradiance is usually below this value because it depends on the angle of incidence

of the sun’s rays with the ground. Here, for simplicity, we ignore the case of clouds on

the horizon.

Based on the day of the year, the time-zone, latitude and longitude of each server, we

estimate the day length as well as the sunrise and sunset times at the server location.

We define gi(t) = 1−normalized solar irradiance (using the maximum solar insolation as

a measure of scale). This definition captures the fact that the amount of solar insolation

determines the amount of generated solar energy and thus, the amount of produced

carbon emissions. We observe that gi(t) takes its minimum value in the middle of the

day, whereas during the night it takes its maximum value 1.

For example, if for a server i located in a country in the northern hemisphere, the sun

in winter rises at 07:30 a.m. and sets at 17:00 p.m., the gi(t) value is 1 at 07:30 a.m.,

around 0 at 12:15 p.m., again 1 at 17:00 p.m. and 1 during the night. From Fig. 3.2a,

we observe that during the intermediate hours the values of gi(t) will range between

0 and 1 and that they can be approximately determined by a linear function α1t + β1

between sunrise and noon, and by a function α2t + β2 between noon and sunset. For

the pair of points (07:30,1), (12:15,0), we get α1 = −0.21 and β1 = 2.57, while for the

pair (12:15,0), (17:00,1) we get α2 = 0.21 and β2 = −2.57. Fig. 3.2b shows the daily

variation of gi(t) for the above example.

Note that our approach is transparent to such derivations and may be used in conjunction

with various regimes of computing the time evolution of gi(t). For example, in the case

of wind energy, gi(t) could be computed using wind velocity and direction [53]. Also,

gi(t) could be estimated using the expected energy generation pattern of each renewable
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source installed at server i premises, which can be approximated by an average time

sequence based on historical data [21].

Staleness Computation: For the experimental scenario, we assume that the scheduling

of a thread towards a web page j results in a download time of kj slots, which is

proportional to size pj . We assume that kj = ` +
pj
b , where b is the bandwidth and

` is the network latency between the crawler machine and the server, which we take

for simplicity to be the same across servers. Since the available data does not allow us

to estimate the staleness of each page separately, we use a more practical method to

compute the total staleness Si(t) of a server i. For example, let us consider a server n

with |Wn| pages. We assume that at time t0 a page j from that server is selected to

be crawled. After kj time units, the total staleness of each server i increases by |Wi|kj ,
i.e., Si(t0 + kj) = Si(t0) + |Wi|kj , since each page gets kj time units older. Now, at time

t0 + kj + 1, we assume:

Sn(t0 + kj + 1) =
Sn(t0 + kj + 1)(|Wn| − 1)

|Wn|
, (3.19)

i.e., after crawling a page from server n, we simply decrease its current total staleness

by its average staleness.

3.4.3 Heuristic Policies

Here, we devise some heuristic page download scheduling policies, along the lines of

the optimal policy, in order to evaluate the relative importance of the different system

parameters and study the tradeoff between staleness and greenness. Due to the na-

ture of the collected data described in Section 3.4.1, the proposed policies work at the

granularity of servers. Each policy achieves a different objective and relies on different

parameters to make its decisions, using less information than the optimal policy. We

define two more metrics: the average page staleness (over all pages) at slot t as,

s̄(t) =

∑
i∈K

∑
j∈Wi

sj(t)∑
i∈K |Wi|

, (3.20)

as well as the average staleness of a server i at slot t as,

S̄i(t) =

∑
j∈Wi

sj(t)

|Wi|
. (3.21)

The proposed heuristic policies are the following:
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� Random Server Selection (RS): The crawler picks a server uniformly at random

out of all servers in the system. Then, it selects a random page in that server to

crawl. We use this policy for benchmarking.

� Maximum Greenness Server Selection (MG): The crawler picks the server with

the minimum gi(t) value (maximum greenness). Then, it selects a random page in

that server to crawl. This policy tries to minimize the amount of carbon emissions

produced by the crawling process.

� Maximum Average Staleness Server Selection (MS): The crawler selects the server

with the maximum average staleness S̄i(t). Then, it selects a random page in that

server to crawl. This policy does not take greenness into account at all. Its goal

is to minimize the average staleness of the servers (and thus, that of the pages).

� Maximum Product of Average Server Staleness and (1−carbon emissions) (MPSC):

The crawler selects the server with the maximum product S̄i(t)(1− gi(t)). Then,

it selects a random page in that server to crawl. Among the servers with gi(t) = 0,

the crawler chooses the one with the maximum average staleness. The goal is to

maintain the amount of carbon emissions and the average staleness of the servers

at low levels.

� Maximum Product of Average Server Staleness and (1/average page size) (MPSS):

The crawler selects the server with the maximum product S̄i(t)(1/p̄i). Then, it

selects a random page in that server to crawl.

� Maximum Product of Average Server Staleness, (1/average page size), and (1−carbon

emissions) (MPSSC): The crawler selects the server with the maximum product

S̄i(t)(1/p̄i)(1 − gi(t)). Then, it selects a random page in that server to crawl.

Among the servers with gi(t) = 0 (maximum greenness), the crawler prefers servers

with large average staleness and small average page size.

By experimenting with the last two policies we try to understand the impact of average

page size on system performance in terms of reduction in carbon emissions and staleness.

3.4.4 Experimental Results

Here, we present our experimental results in order to (i) show the performance of the

optimal policy in terms of total staleness and total carbon emissions as a function of

parameter λ, and compare it with the performance of an EDD-like policy, (ii) show

the performance of our heuristics in terms of average amount of carbon emissions and

average staleness reduction, and (iii) compare the performance of all proposed policies.
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Figure 3.3: The performance of the optimal policy in comparison with that of the
EDD-like policy in terms of a) total staleness, and b) carbon emissions as a function of

λ.

(a) (b)

Figure 3.4: a) The average amount of carbon emissions (measured in grams (g))
generated by the proposed heuristic policies, and b) the performance of all heuristics

in terms of staleness reduction.

We run our experiments for T=24 hrs, `=100 ms, b=1 Mbps, and m=1, 50, 100, 150,

200.

3.4.4.1 Performance of the Optimal Policy

First, we study the performance of the optimal policy for the case of a single server

and a single thread as a function of λ. Here, we use synthetic data as a way to study

the performance at the level of web pages. We use a set of 1000 pages and normalized

values between 0 and 1 for the energy required for page download. As mentioned in

Section 3.3.1, the page download time is one slot, and during this slot g(t) remains

stable. The page staleness values are calculated using the method described in Sec-

tion 3.2 and 3.3.1. The g(t) values are computed according to the method described

in Section 3.4.2. We assume that staleness is measured in minutes (min) and that the
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amount of carbon emissions at each slot t, ejg(t), is measured in grams (g). Since the

crawler decides based on the value of (T − t)sj(t)− λejg(t), the measurement unit of λ

is minutes/grams (min/g).

Figs. 3.3a and 3.3b show the performance of the optimal policy in terms of total (over

time and over pages) staleness and total carbon emissions, respectively. As λ increases,

the total staleness increases in a non-linear convex manner, whereas the total carbon

emissions decrease almost linearly. It is obvious that there is a tradeoff between page

staleness and server greenness, and that λ can be set to quantify this tradeoff. These re-

sults stem from the fact that as λ increases, the potential of using green energy increases

as well and the server wants more and more to exploit this potential. Thus, although

the crawler wants to minimize the staleness of pages, it is hindered by the server’s desire

to keep its carbon footprint low.

Figs. 3.3a and 3.3b also depict the performance of a carbon-unaware web crawling tech-

nique that places emphasis only on the freshness of the downloaded web pages. This

policy is reminiscent of the earliest due date (EDD) policy [46] since at each slot it

selects the web page with the maximum staleness. As expected, this EDD-like policy

outperforms our optimal policy in terms of total staleness for all values of λ, whereas

the reverse occurs in terms of total carbon emissions. The performance values of the

two policies coincide for λ = 0.

3.4.4.2 Performance of the Heuristic Policies

Here, we study the performance of our heuristics using the collected real data described in

Section 3.4.1. Figs. 3.4a and 3.4b show their performance in terms of average (over time)

amount of carbon emissions and average (over time) staleness reduction, respectively.

As the number of threads increases, the crawler potential increases, and the differences

between the policies are more pronounced. We observe that both carbon emissions and

staleness reduction constantly grow due to the increasing number of downloaded pages

per unit of time.

In Fig. 3.4a, MG outperforms the other five policies in terms of reduced carbon emissions

as expected. Compared to the case where there is no possibility of using green energy, i.e.,

gi(t) = 1, ∀i and ∀t, it achieves on average a 99.35% reduction in the amount of carbon

emissions. The other two policies that also take the value of gi(t) into account, MPSC

and MPSSC, are characterized by an average carbon emissions reduction of 97.74% and

63.42%, respectively. Their gain is lower since they also count in server staleness and/or

web page size. The tradeoff between staleness and greenness prevents the amount of

carbon emissions from being as small as possible.
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Table 3.1: Performance results as the impact of cold-start is reduced

Day 1 Day 2 Day 3 Day 4

Avg. staleness reduction of MS (in min) 71.9 215.7 359.1 502.1
Avg. staleness reduction of RS (in min) 71.8 214.2 355.4 495.1
difference (in min) 0.1 1.5 3.7 7.0
difference (%) 0.14 0.67 1.03 1.39

(a) (b)

Figure 3.5: The average page staleness of a) the first four heuristic policies and b) all
heuristics at the end of the simulation.

In Fig. 3.4b, we observe that MS, which can be considered as an EDD-like heuristic

policy, outperforms four of the other five policies in terms of staleness reduction. The

fifth one (i.e., RS) performs almost the same as MS. This happens due to a “cold start”

phenomenon: in the first hours of the simulation, the great majority of servers have the

same average staleness since the number of downloaded pages (and hence, the number

of staleness reduction events) during this period is too small compared to the number

of the pages that are not downloaded. Thus, each time a decision must be made, RS

is more likely to select a page from a server whose staleness is at maximum. In order

to eliminate the impact of this phenomenon on our results, we ran both RS and MS for

three more days (m = 1). Table 3.1 shows the results. We observe that as the algorithm

runs for more days, the difference between the two policies in terms of staleness reduction

builds up.

In Figs. 3.4a and 3.4b, we observe that MPSC tries to strike a balance between staleness

and greenness. Besides its relatively high gain in terms of reduced carbon emissions, its

average staleness reduction is only 4.34% lower than that of MS.

Figs. 3.5a and 3.5b depict the average page staleness after running the proposed policies

for one day. Considering only the first four policies, we observe that RS and MS, as

expected, achieve the lowest average page staleness. On the other hand, the performance

of MPSS and MPSSC, as shown in Fig. 3.5b, reveals the impact of average page size on
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Table 3.2: Performance comparison of the proposed policies

Avg. page stale-
ness (end of day)
(min)

Total staleness
reduction (x106)
(min)

Total carbon
emissions (x104)
(g)

Optimal 1 125.3 19.72 3.13
Optimal 2 126.2 19.7 3.11
RS 250.1 17.84 3.3
MG 673.0 11.5 0.41
MS 248.6 17.87 3.29
MPSC 431.5 15.12 1.72
MPSS 248.7 17.86 3.28
MPSSC 431.1 15.13 1.7

page freshness. Although the average staleness reduction of both policies remains low

(Fig. 3.4b), the average page staleness at the end of the day is much lower than that of

the first four policies. Their ability to keep pages more fresh stems from the following

fact: Since both policies give priority to pages with relatively small size, the number of

downloaded pages during the horizon of the T + 1 slots is much greater (88.98% and

87.44% on average for the MPSS and the MPSSC, respectively) than that of the other

policies. This yields to an increased total staleness reduction, which offsets the low

average staleness reduction per unit of time, and which in turn yields to a relatively low

average page staleness at the end of the day.

In Figs. 3.4a and 3.5b, we observe that MPSSC could also be used by the crawler

according to our objective. Although the carbon emission reduction of MPSSC is lower

than that of MPSC, its average page staleness at the end of the simulation is lower than

that of MPSC.

3.4.4.3 Performance Comparison

In order to compare the performance of all policies, we use synthetic data. Our system

consists of 15 servers and each server hosts 1000 pages. Again, we use normalized values

between 0 and 1 for the energy required for page download. For the optimal policy,

we consider the same value of λ for all servers, i.e., λi = λ for i = 1, . . . , 15. As we

mentioned above, the page download time is one slot, and we assume that during this

slot the gi(t) values, for i = 1, . . . , 15, remain stable. At each slot t, m = 1 thread is

sent to fetch one web page. The decision at each time slot t is to pick 1 out of the 15

servers and a page from the selected server to download.
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Table 3.2 shows the performance of all proposed policies. We ran our optimal policy

both for λ = 100 (Optimal 1) and for λ = 500 (Optimal 2). As we can see, both versions

of the optimal policy outperform all the heuristic policies in terms of total staleness

reduction and average page staleness at the end of the simulation. This stems from

the fact that the optimal policy works at the granularity of web pages. Specifically, for

relatively low values of λ, it applies more weight to the staleness factor. Thus, in contrast

to all heuristics, which select a web page from the selected server at random, it has the

ability to examine in more detail the characteristics of all web pages and pick a web page

with relatively high staleness. As λ increases, the servers’ desire to keep their carbon

footprint low increases as well and thus, the crawler is obstructed from minimizing the

staleness of pages. As we mentioned above, λ is a parameter that can be set to quantify

the tradeoff between staleness and greenness. On the other hand, for the specific values

of λ, the policy that outperforms all the other ones in terms of reduced carbon emissions

is MG. However, the produced carbon emissions of the optimal policy (in both cases)

are less than those of the RS, MS (EDD-like heuristic) and MPSS policies which do not

consider the greenness of the servers at all.

3.5 Related Work

3.5.1 Refreshing Web Repositories

The pages in the web repository of a crawler need to be refreshed to prevent the search

engine from presenting stale results to its users. A research problem here is to find an or-

der in which the pages will be refreshed such that some freshness metric is optimized over

the entire repository. Early papers on the topic suggest refreshing frequently updated

pages more often, relying on the observed update frequency of pages as a proxy [54], [55].

Certain works use the update history of related pages to capture the actual update like-

lihood of a page better [56], [57]. Works in another line devise page refresh strategies

that aim to minimize the negative impact on users due to stale search results [58], [59].

Finally, the work in [60] suggests avoiding to refresh fast-changing content as much

as possible. To the best of our knowledge, so far, no prior work has investigated this

research problem taking into account the greenness aspect of web servers as a constraint.

3.5.2 Job and Packet Processing

A line of work that is relevant to ours is that of scheduling jobs under deadlines. The work

in [46] presents the earliest due date (EDD) scheduling policy for wire-line networks. In

this policy, at each time, the job with the earliest due date is scheduled, hence minimizing

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Chapter 2. Green Web Crawling 64

the expected lateness. From a wireless networking perspective, the work in [47] presents

a wireless channel-aware version of EDD, the feasible earliest due date (FEDD) policy.

The authors of [48] study the problem of scheduling constant-bit-rate traffic over wireless

channels and devises a policy that minimizes the packet loss rate due to packet delivery

deadline expiration. The work in [61] studies the design of a downlink packet scheduler

for real-time multimedia applications and proposes a channel- and QoS-aware version of

EDD, named CA-EDD. We note that none of the above works considers energy efficiency.

A number of works aim to minimize the total energy consumption. In [62], a CPU sched-

uler is presented for mobile devices. This scheduler integrates dynamic voltage scaling

into soft real-time scheduling and decides when, how long, and how fast to execute mul-

timedia applications based on their demand distribution. In [63], the authors propose

offline and online packet scheduling algorithms for uplink and downlink in wireless net-

works with constraints imposed by packet deadlines and finite buffers. The reader may

refer to [64] for a survey of studies on energy-efficient scheduling without deadlines. In

contrast to these works, our work tries to minimize the total staleness of a web page

repository while keeping the amount of carbon emissions of web servers below a given

threshold.

