
 

UNIVERSITY OF THESSALY 

SCHOOL OF ENGINEERING 

DEPARTMENT OF MECHANICAL ENGINEERING  

 

Diploma Thesis 

 

DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA 

PROCESSING AND VISUALIZATION FOR TRAVELLING 

SALESMAN PROBLEMS 

by 

PANAGIOTIS VRAKIDIS 

 

   Submitted to fulfill part of the requirements 

        for the degree of Diploma in Mechanical Engineering 

 

2016



  

i 

 

 

 

 

 

 

 

 

© 2016 Panagiotis Vrakidis 

 

 

 

The approval of the thesis by the Department of Mechanical Engineering, School of 

Engineering, University of Thessaly does not imply the acceptance of the author’s opinions 

(Law 5343/32 Article 202 § 2). 

 



  

ii 

 

Approved by the Members of the Examination Committee: 

 

 

First Examiner  Dr. Georgios K.D. Saharidis 

(Supervisor) Assistant Professor, Department of Mechanical Engineering, 
University of Thessaly 

 

 

 

Second Examiner Dr. Dimitris Pantelis 

Associate Professor, Department of Mechanical Engineering, 
University of Thessaly 

 

 

 

Third Examiner Dr. George Liberopoulos 

Professor, Department of Mechanical Engineering, University 
of Thessaly 

 

 

 

 

 

 

 

 



  

iii 

 

Acknowledgements 

First of all, I would like to thank my supervisor Assistant Professor Dr. Georgios 

K.D. Saharidis, for the ideal cooperation as well as his valuable guidance during my 

research for this thesis. I would also like to thank Dimitris Greasidis for the 

development of the Python code for the calculation of the shortest path distances 

between nodes. Furthermore, I would like to thank my colleagues Anastasios 

Orfanidis, Afroditi Temourtzidou and Dimitris Rizopoulos for their support and 

advice throughout the academic period. 

Above all, I am grateful to my mother, Eleni Kappa, for all the sacrifices she has 

made in order for me to be able to follow my dreams and achieve my goals. 

Panagiotis Vrakidis 

 

 

 

 

 

 

 

 

  

 

 

 



  

iv 

 

DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT 

DATA PROCESSING AND VISUALIZATION FOR 

TRAVELLING SALESMAN PROBLEMS  

PANAGIOTIS VRAKIDIS 

University of Thessaly, Department of Mechanical Engineering, 2016 

 

Supervisor: Dr. Georgios K.D. Saharidis, Assistant Professor in Operations Research 

Methods in Industrial Management 

 

Summary 

      Transportation has always been important for our lives. Nowadays, there are numerous 

companies, which provide daily delivery services to people and have to organize their 

delivery strategy in advance, in order to maximize their profit as well as minimizing the total 

emissions for environmental purposes. 

      Finding the optimal tour, contributes to all the above and in this study we will form a 

complete application, which will enable the user to solve real-life travelling salesman 

problems. This will be able by only possessing the coordinates of all the nodes in the 

problem. At first, a Python code will be introduced that will calculate the shortest path 

distances between the nodes. Furthermore, a TSP algorithm will be constructed in the 

language of C++ and then simulated with the utilization of CPLEX Optimization Studio. 

Finally, a procedure considering the visualization of the results on the OpenStreetMap 

through the QGIS platform will be analyzed.  

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

v 

 

Table of Contents 

Table of Contents ...................................................................................................................... v 

List of Tables .......................................................................................................................... viii 

List of Equations ...................................................................................................................... ix 

List of Figures ........................................................................................................................... x 

Acronyms ................................................................................................................................ xii 

Chapter 1: Vehicle Routing and the Travelling Salesman Problem .......................................... 1 

1.1 Definition of the problem ................................................................................................ 1 

1.2 Historical facts ................................................................................................................. 1 

1.3 Complexity ...................................................................................................................... 2 

1.4 Distinctive cases .............................................................................................................. 2 

1.5 Applications ..................................................................................................................... 3 

Chapter 2: Shortest Path using Google’s API............................................................................ 4 

2.1 Google API for shortest path distances ........................................................................... 4 

2.1.1 Distances ................................................................................................................... 4 

2.1.2 Google maps distance matrix API ............................................................................ 4 

2.2 Python .............................................................................................................................. 5 

2.2.1 Functionality of code ................................................................................................ 5 

2.2.2 Python code .............................................................................................................. 5 

Chapter 3: Mathematical Model ................................................................................................ 9 

3.1 Problem description ......................................................................................................... 9 

3.2 The TSP mathematical model .......................................................................................... 9 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

vi 

 

3.3 Coding of TSP ............................................................................................................... 12 

3.3.1 Modifications for two different approaches of the same problem .......................... 12 

3.3.2 Fixed-Matrix Code ................................................................................................. 12 

3.3.3 Sub-Matrix Code .................................................................................................... 18 

Chapter 4: Visualization Process ............................................................................................. 24 

4.1 The visualization approach ............................................................................................ 24 

4.1.1 OpenStreetMap ....................................................................................................... 24 

4.1.2 QGIS ....................................................................................................................... 25 

4.2 OSM data ....................................................................................................................... 27 

4.2.1 Overpass turbo ........................................................................................................ 27 

4.2.2 Code for road network ............................................................................................ 28 

4.2.3 Extraction of data.................................................................................................... 29 

4.3 Editing with QGIS ......................................................................................................... 30 

4.3.1 A two-node example ............................................................................................... 30 

4.3.2 Road-network data through QGIS .......................................................................... 31 

4.3.3 Depiction of the two nodes ..................................................................................... 32 

4.3.4 Shortest path via QGIS ........................................................................................... 34 

Chapter 5: Application of the TSP Codes for a Real-Life Instance ........................................ 37 

5.1 The real-life problem for the city of Volos .................................................................... 37 

5.2 Simulation and results ................................................................................................... 38 

5.2.1 Simulation ............................................................................................................... 38 

5.2.2 Results .................................................................................................................... 39 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

vii 

 

5.2.3 Results of the “Fixed-Matrix Code” for 30 nodes .................................................. 39 

5.2.4 Results of the “Sub-Matrix Code” for 20 nodes ..................................................... 42 

Chapter 6: Conclusions and Future Work Recommendations ................................................. 46 

6.1 Comparison of the two codes ........................................................................................ 46 

6.2 Discussion of the results ................................................................................................ 46 

6.3 Future work recommendations ...................................................................................... 47 

References ............................................................................................................................... 48 

Appendix ................................................................................................................................. 49 

A. Data for “Fixed-Matrix Code” example ......................................................................... 49 

B. Codes’ results .................................................................................................................. 50 

“Fixed-Matrix Code” results ........................................................................................... 50 

“Sub-Matrix Code” results .............................................................................................. 51 

Application’s Manual .............................................................................................................. 53 

 

 

 

 

 

 

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

viii 

 

List of Tables 

Table 1: Optimal routes for “Fixed-Matrix Code” example .................................................... 40 

Table 2: Order of visit for each node in the “Fixed-Matrix Code” example ........................... 41 

Table 3: Optimal routes for “Sub-Matrix Code” example ...................................................... 44 

Table 4: Order of visit for each note in the “Sub-Matrix Code” example ............................... 44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

ix 

 

List of Equations 

(1) ........................................................................................................................................... 10 

(2) ........................................................................................................................................... 10 

(3) ........................................................................................................................................... 10 

(4) ........................................................................................................................................... 10 

(5) ........................................................................................................................................... 10 

(5.1) ........................................................................................................................................ 10 

(5.2) ........................................................................................................................................ 10 

(6) ........................................................................................................................................... 11 

(7) ........................................................................................................................................... 11 

(8) ........................................................................................................................................... 11 

(9) ........................................................................................................................................... 11 

 

 

 

 

 

 

 

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

x 

 

List of Figures 

Fig. 1: OpenStreetMap platform .............................................................................................. 24 

Fig. 2: Quantum QGIS 2.14 interface ..................................................................................... 25 

Fig. 3: OpenLayersPlugin installation ..................................................................................... 26 

Fig. 4: OSM through QGIS ..................................................................................................... 26 

Fig. 5: City of Volos in the interface of Overpass turbo ......................................................... 27 

Fig. 6: Volos’ bbox and query results ..................................................................................... 29 

Fig. 7: Extraction of road-network data as “geoJSON” .......................................................... 30 

Fig. 8: Road-network data selection ........................................................................................ 31 

Fig. 9: Depiction of the road-network ..................................................................................... 31 

Fig. 10: Microsoft Excel file with the two nodes .................................................................... 32 

Fig. 11: Selection of CSV file ................................................................................................. 32 

Fig. 12: Selection of coordinates’ reference system ................................................................ 33 

Fig. 13: Nodes in the road-network of Volos .......................................................................... 34 

Fig. 14: Road graph configuration ........................................................................................... 35 

Fig. 15: Shortest path tool’s result ........................................................................................... 35 

Fig. 16: Save as shapefile ........................................................................................................ 36 

Fig. 17: Save vector layer shapefile ........................................................................................ 36 

Fig. 18: Clientele of “Geniki Taxidromiki”............................................................................. 37 

Fig. 19: The 30 nodes of the “Fixed-Matrix Code” example .................................................. 39 

Fig. 20: Visualization of the “Fixed-Matrix Code” example’s optimal solution .................... 42 

Fig. 21: The 20 nodes of the “Sub-Matrix Code” example ..................................................... 43 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

xi 

 

Fig. 22: Visualization of the “Sub-Matrix Code” example’s optimal solution ....................... 45 

Fig. 23: Shortest path distances for “Fixed-Matrix Code” example ........................................ 49 

Fig. 24: Optimal solution value for the “Fixed-Matrix Code” example .................................. 50 

Fig. 25: Optimal routes for the “Fixed-Matrix Code” example............................................... 50 

Fig. 26: Optimal order of visit for the “Fixed-Matrix Code” example .................................... 51 

Fig. 27: Optimal solution value for the “Sub-Matrix Code” example ..................................... 51 

Fig. 28: Optimal routes for the “Sub-Matrix Code” example ................................................. 52 

Fig. 29: Optimal order of visit for the “Sub-Matrix Code” example ....................................... 52 

Fig. 30: Python folder .............................................................................................................. 53 

Fig. 31: Shortest path distance matrix ..................................................................................... 54 

Fig. 32: Modifications in Microsoft Excel .............................................................................. 55 

 

 

 

 

 

 

 

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

xii 

 

Acronyms 

API Application Programming Interface 

CSV Comma Separated Variable 

GPS Global Positioning System 

JSON JavaScript Object Notation 

NP Non-deterministic Polynomial-time 

OSM OpenStreetMap 

QGIS Quantum Geographic Information System 

UK United Kingdom 

UTF Universal Transformation Format 

WGS World Geodetic System 

XML Extensible Markup Language 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

1 

 

Chapter 1: Vehicle Routing and the Travelling 

Salesman Problem 

 

 

1.1 Definition of the problem 

  The Travelling Salesman Problem (TSP) is the most common problem in the field of 

Operational Research. However, due to the fact that it is considered to be groundwork for 

vehicle routing, the approach of this problem can be very challenging. In order to understand 

the nature of this problem we should first get acquainted with its data. A graph, G, that 

consists of a set of vertices, V, as well as a set of edges, E, is necessary in order for the 

problem to have substance. Cij is the result of the vehicle travelling along arc (i,j) and refers 

to the cost of the route. Given the above information, a TSP’s solution should return the 

Hamiltonian Cycle of G with the minimum total cost (1). By mentioning the term 

Hamiltonian Cycle, we refer to the cycle that is created when each node in a graph is visited 

exactly once. To sum it up, the goal is to obtain the optimal tour for each problem. 

