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Περίληψη

Η διπλωματική αυτή αποσκοπεί στην έρευνα για μείωση της ενέργειας ενώς δικτύου ασύρμα-

των αισθητήρων, με πειραματισμό στον αριθμό των βιτ που χρησιμοποιούνται κατά την διάρκεια

κβαντοποίησης του σήματος. Οι βασικές διεργασίες κάθε αισθητήρα σε ένα τέτοιο δίκτυο είναι η

δειγματοληψία του φαινομένου, η μετατροπή του αναλογικού σήματος σε ψηφιακό και έπειτα η απο-

στολή του σήματος στο κέντρο ελέγχου. Το κέντρο ελέγχου θεωρούμε ότι συλλέγει τα δεδομένα

από τους αισθητήρες και κάνει μια εκτίμηση του αρχικού σήματος με την μέθοδο weighted least
square, προσπαθώντας να μειώσει την κατανάλωση ενέργειας. Στην προσπάθεια αυτή, δημιουργο-
ύμε ένα πρόβλημα αποτελούμενο από την συνάρτιση μείωσης της ενέργειας η οποία περιορίζεται από

το μοντέλο παραμόρφωσης του σήματος μέσο του σφάλματος ελαχίστων τετραγώννων. Το δίκτυο

ασύρματων αισθητήρων λειτουργεί με βάση το πρωτόκολο sub-1GHz IEEE 802.11ah MAC/PHY
και τα αποτελέσματα που προκύπτουν μπορούν να χρησιμοποιθούν στην πράξη.
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Abstract

In this thesis we research the effect of bit’s number during quantization on the power
consumption of a wireless sensor network (WSN). We assume that in our WSN each sensor
makes observations, converts them from analog to digital and transmits them to a fusion center
(FC). The FC collects these data and makes an estimation with the linear weighted least square
(WLS) algorithm to identify the observations with minor power consumption. We consider a
power minimization object function constrained by MSE distortion model correspond it to a mixed
integer nonlinear program (MINLP). The WSN operates under the sub-1GHz IEEE 802.11ah
MAC/PHY standards and our outcomes could be useful for it.
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Chapter 1

Theoretical Framework

1.1 Introduction

In recent years, wireless sensor networks (WSN) present a high interest research field, since their

implementation increases steadily. The process in general is as follows: sensors measure a quantity

of interest which corresponds to an analog signal, transform it to digital and transmit it wireless to the

fusion center (FC) for additional processing and eventually to estimate the desire signal. Some of the

areas where WSNs have implementation are weather forecast (e.g. temperature measurements), medical

(e.g. heartbeats measurements), safety systems for fire detection (e.g. detecting presence of smoke) and

generally to Internet of Things (IoT) or applications.

To begin with, possibly the parameter which plays the most significant role in the function of a WSN

is power consumption, specifically when we have a significant number of sensors or currently where the

application of WSNs is on augmentation. For that reason, trying to minimize the power consumption

became a high interest as well. Nevertheless, the power is promptly related with the accuracy of the

estimation since lower power transmission increase the probability of packet loss. This point is what

motivates this paper and consequently to analyze in detail the operation of a WSN. Power optimization

based on the different features of a WSN and especially on the IEEE 802.11ah standard like we do so,

will bring about further development on this standard and to the wider technology of WSNs.

Each sensor makes observations (sampling procedure) to obtain an analog signal. To transmit this

signal, it is necessary to quantize it. For quantization, we have to select the number of bits that will be

used. If we consider that these values will be sent to the FC and that the number of the bits controls

the size of each measurement (thus the quality), we conclude that this number will play a significant

role in our system. After conversion the values will be packed and sent under a path loss channel to the

FC. When the FC receives the values it is time to make an estimation for these data. In addition, we

assume that our data is uncorrelated and we cannot use smart techniques for correlated data estimation

which decrease the estimation error. We approach the problem with a linear weighted least square (WLS)

algorithm, trying to have an acceptable mean square error (MSE). It is clear that the MSE is affected by

the quality and the number of the received observations, which have to deal with the number of bits per

sample. However, the path loss channel we assumed before has a significant effect on measurements’

quality as well. Good quality of observations makes the estimation easier but each sensor will send fewer

observations. Summarizing, we combine all the above to find an ideal trade-off for the bits of quantization

and power consumption.
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Figure 1.1: The figure indicates our system model where the nodes are randomly distributed in a specific area. The data are
transmitted after sampling using the IEEE 802.11ah MAC to contend for channel access.