3.5.3 Energy Efficiency and Greenness of Data Centers

There is significant amount of work on reducing the energy consumption of data centers.

The work in [65] aims to optimize the workload, power, and cooling system management

of a data center with the objective of saving energy. In order to emphasize the role

of communication fabric in energy consumption, the work in [66] presents a scheduling

technique which makes decisions based on a run-time feedback from data center switches

and links. The work in [67] uses delay-tolerant jobs to fill the extra capacity of data

centers and designs energy-efficient mechanisms that achieve good delay performance.

The survey in [68] analyzes software- and hardware-based techniques and architectures

as well as mechanisms to control data center resources for energy-efficient operations.

A different line of works focuses on increasing renewable energy utilization and reducing

the carbon footprint of data centers. Specifically, the authors of [53] propose an adaptive

data center job scheduler that leverages green energy prediction to reduce the number

of canceled jobs due to lack of available green energy. The work in [69] focuses on

renewable energy capacity planning and proposes an optimization-based framework to

achieve specified carbon footprint goals at minimal cost. The work in [70] proposes a

policy for request distribution across data centers with the objective of data center cost

minimization while enabling Internet services to leverage green energy and respect their
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SLAs. The work in [71] investigates three issues related to the feasibility of powering

an Internet-scale system exclusively with renewable energy: the impact of geographical

load balancing, the optimal mix of renewable sources, and the role of storage.

Data centers hosting cloud applications consume huge amounts of energy. The works

in [72], [73], and [74] use virtualization as a power management and resource allocation

technique for energy efficiency in cloud computing environments. In particular, the work

in [72] assumes deterministic virtual machine (VM) demands, whereas stochastic VM

demands are considered in [73]. They key idea of the approach presented in work [74]

is to match the VM load with the renewable energy source (RES) provisioned power

with the goal of minimizing the total cost of power consumption for the cloud provider.

The work in [75] proposes a graph-based approach which utilizes Voronoi partitions to

control the operation of a cloud system with the goal of minimizing a combination of

average request time, electricity cost, and carbon emissions.

The works surveyed above (subsections 3.5.1, 3.5.2, 3.5.3) are related either to refreshing

the repositories of crawlers, effective processing of jobs, or energy efficiency and greenness

of data centers. Our work introduces the green web crawling problem, which combines

these research threads. It brings together the scheduling concepts with the problem of

reducing the staleness of a web repository while limiting the carbon emissions incurred

to web servers. We believe that this combination, along with the observation that the

type of the energy consumed by a web server varies in time, are unique to our work.

3.6 Conclusion

In this chapter, we introduced the problem of green web crawling: minimizing the total

staleness of pages in the repository of a web crawler while keeping the amount of carbon

emissions on web servers, due to HTTP requests issued by the crawler, low enough. We

devised an optimal policy, which can be implemented in an online fashion, based only

on the instantaneous values of page staleness and greenness indicators of the servers.

We also devised some heuristics along the lines of the optimal policy and studied their

performance through experiments with real data.
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4.1 Introduction to the Concept of Serious Games for Demand-

side Management

The reduction of carbon footprint is the holy grail of our times and is to be realized

primarily through prudent energy consumption. Different techniques have been pro-

posed, spanning the entire chain of energy generation, transmission, distribution and

consumption in the context of realizing a smart energy grid toward reaching the goal

above. However, the weakest link in the chain above remains the end-consumer. No

matter how sophisticated these techniques become for the rest of the chain, it is the

end-consumer that determines to a large extent the mode of energy consumption in the

end.

Demand-side management (DSM), which includes demand response (DR)1, is an active

research area that aims to reduce or smoothen energy consumption. Pricing-based and

incentive-based DR schemes have been proposed; e.g., by having different prices per

unit of energy presented to consumers for different times of the day (i.e., TOU pricing),

rational consumers are forced to shift part of their demand-load from peak-times to

off-peak times. Incentives may be provided to the consumer in the form of monetary

or non-monetary rewards. For example, in the Critical Peak Rebate incentive scheme,

participants are paid for the amounts of power by which they reduce consumption below

their predicted consumption levels during critical peak hours. In the presence of a DR

scheme, consumers optimize some form of utility functions that factor the monetary

gains from load shifting/reduction and the inconvenience cost induced by the shift.

The main shortcomings of pricing-based and incentive-based schemes are the strong ra-

tionality assumptions about consumers. They assume and that consumers are inherently

driven by financial rationality and that the response of consumers to incentives is gov-

erned by the mathematics of optimization theory. Also, more often than not, consumers

are not the bill-payers (e.g., they are employees in an office building or younger/elderly

household members), while their energy literacy level (i.e., awareness and capability to

act on energy savings) varies.

Various incentives schemes may often see hesitation and even negativity of consumers,

primarily because they are not presented to consumers in an appropriate context. Con-

sumers are humans and more often than not, they are driven in their decisions by

1DR mechanisms involve behavioral changes in energy consumption as a response to certain signals
to the consumers, e.g., price changes, rewards, etc.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Chapter 4. Optimal Serious-Games Design for Smart Grid Consumer Engagement 68

factors other than financial motives, such as various biases and sentiments, or the desire

to outperform others. The interface with which the incentive scheme is delivered to the

consumer is important, in the sense that should make the interaction worthwhile and

entertaining, and it should respect the limited time and attention budget of consumers.

Serious games design is an emerging area that aims at addressing precisely the issues of

educating and maximizing user engagement in various contexts [76]. A serious game is a

game that is designed for a purpose that goes beyond that of offering pure entertainment.

There have been some initial attempts to use serious games for demand-side management

[77–80] with great success in realistic case studies [81]. To the best of our knowledge,

building a foundational theory on modeling and understanding serious games with the

purpose of extracting guidelines for serious games design in this context has not hitherto

been explored.

In this chapter, we introduce the problem of optimal serious-games design for the purpose

of enforcing prudent energy consumption, and we make a first attempt to mathematically

model it. We define a simple serious-game scenario that does not employ direct monetary

incentives for the consumers and a generic game-theoretic mathematical framework for

the optimization of the parameters of the serious-game. We assume that a serious-game

designer entity (e.g., the energy supplier, a private entity or an energy-efficiency minded

administrative authority) aims to design a serious game for smoothening the energy

consumption behavior of consumers across time. The serious-game designer runs daily

contests on energy consumption reduction on behalf of the players during the peak hours.

We consider a simple class of serious games, where the serious-game designer publicly

announces a list of top-K consumers and a list of bottom-M consumers according to

their respective energy-consumption reduction at the contest of the previous day. Here,

the driving forces are the user discomfort due to consumption-load reduction, the user

desire to enter to top-K list and the user sensitivity to social outcasting if she/he enters

the bottom-M list.

We formulate the problem faced by the serious-game designer as an operational-cost

minimization problem for the utility company and that of the consumer as a utility-

maximization one. The serious-game-design problem is to decide on K,M and on the

feedback provided to the consumers, while the consumer-side problem amounts to select-

ing the consumption-load reduction that maximizes the user utility under the serious-

game rules. These two problems constitute the two stages of an overall Stackelberg-

game setting, where the choice of the parameters K,M affects the optimal responses

of consumers in terms of their energy-consumption reduction. Most importantly, the

serious-game designer does not necessarily need any information about the user-utility

parameters that characterize the user discomfort due to the consumption-load reduction
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Figure 4.1: The serious-game interactions among consumers, the serious-game de-
signer and the utility company.

or the importance for each user to be in either list. Through analysis and a series of

numerical simulations, we show how the various serious-game-design choices affect the

energy consumption reduction and investigate the driving forces in this serious game.

Evidently, even such a simple serious-game design can provide adequate incentives to

users for engaging in demand-side management.

The remainder of this chapter is structured as follows: In Section 4.2, we describe the

setup of our serious game. In Section 4.3, we analyze our system model and formulate

its constituent problems, namely the consumer problem and the serious-game-designer

problem. In Section 4.4, we experimentally analyze the effect of various serious-game-

design parameters. Section 4.5 reviews the related work. Finally, Section 4.6 concludes

our work. This chapter is based on works [82] and [83].

4.2 Serious Game Setup

We consider a energy supplier that aims to reduce the total energy generation (or oper-

ational) cost. If the energy generation cost is a convex function of demand, this problem

is equivalent to that of smoothening the total energy consumption across time. The

energy supplier has instrumented its customer premises with smart-meters. Based on

consumption baselines [84] that are dynamically calculated on a sliding window of his-

torical data, it identifies the time slots where peak overall consumption is observed. We

also consider a serious-game designer to which the energy supplier outsources the task
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of designing a gamification platform for reducing the total energy generation cost. The

serious-game designer organizes contests about energy consumption reduction among

consumers for each peak time slot of the day. On a daily basis, the customers play the

serious game for a specific peak time slot by adjusting their energy demand in that time

slot of the next day. Their actions are monitored by smart meters and are communicated

to the serious-game designer by the energy supplier.

The next day of each serious-game instance at a peak time slot, the serious-game de-

signer ranks customers according to their relative energy-consumption reduction in the

corresponding time slot of the previous day, and it selects the top-K ones to be the

“winners” and the bottom-M to be the “losers” of this day-round of the serious game at

the particular time slot. K,M are serious-game parameters determined by the designer.

The outcome of each competition and the serious-game parameters K,M are announced

to customers via the mobile app and may also be shared with customer friends in various

social applications. The serious-game designer keeps statistics on customer performance.

Based on these statistics, it communicates to the customers useful historical information

(e.g., in the form of histograms) on the performance effort that, if exerted in the next

day, is expected to include them in the upper list of top-K consumers or in the bottom

list of bottom-M consumers of the serious game the day after the next one. The overall

serious-game scenario is depicted in Fig. 4.1.

This approach for “winner” and “loser” determination aims to exploit the desire of

customers for social approval [85]. On the one hand, a consumer that is included in the

upper list may feel proud for her accomplishment relative to others. On the other hand,

the inclusion of a player in the lower list is intended to make her feel embarrassed and

perhaps socially pinpointed for her bad consumption behavior, so as to force her to be

more active in the future if she is sensitive on that issue. However, the extent to which

the consumption behavior of each player is affected depends on her sensitivity to the

social approval or outcasting.

4.3 System Model

We consider an energy supplier, N consumers (residential users) and a serious-game

designer entity. The serious-game designer sets the parameters K and M that deter-

mine the sizes of the upper list U of “prudent” consumers and of the lower list L of

“non-prudent” consumers, respectively. We assume a fixed unit price for the electricity

denoted by q $/kWh. Time is divided into slots. We focus on a serious-game instance

that concerns energy-consumption reduction of consumers at a specific time slot. Let pi

be the energy demand of consumer/player i, i = 1, . . . , N , at the target time slot with
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Figure 4.2: The Stackelberg game structure arising from serious-game interactions.

0 ≤ pi ≤ pi,max, where pi,max is an upper bound on the demand of consumer i at each

time slot (given fixed power capacity of residential circuit). Without loss of generality,

we assume that pi,max = pmax, for i = 1, . . . , N . Also, let P =
∑N

i=1 pi be the total

energy demand of all consumers at that time slot.

We denote by ri = (p0
i − pi)/p0

i the normalized energy reduction of player i, where p0
i

is the baseline (nominal) energy demand of consumer i which is assumed to be known

to the supplier and the game designer. Note that pi is the modified energy demand as

a result of the serious game. We refer to ri as the consumption reduction performance

of consumer i. Consumers are ranked by the serious-game designer according to their

performance. Each customer i adjusts her demand pi, so as to maximize her net utility,

to be defined in the sequel, given the values of the parameters K,M set by the serious-

game designer. The game designer, on the other hand, aims to optimally select the

values of K,M , so as to minimize the operational cost of the energy supplier. It also

chooses the type of statistical feedback to provide to consumers; this will be taken into

account by consumers when deciding on their strategy.

The overall serious-game design problem resembles the two levels of a Stackelberg game,

where the serious-game designer is the leader and the residential customers are the fol-

lowers (see Fig. 4.2). The serious-game designer aims to optimally select the parameters

K,M , so that the consumption strategies of consumers, in their effort to enter the up-

per list and/or avoid the bottom list, result in such energy consumption that minimizes

energy generation cost. First, we formulate the consumer problem and then we proceed

to the game designer’s problem.
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4.3.1 Consumer’s problem

The utility of a consumer i is quantified through a utility function that factors her

dissatisfaction caused by energy-consumption reduction, her desire to enter the top-K

list U and her sensitivity in being included in the bottom-M list L.

4.3.1.1 Dissatisfaction

In order to capture the dissatisfaction caused due to deviation of the modified demand

pi from the nominal demand p0
i of consumer i, we define a function di(r). We assume

that di(·) is increasing and convex so as to model the increasing marginal dissatisfaction

for the consumer as a function of deviation from the nominal consumption pattern, as

in [86]. Here, we assume

di(r) = air
2, r ∈ [0, 1], (4.1)

while di(r) = 0 for r < 0. Parameter ai ≥ 0 is referred to as the inelasticity parameter

of consumer i and it models her tolerance or sensitivity on the deviation from the

nominal consumption profile. The intuition of such a simple generic dissatisfaction

model, which is chosen here for algebraic tractability, is the following: Assume a set

of energy consumption activities of a consumer in a time slot. Each activity involves

a number of appliances. Reducing the overall energy consumption at the time slot

is done by shifting less important activities at a different time slot or by canceling

them. As the total shed energy increases, more important consumer activities need

to be shifted/canceled and thus, the marginal dissatisfaction of the consumer increases

more per shed energy unit. Considering more sophisticated dissatisfaction models, e.g.,

as in [87], is left for future work.

4.3.1.2 Social recognition

Social recognition can be defined as the appreciation an observer holds for the person

she observes. It is a three-mode phenomenon, since one may receive positive, neutral,

or negative recognition. Here, we consider that each consumer elicits one of the three

levels of social recognition based on her performance strategy, which leads to one of three

possible outcomes: (a) sher is included in the upper list U of the top-K consumers, (b)

she is included in the bottom list L of the bottom-M consumers, (c) neither of the

above. Social recognition for consumer i can be modeled as a reward hi or a penalty

−hi, according to her position and the value she places on social recognition. For each

consumer i, we define a social recognition function Si(ri, r−i) as function of consumer
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Figure 4.3: Sample performance histograms of players at a time slot; δ=0.125.

i’s action ri and others’ action vector r−i,

Si(ri, r−i) =


hi , if i ∈ U
−hi , if i ∈ L
0 , otherwise.

(4.2)

The dependence on ri and r−i is implied in the inclusion in the lists. The sensitivity

hi ≥ 0 of a consumer quantifies the importance for the consumer of being included

in the U or L list. For reasons of symmetry, we assume that for each consumer, the

emotional reward extracted from pride for being in the list of best consumers is equal

to the emotional cost due to embarrassment for being in the list of worst consumers.

For example, if a player i with a great value of hi is included in U , then she receives

a social recognition, which is considered rewarding for her. On the other hand, if she

is included in L, she receives a negative recognition that makes her feel embarrassed.

Being somewhere in the middle in terms of consumption is assumed to be a neutral

situation with no reward or penalty inflicted to the consumer.

4.3.1.3 Feedback to consumers

In order to aid consumers in taking energy consumption decisions, the game designer may

provide cumulative statistics about consumer actions (e.g., in the form of the histograms

(Fig. 4.3)) as feedback to them. This feedback may take the form of the empirical

cumulative distribution function (CDF) F (x) and empirical probability density function

(PDF) f(x), where x stands for consumer performance concerning energy reduction. All
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consumers are treated as one virtual consumer with a PDF f(x) and CDF F (x), namely

these show the empirical probability distribution of energy reduction of any consumer

in the past. For example, F (x) may be interpreted as the percentage of times that the

energy reduction performance of a consumer is below x. The absence of such feedback

may be modeled by taking F (x), f(x) as corresponding to a uniform distribution over a

certain range of values. Other types of statistical information may be available.