 

1.2 Historical facts 

The first recorded mathematical formulation of the TSP dates back in the 1800s and 

was accomplished by the Irish mathematician W.R. Hamilton and the British mathematician 

Thomas Kirkman. As far as the general form of the travelling salesman problem is concerned, 

it was studied in the 1930s in Vienna, by mathematician Karl Menger and his colleagues (2). 

The name travelling salesman problem was introduced by Hassler Whitney at Princeton and 

was officially published in the 1940s. In addition, during the 1970s Padberg and Rinaldi 

managed to solve examples with up to 2392 cities, using cutting planes and branch and 

bound.  The above was considered to be great progress, but as the research proceeded, we are 

now able to confront instances with millions of cities that produce a very small optimality gap 

in the solution-tour. 

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

2 

 

1.3 Complexity 

The travelling salesman problem has been proven to be NP hard, which means that it 

cannot be solved using Linear Programming Techniques, in polynomial time. Such 

complexity strengthened the need for approximation algorithms that would be able to produce 

feasible solutions very close to the optimal one. Branch and bound is a very efficient method 

in order to deal with the TSP, not to mention the many more numerical methods that have 

emerged and provide quality solutions. 

 

1.4 Distinctive cases 

Numerous restrictions can be applied on the general form of the TSP in order to make 

it reflect more realistic applications. The most common variations of this type of problems are 

based on some simple restrictions and are mentioned below: 

• Metric TSP: In this case, also known as delta TSP, the edge costs are symmetric and 

satisfy the triangle inequality. This means that if we have 3 nodes a, b and c the cost 

for going over from a to c is lower than visiting node c through b. It should also be 

mentioned that the edge costs are calculated by measuring the metric distances 

between the nodes, 

 

• Euclidean TSP: It is a particular case of the metric TSP due to the fact that the 

distances in a plane obey the triangle inequality. Moreover, the vertices correspond to 

points in a d-dimensional space while the cost function is the Euclidean distance. As 

the input numbers are integers, comparing lengths of tours involves comparing sums 

of square roots, 

 

• Symmetric TSP: Here, the distance between two nodes in the network of our problem 

is the same in both directions. Someone can easily realize that the above, results in 

the cost remaining the same also. When this is not the case and the distance between 

two points differs according to direction, then we have an asymmetric TSP. 

 

 

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

3 

 

1.5 Applications 

The travelling salesman problem has a wide range of real life applications with the 

contributions in vehicle routing to be the most popular. For instance, the assignment of 

customers to certain trucks that offer delivery services and to create a delivery strategy for 

each truck is a case that could be solvable as a TSP. In order however to approach these kind 

of problems as TSPs, the fleet available should have a fixed number of vehicles and there 

should not exist time or capacity constraints. 

In addition, the order and picking problem in warehouses can also be considered as a 

TSP. This is very clear to realize, as a vehicle has to collect certain subsets of items which are 

stored and then ship them to the customer who made the order. The storage locations of the 

items correspond to the nodes of the graph and the distance between two nodes is given by the 

time which is required in order to move from one location to the other. As a result, finding a 

shortest route for the vehicle with minimum pickup time can be solved as a TSP (3). 

It is worth mentioning that not only transportation issues are being considered as 

TSPs. The drilling problem of printed circuit boards is such an example.  The ultimate goal is 

to minimize the travel time of the machine’s head. The key thought is to treat the time it takes 

the drilling head to move from one position to the other like the distance between to cities. 

Furthermore, computer wiring, x-ray crystallography, overhauling gas turbine engines and 

mask plotting in printed circuit boards’ production are a few more examples that can be dealt 

with as TSPs. 

 

 

 

 

 

 

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

4 

 

Chapter 2: Shortest Path using Google’s API 

 

 

2.1      Google API for shortest path distances 

 

2.1.1 Distances 

For anyone to be able to solve the travelling salesman problem, the shortest path 

distances for every possible route are necessary. When someone possesses the above, then he 

can achieve the ultimate goal, which is no other than the minimization of the total travelling 

distance and as a result the minimization of the total travelling cost.  In order to proceed with 

the solution process we must first find a way of calculating the shortest path distances and 

google contributes in that purpose. 

 

2.1.2 Google maps distance matrix API 

Google offers a service that allows each user to get the shortest path distances of the 

nodes that exist in their problem. This service in order to be available requires from each user 

to download the distance matrix API key from the following link:  

https://developers.google.com/maps/documentation/distance-matrix/  

However, there are some limitations considering the allowed elements of the matrix 

produced, which are mentioned below: 

• 2500 free elements per day, 
• 100 elements per second. 

 
The above limitations occur from the standard usage of this API which is free for everyone. 

Once these steps are completed, we will take advantage of the availability of this API in the 

Python client and create a code that will send the proper query in order for the distance matrix 

to be produced.  

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

5 

 

2.2      Python 

 

2.2.1 Functionality of code 

The code that will be presented in the next section was created using the version 2.7.0 

of Python along with its setup tools. This code reads a .txt file with the selected nodes of the 

problem and then creates the links from google maps that correspond to the nodes. Once the 

links are created, it then reads them from a .txt file in order to calculate the shortest path 

distances as well as filling a .txt file with the elements produced. To accomplish the above 

mentioned, one must include in the file named “Python27” which lies in the hard disk (C:), 

not only the Python code, but also the .txt file with the coordinates of the selected nodes.  

When everything is set, the code runs by opening the command prompt in “Python27”. At 

first, the command “easy_install simplejson” should be executed and after that, the name of 

the Python code should be typed in the command prompt. After pressing Enter, it is only a 

matter of seconds for the matrix to be produced. 

 

2.2.2 Python code 

The code written in Python is presented below: 

1. import simplejson, urllib   
2. import time   
3. #from urllib.request import urlopen   
4.    
5. #file = open('RESULTS.DAT','r')   
6. file2 = open("DISTANCES.DAT", "w")   
7. file3 = open("DURATIONS.DAT","w")   
8. file4=open('DATA.DAT','r')   
9. file5=open('LINKS.DAT','w')   
10.    
11. def file_len(fname):   
12.     with open(fname) as f:   
13.         for i, l in enumerate(f):   
14.             pass   
15.     return (i+1)   
16.    
17.        
18. def ori(first,last):   
19.   file5.write ("https://maps.googleapis.com/maps/api/distancematrix/json?uni

ts=metric&origins=")   
20.   file5.write (str(DATAX[first])+","+str(DATAY[first]))   
21.   for i in range(first+1,last):   
22.     file5.write ("|"+str(DATAX[i])+","+str(DATAY[i]))   
23.   file5.write ("&destinations=")   
24.    
25. def dest(first,last):   
26.   file5.write (str(DATAX[first])+","+str(DATAY[first]))   
27.   for i in range(first+1,last):   



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

6 

 

28.     file5.write ("|"+str(DATAX[i])+","+str(DATAY[i]))   
29.   file5.write ("&key=AIzaSyA0-pYqwOleHFQALXR4x8WtfM0cNn0Ywfk")   
30.   file5.write ('\n')   
31.    
32.    
33. def geocode(adress,ori,ele,a,b,distan,durati):   
34.    
35.     url = adress   
36.     result = simplejson.load(urllib.urlopen(url))   
37.     for i in range(0,ori):   
38.         for x in range(0,ele):   
39.           dist = result['rows'][i]['elements'][x]['distance']   
40.           dura = result['rows'][i]['elements'][x]['duration']   
41.           "print (dist['text'])"   
42.           distan[10*a+i][10*b+x]=dist['text']   
43.           durati[10*a+i][10*b+x]=dura['text']   
44.           "print (" ")"   
45.           "print dura['text']"   
46.           "print (" ")"   
47.           "print (" ")"   
48.           "file2.write (dist['text'])"   
49.           "file2.write (",")"   
50.           " file3.write (dura['text'])"   
51.           "file3.write (",")"   
52.         "file2.write('\n')"   
53.         "file3.write('\n')"   
54.     #print "value is : " + str(dist['value'])   
55.    
56. DATAX=[]   
57. DATAY=[]   
58.    
59.    
60.      
61. for line in file4:   
62.   x=line   
63.   y=x[9:17]   
64.   DATAY.append(float(y))   
65.   DATAX.append(float(x[0:8]))   
66.    
67. n=file_len('DATA.DAT')   
68.    
69. distan=[["0" for x in range(n)] for x in range(n)]   
70. durati=[["0" for x in range(n)] for x in range(n)]   
71.    
72. for x in range(5):   
73.    
74.   if (x==0):   
75.     for f in range(0,5):   
76.       if f==0:   
77.         ori(0,10)   
78.         dest(0,10)   
79.       elif f==1:   
80.         ori(0,10)   
81.         dest(10,20)   
82.       elif f==2:   
83.         ori(0,10)   
84.         dest(20,30)   
85.       elif f==3:   
86.         ori(0,10)   
87.         dest(30,40)   
88.       elif f==4:   
89.         ori(0,10)   
90.         dest(40,n)   
91.     #file1.write ('\n')   
92.   elif x==1:   



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

7 

 

93.     for f in range(0,5):   
94.       if f==0:   
95.         ori(10,20)   
96.         dest(0,10)   
97.       elif f==1:   
98.         ori(10,20)   
99.         dest(10,20)   
100.       elif f==2:   
101.         ori(10,20)   
102.         dest(20,30)   
103.       elif f==3:   
104.         ori(10,20)   
105.         dest(30,40)   
106.       elif f==4:   
107.         ori(10,20)   
108.         dest(40,n)   
109.     #file1.write ('\n')   
110.   elif x==2:   
111.     for f in range(0,5):   
112.       if f==0:   
113.         ori(20,30)   
114.         dest(0,10)   
115.       elif f==1:   
116.         ori(20,30)   
117.         dest(10,20)   
118.       elif f==2:   
119.         ori(20,30)   
120.         dest(20,30)   
121.       elif f==3:   
122.         ori(20,30)   
123.         dest(30,40)   
124.       elif f==4:   
125.         ori(20,30)   
126.         dest(40,n)   
127.     #file1.write ('\n')   
128.   elif x==3:   
129.     for f in range(0,5):   
130.       if f==0:   
131.         ori(30,40)   
132.         dest(0,10)   
133.       elif f==1:   
134.         ori(30,40)   
135.         dest(10,20)   
136.       elif f==2:   
137.         ori(30,40)   
138.         dest(20,30)   
139.       elif f==3:   
140.         ori(30,40)   
141.         dest(30,40)   
142.       elif f==4:   
143.         ori(30,40)   
144.         dest(40,n)   
145.     #file1.write ('\n')   
146.   elif x==4:   
147.     for f in range(0,5):   
148.       if f==0:   
149.         ori(40,n)   
150.         dest(0,10)   
151.       elif f==1:   
152.         ori(40,n)   
153.         dest(10,20)   
154.       elif f==2:   
155.         ori(40,n)   
156.         dest(20,30)   
157.       elif f==3:   



