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Abstract

The objective of this thesis is twofold. First, Bayesian uncertainty quantification, propagation, and

model selection theories are outlined and applied to real-world problems, and second, Bayesian optimal

experimental design theories are studied from a theoretical point of view and also applied to numerical

case-studies. The Bayesian theory for uncertainty quantification, propagation and model selection is

first presented and computational challenges are discussed. The Bayesian formulation is applied to three

case-studies taken from real-world applications, using experimental data collected from field tests. It is

demonstrated how the Bayesian theories can be applied to such real scale problems of model updating

and model selection to draw useful conclusions about the systems under consideration. The examined

problems include: 1) Model updating and model selection in a hanger of an arch bridge using modal

data obtained from acceleration measurements. 2) Model updating of a bridge using a high-fidelity

finite element model utilizing experimentally identified modal data. The modal data are extracted from

ambient acceleration measurements using a software developed in the context of this thesis. 3) Parameter

estimation of non-linear models of seismically isolated bridges using experimentally measured response

time histories from the bridge. Next the theory of Information Theoretic - Bayesian optimal experimental

design is developed. Two approaches are developed for the estimation of the objective function, the

sampling and asymptotic approaches. Novel theoretical contributions are developed in both approaches,

providing further insight into the problem of Bayesian optimal experimental design. The theories of

optimal experimental design are applied to numerical case-studies using finite element models. The

asymptotic approach is applied to design the optimal locations of acceleration sensors on a bridge in

order to perform modal identification, while it also demonstrates the theoretical findings in the particular

problem. Next a joint study is presented in both Bayesian parameter estimation and Bayesian optimal

experimental design, where the newly developed sampling approach is used to find the optimal locations

of strain sensors in a plate with crack under static loading.
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Chapter 1

Introduction

1.1 Research context

In the process of simulating the behavior of complex engineering systems, uncertainties arise mainly

from the assumptions and compromises that enter into the development of mathematical models of such

systems and the applied loads. Such uncertainties lead to significant uncertainties in the predictions made

using simulations. Since predictions form the basis for making decisions, the knowledge and management

of these uncertainties is very important.

The sources of uncertainties in engineering simulations are modeling uncertainties, loading uncertain-

ties and numerical uncertainties. Modeling uncertainties are related to the inadequacy of the mathe-

matical model to represent a physical system. They arise when modeling the constitutive behavior of

materials, the support conditions of structures and their interaction with their environment, the interac-

tion/coupling between substructures (fixity conditions, friction mechanisms, impact phenomena), the ge-

ometric variability due to manufacturing/construction processes, the long-term deterioration mechanisms

(e.g. semi-empirical models for fatigue and corrosion), etc. The parametric uncertainties, originating from

the limited knowledge about the values of the model parameters, are also considered as part of the mod-

eling uncertainties. Loading uncertainties arise from the lack of detailed knowledge about the spatial and

temporal variation of the forces (mechanical, thermal, etc) applied to engineering structures. Representa-

tive examples of loading uncertainties in structural dynamics include spatial variability of road roughness

affecting the dynamics of vehicles, spatial and temporal variability of wind or earthquake-induced ex-

citations on civil engineering structures, turbulent wind loads affecting the design and maintenance of

aircrafts and variability of thermal loads affecting the design of a large class of mechanical and aerospace

structures. Numerical uncertainties are related to the spatial (e.g. finite element) and temporal (nu-

merical time integration schemes) discretization of the partial differential equations used for simulating

the behavior of engineering structures, round-off errors due to computer accuracies, all affecting solution

accuracy.
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Those uncertainties need to be treated in a systematic manner when trying to update system models

with experimental data, in order to obtain robust and reliable models capable of making accurate predic-

tions. The Bayesian statistical framework represents a general, rational and powerful tool for managing

uncertainties that is capable of handling the above stated difficulties (Beck and Katafygiotis, 1998; Beck,

2010; Yuen, 2010). Within this framework, probability is interpreted as the degree of plausibility of a

hypothesis based on the conditioning information (Cox interpretation of probability), where the hypoth-

esis may refer to the model parameters but also to the model itself. This interpretation makes it possible

to extend the application of probability theory to fields where the frequentist interpretation may not be

directly intuitive, as it is the case for one-of-a-kind structures, where no ensemble exists, and also in the

case of limited data, where classical statistics is of limited applicability. Probability density functions

(pdf) are used to describe the variations in the plausibility of the different possible values of the model

parameters. Initial knowledge about the parameters is taken into account through the prior pdf which

is defined by the researcher. The Bayesian approach updates the prior pdf to the posterior pdf which

represents our complete updated knowledge about the parameters in light of the experimental data. In

contrast to deterministic methods, probabilistic methods give the answer in terms of a pdf instead of

a point estimate, which reflects the uncertainty present in our inference due to the various sources of

uncertainty described above.

Probability density functions are also used to model various sources of uncertainty such as model error

and measurement noise which are both unknown quantities but enter the formulation nevertheless and

need to be taken explicitly into account. In the Bayesian framework, probabilities need not only express

the plausibility of a range of parameter values and model uncertainty, but can also be used as measures

of how good a model is in general compared with other competing models of the same system, in light of

the experimental data. This is known as Bayesian model selection (Beck and Yuen, 2004).

The measured data collected from system component tests or system operation through monitoring

can provide valuable information for improving the mathematical models and the probability models of

uncertainties of both the system and loads. Incorporating these data-driven updated models in simula-

tions will yield updated or posterior robust predictions, constituting improved and more reliable estimates

of the system performance. The Bayesian framework exploits the available measured data and any prior

information based on engineering experience, to perform the following tasks:

• Identify and select the most probable mathematical models among a competitive family of math-

ematical models (linear vs nonlinear models; elastic vs hysteretic models; friction/impact models;

correlation structure of a spatially varying quantities such as modulus of elasticity) introduced to

represent the behavior of mechanical components.

• Identify probabilistic models that best account in predictions for the mismatch between model-based

predictions and measurements, manifested due to the inadequacy/imperfections of the mechanical

models used.

• Calibrate the parametric uncertainties involved in mechanical and prediction error models.
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• Propagate uncertainties in simulations for updating robust predictions taking into account the

validated models and the calibrated uncertainties, as well as rationally weight the effect of one or

more highly probable models promoted by the Bayesian methodology.

The second research area of this thesis is concerned with the optimal design of experiments. Model-

based optimal experimental design has to do with finding which is the best way to perform an experiment

so that a specific purpose is achieved, using a model of the system as a guide. Common purposes include

model parameter inference and making predictions using the model. In this thesis model parameter

inference was set as our goal. That is, we seek experimental designs which will result in experimental

data that are the most useful for identifying the parameters of the model. The model parameters are

uncertain, as are the experimental data, since no experiment has taken place at the time of the design.

These uncertainties are also treated with the Bayesian framework for uncertainty quantification, by

assigning a prior pdf for the parameters and a probabilistic model for the difference between the model

predictions and the data, known as the prediction error.

The problem of finding the optimal design is formulated as an optimization problem with respect to

the design variables which describe the various possible experimental designs. The objective function

is rooted in Information Theory and is the expected information gain (KL-divergence) between the

posterior and prior pdfs of the model parameters. This measure quantifies how good a specific design

is for model parameter inference and can also be seen as a special case of a more general ’expected

utility’ framework for optimal experimental design (Lindley, 1956). However, the analytical calculation

of the objective function may not be possible even for simple models and therefore two approaches are

followed: approximating the integrals with sums using samples (Ryan, 2003; Huan and Marzouk, 2013),

and simplifying the integrals by introducing asymptotic approximations (Argyris et al., 2016).

1.2 Organization of this Thesis

The research work of this thesis is organized into 9 chapters as follows:

• Chapter 2 presents the Bayesian theory for uncertainty quantification, propagation and model

selection using experimental data. Also the computational challenges and tools required for Bayesian

analysis are discussed. Chapters 3, 4 and 5 include applications of the Bayesian theories developed

in Chapter 2 in real-world problems with measured experimental data obtained from actual field

measurements.

• Chapter 3 is a case-study in a hanger of an arch bridge located in Greece. The objective is to

study the tension developed in the hanger and the effect of its supports using measured modal

frequencies obtained from acceleration measurements. For that purpose, several model classes are

introduced to model the hanger including high-fidelity finite element models and simple analytic

models. Bayesian model selection is used to rank the models based on the experimental data.
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Bayesian parameter estimation and uncertainty propagation is used to find the plausible values for

the model parameters (hanger tension and boundary condition parameters) and propagate their

uncertainties to make robust predictions.

• Chapter 4 is a case-study in a motorway bridge located in Greece. Field measurements are executed

and acceleration time histories are collected from multiple sensor setups covering the entire length

of the bridge. Bayesian modal identification is used to extract the modal frequencies and mode

shapes from the acceleration measurements. The software used to perform the modal identification

is presented in the Appendix. The experimentally identified modal data are used to perform model

updating in a high-fidelity detailed finite element model of the bridge. Various aspects of modeling

are examined such as the effect of the soil flexibility and the use of mode shapes as vector or scalar

data (using the MAC value). All of those different modeling assumptions result in different models

of the structure and their effect in Bayesian model updating is investigated.

• Chapter 5 is a case-study in a model of a seismically isolated bridge. Bayesian inference is used to

quantify and propagate uncertainties in the parameters of a nonlinear model of a seismically isolated

structure equipped with nonlinear hysteretic devices. The ultimate goal is to build high fidelity

models of the system components to simulate the behavior (performance and reliability) of the

combined system. The structural parameter calibration and uncertainty quantification is performed

at the system level for the nonlinear hysteretic isolation devices using controlled laboratory tests

performed on a shake table. Uncertainty models are identified using measurements of system

tests, consisting of displacement, acceleration and restoring force response time histories. The

model uncertainty analyses resulted in building a high fidelity model for the system that can be

used for performing reliable robust performance predictions that properly take into account model

uncertainties.

• Chapter 6 presents the Information Theoretic - Bayesian theory for model-based optimal experi-

mental design. This problem is formulated as an optimization problem with respect to the design

variables which describe the various experimental design possibilities such as sensor locations and

excitation characteristics. The goal of the experiment is to perform Bayesian parameter inference

about the parameters of the model. Two approaches are discussed in the approximation of the

objective function, the sampling approach (derivative-free but computationally expensive) and the

asymptotic approach (requires first derivatives but is computationally cheaper). The theory for

both methods is developed. Novel theoretical findings are presented for both methods that provide

insight into the problem of optimal experimental design. For the sampling method, a new improved

formula for estimating the objective function is presented, followed by a novel interpretation. For

the asymptotic method, a novel theorem is presented that explains the effect of the Gaussian prior in

the optimal design. Chapter 6 ends with simple applications using analytic models that demonstrate

both approaches and their differences. Numerical case-studies of optimal experimental design using
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both the sampling and asymptotic methods with finite element models are carried out in Chapters

7 and 8.

• Chapter 7 is a numerical case-study in performing asymptotic optimal experimental design to find

the optimal locations of acceleration sensors in order to do modal identification in a bridge. The

case-study is carried out using the same high-fidelity detailed finite element model of the bridge

used for model updating in Chapter 4. Due to the linear nature of the problem, the asymptotic

method is chosen and its use is demonstrated to find the optimal locations for up to 20 sensors.

The novel theoretical result regarding the effect of the Gaussian prior developed in Chapter 6 is

demonstrated and verified numerically.

• Chapter 8 is a numerical case-study in both parameter estimation and optimal experimental design.

The examined problem is a plate with a crack and the goals are to perform: 1) optimal strain sensor

location in the plate for the most efficient and reliable crack identification and 2) crack identification

using simulated experimental strain data. The same model is used for both applications, which is

a parametrized finite element model of a plate with a crack, where the parameters describe the

crack location, length and orientation. Due to the non-availability of derivatives of the strains with

respect to the crack parameters, the sampling method is used for the optimal sensor location part.

The strain sensors are placed in regular grid configurations of different types which are compared in

order to find which is the best, using the new formula for the objective function estimator introduced

in Chapter 6. The design variables describe the location and size of the grid for a particular number

of strain sensors. The crack identification problem is treated as a Bayesian parameter estimation

problem according to the theory of Chapter 2, where the parameters are those describing the crack.

Due to the lack of real experimental data, simulated strain data were created in order to demonstrate

the methodology. Emphasis is given in the effect of the number of strain sensors and the prediction

error magnitude in the results.

• Chapter 9 summarizes the work done in this thesis and suggests directions for potential future work.
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Chapter 2

Bayesian theory for uncertainty

quantification, propagation and

model selection

2.1 Introduction

A Bayesian framework for uncertainty quantification, propagation and model selection in complex struc-

tural dynamics simulations using experimental measurements is presented. The framework covers un-

certainty quantification techniques for parameter estimation and model selection, as well as uncertainty

propagation techniques for robust prediction of output quantities of interest in reliability and safety of

the structural systems analyzed. Bayesian computational tools (sampling algorithms) are presented. The

Bayesian framework and the computational tools are implemented in the next Chapters for linear and

nonlinear models in structural dynamics using either identified modal properties or measured response

time histories. High performance computing techniques that drastically reduce the excessive computa-

tional demands that arise from the large number of system simulations are outlined.

2.2 Parameter estimation

Consider a parameterized class Mm of structural dynamics models used to predict various output quan-

tities of interest (QoI) of a system. Let θm ∈ RNm be a set of parameters in this model class that need

to be estimated using experimental data and f(θm|Mm) be model predictions of output QoI given a

value of the parameter set θm. Probability density functions (PDF) are used to quantify the uncertainty

in the parameters θm. The probability distribution of the parameter set θm quantifies how plausible

is each possible value of the model parameters. The user may assign a prior probability distribution
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πm(θm) to the model parameters to incorporate prior information on the values of the model parameters.

The structural model and uncertainty propagation algorithms can be used to identify the uncertainty in

the prediction of the output QoI. However, the probability distribution πm(θm) is subjective based on

previous knowledge and user experience.

In Bayesian inference, the interest lies in updating the probability distribution of the model parameters

θm based on measurements and then propagate these uncertainties through the structural dynamics model

to quantify the uncertainty in the output QoI. For this, let D ≡ ŷ = {ŷr ∈ RN0 , r = 1, · · · ,m} be a

set of observations available from experiments, where N0 is the number of observations. The Bayesian

formulation starts by building a probabilistic model that characterizes the discrepancy between the model

predictions f(θm|Mm) obtained from a particular value of the model parameters θm and the corresponding

data ŷ. This discrepancy always exists due to measurement, model and computational errors. An error

term e is introduced to denote this discrepancy. The observation data and the model predictions satisfies

the prediction error equation

ŷ = f(θm|Mm) + e (2.1)

A probabilistic structure for the prediction error should be defined to proceed with the Bayesian

calibration. Let Me be a family of probability model classes for the error term e. This model class depend

on a set of prediction error parameters θe to be determined using the experimental data. Similarly to

the structural model parameters θm, the probability distribution πe(θe) is also assigned to quantify the

possible values of the prediction error parameters θe.

The Bayesian approach (Beck and Katafygiotis, 1998; Beck, 2010) to model calibration is used for

updating the values of the combined set θ = (θm, θe) associated with the structural and the prediction

error parameters. The parameters θm and θe can be considered to be independent with prior probability

distribution for the combined set given by π(θ|M) = πm(θm|Mm)πe(θe|Me), where M = {Mm,Me}
includes the structural and prediction error model classes. The updated PDF p(θ|D,M) of the parameters

θ, given the data D and the model class M , results from the application of the Bayes theorem

p(θ|D,M) =
p(D|θ,M) π(θ|M)

p(D|M)
(2.2)

where p(D|θ,M) is the likelihood of observing the data from the model class and p(D|M) is the evidence

of the model, given by the multi-dimensional integral

p(D|M) =

∫
Θ

p(D|θ,M) π(θ|M) dθ (2.3)

over the space of the uncertain model parameters.

The updated probability distribution of the model parameters depends on the selection of the predic-

tion error e. Invoking the maximum entropy principle, a normal distribution e ∼ N(µ,Σ), where µ is the

mean and Σ is the covariance matrix, is a reasonable choice for the error since the normal distribution

is the least informative among all distributions with specified the lowest two moments. The structure
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imposed on the mean vector µ and the covariance matrix Σ affect the uncertainty in the model parameter

estimates. A zero mean model error is usually assumed so that µ = 0. However, to take into account

the bias in the model predictions of the various response quantities involved in f(θm|Mm) and try to

reconcile conflicting predictions, one could introduce a shift in the predictions by taking µ 6= 0. In this

case the parameters defining the structure of µ are part of the unknowns in θe to be determined by the

Bayesian technique. A diagonal matrix is a reasonable choice for the covariance matrix in the case where

the components of the prediction error can be considered to be uncorrelated. This holds in the case of

uncorrelated measurements in ŷ and independent components in the prediction vector f(θm|Mm). As a

results, the covariance matrix takes the form Σ = diag(σ2
r ŷ

2
r), where the variance parameters σ2

r are part

of the unknown constants in θe to be determined by the Bayesian calibration. In structural dynamics,

the effect of prediction error correlation has been investigated and found to affect the results of the model

calibration when the sensors are closely located (Simoen et al., 2013b). Depending on the nature of the

simulated QoI, alternative prediction error models can also be used.

Using the prediction error equation (2.1), the measured quantities follow the normal distribution ŷ ∼
N(f(θm|D)+µ(θe),Σ(θe)), where the explicit dependence of µ(θe) and Σ(θe) on θe is introduced to point

out that the mean and the covariance of the overall normal prediction error model depends only on the

model prediction error parameters θe and is independent of the structural parameters θm. Consequently,

the likelihood p(D|θ,M) of observing the data follows the multi-variable normal distribution given by

p(D|θ,M) =
|Σ(θe)|−1/2

(2π)
m/2

exp

[
−1

2
J(θ;M)

]
(2.4)

where

J(θ;M) = [ŷ − f(θm|M)− µ(θe)]
T

Σ−1(θe)[ŷ − f(θm|M)− µ(θe)] (2.5)

The selection of the prior distribution affects the posterior distribution of the model parameters for

the case of relatively small number of data. Usually a non-informative prior can be used. For example

a uniform distribution of the model parameters does not give any preference to the values of the model

parameters given the data. For cases of large number of model parameters where unidentifiability issues

may occur, a Gaussian prior can avoid unidentifiability issues and enable the estimation of the model

parameters using Bayesian numerical analysis tools, avoiding convergence problems of the gradient and

stochastic optimization techniques used in Bayesian asymptotic approximations.

2.3 Model selection

The Bayesian probabilistic framework can also be used to compare two or more competing model classes

and select the optimal model class based on the available data. Consider a family MFam = {Mi,

i = 1, · · · , κ}, of κ alternative, competing, parameterized FE and prediction error model classes, and let

θi ∈ RNθi be the free parameters of the model class Mi. The posterior probability Pr(Mi|D) of the i-th
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model class given the data D is (Beck and Yuen, 2004; Yuen, 2010)

Pr(Mi|D) =
p(D|Mi) Pr(Mi)

p(D|MFam)
(2.6)

where P (Mi) is the prior probability and p(D|Mi) is the evidence of the model class Mi. The optimal

model class Mbest is selected as the one that maximizes P (Mi|D) given by (2.6). Model class selection

is used to compare between alternative model classes and select the best model class (Muto and Beck,

2008). The model class selection can also be used to identify the location and severity of damage (Ntotsios

et al., 2009).

2.4 Uncertainty propagation for robust prior and posterior pre-

dictions

Let q(θ) be a scalar output QoI of the system. Prior robust predictions, before the availability of measured

data, are derived by propagating the prior uncertainties in the model parameters quantified by the prior

PDF π(θ|M). Posterior robust predictions of q(θ) are obtained by taking into account the updated

uncertainties in the model parameters given the measurements D. Let p(q|θ,M) be the conditional

probability distribution of q given the values of the parameters. Using the total probability theorem,

the prior and posterior robust probability distribution p(q|M) of q, taking into account the model M , is

given by (Papadimitriou et al., 2001; Beck and Taflanidis, 2013)

p(q|M) =

∫
p(q|θ,M) p(θ|M) dθ (2.7)

as an average of the conditional probability distribution p(q|θ,M) weighted by the PDF p(θ|M) of the

model parameters, where p(θ|M) ≡ π(θ|M) for prior estimate in the absence of data, or p(θ|M) ≡
p(θ|D,M) for posterior estimate given the data D, respectively.

Let G(q; θ) be a performance measure of the system which depends on the deterministic output QoI

q(θ). The prior robust performance measure E[G(q; θ)|M)] ≡ Eπ[G(q; θ)|M)] or the posterior robust

performance measure E[G(q; θ)|M)] ≡ Ep[G(q; θ)|D,M)] given the data D is

E[G(q; θ)|M)] =

∫
G(q; θ) p(θ|M) dθ (2.8)

where p(θ|M) is either the prior PDF π(θ|M) or the posterior PDF p(θ|D,M), respectively.

Robust predictions of q(θ) that account for the uncertainty in θ are also obtained by simplified

measures such as mean and variance σq
2 = E[q2(θ)]−m1

2 = m2
2 −m1

2 with respect to θ, derived from

the first two moments mk of q(θ), k = 1, 2, given by the multi-dimensional integrals

mk(D,M) =

∫
[q(θ)]

k
p(θ|M) dθ (2.9)
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over the uncertain parameter space. The integral (2.9) is a special case of (2.8) by selecting G(q; θ) =

[q(θ)]
k
.