4.3.1.4 Probability of inclusion in the top-K and the bottom-M lists

Denote Xj the random variable of the energy consumption reduction of player j and

Fj(·) the cumulative distribution function (CDF) of her distribution. Also, denote F (·)
the CDF of the joint performance distribution for all consumers and X the random

variable of the performance of any individual consumer. Given a normalized energy

consumption reduction ri of player i, a rational software agent residing at the consumer

side, e.g., at the mobile app calculates the probability that consumer i is included in the

upper list (U) or in the bottom list L. These probabilities are computed as:

Pr (i ∈ U|ri) =
K−1∑
l=0

(
N − 1

l

) l∏
j=1

(1− Fj(ri))
N−l−1∏
j=1

Fj(ri)

Pr (i ∈ L|ri) =
M−1∑
l=0

(
N − 1

l

) l∏
j=1,j 6=i

Fj(ri)
N−l−1∏
j=1,j 6=i

(1− Fj(ri))

(4.3)

Pr(i ∈ U|ri) (resp. Pr(i ∈ L|ri)) considers all combinations of other consumers ranked

above (resp. below) consumer i, when consumer i takes any position in the top-K (resp.

bottom-M) list. Fj(·) could be estimated based on a histogram on the performance of

consumer j. However, there are practical difficulties toward this direction. First, this

would require O(N) storage space for the histograms of one K,M pair. Second, all these

histograms would have to be communicated to all consumers prior to each serious-game

round, thus creating a high communication overhead. Third, this approach would raise

privacy concerns for the consumers. Fourth, the statistical significance of individual

histograms would be low, since the number of individual choices is much lower than the

total number of choices of all consumers. Given the statistical information f(r), F (r)

about the ensemble of consumers, a consumer may assume Fj(·) = F (·), ∀j 6= i for

calculating her probabilities to be included in the top or the bottom lists (according to

equation (4.3)).
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Figure 4.4: (A) Probability of consumer i to be included in the top-K or in the
bottom-M lists with respect to ri. (B) Expected utilities of consumer i based on
equation (4.3) (“probability-based”) and on equation (4.6) (“indicator function-based”)
with respect to ri. Parameters values: X ∼ U [0, 1], N = 100, K = M = 10, ai = 1.5,

hi = 1.01, p0 = 6 kWh, q = 0.124.

The probabilities in equation (4.3) can be simplified according to the following obser-

vations. Observe that Pr(i ∈ U|ri) increases with ri and Pr(i ∈ L|ri) increases as ri

decreases. Denote ru (resp. rl) the performance threshold above (resp. below) which

the expected number of consumers is K (resp. M). ru, rl can be calculated as follows:

(1−ru)/δ∑
j=0

f(X = ru + jδ) =
K

N

(rl−rmin)/δ∑
j=0

f(X = rmin + jδ) =
M

N
,

(4.4)

where rmin = (mini p
0
i − pmax)/mini p

0
i is the minimum ri. Interestingly, both the

Pr(i ∈ U|ri) with ri ≥ ru and Pr(i ∈ L|ri) with ri ≤ rl approach 1 for various numerical

instantiations of the problem (see Fig. 4.4a). More formally, it can be assumed that:

(1−ru)/δ∑
j=0

Pr(i ∈ U|ri = ru + jδ) ≈ 1

(rl−rmin)/δ∑
j=0

Pr(i ∈ L|ri = rmin + jδ) ≈ 1

(4.5)
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We can then simplify (4.3) via the following approximations:

Pr (i ∈ U|ri ≥ ru) = 1ri≥ru

Pr (i ∈ L|ri ≤ rl) = 1ri≤rl ,
(4.6)

where 1A is an indicator function on event A with 1A = 1 or 0 if event A is true or false

respectively.

4.3.1.5 User utility function

We define the expected utility of each player i with strategy ri as follows:

E{ui(ri)} = Pr(i ∈ U|ri)hi − Pr(i ∈ L|ri)hi − di(ri) + qp0
i ri , (4.7)

This definition captures the net payoff for consumer i from normalized load reduction ri,

which consists of the expected social reward/cost (if any) minus the incurred dissatis-

faction, plus her energy consumption savings from load reduction. Note that the benefit

from energy consumption savings becomes cost if ri < 0. The expected utilities of the

consumer i based on the formulas of equations (4.3) and (4.6) are depicted in Fig. 4.4b

for certain numerical parameters. As becomes evident from this figure, the simplifying

assumptions of equation (4.6) can be quite accurate approximations of equation (4.3).

The objective of each consumer i is to determine a normalized consumption reduction

ri that achieves optimal balance of the factors above in the sense of maximizing her

expected utility function. Thus, based on (4.3) and (4.7) the consumer optimization

problem becomes:

max
ri

(
1ri≥ru − 1ri<rl

)
hi − di(ri) + qp0

i ri (4.8)

4.3.2 Game Designer’s Problem

We denote the generation/operational cost for the energy supplier with an increasing

convex function C(P ) of total demand load P at a specific time slot (i.e., marginal energy

generation cost increases with energy demand). Under the current common practice of

flat pricing, a fixed price q is charged per unit of energy consumption irrespectively of the

consumption time. Therefore, the energy supplier maximizes its revenue by minimizing

the operational expenses for satisfying the energy demand.

The supplier aims to minimize energy generation costs, and it delegates this task to the

game designer, with the anticipation that the appropriate induced user consumption
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behavior will achieve the goal. The serious-game designer selects the settings of the

serious game which in our case are abstracted as (i) size K of the best-consumer list,

(ii) sizeM of the worst-consumer list and (iii) feedback f(·) to be provided to consumers.

Assuming that consumers (or rather software agents that reside in their side) are rational

self-interested entities that seek to optimize their expected utility in the sense specified

above, different values of K and different modes of feedback f(·) incur different con-

sumption strategies. Specifically, different values of K incentivize differently consumers

to be included in the top-K list. On the other hand, M serves as disincentive to users

for avoiding the bottom-M list. Of course the impact of a given set of (K,M) values to

different consumers depends on consumer parameters hi, ai.

Given a serious game with parameters K,M , the total demand of consumers at a specific

time slot is:

P (K,M) =

N∑
i=1

p0
i (1− ri(K,M)) , (4.9)

where ri(K,M) is the normalized consumption reduction of consumer i given serious-

game parameters K,M . Thus, the problem faced by the serious-game designer is as

follows:

min
K,M∈{1,2,...,N/2}

C(P (K,M)) . (4.10)

The initial reference consumption p0
i of each player i is given to the serious-game de-

signer by the utility company. Therefore, the game designer only needs to estimate the

performance ri(K,M) of each player i for certain serious-game parameters K,M , in

order to calculate C(P (K,M)).

4.3.2.1 Full information of consumer utility functions

If full information was available to the serious-game designer regarding consumer utility

functions (e.g., hi, di(·), etc.), then a closed-form solution for K,M could be found as

the equilibrium of the two-stage Stackelberg game. Alternatively, a numerical solution

to the equilibrium of the Stackelberg game can be found as follows: The serious-game

designer finds optimal r∗i (K,M) values for each consumer i by solving (4.8) for a certain

set of pairs of K,M parameters and replaces the r∗i (K,M) values to (4.10), in order to

find the values of K,M that lead the system to Stackelberg equilibrium. Specifically, the

expected utility function of the player in equation (4.7) can be re-written using equation

(4.6) in a segmented form as follows:
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E{ui(ri(K,M))} =


hi − di(ri(K,M)) + qp0

i ri(K,M), ri(K,M) ≥ ru(K)

−di(ri(K,M)) + qp0
i ri(K,M), rl(M) < ri(K,M) < ru(K)

−hi − di(ri(K,M)) + qp0
i ri(K,M), ri(K,M) ≤ rl(M)

(4.11)

For convenience, denote the upper segment of equation (4.11) as u1(·), the middle seg-

ment as u2(·) and the lower segment as u3(·). Toward maximizing the expected utility

of the player, the first derivative of E{ui(ri(K,M))} with respect to ri(K,M) is given

by:

(E{ui(ri(K,M))})′ = −2airi(K,M) + qp0
i (4.12)

We identify three cases according to the sign of (4.12):

(i) (4.12) is negative for all ri(K,M) ∈ [0, 1]. Then, the expected utility of the player

is maximized at r∗i (K,M) = arg max{u1(ru(K)), u2(rl(M) + ε), u3(0)}, where 0 <

ε << 1 an arbitrarily small positive number.

(ii) (4.12) is positive for all ri(K,M) ∈ [0, 1]. Then, the expected utility of the player

is maximized at r∗i (K,M) = arg max{u1(1), u2(ru(K)− ε), u3(rl(M))}.

(iii) (4.12) is 0 at ri(K,M) = x0 := qp0
i /2ai and x0 ∈ [0, 1]. Here, there are three

subcases:

- If x0 ≤ rl(M), then (4.12) is negative for ri(K,M) > rl(M) and the expected

utility of the player is maximized at r∗i (K,M) = arg max{u1(ru(K)), u2(rl(M)+

ε), u3(x0)}.

- If rl(M) < x0 < ru(K), then (4.12) is positive for ri(K,M) ≤ rl(M) and

negative for ri(K,M) ≥ ru(K). Therefore, the expected utility of the player

is maximized at r∗i (K,M) = arg max{u1(ru(K)), u2(x0), u3(rl(M))}.

- If x0 ≥ ru(K), then (4.12) is positive for ri(K,M) < ru(K) and the expected

utility of the player is maximized at r∗i (K,M) = arg max{u1(x0), u2(ru(K)−
ε), u3(rl(M))}.

We replace the optimal r∗i (K,M) values for the N players in (4.9) and if the partial

derivatives of C(·) in (4.10) with respect to K,M are defined, then closed-form solutions

for optimal K∗,M∗ can be analytically found. Observe, that the energy consumption

behavior of players whose performance is maximized in values other than those involving

ru(K), rl(M) does not depend on K,M . According to the above, the complexity for

finding optimal K∗,M∗ parameters in the full-information case is either O(N) when
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closed-form solutions can be analytically derived for K∗,M∗ or O(N3) when K∗,M∗

are numerically approximated by evaluating C(·) over all (K,M) pairs.

4.3.2.2 Historical information about consumer actions

Since full information may not be readily available in some practical scenarios, the

serious-game designer can aggregate historical data on the consumption performance of

customers in the serious game for different values of K,M and employ them to extract

personalized information about player behavior. Histograms like the ones depicted in

Fig. 4.3 can be created by the game designer and the appropriate information can be

provided to supplier so as to estimate P (K,M) for the various (K,M) pairs.

Given the 2D histogram for specific values of K,M , the operator can estimate the

expected normalized consumption reduction E{r(K,M)} from any consumer as follows:

E{r(K,M)} =
∑
y∈Y

yPr(r(K,M) = y) , (4.13)

where Y is the set of values ranges (with width δ = 0.125 in Fig. 4.3) of energy

consumption reduction that are summarized in the histogram, and the probability

Pr(r(K,M) = y) equals the relative number of consumers that had a normalized energy

reduction r(K,M) = y in the previous serious games with parameters K,M . There-

after, the serious-game designer can calculate its expected total load E{P (K,M)} and

the operational cost for the energy supplier as follows:

C(E{P (K,M)}) = C
( N∑
i=1

p0
i (1− E{r(K,M)})

)
. (4.14)

In order to find the values of K,M that minimize the energy generation cost, the game

designer should repetitively run serious games for multiple pairs K,M of parameters and

build performance histograms similar to those of Fig. 4.3 for each pair of parameters.

In theory, K,M can take values in {1, 2, . . . , N/2}. However, in practical settings, the

maximum cardinalities of the upper and lower lists are expected to be much lower than

N/2. Then, iterating among all pairs of K, M , the serious-game designer can find the

one that gives the minimum operational cost according to equation (4.14). According

to the above, the expected performance of any consumer is calculated in O(1) and the

minimum operational cost is found after O(N2) iterations. Thus, the complexity of the

historical-information case is O(N2).
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Figure 4.5: The steady (set of) states <(rl,ru)> for different K=M .

4.3.3 Equilibrium of the Stackelberg game arising from serious-game

interactions

Given the empirical cumulative distribution function F (·) for each K,M pair, followers’

game accepts one equilibrium and so does the overall Stackelberg game. This is because,

according to the analysis of equation (4.11) (which is an approximation of equation (4.7)

using (4.3)), for fixed ru, rl, each consumer has a unique utility maximizing strategy.

Iterating through K,M pairs or by means of the partial derivatives of the operation

cost with respect to K,M , the serious-game designer selects the pair (K∗,M∗) that

minimizes the energy generation cost.

Regarding the followers’ game, it is important to argue on why the cumulative perfor-

mance statistics for each K,M pair will converge for repetitive instances of the serious

game. Observe that players play according to equation (4.7) using (4.3), while the game

designer uses equation (4.11) that results from equation (4.7) using the indicator func-

tion (4.6). Thus, the utility functions of the players are continuous, the strategy space

is non-empty and compact, and the set of players is finite. So, the followers’ stage of

our Stackelberg game is a continuous game on its own. According to Glicksberg theo-

rem [88], every continuous game has a mixed strategy Nash equilibrium. Therefore, the

consumers’ game will have a mixed strategy Nash equilibrium, in which each consumer

i plays according to a mixed strategy regarding her performance ri. It then follows

that the empirical cumulative statistics will converge for every K,M pair. Note that

until it converges, the empirical cumulative distribution function F (·) (and thus, f(·)) of

consumers is the sole feedback through which a consumer may adapt her best-response

performance strategy toward the equilibrium point.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Chapter 4. Optimal Serious-Games Design for Smart Grid Consumer Engagement 81

Figure 4.6: The percentage of operational-cost reduction achieved by our approach
for different percentages of consumers leaving the game.

4.4 Simulation Results and Analysis

4.4.1 Experimental Setup

We consider N=1000 consumers, fixed power-unit price q=0.124 $/kWh, fixed upper

bound on the demand of each consumer pmax=9 kWh and ε=10−4. For simplicity, we

assume K=M . The baseline energy demand p0
i of each player i is assumed to follow

the normal distribution N(5, 1). Moreover, first, we assume that ai follows U(5, 40)

and hi follows U(1, 4). At the beginning of each serious-game instance, each consumer

is provided with the evolving probability distribution of consumer performance in the

form of a histogram with bar width δ=0.025. The performance thresholds ru, rl are

calculated according to (4.4).

4.4.2 Steady-State Convergence and Wear-off Effects

For the aforementioned setup, we experimentally observed that for each pair of K,M

our system passes through various transient states. Each state is characterized by a

specific pair of thresholds (rl, ru). After conducting a number of serious-game rounds

for each pair of K,M , we noticed that our system reaches in a few tens of game rounds

either a unique steady state or a steady set of states that alternate each other in a

closed loop, as it was theoretically expected in Subsection 4.3.3. Fig. 4.5 shows the

states, i.e., the pairs of thresholds, that appear for different (K,M) pairs. Employing a

factor β = 0.985 to discount the significance of the past in the probability distribution of

consumer performance, we experimentally found the convergence time to be around 40
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Figure 4.7: Utility functions of two players for K = 4 and two different states.

Figure 4.8: Operational cost for different values of K=M .

to 50 game rounds. For larger societies, the convergence time has been experimentally

found to be shorter.

We also investigated the impact of gaming wear-off, i.e., players leaving the game, to the

effectiveness of our approach. As depicted in Fig. 4.6 for K=M=350, the percentage

reduction in the operational cost for remaining players achieved by our approach remains

roughly the same when a percentage of random or worst-performing players leave the

game.
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Figure 4.9: Social welfare for different values of K=M .