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

8 

 

158.         ori(40,n)   
159.         dest(30,40)   
160.       elif f==4:   
161.         ori(40,n)   
162.         dest(40,n)   
163.     #file1.write ('\n')   
164. file5.close   
165.    
166. file5=open('LINKS.DAT','r')   
167.    
168.    
169.    
170. y=file_len('LINKS.DAT')   
171.    
172. links=[]   
173. for x in range(y):   
174.   links.append(str(file5.readline()))   
175.    
176. a=0   
177. b=0   
178.    
179. if __name__ == '__main__':   
180.     for i in range(1,y+1):   
181.       time.sleep(2)   
182.       if (i%5==0 and i!=y):   
183.         geocode(links[i-1],10,(n-40),a,b,distan,durati)   
184.       elif (i>20 and i<y):   
185.         geocode(links[i-1],(n-40),10,a,b,distan,durati)   
186.       elif (i==y):   
187.         geocode(links[i-1],(n-40),(n-40),a,b,distan,durati)   
188.       else:   
189.         geocode(links[i-1],10,10,a,b,distan,durati)   
190.       a=int(i/5)   
191.       b=i%5   
192.       print (" ")   
193.    
194. for x in range(n):   
195.   for i in range(n):   
196.     file2.write (distan[x][i])   
197.     file2.write (",")   
198.     file3.write (durati[x][i])   
199.     file3.write (",")   
200.   file2.write('\n')   
201.   file3.write('\n')   

 

It should be highlighted that the code above runs for 50 nodes and that the inserted 

coordinates must have strictly a five number decimal place. 

 

 

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

9 

 

Chapter 3: Mathematical Model  

 

 

3.1 Problem description 

The TSP model that will be formed, concerns a real-life instance of a courier 

company named “Geniki Taxidromiki”. The facility of the company that the problem involves 

is situated at 56 Lambraki str. in the city of Volos. The goal is to structure a mathematical 

model able to minimize the total travelling distance covered by the company’s van in order to 

satisfy the daily demand. 

 

3.2 The TSP mathematical model 

The model that will be presented is a mixed integer-linear programming one, due to 

the decision variables that it includes. Prior to the equations of the formulation, all the other 

essential parameters will also be mentioned. By referring to the term parameters, all the 

indexes, data and sets as well as the decision variables that this model is based on will be 

defined. 

Indexes 

i, j: the nodes of the problem’s network. 

Data 

n: the number of customers. 

m: starting point. 

Dij: the distance in kilometers between nodes i and j, where i, j = 1,…, n+m. Therefore, Dij 

represents the distances from customer to customer and from the starting point to customers. 

Sets 

[1,…, n+m]: the set of nodes including all customers as well as the starting point. 

[1,…, n]: the set of customers. 

(n+m-1, n+m]: the set of the starting point. 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

10 

 

Decision Variables 

Xij: this is a binary variable which indicates whether the vehicle travels along arc (i,j) or not. 

When Xij = 1, then the vehicle covers the distance from node i to node j, otherwise Xij = 0. 

Where i, j = 1,…, n+m. 

ui: non-negative integer variable, which indicates the turn that a certain node is visited. This 

variable is needed in order to structure the sub-tour elimination constraints, which play a vital 

role to the solution’s feasibility (4). Where i = 1,…, n+m. 

Mathematical Formulation 

The following constraints combined with the objective function, form a complete model of 

the travelling salesman problem. 

• Constraints: 


 ���
���

���
= 1 ∀		� = 1, . . , �			(1)	


 ���
���

���
= 1 ∀		� = 1, . . , �			(2)	


��� = 1
�

���
 ∀		� = � + �			(3)	


���
�

���
= 1 ∀	� = � +�			(4)	

�� − �� + 1 ≤ (� +� − 1)"1 − ���# ∀	�, � ≠ � + �			(5)	

���� = 1 (5.1)	

2 ≤ �� ≤ � +� ∀	� ≠ � +�				(5.2)	



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

11 

 

																		��� = 0 � = 1,… , � + �		(6)	

																			��� ∈ (0,1) �, � = 1,… , � + �		(7)	

																										�� 	 ∈ *� � = 1,… , � + �									(8)	
 

• Objective Function: 

+�����,-	, = 
 
 .�����
���

���

���

���
 (9)	

 

Explanation of constraints and objective function of TSP model 

 
Constraints (1) ensure that each customer is visited exactly once. This gets clearer if the 

approach is strictly mathematical, as the equation formed allows only one Xij to get the value 

1 for each j (customers). 

Constraints (2) show that from every node of a customer, the vehicle will depart for another 

node. This is very crucial in order to get a feasible solution due to the fact that they act as 

flow conservation constraints. 

Constraints (3) indicate that the vehicle will serve exactly one customer-node when departing 

from the starting point. These constraints in other words force the vehicle to start its tour from 

the starting point. 

Constraints (4) on the other hand force the vehicle to return to the starting point in order to 

complete its tour. 

Constraints (5) belong to the sub-tour elimination family. When an arc (i,j) is covered, the 

vehicle should visit node j immediately after node i. As a result the creation of sub-tours is 

avoided. 

Constraints (5.1) show that the turn which corresponds to the starting point must be equal to 

one, as the problem must begin its solution from this node. 

Constraints (5.2) set the range of values for the turns of every customer. In order for the 

solution to be feasible, the vehicle cannot start or end its tour from a customer-node. 

Constraints (6) ensure that the vehicle cannot leave a node in order to visit the same node. 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

12 

 

Constraints (7) and (8) refer to the binary and non-negativity of the decision variables 

respectively. 

The objective function (9) represents the total travelling distance covered by the vehicle in 

order to satisfy all of the customers’ demands. Through the minimization of the total 

travelling distance, the lowest-cost tour is achieved, which is the ultimate goal of the TSP. 

 

3.3 Coding of TSP 

 

3.3.1 Modifications for two different approaches of the same problem 

Both codes read a .txt file that includes the shortest path distances of all the nodes in 

the problem. The .txt file is a product of the Python code, which exploits the services of the 

Google Distance Matrix API. In order for the user to receive an optimal solution, the last row 

and column of the matrix should refer to the starting point of the problem. To achieve the 

above, the .txt file that the Python code reads should have the coordinates of the starting point 

inserted last. From this point forward we will refer to the codes as “Fixed-Matrix Code” and 

“Sub-Matrix Code” respectively. The first one requires to give values to n (customers) and m 

(starting point = 1) at the beginning of the code, while the second one requires an input value 

only for n (all nodes). The main difference between the two codes is that with the “Fixed-

Matrix” the user can run an example for n+m specific nodes, while with the “Sub-Matrix” he 

can run multiple examples, by every time selecting a different combination of n nodes from a 

.txt file that contains the distances of a larger whole of nodes. The above leads to the 

conclusion that the “Sub-Matrix Code” can be very time-saving, due to the fact that the user 

in order to run a variety of examples should only run the Python code once. 

 

3.3.2 Fixed-Matrix Code 

The “Fixed-Matrix Code” written in C++ is presented below: 

1. /* Travelling Salesman Problem */   
2.    
3. #include <ilcplex/ilocplex.h>   
4. ILOSTLBEGIN   
5.    
6. #include <vector>   
7. #include <fstream>   
8. #include <stdlib.h>   
9. using std::vector;   
10.    
11.    



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

13 

 

12. int main() {   
13.      
14.     // Data   
15.    
16.     int             i,j;                                // i,j: pointer of n

odes for customers and starting point   
17.     const int       imax=30;                            // max nodes (custom

er and starting point)   
18.     const int       jmax=30;                            // max nodes (custom

er and starting point)   
19.     const int       n=29;                               // n: number of cust

omers   
20.     const int       m=1;                                // m: starting point

   
21.        
22.     float           D[imax][jmax];                      // Table of the dist

ances from customer to customer and from starting point to customers defined
 in km   

23.        
24.    
25. //--------------------------------------------------------------------------

----------------------------------------------------------------------------
----------------                      

26.        
27.     // Welcoming Message   
28.     cout<<"-----------------------------------------------------------------

---"<<endl;   
29.     cout<<"|                          TSP Solver                         |"<

<endl;   
30.     cout<<"-----------------------------------------------------------------

---"<<endl;   
31.     cout<<endl;   
32.     cout<<"<------> Plan your products' distribution in an optimal way <----

-->"<<endl;   
33.     cout<<endl;   
34.     cout<<"Designed by:"<<endl;   
35.     cout<<"Panagiotis Vrakidis"<<endl;   
36.     cout<<endl;   
37.     cout<<"Press Enter to continue."<<endl;   
38.     cin.get();   
39. //--------------------------------------------------------------------------

----------------------------------------------------------------------------
-----------------   

40.    
41.     // Initialization:Set table of distances equal to zero//   
42.     for (i=0;i<n+m;i++){   
43.         for (j=0;j<n+m;j++){   
44.             D[i][j]=0;   
45.         }   
46.     }   
47.    
48. //--------------------------------------------------------------------------

----------------------------------------------------------------------------
---------------   

49.    
50.     // Import of Data   
51.    
52.     // Import of Distance Data   
53.     ifstream ifs_1;   
54.     ifs_1.open("DATA.txt");   
55.    
56.     for (int i=0;i<n+m;i++){   
57.         for (int j=0;j<n+m;j++){   
58.             ifs_1 >> D[i][j];   
59.         }   



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

14 

 

60.     }   
61.     
62. //--------------------------------------------------------------------------

----------------------------------------------------------------------------
--------------------------   

63.    
64.     // Building Model   
65.    
66.     IloEnv env;   
67.    
68.     try {   
69.         IloModel model (env);   
70.    
71.         typedef IloArray<IloNumVarArray> IloNumVarMatrix2x2;   
72.         typedef IloArray<IloNumVarMatrix2x2> IloNumVarMatrix3x3;   
73.         typedef IloArray<IloNumVarMatrix3x3> IloNumVarMatrix4x4;   
74.    
75.         typedef IloArray<IloRangeArray> IloRangeMatrix2x2;   
76.         typedef IloArray<IloRangeMatrix2x2> IloRangeMatrix3x3;   
77.         typedef IloArray<IloRangeMatrix3x3> IloRangeMatrix4x4;   
78.    
79.         IloCplex cplex(env);   
80. //--------------------------------------------------------------------------

----------------------------------------------------------------------------
--------------------------   