2.5 Sampling algorithms

In the general case, the model of the system is not a simple analytical model where the dependence on

the parameters is explicit, and needs to be treated as a black-box system where we can only provide the

inputs and get the outputs. In this case the calculation of the multi-dimensional integrals required for

the estimation of the evidence of a model or for uncertainty propagation must be performed numerically.

This is also true for the posterior distribution itself which can not be calculated as a closed-form ex-

pression of the parameters, since the dependence on the parameters is not explicit. The approach used

throughout this thesis is to use sampling algorithms to deal with all of the above mentioned problems.

A detailed description of the state-of-the-art computational tools for Bayesian inference can be found in

Papadimitriou (2016).

Sampling algorithms are non-local methods capable of providing accurate representations for the

posterior PDF and accurate robust predictions of output QoI. Sampling algorithms, such as Markov

Chain Monte Carlo (MCMC) (Metropolis et al., 1953; Hastings, 1970; Cheung and Beck, 2009) are often

used to generate samples θ(i), i = 1, · · · , N , for populating the posterior PDF, estimating the model

evidence and computing the uncertainties in output QoI. Among the stochastic simulation algorithms

available, the transitional MCMC algorithm (TMCMC) (Ching and Chen, 2007) is one of the most

promising algorithms for finding and populating with samples the importance region of interest of the

posterior probability distribution, even in challenging unidentifiable cases and multi-modal posterior

distributions. Approximate methods based on Kernels are then used to estimate marginal distributions

of the parameters. In addition, the TMCMC method yields an estimate of the evidence in (2.3) of the

model class Mi based on the samples already generated by the algorithm.

Sampling methods can be conveniently used to estimate the multi-dimensional integrals (2.7) and (2.8)

from the samples θ(i), i = 1, · · · , N , generated from the posterior probability distribution p(θ|D,M). In

this case, the integrals can be approximated by the sample estimates

p(q|M) ≈ 1

N

N∑
i=1

p(q|θ(i),M) (2.10)

E[G(q; θ)|M)] ≈ 1

N

N∑
i=1

G(q; θ(i)) (2.11)

respectively. The simplified measures of uncertainties given in (2.9) are also given by the sample estimate

(2.11) with G(q; θ) = [q(θ)]
k
. The sample estimates (2.10) and (2.11) require independent forward system

simulations that can be executed in a perfectly parallel fashion.
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2.6 Computational issues and tools

When the Bayesian theories are applied to real-world engineering problems, the models used in the

simulations of those systems tend to be very complex in nature. In most practical engineering problems

the model of the actual system is a finite element model. The finite element model complexity can be due

to several reasons. Common sources of complexity include: non-linearities (geometrical or of other type),

complicated geometry, and modeling of very special regions such as cracks. Non-linearities can appear in

several forms including geometric, material, or equation nonlinearities. Geometric non-linearities require

a more elaborate and sophisticated procedure to take place in order to solve the model, where several

steps need to be taken to account for the changes in the geometry during the solution. A case with a

geometrically non-linear finite element model is handled in Chapter 3. A complicated geometry requires

in general much more finite elements in order to be discretized accurately than a simple geometry. This

in turn increases the number of nodes and degrees of freedom of the model, resulting in an increase of

computational time-to-solution. A case with a complicated geometry of an actual bridge is handled in

Chapter 4. Finally, the modeling of very fine regions such as cracks using the finite element method

requires an increased number of elements near the crack tip, which increases the number of nodes and

degrees of freedom of the model as well, resulting in a higher computational time-to-solution. A case

with a cracked structure is handled in Chapter 8.

Three common methods for reducing the computational cost are: model reduction, surrogate modeling

and parallelization. Model reduction techniques are used to reduce the size of the system matrices

(stiffness and mass matrices in finite element formulations) so that they can be solved faster, while

retaining sufficient accuracy in the model predictions. A model reduction technique is used in order to

reduce the size of a large high-fidelity finite element model of a bridge in Chapter 4. Surrogate modeling

works by approximating the model prediction at a given parameter value based on its output at a set

of fixed parameter values. In that way, surrogate modeling acts as an interpolating function for the

model output, and replaces actual model runs with interpolation approximations. Model reduction and

surrogate modeling techniques act on the model level by making it easier and cheaper to evaluate. On the

hardware level, parallelization is a technique that is commonly used in order to exploit parallel computing

environments by performing many model runs simultaneously in multiple CPU cores. In this way, the

hundreds or thousands of required model runs are distributed among multiple CPU cores which in turn

reduces the computational time. The TMCMC algorithm is very-well suited for parallel implementation

in a computer cluster. Details of the parallel implementation are given in (Angelikopoulos et al., 2012;

Hadjidoukas et al., 2015) and the algorithm is applied in Chapters 3, 4, 5 and 8. Specifically, a parallel

implementation algorithm is activated at every stage of the TMCMC algorithm exploiting the large

number of short, variable length, chains that need to be generated at the particular TMCMC stage.

Dynamic scheduling schemes can be conveniently used to optimally distribute these chains in a multi-

host configuration of complete heterogeneous computer workers. The dynamic scheduling scheme ensures

an efficient balancing of the loads per computer worker in the case of variable run time of likelihood
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function evaluations and unknown number of surrogates activated during estimation. Specifically, each

worker is periodically interrogated at regular time intervals by the master computer about its availability

and samples from TMCMC chains are submitted to the workers on a first come first serve basis to perform

the likelihood function evaluations so that the idle time of the multiple workers is minimized. It should

be noted that uncertainty propagation using sampling algorithms is highly parallelizable. For infinite

computing resources, the time to solution for making robust prediction of a number of response QoI can

be of the order of the time to solution for one simulation run.
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Chapter 3

Bayesian estimation of tension in

bridge hangers using modal

frequency measurements

Original publication:

Papadimitriou, C., Giakoumi, K., Argyris, C., Spyrou, L. and Panetsos, P. ”Bayesian estimation of

tension in bridge hangers using modal frequency measurements”. In: Journal of Structural Monitoring

and Maintenance, 3(4): 349-375, (2016).

Abstract

The tension of an arch bridge hanger is estimated using a number of experimentally identified modal

frequencies. The hanger is connected through metallic plates to the bridge deck and arch. Two different

categories of model classes are considered to simulate the vibrations of the hanger: an analytical model

based on the Euler-Bernoulli beam theory, and a high-fidelity finite element (FE) model. A Bayesian

parameter estimation and model selection method is used to discriminate between models, select the

best model, and estimate the hanger tension and its uncertainty. It is demonstrated that the end plate

connections and boundary conditions of the hanger due to the flexibility of the deck/arch significantly

affect the estimate of the axial load and its uncertainty. A fixed-end high fidelity FE model of the hanger

underestimates the hanger tension by more than 20 compared to a baseline FE model with flexible

supports. Simplified beam models can give fairly accurate results, close to the ones obtained from the

high fidelity FE model with flexible support conditions, provided that the concept of equivalent length

is introduced and/or end rotational springs are included to simulate the flexibility of the hanger ends.

The effect of the number of experimentally identified modal frequencies on the estimates of the hanger
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tension and its uncertainty is investigated.

3.1 Introduction

Hangers are used as deck support elements in arch bridges. Methods to monitor the axial loads in

hangers are important for identifying the structural integrity of arch bridges. Large enough axial loads

in the hangers affect the hanger modal frequencies due to the stiffness increase, so that the estimation

of the axial load can be based on comparing model predictions with the experimentally estimated modal

frequencies. The axial load is then estimated as the one that gives model predictions of the modal

frequencies that matches the experimentally identified modal frequency values. The model predictions of

the modal frequencies are affected by the flexural rigidity, end connection details and boundary conditions

at the end supports of the hangers. Connections of a circular cross-section hanger to the bridge deck

and arch may often be made through metallic guides or plates and give rise to boundary conditions that

are not well defined, complicating the selection of the appropriate boundary conditions in a modeling

procedure (Lagomarsino and Calderini, 2005). Depending on the connections, the arch or the deck may

be flexible in different direction of motion. To obtain reliable predictions of the hanger axial loads these

factors should be taken into account in the modeling.

Methods based on string and beam theory (Bokaian, 1990; Barcilon, 1976) have been developed for

estimating the cable tension from experimentally identified modal frequencies. Exact formulas requiring

the iterative solution of the characteristic equation as well as simplified practical formulas have been

proposed for the estimation of the tension (Shinke et al., 1996; Fang and Wang, 2012; Ren et al., 2005;

Nam and Nghia, 2011; Huang et al., 2015) taking into account the bending stiffness and sag-extensibility.

To account for the boundary conditions, Ceballos and Prato (2008) introduced rotational springs at the

cable ends. Techniques were introduced to approximately determine the rotational spring stiffnesses and

the axial force and cable bending stiffness were then adjusted to fit the experimental values of the modal

frequencies. The problem of tension estimation in tie-rods using beam theory and rotational springs to

simulate unknown boundary conditions was also discussed in Lagomarsino and Calderini (2005). Bellino

et al. (2010) has introduced the concept of equivalent cable length to account for the unknown boundary

conditions. They proposed a method to estimate the cable tension by means of vibration response and

moving mass technique. The same authors (Bellino et al., 2011) introduced the modal length concept and

developed a method for estimating the cable tension using supplementary measurements from a cable with

an added mass. Belleri and Moaveni (2015) have also used the concept of equivalent length and rotational

springs to account for uncertain boundary conditions, providing reliable estimates of tensile loads in tie

rods using measurements of the first modeshape in addition to the modal frequency measurements.

FE modeling of the hanger was also used to accurately identify the hanger tension, flexural and axial

rigidity. A FE model can be used as a baseline model for identifying the cable tension (Kim and Park,

2007). The importance of boundary conditions on the reliable estimates of the modal frequencies from

a FE model was pointed out in Park et al. (2015). Ni et al. (2002) used FE modeling to estimate the
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cable tension from multimodal measurements, concluding that for long-span large-diameter cables the

tension is reliably estimated when accurately accounting for all effects such as bending stiffness, boundary

conditions as well as other constraints. The construction of a finite element model requires special software

and resources and may be a time consuming procedure, especially when solving the inverse problem of

estimating the cable tension and boundary conditions. Simple models based on beam theory that include

the effect of flexural rigidity, flexibility due to end connections and boundary conditions can provide

computationally inexpensive estimates of the hanger tension.

The objective of this work is to estimate the hanger tension in relatively large-diameter hangers of arch

bridges that are connected to the bridge deck and arch through sizable metallic end plates, asymmetrically

oriented at bottom and top hanger ends, making difficult the specification of the cable length, hanger-

plate assembly flexibility and boundary conditions. The estimation is based on modal frequencies of the

cable, in both the longitudinal and transverse direction of the bridge, identified from modal tests. Two

different categories of model classes are introduced to represent the dynamics of the hanger. Different

model classes in both categories are used to predict the hanger modal frequencies given the axial load in

the hanger. The first category is based on a conventional analytical beam model formulation resulting

from Euler-Bernoulli beam theory, used to predict the modal frequencies of the hanger with various

boundary conditions, given the tension on the hanger. Two sets of boundary conditions are considered,

one with fixed ends and the other with flexible ends, quantified by rotational springs attached at the ends.

The concept of the equivalent length that is left free to be estimated together with the hanger tension

so that predictions match the measurements is also considered. Analytical transcendental equations are

developed and numerically solved to obtain the modal frequencies.

The second category is based on high-fidelity three-dimensional baseline FE models developed in

Abaqus for the hanger, including the end plate connections. Two different types of boundary conditions

are implemented and the effect on the hanger tension estimation is evaluated. The first type assumes fixed

ends, while the second type models the end surfaces that connect to the deck and the arch as flexible with

respect to the rotation about axes perpendicular to the hanger axis. The flexibility of the end supports

arises from the flexibility of the arch and the deck at the connection ends and is appropriately modeled

by attaching on the boundary plate ends a set of distributed springs along the direction of hanger axis to

simulate the rotation along the two axes perpendicular to the hanger axis. The procedure for predicting

the modal frequencies from the FE models given the hanger tension and the boundary conditions is

outlined.

Bayesian inference (Beck and Katafygiotis, 1998; Yuen, 2010) for parameter estimation and model

selection is used for estimating the hanger tension based on the different model classes introduced and

the experimentally identified modal frequencies. The Bayesian model selection method (Beck and Yuen,

2004) is used to select the best model class for representing the dynamics of the hangers. In contrast

to existing methods, the present work uses Bayesian inference for the first time to discriminate between

model classes, select the best model class out of a series of increasingly complex models, as well as

estimate the axial force and its uncertainty. The present investigation includes comparison of results
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and conclusions related to the estimate of the hanger tension along with its uncertainty, the effect of the

number of experimental frequencies available from modal tests, the effect of end plate connections and

boundary conditions on the prediction of the hanger tension, as well as the adequacy of each one of the

model class to represent the dynamics of the hanger.

3.2 Description of hanger and experimental data

The hanger under investigation is hanger 3 of the 20 hangers used to support the deck of an arch bridge

located in Athens, Greece. The arch bridge is shown schematically in Figure 3.1. The hanger geometry,

along with the geometry of the connections of the hangers to the deck and the arch, is shown in Figure

3.2a. The hangers are made out of steel and they are connected to the deck and the arch substructures

with edge plates as shown in Figure 3.2b. The edge plates are welded to the hangers and deck or the arch.

The connections of the hanger with the deck or the arch with end plates are approximately 1 m long and

affect the hanger flexibility at the two ends. The plate that connects the hanger with the deck has its

orientation along the longitudinal direction of the bridge deck, while the plate that connects the hanger

to the arch has its orientation along the transverse direction of the bridge deck. The boundary conditions

at the plate surface that connects to the arch or the deck substructures depend on the flexibility of the

deck and the arch.

Figure 3.1: The arch bridge

The hangers are made of steel with modulus of elasticity E = 200Gpa, mass density 7800 kg/m3 and

Poisson ratio 0.3. The total length of the hanger 3 including the connections is 12 m, while the clear

length of the circular section of the hanger is 9.817 m. The diameter of the circular section of the hanger

is 0.13 m. It should be noted that the hanger differs from conventional cables which are often assumed as

string elements. The bending stiffness of the present hanger cannot be ignored in predicting the modal

frequencies. In addition the plate elements installed in the hangers to connect the circular section to
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the bridge arch and deck also affect the bending stiffness. Based on the design plans, the geometry of

the hanger, its material properties and the connection details of the two edge plates of the hanger are

identical. The only difference is the orientation of each edge plate. Assuming that the end conditions

of the edge plates are fixed, the modal frequencies of vibration of the hanger along the longitudinal and

transverse direction bridge are expected to be identical.

(a)

Longitudinal

1 m

1 m

1 m

1 m

Φ 130mm

Cable section

Transverse

plate thickness 
50mm

plate thickness 
50mm

(b)

Figure 3.2: (a) The geometry of hanger 3, (b) The geometry of the plates connecting the circular hanger

to the arch and the deck of the bridge

Impulse hammer tests performed on the hanger 3 of the bridge are used to estimate the modal

frequencies of the hanger. The tests are performed using two acceleration sensors placed on the hanger

at distances approximately 1.9m to 2.3m from its bottom edge. The sensor configuration is such that

one acceleration sensor measures along the longitudinal direction and the other along the transverse

direction of the bridge. To avoid placing sensors close to a node of a mode shape, two sensor setups are

used, one with both sensors placed at approximately 2.3 m from the bottom edge of the hanger and the

other with both sensors placed at approximately 0.4 m lower than the first location. For each set up,

two impulse hammer tests are performed, one striking the hammer on the hanger along the longitudinal

and the other striking the hanger along the transverse direction of the bridge, ensuring that the hanger

modes along the longitudinal and transverse directions are excited, respectively. The impact locations

of the hammer are chosen to be in close proximity to the location of the sensors. For each setup and

test case, the measurements consist of the time histories of the hanger force and the two accelerations.
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Two sets of measurements are available to identify each mode. For each set of measurements, the

optimal values of the lowest six modal frequencies in either the longitudinal or the transverse directions

are estimated using nonlinear least-squares frequency domain methods, minimizing the Euclidean norm

of the difference between the experimentally identified frequency response functions estimated by the

measured time histories and the ones predicted by a modal model of the hanger (Heylen et al., 1998;

Ewins, 2000). Illustrative forced vibration acceleration time histories can be found in Appendix B.

Table 3.1: Experimentally identified modal frequencies (Hz) of hanger 3 in the transverse (trans) and

longitudinal (long) directions

Mode # trans long % difference

1 5.82 6.09 2.3

2 13.85 14.8 3.3

3 26.17 27.0 1.6

4 40.47 41.8 1.6

5 59.3 61.5 2.8

6 81.3 83.68 1.4

Table 3.1 shows the optimal values of the experimentally identified modal frequencies of hanger 3 in

the transverse and longitudinal directions. Note that the uncertainty in the experimentally identified

values of the modal frequencies are not reported due to the small number of experimental tests available.

However, they are expected to be considerably less than 1%. It is observed that the modal frequencies

differ in the two longitudinal and transverse directions. The percentage differences range from 1.4% to

3.3% and cannot be justified by material or geometric variability of the hanger. Due to the symmetry of

the hanger and the connection plates, this is a strong indication that the boundary conditions at the end

of the hangers are responsible for such differences. Thus the hanger end conditions cannot be assumed

to be fixed. This study investigates the effects of the boundary conditions on the estimation of the axial

force and provides evidence, based on Bayesian inference, that fixed boundary conditions assumed for

the ends may result in misleading estimates of the axial hanger loads.

3.3 Modal frequency predictions based on beam theory

The prediction of the modal frequencies of the hanger subjected to an axial load is based on the Euler-

Bernoulli beam theory. The equation of motion of a beam subjected to axial tension T along the beam

axis z is given by (William, 1996):

EI
∂4u

∂4z
− T ∂

2u

∂2z
+ ρA

(
∂2u

∂t2

)
= 0 (3.1)

where u ≡ u(z, t) is the deflection of the beam in a direction y in the (y, z) plane, ρ is the density, E is

the modulus of elasticity, I is the moment of inertia of the circular cross section about the x and y axes,
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and A is the area of the cross-section of the beam. All geometrical and material properties are assumed

constant along the length of the beam.

Two models are introduced that differ on the boundary conditions considered. In the first model the

ends of the beam are fixed, whereas in the second model the ends are flexible. The flexibility in rotation

of the ends is simulated using rotational springs.

3.3.1 Beam with fixed ends

For fixed-end supports, the boundary conditions are u(0, t) = 0, u(L, t) = 0, u′(0, t) = 0, u′(L, t) = 0.

Following the usual eigenvalue analysis, the modal frequencies are obtained by solving the characteristic

equation

h(γ, ζ) = det


0 1 0 1

bl −c22bl al c24al

sinh(bl) cosh(bl) sin(al) cos(al)

c41blcosh(bl) c42blsinh(bl) c43alcos(al) −c44alsin(al)

 = 0 (3.2)

where al and bl are given as

al = l

√√
ζ4 + γ4 − ζ2, bl = l

√√
ζ4 + γ4 + ζ2 (3.3)

with respect to the two parameters γ and ζ defined by

γ4 =
mω2

EI
, ζ =

√
T

2EI
(3.4)

and m = ρAL is the mass of the beam. The elements cij are given in this case by c22 = c24 = 0 and

c41 = c42 = c43 = c44 = 1. Equation (3.2) can also be written as (Shinke et al., 1996):

2(al)(bl)[1− cos(al)cos(bl)] + [(bl)2 − (al)2]sin(al)sinh(bl) = 0 (3.5)

The problem of estimating the modal frequency ω in (3.2) or (3.5) given the axial force T is turned into

the problem of estimating γ given the value of ζ. The values of γ can be obtained by the numerical

solution of (3.2) or (3.5).

To proceed, the following dimensionless parameter

ξ =

√
T

EI
l (3.6)

is introduced due to its significant role (Shinke et al., 1996) in the dynamic behavior of the beam. For

large values of ξ (ξ ≥ 20) the dynamic characteristics of the beam are similar to those of a string. For

small values of ξ (ξ < 20), the characteristics of a hanger are similar to those of a beam. Two different

parameterizations have been proposed (Shinke et al., 1996) depending on the range of ξ values.

For large values of ξ (ξ ≥ 20), the dimensionless parameter

ηn =
f

fsn
(3.7)
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is introduced, where

fsn =
n

2l

√
Tg

w
(3.8)

is the theoretical values of the n-th order natural frequency (ω = 2πf) of a string (Humar, 2012). In this

case al and bl in (3.3) take the form:

al =
ξ√
2

√√√√−1 +

√
1 +

(
2nπηn
ξ

)2

bl =
ξ√
2

√√√√
1 +

√
1 +

(
2nπηn
ξ

)2

(3.9)

while the characteristic equation (3.5) becomes

g(ηn, ξ) = 2nπηn(1− cos(al)cosh(bl)) + ξsin(al)sinh(bl) = 0 (3.10)

where, using equations (3.4), (3.6), (3.7) and (3.8), the function g(η, ξ) = h(
√
nπξη/l, ξ/(l

√
2)) with

h(γ, ζ) defined in (3.2). The normalized modal frequencies ηn are obtained by solving the characteristic

equation (3.10) for a given value of ξ.