4.4.3 Experimental Results

First, we show in Fig. 4.7 how the different values of hi, ai and p0
i affect the utility func-

tions of two different consumers of the community and the values of their performance

ri that maximize these functions. We consider two different states (rl1 , ru1)=(0.025, 0.8)

and (rl2 , ru2)=(0.05, 0.825). From Fig. 4.7a, we observe that for hi=3.9, ai=5.27 and

p0
i=4.3, the consumer’s utility is maximized at ri=ru1=0.8 and at ri=ru2=0.825, respec-

tively for the different states. Fig. 4.7b shows that for the consumer with parameters

hi=3.85, ai=6.9 and p0
i=5.8, the optimal utility results for ri=ru1=0.8 and ri=x0=0.052,

respectively for the different states.

Based on these results, we observe that when consumers desire to be included in U
due to their high sensitivity hi to social impact, they choose the minimum value of ri

that enables them to be on U , i.e., the threshold ru. On the other hand, when they are

relatively socially-indifferent (i.e., low hi), then they choose the minimum ri that enables

them to stay out of L, i.e., a value slightly larger than the threshold rl. The selection

of the minimum possible value stems from the desire of consumers to achieve social

recognition with the minimum possible dissatisfaction cost. However, bigger values of

ai reduce the ability of consumers to be on U or stay out of L, since these ai values

discourage them from making substantial efforts. The baseline energy demand p0
i also

influences each player’s decision ri, since it determines the benefit or the cost from energy

consumption savings (equation (4.7)) and thus, each player’s net payoff.

Fig. 4.8 depicts the average (over all states for each K=M) operational cost of our

approach for different values of K=M and for different communities of consumers, as

compared to the dynamic-pricing approach of [89] (“Low”) and to the no Demand Side

Management approach (“no DSM”). For a community of consumers with ai∼U(5, 40),
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Figure 4.10: Distribution of ri for different pairs (rl, ru) in the cases of a) K = 4 and
b) K = 350.

hi∼U(1, 4), the value of K that minimizes the operational cost is K=M=350, and it

becomes K=M=250 when hi∼U(1, 6). For a “segmented” society with two different

communities of consumers, one of 30 consumers with ai∼U(5, 40), hi∼N(40, 2) and

another of 970 consumers with ai∼U(110, 115), hi∼U(0.1, 0.3), the minimum generation

cost arises for K=1. Note that the first community is very socially-sensitive, while the

second is expected to exert zero effort for any K. Therefore, K is selected in this case,

so as to minimize the operational cost of the first community.

In general, the lower the mean sensitivity hi of consumers to social approval, the higher

the value of K that must be selected by the serious-game designer in order to: a)

considerably decrease the threshold ru so as to be easier and more beneficial for these

consumers to exert the effort to enter U , and also, b) considerably increase the threshold

rl so as to force them make substantial effort to avoid entering L.

When a community of consumers is socially-insensitive (“no social factor”), i.e., hi=0,

then the choice of K makes no difference, while the operational cost is high. As compared

to the dynamic-pricing DSM approach of [89], referred to as “Low”, we observe that the

minimum operational cost achieved by our approach can be lower than that of [89]

for low prices per energy unit. Thus, the preferable choice between our serious-game

approach and that of [89] depends on the financial rationality, the elasticity of energy

demand and the sensitivity of consumers to social approval. Fig. 4.9 shows the social

welfare (total utility of players) for different K values for a consumer community with

ai∼U(5, 40), hi∼U(1, 4).
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Fig. 4.10 shows the distribution of performance ri for the different pairs of thresholds

that arise for K = 4 (Fig. 4.10a) and K = 350 (Fig. 4.10b). Only three of the seven

possible values of ri (described in Subsection 4.3.2) appear in our results: x0, rl + ε and

ru. For K=4, a slight increase in the value of ru (for both rl = 0.025 and rl = 0.05)

forces 2 out of the 5 players with performance ri = ru make an effort smaller than ru

and namely, x0. Similarly, for K = 350, a slight increase in the value of rl forces 161

out of the 337 players with performance ri = rl + ε make an effort smaller (i.e., x0) or

greater (i.e., ru) than rl + ε.

Thus, we observe that for low values of K (Fig. 4.10a), a slight increase in the value

of rl increases the number of players that achieve rl + ε due to the fact that their net

payoff for ri = rl + ε is greater than the one for ri = x0. In contrast, for higher values

of K (Fig. 4.10b), such an increase reduces the number of consumers with performance

rl + ε. Furthermore, we observe that the number of consumers that choose ri = ru for

K = 4 is much smaller than the one for K = 350. This stems from the fact that a low

value of K makes it more difficult for consumers to achieve ri = ru.

4.5 Related Work

There have been some prior efforts to employ serious games for demand side manage-

ment [77–80, 90, 91], albeit with no modeling or analysis on the serious-game design, as

opposed to our work. In [79], a serious game for smart grids is organized as a virtual

world with many user roles and actions, involving direct actions and training for sharing

a Medium/Low Voltage transformer among prosumers. A serious game for energy con-

servation among students is described in [80]. The serious-game website and associated

game mechanics are provided by the Makahiki system [92]. Similarly to our setting, no

monetary rewards are included in the game; incentives are introduced through competi-

tion among consumers for points for energy conservation actions and for participation to

online educational and real-world activities. According to [80], energy feedback systems

should be actionable, include training and be time-persistent to have long-term effect

into energy consumption behavior. Our serious-game model is time-persistent.

Also, the game “Energy Battle” [90], similarly to [80], aimed at encouraging occupants

of student-households to save energy by means of competition. In [93], the authors re-

view multiple energy competitions among university students and identify several pitfalls

in their design. Specifically, the use of total energy consumption or (relative) energy-

consumption reduction for winner determination is deemed as not adequate when static

baseline calculation methods are employed and may be unfair for already “green” con-

sumers.
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An online game for improving home energy behavior, named Power House, is proposed

in [78]. Its objective is to track activities and assist each member of a virtual family to

save energy, while real-world energy behaviors produce particular in-game advantages

and disadvantages. An online serious game (“EnerCities”) is presented in [77] to increase

the environmental and energy-related awareness of secondary school students, and to

influence their energy-related behaviors. Also, a virtual pet game designed for energy

use reduction in a commercial office setting is presented in [91], where device-specific

energy consumption is reflected in the fitness of virtual pets. There are also a number of

studies on gamification in general [94], [95], which verify that specific serious-game design

elements, such as leaderboards, points and levels, positively influence user participation,

engagement and behavioral change.

In a different class of work, a number of game-theoretic dynamic-pricing schemes that in-

volve interaction between the utility company and the consumers for energy-consumption

smoothening have been proposed [89], [96]. However, [97] shows that dynamic pricing

mechanisms can lead to peak-shifting when consumers rationaly respond to price signals,

unless specific strategies of bounded rationality are employed. In our paper, consumers

take decisions based on social influence, as opposed to financial incentives.

Finally, prospect theory is employed in [32] for studying the problem of customer-owned

energy storage management in the smart grid in a less rational manner, as opposed

to the von Neumann-Morgenstern utility theorem employed here. In [32], a human

player subjectively observes and makes her charging/discharging decisions based on the

potential value of the benefit from selling energy and of the penalty from power regulation

rather than the final outcome.

4.6 Conclusion

In this chapter, we introduced the problem of optimal serious-game design for reducing

energy consumption and increasing user engagement. We considered a serious game,

where a serious-game designer entity presents publicly to all consumers a list of top-

K consumers and a list of bottom-M consumers according to their respective energy

consumption reduction at peak hours. The driving forces of this serious game are the

user discomfort due to demand load reduction, the user desire for social approval and the

user sensitivity to social outcasting. We formulated the problems of the serious-game

designer as an operational-cost minimization one for the utility company and that of each

consumer as a utility maximization one. The serious-game design problem faced by the

utility company is to decide on K,M and on the feedback provided to the consumers,

while the consumer-side problem amounts to selecting the behavioral change to energy
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consumption that maximizes the expected user utility. By a series of simulations, we

showed how the choices of K,M affect the energy consumption reduction for different

types of customers.
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5.1 Introduction to Data-driven Energy Consumer Profil-

ing and Behavior Prediction

The penetration of new components in the traditional energy management system, such

as smart meters, energy storage systems, bidirectional communication links between con-

sumers and utility operators, and renewable energy sources, has led to a fundamental

change in the energy consumers’ role. In this new and smart energy grid, consumers can

now influence their energy consumption profile, i.e., curtail or shift in time their energy

demand loads, and they can also generate and store power. Moreover, the proliferation

of smartphones has facilitated the participation of consumers in demand-response pro-

grams and energy consumption reduction campaigns. Such programs/campaigns aim at

optimally matching energy demand and supply, and at reducing consumption in peak

periods by making suggestions/offers to users on tasks to be fulfilled, along with offered

incentives. A fundamental issue in their design and operation is the recruitment of users.

Consumer participation is subject to various types of costs she/he may experience, such

as discomfort from shifting energy demand tasks in time or from not performing them

at all, or expenditure of time and effort on using a dedicated mobile app and performing

a suggested task.

In literature, there is a great number of works on incentive mechanisms that try to

motivate users to participate in demand-response programs and energy consumption

curtailment efforts [83, 86, 98–102]. Most of them assume that consumers are rational

decision-makers which aim at maximizing some notion of expected net utility and which

select their actions by solving complex optimization problems. However, consumers are

humans and their decisions are far from rational. Decisions regarding their participation

in a campaign may depend on various attributes that characterize the demand load

shifting/reduction suggestions, which are prioritized or weighed differently by different

users (different consumer preferences).

In this work, instead of relying on conventional rational models for the consumer, we

study the role of data in building behavior-based data-driven models for predicting

consumer behavior. First, we build two different models to learn consumer individual

preferences through historical data consisting of past load reduction suggestions and

user decisions. The first model is based on a popular machine-learning technique while

the second one on a cognitive psychological heuristic. The derived consumer preference

models (profiles) are then used to predict the probability that a consumer will carry

out specific consumption reduction tasks. Each load reduction suggestion made to a

consumer comprises attributes that are present in the user decision-making model and

which are either beyond or under the control of the campaign designer (CD). Then, the
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ultimate goal of the CD is to determine appropriately the controllable attributes so as

to accomplish the purpose of the campaign.

Our first data-driven approach to model consumer preferences and predict consumer

behavior is based on Logistic Regression (LR). LR [103, 104] is a popular machine-

learning framework for probabilistic classification. It is the most celebrated instance of

generalized linear models. The binary logistic regression model is used to estimate the

probability of a binary response based on one or more predictor variables (attributes).

Important properties of LR are: (i) the objective for learning the model parameters is

convex, so there are no local optima in optimization problems that involve this objective,

and (ii) the model is probabilistic, hence it comes with well-calibrated estimates of

uncertainty in the classification decision [103, 104].

It has been proved that there are small differences in performance (predictive accuracy)

between simple mathematical models, known as simple decision heuristics, and com-

putationally more complex methods developed in statistics, such as logistic regression,

neural networks, categorization and regression trees (CART) and naive Bayes [105–107].

These heuristic models aim to a) capture the bounded rationality of decision-makers and

the fact that decision-makers try to satisfice rather than optimize [108], and b) give

insight into the actual decision-making mechanism. They need less time, information,

and effort compared to more complex methods.

Our second approach is based on such a decision heuristic, namely the Fast-and-Frugal

Tree (FFT) model [109]. FFTs are cognitive heuristic models which are suitable for

classification tasks [105, 110]. They are decision trees with at least one exit leaf at

every level and are composed of sequentially ordered attributes. This means that for

every checked attribute, at least one of its branches can lead to a decision. It has

been shown that they operate as lexicographic heuristics for categorization [110]. FFTs

are constructed with binary attributes and a binary criterion but are generalized to

other cases. They possess three advantages over other decision models: 1) fastness and

frugality, 2) simple decision rules, and 3) potential robustness (less susceptible to over-

fitting). However, FFTs are not naturally probabilistic; they only predict the class that

a given sample should belong to. Nevertheless, there exist a number of methods [111–

113] that can generate calibrated probability estimates from decision trees and thus,

from FFTs.
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5.1.1 Our contribution

This work studies how different behavior-based data-driven models can be applied to

model and predict consumer behavior. It also investigates the impact of consumer be-

havior uncertainty on the determination of the load reduction suggestions to be made

to consumers, and on the resulting system performance. We rely on logistic regression

from machine learning, and on fast-and-frugal trees inspired from cognitive psychology

and behavioral science to build probabilistic models of consumer participation. Our

main goal is to discover through these models the different factors that determine con-

sumer actions and the different importance placed on them, and to predict consumer

reaction to load reduction suggestions. We consider that a consumer views a suggestion

made to her/him as a pair of two controllable attributes; namely, the offered monetary

payment/reward and the suggested amount of load reduction. The CD aims to appro-

priately control/set these attributes in order to achieve a certain expected load saving

at minimum economic cost.

Specifically, our main contributions are the following:

� We formulate the problem of minimizing the maximum potential total cost (i.e., the

sum of offered payments) of the campaign designer that results from the allocation

of load reduction tasks and monetary rewards (incentives) to consumers in order

to achieve at least a certain expected load reduction.

� We build personalized decision-making profiles for consumers using a logistic-

regression model and a fast-and-frugal tree model, based on past load reduction

suggestions and the corresponding consumer responses. We show that in the case

of LR the optimization problem turns out to be a sigmoid optimization one, while

in the case of FFTs it is an integer linear programming one.

� We present a numerical example for a system of two consumers that highlights

the need for optimal allocation of tasks and incentives (i.e., optimal control of

suggestion attributes), and that shows how the selection of the attribute values

affects the consumer offer acceptance probabilities and thus, the expected total

energy consumption reduction.

The rest of the chapter is organized as follows. In section 5.2, we describe the simple

scenario studied in this work. In section 5.3, we analyze our system model, while in

Section 5.4, the CD optimization problem is formulated. In section 5.5, we present the

two behavior-based data-driven approaches for consumer profiling, and the form of the

optimization problem in each approach. Section 5.6 includes a representative numerical

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Chapter 5. Optimal Design of Energy Consumption Reduction Campaigns Through
Behavioral Data-Driven Consumer Profiling 92

example that concerns a simple special case of the problem. In section 5.7, we present

the related literature. Finally, section 5.8 concludes are work. This chapter is based on

work [114].

5.2 Energy Consumption Reduction Campaign: A simple

scenario

We consider a peak-load reduction campaign that asks consumers to reduce their baseline

energy demand in exchange for some payment. We assume that there is an expected

overload at time t that the campaign designer (CD) aims to avoid. The campaign mobile

app makes suggestions of the following form: (a) “Please reduce your demand load X at

time slot t by d kWh for a payment $p”, or (b) “If you reduce your demand load X at

time slot t by d%, you will save $p in your bill and you will reduce your carbon footprint

by z%”.

Let us assume that a consumer decides whether to curtail a demand load X based on

the following parameters (attributes) that characterize a suggestion:

� The payment, $p

� The amount of load reduction, d (in kWh)

in the case of example recommendation (a), and

� The payment, $p

� The percentage load reduction, d (%)

� The percentage reduction of the consumer’s carbon footprint, z (%)

in the case of example suggestion (b). Here, we focus on suggestions of the form (a). The

above attributes are prioritized or weighted differently by different consumers. Also, each

suggestion may comprise attributes that are beyond the control of the CD and attributes

that are under its control, such as the incentives to be designed.

The first goal of the CD is to learn consumer individual preferences, i.e., derive user

profiles that capture the different importance that each user places on the different at-

tributes, through records of past load reduction suggestions and user decisions. Then,

its second goal is to determine appropriately the controllable attributes of each sugges-

tion, based on the derived decision-making profiles, so as to achieve an expected total

load reduction of at least Q units of energy with the minimum possible total offered

compensation).
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5.3 System Model

Denote by I the set of energy consumers that participate in the peak-load reduction

campaign. Time is divided into slots. Here, as we mentioned above, we focus on a single

time slot of the day at which the CD needs to achieve an expected total load reduction

greater than or equal to Q. The CD interacts with consumers through a mobile app.