81.            
82.     // Decision Variables   
83.    
84.     // Xij: Binary variable which indicates if a route is covered or not   
85.             IloNumVarMatrix2x2 Xij(env,0);   
86.                 for (i=0;i<n+m;i++){   
87.                     IloNumVarArray Xj(env,0);   
88.                     for (j=0;j<n+m;j++){   
89.                         char Path[70];   
90.                         sprintf(Path,"Xij(i%d,j%d)",i,j);   
91.                         IloNumVar X(env,0,1,ILOBOOL,Path);   
92.                         Xj.add(X);   
93.                     }   
94.                     Xij.add(Xj);   
95.                 }   
96.                
97.     //ui: Non-

negative integer variable which indicates the turn that each node is visited
   

98.                 IloNumVarArray ui(env,0);   
99.                 for (i=0;i<n+m;i++){   
100.                     char Turn[70];   
101.                     sprintf(Turn,"ui(i%d)",i);   
102.                     IloNumVar u(env,1,n+m,ILOINT,Turn);   
103.                     ui.add(u);   
104.                 }   
105.    
106. //-------------------------------------------------------------------

----------------------------------------------------------------------------
--------------------------------   

107.    
108.     // Constraints   
109.    
110.     // Constraints (1): Each customer is visited exactly once   
111.         IloRangeArray Sum2_Xj(env,0);   
112.         for (j=0;j<n;j++){   
113.             IloExpr expr(env,0);   
114.             for (i=0;i<n+m;i++){   
115.                         expr+=Xij[i][j];   
116.             }   



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

15 

 

117.             int LB=1, UB=1;   
118.             IloRange Sum2_X(env,LB,expr,UB);   
119.             expr.end();   
120.             model.add(Sum2_X);   
121.             Sum2_Xj.add(Sum2_X);   
122.         }   
123.            
124.    
125.     // Constraints (2): From every node of a customer, the vehicle wi

ll depart for another node.   
126.         IloRangeArray Sum5_Xi(env,0);   
127.         for (i=0;i<n;i++){   
128.             IloExpr expr(env,0);   
129.             for (j=0;j<n+m;j++){   
130.                         expr+=Xij[i][j];   
131.                     }   
132.             int LB=1, UB=1;   
133.             IloRange Sum5_X(env,LB,expr,UB);   
134.             expr.end();   
135.             model.add(Sum5_X);   
136.             Sum5_Xi.add(Sum5_X);   
137.         }   
138.            
139.        
140.     //Constraints (3): The vehicle will serve exactly one customer no

de when departing from the starting point.   
141.         IloRangeArray Sum6_Xi(env,0);   
142.         for (i=n;i<n+m;i++){   
143.             IloExpr expr(env,0);   
144.             for (j=0;j<n;j++){   
145.                 expr+=Xij[i][j];   
146.             }   
147.             int LB=1, UB=1;   
148.             IloRange Sum6_X(env,LB,expr,UB);   
149.             expr.end();   
150.             model.add(Sum6_X);   
151.             Sum6_Xi.add(Sum6_X);   
152.         }   
153.        
154.     //Constraints (4): The vehicle must return to the starting point.

   
155.         IloRangeArray Sum7_Xj(env,0);   
156.         for (j=n;j<n+m;j++){   
157.             IloExpr expr(env,0);   
158.             for (i=0;i<n;i++){   
159.                         expr+=Xij[i][j];   
160.                     }   
161.             int LB=1, UB=1;   
162.             IloRange Sum7_X(env,LB,expr,UB);   
163.             expr.end();   
164.             model.add(Sum7_X);   
165.             Sum7_Xj.add(Sum7_X);   
166.         }   
167.    
168.     //Constraints (5): Sub-tour elimination    
169.         IloRangeMatrix2x2 Subtourij(env,0);   
170.         for(i=0;i<n;i++){   
171.             IloRangeArray Subtourj(env,0);   
172.                 for(j=0;j<n;j++){   
173.                     if (i!=j){   
174.                         IloExpr expr(env,0);   
175.                         expr+=ui[i]-ui[j]+1-(n+m-1)*(1-Xij[i][j]);   
176.                         char Subtours[70];   
177.                         sprintf(Subtours,"Subtour(i%d,j%d)",i,j);   
178.                         float LB=-IloInfinity,UB=0;   



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

16 

 

179.                         IloRange Subtour(env,LB,expr,UB,Subtours);   
180.                         expr.end();   
181.                         model.add(Subtour);   
182.                         Subtourj.add(Subtour);   
183.                     }   
184.                 }   
185.                 Subtourij.add(Subtourj);   
186.             }   
187.    
188.     // Constraints (5.1)   
189.         IloRangeArray Sub_ui(env,0);   
190.             for (i=n;i<n+m;i++){   
191.                 IloExpr expr(env,0);   
192.                     expr+=ui[i];   
193.                     int LB=1, UB=1;   
194.                         IloRange Sub_u(env,LB,expr,UB);   
195.                         expr.end();   
196.                         model.add(Sub_u);   
197.                         Sub_ui.add(Sub_u);   
198.                     }      
199.     // Constraints (5.2)   
200.         IloRangeArray Sub1_ui(env,0);   
201.             for (i=0;i<n;i++){   
202.                 IloExpr expr(env,0);   
203.                     expr+=ui[i];   
204.                     int LB=2, UB=n+m;   
205.                         IloRange Sub1_u(env,LB,expr,UB);   
206.                         expr.end();   
207.                         model.add(Sub1_u);   
208.                         Sub1_ui.add(Sub1_u);   
209.                     }      
210.            
211.                    
212.     // Constraints (6): The vehicle cannot leave a node in order to v

isit the same node.   
213.             IloRangeArray Zero1_Xi(env,0);   
214.                 for (i=0;i<n+m;i++){   
215.                     IloExpr expr(env,0);   
216.                     expr+=Xij[i][i];   
217.                     int LB=0, UB=0;   
218.                         IloRange Zero1_X(env,LB,expr,UB);   
219.                         expr.end();   
220.                         model.add(Zero1_X);   
221.                         Zero1_Xi.add(Zero1_X);   
222.                     }      
223.        
224.    
225.            
226.    
227.    
228. //-------------------------------------------------------------------

----------------------------------------------------------------------------
------------------------------------   

229.    
230.     // Objective Function: Minimization of the total travelling dista

nce.   
231.         IloExpr expr_obj(env);   
232.                 for (i=0;i<n+m;i++){   
233.                     for (j=0;j<n+m;j++){   
234.                         expr_obj+=D[i][j]*Xij[i][j];   
235.                     }   
236.                 }   
237.            
238.         model.add(IloMinimize(env,expr_obj));   
239.         expr_obj.end();        



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

17 

 

240. //-------------------------------------------------------------------
----------------------------------------------------------------------------
----------------------------------   

241.    
242.     // Solve   
243.      cplex.extract(model);   
244.      cplex.exportModel("onoma.lp");   
245.            
246.    
247.     // Print Results   
248.         if (!cplex.solve ()){   
249.             env.error()<<"Failed to optimize LP."<<endl;   
250.             throw(-1);   
251.         }   
252.            
253.         env.out()<<"Solution status = " <<cplex.getStatus()<<endl;   
254.         env.out()<<"Solution value = " <<cplex.getObjValue()<<endl;   
255.            
256.         cplex.solve();   
257.            
258.     // Print Xij   
259.         cout<<"The optimal routes are:"<<endl;   
260.         for (i=0;i<n+m;i++){   
261.             for (j=0;j<n+m;j++){   
262.                         int g = cplex.getValue(Xij[i][j]);   
263.                             if(g!=0)cout<<"Xij"<<"("<<i<<","<<j<<")"<

<"="<<g<<endl;   
264.             }   
265.         }   
266.         cout<<endl;   
267.    
268.     // Print ui   
269.         cout<<"The turn of each service is:"<<endl;   
270.         for (i=0;i<n+m;i++){   
271.                 int g = cplex.getValue(ui[i]);   
272.                 if(g!=0) cout<<"ui"<<"("<<i<<")"<<"="<<g<<endl;   
273.         }   
274.             cout<<endl;   
275.            
276.    }   
277.         catch ( IloException& e){   
278.             cerr <<"concert exception caught:"<<e<<endl;   
279.         }   
280.         catch (...){   
281.             cerr <<"Unknown exception caught"<<endl;   
282.         }   
283. //-------------------------------------------------------------------

----------------------------------------------------------------------------
----------------------------------   

284.            
285.     // End of env   
286.         env.end();   
287.    
288.     // Thank you Message   
289.         cout<<"<------> Thank you for using TSP Solver! <------

>"<<endl;   
290.    
291.         system("pause");   
292.         return 0;   
293.    
294.   }       
295.  // End main   

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

18 

 

3.3.3 Sub-Matrix Code 

The “Sub-Matrix Code” written in C++ is presented below: 

1. /* Travelling Salesman Problem */   
2.    
3. #include <ilcplex/ilocplex.h>   
4. ILOSTLBEGIN   
5.    
6. #include <vector>   
7. #include <fstream>   
8. #include <stdlib.h>   
9. using std::vector;   
10.    
11.    
12. int main() {   
13.      
14.     // Data   
15.    
16.     int             i,j;                        // i,j: pointer of nodes for

 customers,starting point   
17.     const int       imax=100;                   // max nodes (customer and s

tarting point)   
18.     const int       jmax=100;                   // max nodes (customer and s

tarting point)   
19.     const int       n=20;                       // n: number of nodes for pr

oblem   
20.     int             l,m,p,k;                    //l,m,p,k: pointer for the c

reation of the problems' submatrix   
21.        
22.     float           D[imax][jmax];              // Table of the distances fr

om customer to customer and from starting point to customers defined in km   
23.     float           A[n][n];                    // Submatrix including the d

istances of the selected nodes for the TSP    
24.        
25. //--------------------------------------------------------------------------

----------------------------------------------------------------------------
----------------                      

26.        
27.     // Welcoming Message   
28.     cout<<"-----------------------------------------------------------------

---"<<endl;   
29.     cout<<"|                          TSP Solver                         |"<

<endl;   
30.     cout<<"-----------------------------------------------------------------

---"<<endl;   
31.     cout<<endl;   
32.     cout<<"<------> Plan your products' distribution in an optimal way <----

-->"<<endl;   
33.     cout<<endl;   
34.     cout<<"Designed by:"<<endl;   
35.     cout<<"Panagiotis Vrakidis"<<endl;   
36.     cout<<endl;   
37.     cout<<"Press Enter to continue."<<endl;   
38.     cin.get();   
39. //--------------------------------------------------------------------------

----------------------------------------------------------------------------
-----------------   

40.    
41.     // Initialization:Set table of distances equal to zero//   
42.     for (i=0;i<imax;i++){   
43.         for (j=0;j<jmax;j++){   
44.             D[i][j]=0;   



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

19 

 

45.         }   
46.     }   
47.    
48. //--------------------------------------------------------------------------

----------------------------------------------------------------------------
---------------   