For small values of ξ (ξ < 20), the dimensionless parameter

φn =
f

f bn
(3.11)

is introduced, where

f bn =
a2
n

2πl2

√
EIg

w
(3.12)

is the theoretical values of the n-th order natural frequency of a beam fixed at both ends (Humar, 2012).

The values of an are the solutions of cos(a)cosh(a) = 1. The first six solutions are given in Table 3.2.

Table 3.2: The first six roots of cos(a)cosh(a) = 1

a1 a2 a3 a4 a5 a6

4.73 7.8532 10.9956 14.1372 17.2788 20.4204

In this case al and bl in (3.3) are transformed into

al =
ξ√
2

√√√√−1 +

√
1 +

(
2α2

n

ξ2
φn

)2

, bl =
ξ√
2

√√√√
1 +

√
1 +

(
2α2

n

ξ2
φn

)2

(3.13)

while the characteristic equation takes the form

g(φn, ξ) = 2a2
nφn(1− cos(al)cosh(bl)) + ξ2sin(al)sinh(bl) = 0 (3.14)

where, using equations (3.4), (3.6), (3.11) and (3.12), the function g(η, ξ) = h(αn
√
η/l, ξ/(l

√
2)) with

h(γ, ζ) defined in (3.2). The normalized modal frequencies φn are obtained by solving (3.14) for a given

value of ξ. When the axial force approaches zero (ξ = 0) then φn tends to 1.
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(a) Transverse y

(b) Longitudinal x

Figure 3.3: The rotational springs resisting rotation of ends about the transverse y and longitudinal x

directions

3.3.2 Beam with flexible ends

For flexible supports, modeled by rotational springs at the two ends as shown in Figure 3.3, the boundary

conditions for beam deflections in the (y, z) plane are u(0, t) = 0, EIu′′(0, t) − k1u
′(0, t) = 0, u(L, t) =

0 and EIu′′(L, t) + k3u
′(L, t) = 0, where k1 and k3 are the rotational springs applied at the ends

(Figure 3.3a) to resist rotation around x direction due to bending. Similar support conditions hold for

beam displacements in the (x, z) plane with k2 and k4 introduced as rotational springs applied at the

ends (Figure 3.3b) to resist rotations with respect to the y direction. The prediction of the axial force

is obtained by solving the characteristic equation for the flexible boundary conditions represented by

rotational springs (Lagomarsino and Calderini, 2005). Ceballos and Prato (2008) have derived explicit

expressions which are required to be solved iteratively. Next we briefly state the characteristic equation.

Introducing the following dimensionless parameters for the spring constants:

ka =
k1l

EI
and kc =

k3l

EI
(3.15)

and following the usual eigenvalue analysis, the modal frequencies in the (y, z) plane are obtained by

solving the characteristic equation (3.2), where the elements cij are given in this case by

c22 =
bl

ka
, c24 =

al

ka
(3.16a)

c41 = 1 +
(bl)

kc
tanh(bl), c42 = 1 +

(bl)

kc

1

tanh(bl)
(3.16b)

c43 = 1− (al)

kc
tan(al), c44 = 1 +

(al)

kc

1

tan(al)
(3.16c)
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Note that for very large values of ka and kc, such that the following conditions hold

al

ka
<< 1,

bl

ka
<< 1,

al

kc
[tan(al)]±1 << 1, and

bl

kc
[tanh(bl)]±1 << 1 (3.17)

the corresponding elements c22 = c24 = 0 and c41 = c42 = c43 = c44 = 1 and the characteristic equation

tends to the one for the beam with fixed supports. Moreover, for large values of ξ (ξ >> 20), say ξ > 200

the hanger behaves as a string which means that the flexural stiffness of the hanger is not important and

thus the flexibility of the end supports does not affect the modal frequencies.

Similar expression holds for estimating the modal frequencies in the (x, z) plane with ka and kc

replaced by kb = k2l/EI and kd = k4l/EI.

3.3.3 Estimation of modal frequencies

The lowest seven dimensionless frequencies ηn and φn for beam with fixed ends, calculated from the

equations (3.10) and (3.14) for large and small values of ξ, are given in Figures 3.4a and 3.4b, respectively.

Equations (3.10) and (3.14) are transcendental equations and for their solution an iterative method can

be used such as the Newton-Raphson algorithm. Herein the “fzero” function in Matlab is used.

In order to minimize or eliminate the probability of missing the correct solutions for a given ξ value,

the procedure of estimating modal frequencies starts from large values of ξ (ξ > 200), where the so-

lution approaches the known values given, due to equations (3.7) and (3.8), by ηn = n, n = 1, 2, . . ..

Subsequently, the modal frequencies for smaller values ξ − δξ are obtained iteratively using the previous

solutions for ξ as an initial estimate to find the zeros of the function g(η, ξ − δξ) close to the solutions

at η(ξ). Using the method described above, equations (3.10) and (3.14) have been solved and the values

of η or φ are tabulated for values of ξ ranging from [0,700] to be further used for estimating the modal

frequencies at the intermediate values of ξ for either fixed or flexible supports as follows.

First, it should be noted that the solution of (3.10) and (3.14) for fixed ends are upper bounds of

the solution of (3.10) with flexible ends, since the flexibility at the supports is expected to reduce the

values of the modal frequencies for all modes. This observation can be used to construct an algorithm for

reliably obtaining the solutions of the modal frequencies of the beam with fixed or flexible supports for

any value of ξ ∈ [0, 700]. These solutions are obtained using fsolve or fzero in Matlab by providing the

intervals where the solution lies or starting values very close to the solutions. This has to be done with a

100% reliability since this procedure is automated to be used within the Bayesian framework to compute

the solutions for a large number of sample points ξ. To find the lowest k solutions of the transcendental

equation g(η, ξ) for a fixed value of ξ, the following steps are performed:
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(a) (b)

Figure 3.4: The dimensionless solutions (a) ηn = nη versus ξ for large values of ξ, and (b) φ (φn = a2
nφ)

versus ξ for small values of ξ for beam with fixed ends

1. Given ξ, find i such that ξ ∈ [ξi, ξi+1] using the tabulated ξi values.

2. Estimate ηi = η(ξi) and ηi+1 = η(ξi+1) and use linear interpolation to estimate η = η(ξ) =

η(ξi) + [η(ξi+1)− η(ξi)](ξ − ξi)/(ξi+1 − ξi).

3. Divide the interval [0, (1 + a)η], where a << 1 is selected by the user, into N equal intervals of size

∆η = (1 + a)η/N . Compute gj = g(j∆η, ξ), j = 1 . . . , N .

4. Find the values of η among the ηj = j∆η for which a sign change occurs in the function g(η, ξ).

The Matlab command η(find(diff(sign(g))∼= 0) can be used. Let ` be the number of sign changes.

– If ` >= k select the lowest k values ηj , j = 1, . . . , k and use each one of these k values as

starting value to find the zeros of the function g(η, ξ).

– If ` < k then go to 3, set N ← 2N and repeat the steps until an ` >= k.

The algorithm guarantees that the lowest k modal frequencies can be found with a high reliability,

provided that ∆η is significantly less than the minimum distance between consecutive roots of g(η, ξ).

The cost of this procedure is that it requires N function evaluations of the determinant in (3.2). However,

this cost is unavoidable in order to guarantee that a zero of the function is not missed.

3.3.4 Beam model classes

Two families of model classes are introduced based on the Euler-Bernoulli beam theory. The objective is

to examine which of the introduced model classes are most appropriate to model the hanger and produce

reliable estimates of the hanger tension. Model class Bfix is the beam model with fixed ends, while model
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class Bflex is a beam model with flexible ends simulated by rotational springs, two at each side of the

beam. For the three-dimensional beam, the vibrations of the beam in the (x, z) and (y, z) planes are

considered uncoupled for both model classes. Thus, for a given value of ξ, the modal frequencies are

computed by solving 2 two-dimensional beam problems, considering the boundary conditions for each

plane motion, one in the (x, z) plane with spring constants k1, k3 and the other in the (y, z) plane with

spring constants k2, k4. The concept of effective length (Bellino et al., 2010) is also introduced to take

into account the flexibility of the end conditions. Beam models with either one or two effective lengths

(one per direction of deflection) are used to account for the different flexibilities per direction of the end

connections due to different orientation of the connecting plate at the bottom and top of the hanger

and the unknown boundary conditions arising from the deck and arch flexibility. The model classes are

flexible to predict different modal frequencies along the transverse and longitudinal direction of the beam

by using different effective lengths per direction of hanger deflection and/or applying different rotational

spring constants. Each one of the introduced families of model classes contain models that are further

classified in Section 6 depending on the number and type of parameters they include for estimation.

3.4 Modal frequency predictions based on finite element models

A high fidelity FE model is also used to predict the modal frequencies of the hanger shown in Figure 3.2,

under different boundary conditions. The FE modeling and analyses are carried out using the ABAQUS

general purpose FE program. Second-order ten-node tetrahedral elements (C3D10) are used to create

the FE mesh in the 10m beam with circular cross-section, as well as in the two 1m end plate connections

of the circular beam with the rest of the bridge structure. The model consists of about 71,500 nodes,

43,000 elements, and a total of 215,000 nodal DOF. Mesh sensitivity studies were carried out to select

the optimal mesh size that ensures convergent numerical calculations providing accurate predictions of

the lowest 12 modal frequencies.

3.4.1 Types of boundary conditions and FE model classes

Two different types of boundary conditions are considered. The first type corresponds to fixed ends at the

boundaries, implemented by constraining the motion of the DOFs at the bottom and top plate surfaces

(Figure 3.5), connecting with the deck and the arch, to be zero. The fixed-end finite element model is

denoted by FEfix and involves the hanger tension as parameter to be estimated using the measured

data. The second type permits only the rotation of the bottom and top plate surfaces (connecting with

the deck and the arch) about the two axes x and y along the longitudinal and transverse directions of

the bridge deck, respectively. These boundary conditions are implemented by constraining the motion

of the midpoint of the boundary plate surface to zero along all three x, y and z directions, constraining

the movement of the side nodes of the edge surface along the x and y directions to zero, and adding

springs along the z direction of the side nodes of the edge surface, restraining their motion along the z
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direction of the hanger according to the spring constants. Such springs provide resistance to rotations

of the edge surfaces with respect to the x and y axes. Two independent sets of springs are added to

simulate the rotational resistance with respect to the x and y axes. Each set is uniformly distributed

along the opposite sides of the edge surface. The distributed stiffness values are denoted by krx,b = k1

for the springs along the sides 1-2 and 3-4 of the bottom edge surface (Figure 3.5a), krx,t = k3 for the

springs along the sides 2-3 and 4-1 of the top edge surface (Figure 3.5b), kry,b = k2 for the springs along

the sides 2-3 and 4-1 of the bottom edge surfaces (Figure 3.5a), and kry,t = k4 for the springs along the

sides 1-2 and 3-4 of the top edge surfaces (Figure 3.5b). The flexible end FE model is denoted by FEflex

and involves five parameters to be estimated using the measured data: the hanger tension and the four

distributed spring constants k1, k2, k3 and k4.

Figure 3.5: Plate surface connecting with (a) deck (bottom edge of hanger), and (b) arch (top edge of

hanger)

3.4.2 Estimation of modal frequencies

The high tension of the hanger affects the modal frequencies due to increase in the tangent stiffness. In

order to predict the tangent stiffness due to hanger tension and subsequently the effect on the modal

frequencies of the hanger, a geometrically nonlinear analysis of the hanger has to be performed. The

evaluation of the modal frequencies in Abaqus that takes into account the stiffness increase due to large

hanger tension consists of a certain sequence of actions. The aim is to obtain the modal frequencies of

the system after the hanger tension has been applied.

Action 1: This is a static deformation step for estimating the tangent stiffness matrix under the

application of the hanger tension. The hanger tension is applied at one edge (e.g. bottom edge in Figure
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3.5a). The boundary conditions at the bottom edge are deactivated to allow the hanger to deform. The

axial load T is applied as a pressure p = T/(bh) uniformly distributed through the bottom face of the

connection. The geometrically nonlinear static analysis is performed and the tangent stiffness matrix and

the mass matrix are then extracted from the Abaqus model.

Action 2: After the hanger has been elongated in Action 1, the correct boundary conditions are ac-

tivated at the bottom edge and the hanger is kept in its deformed state. Specifically, for fixed-end hanger

conditions, all displacement DOFs at the bottom edge of the hanger are restrained. For flexible supports,

springs are added at the bottom edge DOFs so that rotational stiffness conditions are simulated. The

resulting mass matrix as well as the stiffness matrix which consist of the tangent stiffness matrix and the

stiffness due to the spring constants is extracted from Abaqus.

Action 3: Using the mass matrix and the tangent stiffness matrix obtained from Action 2, the

eigenvalue analysis is performed to obtain the modal frequencies and the mode shapes of the hanger. It

should be noted that due to the non-circular cross-section of the hanger along its total length, arising

from the 1m plate connections, a mode shape deforms both in (x, z) and (y, z) planes, in contrast to

the in-plane deformation predicted by the Euler-Bernoulli beam theory when circular cross-section is

assumed. The mode shapes are used to distinguish the type of the closely spaced modes by monitoring

the mode shape deformation in the (x, z) and the (y, z) planes. In this way mode switching which may

happen as the hanger tension varies in the Bayesian inverse formulation outlined in Section 5 can be

monitored so that the correct modes with dominant hanger deflection in the longitudinal or transverse

direction of the bridge are associated to the experimentally identified modes.

3.5 Bayesian inference

The Bayesian framework for parameter estimation and model selection (Beck and Katafygiotis, 1998;

Yuen, 2010; Vanik et al., 2000) is used to estimate the hanger axial load based on the model classes

introduced in the previous sections. The inference is based on the lowest m experimentally identified

modal frequencies D = {ω̂r, r = 1, ...,m} of the hanger. Consider a parameterized model class Mm and

let θ ∈ RNθ be the set of free structural model parameters to be identified. Depending on the model

class used, the model parameters may include the hanger force, the equivalent beam length(s) and the

rotational stiffness of the boundary conditions of the hanger. Let also ωr(θ) be the predictions of the

modal frequencies obtained for a particular value of the parameter set.

Probability density functions (PDF) are used to quantify uncertainties in the parameter set θ. Using

Bayes theorem, the posterior PDF p(θ|D,Mm) of the model parameters θ based on the measured data

D and the modeling assumptions Mm, is obtained as follows:

p(θ|D,Mm) =
p(D|θ,Mm)p(θ|Mm)

p(D|Mm)
(3.18)
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where p(D|θ,Mm) is the probability of observing the data (likelihood function) from a model Mm corre-

sponding to a particular value of the parameter set θ, p(θ|Mm) is the prior PDF of the model parameters,

and p(D|Mm) is the evidence of the model class given by

p(D|Mm) =

∫
Θ

p(D|θ,Mm)p(θ|Mm)dθ (3.19)

where Θ is the domain of variation of the model parameters.

The likelihood p(D|θ,Mm) is derived by using a probability model for the prediction error er, r =

1, . . . ,m, for the modal frequencies defined as the fractional difference between the measured modal

frequencies and the corresponding modal frequencies predicted from the model classMm using a particular

value of the parameter set θ. Specifically, er satisfies the prediction error equation

ω̂r = ωr(θ) + ω̂rer (3.20)

for all modes r = 1, ...,m. Modeling the prediction errors as zero-mean Gaussian variables, er ∼ N(0, σ2),

with standard deviation σ, assuming that the prediction errors are independent, and including the pre-

diction error parameter σ into the uncertain parameter set θ, the likelihood p(D|θ) takes the form

p(D|θ,Mm) ∼ 1

(
√

2π)mσm
exp

[
− m

2σ2
J(θ)

]
(3.21)

where J(θ) given by

J(θ) =
1

m

m∑
r=1

[ωr(θ)− ω̂r]2

[ω̂r]2
(3.22)

represents the measure of fit between the measured modal frequencies and the modal frequencies predicted

by the model.

The Bayesian framework can also be used to select the best model class among a family of alternative

competitive model classes M1, . . . ,Mµ (Beck and Yuen, 2004), used to represent the dynamics of the

hanger. Using the Bayes theorem, the posterior probability P (Mi|D) of the model class Mi given the

data D is obtained from

P (Mi|D) =
p(D|Mi)P (Mi)

p(D)
(3.23)

where p(D|Mi) is the evidence ofMi, P (Mi) is the prior probability ofMi and p(D) =
∑µ
i=1 p(D|Mi)P (Mi)

is a normalizing constant that guaranties that the sum of the probabilities over all model classes consid-

ered in the selection equals one. Assuming that the model classes are equally probable prior to the use

of the data, then the most probable model class based on the data corresponds to the model class with

the highest evidence.

Bayesian computational tools are used to estimate the uncertainty in the model parameters, select

the best model class and propagate uncertainty. Herein we use the TMCMC (Ching and Chen, 2007)

and its parallelized extended version (Angelikopoulos et al., 2012) in order to sample from the posterior

PDF of each model class, estimate uncertainties in the model parameters such as axial hanger load and
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equivalent length(s), as well as propagate uncertainties to compute output quantities of interest such

as modal frequencies. One more merit of using the TMCMC algorithm for Bayesian purposes is the

calculation of the evidence as a by-product of the algorithm (Ching and Chen, 2007).

Note that for identifiable cases, the Gaussian approximation of the posterior PDF of the model

parameters (Yuen and Mu, 2015, 2010) can also be used to save computational effort for the hanger

problem. This usually requires the availability of the first and second derivatives of the minus the

logarithm of the posterior PDF with respect to the model parameters. However, analytical formulations

for such derivatives based on direct differentiation or adjoint methods are not readily available and

such approximate formulation has not being pursued further in this work. Instead the TMCMC is very

suitable for the considered model classes due to the model non-intrusiveness and the absence of analytical

derivatives of the output quantities of interest with respect to model parameters (Hadjidoukas et al., 2015).

The most probable values of the parameters in θ are also obtained by minimizing the −logp(θ|D,Mm)

using the CMA-ES algorithm (Hansen et al., 2003).

3.6 Results

The axial load is estimated using the FE model classes and the simple beam model classes introduced in

the previous sections. Estimation is based on the lowest twelve experimentally identified modal frequencies

of the hanger (see Table 3.1), six along the transverse and six along the longitudinal direction of the bridge

deck. The objective is to estimate the value of the hanger tension and its uncertainty, to explore the

effect of the end hanger conditions and the number of measured modal frequencies on the accuracy of

the hanger tension estimates, and to select the best model classes based on simplified beam theory that

are adequate representations of the hanger behavior.

The parameter estimation and the model class selection is performed for the model classes reported in

Table 3.3. The FE model classes FEfix and FEflex are used to identify whether or not the flexibility in

the end conditions of the hanger, arising from the flexibility of the arch and the deck, is important. The

simple beam model classes Bfix and Bflex are used for the purpose of identifying which one of them

is capable of predicting adequately the hanger tension based on the results obtained from the FE model

classes which are considered to contain the more accurate information for the hanger tension. Depending

on the type and number of parameters they are left free to be inferred by the Bayesian formulation, the

beam model classes are further classified as follows.

– Bfix(T, L): two-parameter model class, with parameters the hanger tension T and the equivalent

hanger length L. This model uses the equivalent length concept (Bellino et al., 2010) so that it can

adjust the length of the uniform cross-section of the beam to fit the modal frequency data, thus

accounting for the flexibility of the end plate connections and the boundary conditions between the

hanger and the arch or the deck.

– Bfix(T, Lt, Ll): three-parameter model class, with parameters the hanger tension T and equivalent

37

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 12:38:19 EEST - 18.191.97.154



hanger lengths Lt and Ll assumed to be different for deflections in the (x, z) (longitudinal direction)

and (y, z) (transverse direction) planes. This model has freedom to provide different beam flexi-

bilities along the transverse and longitudinal directions of motion and thus better fit the different

values of the experimental modal frequencies observed along these two directions (see Table 3.1).

– Bfix(T |Li): a family of µ one-parameter model classes with parameter the hanger tension given

the value of the hanger length to be Li, i = 1, . . . , µ. Each model class is defined by the different

value Li of the beam length. The aim is to choose the best model class or, equivalently, the best

equivalent hanger length Li that best represents the observed data.

A similar classification is introduced for Bflex model classes resulting in

– Bflex(T, L, k): three- to six-parameter models, with parameters the hanger tension, the equivalent

length, as well as the rotational stiffnesses at the two ends. The rotational stiffness to be included

in k may vary from one to four. For example, Bflex(T, L, k1, k3) denotes the model class with the

rotational stiffness k1 and k3 (see Figure 3.3) used as free parameters to be determined, while the

k2 and k4 are set fixed to 1015 to simulate rigid supports at the respective directions.

The nominal value of the axial load is considered to be T0 = 922KN corresponding to the most

probable value of the fixed-end beam model based on the lowest two experimental frequencies, one in

the transverse and the other in the longitudinal direction. The nominal value of the hanger length is

L0 = 12m, corresponding to the total length that includes the approximately 2m length of the plate

connectors (Figure 3.2) at the two ends. The parameters θT and θL in the set θ, introduced for the

axial load T and the length L of the beam, respectively, scale the nominal values so that the axial load

is T = θTT0 and the length is L = θLL0. The nominal values of the spring stiffnesses used to simulate

boundary conditions are taken to be knom = 1010. For a spring stiffness k, the corresponding parameter

θk in the set θ is introduced so that k = (knom)θ = 1010θk .