It suggests a specific task for load curtailment to each consumer offering at the same

time a monetary reward as an incentive to carry out the task, i.e., it makes a single load

reduction suggestion ri to each consumer i ∈ I. Each suggestion r can be viewed as

a set of n attributes (interchangeably called cues hereafter) r = (c1, c2, . . . , cn). These

attributes include the monetary reward c1 = p, the amount of load to be curtailed c2 = d,

and maybe the description of the corresponding energy demand task(s) to be canceled

c4, c5, c6, . . . .

The attributes p, d can be manipulated by the campaign designer in order to incentivize

consumers to undertake specific load reduction tasks. The attributes that are related

to the energy demand tasks to be cancelled, such as the time when the demand task(s)

is(are) scheduled to start by the consumer (during the target peak slot), the appliance(s)

involved, and the power consumption level of the appliance(s), are inherent ones to the

energy demand task(s). We assume that the time of the day or the type of load does

not determine whether the user will do the reduction or not (we are talking about

homogeneous load for all users). Therefore, it is safe to assume that each consumer

i ∈ I views a suggestion ri only as a pair of attributes pi, di, i.e., ri = (pi, di). There

may exist other attributes besides the two above that determine the decision of the

consumer. Some might be related to the specific load reduction task, while some others

might be related to the consumer per se, e.g., the social recognition consumers get about

their prudent energy consumption or the intrinsic motivation to be environment friendly.

Without loss of generality, attributes p, d are taken to be continuous variables. Let

pmin ≥ 0 and pmax > 0 be the minimum and maximum allowed payment that can

be offered to a consumer i, respectively, and dmaxi ≥ 0 be the maximum possible load

reduction of each consumer i. If the baseline energy demand of consumer i at the target

slot t is e0
i , with 0 ≤ e0

i ≤ e0
max then dmaxi = e0

i . We denote as d′i = di/e
0
i the normalized

demand load reduction, with 0 ≤ d′i ≤ 1. We observe that d′i can also be expressed as a

percentage, i.e., d̃i = 100 d′i %.

Consumers decide to undertake a demand load curtailment, and they do so probabilisti-

cally, depending on how well suggestions compare with their own individual preferences.

This probabilistic reaction of consumers depends on the suggested load reduction tasks

and the corresponding offered payments, and on the consumer profiles that define their
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preferences. Consumer preferences are expressed over the attributes p, d, which are con-

trollable by the campaign designer. Hence, each consumer is faced with a two-attribute

decision problem.

We approach consumer reaction to a load reduction suggestion as a two-class probabilis-

tic classification problem. The possible outcomes of the consumer decision-making pro-

cess determine the two classes. Specifically, when a suggestion ri is made to a consumer

i, class 1 (C1) corresponds to accepting it and performing the suggested load curtailment,

while class 0 (C0) corresponds to rejecting it. Thus, an instance ri = (pi, di) is assumed

to belong either to class C1 or to class C0. For a given vector of values r = (p, d) for the

different suggestion attributes, the probability that consumer i performs the suggested

load reduction task, i.e., accepts the offer r, is P ia(r) = Pi(C1|r) = Pi(C1|(p, d)). This

offer acceptance probability is not assumed to be a priori known, but it will emerge from

our subsequent analysis.

In our scenario, each consumer decides whether to undertake a load reduction task with a

specific fixed reward and if s/he does, s/he deterministically receives the offered payment

(decision-making under certainty). We assume for now that whether a consumer will

perform a suggested task is independent of all other consumers’ decisions. Also, the

outcomes (i.e., the received reward) for a decision-maker depend only on her/his own

choices/actions.

5.4 Incentive and load-reduction task allocation: Problem

formulation

Given a set of users I, each user i ∈ I with a given preference/decision-making profile,

the CD has to find the most economically efficient payment and load-reduction task

allocation scheme that achieves an expected total load reduction of at least Q units of

energy. I.e., the CD seeks to optimally control the suggestion attributes pi, di so as to

achieve an expected load saving greater than or equal to Q with the minimum possible

total offered reward (i.e., sum of offered payments). Namely, the optimization problem

faced by the CD is:

min
p,d

∑
i∈I

pi (5.1)

s.t.
∑
i∈I

di P
i
a(pi, di) ≥ Q (5.2)

pmin < pi ≤ pmax, ∀i ∈ I (5.3)
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0 ≤ di ≤ dmaxi , ∀i ∈ I, (5.4)

where p = (p1, p2, . . . , p|I|) is the vector of the offered payments and d = (d1, d2, . . . , d|I|)

is the vector that contains the suggested amounts of load reduction. The objective

function denotes the sum of offered payments, namely the maximum potential cost of

the CD which is the cost that results from the acceptance of all recommended offers.

Introducing the concept of normalized load reduction into the above formulation, the

optimization problem becomes:

min
p,d′

∑
i∈I

pi (5.5)

s.t.
∑
i∈I

d′i P
i
a(pi, d

′
i) ≥ Q′ (5.6)

pmin < pi ≤ pmax, ∀i ∈ I (5.7)

0 ≤ d′i ≤ 1, ∀i ∈ I. (5.8)

In order to solve the optimization problem (5.1)-(5.4) or the modified problem (5.5)-

(5.8), we need to predict the probabilities P ia(pi, di) or P ia(pi, d
′
i), ∀i ∈ I, respectively.

5.5 Consumer profiling

As we mentioned above, our main goal is to predict the probability P ia(ri) that a con-

sumer i will accept an offer ri (i.e., will perform a suggested load reduction task), so as to

solve the optimization problem (5.1)-(5.4) or (5.5)-(5.8) defined in section 5.4. In order

to achieve our goal, we need to profile consumers. Namely, we need to build a model for

each consumer i, using historical data, that describes the way s/he assesses a suggestion

ri to reach a decision regarding her/his participation/action in the campaign. Such a

decision depends on the suggestion attributes pi, di (or d′i or d̃i), which are prioritized

or weighed differently by different consumers.

Here, we employ two different techniques to learn consumer individual preferences (pro-

files) through records of past load reduction suggestions and user decisions: a) the Logis-

tic Regression (LR) model and b) the Fast-and-Frugal Tree (FFT) model. The derived

consumer profiles capture the different importance that each consumer places on the

different attributes that characterize the suggestions. We then use these personalized

consumer preference models to predict the probability P ia(ri), ∀i ∈ I, and subsequently

solve the optimization problem (5.5)-(5.8).
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5.5.1 Logistic Regression model, and Optimal Task and Incentive Al-

location Policy

In this section, we model the way each consumer i assesses a suggestion ri to reach a

decision (accept (C1), or reject (C0)) using the LR model. Given a vector of values

r = (p, d′) for the different attributes, LR predicts the probability that consumer i will

make the positive choice (accept (C1)) as follows:

P ia(r) = Pi(C1|r) =
1

1 + e−wi·r
= σ(wi · r), (5.9)

where wi = (wi,0, wi,p, wi,d′) is the vector of the attribute weights (logistic regression

coefficients) for consumer i and σ(x) = ex

ex+1 = (1 + e−x)−1 (with σ(x) ∈ (0, 1), ∀x) is

the standard logistic (or sigmoid) function. wi,0 is the intercept coefficient, while wi,p

and wi,d′ are the weights assigned by consumer i to attributes pi and d′i, respectively. An

additional pseudo-attribute c0 = 1, corresponding to the intercept term wi,0, is added to

the suggestion r, i.e., r = (c0, p, d
′) = (1, p, d′). Also, wi·r is the dot product of vectors wi

and r. We observe that the LR model predicts the above probability based on a weighted

integration of the available attribute values p, d′. On the other hand, the alternative

choice (reject (C0)) is selected with probability Pi(C0|r) = 1− Pi(C1|r) = 1− P ia(r).

For the prediction of the probability P ia(r), the CD needs to learn the weight vector

(profile) {wi}, i ∈ I, which captures the importance that consumer i places on the

different attributes in reaching a decision. These weights are learned from historical

data (i.e., past load reduction suggestions and the corresponding responses) through a

supervised learning process, whereby the individual consumer LR models are trained

using these data (training datasets). The supervised learning process followed in the

case of LR models is analytically described in Appendix A.

5.5.1.1 Optimal allocation of incentives and load reduction tasks in the case

of LR: A sigmoid optimization problem

In section 5.4, we mentioned that the goal of the CD is to optimally control the suggestion

attributes pi, d
′
i so as to achieve an expected load reduction greater than or equal to

Q (units of energy) with the minimum possible total offered reward. Also, we showed

above (Eq. (5.9)) that in the case of LR, the probability P ia(ri) that a consumer i will

undertake a suggested load reduction task is a sigmoid function of attributes pi, d
′
i. So,

using Eq. (5.9), the optimization problem (5.5)-(5.8) of section 5.4 becomes:

min
p,d′

∑
i∈I

pi (5.10)
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s.t.
∑
i∈I

d′i σ(wi,0 + wi,ppi + wi,d′d
′
i) ≥ Q′ (5.11)

pmin < pi ≤ pmax, ∀i ∈ I (5.12)

0 ≤ d′i ≤ 1, ∀i ∈ I. (5.13)

Since both the objective function (5.10) and the function of constraint (5.11) have con-

tinuous first partial derivatives, the method of Lagrange multipliers can be used to solve

the above problem. Namely, using a Lagrange multiplier λ ≥ 0 for the constraint (5.11)

(the other two are discarded and are introduced later through a constraint on the cor-

responding payment and task allocation policy of the CD), the Lagrange function is

defined by

L(p,d′, λ) =
∑
i∈I

pi − λ
(∑
i∈I

d′iσ(wi,0 + wi,ppi + wi,d′d
′
i)−Q′

)
. (5.14)

The attribute weights wi, ∀i ∈ I are obtained through the training process described

in Appendix A. The Lagrangian (5.14) is the new objective function that needs to be

minimized. We observe that the optimization problem turns out to be a sigmoid opti-

mization one. The goal is to find some (p∗,d′∗) ∈ C and λ∗ ≥ 0 such that L(p∗,d′∗, λ∗) =

min{L(p,d′, λ) : (p,d′) ∈ C, λ ∈ R+}, where C = {(p,d′) ∈ R2|I| | pmin ≤ pi ≤ pmax, 0 ≤
d′i ≤ 1,∀i ∈ I} is a closed convex set which determines the constrained feasible solution

space for all controllable attributes pi, d
′
i, for i ∈ I. The solution (p∗,d′∗) of the above

problem is the optimal payment and task allocation scheme in the case of LR models.

The problem (5.10)-(5.13) is a nonlinear programming (NLP) one. There are commer-

cially available NLP solvers that employ Lagrange multiplier algorithms, such as the

interior-point method or the sequential quadratic programming method [115], for solv-

ing constrained nonlinear programming problems. In section 5.6, we use such as a solver

in order to obtain our numerical results.

5.5.2 Fast-and-Frugal Tree model, and Optimal Task and Incentive

Allocation Policy

In this section, we build a behavioral decision-making profile for each consumer i using

the FFT model. A tree such as the one in Fig. 5.1a is called a fast-and-frugal tree,

according to the definition we presented above (Section 5.1). This is a typical FFT that

models the following decision-making process: If d′i ≤ Td′i then consumer i decides to

accept the offer ri (i.e., ri belongs to class C1). Else, if d′i > Td′i then the consumer

considers pi; if pi ≥ Tpi then the consumer decides to accept the offer ri, else if pi < Tpi

then the consumer rejects ri (i.e., ri belongs to class C0). Tpi and Td′i are appropriately
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Figure 5.1: (a) An example FFT and (b) its alternative form for a consumer i that
prioritizes the cue d′i of the suggestion ri over the cue pi. APi,l/Ni,l is the estimate of
the probability that an instance (i.e., suggestion) assigned to leaf l belongs to class C1.
APi,l is the number of training instances of (actual) class C1 at leaf l, and Ni,l is the

total number of training instances at that leaf.
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Figure 5.2: An example FFT that prioritizes the cue pi of the suggestion ri over the
cue d′i. Its cue ranking and exit location are different from those of the FFT in Fig.

5.1a.

selected decision/classification thresholds. The structure of the tree implies that con-

sumer i ranks the attribute di first and the attribute pi second, i.e., s/he prioritizes d′i

over pi. A different ranking would lead to a different tree. Fig. 5.2 depicts an example

FFT with different cue order and different exit structure that may arise in our scenario.

Fig. 5.1b depicts the alternative form of the FFT in Fig. 5.1a; we apply the following

convention here: each right branch is associated with the fulfillment of the condition

at the top the branch and is labeled with 1, whereas each left branch is labeled with

0. Also, if a leaf stems from a branch labeled 1, then the decision at this leaf will be

positive (i.e., its associated class is C1), otherwise the decision will be negative (C0).
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In order to build (i.e., train) a FFT model for each consumer i, the CD needs to (i)

find appropriate decision thresholds Tpi , Td′i for the available cues pi, d
′
i (or pi, d̃i),

respectively, (ii) order the cues, and (ii) find an appropriate tree shape (exit structure).

These three problems are solved using historical information (i.e., a training dataset for

each consumer i consisting of past load-reduction suggestions and consumer responses)

and a set of simple rules that are based on the optimization of a particular model

evaluation measure. The training process followed in the case of FFTs is analytically

described in Appendix B. After the tree has been constructed, its use for classification

involves only traversing the tree by answering one simple question (i.e., checking a

condition) at each level, and assigning the class label associated with the final node

(leaf).

Although decision-tree models are not naturally probabilistic, they can predict prob-

abilities, using information extracted from the classification of the training instances

[110–112], as follows: The full training dataset sits at the top of the constructed tree

and each training observation/instance traverses the tree (checking the condition at each

node) until it reaches a leaf node. Each leaf comprises a subset of the full set of training

instances. Then, each new observation that needs to be classified goes through the tree

to reach a leaf node and a class-membership probability is obtained for this observation

from the (training) relative frequency of the class in question at that leaf.

For example, if a new observation reaches a leaf node l that comprises 7 training instances

of (actual) class C1 and 3 training instances of (actual) class C0, then a probability

7/10 = 0.7 would be assigned to be from class C1. Namely, the probability that an

instance at leaf l belongs to class C1 is P (C1|l) = 7/10. Let APl be the number of

training instances of (actual) class C1 at leaf l and Nl be the total number of training

instances at that leaf. Then, P (C1|l) = APl/Nl. Since each leaf of the decision tree

corresponds to a region of the two-dimensional feature space, the above probability

estimation procedure assigns the same probability estimate to all points in the region.

It has been proved that this methodology provides poor probability estimates, since the

decision tree was constructed using these same training instances and so the estimates

tend to be too extreme, i.e., close to 0 or 1. One way of improving them is to make

them smoother, i.e., to adjust them to be less extreme [111–113]. The Laplace correction

method presented in [111], which has become a de facto standard for practitioners, can be

used for smoothing these frequency-based probability estimates. This method replaces

the conditional probability estimate P (C1|l) = APl/Nl by P ′(C1|l) = (APl+1)/(Nl+C),

where C is the number of classes. This simple, common smoothing method has been

used for the production of improved probability estimates from decision-tree models like
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CART and C4.5 [111, 113]. Since these models are more complex versions of FFTs 1,

the Laplace correction can also be used to improve the class-membership probability

estimates given by FFTs 2.

Applying the Laplace correction method to the frequency-based probability estimates

derived from the FFT model built for a consumer i, the probability P ia(ri) that the

consumer will accept an offer ri (i.e., that instance ri belongs to class C1) is given by:

P ia(ri) = Pi(C1|ri) =

Λi∑
l=1

Pi(l|ri)P ′i (C1|l) =

Λi∑
l=1

Pi(l|ri)
APi,l + 1

Ni,l + 2
, (5.15)

where Λi is the number of leaves of the FFT, Pi(l|ri) is the probability that leaf l is

reached by instance (suggestion) ri, and P ′i (C1|l) is the smoothed/improved estimate of

the probability that an instance assigned to l belongs to class C1. APi,l is the number of

training instances of (actual) class C1 at leaf l and Ni,l is the total number of training

instances at that leaf. In our two-class problem, the Laplace correction method replaces

the probability estimates Pi(C1|l) = APi,l/Ni,l, for l = 1, . . . ,Λi, obtained from the FFT

of consumer i by P ′i (C1|l) = (APi,l + 1)/(Ni,l + 2).