49.    
50.     // Import of Data   
51.    
52.     // Import of Distance Data   
53.     ifstream ifs_1;   
54.     ifs_1.open("DATA.txt");   
55.    
56.     for (int i=0;i<imax;i++){   
57.         for (int j=0;j<jmax;j++){   
58.             ifs_1 >> D[i][j];   
59.         }   
60.     }   
61.     
62.     // Subroutine for creation of dynamic submatrix   
63.         vector<int>a;   
64.    
65.         cout<<"Insert the number of each customer to be served"<<endl;   
66.             for(i=0;i<n-1;i++){   
67.             a.push_back(30);   
68.             cin>> a[i];   
69.            
70.         while (a[i]<0 || a[i]>imax-2){   
71.         cout<<"Wrong number!Out of bounds!Try again"<<endl;   
72.         cin>>a[i];   
73.         cout<<endl;   
74.         }   
75.             for (int z=0;z<i;z++){   
76.             int t=0;   
77.             while (t==0){   
78.             if (a[i]!=a[z]){   
79.             t=1;   
80.             }   
81.             else{   
82.                 cout<<"The same number cannot be inserted twice into the pro

blem! Try again!"<<endl;   
83.                 cin>>a[i];   
84.                 z=0;   
85.             }   
86.         }   
87.     }   
88. }   
89.     cout<<"Type the number of the starting point"<<endl;   
90.     a.push_back(30);   
91.     cin>> a[n-1];   
92.     while (a[n-1]!=99){   
93.         cout<<"Wrong number! Number 99 represents the starting point. Try ag

ain!"<<endl;   
94.         cin>> a[n-1];   
95.     }   
96.    
97.     l=0;   
98.     m=0;   
99.         for(i=0;i<n;i++){   
100.         p=0;   
101.         k=0;   
102.             for(j=0;j<n;j++){   
103.             A[l][k]=D[a[m]][a[p]];   
104.             p=p+1;   
105.             k=k+1;   



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

20 

 

106.         }   
107.     m=m+1;   
108.     l=l+1;   
109.     }   
110.    
111. //-------------------------------------------------------------------

----------------------------------------------------------------------------
---------------------------------   

112.    
113.     // Building Model   
114.    
115.     IloEnv env;   
116.    
117.     try {   
118.         IloModel model (env);   
119.    
120.         typedef IloArray<IloNumVarArray> IloNumVarMatrix2x2;   
121.         typedef IloArray<IloNumVarMatrix2x2> IloNumVarMatrix3x3;   
122.         typedef IloArray<IloNumVarMatrix3x3> IloNumVarMatrix4x4;   
123.    
124.         typedef IloArray<IloRangeArray> IloRangeMatrix2x2;   
125.         typedef IloArray<IloRangeMatrix2x2> IloRangeMatrix3x3;   
126.         typedef IloArray<IloRangeMatrix3x3> IloRangeMatrix4x4;   
127.    
128.         IloCplex cplex(env);   
129. //-------------------------------------------------------------------

----------------------------------------------------------------------------
---------------------------------   

130.            
131.     // Decision Variables   
132.    
133.     // Xij: Binary variable which indicates if a certain route is mad

e or not   
134.                 IloNumVarMatrix2x2 Xij(env,0);   
135.                 for (i=0;i<n;i++){   
136.                     IloNumVarArray Xj(env,0);   
137.                     for (j=0;j<n;j++){   
138.                         char Path[70];   
139.                         sprintf(Path,"Xij(i%d,j%d)",i,j);   
140.                         IloNumVar X(env,0,1,ILOBOOL,Path);   
141.                         Xj.add(X);   
142.                     }   
143.                     Xij.add(Xj);   
144.                 }   
145.                
146.     //ui: Non-

negative discrete variable which indicates the turn that every node is visit
ed   

147.                 IloNumVarArray ui(env,0);   
148.                 for (i=0;i<n;i++){   
149.                     char Turn[70];   
150.                     sprintf(Turn,"ui(i%d)",i);   
151.                     IloNumVar u(env,1,n,ILOINT,Turn);   
152.                     ui.add(u);   
153.                 }   
154.    
155. //-------------------------------------------------------------------

----------------------------------------------------------------------------
--------------------------------   

156.    
157.     // Constraints   
158.    
159.     // Constraints (1): Each customer is visited exactly once   
160.         IloRangeArray Sum2_Xj(env,0);   
161.         for (j=0;j<n-1;j++){   



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

21 

 

162.             IloExpr expr(env,0);   
163.             for (i=0;i<n;i++){   
164.                         expr+=Xij[i][j];   
165.             }   
166.             int LB=1, UB=1;   
167.             IloRange Sum2_X(env,LB,expr,UB);   
168.             expr.end();   
169.             model.add(Sum2_X);   
170.             Sum2_Xj.add(Sum2_X);   
171.         }   
172.            
173.    
174.     // Constraints (2): From every node of a customer, the vehicle wi

ll depart for another node.   
175.         IloRangeArray Sum5_Xi(env,0);   
176.         for (i=0;i<n-1;i++){   
177.             IloExpr expr(env,0);   
178.             for (j=0;j<n;j++){   
179.                         expr+=Xij[i][j];   
180.                     }   
181.             int LB=1, UB=1;   
182.             IloRange Sum5_X(env,LB,expr,UB);   
183.             expr.end();   
184.             model.add(Sum5_X);   
185.             Sum5_Xi.add(Sum5_X);   
186.         }   
187.            
188.        
189.     //Constraints (3): The vehicle will serve one customer node when 

departing from the depot.   
190.         IloRangeArray Sum6_Xi(env,0);   
191.         for (i=n;i<n;i++){   
192.             IloExpr expr(env,0);   
193.             for (j=0;j<n-1;j++){   
194.                 expr+=Xij[i][j];   
195.             }   
196.             int LB=1, UB=1;   
197.             IloRange Sum6_X(env,LB,expr,UB);   
198.             expr.end();   
199.             model.add(Sum6_X);   
200.             Sum6_Xi.add(Sum6_X);   
201.         }   
202.        
203.     //Constraints (4): The vehicle must return to the depot.   
204.         IloRangeArray Sum7_Xj(env,0);   
205.         for (j=n-1;j<n;j++){   
206.             IloExpr expr(env,0);   
207.             for (i=0;i<n-1;i++){   
208.                         expr+=Xij[i][j];   
209.                     }   
210.             int LB=1, UB=1;   
211.             IloRange Sum7_X(env,LB,expr,UB);   
212.             expr.end();   
213.             model.add(Sum7_X);   
214.             Sum7_Xj.add(Sum7_X);   
215.         }   
216.    
217.     //Constraints (5): Sub-tour elimination   
218.         IloRangeMatrix2x2 Subtourij(env,0);   
219.             for(i=0;i<n-1;i++){   
220.                 IloRangeArray Subtourj(env,0);   
221.                 for(j=0;j<n-1;j++){   
222.                     if (i!=j){   
223.                         IloExpr expr(env,0);   
224.                         expr+=ui[i]-ui[j]+1-(n-1)*(1-Xij[i][j]);   



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

22 

 

225.                         char Subtours[70];   
226.                         sprintf(Subtours,"Subtour(i%d,j%d)",i,j);   
227.                         float LB=-IloInfinity,UB=0;   
228.                         IloRange Subtour(env,LB,expr,UB,Subtours);   
229.                         expr.end();   
230.                         model.add(Subtour);   
231.                         Subtourj.add(Subtour);   
232.                     }   
233.                 }   
234.                 Subtourij.add(Subtourj);   
235.             }   
236.    
237.     // Constraints (5.1)   
238.         IloRangeArray Sub_ui(env,0);   
239.                 for (i=n-1;i<n;i++){   
240.                     IloExpr expr(env,0);   
241.                         expr+=ui[i];   
242.                         int LB=1, UB=1;   
243.                         IloRange Sub_u(env,LB,expr,UB);   
244.                         expr.end();   
245.                         model.add(Sub_u);   
246.                         Sub_ui.add(Sub_u);   
247.                     }      
248.     // Constraints (5.2)   
249.         IloRangeArray Sub1_ui(env,0);   
250.                 for (i=0;i<n-1;i++){   
251.                     IloExpr expr(env,0);   
252.                         expr+=ui[i];   
253.                         int LB=2, UB=n;   
254.                         IloRange Sub1_u(env,LB,expr,UB);   
255.                         expr.end();   
256.                         model.add(Sub1_u);   
257.                         Sub1_ui.add(Sub1_u);   
258.                     }      
259.            
260.                    
261.     // Constraints (6): The vehicle cannot leave a node in order to v

isit the same node.   
262.         IloRangeArray Zero1_Xi(env,0);   
263.                 for (i=0;i<n;i++){   
264.                     IloExpr expr(env,0);   
265.                         expr+=Xij[i][i];   
266.                         int LB=0, UB=0;   
267.                         IloRange Zero1_X(env,LB,expr,UB);   
268.                         expr.end();   
269.                         model.add(Zero1_X);   
270.                         Zero1_Xi.add(Zero1_X);   
271.                     }      
272.        
273. //-------------------------------------------------------------------

----------------------------------------------------------------------------
------------------------------------   

274.    
275.     // Objective Function: Minimization of the total travelling dista

nce.   
276.         IloExpr expr_obj(env);   
277.                 for (i=0;i<n;i++){   
278.                     for (j=0;j<n;j++){   
279.                         expr_obj+=A[i][j]*Xij[i][j];   
280.                     }   
281.                 }   
282.            
283.         model.add(IloMinimize(env,expr_obj));   
284.         expr_obj.end();        



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

23 

 

285. //-------------------------------------------------------------------
----------------------------------------------------------------------------
----------------------------------   

286.    
287.     // Solve   
288.         cplex.extract(model);   
289.         cplex.exportModel("onoma.lp");   
290.            
291.    
292.     // Print Results   
293.         if (!cplex.solve ()){   
294.             env.error()<<"Failed to optimize LP."<<endl;   
295.             throw(-1);   
296.         }   
297.            
298.         env.out()<<"Solution status = " <<cplex.getStatus()<<endl;   
299.         env.out()<<"Solution value = " <<cplex.getObjValue()<<endl;   
300.            
301.         cplex.solve();   
302.            
303.     // Print Xij   
304.         cout<<"The optimal routes are:"<<endl;   
305.         for (i=0;i<n;i++){   
306.             for (j=0;j<n;j++){   
307.                         int g = cplex.getValue(Xij[i][j]);   
308.                             if(g!=0)cout<<"Xij"<<"("<<a[i]<<","<<a[j]

<<")"<<"="<<g<<endl;   
309.             }   
310.         }   
311.         cout<<endl;   
312.    
313.     // Print ui   
314.         cout<<"The turn of each service is:"<<endl;   
315.         for (i=0;i<n;i++){   
316.                 int g = cplex.getValue(ui[i]);   
317.                 if(g!=0) cout<<"ui"<<"("<<a[i]<<")"<<"="<<g<<endl;   
318.         }   
319.             cout<<endl;      
320. }   
321.         catch ( IloException& e){   
322.             cerr <<"concert exception caught:"<<e<<endl;   
323.         }   
324.         catch (...){   
325.             cerr <<"Unknown exception caught"<<endl;   
326.         }   
327. //-------------------------------------------------------------------

----------------------------------------------------------------------------
----------------------------------   

328.            
329.     // End of env   
330.         env.end();   
331.    
332.     // Thank you Message   
333.         cout<<"<------> Thank you for using TSP Solver! <------

>"<<endl;   
334.    
335.         system("pause");   
336.         return 0;   
337.    
338.   }       
339.  // End main   

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

24 

 

Chapter 4: Visualization Process 

 

 

4.1 The visualization approach 

As mentioned before, the aim of this project is to approach a real-life instance with 

the TSP formulation. In order for the user to obtain the big picture of the solution produced, 

its visualization should be kept in as real standards as possible. OpenStreetMap along with 

QGIS play a significant role to the above due to the services they provide. 