The prior distributions of all parameters are selected to be uniform. The bounds are selected to be

θT ∈ [0.5, 1.5] for the hanger tension parameter, θL ∈ [0.817, 1.2] for the length of the beam model, and

θk ∈ [0.1, 1.5] for all the spring stiffness parameters. Note that the lower bound 0.817 for θL corresponds

to the clear length Lcl = 0.817 ∗ 12 = 9.817m of the circular part of the hanger. The range of variation

of the prediction error parameter σ is σ ∈ [0.001, 0.1]. The TMCMC algorithm (Ching and Chen,

2007; Angelikopoulos et al., 2012) is used to sample the posterior PDF of each model class, compute

the uncertainties in the model parameters, estimate the evidence of each model class, and propagate

uncertainties to predictions of the modal frequencies. The values of the TMCMC parameters are selected

to be β2 = 0.2 and TolCov = 1.0. The most probable values of the model parameters are obtained using

the CMA-ES algorithm (Hansen et al., 2003) with the search domain to be the one defined by the support

of the uniform priors assumed for the model parameters.

Table 3.3 presents the most probable value (MPV), the mean, the standard deviation, and the 5%,

50% and 95% quantiles of the hanger tension estimated from all model classes. The number of samples

per TMCMC stage is 1000 for FEflex, 500 for FEfix, 5000 for Bfix and Bflex model classes.
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The different number of samples per TMCMC stage used for each model class is chosen as a trade-off

between computational effort and solution accuracy. A large number of samples is used for the analytical

beam model due to the small time-to-solution, of the order of a few minutes, in relation to the time-

to-solution required for estimating the hanger force using the finite element model classes. A smaller

number of 500 samples per TMCMC stage is used for the FEfix model class due to a small number of

two parameters involved as opposed to six parameters involved in the FEflex model class. Representative

times-to-solution obtained in a dual 4-core computer using the parallelized versions of TMCMC algorithm

are of the order of 60 hours for BEflex, 12 hours for BEfix and several minutes for the Bfix and Bflex

model classes. The number of TMCMC stages, which affect the time-to-solution is approximately 4 to 7,

depending on the model class and the individual run.

3.6.1 Hanger force estimation based on FE model classes

Comparing the log evidence for the FE model classes FEflex and FEfix it can be seen that the

FEflex is clearly the preferred model since the resulting relative probabilities of the two models are

Pr(FEflex|D) = a/(1 + a) = 0.86 and Pr(FEfix|D) = 1/(1 + a) = 0.14, where a = exp(24.03− 22.24)

is evaluated from the log evidence values in Table 3.3. The FEflex gives a significantly better fit to the

data which is equal to 1.03% as compared to the fit 2.63% for the FEfix model. The two FE models

give completely different predictions of the hanger tension. Model FEflex predicts the most probable

value at 0.91 with uncertainty as quantified by the quantiles to be in the range [0.75, 1.04] (std=0.090),

while the FEfix predicts the most probable value to be 22% lower at 0.70 with uncertainty to be in the

range [0.60, 0.80] (std=0.063).

To identify the source of such differences the results of the models FEfix(long) and FEfix(trans)

are used. The FEfix(long), which is based on fitting the six modal frequencies with dominant hanger

deflections along the longitudinal direction, give predictions of the hanger tension that are closer to

those obtained by the FEflex. In contrast, the FEfix(trans) which is based on fitting the six modal

frequencies with dominant hanger deflections along the transverse direction gives predictions that are

approximately 35% lower than the FEflex model predictions and 15% lower than the FEfix model

predictions. These differences in predictions are due to the fact that the experimentally identified modal

frequencies of the hanger in the transverse direction are consistently lower than the modal frequencies

of the hanger in the longitudinal directions (see Table 1) which, due to the symmetry of the hanger

and the orientation of the top and bottom identical plate connections in the transverse and longitudinal

directions, it can only be explained by the flexibility of the arch and/or the deck when the hanger vibrates

in the transverse direction. This support flexibility was accounted in the model class FEflex while in

the model class FEfix(trans) it was ignored resulting in a significantly lower hanger tension in order to

compensate and match the lower modal frequencies. The FEfix models class which did not allow for

support flexibility in both directions also resulted in lower hanger tension, trading-off the fit of the modal

frequencies in the longitudinal and transverse direction.
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The most probable values of the rotational stiffnesses are estimated from the BEflex model class

to be k1 = 108, k2 = 1011, k3 = 104 and k4 = 1013, with the value of k3 being significantly smaller

than the other 3 much stiffer rotational springs, indicating that the main source of support flexibility

is at the top end of the hanger in the transverse direction and it is due to the flexibility of the bridge

arch. In conclusion, the 5-parameter model FEflex is the most preferred model class as compared to

the one-parameter FEfix model class and predicts more reliably the hanger force, while the FEfix

underestimates the hanger force by approximately 22%.

Table 3.3: Log evidence and estimates of hanger tension for all model classes

Model class Nθ Log Tension Tension Tension Tension Fit

Evidence quantiles Mean Standard MPV

[ 5%, 50%, 95%] Dev.

FEflex 5 24.03 [0.75, 0.92, 1.04] 0.909 0.0897 0.822 0.0103

FEfix 1 22.24 [0.59, 0.70, 0.80] 0.701 0.0627 0.701 0.0263

FEfix(long) 1 – [0.75, 0.83, 0.92] 0.836 0.0498 0.831 0.0102

FEfix(trans) 1 – [0.52, 0.60, 0.75] 0.616 0.0714 0.576 0.0237

Bfix(T, L) 2 20.72 [0.68, 0.86, 1.06] 0.867 0.114 0.854 0.0248

Bfix(T, Lt, Ll) 3 22.49 [0.73, 0.86, 0.98] 0.856 0.0731 0.856 0.0115

Bflex(T, L, k3) 3 20.90 [0.70, 0.88, 1.08] 0.883 0.1215 0.888 0.0112

Bflex(T, L, k1, k3) 4 20.10 [0.70, 0.94, 1.35] 0.974 0.1905 0.888 0.0112

Bflex(T, L, k) 6 19.23 [0.77, 1.19, 1.44] 1.144 0.2196 0.968 0.0115

From the values of the standard deviation and the 5% and 95% quantiles of the hanger tension

predicted from the FEflex model, it can also be concluded that the uncertainty in the hanger tension

is of the order of 10%. This uncertainty is due to the inability of the model class FEflex to fit exactly

all 12 modal frequencies. This uncertainty in the hanger force prediction should be taken into account

when using the values of the hanger tension to infer structural safety. In contrast to existing studies that

report a single value of the hanger force, the Bayesian inference framework also estimates the uncertainty

in such a value. This uncertainty may affect the safety margins of the hanger and the bridge. From the

engineering point of view, using the nominal hanger tension value of T0 = 922KN and the hanger circular

cross-sectional area of diameter D = 0.130m, one has that the stress prediction in the hanger within 5%

and 95% credible intervals ranges between [0.16, 0.22]σy values, where σy = 330MPa is the yield stress

of this specific hanger, resulting in a relative high safety factor (well within the safe domain when failure

is assumed to occur due to stresses in the hanger exceeding material yield or fracture stresses).

3.6.2 Hanger force estimation based on simple beam model classes

The ability of the simplified beam model classes to predict the hanger tension is next examined. From

the results in Table 3.3 it can be observed that almost all simplified beam models make predictions of
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the value of the hanger tension and its uncertainty that are significantly closer to the predictions of the

FEflex model than the predictions of the FEfix model. This is very promising for using such simplified

models for hanger tension predictions.

Comparing the log evidence values for the fixed support model classes Bfix(T, L) and Bfix(T, Lt, Ll),

it can be clearly seen that the 3-parameter model class Bfix(T, Lt, Ll) has higher preference than the

two-parameter model class Bfix(T, L) with Pr(Bfix(T, Lt, Ll)|D) = 0.85 and Pr(Bfix(T, L)|D) = 0.15.

The error for the most probable parameter values (last column in Table 3.3) obtained by CMA is 1.1% for

the Bfix(T, Lt, Ll) model which should be compared to the 2.6% error for the Bfix(T, L) model. Both

models provide a sample mean estimate of the hanger force which is approximately 5% less than the mean

estimate of the FEflex model class. The 5% and 95% credible intervals quantifying the uncertainty in

the hanger force are predicted by both beam models to be close to the corresponding uncertainty bounds

predicted by the FEflex, with the Bfix(T, L) to slightly underestimate the lower bound, while the

Bfix(T, Lt, Ll) to slightly underestimate the upper bound.

To assess the correlation between the hanger tension and the equivalent beam length, the projection

of the posterior samples obtained using the TMCMC algorithm in the two-dimensional space (θT , θL)

of the model parameters is presented in Figure 3.6 for the model class Bfix(T, L). We note that the

length of the beam has a positive correlation with the axial load of the beam which is expected since

when the length is increased, the frequencies tend to decrease. As a result the hanger tension and thus

the predicted modal frequency must be increased to compensate this decrease, maintaining the fit with

the values of the experimental modal frequencies.
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Figure 3.6: Parameter estimation for model class Bfix(T, L). Diagonal: Marginal distributions. Above-

diagonal: sample projections in (θT , θL) parameter space. Below Diagonal: Contour plots in (θT , θL)

parameter space

Concerning the flexible-end beam model classesBflex(T, L, k3), Bflex(T, L, k1, k3) andBflex(T, L, k),

the log evidence values suggest that the least-parameter model class Bflex(T, L, k3) is preferred to the

4-parameter and 6-parameter model classes since the addition of the extra parameters in the model

is penalized by the Bayesian formulation, considered it as overfitting (Beck and Yuen, 2004). The

3-parameter model class Bflex(T, L, k3) provides reasonable uncertainty bounds of [0.70, 1.08] of the

hanger force, that are closer to the ones provided by the two-parameter model Bfix(T, L), while the

error in the fit is 1.1% which is closer to the error provided by the Bfix(T, Lt, Ll) model. This means

that the Bflex(T, L, k3) fits better the experimental data than the Bfix(T, L) model. The models

Bflex(T, L, k1, k3) and Bflex(T, L, k), which are less preferred mainly due to overparameterization, pre-

dict much higher mean hanger tension and uncertainty bounds. This can be attributed to the flexibility

that this model has to provide a reasonable fit to the data by trading-off the hanger force values with

the flexibility of the springs at the end supports.

Comparing the Bfix and Bflex model classes, the most preferred model corresponding to the

largest log evidence value is Bfix(T, Ll, Lt) with the second and third preferred model classes to be

Bflex(T, L, k3) and Bfix(T, L), respectively. Comparing with the FEflex model results, the most pre-
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ferred Bfix(T, Ll, Lt) model gives slightly tighter uncertainty bounds for the hanger force. The worst

fit in the experimental frequencies is accomplished by the two-parameter Bfix(T, L) model due to its

less flexibility with a single equivalent hanger length to simultaneously fit the modal frequencies in the

transverse and longitudinal directions. In contrast, model Bflex(T, L, k3) is flexible to simultaneously fit

the longitudinal modal frequencies by adjusting the beam length, and the transverse modal frequencies

by adjusting the spring stiffness k3.

Table 3.4 presents the 5% and 95% quantiles, the mean and the standard deviation of the equivalent

length estimated from each simple beam model class introduced in Table 3.3. It can be seen that the

identified uncertainty in the equivalent length values is very narrow. Comparing the fixed-support model

classes, Bfix(T, L) gives uncertainty bound of [0.959, 0.988]L0, while Bfix(T, Lt, Ll) gives lower values

[0.949, 0.972]L0 for Ll and higher values [0.972, 995]L0 for Lt to make the beam more flexible to fit the

lower modal frequencies in the transverse direction. The coefficient of variation (cov = standard deviation

over mean) for the Bfix(T, L) model is 0.9%, while for the Bfix(T, Lt, Ll) model it is approximately

0.7% for both Lt and Ll. All these uncertainties are quite small compared to the uncertainty of 10%

predicted for the hanger tension.

Table 3.4: Estimates of the hanger equivalent length for all beam model classes

Model class Length Length Length

quantiles Mean Standard

[ 5%, 50%, 95%] Dev.

Bfix(T, L) [0.959, 0.973, 0.988] 0.975 0.0090

Bfix(T, Lt, Ll) – Lt [0.972, 0.984, 0.995] 0.984 0.0070

– Ll [0.949, 0.960, 0.972] 0.960 0.0071

Bflex(T, L, k1) [0.953, 0.970, 0.986] 0.970 0.0101

Bflex(T, L, k1, k2) [0.938, 0.965, 0.985] 0.964 0.0138

Bflex(T, L, k) [0.923, 0.950, 0.980] 0.951 0.0178

Figure 3.7a presents the results of the estimation of the hanger force by using the family of models

Bfix(T |Li) with Li varying within the uncertainty bound computed by the Bfix(T, L) model. Figure

3.7b gives the evidence of each model in the family. It is clear that the best model class is the one

that corresponds to length Lbest = 0.973 and predicts hanger tensions that are consistent with the

ones predicted by Bfix(T, Lt, Ll), with narrower uncertainties since it does not take into account the

uncertainty in the equivalent length. However, as one moves away from the best values of the equivalent

length, the predictions of hanger tension values and uncertainties depart considerably (underpredicting

or overpredicting) from the predictions of the baseline FE model FEflex or Bfix(T, Lt, Ll). This means

that arbitrary guesses of the equivalent length to carry out the identification of the hanger tension are

highly likely to give erroneous estimates. The proposed Bayesian method is a rational framework to

provide the correct estimates of the hanger tension and equivalent lengths, as well as their uncertainties.
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Figure 3.7: (a) Comparison of hanger tension 5%, 50% and 95% quantiles estimated by the model classes

Bfix(T |Li) with 5% and 95% quantiles estimated by the model classes FEflex and Bfix(T, Lt, Ll). (b)

Log evidence values of model classes Bfix(T |Li) for different Li values

Finally, the estimates of the equivalent length L provided by the Bflex(T, L, k3) model are closer

and slightly larger than the estimates of Ll for the Bfix(T, Lt, Ll) model so that the experimentally

identified longitudinal modal frequencies are matched, while the stiffness k3 of the Bflex(T, L, k3) model

is adjusted to match the modal frequencies in the transverse direction. The uncertainty in the equivalent

length L values is higher (cov=1.0%). The uncertainties in the equivalent length L predicted by the four

parameter model Bflex(T, L, k1, k3) and the seven-parameter model Bflex(T, L, k) are even higher (1.5%

and 1.9%, respectively), due to the flexibility of these models to compensate the change in the equivalent

length by a change in the rotational stiffness values in order to fit the identified modal frequencies. In

any case even the highest uncertainty of 1.9% is small, indicating the narrow range of values that the

equivalent length can take in order to fit the measured data.

Figure 3.8 presents the propagation of the uncertainty in the model parameters to the lowest twelve

modal frequencies. The results in this Figure correspond to predicted modal frequencies normalized

with respect to the experimental frequencies. Thus the distance of these values from one is a measure

of how close the values of the model predicted modal frequencies are to the experimentally identified

modal frequencies. We can clearly see the impact of the flexible end supports of the FEflex model in

predicting the modal frequencies compared to the fixed-end model class FEfix. The fixed-end FE model

class cannot reliably predict the measured modal frequencies, missing at least seven of them by as much

as 4%. The flexible-end FE model class reliably predicts all measured modal frequencies, since the line

equal to 1 is within the uncertainty bounds of the predictions for most modal frequencies. We also notice

that the 3-parameter beam model classes Bfix(T, Lt, Ll) and Bfix(T, L, k3) also give good predictions

of the modal frequencies. The predictions of the Bfix(T, Lt, Ll) model class based on the two equivalent

lengths, independent in the transverse and longitudinal directions, give very similar predictions of the
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modal frequencies and their uncertainties to those obtained from the FEflex model class for several of

the modal frequencies. The Bfix(T, L, k3) also gives similar predictions but with higher uncertainty. The

predictions of the 2-parameter model class Bfix(T, L) are closer to those of the fixed-end FEfix model

than to FEflex model, with much higher uncertainty so that a number of measured modal frequencies

are contained within the uncertainty bounds. From the simple beam model classes, the best predictions

are obtained from model class Bfix(T, Lt, Ll).
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Figure 3.8: Uncertainty propagation to the output frequencies for selected model classes

To study the effect of the number of modal frequencies used in the identification, Figure 3.9a presents

results for the hanger force (mean and quantiles values) estimated from the model classes Bfix(T, L),

Bfix(T, Lt, Ll) and Bflex(T, L, k3) using the lowest m = 4 or 8 or 12 identified modal frequencies.

Given m modal frequencies, m/2 correspond to the longitudinal direction and m/2 to the transverse

direction. Results are also compared to the hanger force mean and quantile values estimated by the

FEflex model class. Similar results for the effective length mean and quantile values are presented in

Figure 3.9b. We can clearly see the impact of the number of modes on the predictions of the hanger

force uncertainties and structural reliability. As the number of modes used in the Bayesian identification

decreases from 12 to 8 or 4, the uncertainty in the hanger tension and equivalent length values increases

substantially for all beam model classes. This uncertainty increase is due to inadequacy of the small

number of measured modal frequencies to identify with certainty the hanger tension and the equivalent

lengths. When the hanger tension uncertainty is further used for structural safety estimation, the smaller

number of measured modes leads to less reliable estimates of structural safety corresponding to higher

failure probability than it is actually obtained from the identification that is based on a higher number

of measured modal frequencies.
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Figure 3.9: (a) Hanger tension mean and [5%, 95%] quantiles and (b) hanger equivalent length mean and

[5%, 95%] quantiles for different model classes for 4, 8 and 12 modes used for identification

3.7 Conclusions

Bayesian inference is used to quantify and calibrate the uncertainties in the tension of bridge hangers by

integrating the information from a structural model and the experimentally identified modal frequencies.

A number of competitive structural model classes used for representing the vibrational characteristics

of hangers are investigated for their accuracy, including simple Euler-Bernoulli beam models as well as

high-fidelity FE models. The effect of the hanger end connection details and boundary conditions due to

flexibility of arch and deck substructures on the hanger tension predictions is examined.

The high fidelity FE model with flexible supports, expected to give the most reliable estimates, is able

to predict the lowest 12 experimentally identified modal frequencies in both transverse and longitudinal

directions. The uncertainty in the hanger force is of the order of 10% of its mean value and should

be taken into account in structural safety considerations. The FE model with fixed supports fails to

fit the experimentally identified modal frequencies, underpredicting the hanger tension value and its

uncertainty by more than 20%. Results suggest that the connection details and boundary conditions due

to the flexibility of deck and arch substructures affect significantly the dynamics of the considered hanger.

The flexibility arises mainly from the flexibility of the arch due to transverse deflections of the hanger.

The dynamics of the hanger in the longitudinal and transverse directions of the bridge seem to be

reasonably approximated by simplified beam models using the concept of two independent equivalent

lengths in the transverse and longitudinal direction, with values left free to be estimated by the Bayesian

approach. The fixed-end beam model with the two independent equivalent lengths is selected by the

Bayesian framework as the most preferred model class. It provides accurate estimates of the hanger

tension and the uncertainties, close to the ones provided by the baseline FE model with flexible supports.
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The beam model with a single equivalent length fails to give adequate estimates of the measured modal

frequencies for the specific hanger due to different modal frequencies arising from the asymmetry of the

boundary conditions. The simplified beam model with a single equivalent length and end rotational

springs is able to adequately represent the dynamics of the hanger, giving fairly accurate results with

higher uncertainty in the values of the hanger tension, an indication that the model is less preferred than

the fixed-end model with two equivalent lengths. A model with fixed length value selected arbitrarily

is highly unlikely to fit the measured frequency data due to the fact that the dynamics of the beam is

significantly affected by the selected value of the length of the beam. There is only a very narrow range of

length values that fit the measured modal frequencies and give accurate predictions of the hanger tension.

The use of equivalent length and/or rotational springs to simulate hanger support flexibilities is

deemed important in the beam modeling. Results suggest that the fixed-end models are substantially

less accurate than the ones that take flexibility into account, either in terms of two equivalent lengths

introduced to independently model flexibilities in transverse and longitudinal directions or in terms of

a combination of an equivalent length and rotational springs. The Bayesian approach applied on the

simplified beam models provides sufficiently accurate estimates of the hanger tension and its uncertainty,

requiring three orders of magnitude less computational effort than the high-fidelity FE models. As the

number of available identified modal frequencies increases, the prediction accuracy of the simple beam

models is improved, while the uncertainty in the hanger tension is reduced. In contrast to inverse

methods based on estimating a single value of the hanger tension, it is demonstrated in this study that

the uncertainties in the hanger tension can be significant and should be considered in inverse methods

since they affect predictions of structural reliability and safety.
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Chapter 4

Model updating of Metsovo bridge

4.1 Introduction

The evaluation of the actual dynamic characteristics of bridges, such as modal frequencies, modal damping

ratios and mode shapes, through vibration measurements, as well as the development of high-fidelity finite

element (FE) models, has been attracting an increasing research effort worldwide. Measured response data

of bridges mainly under ambient vibrations offer an opportunity to study quantitatively and qualitatively

their dynamic behavior. These vibration measurements can be used for estimating the modal properties of

the bridges, as well as for updating the corresponding FE models used to simulate their behavior (Friswell

and Mottershead, 1995; Sehgal and Kumar, 2015). The information for the calibrated FE models and their

associated uncertainties is useful for checking design assumptions, for validating the assumptions used

in model development, for improving modeling and exploring the adequacy of the different classes of FE

models, for identifying possible soil-structure interaction effects, and for carrying out more accurate robust

predictions of structural response. These models are representative of the initial structural condition of

the bridge and can be further used for structural health monitoring purposes (Vanik and Beck, 1998;

Vanik et al., 2000; Yuen, 2010; Yuen et al., 2006a).