In order to predict the probability P ia(ri) of Eq. (5.15), the CD needs to find a) the

probabilities Pi(l|ri) and b) the values of APi,l, Ni,l, ∀l = 1, . . . ,Λi. Based on the

constructed FFT of a consumer i, a) each probability Pi(l|ri) can be expressed as an

indicator function of the conditions (tests) leading to leaf l, and b) the values of APi,l,

Ni,l can be estimated after the classification of all training instances using the tree (as

described above). For example, from the FFT of Fig. 5.1a, it is:

P ia(ri) = 1{d′i>Td′
i
}1{pi<Tpi}

(APi,1 + 1

Ni,1 + 2

)
+ 1{d′i>Td′

i
}1{pi≥Tpi}

(APi,2 + 1

Ni,2 + 2

)
+ 1{d′i≤Td′

i
}

(APi,3 + 1

Ni,3 + 2

)
, (5.16)

where 1A is an indicator function of the event A with 1A=1 or 0 if event A is true or not,

respectively. Here, we assume that leaves are numbered from left to right. We observe

that in the case of FFTs the probability P ia(ri) is a step (piecewise constant) function

of attributes pi, d
′
i. Also, for a given suggestion r, only one of the Λi terms of equation

(5.15) is nonzero.

1In the case of CART and C4.5, a) cues are looked up sequentially but not necessarily one at a time,
b) the decision on which cues to use at each level and how to order them is made by statistical tests,
and c) it is not necessarily the case that a decision can be made at each level of the tree [105, 116].

2Here, we assume that the available datasets for the consumers are not highly imbalanced. In the
case of highly imbalanced datasets (i.e., the two classes are far from equiprobable), the m-estimation
method presented in [112] might be more appropriate for the production of well-calibrated probability
estimates.
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5.5.2.1 Optimal allocation of incentives and load reduction tasks in the case

of FFTs: An integer linear programming (ILP) problem

As we mentioned in section 5.4, the objective of the CD is to optimally control the

attributes pi, d
′
i so as to achieve an expected total load reduction of at least Q′ units

of energy with the minimum possible total offered reward. Also, from the structure of

a general FFT for a consumer i, we observe that each path from the root to a leaf l is

characterized by a) a set of conditions/tests (one at each branch), b) the sets of values

for the decision variables pi, d
′
i that satisfy the conditions at its branches, and c) a fixed

probability estimate (APi,l + 1)/(Ni,l + 2) that denotes the probability that consumer i

will accept an offer ri that corresponds to this path. According to this observation and

the objective of the CD, we identify the following cases:

� A path passes through a branch labeled pi < Tpi or pi ≤ Tpi . Then, the payment

to be offered to consumer i should equal pmin (i.e., the element of the set of values

[pmin, Tpi) or [pmin, Tpi ], respectively, that minimizes the total offered reward (i.e.,

the maximum potential cost of the CD).

� A path passes through a branch labeled pi > Tpi . Then, the offered payment to

consumer i should be Tpi + εp (i.e., one of the smallest elements of the interval

(Tpi , pmax] ), where 0 < εp < 1 is an arbitrarily small positive number.

� A path passes through a branch labeled pi ≥ Tpi . Then, the offered payment to

consumer i should equal Tpi (i.e., the minimum element of the interval [Tpi , pmax]).

� A path passes through a branch labeled d′i > Td′i or d′i ≥ Td′i . Then, the normalized

load reduction to be suggested to consumer i should be d′maxi = 1 (i.e., the element

of the set of values (Td′i , 1] or [Td′i , 1], respectively, that maximizes the expected

load reduction of consumer i ).

� A path passes through a branch labeled d′i < Td′i . Then, the normalized load

reduction to be suggested to consumer i should equal Td′i − εd (i.e., one of the

largest elements of the interval [0, Td′i) ), where 0 < εd << 1.

� A path passes through a branch labeled d′i ≤ Td′i . Then, the normalized load

reduction to be suggested to consumer i should be Td′i (i.e., the maximum element

of the interval [0, Td′i ] ).

� A path passes only through a single branch labeled pi < Tpi or pi > Tpi or

pi ≤ Tpi or pi ≥ Tpi . Then, the payment to be offered is determined as detailed

above and the normalized load reduction to be suggested should be d′maxi = 1 (i.e.,

the maximum element of the interval [0, 1] ).

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Chapter 5. Optimal Design of Energy Consumption Reduction Campaigns Through
Behavioral Data-Driven Consumer Profiling 102

� A path passes only through a single branch labeled d′i < Td′i or d′i > Td′i or d′i ≤ Td′i
or d′i ≥ Td′i . Then, the normalized load reduction to be suggested is determined as

detailed above and the payment to be offered to consumer i should be pmin (i.e.,

the minimum element of the interval [pmin, pmax] ).

For example, there are three distinct paths in the FFT of Fig. 5.1a. For the path that

passes through branches d′i > Td′i and pi < Tpi , the offer ri should be (pmin, d
′max
i ) =

(pmin, 1) and the estimated probability that consumer i will accept it is (APi,1+1)/(Ni,1+

2). For the path that passes through branches d′i > Td′i and pi ≥ Tpi , the offer should be

ri = (Tpi , 1) and it would be accepted with probability (APi,2 + 1)/(Ni,2 + 2), whereas

for the last path, it should be ri = (pmin, Td′i) with acceptance probability (APi,3 +

1)/(Ni,3 + 2).

Therefore, the CD has a finite (countable) number of options (extracted from the FFT of

a consumer i) for a suggestion ri, each of which corresponds to a path and has given p, d′

values. Also, each path is associated with a probability estimate that shows the likehood

that consumer i will accept the option/offer that corresponds to this path. So, each of

the Λi options is a predetermined optimal offer with a fixed acceptance probability,

corresponding to a certain path l (the number of paths is equal to the number of leaves)

of the FFT of consumer i, and is denoted as r∗il = (p∗il, d
′∗
il ), for l = 1, . . . ,Λi.

From the above observations, the optimization problem (5.5)-(5.8) of section 5.4 in the

case of FFTs turns out to be a discrete optimization one and it can be reformulated as a

variant of the standard knapsack problem [117]. In the following reformulated problem,

the objective function represents the total offered reward (by the CD) that results from

the selection of only one option (from the group of options) for each consumer i, and

the first constraint shows that the expected total load reduction that results from the

aforementioned selection of options needs to be greater than or equal to Q′ (units of

energy).

min
x

|I|∑
i=1

∑
l∈Mi

vilxil (5.17)

s.t.

|I|∑
i=1

∑
l∈Mi

zilxil ≥ Q′ (5.18)

∑
l∈Mi

xil = 1, ∀ 1 ≤ i ≤ |I| (5.19)

xil ∈ {0, 1}, ∀ 1 ≤ i ≤ |I|,∀l ∈Mi. (5.20)

In this formulation, Mi = {(vil, zil)|l = 1, . . . ,Λi} for i ∈ I is a set of items numbered

from 1 up to Λi, each with a value vil = p∗il and a weight zil = d′∗ilP
i
a(r
∗
il). Each of these

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Chapter 5. Optimal Design of Energy Consumption Reduction Campaigns Through
Behavioral Data-Driven Consumer Profiling 103

items corresponds to a (predetermined) optimal offer r∗il = (p∗il, d
′∗
il ) associated with a

certain path l of the FFT of a consumer i. The value vil depicts the payment p∗il to

be offered to consumer i and the weight zil represents the expected normalized load

reduction d′∗ilP
i
a(r
∗
il) of consumer i due to suggestion r∗il. Here, the decision variable xil

represents the selection (xil = 1) or not (xil = 0) of the l-th item of set Mi, i.e., of

the l-th option r∗il for the consumer i, for i ∈ I and l = 1, . . . ,Λi. Constraint (5.19)

denotes that exactly one item must be selected from each set Mi, i.e., that only one of

the available Λi options must be selected for each consumer i.

In terms of the knapsack problem, the problem for the CD is to decide which items

(options) to include in a collection so that the total weight (expected total load reduction)

is greater than or equal to a given constant Q′ and the total value (total offered reward)

is as small as possible. In other words, the optimization problem amounts to accounting

over all possible options and selecting those ones that minimize the maximum potential

cost of the CD and lead to an expected total load reduction greater than or equal to Q′.

From the FFT of Fig. 5.1a, we have

Mi = {(vi1, zi1), (vi2, zi2), (vi3, zi3)}

=
{(
pmin,

APi,1 + 1

Ni,1 + 2

)
,
(
Tpi ,

APi,2 + 1

Ni,2 + 2

)
,
(
pmin, Td′i

APi,3 + 1

Ni,3 + 2

)}
.

(5.21)

We observe that the problem (5.17)-(5.20) is an integer linear programming (ILP) one.

Several advanced algorithms for solving integer linear programs are available, e.g., the

branch-and-bound or the cutting plane method [118, 119]. There are a number of com-

mercial solvers that implement such algorithms for the solution of ILPs [120]. We use

such a solver for the derivation of our numerical results in section 5.6.

5.6 Numerical Example

We consider a system consisting of two consumers, i.e., I = {1, 2}. We assume that a

simple questionnaire (sequence of offers) is provided to each one of them which invites

consumers to consider that they receive suggestions about load reduction tasks on their

smartphones and have to reply to them (accept or reject). Each offer consists of a

monetary payment p awarded to the consumer if s/he carries out the suggested task,

and a percentage d̃ by which a consumer’s load needs to be reduced. The provided

questionnaire and the corresponding responses of a consumer i, for i = 1, 2, form the

training dataset for this consumer.
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Figure 5.3: The resulting FFT of consumer 1: priotity to the payment attribute p1.

22.89 %

Consumer 2’s FFT
True 0 True 1

Cor. Reject
Miss 
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Hit

<22.89 %

,, = 00 ,, = 1
Figure 5.4: The resulting FFT of consumer 2: exclusive reliance on the percentage

load reduction cue d̃2.

Table C.1 in Appendix C depicts the data we used for the creation of the synthetic

training datasets S1
tr, S2

tr for the two consumers. We generated 24 random pairs (p, d̃)

(i.e., offers) and labeled them as 1 (accept (C1)) or 0 (reject (C0)) based on the differ-

ent consumer preferences. Specifically, we assume that consumer 1 prefers offers with

medium to high compensation (p) and low to medium effort (d̃), whereas consumer 2

has a preference for low effort tasks, irrespective of reward. Initially, we assume that

pmin = $0.5 and pmax = $15.

First, we train the LR models for the two consumers using the available training datasets.

Namely, we estimate the w1, w2 vectors of attribute weights that best fit the models us-

ing the questionnaire suggestions and the corresponding consumer responses. Following

the training procedure described in Appendix A, we get w1,0 = −0.0882, w1,p = 0.3794

and w1,d̃ = −0.0608 for the LR model that captures the preferences of consumer 1,

while for the LR model built for consumer 2 we have w2,0 = 1.4642, w2,p = −0.0164

and w2,d̃ = −0.0696. Thus, the LR model of consumer 1 predicts (using Eq. (5.9)) that
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consumer 1 will accept an offer r1 = (p1, d̃1) with probability

P 1
a (p1, d̃1) = σ(w1,0 + w1,p p1 + w1,d̃ d̃1) = σ(−0.0882 + 0.3794 p1 − 0.0608 d̃1), (5.22)

and the LR model of consumer 2 predicts that consumer 2 will accept an offer r2 =

(p2, d̃2) with probability

P 2
a (p2, d̃2) = σ(w2,0 + w2,p p2 + w2,d̃ d̃2) = σ(1.4642− 0.0164 p2 − 0.0696 d̃2), (5.23)

Next, applying the simple FFT construction algorithm (described in Appendix B) on the

available training datasets, we obtain the FFTs for the two consumers. The resulting

decision trees, which are depicted in Fig. 5.3 and 5.4, provide ample evidence of the

high heterogeneity in consumer preferences. Consumer 1 assigns more importance to

attribute p1, since s/he inspects the offered payment p1 first and then considers the

suggested percentage of load reduction d̃1 for making her/his decisions. Consumer 2

appears to rely exclusively on single cue d̃2 for making her/his choices.

We classify the training offers using the contructed trees and we getAP1,1 = 0, AP1,2 = 0,

AP1,3 = 11, AP2,1 = 0, AP2,2 = 6, N1,1 = 8, N1,2 = 4, N1,3 = 12, N2,1 = 18 and

N2,2 = 6. Also, we have Λ1 = 3, Λ2 = 2, and C = 2. From the FFT of consumer 1 (Fig.

5.3) and Eq. (5.15), the probability that consumer 1 will accept an offer r1 = (p1, d̃1) is

P 1
a (p1, d̃1) = 1{p1<Tp1}

(AP1,1 + 1

N1,1 + 2

)
+ 1{p1≥Tp1}1{d̃1≥Td̃1}

(AP1,2 + 1

N1,2 + 2

)
+ 1{p1≥Tp1}1{d̃1<Td̃1}

(AP1,3 + 1

N1,3 + 2

)
= 1{p1<4.32}

( 1

10

)
+ 1{p1≥4.32}1{d̃1≥69.2%}

(1

6

)
+ 1{p1≥4.32}1{d̃1<69.2%}

(12

14

)
,

(5.24)

while the set of options (extracted from this tree) for the suggestion r1, is {r∗11, r
∗
12, r

∗
13} =

{(pmin, d̃max), (Tp1 , d̃max), (Tp1 , Td̃1−εd)}={($0.5, 100%), ($4.32, 100%), ($4.32, 68.7%)}
(for εd = 0.5%) with acceptance probabilities 1/10, 1/6 and 12/14, respectively.

From the FFT of consumer 2 (Fig. 5.4), the probability that the consumer will accept

an offer r2 = (p2, d̃2) is

P 2
a (p2, d̃2) = 1{d̃2≥Td̃2}

(AP2,1 + 1

N2,1 + 2

)
+ 1{d̃2<Td̃2}

(AP2,2 + 1

N2,2 + 2

)
= 1{d̃2≥22.89%}

( 1

20

)
+ 1{d̃2<22.89%}

(7

8

) (5.25)
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and the set of options for the suggestion r2 is {r∗21, r
∗
22} = {(pmin, d̃max), (pmin, Td̃2 −

εd)} = {($0.5, 100%), ($0.5, 22.39%)} with acceptance probabilities 1/20 and 7/8, re-

spectively.

In Appendix C, we provide details about the building process of the above LR models

and FFTs. We also study the performance (fitting accuracy) of the resulting models,

i.e., how well the model decisions fit the decisions (responses) of the two consumers, and

we present a performance comparison between them.

Now, assume that the CD needs to incentivize the two consumers so as to achieve an

expected total load reduction of at least Q = 1.5 kWh at a specific peak slot of the

day. The baseline energy demand of each consumer at the target slot is e0
1 = 3 kWh

and e0
2 = 2 kWh, respectively. Thus, dmax1 = 3 kWh and dmax2 = 2 kWh. The following

question arises: Which are the most economically efficient suggestions that can induce

an expected total load reduction greater than or equal to Q? The answer can be given

through the solution of the optimization problems (5.10)-(5.13) and (5.17)-(5.20) of

subsections 5.5.1.1 and 5.5.2.1, respectively. We solve the two problems using MATLAB

functions that implement the interior-point and branch-and-bound algorithms.

In the case of LR, the optimal suggestions are r∗LR,1 = ($12.26, 59.3%) and r∗LR,2 =

($0.5, 25.1%), which can induce a maximum potential cost of $12.76 on the CD and

an expected total load reduction of 1.5 kWh ≥ Q. On the other hand, in the case

of FFTs, the optimal suggestions are r∗FFT,1 = ($4.32, 68.7%), r∗FFT,2 = ($0.5, 22.39%),

and they can achieve an expected total load reduction of 2.16 kWh > Q at a total offered

payment (maximum potential cost) of $4.82. If the CD wants to achieve an expected

load reduction greater than or equal to Q = 0.8 kWh, the optimal suggestions are

r∗LR,1 = ($6.44, 35.96%), r∗LR,2 = ($0.5, 25.1%) and r∗FFT,1 = ($4.32, 68.7%), r∗FFT,2 =

($0.5, 22.39%). The total offered reward and the expected total load reduction are $6.94

and 0.8 kWh ≥ Q, respectively, in the case of LR, while in the case of FFTs they are

$4.82 and 2.16 kWh > Q.