 

4.1.1 OpenStreetMap 

OSM is a project that was built in order to create an editable world map, free for all 

users. The restrictions on use as well as availability of map information across the world have 

contributed in the continuous growth of the project. It was created by Steve Coast in the UK 

in 2004 and has reached over 2 million registered users. These users can use GPS devices and 

whichever free source they prefer for updating the OSM database. The map as displayed in 

the official website of OSM is presented in Fig. 1: 

 

 

Fig. 1: OpenStreetMap platform1

                                                      
1
 https://www.openstreetmap.org/ 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

25 

 

4.1.2 QGIS 

QGIS or else known as Quantum GIS, is a geographic information system application 

which provides the services of not only viewing but also editing data. It allows users to edit 

maps as well as maps to be composed of raster or vector layers. As someone can easily 

realize, this software has a variety of tools which can contribute to displaying the optimal tour 

of the TSP.  One can take a glance at the interface of QGIS 2.14 in Fig. 2. 

 

Fig. 2: Quantum QGIS 2.14 interface 

 

In order to display the map of OSM through QGIS, the OpenLayersPlugin from the 

Plugins menu must first be installed. To achieve the above, the user should follow the path 

presented below: 

Plugins Menu → Manage Plugins → OpenLayersPlugin 

For this procedure to be even clearer, the path is shown in Fig. 3. 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

26 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: OpenLayersPlugin installation 

 

Once the above procedure is completed everything is set for the map to be displayed 

at the interface of QGIS. The following path ensures that the map is loaded and ready to be 

edited: 

@Web → OpenLayers plugin → OpenStreetMap → OpenStreetMap 

The path along with its results is displayed in Fig. 4: 

 

 

Fig. 4: OSM through QGIS 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

27 

 

4.2 OSM data 

For the map to be editable via QGIS, the appropriate OSM data must be inserted to it. 

The real-life problem which is examined in this project refers to the city of Volos. Therefore, 

a way must be found in order to collect the road network data of the city and then import it to 

the map. This will enable the display of the shortest path for each route that exists in the TSP. 

 

4.2.1 Overpass turbo 

Overpass turbo is a web based tool that runs specific queries in order to enable the 

user to mine data for OpenStreetMap. The results of each query are shown on an interactive 

map and there is also the feature of extracting the data in a variety of types. The structure of 

this online platform is presented in Fig. 5. 

 

Fig. 5: City of Volos in the interface of Overpass turbo2 

 

The blank space on the left side of the above figure is for the queries to be written and 

then sent to the Overpass API, which is an online database for OSM. Thus, the next step 

would be to form a code for a query, which would demand the road network data of Volos. 

 

 

                                                      
2
 http://overpass-turbo.eu/ 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

28 

 

4.2.2 Code for road network 

The purpose of this section is to present a code that was written in XML in order to 

form a query that would ask for the road network data of Volos from the Overpass API. This 

code is based on three main axes of information: 

• Node: refers to the nodes that are required in order to determine every road in the 
network, 
 

• Way: for the lines that each road forms, 
 

• Relation: concerning the name as well as the direction of each road. 
 
The complete road-network code is provided below: 

1. <!--  
2. Code in order to extract the road network from selected bbox.  
3. -->   
4. <osm-script output="json" timeout="25">   
5.   <!-- gather results -->   
6.   <union>   
7.     <!--

 query part for: â€œhighway=* and highway!=footway and highway!=pedestrian a
nd "-highway"!=pathâ€  -->   

8.     <query type="node">   
9.       <has-kv k="highway"/>   
10.       <has-kv k="highway" modv="not" v="footway"/>   
11.       <has-kv k="highway" modv="not" v="pedestrian"/>   
12.       <has-kv k="-highway" modv="not" v="path"/>   
13.       <has-kv k="-highway" modv="not" v="steps"/>   
14.       <has-kv k="-highway" modv="not" v="construction"/>   
15.       <has-kv k="-highway" modv="not" v="bus_stop"/>   
16.       <has-kv k="-highway" modv="not" v="traffic_light"/>   
17.       <bbox-query {{bbox}}/>   
18.     </query>   
19.     <query type="way">   
20.       <has-kv k="highway"/>   
21.       <has-kv k="highway" modv="not" v="footway"/>   
22.       <has-kv k="highway" modv="not" v="pedestrian"/>   
23.       <has-kv k="-highway" modv="not" v="path"/>   
24.       <has-kv k="-highway" modv="not" v="steps"/>   
25.       <has-kv k="-highway" modv="not" v="construction"/>   
26.       <has-kv k="-highway" modv="not" v="bus_stop"/>   
27.       <has-kv k="-highway" modv="not" v="traffic_light"/>   
28.       <bbox-query {{bbox}}/>   
29.     </query>   
30.     <query type="relation">   
31.       <has-kv k="highway"/>   
32.       <has-kv k="highway" modv="not" v="footway"/>   
33.       <has-kv k="highway" modv="not" v="pedestrian"/>   
34.       <has-kv k="-highway" modv="not" v="path"/>   
35.       <has-kv k="-highway" modv="not" v="steps"/>   
36.       <has-kv k="-highway" modv="not" v="construction"/>   
37.       <has-kv k="-highway" modv="not" v="bus_stop"/>   
38.       <has-kv k="-highway" modv="not" v="traffic_light"/>   
39.       <bbox-query {{bbox}}/>   
40.     </query>   
41.   </union>   



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

29 

 

42.   <!-- print results -->   
43.   <print mode="body"/>   
44.   <recurse type="down"/>   
45.   <print mode="skeleton" order="quadtile"/>   
46. </osm-script>   

 

4.2.3 Extraction of data 

The feature of bbox allows the user to run the code for a specific region. In this 

specific case, the city of Volos is selected and once the code is executed, the results are 

displayed on the map. Fig. 6 shows the bbox selected for the city of Volos as well as the 

results that occurred from the query that was formed. 

Fig. 6: Volos’ bbox and query results3 

 

The final step is to extract the data from the Overpass turbo platform. This is possible 

by selecting the “Extract” command and by choosing the preferred type of the produced data. 

At this point, it should be stated that the type “geoJSON” was selected, as it is compatible 

with QGIS. Fig. 7 clarifies the above mentioned procedure. 

                                                      
3
 http://overpass-turbo.eu/ 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

30 

 

   

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Extraction of road-network data as “geoJSON”4 

 

4.3 Editing with QGIS 

Having extracted all the necessary data for the map, the user can now utilize the tools 

of QGIS for editing and creating shortest path routes, which are part of the solution of any 

real-life TSP. In this section, the main methodology of displaying shortest path routes 

between nodes will be presented. For this purpose, all the essential features of QGIS will be 

put into practice for the simplest example of two nodes. 

 

4.3.1 A two-node example 

Two random nodes in the city of Volos have been selected for the purpose of 

demonstrating the procedure in order to display the shortest path distance between them on 

the OSM. Before the steps are analyzed, it should be highlighted that the order with which a 

layer is opened through QGIS, plays a significant role to how it will be displayed on the map. 

Therefore, in this example, the OpenStreetMap layer should be opened first, followed by that 

of the road-network. The final layer must be the one with the two selected nodes. 

                                                      
4
 http://overpass-turbo.eu/ 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

31 

 

4.3.2 Road-network data through QGIS 

Having opened the OpenStreetMap layer, the road-network data of Volos is next to 

being imported to QGIS. The above is possible by following the path: 

Layer → Add layer → Add vector layer 

The file including the road-network data should be selected and then opened with the 

appropriate encoding type, which is UTF-8. The procedure as well as its outcome is shown in 

Fig. 8 and in Fig. 9: 

Fig. 8: Road-network data selection 

 

Fig. 9: Depiction of the road-network 

 

Now everything is set for the layer including the two nodes of the example to be opened. 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

32 

 

4.3.3 Depiction of the two nodes 

The random nodes that have been selected must be first inserted into a Microsoft 

Excel file, having the form that is demonstrated in Fig. 10. 

 

 

 

 

 

 

 

Fig. 10: Microsoft Excel file with the two nodes 

 

When the Microsoft Excel file is completed, it should be saved as a specific type of 

file that is compatible with QGIS. Therefore, a CSV comma delimited type of file must be 

created. This is crucial in order to proceed with the display of the two nodes on the map. The 

next step would be to utilize an extension of QGIS that allows the user to create a layer from a 

delimited text file as presented in Fig. 11: 

 

Fig. 11: Selection of CSV file 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

33 

 

For this step, a very important note should be made. QGIS reads the coordinates of 

the notes, while transposing them. Therefore, in the field of the X axis the value Y must be 

inserted and the opposite stands for the field of the Y axis. By selecting “OK”, a new window 

comes up, which requires the selection of the coordinates’ system for the depiction of the 

nodes. In order to clarify the above, Fig. 12 is displayed. 

 

 

 

Fig. 12: Selection of coordinates’ reference system 

 

As shown above, the latest revision of the world geodetic system is selected, which is 

no other than the WGS 84. It is the most popular system amongst companies and therefore is 

the ideal fit for the approach of real-life travelling salesman problems. Everything is set, in 

order to display the two nodes along with the road-network of Volos’ city (Fig. 13). 

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

34 

 

 

Fig. 13: Nodes in the road-network of Volos 

 

4.3.4 Shortest path via QGIS 

The calculation of the shortest path between the two nodes is the final step in order to 

complete the visualization procedure. QGIS provides a tool named “shortest path”, which can 

calculate the shortest path from one node to another, just by selecting the two points from the 

OSM. This plugin will appear in the interface of QGIS by following the path stated below: 

View → Panels → Shortest path 

However, in order to be able to utilize this tool, the extension named “road graph” 

must be configured. This is possible through the following path: 

Vectors → Road graph → Settings 

In the settings’ panel, one can select the distance units of the shortest path as well as adjusting 

a variety of parameters, which affect the operation of the “shortest path” tool. Fig. 14 

summarizes the above mentioned. 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

35 

 

 

Fig. 14: Road graph configuration 

 

Having the “road graph” extension configured, one can now calculate the shortest 

path between two points though the “shortest path” tool. An example that demonstrates the 

services of this tool is provided by Fig. 15. 

 

Fig. 15: Shortest path tool’s result 

 

Finally, the shortest path can be extracted and then saved. This is very convenient as 

it allows the user to import the shortest path and display it on the map without the road-

network. For this purpose, the term of “shapefile” will be introduced. 

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

36 

 

Shapefiles 

The term shapefile refers to a digital vector storage format. This format enables the 

storage of geometric location as well as associated attribute information. It is very useful due 

to the fact that primitive geometric data types of points, lines and polygons can be stored. 

This combination of shape data along with their attributes provides the ability for accurate 

computations. 

This chapter concludes with the presentation of Fig. 16 and Fig. 17, which sum up the 

procedure of saving a shortest path as a shapefile. 