Related Work. Several researchers have investigated problems related to power consumption of

WSNs. Nevertheless, all of them differ in terms of the approach they followed. In [3] the author considered

a path loss channel with a mean value and calculates the number of the observation which arrives to the

FC by the outage probability, however, the randomness of the channel gain is not taking into account. In

addition, a relay node is involved . In [4] the authors consider analog signal for transmission and they

incorporate a correlated data case, where smart practices can be used for greater estimation.

We present a scenario where the data among the sensors are uncorrelated and there is no presence of

any relay. Moreover, we consider the randomness of the channel gain throughout each communication

round and the bit error rate (BER) of the received data on the FC. Hopefully, to make our effort more

realistic with practicality.

1.2 System Model

The observations from each sensor are modeled with a vector θi = [θ1 . . . θk]. Note that data among

sensors are uncorrelated because the sensors are located at large physical distances [3].

Each sensor collects several observations (samples) during a period of T seconds that depends on the

monitored phenomenon [3]. Because of the AWGN sampling noise, the signal takes the form si = θi + zi

with zi ∼ N(0, σ2zi) and this is the signal which is led to quantizer. After quantizing we have this signal:

yi = θi + zi + qi (1.1)

Quantization adds noise qi on each sensor independently, similar to the sampling noise.

For a quantization with Ri bits/sample, the variance of the quantization noise (or the distortion), under

the use of a uniform probabilistic quantizer Q(·) [5] at each sensor is :

σ2qi =
A2

(2Ri + 1)2
(1.2)

and A is the amplitude of the initial analog signal.
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Sensors collects a number of observations K (KRi bits). Depending on the used MCS, we have a

number of bitsRi bits/symbol parts to it. This parameter takes into account the use of a capacity-achieving

AWGN code and the mapping of the quantized digital samples to digital baseband symbols after channel

coding and digital modulation, is denoted as follows [3]:

xdi = CC − PSK(yi) (1.3)

We assume a flat quasi-static Rayleigh fading channel with a gain factor h. Similarly, Pi is the

transmitted power at sensor i. Considering that xdi is the signal lead to transmission we take:

yi,fc =
√
Pihi,fcxdi + wfc (1.4)

where wfc ∼ N(0, σ2) is the AWGN caused of the signal transmission.

IEEE 802.11ah. To transmit the digital packet to the FC each node must access the channel. It does

so with the IEEE 802.11ah [2], for which we model its core PHY/MAC functionalities in our overall

system model. Regarding the 802.11ah PHY features, it uses the lower MCSs of IEEE 802.11ac. BPSK

with code rate 1
2 was adopted to ensure long range and this was the selected to be the value for Ri [3]. At

the MAC the standard uses the distributed coordination function (DCF) for contenting for channel access

[2].

Figure 1.2: The figure shows our "mathematical" system model described in section II.

1.3 Distortion and Other Parameters

1.3.1 Signal to Noise Ratio and Bit Error Rate

Signal to noise ratio (SNR) is the power of the signal over the power of the noise. We control this ratio in

our effort to transmit successfully. This is the first constraint for our system and there will be a threshold

to obtain a specified SNR.

Another interesting ratio for our scope is bit error rate (BER) which is the proportion of the number of

wrong bits we finally receive to the FC over the total number of received bits. We use this parameter for

identifying the number of the correct observations we receive. The number of observations is calculated

below and it is included in the second constraint of our system.
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It is quite evident, that any system where the power of the signal or bits distortion are involved, aims

to high SNR and low BER for achieving undistorted and correct data. High SNR indicates that a signal is

powerful compared with the power of noise, thus it arrives to its destination with the absent of distortion

and without incorrectly bits, which corresponds to low BER. It is obvious that SNR and BER are inversely

quantities and in our attempt BER is calculated using SNR.