From the above results, we observe that in both approaches and for both values of Q,

the optimal offers for consumer 2 are approximately the same. These optimal offers

imply that the CD should offer consumer 2 the minimum allowed reward (pmin) for

the suggested percentage reduction (≈ 23%) that causes the maximum expected load

reduction. The attribute values show that both models for consumer 2 have successfully

discovered the decision-making profile of the consumer (which prefers low effort tasks

(d̃2 < 22.89%) irrespective of reward). The obtained optimal suggestions for consumer 1

aim to achieve the rest of the required expected reduction (which is smaller for Q = 0.8).

In the case of LR and for both values of Q, the optimal payments to be offered to

consumer 1 are proportional to the suggested percentage load reductions (due to the
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weighted integration of p1, d̃1 for the estimation of the offer acceptance probability).

The FFT optimal suggestions, in contrast, are identical for both values of Q. This

stems from the fact that the CD has a countable number of options ({r∗11, r
∗
12, r

∗
13})

for the suggestion r1, and it selects the same option for both values of Q. Again, the

optimal attribute values signify the succesful identification of the consumer 1 preferences

(medium to high reward for low to medium effort).

We observe that the CD provides suggestions to both consumers since pmin = $0.5 (and

so a percentage load reduction that is proportionate to the $0.5 payment should at least

be suggested to each consumer) and due to the equality constraint (5.19) (that restricts

the CD to select exactly one option from the available set of options for a suggestion ri).

However, if we set pmin = 0, then the solution of the optimization problem (5.10)-(5.13)

implies that suggestions will be offered only to those consumers for whom pi > 0. In

the optimization problem (5.17)-(5.20), for pmin = 0, we can relax the constraint (5.19)

such that
∑

l∈Mi
xil ≤ 1, ∀ 1 ≤ i ≤ |I|, and we can also assume that for a path that

passes through a branch labeled pi < Tpi or pi ≤ Tpi the offered payment should be

pmin + εp. Then, the CD designer can select at most one option from the set of options

for a suggestion ri, and thus, only those consumers for whom
∑

l∈Mi
xil = 1 will be

offered a suggestion.

5.7 Related work

There is a line of works that relies on principles of optimization and game theory to

model energy consumer behavior and interaction, and to propose appropriate incentive

mechanisms for consumer engagement in demand-response programs. In order to for-

mulate the participation of customers in DR programs, work [102] develops an economic

load model which represents the changes of customer’s demand with respect to electricity

price changes, incentives as well as penalties imposed to the customers. Each customer’s

action is determined by maximizing a quadratic customer benefit function. In work

[101], the consumer is characterized by a concave utility function of total consumption

that also factors her personal valuation. A Vickrey-Clarke-Groves pricing mechanism

is performed under the assumptions that user private consumption information is not

available, and that users are asked to reveal their consumption. The work [121] studies

a prosumer-centric approach for achieving social optimality in energy trading between

prosumers and a central unit, and for encouraging energy prosumers to participate in

energy trading with the central unit. Each prosumer decides on the amount of energy

to supply so as to maximize a concave utility function, while the central unit aims to

set the price so as to minimize the total cost of energy.
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In work [99], the authors consider a dynamic pricing scheme which is convex to the

total hourly energy demand. Each user, which is characterized by a payoff function,

exchanges daily consumption schedules with others and updates them accordingly to

minimize her/his energy cost for the next day. Work [122] considers two market models,

a competive one and an oligopolistic one, for demand response in power networks, where

customers are price taking. In both market cases, the utility company’s goal is to charge

appropriate prices so as to match electricity supply or to shape electricity demand, and

each customer’s goal is to maximize her/his net utility which is a concave function of

her/his shed load or power draw, respectively. The work [123] is a survey of works

where the consumer aspect arises in problems of energy exchange, energy consumption

scheduling, appliance scheduling and storage facility management.

In the same context, work [86] devises a hierarchical demand response market model

where several competing aggregators, which act as intermediaries, provide monetary in-

centives to home users to modify their demand pattern. Each user tries to maximize

her/his (concave) net payoff function which captures the received compensation and

the dissatisfaction caused due to deviation from the reference consumption. In work

[124], the authors design incentive offers to consumers with unknown characteristics.

Each consumer is characterized by a cost per unit of load reduction that needs to be

truthfully elicited, and by a probability of accepting the offer made, which needs to

be learned. Work [98] introduces the uncertainty in load curtailment stemming from

end-consumer non-engagement through the definition of a conformance probability that

depends on consumer valuation and on the provisioned incentives. This probability as

well as incentive mechanisms in the form of rewards and fines are inserted in appro-

priately defined utility functions for the consumers which capture the expected benefit

from the curtailment.

In the context of cognitive psychology and behavioral economics, there is significant

amount of work on modeling the bounded rationality of decision-makers. Two different

points of view have arisen from researchers’ attempts to construct models of the heuris-

tics that people use to make decisions. Work [125] expresses the first one. The “heuristics

and biases” program presented in that work documented deviations of human behavior

from the classical economic model through a number of laboratory experiments. The

second point of view is expressed in work [126]. The presented “fast and frugal heuris-

tics” program developed a suite of simple mathematical models known as simple deci-

sion heuristics, and analyzed how well these models describe human behavior. Works

[127, 128] also presented various such heuristics that the authors have identified and

tested. Due to their simplicity, they have been used in many real-world decision tasks.
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For example, in work [106] they have been used for making coronary-artery disease di-

agnoses, in [129] for prescribing antibiotics to children, in [130] for detecting depression,

and in work [107] for making legal decisions.

There is a large amount of work that compares the performance of decision heuristics and

computationally more complex methods developed in statistics and artificial intelligence.

For example, works [105–107, 116, 131–134] show that simple heuristics can outperform

(in inferential speed and accuracy) traditional more complex methods. Specifically,

the authors of [116] showed, by computer simulation, that the predictive accuracy of

fast-and-frugal trees compares well with that of logistic regression and of classification

and regression trees (CARTs). Also, works [135, 136] made a performance comparison

between heuristics and compensatory integration models (including regression models)

using simulated judgement data, whereas work [107] made a similar comparison based

on human judgement data. Works [134, 137] also identified the conditions/situations

under which simple heuristics are more effective than traditional “rational” models.

Similarly, in work [105], the author reviews studies in business, medicine, and psychology,

where computer simulations and mathematical analyses reveal conditions under which

heuristics make better inferences than optimization, and vice versa.

Another line of works outlines the importance of behavioral science in energy consump-

tion [138, 139]. The work [138] presents an overview of behavioral-science foundations

that may be used to improve performance of smart-grid methods such as demand-

response programs, time-of-use pricing, energy feedback through smart meters, disag-

gregation at the appliance level, and smart automation through smart appliances. The

work [140] highlights key principles from psychology and behavioral economics to pre-

dict and change household energy consumption and energy conservation behavior. It is

argued that this behavior often fails to align with personal values or material interests

of consumers. The authors in [141] design a large-scale behavioral intervention survey

by developing a psychological model based on the theory of planned behavior (TPB) to

investigate the influence of information on environmental behavior and green electricity

purchase. Results show that price is not the only barrier to purchasing green electricity,

and that behavioral, normative and control beliefs influence the decision to purchase

green electricity.

Finally, works [142, 143] are closely related to our work. The authors of both works ac-

knowledge that users that participate in mobile crowdsensing (MCS) campaigns exhibit

high diversity in decision making because they assess differently attributes related to

recommended/presented tasks. In work [142], the authors draw on logistic-regression to

learn users’ individual preferences from past data and formulate non-linear optimization

problems to determine the tasks and incentives that should be optimally offered to each
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user. Work [143], in contrast, demonstrates how users can be profiled in light of cogni-

tive heuristic models and draws on empirical data to compare different decision-making

heuristics for MCS task selection. It is assumed that users receive offers about pairs of

crowdsensing tasks on their smartphones, and that they are asked to choose one of them

to carry out.

5.8 Conclusion

In this chapter, we introduced the optimal incentive and load reduction task allocation

problem faced by the designer of an energy consumption reduction campaign. The

aim of the designer is to target incentives and load reduction tasks appropriately based

on the different consumer profiles, so as to best fulfill the purpose of the campaign.

The individual consumer preferences (profiles) and the corresponding probabilities of

performing the suggested tasks are discovered through two different behavior-based data-

driven approaches, which employ the logistic regression model and the fast-and-frugal

tree model. In the case of logistic regression the optimization problem turns out to be

a sigmoid optimization one, while in the case of fast-and-frugal trees it is an integer

linear programming one. We also provided a numerical example that shows the optimal

solution for a special case of the problem.
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6.1 Summary of Contributions

In this thesis, we studied the issues of energy storage management and dimensioning,

renewable energy exploitation, consumer engagement and consumer modeling. Specifi-

cally,

� Chapter 2: In this chapter, we underlined the importance of energy storage man-

agement and dimensioning in smart grid systems. First, we studied the problem

of optimal storage device management with the goal to achieve a certain opti-

mization objective for the energy supplier. Our setup and methodology took into

account the dynamics of demand load and renewable sources, and the optimal

policy turned out to be a threshold-based one that is expressed through the statis-

tics of these dynamics. Our results provided evidence about the potential of our

approaches in reducing energy-supplier operational costs even with limited storage

capacities. Next, we dealt with the joint energy storage placement, dimensioning

and control problem. We explored the way storage capacity placement impacts

the overall cost of energy generation. In determining the optimal policy, it turned

out that various aspects of power flow need to be taken into account. It has been

111
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shown that the solution policy for this problem involves various parameters such

as the demand profiles of prosumers, and power flow and balance constraints. Our

numerical results demonstrate the significant impact of energy storage placement,

dimensioning and control on power generation costs.

� Chapter 3: Here, we emphasized that in the pursue of green web crawling (and

by extension, of green smart grid operations), the dynamics of RESs should be

considered. We studied the real-world problem of minimizing the total staleness of

web pages in the repository of a web crawler while keeping the amount of carbon

emissions on remote web servers, due to the page refresh operations of the crawler,

low enough. The optimal page refresh policy, which turned out to be a greedy

one, can be implemented in an online fashion taking into account the staleness

of the pages in the web repository and the dynamics of the RESs at the remote

servers. Each proposed heuristic policy achieves a different objective and relies on

different parameters to make its scheduling decisions, using less information than

the optimal policy. The real-life dataset provided by the Yahoo! Labs Barcelona,

in order to evaluate the performance of the proposed policies, was large and also

represented high-quality content. Our experimental results a) proved the existence

of a tradeoff between staleness and greenness, b) indicated the relative importance

of different system parameters, and c) gave as a good sense of the performance in

a realistic system due to the scale of the collected dataset.

� Chapter 4: In this chapter, we made a first attempt to develop a theory from first

principles on the design of a simple class of serious games for energy efficiency in

smart grids. The game designer optimally selects the game parameters, so as the

utility-maximizing choices of consumers to minimize the operational cost of the

energy supplier for energy production. The sole game parameters utilized are the

sizes of the upper list (i.e., winners) and of the lower list (i.e., losers) of consumers

according to their energy-consumption reduction. Our simulation experiments

showed that even such simple serious games can provide adequate incentives to the

consumers, so that the energy supplier achieves specific demand-side management

objectives. Our serious-game model can be deployed in practical settings and

is privacy-friendly, since only normalized energy consumption increase/decrease

needs to be shared by the users with the game designer.

� Chapter 5: Here, we presented two data-driven approaches to profile the energy

consumer and to bring in the foreground behavior-based models for predicting con-

sumer behavior. We used a machine-learning tool and a cognitive heuristic to build

such models for the consumers. Namely, the models are based on logistic regres-

sion and fast-and-frugal trees. The ultimate goal was to target load-curtailment
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suggestions/offers appropriately based on the different derived criteria that con-

sumers employ to decide whether to accept such offers. In this work, we made an

effort to draw links between the presented optimization problem and important

modeling work in the areas of machine learning and cognitive sciences. The pro-

posed approaches appear to be effective in capturing the different importance that

each consumer places on different criteria and the uncertainty on consumer actions.

Although this work could be implemented on several smart grid applications, our

emphasis has been on an energy consumption reduction effort.

6.2 Future challenges

We conclude this thesis by discussing some research challenges in the area of smart grid

that open interesting research directions.

A first research challenge is that of predicting uncertainties that significantly affect the

smart grid system performance. The unpredictability of renewable energy generation is

a first source of uncertainty. In this direction, novel mechanisms need to developed in

order to encompass such uncertainties in smart grid systems. These mechanisms should

charge prosumers based on the impact of uncertainty on the system, and the cost of

bearing such uncertainty. Moreover, new incentives need to be designed in order to

manage uncertainty both at the prosumer side (reduction of uncertainty) and at the

generation side (actions to mitigate its effects).

The great number of unpredictable and uncontrollable RESs creates another challenge;

that of tackling their variable energy output. The real-time control of the renewable

energy supply is costly and difficult. Nevertheless, a feasible and cost-efficient alternative

is to exploit any possible flexibility in demand so as to absorb variations in the RESs’

output. It is expected that consumers will have an active role in the provision of services

for balancing supply and demand.

Another challenge arises from the uncertainty on demand. Demand uncertainty has sig-

nificant implications in real-time control decisions at a system level. Demand forecasting,

which might not be feasible to be performed at the level of end-users, is a difficult and

costly operation. However, the potential of crowdsourcing could be leveraged in order to

predict demand. In the unpublished manuscript [144], the authors made a first attempt

to discuss an example scenario where consumers are asked to submit their forecasts

about their demand in the next period, and are compensated through a pricing scheme

based on the quality of prediction.
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In order to better balance supply and demand, entities such as aggregators could act

as mediators between consumers and energy suppliers. Aggregators could interact both

with the energy suppliers by buying energy, and with the consumers or micro-grid entities

by controlling energy storage devices and flexible demand loads. In such a setting, the

aggregators would like to coordinate any consumer interactions so as to reach their

balancing goals, while profit-maximizing consumers might compete with each other.

Here, we identify the need to design a hierarchical DR market model that will capture

the interactions of consumers (home users), energy suppliers, and aggregators. Such

a hierarchical market needs to be designed with operating rules and protocols such as

contracts or options to regulate the market. The work [86] is a first step toward studying

a hierarchical 3-layer market comprising generator entities, aggregators and consumers.

Prosumers with co-located storage devices in the premises of their renewable energy

sources may refrain from selling the generated renewable energy to the main grid and

they may engage in a game-theoretic interaction so as to maximize their profit. The

volatility of RESs and dynamic electricity prices create possible situations that may

significantly impact the design of electricity markets and regulation policies for the

smart grid. Game theory concepts can be applied to devise novel pricing mechanisms

that could guide the system to a socially optimal equilibrium. Such schemes will need

to be appropriately integrated in such a hybrid energy grid (with both distributed and

centralized energy generation), since they are expected to have significant impact on the

centralized energy generation.

Furthermore, concepts and models stemming from the sharing economy could be applied

to smart grid systems. The sharing economy and the concept of collaborative consump-

tion are based on the sharing of resources. RESs and storage devices are shared by

multiple smart grid entities in various sharing regimes and architectures. In this direc-

tion, long-term planning decisions (e.g., storage and RES dimensioning and placement),

and short-term dynamic decisions (e.g., storage management, power flow, dynamic in-

centives, dynamic interactions with the main grid) will need to modeled. These decisions

aim for real-time alignment of energy supply and demand at minimum cost for the sys-

tem.