 

Fig. 16: Save as shapefile 

 

 

Fig. 17: Save vector layer shapefile 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

37 

 

Chapter 5: Application of the TSP Codes for a         

Real-Life Instance 

 

 

5.1 The real-life problem for the city of Volos 

The mathematical model of the TSP was applied in a real-life instance for the city of 

Volos. The goal was to obtain an optimal solution for the daily delivery strategy of “Geniki 

Taxidromiki”, which is a courier company that is situated at 56 Lambraki str. The company’s 

clientele includes the fixed number of a hundred customers. The “Fixed-Matrix Code” was 

executed for the number of 30 nodes. On the other hand, the “Sub-Matrix Code” was applied 

in the case of 20 nodes. In Fig. 18, the road-network data of Volos along with the 100 nodes, 

99 of which constitute the company’s clientele are displayed on the OpenStreetMap. 

 

 

Fig. 18: Clientele of “Geniki Taxidromiki” 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

38 

 

5.2 Simulation and results 

 

5.2.1 Simulation 

The mathematical model of the TSP was simulated in the programming language of 

C++ by using the CPLEX Optimization Studio. The necessary data for the “Fixed-Matrix 

Code” that refer to the shortest path distances between all nodes are included in the Appendix 

at the end of the thesis. 

The characteristics of the program as well as the software and hardware of the 

computer which were used for the solution’s procedure are stated below: 

Program Edition: 

IBM CPLEX Optimization Studio 12.6 

 

Windows Edition: 

Windows 7 Home Premium 

 

Operating System: 

Processor: AMD E-450 APU with Radeon™ HD Graphics 1.65 GHz  

Installed memory (RAM): 4.00 GB 

System type: 64 – bit Operating System 

 

 

 

 

 

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

39 

 

5.2.2 Results 

The examples of 30 and 20 nodes respectively were both tested for shortest path 

distances between the nodes. The results of the two simulations will be examined in the next 

chapter that will refer to the conclusions that were drawn from their comparison.  

At this point, it should be mentioned that in C++ the counting of all indexes begins 

from 0. Therefore, a shift back to the enumeration of nodes is done. For example, the first 

customer is denoted with number 0 and the starting point is denoted with number 29 and 99 

respectively for each problem. The value of 99 occurs due to the creation of a sub-matrix 

from the complete matrix of nodes, which has a range of 100x100 elements. 

 

5.2.3 Results of the “Fixed-Matrix Code” for 30 nodes 

As mentioned above, the “Fixed-Matrix Code” application consists of 29 customers 

and the starting point. The simulation for this example returns an optimal solution with the 

value of 22.5 which refers to the travelling distance of the courier van in kilometers. 

Fig. 19 displays the nodes of this problem on the OSM. 

 

Fig. 19: The 30 nodes of the “Fixed-Matrix Code” example 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

40 

 

The optimal routes as well as the optimal order of visit are presented in the following tables. 

 

Order of transition Transition 

1 29 → 3 

2 3 → 4 

3 4 → 5 

4 5 → 6 

5 6 → 7 

6 7 → 9 

7 9 → 8 

8 8 → 14 

9 14 → 13 

10 13 → 12 

11 12 → 10 

12 10 → 11 

13 11 → 17 

14 17 → 18 

15 18 → 16 

16 16 → 15 

17 15 → 19 

18 19 → 23 

19 23 → 25 

20 25 → 26 

21 26 → 20 

22 20 → 21 

23 21 → 24 

24 24 → 22 

25 22 → 27 

26 27 → 28 

27 28 → 0 

28 0 → 1 

29 1 → 2 

30 2 → 29 

Table 1: Optimal routes for “Fixed-Matrix Code” example 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

41 

 

 

 

Order of visit Nodes 

1 29 

2 3 

3 4 

4 5 

5 6 

6 7 

7 9 

8 8 

9 14 

10 13 

11 12 

12 10 

13 11 

14 17 

15 18 

16 16 

17 15 

18 19 

19 23 

20 25 

21 26 

22 20 

23 21 

24 24 

25 22 

26 27 

27 28 

28 0 

29 1 

30 2 

31 29 

Table 2: Order of visit for each node in the “Fixed-Matrix Code” example 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

42 

 

 

This section ends with the demonstration of the optimal solution on the OpenStreetMap, 

which was based on the visualization procedure analyzed in Chapter 4 (Fig. 20). 

 

Fig. 20: Visualization of the “Fixed-Matrix Code” example’s optimal solution 

 

 

5.2.4 Results of the “Sub-Matrix Code” for 20 nodes 

The “Sub-Matrix Code” application consists of 19 customers and the starting point. 

The simulation for this example returns an optimal solution with the value of 19.9 which 

refers to the travelling distance of the courier van in kilometers. 

 It should be clarified that this code enables the user to select the 20 nodes from a 

100x100 matrix, which consists of all the nodes that form the TSP of “Geniki Taxidromiki”. 

Therefore, although this example includes 20 nodes, the values of the nodes have a range 

from 0 to 99. 

Fig. 21 displays the nodes of this problem on the OSM. 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

43 

 

 

Fig. 21: The 20 nodes of the “Sub-Matrix Code” example 

 

 

The optimal routes as well as the optimal order of visit are presented in the following tables. 

 

Order of transition Transition 

1 99 → 5 

2 5 → 22 

3 22 → 38 

4 38 → 30 

5 30 → 18 

6 18 → 44 

7 44 → 87 

8 87 → 51 

9 51 → 81 

10 81 → 77 

11 77 → 62 

12 62 → 89 

13 89 → 66 

14 66 → 90 

15 90 → 73 

16 73 → 93 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

44 

 

17 93 → 59 

18 59 → 96 

19 96 → 1 

20 1 → 99 

Table 3: Optimal routes for “Sub-Matrix Code” example 

 

 

Order of visit Nodes 

1 99 

2 5 

3 22 

4 38 

5 30 

6 18 

7 44 

8 87 

9 51 

10 81 

11 77 

12 62 

13 89 

14 66 

15 90 

16 73 

17 93 

18 59 

19 96 

20 1 

21 99 

Table 4: Order of visit for each note in the “Sub-Matrix Code” example 

 

 

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

45 

 

This section ends with the demonstration of the optimal solution on the OpenStreetMap, 

which was based on the visualization procedure analyzed in Chapter 4 (Fig. 22). 

 

 Fig. 22: Visualization of the “Sub-Matrix Code” example’s optimal solution 

 

 

 

 

  
 

 

 

 

 

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

46 

 

Chapter 6: Conclusions and Future Work 

Recommendations 

 

 

6.1 Comparison of the two codes 

Having used both source codes for the simulation of two real-life instances of the 

TSP, it is safe to claim that the “Sub-Matrix Code” is more user friendly than the “Fixed-

Matrix Code”. This is due to the fact that, in order for someone to solve many problems 

including various nodes with the help of the “Fixed-Matrix Code”, the Python code should be 

executed every time. With the utilization of the “Sub-Matrix Code”, one can overcome this 

time consuming procedure by selecting a combination of nodes from a large matrix, which 

includes the whole clientele of the company. The large matrix is created from the Python code 

that in this case has to be executed only once. As a result, the “Sub-Matrix Code” is the more 

essential tool that forms a complete application as well as having a better approach to the real-

life traveling salesman problem. 

 

6.2 Discussion of the results 

The results of the two problems cannot be compared as they refer to 30 and 20 nodes 

respectively. However, the quality of each solution can be discussed in order for us to be led 

to some important conclusions. The nature of the TSP is such, that requires an optimal 

solution the visualization of which, would approach the shape of a circle for the case that the 

customer-nodes are spread around the starting point. In figure 22, we can observe that the 

solution of the “Sub-Matrix Code” example with 20 nodes, has a circular shape and as a result 

it is safe to say that we have obtained a good-quality solution. However, in the case of the 

“Fixed-Matrix Code” example with 30 nodes, the results arise some questions. This is due to 

the fact that, as shown in figure 20, two sub-circles are created and lines get crossed. A 

logical explanation for the results in the above case would be that the combination of the 30 

nodes along with the directions of the roads in the network, necessitate the creation of sub-

circles. The solution is optimal but it would be quite challenging to persuade a company to 

follow such a tour. 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

47 

 

6.3 Future work recommendations 

The procedure followed for the visualization of the results through QGIS can be very 

time consuming, due to the fact that the shortest path tool can only calculate the shortest path 

for a couple of nodes. However, QGIS is written in C++ and there may be a way to connect 

this software with the TSP source code in order for the procedure mentioned above to be 

automated. In addition, the utilization of a different platform could result in a much more user 

friendly procedure for the visualization of the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

48 

 

References 

1. G. Laporte. The Traveling Salesman Problem: An overview of exact and approximate 

algorithms. European Journal of Operational Research. 1992, 59, pp. 231-247. 

2. D. Davendra. Travelling Salesman Problem, Theory and Applications. s.l. : InTech, 2010. 

3. Hoos H., Stützle T. Stochastic Local Search: Foundations and Applications. s.l. : Elsevier, 

2005. pp. 357-416. 8. 

4. G. Pataki. Teaching Integer Programming Formulations Using the Travelling Salesman 

Problem. SLAM Review. 2003, Vol. 1, 45, pp. 116-123. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

49 

 

0 0.2 0.3 0.9 1.2 2.4 1.3 1.4 1.8 2.5 3.4 3.6 2.6 2.3 2.2 3.1 2.9 2.5 2.6 1.3 3.0 2.9 2.6 1.0 2.6 1.0 2.1 2.0 1.4 0.7

0.2 0 0.4 0.9 1.3 2.5 1.5 1.5 1.9 2.6 3.4 3.6 2.6 2.3 2.2 3.1 2.9 2.4 2.6 1.3 3.0 2.9 2.6 1.0 2.6 1.0 2.1 2.0 1.4 0.6

0.4 0.4 0 0.6 0.9 2.1 1.1 1.1 1.5 2.2 3.0 3.2 2.2 1.9 1.9 2.8 2.5 2.1 2.2 1.0 2.7 2.5 2.3 0.6 2.3 0.6 1.7 1.6 1.0 0.3

0.8 0.8 0.6 0 0.7 1.9 0.9 0.9 1.3 2.0 4.0 3.3 2.3 2.0 1.9 2.7 2.4 2.0 2.1 1.3 3.0 2.9 2.6 1.0 2.6 1.0 2.1 1.9 1.4 0.5

1.3 1.3 0.8 0.9 0 1.0 0.4 0.7 0.8 1.4 2.8 3.0 2.0 1.7 1.6 2.8 2.6 2.1 2.3 1.8 3.5 3.4 3.1 1.5 3.1 1.5 2.6 2.4 1.8 1.4

2.3 2.6 2.2 2.1 1.0 0 1.2 2.2 1.6 2.4 5.2 3.8 2.7 2.4 2.4 4.1 3.9 3.5 3.6 3.1 4.8 4.7 4.4 2.8 4.4 2.8 3.9 3.7 3.2 2.7

1.5 1.5 1.0 1.0 0.4 1.4 0 0.4 0.4 1.3 2.4 2.6 1.6 1.3 1.2 2.7 2.8 2.3 2.5 2.0 3.7 3.6 3.3 1.7 3.3 1.7 2.7 2.6 2.0 1.6