Bayesian methods for ambient (operational) modal identification (Yuen et al., 2002; Au, 2012a,b; Au

et al., 2012; Au and Zhang, 2012; Au et al., 2013; Zhang and Au, 2016; Zhang et al., 2016; Ni et al., 2016,

2017) and structural model updating (Beck and Au, 2002; Beck and Katafygiotis, 1998; Katafygiotis and

Beck, 1998; Katafygiotis et al., 1998; Beck, 2010; Yuen et al., 2006b; Cheung and Beck, 2009; Muto and

Beck, 2008; Goller and Schueller, 2011; Yuen, 2012; Lam et al., 2015; Yan and Katafygiotis, 2015) are used

to develop high fidelity FE models of bridges using modal properties identified from ambient vibration

measurements. Due to the large size of the bridge, the mode shapes of the structure are assembled from a

number of sensor configurations that include optimally placed reference sensors as well as moving sensors

(Au, 2011). The modal properties are then integrated within Bayesian model updating formulations to

calibrate the parameters of large scale FE models as well as their associated uncertainty. The goal is to
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develop accurate and reliable models of the actual structures that are proven to closely simulate their

behavior.

As far as the computational part is concerned, for complex posterior distributions, stochastic simula-

tion algorithms such as the Transitional Markov Chain Monte Carlo (TMCMC) (Ching and Chen, 2007)

can be conveniently used to sample from the posterior distribution for parameter estimation, model selec-

tion and uncertainty propagation purposes. These methods require a large number of forward model runs

which can increase the computational effort to excessive levels if one simulation for a high-fidelity large-

order FE model requires several minutes or even hours to complete. For that purpose, fast and accurate

component mode synthesis (CMS) techniques, consistent with the FE model parameterization (Papadim-

itriou and Papadioti, 2013; Jensen et al., 2014), are used to achieve drastic reductions in computational

effort. Further computational savings are achieved by adopting a parallelized version of the TMCMC

algorithm to efficiently distribute the computations in available multi-core CPUs (Angelikopoulos et al.,

2012; Hadjidoukas et al., 2015).

The use of the Bayesian uncertainty quantification (model updating), propagation and model selection

methodologies is demonstrated by updating the parameters of a high fidelity FE model developed for

the Metsovo bridge, using modal properties experimentally identified from ambient vibration data. The

FE model is parametrized with respect to the stiffnesses of various structural components. Ambient

acceleration time histories from multiple points in the structure are used to extract the modal properties

of the bridge experimentally, and the identified modal properties are used as data in the Bayesian model

updating methodologies in order to perform inference about the model parameters. Two classes of models

are examined and compared using Bayesian model selection (Beck and Yuen, 2004; Muto and Beck, 2008).

The models explore the effect of the soil-structure interaction. The updated model is validated using a

subset of the experimental data that was not used in the updating procedure in order to test its accuracy

and reliability as a model of the actual structure.

4.2 Description of the bridge

The ravine bridge of Metsovo in section 3.2 (Anthohori-Anilio tunnel) of Egnatia Motorway is crossing

the deep ravine of Metsovitikos river, 150m over the riverbed. This is the highest bridge of the Egnatia

Motorway, with the height of the tallest pier equal to 110m. The total length of the bridge is 537m. The

bridge has 4 spans of length 44.78m, 117.87m, 235m, 140m and 3 piers of which M1(45m) supports the

boxbeam superstructure through pot bearings (movable in both horizontal directions), while M2(110m)

and M3(35m) piers connect monolithically to the structure. A sketch of the bridge is shown in Figure

4.1 while photos of the actual bridge are shown in Figures 4.2 and 4.3.
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Figure 4.1: Longitudinal view of the Metsovo ravine bridge

Figure 4.2: The ravine bridge of Metsovo
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Figure 4.3: The ravine bridge of Metsovo

The detailed geometry of the bridge is complicated because the piers have variable cross-sections and

the deck is also inclined. A detailed design of the bridge was done by Kelantonis (2010) where one can

find detailed instructions on how to design the 3D model of the Metsovo bridge in SolidWorks from 2D

drawings. In Figures 4.4 and 4.5 the final 3D model is shown.

Figure 4.4: 3D model in SolidWorks
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Figure 4.5: 3D model in SolidWorks

The 3D SolidWorks model is then imported into COMSOL Multiphysics for finite element analysis,

and specifically for eigenfrequency analysis.

4.3 Computational model of the bridge

4.3.1 Finite element model

The FE model of the bridge is created using 3-dimensional tetrahedral quadratic Lagrange finite elements.

The model takes into account the potential soil-structure interaction by modeling the soil with large blocks

of material and embedding the piers and abutments into these blocks. The 3 parameters of the model

are associated with the modulus of elasticity of the deck, piers and soil respectively. Specifically, the

parameters multiply the nominal values of the corresponding moduli of elasticity. The nominal values of

the moduli of elasticity of the deck, piers and soil were selected to be the values used in design, which

are 37GPa for the deck, 34GPa for the piers and 1GPa for the soil. Therefore, the updated model

parameters are expected to lie close to 1 for the deck and pier parameters. The updated value of the soil

parameter will show if the soil-structure interaction is significant (the soil is flexible) or if the soil is much

more stiffer than the bridge and behaves almost as a rigid body. In the later case, a large value of the

soil parameter is expected which would indicate that the soil completely restrains the bridge movement.

A coarse FE mesh is chosen to predict the first 20 modal frequencies and mode shapes of the bridge

with sufficient accuracy. The largest size of the elements in the mesh is of the order of the thickness of

the deck cross-section. Several mesh sizes were tried, and an accuracy analysis was performed in order

to find a reasonable trade-off between the number of degrees of freedom (DOF) of the model and the

accuracy in the predicted modal frequencies. By trying different mesh sizes in the deck, piers, and soil
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blocks, a mesh of 830.115 DOFs was kept for the bridge-soil model. This mesh was found to cause errors

of the order of 0.1− 0.5% in the first 20 modal frequencies, compared to the smallest possible mesh sizes

which had approximately 3 million DOFs. In that way, the model was optimized with respect to the

number of DOFs using a variable element size in each part of the bridge. This can be noted especially in

Figure 4.6 where it is evident that the size of the elements grows larger in the soil blocks.

(a) Entire bridge (b) Left soil block

(c) Pier M2 (d) Pier M2 (zoom)

(e) Deck (f) Pier M3

Figure 4.6: Finite element mesh of the bridge with soil blocks.
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The time required for a complete run of the FE model is approximately 2 minutes on a 8-core 3.20

GHz computer. Due to the thousands of forward model runs for different values of the model parameters

that are required by the Bayesian computational tools, it is necessary to reduce the time required for a

single model run to just a couple of seconds in order to bring the computational effort to manageable

levels.

4.3.2 Model reduction using CMS

Model reduction is used to reduce the model size and thus the computational effort to manageable levels.

Specifically, the parameterization-consistent CMS technique (Papadimitriou and Papadioti, 2013; Jensen

et al., 2014) is applied in the bridge-soil FE model.

Let ωc be the cut-off frequency which represents the highest modal frequency that is of interest in

FE model updating. Herein, the cut-off frequency is selected to be equal to the 20th modal frequency

of the nominal FE model, i.e. ωc = 3.51Hz. The bridge is divided into 16 physical components with

15 interfaces between the components as shown in Figure 4.7. The DOFs of components are called

internal DOFs whereas the DOFs of interfaces are called interface DOFs. Note that components 6 and

10 correspond to the left and right abutments respectively, which connect the bridge deck with the soil

blocks. For each component, it is selected to retain all modes that have frequency less than ωmax = ρωc,

where the ρ values affect the computational efficiency and accuracy of the CMS technique. The total

number of DOFs before the model reduction is applied and the number of DOFs retained for ρ = 5 are

given in Table 4.1. A total of 170 internal DOFs out of the 814.080 are retained for all 16 components.

The total number of DOFs of the reduced model is 16.205 which also includes 16.035 interface DOFs.

It is clear that more than an order of magnitude reduction in the number of DOFs is achieved using

CMS. Table 4.1 also shows the largest fractional error between the modal frequencies computed using the

complete FE model and the ones computed using the CMS technique for ρ = 5. A very good accuracy is

achieved where it is seen that the error falls below 0.2%.
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Figure 4.7: Components of the FE model of the bridge-soil system.

Table 4.1: Number of DOF and percentage modal frequency error for the full (unreduced) and reduced

models.

DOF Full model ρ = 5 ρ = 5, ν = 200

Internal 814.080 170 170

Interface 16.035 16.035 1.721

Total 830.115 16.205 1.891

Highest

Percentage 0.00 0.18 0.23

Error %

The large number of the interface DOFs can be reduced by retaining only a fraction of the constrained

interface modes (Papadimitriou and Papadioti, 2013). For each interface, only the modes that have
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frequency less than ωmax = νωc are retained, where ν is user and problem dependent. Results for

ν = 200 are given in Table 4.1. It can be seen that the largest fractional error for the lowest 20 modes of

the structure falls below 0.25%. In particular, for ν = 200 and ρ = 5 the reduced system has 1.891 DOFs

from which 170 generalized coordinates are fixed-interface modes for all components and the rest 1.721

generalized coordinates are constrained interface modes (Papadimitriou and Papadioti, 2013). The error

in this case is 0.23%.

Details about the reduction achieved on the internal and interface DOFs of each component separately

are shown in Table 4.2. The values of the parameters ρ and ν are not specified by the CMS methodology

used, but they rather have to be specified by the user depending on the specific problem. Different values

of the parameters for the various components and interfaces will lead to different sizes of reduced models

and corresponding accuracies in the predicted frequencies. A trade-off was made between reducing the

model as much as possible (fewer kept DOFs) and keeping the accuracy of the predicted modal frequencies

as close as possible to those of the unreduced model. It can be seen that a value of ρ = 1 was used for the

5 soil components instead of the value of ρ = 5 that was used for all the other components. This enabled

retaining less modes from the soil components which led to fewer kept DOFs, without compromising the

accuracy of the predicted modal frequencies. On the other hand, a larger value of ν = 5000 was necessary

to be used for the 4 interfaces of the abutments (shown in Figure 4.8) compared to the value of ν = 200

used for the rest of the interfaces.
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(a) Interface 1 (blue) and 6 (cyan).

(b) Interface 5 (blue) and 10 (cyan).

Figure 4.8: Interfaces of components 1, 5, 6 and 10 along with their mesh.

The different sizes of the elements in the top and bottom sides of the abutments are due to the different

FE mesh sizes used to discretize the soil and deck. The deck was meshed with a coarser mesh than the

soil in order to reduce the DOFs of the model. This was the result of an analysis done for several mesh

cases, and was chosen to provide the optimal trade-off between the number of DOFs and accuracy in

the predicted frequencies of the full FE model. Therefore, the top side of the abutments which touches

the deck has fewer elements than the bottom side which touches the soil. This results in the number of

DOFs seen in Table 4.2, which is 621 DOFs for interfaces 1 and 5 (bottom of abutments) and 117 DOFs

for interfaces 6 and 10 (top of abutments). For the selected value of ν = 5000 for these interfaces, this
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results in keeping 400 of the 621 DOFs for interfaces 1 and 5 and all 117 DOFs for interfaces 6 and 10.

This value of ν = 5000 was found to be necessary in order to keep the required accuracy in the predicted

frequencies of the reduced model.

Table 4.2: Detailed information about model reduction using CMS. (*809220 internal DOFs + 4860 fixed

DOFs = 814080 DOFs)

Component Full model ρ in () ν in ()
Reduction

percentage (%)

Internal Interface Internal Interface Internal Interface

1 26058 621 1 (1) 621 1 400 (5000) 1.5

2 12306 1125 1 (1) 1125 1 100 (200) 0.75

3 29271 3567 20 (1) 3567 20 100 (200) 0.36

4 19443 2469 10 (1) 2469 10 100 (200) 0.5

5 27012 621 1 (1) 621 1 400 (5000) 1.45

6 729 117 1 (5) 117 1 117 (5000) 13.95

7 30672 702 7 (5) 702 7 22 (200) 0.09

8 94092 456 15 (5) 456 15 60 (200) 0.08

9 11367 690 9 (5) 690 9 55 (200) 0.53

10 729 117 1 (5) 117 1 117 (5000) 13.95

11 106485 1311 21 (5) 1311 21 50 (200) 0.06

12 164154 1221 22 (5) 1221 22 50 (200) 0.04

13 49266 945 12 (5) 945 12 50 (200) 0.12

14 43467 1056 11 (5) 1056 11 50 (200) 0.13

15 134544 1017 24 (5) 1017 24 50 (200) 0.05

16 59625 0 14 (5) 0 14 0 (200) 0.02

Sum 809220* 16035 170 16035 170 1721 0.23

Total 830115 16205 1891

Table 4.1 shows the largest error in the first 20 modal frequencies between the unreduced and reduced

models. Table 4.3 shows all 20 modal frequencies predicted by the unreduced and reduced models,

together with their fractional difference with respect to the unreduced model times 1000.
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Table 4.3: Comparison of modal frequencies between the unreduced and reduced models together with

fractional difference times 1000.

Frequency
COMSOL

830.115 DOFs

Interior reduction

16.205 DOFs

Interface reduction

1.891 DOFs

1 0.29229 0.2923 (-0.0342) 0.293 (-2.4291)

2 0.57285 0.5729 (-0.0873) 0.5738 (-1.6584)

3 0.61889 0.6189 (-0.0162) 0.6192 (-0.5009)

4 0.84749 0.8475 (-0.0118) 0.8489 (-1.6637)

5 1.04847 1.0485 (-0.0286) 1.0495 (-0.9824)

6 1.06912 1.0692 (-0.0748) 1.0702 (-1.0102)

7 1.38448 1.3848 (-0.2311) 1.388 (-2.5425)

8 1.57685 1.5771 (-0.1585) 1.5784 (-0.983)

9 1.68234 1.6828 (-0.2734) 1.6895 (-4.256)

10 1.96412 1.9647 (-0.2953) 1.9664 (-1.1608)

11 2.15487 2.1553 (-0.1995) 2.1562 (-0.6172)

12 2.31451 2.315 (-0.2117) 2.3165 (-0.8598)

13 2.49529 2.4994 (-1.6471) 2.4996 (-1.7273)

14 2.74198 2.7429 (-0.3355) 2.7445 (-0.919)

15 2.81053 2.8141 (-1.2702) 2.8149 (-1.5549)

16 2.87191 2.8753 (-1.1804) 2.8761 (-1.459)

17 2.94499 2.9463 (-0.4448) 2.9499 (-1.6672)

18 3.31186 3.318 (-1.8539) 3.3195 (-2.3069)

19 3.37427 3.38 (-1.6981) 3.3809 (-1.9649)

20 3.5128 3.5205 (-2.192) 3.5205 (-2.192)

Thus, using CMS a drastic reduction in the number of DOFs is obtained which can exceed two orders

of magnitude, without sacrificing the accuracy with which the lowest 20 modal frequencies are computed.

The time to solution for one run of the reduced model is of the order of a few seconds which should be

compared to approximately 2 minutes required for solving the unreduced FE model.
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4.4 Experimental modal identification

4.4.1 Instrumentation

The measurement system consisted of 5 triaxial and 3 uniaxial accelerometers paired with a 24-bit data

recording system, a GPS module for synchronization between sensors, and a battery pack. The system

is wireless (everything is powered from the battery) and can be easily moved from one location in the

structure to another. The recorder can easily connect with a laptop through wired (Ethernet) or wireless

(Wi-Fi) connection to be set up in the desired way (sampling rate, recording duration, repeater recordings

etc) or view the measurements while they are being recorded for quality checking. The instrumentation is

shown in Figures 4.9, 4.10 and 4.11. The recorded responses are mainly due to road traffic, which ranged

from light vehicles to heavy trucks, and environmental excitation such as wind loading, which classifies

this case as ambient (operational) modal identification. An important aspect of this measurement system

is the fact that it is wireless, since this allowed for multiple sets of repeated measurements that had to be

performed for accurate mode shape identification, given the limited number of sensors and the large length

of the deck. Specifically, the entire length of the deck was covered in 13 sensor configurations, shown in

Figure 4.12 with each configuration recording for 20 minutes at a sampling rate of 100 Hz. One triaxial

and three uniaxial sensors (one vertical and two horizontal) remained in the same position throughout

the measurements, in order to provide common measurement points amongst different configurations

such as to enable the assembling of the total mode shape from partial mode shape components measured

from the different configurations (Au, 2011; Yan and Katafygiotis, 2015). The locations of the reference

sensors were obtained by minimizing the information entropy using an optimal sensor location theory

(Papadimitriou and Lombaert, 2012; Yuen and Kuok, 2015) such as to provide the highest information

content for identifying the modal parameters of the structure. Indicative sensor configurations are shown

in Figures 4.13 and 4.14 where green points correspond to reference sensors and blue points correspond to

the moving sensors of the specific sensor configuration. The three numbers above each point correspond

to the three measured DOFs in the three directions measured by the triaxial sensors.
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Figure 4.9: Junction box and unit including recorder, battery pack and GPS module

Figure 4.10: Uniaxial accelerometer, junction box, and unit including recorder, battery pack and GPS

module
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Figure 4.11: Triaxial accelerometer
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Figure 4.12: Measured locations in the bridge (reference sensors in green)
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Figure 4.13: Sensor configuration 4
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Figure 4.14: Sensor configuration 5

4.4.2 Modal identification

For the estimation of modal properties from the ambient acceleration data, and the assembly of the

identified local mode shapes to produce global mode shapes, a software developed in the context of

this thesis was used. The software for Ambient (Output-only) Modal Identification uses a recently

proposed Bayesian methodology (Au, 2012a,b) in order to estimate the modal frequencies, mode shapes,

damping ratios, and their uncertainties for each sensor configuration. The method is based on the Fast
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Fourier Transform (FFT) of the acceleration signals in specific frequency bands of interest. The software

also includes other modules for data insertion, pre-processing of the signals (for quality-checking of the

measurements and for the specification of the frequency bands of interest), and post-processing of the

results (mainly for performing mode shape assembly). The mode shape assembly methodology is similar

to the one proposed by Au (2011) and is developed in detail in Section 4.4.3. The software also supports

insertion of the geometry of the measured structure, for visual representation of the mode shapes in

the post-processing module. More details about the software can be found in Appendix A. Illustrative

ambient acceleration signals can be found in Appendix B.

Using the above mentioned software, the modal frequencies and modal damping ratios of the bridge

were extracted, and the mode shape components of each configuration were combined to produce the

full mode shapes at all 159 sensor locations covered by the 13 configurations. Specifically, the first 20

modal frequencies and modal damping ratios of the bridge were successfully identified, along with 11

mode shapes. The mode shapes of all the modes up to the 12th were successfully identified, except

the 10th which was very poorly identified and excluded from the set. Due to the fact that the modal

properties were identified from each of the 13 sensor configurations separately, their values vary slightly

from one configuration to the other which forces us to consider the mean and standard deviation across

all configurations. Table 4.4 presents the mean and standard deviation of the experimentally identified

modal frequencies and modal damping ratios for all 20 identified modes of the Metsovo bridge. It also

compares the identified frequencies and mode shapes with those predicted by the nominal FE model. The

identified values for the modal damping ratios can not be compared since the FE model does not take

damping effects into account. The experimental and nominal model predicted mode shapes are compared

using their MAC value which is a scalar measure of correlation between two mode shapes ranging from

0 to 1, with a value of 1 indicating perfect correlation. The identified mode shapes are shown in Figures

4.15 - 4.18 and compared with the corresponding mode shapes predicted by the nominal FE model of the

bridge. From both the MAC values of Table 4.4 and mode shapes of Figures 4.15 - 4.18 it can be clearly

seen that the mode shapes predicted by the nominal FE model match almost perfectly the corresponding

experimentally identified mode shapes with MAC values higher than 0.99 for the 11 identified mode

shapes. This indicates that the nominal FE model is already very accurate in predicting the mode shapes

of the bridge and no significant improvement can be achieved by the model updating procedure, since the

MAC values are already too high for all practical purposes. However, there appears to be a significant

mismatch between the experimental and nominal FE model modal frequencies which indicates that some

or all of the parameters of the nominal model should be updated in order to achieve a closer fit with the

experimental frequencies in the updated model.
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Table 4.4: First 20 experimentally identified modal frequencies and modal damping ratios of the Metsovo

bridge (mean and standard deviation across all 13 configurations) compared with the modal frequencies

and mode shapes predicted by the nominal FE model of the bridge.