Finally, the use of behavioral science and behavioral economics in order to understand

the consumer/prosumer behavior in the smart grid system is another challenge. Prospect

theory, one the various dominant theories in behavioral sciences, could be used to under-

stand consumers’ choices based on their actual behavior and their assessment of potential

gains and losses versus assessed levels of risk. Various cognitive heuristics such as the

one used in chapter 5 will also aid in understanding the role of consumers/prosumers

in the smart grid. This knowledge is expected to reshape the role of utility operators,
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renewable source integration, demand-response programs and incentive provisioning in

an effort to guide prosumers to energy consumption behaviors that are beneficial to

the system. Moreover, novel social-driven demand-response mechanisms could be de-

signed, which would exploit the impact of the social factor, both in the effectiveness of

demand-response mechanisms and in cooperative consumer/prosumer coalition forma-

tions by means of social norms and competition for social pressure. It is clear that the

confluence of multiple disciplines such as algorithm design, game theory, power systems,

economics, machine learning, and cognitive psychology is required.
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Appendix A

Training the Logistic Regression

models

For each consumer i, there is a training set Sitr consisting of K past load-reduction

suggestions and her/his responses to each,

Sitr = (ri1, yi1), (ri2, yi2), ..., (riK , yiK), (A.1)

where rij = (pij , d
′
ij) is the j-th suggestion to consumer i and yij is the corresponding

response, 1 (accept) or 0 (reject), depending on her/his choice.

One way to estimate the consumer weight vector wi = (wi,0, wi,p, wi,d′) is to follow the

Maximum-Likelihood principle and maximize the logarithm of the following likelihood

function with respect to wi,

P (yi|wi) =
K∏
j=1

Pi(C1|rij)yij (1− Pi(C1|rij))1−yij ,

with rij = (1, pij , d
′
ij) (a pseudo-attribute cij,0 = 1 is added), and yi = (yi1, . . . , yiK).

However, in order to prevent overfitting and improve the generalization of the learned

model, in practice we apply a regularization technique. Namely, we add a regulariza-

tion penalty λi
2 ||wi||2 on weights (L2-regularization), which places preference on smaller

values. This technique corresponds to imposing a Gaussian prior distribution on model

parameters wi [103], [104].
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Now, the aim of the training process is to find the weights wi that minimize the overall

error function

E(wi) = −lnP (yi|wi) +
λi
2
||wi||2

= −
K∑
j=1

[
yij · ln(Pi(C1|rij))

+ (1− yij) · ln(1− Pi(C1|rij))
]

+
λi
2
||wi||2, (A.2)

with Pi(C1|rij) = σ(wi · rij).

The gradient of the above overall error function (deviance plus a cost on the size of

attribute weights) (Eq. (A.2)) with respect to wi can be shown to be

∇E(wi) =
K∑
j=1

[Pi(C1|rij)− yij ]rij + λiwi. (A.3)

This gradient can be used by a gradient-descent algorithm1 to iteratively converge to

the optimum vector wi through

w
(τ+1)
i = w

(τ)
i − η∇E(wi) , (A.4)

where the step size (learning rate parameter) η determines the aggressiveness with which

the algorithm moves toward the minimum. Since the error function above is a convex

function [103, 104], the minimum is a global one. The regularization parameter λi is

selected so that the classification performance of the LR model in a validation dataset

is maximized (cross-validation technique) [103, 104].

1Gradient descent is a first-order iterative optimization algorithm. To find a local minimum of a
function using gradient descent, one takes steps proportional to the negative of the gradient (or of the
approximate gradient) of the function at the current point. If instead one takes steps proportional to
the positive of the gradient, one approaches a local maximum of that function; the procedure is then
known as gradient ascent[145].
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Appendix B

Training the Fast-and-Frugal

Trees

In order to create an FFT, one can, of course, test all possible orderings of attributes

and shapes of trees on a provided training dataset and optimize fitting performance

[110]. However, in the general case, this requires enormous computation if the number

of attributes is large. They argue that naive decision makers will basically have a good

feeling of how well each cue alone predicts the criterion (class label). Thus, they define

and use Diagnosticity and Validity1 of a cue as measures of goodness (or predictivity or

accuracy) to order the cues. Another measure of global goodness of an attribute that

could also be used for the ranking of attributes is Informedness or Youden’s J2. All these

metrics can be viewed as statistical measures of the performance (classification accuracy)

of a binary classification test that uses a single attribute as an indicator (predictor) to

determine the outcome (class). They are estimated using only counting and ratios.

Once cue validities/accuracies have been estimated, tree construction involves only a

few simple rules [110].

actual C1 actual C0

x ≥ Tx (predicted C1) αx βx
x < Tx (predicted C0) γx δx

Table B.1: Contigency table over an abstract attribute x.

1Diagnosticity is the average of sensitivity and specificity, while Validity is the average of positive
and negative validity (or predictive value) [110, 146, 147].

2Informedness or Youden’s J (J) is the sum of sensitivity and specificity minus 1. Youden’s J statistic
(also called Youden’s index) captures the performance of a binary classification test. It is also known as
deltap’ and generalizes from the binary/dichotomous to the multiclass case as Informedness. It quantifies
how informed a predictor (i.e., attribute) is for the specified condition (i.e., outcome or criterion). It
specifies the probability that a prediction/decision is informed in relation to the condition (versus chance
(i.e., random guess)), and takes into account all predictions [147–149].
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FFT construction: First, a four cell contingency table [150, 151] is constructed for

the consumer response (1 (accept, C1) or 0 (reject, C0)) over each attribute (along with

a classification threshold) using the training dataset Sitr. These tables summarize the

predictions (both correct and wrong) based on each cue for given classification thresholds

(split points) and can be used for the estimation of the aforementioned measures of cue

accuracy (i.e., diagnosticity, validity, informedness, etc.). They are expressed using raw

counts of the number of times each predicted class label is associated with each real class.

Each row of the table represents the instances in a predicted class while each column

represents the instances in an actual class. Table B.1 shows an example contingency

table over an abstract attribute x for given threshold Tx.

A simple rule for the selection of the classification threshold Tx is to pick that value (and

the corresponding inequality sign) that maximizes some measure of goodness of the cue

x. Here, the criterion we use for measuring the accuracy of a cue and judging whether

one attribute x (with classification threshold Tx) is better (i.e., more predictive, accurate

or informative) than another is Youden’s J. Its magnitude gives the probability of an

informed decision between the two classes C1, C0 based only on attribute x and given

threshold Tx; its value ranges from -1 to 1 (> 0 represents appropriate use of information,

0 represents chance-level performance, < 0 represents perverse use of information, and

1 indicates perfect prediction)[146, 149]. It is defined as Jx=TPRx-FPRx [146–149].

From the contingency table B.1, the proportion TPRx=αx/(αx+γx) is the true positive

rate (or sensitivity or recall or hit rate (HR)), i.e., the proportion of real positive (C1)

cases that are correctly predicted positive based only on cue x and threshold Tx. The

proportion FPRx=βx/(βx+ δx), which defines an error rate, is the false positive rate (or

fallout or false alarm rate (FAR)), i.e., the proportion of real negative (C0) cases that

are incorrectly predicted positive based only on x and Tx. Thus,

Jx = TPRx − FPRx =
αx

αx + γx
− βx
βx + δx

. (B.1)

The effectiveness (diagnostic power) of an FFT heuristic is determined by both the

TPR and the FPR likelihood ratios. Specifically, a high TPR is desired, as it means

accurate identification of positive (C1) cases. However, this benefit might be offset by

false positives that are triggered when negative (C0) cases are also identified as positive.

Using the index of performance J , the following simple algorithm for FFT construction

solves the problems of classification threshold (and inequality sign (of the corresponding

condition)) selection, cue order and exit location. It is the same one used for the con-

struction of FFTs in R (programming language and software environment) [152], and it

can be summarized in four steps:
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Fast-and-Frugal Tree construction algorithm

1. For each cue, select a classification threshold (and inequality sign) that maximizes

the difference between the TPR and FPR (i.e., the index J) of classifications of

all training instances based on that cue. If the attribute is numeric, the threshold

is a number. If the attribute is a factor, the threshold is one or more factor levels.

These thresholds are calculated completely independently of all other cues.

2. Rank cues in order of their highest TPR-FPR (J) value calculated in step 1.

3. Create all possible trees by varying the exit point at each level to a maximum of

5 levels.

4. Reduce the size of trees by removing lower levels containing less than 5% of the

dataset.

From the example FFT of Fig. 5.1a (section 5.5.2) and the above algorithm we deduce

that Jd′i > Jpi for optimal thresholds Td′i , Tpi (that maximize the difference TPR-FPR),

i.e., consumer i prioritizes the suggested (normalized) load reduction d′i over the reward

pi given for carrying the suggested task out.
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p ($) d̃ (%) Consumer 1’s response (A1) Consumer 2’s response (A2)

10 9 1 1

12 46 1 0

13 58 1 0

14 96 0 0

5 12 1 1

6 33 1 0

8 63 1 0

9 92 0 0

1 21 0 1

2 25 0 0

3 71 0 0

4 80 0 0

10.5 10 1 1

11 40 1 0

13.5 59 1 0

15 97 0 0

5.7 13 1 1

7 35 1 0

8.5 64 0 0

9.5 93 0 0

0.5 18 0 1

1.6 23 0 0

2.3 27 0 0

3.5 78 0 0

Table C.1: Example questionnaire and consumers’ responses.

121

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 15:32:08 EEST - 18.218.160.239



Appendix C. Building procedure details and performance analysis of the fitted LR and
FFT models of section 5.6 122

C1 C0

p1 ≥ Tp1 (predicted C1) 11 5

p1 < Tp1 (predicted C0) 0 8

Table C.2: Contingency table over cue p1.

C1 C0

d̃1 < Td̃1 (predicted C1) 11 6

d̃1 ≥ Td̃1 (predicted C0) 0 7

Table C.3: Contingency table over cue d̃1.

C1 C0

p2 ≤ Tp2 (predicted C1) 2 0

p2 > Tp2 (predicted C0) 4 18

Table C.4: Contingency table over cue p2.

C1 C0

d̃2 < Td̃2 (predicted C1) 6 0

d̃2 ≥ Td̃2 (predicted C0) 0 18

Table C.5: Contingency table over cue d̃2.

Appendix C

Building procedure details and

performance analysis of the fitted

LR and FFT models of section 5.6

Table C.1 depicts the data (sequence of offers and consumer responses) we used for

the creation of the synthetic training datasets S1
tr, S2

tr for the two consumers in the
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Specificity (%) Sensitivity (%) d-prime (D’) AUC

LRnr,1 100 91 3.109 0.955

LRr,1 100 91 3.109 0.95

FFT1 92 100 3.121 0.96

LRnr,2 100 100 3.296 1

LRr,2 100 83 2.877 0.91

FFT2 100 100 3.296 1

Table C.6: Performance statistics of the fitted LR and FFT models.
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Figure C.1: Classification tables for (a) the LR model and (b) the regularized LR
model of consumer 1.

numerical example of section 5.6. These datasets were used for the building of the

individual consumer LR models and FFTs.

For the building of the two LR models of section 5.6 we followed the training process

of Appendix A, while for the construction of the consumer FFTs we applied the simple

algorithm of Appendix B). The regularization parameters that maximize the classifica-

tion performance of the two LR models are λ1 = 0.0289 and λ2 = 0.0321. We got two

FFTs for consumer 1 and one single FFT for consumer 2. Here, we kept only one tree

for consumer 2; namely, the one that has the maximum difference TPR-FPR. The clas-

sification thresholds that maximize the difference between the TPR and FPR (i.e., the

index J) of classifications of all data based on each cue p1, d̃1, p2, and d̃2 are Tp1 = 4.32,

Td̃1 = 69.2%, Tp2 = 1.26 and Td̃2 = 22.89%, respectively. The contingency tables over

cues p1, d̃1, p2, d̃2 and for the above thresholds Tp1 , Td̃1 , Tp2 and Td̃2 are depicted in Ta-

bles C.2, C.3, C.4, C.5. Furthermore, for the same thresholds it is Jp1=0.62, Jd̃1=0.54,

Jp2=0.33, and Jd̃2=1.

After we have derived the LR and FFT models for the two consumers in section 5.6, we

would like to know how well the model decisions fit the decisions made by the consumers.
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Figure C.2: Classification tables for (a) the LR model and (b) the regularized LR
model of consumer 2.
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Figure C.3: Classification tables for (a) the FFT of consumer 1, and (b) the FFT of
consumer 2.

There is a series of performance statistics that can be calculated and checked for that

purpose. First, we construct a classification table for each LR (both regularized (LRr)

and non-regularized (LRnr)
1) and FFT model. These tables, which are depicted in Fig.

C.1, C.2, C.3, show how each model’s decisions compare to the truth. Entries on the

main diagonal (Cor. Rej. and Hit) correspond to correct decisions, while the other

entries (Miss and False Al.) correspond to incorrect decisions.

As we can see, the obtained models performed exceptionally well: the LRnr, LRr and

FFT models of consumer 1, and the LRr model of consumer 2 made correct decisions in

23 out of all 24 cases (96% correct). The FFT and LRnr models of consumer 2 decided

1Here, we also provide a performance analysis of the non-regularized LR model in order to em-
phasize the benefits of regularization (overfitting avoidance). The weights (regression coefficients)
of the non-regularized LR models for the two consumers are wnr

1 = (1.286, 1.44,−0.243), wnr
2 =

(330.05,−15.91,−14.06).
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Figure C.4: Performance comparison of the FFT and LR models of (a) consumer 1
and (b) consumer 2.

correctly in all 24 cases (100% correct). Additional performance statistics, including

Specificity (=1-FPR), Sensitivity (=TPR), d-prime (D’) (=Z(TPR)-Z(FPR)) 2, and

AUC (=(TPR-FPR+1)/2) (area under the curve of ROC (described below)) can be

estimated. These statistics show the cumulative performance of the models. Table C.6

shows their estimated values for all fitted models. We observe that the LRnr and FFT

models of consumer 2 are classification tests with perfect fitting accuracy.

Finally, Fig. C.4a, C.4b show two ROC 3 (Receiver Operating Characteristic) curves

which compare the performance of the resulting models (FFTs (in green), LRnr (in

purple) and LRr (in orange)). Specifically, Fig. C.4a shows that the performance

(FARFFT1 , HRFFT1)=(0.08, 1) (i.e., JFFT1=0.92) of the FFT of consumer 1 is com-

parable to that of the LRnr and LRr models of the same consumer with (FARLRnr,1 ,

HRLRnr,1)=(FARLRr,1 , HRLRr,1)=(0,0.91) (i.e., JLRnr,2=JLRr,1=0.91). From Fig. C.4b,

we observe that the LRnr and FFT models built for consumer 2 have identical per-

formance, (FARFFT2 , HRFFT2)=(FARLRnr,2 , HRLRnr,2)=(0,1) (i.e., JFFT2 = JLRnr,2=1

(perfect fit)), and that they outperform the LRr model of the same consumer with

(FARLRr,2 , HRLRr,2)=(0,0.83) (i.e., JLRr,2=0.83).

2Function Z(p), p ∈ [0, 1], is the inverse of the cumulative distribution function of the Gaussian
distribution. Here, we adjust any extreme values (i.e., 0 or 1) of TPRs and FPRs, to prevent infinite
values or indeterminate forms of D’, according to an approach presented in [153]. Namely, rates of 0 are
replaced with 0.5/n and rates of 1 are replaced with (n − 0.5)/n, where n is the number of positive or
negative training instances.

3A ROC curve shows the ability of a quantitative diagnostic test to correctly classify subjects as the
decision threshold is varied. A diagnostic test able to perfectly identify subjects with and without the
positive condition (here, C1) produces a curve that passes through the upper left corner (0, 1) of the
plot. A diagnostic test with no ability to discriminate better than chance, produces a diagonal line from
the origin (0, 0) to the top right corner (1, 1) of the plot. Most tests lie somewhere in-between these
extremes [154].
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