1.3.2 MSE and System Constraints

As we have already mentioned we will try to estimate the data sent from each sensor to the FC. For a start

we will try to estimate the transmitted data from equation (4) which has to do with the transmission of the

signal. Mind that these are the data for decoding. By WLS we take [1]:

ŷi = (cHΣvic)
−1cHΣvi

−1yi (1.5)

where Σvi is the autocorrelation matrix. Point out that this matrix is diagonal and zero elsewhere. Because

both equations (1) and (4) have not got dependent elements and all the noise factors is Gaussian.

The accuracy of each estimator can be measured using the MSE variable. To calculate MSE we have

to calculate the error covariance matrix and from [1] we take:

Σe,i = (cHΣvic)
−1 (1.6)

Σe,i is also diagonal and we can proof that each element of the diagonal is:

[Σe,i]i,i =
σ2

Pih2i,fc
(1.7)

where σ2

Pih2i,fc
is equal to 1/SNR and we will constraint it to have an acceptable distortion of our signal.

The second constraint of our model derives from applying the above process to the equation (1). The

elements of the diagonal error’s covariance matrix, alike equation (12) in [3] is :

MSE(i) =
σ2zi + σ2qi
Mrec(i)

(1.8)

where Mrec(i) is the number of the correct observations received to the FC and we model it in the next

subsection.

Note that the number of bits per observation Ri has a significant impact on the MSE. If we choose

to quantize our signal with little bits, the sensor will send a lot of observations which decreases the

MSE, however, it is possible that these observations do not correspond to the original, because during the

procedure of quantization the analog signal has been digitalized with few bits, thus significant information

may have been lost. On the other hand, if we process the signal with a big number of bits, the quality of

the observations will be significant, although, provided that the transmission bits are constant, it will be

sent a little number of observations and the MSE will be increased. Therefore, a trade-off has to be found

for satisfy both cases.

1.3.3 Number of Observations

We have already said that BER will play significant role to our system model. Likewise, each observation

is constituted by a number of bits depending on the number chosen during quantization Ri. One incorrect
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bit is enough to make the observation false and useless. Knowing the proportional of the wrong bits

over the correct bits (BER), we can find the number of the false bits we have in a codeword. Now, if we

consider that the wrong bits is uniformly and remotely to one another distributed in the codeword , we

can conclude that the number of wrong bits is BERRi. Note that if there are wrong bits beside to one

another, it is likely to have more than one wrong bit in an observation, thus less than BERRi useless bits.

However, the distribution we mentioned before is the worst scenario and we proceed with that. Another

parameter we need for the number of observations is throughput. A sensor operating under the DCF

mode in IEEE 802.11ah will share the channel with the remaining nodes [3]. Based in the throughput

model in [6] we have SDCF (K,Ri, T,N) where Ri is the bits per symbol MCS uses, K is the number of

packets produces every period T and N is the number of nodes. This model considers only the impact of

collisions in the throughput [3].What we do is to take into account the distortion of the signal, caused

during transmission. We can present know the observations’ number:

Mrec(i) = SDCF (K,Ri, T,N)(1−BER ∗Ri)
T

Ri
(1.9)

where (1−BER ∗Ri) is the proportion of the correct bits, multiplied by the period T which the data are

produced and finally divide all these bits by Ri which the bits per sample.

Alternative-Theoretical Model.The above formula is a variation of the equation (7) in [3] where the

outage probability Pout is enrolled instead of BER. Pout indicates the failure probability of the data to

be transmitted on the FC and the only difference is that (1 − BER ∗ Ri) is substituted by (1 − Pout).

Additionally, we present a comparison of these two methods to find out the derived differences on power

consumption providing that our model refers to a random gain channel, whereas the (′P ′out model to the

mean value of the channel which render it to the theoretical estimation.