1.7 1.6 1.2 1.4 0.8 1.8 0.5 0 0.7 1.3 2.2 2.4 1.4 1.1 1.1 2.5 2.7 2.2 2.3 2.0 3.9 3.7 3.5 1.8 3.5 1.9 2.9 2.8 2.2 1.6

1.8 1.8 1.4 1.4 0.8 1.8 0.4 0.5 0 0.9 2.1 2.3 1.3 1.0 0.9 2.4 2.4 1.8 2.8 2.3 4.0 3.9 3.6 2.0 3.6 2.0 3.1 2.9 2.4 1.9

2.6 2.6 2.2 2.2 1.4 2.4 1.2 1.3 0.9 0 2.8 3.0 2.0 1.7 1.6 3.1 3.1 2.5 3.6 3.1 4.8 4.7 4.4 2.8 4.4 2.8 3.9 3.7 3.2 2.7

3.1 3.1 2.9 2.6 2.5 3.5 2.5 2.0 2.0 2.7 0 0.7 0.9 1.2 1.5 2.0 3.5 2.0 2.6 2.7 5.7 6.8 4.7 2.7 4.7 3.1 3.8 4.1 3.5 2.9

2.8 2.8 2.6 2.3 2.1 3.1 2.2 1.7 1.7 2.4 0.9 0 0.8 0.6 1.2 2.2 1.9 1.5 2.1 2.2 5.9 4.2 4.3 2.3 4.3 2.7 3.3 3.6 3.0 2.5

3.1 3.1 2.9 2.6 2.4 3.4 2.5 2.0 2.0 2.7 0.5 1.1 0 0.9 1.5 2.5 2.2 1.8 2.5 2.5 6.2 4.5 4.6 2.6 4.6 3.0 3.6 3.9 3.3 2.8

2.2 2.2 2.0 1.7 1.5 2.5 1.6 1.1 1.1 1.8 0.7 1.3 0.4 0 0.6 1.8 1.8 1.4 2.0 2.1 4.0 4.3 4.0 2.1 4.0 2.4 3.2 3.3 2.7 1.9

2.0 2.0 1.8 1.5 1.4 2.4 1.4 0.9 0.9 1.6 1.3 1.4 0.8 0.2 0 1.5 1.5 1.2 1.7 1.9 3.8 4.1 3.8 1.9 3.8 2.2 3.0 3.1 2.6 1.7

3.0 3.1 2.8 2.5 2.6 3.6 2.8 2.5 2.5 3.2 2.1 2.1 1.9 1.7 2.0 0 0.7 1.0 1.1 1.9 4.8 3.7 3.7 2.0 6.3 2.4 2.5 3.3 2.7 2.9

3.0 3.2 2.8 2.6 2.7 3.7 3.0 2.6 8.0 8.6 2.2 2.2 2.0 1.8 2.1 0.7 0 1.0 0.7 2.0 3.5 4.6 4.9 2.0 5.0 2.4 3.7 3.3 2.8 2.9

2.3 2.5 2.1 2.0 2.1 3.1 2.3 2.0 2.0 2.6 2.0 2.0 1.9 1.5 1.4 1.0 0.7 0 0.6 1.3 2.6 3.1 3.1 1.3 3.8 1.7 1.9 2.7 2.1 2.2

2.7 2.8 2.5 2.4 2.5 3.5 2.7 2.4 2.4 3.1 2.5 2.6 2.4 2.0 1.9 1.1 0.7 0.9 0 1.6 1.9 3.3 3.3 1.7 4.0 2.1 2.2 3.0 2.4 2.6

1.7 1.9 1.6 1.8 2.3 3.5 2.5 2.5 2.9 3.6 2.9 2.9 2.2 1.9 1.9 1.9 1.9 1.1 1.3 0 2.1 2.1 2.1 0.7 3.3 1.1 1.2 2.1 1.5 1.7

3.0 3.2 2.9 3.1 3.6 4.8 3.8 3.8 4.2 4.9 6.0 7.8 4.1 3.8 3.7 4.9 3.6 2.9 1.9 2.9 0 1.2 1.1 3.0 1.9 2.4 1.8 1.3 1.8 3.0

3.0 3.2 2.9 3.1 3.6 4.8 3.8 3.8 4.2 4.9 5.4 5.4 4.8 4.5 4.4 4.3 5.0 3.6 3.6 2.9 1.7 0 0.8 2.7 0.5 2.4 1.8 1.4 1.8 3.0

2.4 2.6 2.3 2.5 3.0 4.2 3.2 3.2 3.6 4.3 4.7 4.7 4.0 3.7 3.7 3.6 4.7 2.9 3.4 2.3 1.4 0.4 0 2.1 0.072 1.8 1.4 0.8 1.2 2.4

1.2 1.3 1.0 1.3 1.7 2.9 1.9 1.9 2.4 3.0 2.9 3.1 2.1 1.8 1.7 2.3 2.1 1.5 1.8 1.0 2.6 2.5 2.2 0 2.2 0.6 1.7 1.5 1.0 1.1

2.6 2.8 2.4 2.7 3.2 4.3 3.3 3.4 3.8 4.5 4.6 4.7 4.2 3.9 3.8 3.6 4.7 2.9 3.1 2.4 1.4 0.4 0.3 2.2 0 1.9 1.4 0.9 1.4 2.5

1.1 1.3 0.9 1.2 1.7 2.8 1.8 1.9 2.3 3.0 3.5 3.5 2.7 2.4 2.3 2.8 2.5 1.9 2.2 0.9 2.0 1.9 1.6 0.7 1.6 0 1.1 0.9 0.4 1.0

2.0 2.2 1.9 2.1 2.6 3.8 2.8 2.8 3.2 3.9 3.7 3.7 3.1 2.8 2.7 2.6 3.2 1.9 2.0 2.0 0.9 1.4 1.4 2.0 2.1 1.4 0 1.6 1.1 2.0

1.7 1.8 1.5 1.8 2.2 3.4 2.4 2.4 2.9 3.5 4.1 4.1 3.2 2.9 2.9 3.3 4.4 2.5 2.8 1.5 1.4 1.3 1.3 1.3 1.2 1.0 1.1 0 0.4 1.6

1.2 1.4 1.1 1.3 1.8 3.0 2.0 2.0 2.4 3.1 3.6 3.6 2.8 2.5 2.4 2.9 2.7 2.1 2.4 1.0 1.9 1.8 1.6 0.8 1.6 0.6 1.0 0.9 0 1.1

0.9 0.9 0.7 0.3 0.6 1.8 0.8 0.9 1.3 1.9 4.0 3.2 2.2 1.9 1.8 2.7 2.5 2.0 2.2 1.9 3.1 3.0 2.7 1.1 2.7 1.1 2.2 2.1 1.5 0

Appendix 

 

A. Data for “Fixed-Matrix Code” example 

 

 

 

 

 

 

 

 

 

 

Fig. 23: Shortest path distances for “Fixed-Matrix Code” example 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

50 

 

B. Codes’ results 

 

“Fixed-Matrix Code” results 

 

 

Fig. 24: Optimal solution value for the “Fixed-Matrix Code” example 

 

 

Fig. 25: Optimal routes for the “Fixed-Matrix Code” example 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

51 

 

 

 

Fig. 26: Optimal order of visit for the “Fixed-Matrix Code” example 

 

“Sub-Matrix Code” results 

 

 

Fig. 27: Optimal solution value for the “Sub-Matrix Code” example 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

52 

 

 

 

Fig. 28: Optimal routes for the “Sub-Matrix Code” example 

 

 

Fig. 29: Optimal order of visit for the “Sub-Matrix Code” example 

 

 

 

 

 

 

 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

53 

 

Application’s Manual 

In this section, all the necessary steps that the user must follow in order to solve a 

real-life TSP will be analyzed. 

Once the coordinates of the nodes that the problem includes are obtained, the user 

must create the shortest path distance matrix, which is the data in order for the TSP code, 

written in C++, to be executed. The distance matrix is created through the Python code that 

takes advantage of the services provided by Google’s API. As a result, the first step would be 

to download the version 2.7.0 of Python along with the 2.7.0 setup tools from the link below: 

 https://www.python.org/download/releases/2.7/ 

The next step is to properly organize the folder of Python, which is created in the hard disk 

(C:) of the computer in order for the code to be executed. The needed structure of the folder is 

depicted in Fig. 30: 

 

 

 

 

 

 

 

 

 

 

 

The file named “DATA” should include the coordinates of all the nodes with that of the 

starting point inserted last and the “testpython” file must include the Python code. In order for 

Fig. 30: Python folder 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

54 

 

the user to obtain the distance matrix in the “DISTANCES” file, the command prompt must 

be opened through this Python file. In the command prompt, one must first type “easy_install 

simplejson” and press Enter. Finally, “testpython” should be typed and by then pressing Enter 

the distance matrix will be created (Fig.31). 

 

 

However, the produced shortest path distances need some modifications in order to be 

utilized as data for the TSP code. The next figure displays the results of the Python code. 

The above file must be transferred into a Microsoft Excel worksheet in order for the 

distance units to be cleared. In addition, all the diagonal elements of the matrix must be set 

equal to zero. After the above modifications are completed, the matrix must be saved as a .txt 

file. The results of the modifications in Microsoft Excel are shown in Fig. 32: 

Fig. 31: Shortest path distance matrix 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

55 

 

Fig. 32: Modifications in Microsoft Excel 

Having the modified distance matrix in a .txt file, one can now proceed with the 

solution of the real-life TSP. The simulation of the TSP code, written in C++, is 

accomplished with the utilization of IBM CPLEX Optimization Studio 12.6. Both the data file 

as well as the TSP code in the form of “VC++ Project” must coexist in the “stat_mda” file 

that the user can find by following the path presented below: 

Hard Disk (C:) → Program Files (x86) → IBM → ILOG → CPLEX_Studio_Preview126 → 

cplex → examples → x86_windows_vs2010 → stat_mda 

Once the above steps are completed, the user will be able to execute the TSP code and obtain 

the solution that occurs from the simulation. 

The visualization process of the optimal routes of the solution is analyzed in Chapter 

4 of the thesis. In order to make this procedure even clearer for the user, it is going to be 

approached in a step-by-step way below: 

• Download QGIS 2.14 from http://www.qgis.org/en/site/forusers/download.html, 

• Download the “OpenLayersPlugin” extension from the interface of QGIS, 

• Display the map of OSM in QGIS, 

• Execute the XML code in the platform of Overpass turbo for a specific region, 

• Export the road network data as geoJSON, 

• Import the road network data as a vector layer on the OpenStreetMap, 

• Configure the road graph extension of QGIS, 



DEVELOPMENT OF AN APPLICATION FOR INPUT/OUTPUT DATA PROCESSING AND 
VISUALIZATION FOR TRAVELLING SALESMAN PROBLEMS 

 

56 

 

• Calculate the shortest path distance for every route of the optimal solution by 

utilizing the shortest path tool of QGIS, 

• Save every calculated shortest path as a shapefile, 

• Clear the map of OSM from all layers, 

• Import all the shapefiles of the solution on the map. 

 

 

 

 