Mode
Experimental

Frequency (Hz)

Nominal model

Frequency (Hz)

Mode shape

MAC value

Experimental

Damping ratio

mean std mean std

1 0.3063 0.0018 0.293 0.9987 0.0111 0.0025

2 0.6034 0.0070 0.5738 0.9881 0.0178 0.0024

3 0.6227 0.0017 0.6192 0.9984 0.0085 0.0014

4 0.9646 0.0047 0.8489 0.9994 0.0136 0.0195

5 1.0468 0.0079 1.0495 0.9984 0.0194 0.0105

6 1.1389 0.0065 1.0702 0.9984 0.0106 0.0043

7 1.4280 0.0048 1.388 0.9935 0.0143 0.0064

8 1.6967 0.0098 1.5784 0.9973 0.0161 0.0158

9 2.0053 0.0078 1.6895 0.9891 0.0113 0.0041

10 2.3034 0.0135 1.9664 0.0085 0.0016

11 2.3666 0.0100 2.1562 0.9954 0.0083 0.0039

12 2.5901 0.0106 2.3165 0.995 0.0080 0.0034

13 2.7226 0.0067 2.4996 0.0109 0.0043

14 3.0861 0.0126 2.7445 0.0098 0.0043

15 3.1266 0.0154 2.8149 0.0071 0.0015

16 3.4801 0.0159 2.8761 0.0184 0.0021

17 3.8608 0.0056 2.9499 0.0095 0.0023

18 4.0585 0.0116 3.3195 0.0091 0.0085

19 4.2101 0.0105 3.3809 0.0121 0.0032

20 4.4102 0.0121 3.5205 0.0084 0.0024
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Figure 4.15: Comparison between the experimentally identified (left column) and nominal FE model

predicted (right column) mode shapes of the Metsovo bridge. Modes 1-3.
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Figure 4.16: Comparison between the experimentally identified (left column) and nominal FE model

predicted (right column) mode shapes of the Metsovo bridge. Modes 4-6.
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Figure 4.17: Comparison between the experimentally identified (left column) and nominal FE model

predicted (right column) mode shapes of the Metsovo bridge. Modes 7-9.
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Figure 4.18: Comparison between the experimentally identified (left column) and nominal FE model

predicted (right column) mode shapes of the Metsovo bridge. Modes 10-12.
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4.4.3 Mode shape assembly

Problem description

When modal identification is performed we can extract certain modal properties for the rth mode:

ωr, ζr, φkr : r = 1 . . .m, k = 1 . . . n (4.1)

where m is the total number of identified modes and n is the total number of DOFs where we placed our

sensors. Notice that we extract the mode shape matrix row elements φkr in the specific DOFs where the

measurements were performed, namely the kth row of the mode shape matrix for k = 1 . . . n. In order to

obtain an accurate view of the mode shapes we need to extract the mode shape components in several

DOFs, depending on the complexity of each mode. Higher modes tend to have more complex geometric

shapes, and therefore require us to extract more mode shape components (increase the spatial resolution

of mode shapes) in order to avoid the problem of spatial-aliasing.

However, in practical situations, there is only a limited number of available sensors and many points

in the structure that need to be measured. This is the case in ambient vibration testing of large structures

such as bridges or buildings. Obviously, it is impossible to measure all the desired DOFs at the same

time, so we measure only a few of them at a time. The problem is the following:

Mode shapes identified from individual setups can have different scaling. Depending on the number

of reference DOFs (common DOFs among different setups) and the quality of identified mode shapes,

implementation issues can arise when determining the optimal mode shape that compromises among

different setups. In this section we are going to present a method for determining the optimal mode shape

that fits the mode shapes identified from multiple setups in a least square sense. The method presented

in this study, is a simplification of the method proposed by Au (2011) and uses the same symbols and

notation. The measure of fit function is defined as the squared difference between the theoretical and

identified mode shapes suitably oriented and scaled to the same norm. The most important element of

the method is the presence of reference DOFs. Since the mode shapes identified from individual setups

are arbitrary in sense and scaling, common reference DOFs must be present across different setups in

order to allow their mode shapes to be assembled. The reference DOFs must have significant frequency

response in the modes of interest. There must also be at least one common reference DOF across any

two setups.

Proposed methodology

Let ns be the number of different setups, ni be the number of measured DOFs in the ith setup, and

n be the total number of DOFs measured (in all setups). Let φ ∈ Rn be the mode shape (for the r

mode) covering the measured DOFs in all setups (unknown). Also, let φ̂i ∈ Rni be the measured mode

shape vector from the ith configuration. Vector φ̂i has ni components because the ith configuration

had ni DOFs measured. Note that
∑ns
i=1 ni > n because some DOFs are measured in more than one

configuration.
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We need a way to compare the measured mode shape of the ith configuration with the corresponding

DOFs of the full unknown mode shape φ. This is achieved by using a selection matrix Li ∈ Rni×n

defined for every configuration as : Li(j, k) = 1, if the jth data channel in the ith setup gives the kth

DOF of the full mode shape; and zero otherwise. Therefore, the mode shape φi in the ith setup can be

mathematically related to the assembled mode shape φ by:

φi = Liφ , φi ∈ Rni (4.2)

Our objective is to determine the ’best’ assembled mode shape φ so that {φi : i = 1, . . . , ns} are

closest to their measured counterparts
{
φ̂i : i = 1, . . . , ns

}
in a least square sense. The optimal mode

shape is formulated as the one that minimizes a measure-of-fit objective function. When formulating the

objective function, the issue of scaling should be addressed. Each φ̂i might be differently scaled, but the

shapes of two vectors can only be compared fairly if they have the same Euclidean norm. This suggests

that the discrepancy should be measured based on the difference between φi and ciφ̂i rather than directly

between φi and φ̂i; in the former case both vectors have the same norm.

The objective function that should be minimized is :

J(φ) =

ns∑
i=1

‖φi − ciφ̂i‖2 (4.3)

subject to the constraint:

‖φ‖2 = 1⇒ φTφ = 1⇒ φTφ− 1 = 0 (4.4)

Constrained optimization is converted to unconstrained using Lagrange multipliers as follows :

J(φ, λ) = J(φ) + λ(1− φTφ) (4.5)

In order to proceed we need to find the values of ci : i = 1, . . . , ns

Optimal scaling factors This is the part which significantly deviates from the methodology proposed

by Au (2011), leading to a different form of the solution. In order to find the optimal ci we now consider

a different minimization problem with respect to ci this time. Minimize the objective function :

G(ci) = ‖φi − ciφ̂i‖2 = (φi − ciφ̂i)T (φi − ciφ̂i) (4.6)

This minimization can be performed analytically as follows:

∂G

∂ci
= 0⇒ −φ̂i

T
(φi − ciφ̂i) + (φi − ciφ̂i)T (−φ̂i) = 0

⇒ −φ̂i
T
φi + ciφ̂i

T
φ̂i − φTi φ̂i + ciφ̂i

T
φ̂i = 0

−2φ̂i
T
φi + 2ciφ̂i

T
φ̂i = 0

⇒ ci =
φ̂i
T
φi

φ̂i
T
φ̂i

=
φ̂i
T
φi

‖φ̂i‖2
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For our analysis, we normalize φ̂i such that ‖φ̂i‖2 = 1 so finally the expression for the ci is :

ci = φ̂i
T
φi (4.7)

Minimization problem Thus, returning to our original minimization problem we have to minimize

the objective function :

J(φ, λ) = J(φ) + λ(1− φTφ) =

ns∑
i=1

‖φi − (φ̂i
T
φi)φ̂i‖2 + λ(1− φTφ) (4.8)

By substituting φi = Liφ in the above equation we have :

J(φ, λ) =

ns∑
i=1

‖Liφ− φ̂iφ̂i
T
Liφ‖2 + λ(1− φTφ)

=

ns∑
i=1

‖(Li − φ̂iφ̂i
T
Li)φ‖2 + λ(1− φTφ)

=

ns∑
i=1

φT (Li − φ̂iφ̂i
T
Li)

T (Li − φ̂iφ̂i
T
Li)φ+ λ(1− φTφ)

And in more compact form :

J(φ, λ) =

ns∑
i=1

φTAiφ+ λ(1− φTφ) (4.9)

where we have defined Ai as :

Ai = (Li − φ̂iφ̂i
T
Li)

T (Li − φ̂iφ̂i
T
Li) (4.10)

A more careful examination of Ai yields :

Ai = (Li − φ̂iφ̂i
T
Li)

T (Li − φ̂iφ̂i
T
Li)

= (LTi −LTi φ̂iφ̂i
T

)(Li − φ̂iφ̂i
T
Li)

= LTi Li −LTi φ̂iφ̂i
T
Li −LTi φ̂iφ̂i

T
Li +LTi φ̂iφ̂i

T
φ̂iφ̂i

T
Li

Taking into account that we normalize our measured mode shapes, ‖φ̂i‖2 = 1 ⇒ φ̂i
T
φ̂i = 1 we can

further simplify the expression for Ai :

Ai = LTi Li −LTi φ̂iφ̂i
T
Li (4.11)

From equation (4.11) we can deduce that Ai ∈ Rn×n, AT
i = Ai and Ai is independent of φ. Thus,

returning to our objective function we note from equation (4.9) that J(φ, λ) is quadratic in φ components,

thus we expect to solve it analytically, using derivatives :

J(φ, λ) =

ns∑
i=1

φTAiφ+ λ(1− φTφ)
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⇒ ∂J

∂φj
=

ns∑
i=1

(
∂φ

∂φj
)TAiφ+ φTAi

∂φ

∂φj
− λ(

∂φT

∂φj
φ+ φT

∂φ

∂φj
) (4.12)

Further simplification is achieved when noticing that the assembled mode shape vector φ has constant

elements, therefore the derivative of the vector with respect to a specific element is a zero-vector with

only one non-zero element equal to one, in the position of the aforementioned derivation element.

φ = (φ1, φ2, . . . , φj , . . . , φn)T ⇒ ∂φ

∂φj
= (0, 0, . . . , 1, . . . , 0)T

Using Kronecker’s delta we can rewrite the derivative in a more compact form :

∂φ

∂φj
= δj ∈ Rn (4.13)

By substituting into equation (4.12) we obtain :

∂J

∂φj
=

ns∑
i=1

δTj Aiφ+ φTAiδj − λ(δTj φ+ φT δj)

We notice that the terms of the resulting equation are scalar, and therefore they are equal to their

transpose. Using the matrix identity : (ABC)T = CTBTAT , and by using the fact that AT
i = Ai from

equation (4.11), we further simplify the derivative to :

∂J

∂φj
= 2

ns∑
i=1

(δTj Aiφ)− 2λδTj φ = 0 , j = 1, . . . , n (4.14)

Equations (4.14) form a system of n equations linear in φ. We can estimate φ from its solution. Because

of its linearity, this system of equations can be solved analytically. First we rewrite the equations in matrix

form. To do that we note that the product Aiφ is a column vector of size n. Its pre-multiplication with

δTj returns a scalar which is just the jth element of Aiφ. The same holds for the second term of equations

(4.14). Therefore, the matrix form of the system is :

ns∑
i=1

Aiφ− λφ = 0⇒ A0φ− λφ = 0⇒ A0φ = λφ , A0 =

ns∑
i=1

Ai (4.15)

Equation (4.15) constitutes an eigenvalue problem. This means that in order to find our unknown

assembled mode shape φ we have to find the eigenvectors of the matrix A0 given in the above equation.

An obvious issue that we have to address is the multitude of eigenvectors. Specifically, since matrix A0 is

of dimension n× n the solution of the eigenproblem will yield n eigenvectors, but we want one solution.

We choose the eigenvector φ(r) that minimizes our objective function J(φ, λ) :

J(φ, λ) =

ns∑
i=1

φTAiφ+ λ(1− φTφ) = φT (

ns∑
i=1

Ai)φ+ λ(1− φTφ)

⇒ J(φ, λ) = φTA0φ+ λ(1− φTφ) (4.16)

73

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 12:38:19 EEST - 18.191.97.154



For the rth eigenvector we have that : A0φ
(r) = λ(r)φ(r) and we also assume that we have normalized

the eigenvector such that ‖φ(r)‖2 = 1

By substituting into the objective function we have :

J(φ(r), λ) = φ(r)TA0φ
(r) = φ(r)Tλ(r)φ(r) = λ(r)φ(r)Tφ(r) = λ(r)‖φ(r)‖2

⇒ J(φ(r), λ) = λ(r) (4.17)

It is obvious that the objective function is minimized when λ(r) is minimum, i.e. the lowest eigenvalue

of the problem. Therefore, the solution to the problem is the eigenvector that corresponds to the lowest

eigenvalue, namely φ(1).

To sum up the important equations, first, we find Ai based on the configuration matrix Li and the

measurements φ̂i from (4.11). Then we use equation (4.15) to findA0 from theAi and find the eigenvalues

and eigenvectors of A0. The eigenvector corresponding to the lowest eigenvalue is the solution to our

problem.

4.5 Bayesian parameter estimation

4.5.1 Likelihood formulation using modal data

To apply the Bayesian formulation for parameter estimation of linear FE models, we consider that the data

D consists of the square of the modal frequencies, λ̂r = ω̂2
r , and the mode shapes φ̂

r
∈ RN0,r , r = 1, . . . ,m,

experimentally estimated using vibration measurements, where m is the number of identified modes and

N0,r is the number of measured components for mode r.

Consider a parameterized linear FE model class M̃ of a structure and let θ ∈ RNθ be a vector of free

structural model parameters to be estimated using the set of modal properties identified from vibration

measurements. Let ωr(θ) and φ
r
(θ) ∈ RN0,r be the r-th modal frequency and mode shape at N0,r

DOFs, respectively, predicted by the model for a given value θ of the model parameters. The likelihood

p(D|θ, M̃) in (2.2) is built up using the following considerations. The prediction error equation for the

r-th modal frequency is taken as:

ω̂2
r = ω2

r(θ) + ελr (4.18)

where ελr is the prediction error for the r-th frequency taken to be Gaussian with zero mean and standard

deviation σωr ω̂r, with the unknown parameter σωr to be included in the parameter set θe to be estimated

from the data.

The prediction error equation for the r-th mode shape is

φ̂
r

= βr(θ)φr(θ) + εφ
r

(4.19)

where εφ
r

is the prediction error vector for the r-th mode shape taken to be Gaussian with zero mean

and covariance matrix σ2
φ
r

Σφ
r
, where the matrix Σφ

r
specifies the possible correlation structure between
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the components of the prediction error vector of the r-th mode shape, the unknown scalar σ2
φ
r

is included

in the parameter set to be estimated, and

βr(θ) = φ̂
T

r
φ
r
(θ) /

∥∥∥φ
r
(θ)
∥∥∥2

(4.20)

is a normalization constant such that the measured mode shape φ̂
r

at the measured DOFs is closest

to the model mode shape βr(θ)φr(θ) predicted by the particular value of θ, and ||z||2 = zTz is the

usual Euclidean norm. For the simplest case of uncorrelated mode shape prediction error vectors their

covariance matrix simplifies to a diagonal matrix

εφ
r
∼ N

(
0, diag(σ2

φ
r
||φ̂

r
||2)
)

(4.21)

The squares of the modal frequencies λr(θ) = ω2
r(θ) and the mode shape components φ

r
(θ) =

Lrϕr(θ) ∈ RN0,r at the N0,r measured DOFs are computed from the full mode shapes ϕ
r
(θ) ∈ Rn

that satisfy the eigenvalue problem:

[K(θ)− λr(θ)M(θ)]ϕ
r
(θ) = 0 (4.22)

where K(θ) ∈ Rn×n and M(θ) ∈ Rn×n are the stiffness and mass matrices respectively of the FE model

of the structure, n is the number of model DOFs, and Lr ∈ RN0,r×n is an observation matrix, usually

comprised of zeros and ones, that maps the n model DOFs to the N0,r observed DOFs for mode r. For

a model with large number of DOFs, N0,r � n.

The structural model class M̃ is augmented to include the prediction error model class that postulates

zero-mean Gaussian models for the modal frequency and mode shape error terms ελr and εφ
r

in (4.18)

and (4.19), respectively, with equal variances for all modal frequency and mode shape errors. Assuming

σ2
ωr = σ2

φ
r

= σ2, the likelihood function can then be readily obtained in the form

p(D|θ, M̃) =
1(√

2πσ
)m(N0+1)

exp

[
− 1

2σ2
J(θ)

]
(4.23)

where

J(θ) = J1(θ) + J2(θ) (4.24)

is the modal residual term. In (4.24) the following modal frequency residuals

J1(θ) =
m∑
r=1

ε2
λr (θ) =

m∑
r=1

[λr(θ)− λ̂r]
2

λ̂2
r

(4.25)

and mode shape residuals

J2(θ) =
m∑
r=1

ε2
φ
r
(θ) =

m∑
r=1

∥∥∥βr(θ)φr(θ)− φ̂r∥∥∥2

∥∥∥φ̂
r

∥∥∥2 (4.26)
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measure the differences ελr and εφ
r

for the modal frequencies and mode shape components between the

identified modal data and the model predicted modal data, respectively. It is worth noting that it can be

shown that the square of the mode shape residuals in (4.26) is related to the modal assurance criterion

(MAC) value of the mode r by (Papadimitriou et al., 2011)

ε2
φ
r
(θ) = 1−MAC2

r (θ) = 0 ≤ 1−


[
φ
r

]T
φ̂
r∥∥∥φ

r

∥∥∥∥∥∥φ̂
r

∥∥∥


2

≤ 1 (4.27)

since 0 ≤ MAC2
r ≤ 1. Thus J2(θ) in (4.26) is also a measure of the distance of the square MAC value

from one, or equivalently, a measure of the correlation between the model predicted mode shape and the

measured mode shape.

Based on the above-mentioned note, a second formulation can be derived for the use of the mode

shape data based on the MAC value. Specifically, the scalar quantity 0 ≤ 1−MAC2
r (θ) ≤ 1 for mode r

can be reasonably assumed to follow a probability distribution defined on the interval [0, 1], such as the

Beta distribution. The 2 positive shape parameters of the beta distribution can also be included in the

uncertain model parameter vector θ to be identified from the data. This formulation reduces the number

of data for mode shape r from N0,r mode shape components (vector) to just a scalar number. The benefit

of such an approach for the mode shape data is that when using the mode shape as a vector, one must

either assume the components of the vector to be uncorrelated with each other, or introduce correlation

described by a correlation function. In many practical cases both choices might be very difficult to make

because some correlation is bound to exist between the mode shape components, but finding the correct

correlation function might be very difficult. Then reducing the mode shape data from a vector to a scalar

is a convenient simplifying assumption. The beta distribution is not the only distribution that can serve

for this purpose, other distributions for real numbers in [0, 1] can also be explored.

4.5.2 Computational tools

The Bayesian tools for identifying FE models as well as performing robust prediction analyses require a

moderate to very large number of repeated system analyses to be performed over the space of uncertain

parameters. Consequently, the computational demands depend highly on the number of system analyses

and the time required for performing a system analysis. For linear FE models with large number of DOFs,

this can increase substantially the computational effort to excessive levels. Computational savings are

achieved by adopting parallel computing algorithms to efficiently distribute the computations in available

multi-core CPUs (Angelikopoulos et al., 2012; Hadjidoukas et al., 2015). Specifically, the Π4U software

(Hadjidoukas et al., 2015), based on a parallelized version of the Transitional MCMC (TMCMC) algorithm

(Ching and Chen, 2007), was used to efficiently distribute the computations in available multi-core CPUs

and draw samples from the posterior probability density function (PDF) of the model parameters. This

sampling algorithm requires only point-wise evaluation of the likelihood function for many different values

of the model and prediction error parameters.
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In structural dynamics, fast and accurate component mode synthesis (CMS) techniques, consistent

with the finite element model parameterization, were integrated with Bayesian techniques to reduce

efficiently and drastically the model and thus the computational effort (Papadimitriou and Papadioti,

2013; Jensen et al., 2014). The reduction achieved by applying the CMS technique in the finite element

model of the bridge was described in Section 4.3.2.

4.6 Model updating and model selection results

The FE model of the bridge-soil system is next updated using a subset of the experimentally identified

modal frequencies following the formulation presented in Section 4.5.1 with the modal residual term of

Equation (4.24) taking into account only the modal frequencies

J(θ) = J1(θ) (4.28)

This approach allows one to use the rest of the experimentally identified modal data to validate the

updated model by checking its predictive capabilities with data that was not used to update the model.

Specifically, the first 15 identified modal frequencies are used to estimate the model parameters and their

uncertainty (model updating), while the rest 5 modal frequencies and 11 mode shapes are used in order

to validate the updated model. Remind that the MAC values for the 11 identified mode shapes were

already very close to 1 with the nominal model, before the updating.

As already described in Section 4.3.1 the FE model of the bridge-soil system is parameterized using

three parameters associated with the modulus of elasticity of the deck (θ1), piers (θ2) and soil (θ3). This

parametrization is depicted graphically in Figure 4.19. Since the entire deck is constructed from the same

material there is no reason to assume that its modulus of elasticity exhibits any spatial variation which

would require more parameters to describe the deck stiffness. The same applies for the three piers and

soil blocks. The model parameters multiply the nominal values of the corresponding moduli of elasticity

which are 37GPa for the deck, 34GPa for the piers and 1GPa for the soil. The nominal values for the deck

and piers are accurate estimates since they are the moduli of elasticity of the concrete used in design for

the deck and piers respectively, and therefore their updated values are expected to lie close to 1. It would

be sensible to expect a slight lowering in the values of those parameters rather than an increase, since an

increase would indicate that the structure has stiffened over time since its construction which would be

counter-intuitive. However, as far as the soil is concerned, its nominal value is only a rough estimate since

the soil is much more difficult to model compared to the bridge because its exact composition and spatial

variation is not known. Therefore, its nominal value should not be trusted and rather it should be dealt

with a large uncertainty in the model updating procedure. These modeling considerations regarding the

initial parameter uncertainties are taken into account in the Bayesian framework through the prior PDF.
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Figure 4.19: Parametrization of the FE model of the bridge-soil system.