1.4 The Power Optimization Problem

Our attempt is characterized by an object function and its goal is to minimize the power consumption on

each sensor. We are trying to reach an optimization solution taking into consideration the two constrains

presented on previous section. The presence of these two constraints, exist to ensure an acceptable

quality to the received data. Dtr is the threshold for the acceptable distortion caused by transmission

and Dsq is the equivalent caused by sampling and quantization. P = [P1 . . . Pn] is the vector for the

power consumption on each sensor i which is also constrained {∀iPi ≤ PMAX}. We approach the

optimal solution by experimentation on the values of the vector P and the number of bits per sample Ri.

Eventually, the emerging form is;

min
P,Ri

N∑
i=1

Pi

s.t.
1

SNR
≤ Dtr (1.10)

and
N∑
i=1

Ri
(σ2z + A2

(2Ri+1)2
)

SDCF (K,Ri, T,N)(1−BERRi)T
≤ Dsq (1.11)

Point out that Ri looks to has a significant impact on (1.11) and this is what we try to find out.
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Chapter 2

Simulation and Conclusion

2.1 Simulation Results

[The graphs are shown after Conclusion section]

The simulation parameters were set as described below. The variances involved we set σ2 = 10−3 and

σ2z = 10−3, the amplitude of quantizationA = 1,the throughput assumed to be constant SDCF = 100kbps

and the sampling period T = 1s. The two thresholds for transmission and sampling-quantizing are set to

Dsq = 0.5 and Dtr = 10−6, while the allowable maximum power PMAX = 10. We present results for

vector P and the number of bits per sample Ri. The BPSK modulation uses 1 bits per symbol, Ri = 1,

and a coding rate of 1
2 . BER is calculated using the coding rate, the erfc(·) function and the SNR, more

specifically BER = 1
2erfc(

√
SNR
2 ).

To begin with, figure (a) illustrates the range of the acceptable bits per sample which can be used for

quantization, under a specific average channel gain. Equivalent, that there is an upper and a lower bound for

the quantization’s bits and using a value out of these bounds the problem cannot be solved. Which means

that we have not got accurate estimation. It is obvious, that once the sampling-quantization threshold

increases the range is increased. This performance is reasonable because greatest sampling-quantization

threshold denotes that our system is able to accept lower quality observations and consequently fewer

bits can be matched to an observation. Furthermore, highest threshold indicates that fewer observations

can be accepted, then more bits can be used for a sample. Eventually, we can conclude that there is an

optimized value (6 bits/sample), which may derives from the fact that this value guarantees the need for

a big number of observations which are of high quality too. Otherwise, the result will be either a lower

number of observations with high quality or the samples will have poor quality and the number of them

will be significant. However, both cases have disadvantages, for the former such a high quality is not

necessary and for the latter may fewer samples can be acceptable as well.

In figure (b) we make a comparison of our system with the theoretical one in [3]. The system in [3],

as we described above, calculates the number of observations using the outage probability instead of BER

in our approach. In addition, channel’s randomness is not taking into account and the outage probability

is calculated using only the average channel gain. The problem formulation in this paper is novel since it

includes the BER for counting the observations and the other one the outage probability. Thus we assume

that the former system is more specific because it focuses to the received packet may be or codeword at

the FC, while the latter to the failure arrival of the packet may be or codeword. Besides, on our try we
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include the randomness of the channel gain. This figure presents the percentage (Fail Rate) which our

system demands extra power compared to the theoretical outcome, for different means and variances of

the channel gain. When the problem is not solved, accounting as a failure, it means that the desired MSE

cannot be guaranteed for a specific random channel, however, it can be guaranteed for the theoretical

one, which uses the mean value of the channel. For instance, throughout a round of communication, it is

possible that the sensors will achieve a channel gain pretty worst compared with the average channel gain.

Consequently, the power consumption calculated for the mean value, the theoretical outcome, will not be

enough for the "worst" channel and we characterize this case as a failure. Finally, it is quite evident, that

both two models present to have different power consumptions and fail rate takes notable prices, which

means that channel’s randomness is a significant parameter.