The prior distribution for the parameters was assumed to be uniform with bounds in the domain

[0.1, 10] × [0.1, 10] × [0.1, 1000] for the deck, pier and soil parameters respectively, and in the domain

[0.001, 1] for the prediction error parameter σ. The domain for the soil parameter was deliberately chosen

much larger in order to account for the large uncertainty in the values of the soil stiffness reported in the

design and be able to explore the full effect of the soil stiffness on the model behavior.

Model updating results are obtained using the parallelized TMCMC algorithm for the bridge-soil FE

model. The TMCMC is used to generate samples from the posterior PDF of the structural model and

prediction error parameters. Those samples represent the posterior PDF and therefore our updated state

of knowledge about the parameters given the experimental data. After the posterior samples are drawn

which describe the updated uncertainty in the model parameters, this uncertainty is propagated to the

predictions of the first 15 modal frequencies of the bridge. This is done in order to check the fit of the

updated model with the experimental data that was used to perform the model updating. 1000 samples

per TMCMC stage are used, resulting in a total runtime of approximately 10 minutes using the reduced

1.891 DOF model in a 8-core 3.20 GHz computer.

The TMCMC samples which represent the posterior PDF are visualized through their marginal dis-

tributions and 2D projections in Figure 4.20. The sample statistics are shown in Table 4.5. The posterior

parameter uncertainty is propagated through the model using the samples to yield the robust model

predictions of the 15 first frequencies which were used as data to update the model. The fit is shown

in Figure 4.21. The improvement of the updated model compared to the nominal model is evident. All

experimental frequencies except the 9th fall well within the 90% uncertainty interval of the model pre-

dictions and close to the mean. This is a strong indication of the accuracy and predictive capability of
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the updated model. It is also interesting to note how the nominal model starts to miss the experimental

frequencies significantly only after the 9th frequency. Up to the 8th frequency there is no significant

improvement of the updated model over the nominal model. Also it is evident that the uncertainty in

the predictions of the updated model starts to grow larger after the 8th frequency. This implies that

the higher modes are more sensitive to variations in the values of the model parameters compared to the

lower modes.

It can be seen that the values of the deck and pier parameters lie close to 1 as expected, and slightly

below it. The updated most probable values for the deck and pier stiffness parameters are estimated to

be approximately 0.90 and 0.95 times their nominal values with uncertainties of the order of 5% and 12%

respectively. From the θ1− θ2 2D projection of Figure 4.20 it is evident that a negative correlation exists

between the deck and pier stiffnesses. This is reasonable since an increase in the stiffness of the deck

can be counterbalanced by a decrease in the stiffness of the piers such that the modal frequencies are

maintained, and vice versa. In fact, part of the posterior uncertainty that exists in the values of the deck

and pier stiffnesses is due to this correlation and not only due to the measurement and model error. The

updated mean value for the prediction error parameter σ is 0.1 which indicates an average 10% mismatch

between the frequency predictions from the 1000 samples and the experimental frequencies with respect

to the experimental frequencies. This can be qualitatively seen in the fit of Figure 4.21 by comparing the

90% uncertainty interval of the predictions with the experimental frequencies.

As far as the updated soil stiffness is concerned, the only (but important) new information that is

acquired by the model updating is that its value can be arbitrarily large, as long as it exceeds a threshold.

The threshold value appears to be approximately 70 which is the minimum value that the updated soil

parameter can attain, as seen from its posterior marginal distribution in Figure 4.20. A value of 70

implies a soil modulus of elasticity of 70GPa which is more than double of the updated (and nominal)

value of the pier modulus of elasticity (34GPa). The soil parameter can increase arbitrarily above this

value without affecting the fit with the experimental data, that is, without causing any variation in the

predicted modal frequencies of the model. Considering that the uniform prior bound for the soil stiffness

was set to [0.1, 1000] it is obvious that lower values which attribute to the soil some flexibility similar to

that of the piers are avoided. Since the piers are embedded into the soil blocks and the later turn out to

be much stiffer, the physical implication of this is that the soil behaves as a rigid body compared to the

piers and therefore it completely restrains their movement. This is the reason that any large value of the

soil stiffness makes no difference since the soil is already practically rigid compared to the piers and acts

like a fixed constraint.
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Figure 4.20: Posterior marginal distributions and 2D sample projections of model parameters. θ1: Deck,

θ2: Piers, θ3: Soil, σ: Prediction error

Table 4.5: Mean and quantiles of posterior samples.

θ1 θ2 θ3 σ

Mean 0.9070 0.9534 468.0994 0.1066

5% Quantile 0.8002 0.6997 113.8553 0.0508

95% Quantile 1.0117 1.2297 899.0796 0.1963
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Figure 4.21: Uncertainty propagation to the first 15 modal frequencies compared with the experimental

data and nominal model.

These results suggest that the bridge appears to be completely fixed to the ground and the soil exhibits

no flexibility at all. This idea naturally leads to a second improved modeling option, which is to eliminate

the soil parameter by fixing its value to a large number, simulating the rigid soil conditions which were

found from the first model. Therefore, the new rigid soil model has two parameters instead of three,

the modulus of elasticity of the deck (θ1) and piers (θ2), while the soil parameter is fixed to any value

allowed by its posterior marginal distribution of Figure 4.20. A value of 300 is used. This rigid-soil model

is expected to be better than the flexible-soil model since it has less parameters and makes the same

predictions. Bayesian model selection (Beck and Yuen, 2004) is used as a rational framework to decide

about which model is the best using the experimental data. This method compares several models using

their evidence term p(D|Mi). The model with the highest evidence is the best. This method takes into

account both the complexity of the model in the form of the number of its parameters and the fit it

achieves with the data in order to obtain a trade-off between the two. Models with more parameters

are penalized unless they have a better fit with the data compared to models with less parameters. One

merit of using the TMCMC algorithm for Bayesian model updating is that the evidence of the model is

calculated as a byproduct of the algorithm. Therefore, by performing model updating on both models

they can be easily compared using their evidence values. The log-evidence for the first flexible-soil model

with three parameters was found to be 12.21 as shown in Figure 4.20.

The posterior PDF samples for the rigid-soil model with two parameters are visualized using their

marginal distributions and 2D projections in Figure 4.22. The sample statistics are shown in Table 4.6.

The posterior parameter uncertainty is propagated through the model using the samples to yield the
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robust model predictions of the 15 first frequencies which were used as data to update the model. The

fit is shown in Figure 4.23. It can be seen that, as expected, the model updating results both in terms

of the updated values of the parameters and in terms of the fit with the data are almost identical to the

results obtained from the flexible-soil model. The updated most probable values for the deck and pier

stiffness parameters are again estimated to be approximately 0.90 and 0.95 times their nominal values

with uncertainties of the order of 5% and 12% respectively, while the negative correlation between them

still exists in the results. Note that in Figure 4.23 the predictions of the nominal model are larger due to

the increase of the soil parameter to the fixed value of 300 in order to simulate the rigid-soil conditions

which led to an increase of the modal frequencies of the nominal model. However, the updated model

still provides the same fit with the data as was found with the flexible-soil model in Figure 4.21.

Bayesian model selection rewards the rigid-soil model for having one less parameter than the flexible-

soil model while achieving the same fit with the experimental data by assigning a larger log-evidence

of 14.99 to the rigid-soil model. The log-evidence for the flexible-soil model was found to be 12.21.

Therefore, the Bayesian model selection methodology shows a clear preference of the rigid-soil model

with two parameters over the flexible-soil model with three parameters.

Figure 4.22: Posterior marginal distributions and 2D sample projections of model parameters. θ1: Deck,

θ2: Piers, σ: Prediction error
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Table 4.6: Mean and quantiles of posterior samples.

θ1 θ2 σ

Mean 0.8997 0.9555 0.0904

5% Quantile 0.8180 0.7305 0.0483

95% Quantile 0.9888 1.2094 0.1714

Figure 4.23: Uncertainty propagation to the first 15 modal frequencies compared with the experimental

data and nominal model.

Up to this point the updated model was checked against data that were used to update it. To further

check the accuracy, reliability and predictive capabilities of the model, it is checked against new data that

was not used in the model updating procedure in a process that is known as model validation. The last

5 experimentally identified modal frequencies (16th-20th modes) and the 11 identified mode shapes (1st-

12th except the 10th) are used for validating the model. The updated parameters and their uncertainty

is propagated using the posterior samples through the rigid-soil model in order to make robust posterior

predictions for the modal frequencies of the 16th-20th modes and for the mode shapes of modes 1-12,

discarding the mode shape for the 10th mode. The robust posterior predictions are compared against

their experimentally identified counterparts. The comparison is shown in Figure 4.24 for the modal

frequencies and in Figure 4.25 for the mode shapes using their MAC value.
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Figure 4.24: Uncertainty propagation to the 20 first modal frequencies compared with the experimentally

identified frequencies. Modes 1-15 were used in the model updating while modes 16-20 were used for

validation only.

Figure 4.25: Uncertainty propagation to the first 12 mode shapes compared with the experimentally

identified mode shapes using their MAC value.

It can be seen that the updated rigid-soil model continues to predict the modal frequencies for modes
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16-20 accurately, even though they were not used in the model updating. The experimental frequencies

lie well within the 90% uncertainty intervals of the model predicted frequencies and close to the mean

value. As far as the mode shapes are concerned, the MAC values between the experimental and updated

rigid-soil model predicted mode shapes are exactly the same as the ones obtained with the nominal rigid-

soil model. That is, the mode shapes were not affected at all by the new values of the model parameters

and their uncertainty. This shows that the mode shapes are highly insensitive to variations in the model

parameters. Also, the nominal MAC values were already very close to 1, indicating a perfect correlation

with the experimental mode shapes, which means that they could not be improved in any significant

amount. The invariability of the mode shapes with respect to the model parameters shows that they are

not useful for model updating of the particular model since they do not reveal any information about the

model parameters. The model validation results clearly demonstrate that the updated rigid-soil model

is very accurate in describing the behavior of the real structure since it can accurately predict its modal

frequencies and mode shapes that were not used in the model updating. The overall fit of the updated

rigid-soil model with the experimental modal frequencies is quantitatively shown in Table 4.7.
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Table 4.7: Fit of updated rigid-soil model with the experimental modal frequencies.

Mode
Experimental

Frequency (Hz)

Updated Model

Frequency (Hz)

Nominal Model

Frequency (Hz)

mean mean std

1 0.3063 0.3093 0.0121 0.3209

2 0.6034 0.6010 0.0100 0.6300

3 0.6227 0.6315 0.0107 0.6611

4 0.9646 0.9634 0.0336 1.0007

5 1.0468 1.0833 0.0179 1.1362

6 1.1389 1.1464 0.0249 1.2052

7 1.4280 1.4879 0.0356 1.5667

8 1.6967 1.6583 0.0321 1.7448

9 2.0053 1.8661 0.0409 1.9646

10 2.3034 2.2545 0.0489 2.3796

11 2.3666 2.3946 0.0476 2.5233

12 2.5901 2.5265 0.0680 2.6149

13 2.7226 2.7240 0.0595 2.8630

14 3.0861 3.0145 0.0631 3.1870

15 3.1266 3.1259 0.0529 3.2720

16 3.4801 3.5113 0.0953 3.6789

17 3.8608 3.8107 0.0915 3.8180

18 4.0585 3.9898 0.0938 3.9993

19 4.2101 4.2790 0.0841 4.5334

20 4.4102 4.3538 0.0714 4.5547

As already mentioned, the data set used for model updating consists of the first 15 experimentally

identified modal frequencies of the bridge. The model updating results, both in terms of the updated

parameter values and in terms of the robust posterior predictions depend on the number of experimental

modes used in the data set. In order to illustrate this dependence the model updating procedure is

repeated two times, using as data sets the first 12 and 8 experimental modes. The results are compared

with the results obtained using the 15 modes. Figure 4.26 shows the posterior marginal distributions for

the deck and pier parameters using 15, 12 and 8 modes, while Figure 4.27 shows the robust posterior

predictions for the first 20 modal frequencies for the 3 cases, compared with the experimentally identified

frequencies. Quantitative results in terms of the mean and standard deviation of the updated parameter

values and robust predictions are shown in Tables 4.8 and 4.9 respectively. It can be seen that as the
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number of modes included in the data set decreases, the uncertainty in the deck and pier parameters

increases. In fact, the posterior standard deviation for the deck and pier parameters almost doubles

when reducing the number of modes from 15 to 12, and from 12 to 8. This increased uncertainty in

the parameters gets propagated and results in an increased uncertainty in the predictions of the modal

frequencies. Again it is seen that the standard deviation of the predicted modal frequencies gets doubled

when reducing the number of modes from 15 to 12 and to 8. Table 4.10 shows the results in terms of the

coefficient of variation measure, expressed as a percentage. This can be thought of as a dimensionless

measure of the error in the modal frequency estimate. It can be seen that using 15 modes in the data

set results in errors in the predicted modal frequencies of the order of 1 − 3%, while 12 modes lead to

errors of the order of 3− 5% and for 8 modes the error in the modal frequency estimates can be as large

as 7− 9%.

(a) Deck parameter (b) Pier parameter

Figure 4.26: Posterior marginal distributions using 15, 12 and 8 modes in the model updating data set.
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Figure 4.27: Robust posterior predictions for the first 20 modal frequencies using 15, 12 and 8 modes

compared with the experimental frequencies.

Table 4.8: Deck and pier posterior uncertainties for 15, 12 and 8 modes used in the data set.

Number of modes

15 12 8

Deck mean 0.90 0.89 0.87

std 0.05 0.11 0.26

Pier mean 0.95 0.94 1.00

std 0.15 0.33 0.70
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Table 4.9: Robust posterior predictions for the first 20 modal frequencies for 15, 12 and 8 modes used in

the data set.

Mode
Experimental

Frequency
Updated Model

15 modes 12 modes 8 modes

mean mean std mean std mean std

1 0.3063 0.3093 0.0121 0.3115 0.0235 0.3135 0.0339

2 0.6034 0.6010 0.0100 0.6000 0.0192 0.5879 0.0384

3 0.6227 0.6315 0.0107 0.6312 0.0201 0.6230 0.0372

4 0.9646 0.9634 0.0336 0.9652 0.0536 0.9571 0.0748

5 1.0468 1.0833 0.0179 1.0830 0.0367 1.0606 0.0761

6 1.1389 1.1464 0.0249 1.1491 0.0505 1.1260 0.0836

7 1.4280 1.4879 0.0356 1.4821 0.0730 1.4280 0.1306

8 1.6967 1.6583 0.0321 1.6504 0.0616 1.6016 0.1242

9 2.0053 1.8661 0.0409 1.8578 0.0844 1.7932 0.1558

10 2.3034 2.2545 0.0489 2.2256 0.0881 2.1582 0.1777

11 2.3666 2.3946 0.0476 2.3727 0.0968 2.2869 0.1931

12 2.5901 2.5265 0.0680 2.5272 0.1025 2.4639 0.2034

13 2.7226 2.7240 0.0595 2.7293 0.1007 2.6617 0.1994

14 3.0861 3.0145 0.0631 2.9888 0.1063 2.9013 0.2210

15 3.1266 3.1259 0.0529 3.1121 0.1019 3.0342 0.2200

16 3.4801 3.5113 0.0953 3.4867 0.1492 3.4027 0.2749

17 3.8608 3.8107 0.0915 3.6443 0.1319 3.5639 0.2703

18 4.0585 3.9898 0.0938 3.8757 0.1521 3.7955 0.2982

19 4.2101 4.2790 0.0841 4.2359 0.1516 4.0897 0.3452

20 4.4102 4.3538 0.0714 4.3296 0.1449 4.1985 0.3372
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Table 4.10: Coefficient of variation (= std/mean × 100%) of robust model predictions for 15, 12 and 8

modes.
Mode Updated Model (cov)

15 modes 12 modes 8 modes

1 3.9121 7.5441 10.8134

2 1.6639 3.2000 6.5317

3 1.6944 3.1844 5.9711

4 3.4876 5.5533 7.8153

5 1.6524 3.3887 7.1752

6 2.1720 4.3947 7.4245

7 2.3926 4.9254 9.1457

8 1.9357 3.7324 7.7547

9 2.1917 4.5430 8.6884

10 2.1690 3.9585 8.2337

11 1.9878 4.0797 8.4437

12 2.6915 4.0559 8.2552

13 2.1843 3.6896 7.4915

14 2.0932 3.5566 7.6173

15 1.6923 3.2743 7.2507

16 2.7141 4.2791 8.0789

17 2.4011 3.6194 7.5844

18 2.3510 3.9245 7.8567

19 1.9654 3.5789 8.4407

20 1.6399 3.3467 8.0314

4.7 Conclusions

A Bayesian framework was presented for model updating and model selection in structural dynamics sim-

ulations using experimentally identified modal data. The proposed framework was used for estimating

the uncertainties in the structural and prediction error model parameters and propagating those un-

certainties for making robust predictions. Sampling algorithms were proposed for Bayesian uncertainty

quantification and propagation. In Bayesian sampling techniques, the TMCMC is a highly parallelizable

algorithm that can be used in a parallel computing environment to efficiently distribute the large number

of independent system simulations in available multi-core CPUs.

The implementation of the framework in structural dynamics was outlined for linear structural models

using experimentally identified modal frequencies and mode shapes. The model used was a high-fidelity
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detailed FE model of the Metsovo bridge. To efficiently handle large-order models of hundreds of thou-

sands or millions degrees of freedom, fast and accurate component mode synthesis techniques, consistent

with the finite element model parameterization, were employed that achieve drastic reductions in the

model order and the computational effort.

Bayesian model updating was performed in order to estimate the structural and prediction error

model parameters and their associated uncertainty, while Bayesian model selection was used to decide

which model is the best amongst two classes of competing models, based on the experimental data.

The structural model parameter uncertainties were propagated in order to obtain robust posterior model

predictions. The updated model was validated against data that was not used in the model updating

procedure. Finally, an analysis was performed in order to investigate the effect of the number of modes

used in the data set on the model updating and validation results.

It is demonstrated with this application on a full scale bridge that these parallel computing and model

reduction techniques, integrated within Bayesian tools, can be effective in calibrating the uncertainty of

finite element models with hundred of thousands of degrees of freedom, achieving drastic reductions in

computational effort by more than three orders of magnitude. The integration of model reduction and

parallel computing techniques within Bayesian uncertainty quantification and propagation tools can result

in drastic reduction of computational time to manageable levels for complex models used for simulations

of structural dynamics and related engineering systems.
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Chapter 5

Bayesian identification of non-linear

seismically isolated structures

5.1 Introduction

Bayesian inference is used for quantifying and calibrating uncertainty models in structural dynamics

based on vibration measurements, as well as propagating these uncertainties in structural dynamics sim-

ulations for updating robust predictions of system performance, reliability and safety (Papadimitriou

et al., 2001). Asymptotic and stochastic simulation tools can be used to quantify and propagate uncer-

tainties. Asymptotic formulations (Tierney and Kadane, 1986) are approximate and may miss-represent

the posterior distribution of the model parameters for concave supports, multimodal or unidentifiable

posterior distributions. They also require that the derivatives and hessians of measures of fit between

the response quantities of interest (QoI) and corresponding measurements are available. Adjoint formu-

lations, in particular, can be used to substantially reduce the computations related to estimating the

sensitivities of the measures of fit with respect to the number of parameters. For nonlinear models of

structures subjected to earthquake-like excitation, the adjoint formulation might not exist or may not

be easily implemented in software. Stochastic simulation algorithms are more convenient to use since

can better represent complex posterior distributions and do not require the estimation of derivatives of

response quantities with respect to the model parameters.

Computationally intensive stochastic simulation algorithms (e.g. Transitional MCMC (Ching and

Chen, 2007)) are well suited tools for identifying system and uncertainty models as well as performing

robust prediction analyses. The stochastic simulation tools involve generating samples for tracing and

then populating the important uncertainty region in the parameter space, as well as evaluating integrals

over high-dimensional spaces of the uncertain model parameters by sample estimates. They require a

very large number of system analyses to be performed over the space of uncertain parameters which may

lead to excessive computational time. Consequently, the computational demands depend highly on the
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number of system analyses and the time required for performing a system analysis. This in turn depends

on the complexity of the model of the analyzed system as well as the number of uncertain parameters

involved. Efficient computing techniques have been integrated with the Bayesian framework to handle

large-order models and localized nonlinear actions (Angelikopoulos et al., 2012). Specifically, surrogate

models can be adopted to reduce the number of full system runs, and parallel computing algorithms can

be used to efficiently distribute the computations in available multi-core CPUs (Angelikopoulos et al.,

2012). Depending on the number of available computer workers, drastic reduction in computational effort

to manageable levels can be achieved for models for which the time to execute one system simulation is

of the order of several seconds, minutes or even hours.