Figure (c) depicts two graphs where the impact of the first constraint on power consumption is

examined under a specified average channel gain (E[h2] = 0.01). The upper graph shows the curves

for low threshold values and the lower graph for high threshold values. Definitely, as the SNR demand

is getting higher (low thresholds) the power consumption increases as well. However, the curves for

each threshold show that the power consumption has not got significant fluctuations among different

bits, indicating that the second constraint is satisfied because high SNR corresponds to a low BER.

Furthermore, we can conclude that when the BER reaches values very close to zero, it is needless to

demand higher SNR because the distortion of the transmitted data will not be effected and the only result

will be higher power consumption. In contrast, for high thresholds (low SNR demand) the curves has

significant variances among different number of bits but they are overlapped, which means that the SNR

constraint does not effects our system. In general, the first constraint (1.10) give us the ability to define

the SNR value.

Graph (d) illustrates the power consumption variance among different quantization bit number over

the optimized value chosen, for different average channel gains and sampling-quantizing thresholds. It is

quite evident, that the rate is getting higher when the average channel gain decreases and the sampling-

quantizing threshold increases. Thus, when the average channel gain is low or our system constraints are

tolerant, the right selection of bits’ number is necessary.

On topside of figure (e) is examined the power consumption for different throughput values and below

for different periods. Notice, that both 2 graphs have the same look for relative values, for example

T = 1.3s and SDCF = 130kbps etc. , because both of them has the same impact on the denominator of

(1.11). Throughput increase, means that more data or observations can be transmitted from the sensors

to FC, thus the estimation will be done with greater observations and it will be more accurate. As well,

further data for transmission, consequent less competitiveness among sensors, which means less power

consumption for data transmission. For period, we can conclude that while the period is getting higher,

each sensor communicates with the FC more rarely than it used to, hence the power consumption is

decreased.

In graph (f) it is evident the average number of bits selected with the proposed estimation algorithm for

optimizing the power consumption. We can say that while the variance of the channel gain increases, our

algorithm demands greater quality on each observation rather a big number of observations. Considering

that our throughput is constant, if the algorithm selects a big number of bits for quantization, it conse-

quences fewer observations for transmission in the channel. However, the results using the theoretical

algorithm are stable for all variances and the average channel gain shown in the graph.
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Graph (g) shows the power consumption of a specified average channel gain, considering the random-

ness of the channel and different population nodes. There is also presented the results that the algorithm in

[3] gives. It is obvious, that the theoretical approach does not match with the one proposed here, because

it does not take into account channel’s randomness. Furthermore, we can see that the theoretical algorithm,

sometimes estimates more and sometimes less power than the proposed algorithm. This means that if

we use the theoretical algorithm there will be cases that we spend more power than our system demands

(for the former) and sometimes the power estimated is not enough for our system’s needs (for the latter).

Additionally, while the population of our sensors increases the power performance of our system looks to

increase linearly, instead of the theoretical one which increases exponentially. Eventually, it is shown that

while the randomness of our channel gain increases the power of our system decreases and the pace of

reduction is greater for higher number of nodes.

Graph (h) illustrates the fail rate introduced above for different number of nodes. It is evident, that

except of the case where the average channel gain is 1 and the performance of fail rate is not stable,

we have an increase of the fail rate while the population and the average channel gain is getting higher.

Besides, thinking of the graph’s (g) concludes where we said that the power consumption will be either

unneeded or lacking for our system’s needs, we can infer that if we subtract each fail rate from 100 we

have the rate where the system needs less power than the estimated in the theoretical approach, which is

the opposite of the fail rate.
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2.2 Conclusion

In this paper, we present an optimization problem for minimizing the power consumption of an IEEE

802.11ah WSN which focuses on the bits’ number using during quantization. We attempt to estimate the

measure data of the sensors with power efficiency and considering the randomness of the channel gain

throughout each communication round of the sensors with the fusion center. The estimation is based on

the WLS algorithm and the accuracy is succeed using the MSE. The simulation results, indicate that the

number of the quantization bits has a great impact on the power consumption of the WSN and a specified

value can be chosen for the individual average channel gains. Furthermore, another important factor which

has a significant impact on power consumption and makes our attempt more realistic is the randomness of

the channel gain.
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