This work is concerned with calibrating models of seismically isolated structures equipped with nonlin-

ear isolator devices. Thus, the equations of motion are nonlinear due to the nonlinear models used for the

isolator devices. Parameterized model structures of the isolator devices are introduced and the Bayesian

framework is used to estimate the model parameter values and their associated uncertainties. The es-

timation is based on experimental data obtained by shake table tests on the combined bridge-isolator

system. Calibration of the uncertainties in the model parameters is based on full response time histories

predicted by the model and measured by a network of sensors. The Transitional Markov Chain Monte

Carlo (TMCMC) algorithm (Ching and Chen, 2007) is used for identifying system and uncertainty mod-

els as well as for performing robust prediction analyses. This algorithm is used to represent the posterior

distribution of the parameters of the non-linear isolation system, as well as propagate this uncertainty to

obtain the uncertainty in response quantities of interest. For nonlinear models of the type analyzed in

this work, the time to execute one simulation of the system is of the order of a few seconds which poses

moderate computational requirements. However, parallel computing algorithms (Angelikopoulos et al.,

2012) are used to efficiently distribute the computations in available multi-core CPUs, thus achieving

further computational savings.

5.2 Bayesian formulation using response time histories

5.2.1 Parameter estimation

The Bayesian methodology (Beck and Katafygiotis, 1998; Yuen, 2010) is used to calibrate and estimate

the uncertainties in the parameters appearing in the non-linear models describing the behavior of the

bridge under seismic excitation, using measured response time histories of displacements, accelerations,

and forces at different parts of the bridge. According to the methodology, if θ denotes the vector of the

parameters of the non-linear models, and σ denotes an additional set of prediction error parameters to

be defined later, the uncertainty in these parameters given the measured data D is quantified by the

posterior distribution that is obtained from Bayes’ theorem as

p (θ, σ|D) =
p (D|θ, σ)π (θ, σ)

p (D)
(5.1)
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wherep (D|θ, σ) is the likelihood, π (θ, σ) is the prior distribution of the uncertain parameters andp (D) is

the evidence of the model. The posterior distribution p (θ, σ|D) quantifies the uncertainty in the model

and prediction error parameters by measuring the plausibility of each possible set of parameters given

the data D.

To apply the Bayesian formulation for parameter calibration of non-linear models, we consider that

the data consists of measured time histories D = {x̂j (k) ∈ R, j = 1, · · · , N0, k = 1, · · · , ND} at time

instances t = k∆t, of N0 response quantities (displacements, accelerations and forces) at different points

in the bridge, where ND is the number of the samples data using a sampling period ∆t.

Let also {xj (k; θ) ∈ R, j = 1, . . . , N0, k = 1, . . . , ND} be the predictions of the response time histo-

ries for the same quantities and points in the structure, from the non-linear model corresponding to a

particular value of the parameter set θ. The prediction error equation between the sampled response

time history of the quantity j at time t = k∆t and the corresponding response time history predicted

from the model for a particular value of the parameter set θ can now take the form

ej (k) = x̂j (k)− xj (k; θ) (5.2)

where j = 1, . . . , N0 and k = 1, . . . , ND.

Prediction errors, measuring the fit between the measured and the model predicted response time his-

tories, are modeled by Gaussian distributions. The difference between the measured and model predicted

response is attributed to both experimental errors and modeling error. The prediction errors of a response

time history at different time instants are assumed to be independent zero-mean Gaussian variables with

equal variances for all sampling data of a response time history, but each time history is allowed to have

a different prediction error associated with it. This formulation takes into account the fact that each

measured time history is generally obtained from a different sensor (displacement, acceleration or force

sensor) with a different accuracy and noise level, and this results in a number of prediction errors equal

to the number of measured time histories.

Under the zero-mean Gaussian assumption for the prediction error, ej (k) ∼ N
(
0, σ2

j

)
, the mea-

sured quantity x̂j (k) also follows a Gaussian distribution with mean xj (k; θ) and variance σ2
j , x̂j (k) ∼

N
(
xj (k; θ) , σ2

j

)
. In the analysis that follows, the prediction error parameters σj , j = 1, . . . , N0 are

contained in the prediction error vector σ ∈ RN0 . The prediction error ej provides a measure of the

discrepancy between the measured and model predicted quantities. As already stated, this generally

breaks down to two terms for the prediction error, one for the experimental error and one for the model

error. In this study such a distinction is not made, and the prediction error is thought of as a measure of

the total discrepancy between measurements and the model predictions without being able to distinguish

how much is due to experimental or modeling error. Depending on the problem, and more specifically on

the way the data was collected, σ might be considered known or unknown. In the most general case it is

considered unknown and therefore is included in the parameters for calibration, along with the structural

model parameters. Herein, the prediction error parameters are considered unknown and from now on are

included in the parameters to be calibrated given the data, along with the structural model parameters
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in the set θ.

The likelihood function p (D|θ, σ), which quantifies the probability of obtaining the data given a spe-

cific set of structural parameters and prediction error parameters, is derived by noting that the measured

time histories x̂j (k) are implied from (5.2) to be independent Gaussian variables with mean xj (k; θ) and

variance σ2
j . Taking advantage of the independence of the measured quantities both at different time

instants of the same time history as well as between different time histories, the likelihood is formulated

as follows:

p (D|θ, σ) =

N0∏
j=1

ND∏
k=1

p (x̂j (k) |θ, σ) (5.3)

Substituting with the formula for the Gaussian probability density function and rearranging terms one

obtains that

p (D|θ, σ) =
1(√

2π
)NDN0 ∏N0

j=1 σ
ND
j

exp

−1

2

N0∑
j=1

1

σ2
j

ND∑
k=1

[x̂j (k)− xj (k; θ)]
2

 (5.4)

Introducing the overall fit function

J (θ;σ) =
1

N0

N0∑
j=1

1

σ2
j

Jj (θ) (5.5)

where

Jj (θ) =
1

ND

ND∑
k=1

[x̂j (k)− xj (k; θ)]
2

(5.6)

represents the measure of fit between the measured and the model predicted response time history for

quantity j, the likelihood function can be compactly written in the form

p (D|θ, σ) =
1(√

2π
)NDN0 ∏N0

j=1 σ
ND
j

exp

{
−NDN0

2
J (θ;σ)

}
(5.7)

Substituting (5.7) in (5.1) one derives the posterior probability distribution of the parameters in the form

p (θ, σ|D) =
π (θ, σ)

p(D)
(√

2π
)NDN0 ∏N0

j=1 σ
ND
j

exp

{
−NDN0

2
J (θ;σ)

}
(5.8)

Herein the Transitional MCMC (Ching and Chen, 2007) is used to draw samples from the posterior

distribution.

5.2.2 Uncertainty propagation

The main interest in updating the uncertainty in the model parameters through measured data lies

in propagating this uncertainty through the model to quantify the uncertainty in output quantities of

interest (QoI). Specifically, given a scalar output QoI g (θ) which depends on the uncertain parameters θ,
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the objective is to evaluate its uncertainty given the uncertainty in θ which is quantified by the posterior

PDF in (5.8). Simple measures of uncertainty in g (θ) are the mean, given by

Mean [g (θ)] = E [g (θ)] =

∫
g (θ) p (θ|D) dθ (5.9)

and the variance, given by

V ar [g (θ)] = E
[
g2 (θ)

]
− E2 [g (θ)] (5.10)

where

E
[
g2 (θ)

]
=

∫
g2 (θ) p (θ|D) dθ (5.11)

is the second moment of g (θ).

Stochastic simulation algorithms are used to provide sample estimates of the integrals (5.9) and (5.11).

Specifically, the Transitional Markov Chain Monte Carlo (TMCMC) algorithm (Ching and Chen, 2007) is

used. The samples θ(j), j = 1, . . . , N drawn from the posterior PDF p (θ|D) can be used to approximate

the integrals (5.9) and (5.11) with the sample estimates

E [g (θ)] ≈ 1

N

N∑
j=1

g
(
θ(j)
)

(5.12)

and

E
[
g2 (θ)

]
≈ 1

N

N∑
j=1

g2
(
θ(j)
)

(5.13)

The samples θ(j), j = 1, . . . , N are dependent, but are used for statistical averaging as if they were

independent, accepting a reduced accuracy in the sample estimate.

5.3 Description of model and instrumentation

5.3.1 Description of bridge and isolation system

The physical system under examination is a scaled model of a bridge which was used to develop and test

advanced sliding isolation systems for bridges (Figure 5.1) (Tsopelas et al., 1994). The isolation system

consists of flat sliding bearings, rubber restoring force devices and linear viscous fluid dampers. The

bridge model is seismically excited on a shake table, and various response quantities are measured by

an array of force, displacement and acceleration sensors located in different parts of the structure. The

purpose of the isolation system is to prohibit certain response quantities from reaching critical values

under seismic excitation. Figure 5.2 shows a schematic diagram of the bridge model and the isolation

system.

The studied isolation system consists of three components:

1. Flat sliding bearings to support the weight of the deck and provide a mechanism for energy dissi-

pation.
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2. Rubber devices for providing restoring force, that is, re-centering capability.

3. Linear viscous fluid dampers for enhancing the energy dissipation capability of the isolation system.

The three components of the isolation system provide load carrying capacity, restoring force capability

(stiffness) and hysteretic and viscous damping which were not interrelated. The design requirements of

the isolation system was to minimize the transmission of force to the substructure, that is piers and

foundation, while bearing displacements in the scale of the model (length scale factor equal to 4) did not

exceed 50 millimeters.

Figure 5.1: View of bridge model with isolation system.

Figure 5.2: Schematic diagram of bridge model and isolation system.

5.3.2 Instrumentation

The instrumentation consisted of load cells, accelerometers, displacement transducers and strain gages.

Figure 5.3 shows a schematic diagram of the overall instrumentation, where the abbreviations stand
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for: A (acceleration), D (displacement), V-H-T (vertical-horizontal-transverse), D-P (deck-pier), E-W-

N-S (east-west-north-south). Not all channels displayed in Figure 5.3 were used for Bayesian parameter

calibration. The bearing displacement was monitored by displacement transducers, while the pier shear

force was measured by strain gages installed in the pier. The acceleration of the piers measured by

accelerometers was also utilized in the Bayesian procedure. Finally, two quantities were not directly

measured but rather inferred from other direct measurements. These two quantities were the pier drift

and the pier isolator force. The pier drift was measured by subtracting the displacement at the bottom

of the pier from the displacement at the top of the pier. The pier isolator force was calculated by

adding the frictional force of the bearings (which was measured directly from load cells supporting the

bearings) and the combined force from the rubber devices and fluid dampers. The previously mentioned

direct and indirect measurements provided the experimental time histories which constitute the data set

D, consisted of N0 = 5 response time histories, introduced in the Bayesian formulation. The seismic

excitation provided by the shake table was also recorded in order to be used in the analytical model

simulations. Details about the experimental setup and the analytical model can be found in Tsopelas

et al. (1994).

Figure 5.3: Overall instrumentation diagram.

5.3.3 Analytical model

An analytical model was developed in order to predict the behavior of the bridge under different seismic

excitations. The model predicts the time histories at locations where measurements are available, given

the values of the parameters which appear in the nonlinear model equations. The analytical model

accounts for the pier flexibility, pier top rotation, vertical motion effects on the properties of the sliding

bearings, and nonlinear hysteretic characteristics of the restoring force devices. The degrees of freedom

are selected to be the deck displacement with respect to the table, Ud, the pier displacements with respect

to the table, Upi, and the pier rotations, φpi (see Figure 5.4). Each pier is modeled by a beam element

of length Li, moment of inertia Ii, and modulus of elasticity Ei, i = 1, 2. The beam element is fixed to
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the table and connected at its top to a rigid block of height h, mass mpi, and mass moment of inertia

about the center of mass Ipi. The center of mass is located at distance hi from the bottom of the block.

This block represents the pier top. The equations of motion are derived by consideration of dynamic

equilibrium of the deck and piers in the horizontal direction and of the piers in the rotational direction.

Free body diagrams of the deck and pier tops of the bridge model are shown in Figure 5.4.

(a) (b)

Figure 5.4: Left: Degrees of freedom of the analytical model. Right: Free body diagrams of deck and

piers.

The dynamic equilibrium of forces includes the lateral forces in the isolation system which include

friction in the sliding bearings, force from the restoring force devices and the forces from the fluid dampers.

These forces are summarized in the total isolation system force as follows:

Fbi = µi

(
U̇bi

)
Wi + Fri (Ubi) + nFdi

(
U̇bi

)
(5.14)

where µi is the coefficient of sliding friction at pier i which is a function of the sliding velocity of the

bearing U̇bi, Wi is the normal load on two sliding interfaces at pier i, Fri is the restoring force from the

rubber device at pier i, n is the number of fluid dampers at pier i, (n = 2) and Fdi is the damping force

of one fluid damper at pier i. The bearing displacement at pier i, Ubi is related to the model degrees of

freedom with the geometrical relation:

Ubi = Ud − Upi + hφpi (5.15)

The coefficient of sliding friction in the sliding interface of the bearings followed the relation (Tsopelas

et al., 1994):

µi = fmax,i − (fmax,i − fmin,i) exp
(
−ai

∣∣∣U̇bi∣∣∣) (5.16)

where fmax,i is the coefficient of friction at high velocity of sliding in pier i, fmin,i is the coefficient of

friction at essentially zero velocity of sliding in pier i, ai is a parameter controlling the variation of the

coefficient of friction with velocity of sliding and U̇bi is the velocity of sliding. The parameters fmax,i,

∆f = fmax,i−fmin,i and ai for i = 1, 2 form the first six elements respectively of the uncertain parameter

vector θ.
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The rubber restoring force devices acted as horizontal springs with displacement restraint. They

provide stiffness by deforming their inner rubber elements up to a point where the device exhibits increased

stiffness and acts as a displacement restrainer. The maximum allowed displacement is 50 millimeters.

The devices exhibited nearly linear behavior to displacements of about 35 millimeters. Beyond this limit

they displayed increasing stiffness to the limit of about 50 millimeters. After that the devices exhibited

nearly rigid behavior. Rubber devices were installed one at each pier location. Due to the non-linear

force-displacement relationship of the rubber restoring force devices, higher order polynomials were used

to model their behavior.

Specifically, the restoring force Fri in the rubber device at pier i was described by two polynomials

as follows:

Fri = Foi (Ubi) + FDi (Ubi) (5.17)

where Foi (Ubi) is the displacement-dependent skeleton curve and FDi (Ubi) is, also displacement-dependent,

the difference between the loading and unloading branches of the hysteresis loop of a rubber restoring force

device. Foi (Ubi) and FDi (Ubi) may be expressed as odd and even polynomial functions of displacement,

respectively:

Foi =
N∑

n=1,3,5,...

AnU
n
bi

FDi =

M∑
m=0,2,4,...

BmU
m
bi

(5.18)

where the coefficients of the polynomials, An and Bm could also be part of the uncertain parameter vector

θ. In this study the values of these parameters are kept fixed to the values calibrated using component

test measurements. Sufficiently good agreement with experimental force-displacement loops (Tsopelas

et al., 1994) was achieved by using N = 11 and M = 4. The values of the parameters obtained from the

component tests were used as nominal values in the Bayesian procedure.

The third term in the right hand side of (5.14) is the force delivered by the fluid damper. The fluid

viscous damper operates on the principle of fluid flow through orifices. The device consists of a stainless

steel piston, with bronze orifice head and an accumulator. It is filled with silicone oil. Unlike typical

fluid dampers which utilize cylindrical orifices, this device utilizes a series of specially shaped passages

to alter flow characteristics with fluid speed. The damper was modeled using a Maxwell arrangement

of a purely elastic spring and a purely viscous dashpot connected in series. The force output Fdi of the

Maxwell model can be represented by the differential equation:

Ḟdi
Kdi

+
Fdi
C0i

= U̇bi (5.19)

where Kdi is the elastic modulus of the spring and C0i is the coefficient of viscosity. The parameters Kdi

and C0i are parts of the uncertain parameter vector θ.
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5.4 Results

The parameters θ are associated with the structural parameters introduced in the model equations (5.16)

and (5.19). The correspondence of the parameters in the set θ and the parameters in the model equations

(5.16) and (5.19) is given in Table 5.1. Specifically, the first six parameters are associated with the sliding

friction isolators located at the left and right edge of the bridge deck, while the next four parameters are

associated with the two parameters of the viscous dampers. The nominal values of the model parameters

in (5.16) and (5.19) are set to the ones obtained by calibrating the models using measurements from

component tests (Tsopelas et al., 1994). The parameters θ scale the nominal values of the properties

that they model so that a value of the parameters equal to one corresponds to the nominal values of the

isolator parameters in the nonlinear models (5.16) and (5.19). The parameters of the rubber devices in

equation (5.18) are kept fixed to their nominal values. The data set D is constituted from experimental

measurements of bearing displacement, pier total isolator force, pier drift, pier shear force, and pier

acceleration obtained during the shake table tests of the combined bridge-isolators system.

Table 5.1: Definition of the model parameters.

Parameter Type Parameter in

(5.16) or (5.19)

θ1 Friction fmin,1

θ2 Friction ∆f1

θ3 Friction a1

θ4 Friction fmin,2

θ5 Friction ∆f2

θ6 Friction a2

θ7 Damper Kd1

θ8 Damper C01

θ9 Damper Kd2

θ10 Damper C02

The parallelized TMCMC (Angelikopoulos et al., 2012) is used to draw samples from the importance

region of the posterior probability density function. Parameter estimation results were obtained with

1000 samples per stage in the TMCMC algorithm and eight computer workers were used to perform in

parallel the computations involved in the TMCMC algorithm. The number of stages required to compute

the solution is of the order of 20 to 25. The computer programming environment where the model is

implemented is also of great importance since it plays a crucial role in the time required to perform a model

evaluation for a specific set of parameters, which is required by the stochastic simulation algorithms. In

this work, the structural model is implemented in the Fortran programming language which enables it to

be very fast and efficient for use in the TMCMC algorithm. The computational time for each simulation
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of the system is approximately 10 seconds, resulting in a time-to-solution of the order of several hours.

Figure 5.5(left) shows the uncertainty in the marginal distributions of the 10 model parameters in

the friction and damping models (5.16) and (5.19), respectively. Parameter number 11 is the prediction

error parameter σ, which was assumed to be the same for all the measured response time histories. The

measures of fit Jj (θ), j = 1, . . . , 6, between the measured response time histories and the model predicted

response time histories for the TMCMC samples are given in Figure 5.5(right), along with the statistics

(5% quantile, mean - std, mean, mean + std, 5% quantile) computed from propagating the TMCMC

samples. The marginal distributions of the parameters are demonstrated in Figure 5.6.

It is clear from these figures that uncertainties in the model parameters vary from 5% level to as

high as 50% for the damping coefficient C01 for the viscous damper model. The marginal distributions

of the parameters ∆f1 and ∆f2 of the sliding friction models are estimated to be bimodal for both

friction devices. These uncertainties are expected to affect the predictions of various response quantities

of interest that are critical to the performance of such systems. From Figure 5.5(right) it can be seen that

compared to the nominal nonlinear models there is a reduction in the error between the experimental

time histories and the time histories predicted by the calibrated models. This reduction varies from 5%

to 30% depending the measured response quantity considered.
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Figure 5.5: Left: Calibrated model parameter values. Right: Fit with experimental time histories.
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Figure 5.6: Marginal distributions of the uncertain model parameters.

The uncertainties of the model parameters are propagated through the model to estimate the uncer-

tainties in the output response time histories. This was achieved by using the samples drawn from the

posterior probability density function to estimate the mean and standard deviation of a function of the

uncertain parameters, using (5.12) and (5.13). The robust model predicted time histories are compared

with the experimental measurements in Figure 5.7 for four selected response quantities of interest. It

is observed that the model predictions adequately fit the measured time histories for all response time

histories considered in the calibration. Discrepancies between the experimental measurements and the

robust model predictions for the isolator displacement could be attributed to the inadequacy of the iso-

lator models to capture all characteristics of the isolator devices. Also it should be observed that the

uncertainty in the predictions of the response time histories is very small compared to the uncertainty in

the model parameters shown in Figure 5.5(left) and Figure 5.6.
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Figure 5.7: Uncertainty propagation: Response uncertainty along with experimental data. Isolator

Displacement, Pier Shear force, Pier Acceleration, Pier Drift.

5.5 Conclusions

A Bayesian uncertainty quantification and propagation framework was presented for estimating the pa-

rameters of nonlinear models using response time history measurements. The framework was applied to

calibrate the parameters of the nonlinear models involved in representing the behavior of a seismically

isolated bridge using experimentally measured response time histories. Stochastic simulation algorithms

were used to estimate the uncertainty in the model parameters and propagate them through the model

to estimate the quality in the fit between the model predicted and measured response time histories. It is

found that the identified values of the model parameters are different from the nominal values obtained

by calibration procedures at the component level using component tests. This introduces the need for

calibrating the model parameters taking into account component and system tests simultaneously. The

nonlinear models introduced for the three types of isolator devices are adequate to represent the behav-

ior of the isolated bridge since there is a very good match between the model predicted responses with

104

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 12:38:19 EEST - 18.191.97.154



the measured responses considered in the Bayesian parameter estimation. Also, the uncertainty in the

model parameters is significant for some of the isolator devices. This is expected to affect uncertainties

in predictions of critical response quantities of interest. The theoretical and computational developments

used in this work can be used to identify and propagate uncertainties in large order nonlinear systems

consisting of linear and nonlinear components.
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Chapter 6

Bayesian optimal experimental

design

6.1 Introduction

Model-based Optimal Experimental Design (OED) is concerned with finding which is the best way to

perform an experiment so that a specific purpose is achieved, using a model of the system as a guide.

Common purposes include: model parameter inference and making predictions using the model (Chaloner

and Verdinelli, 1995). Herein we are interested in model parameter inference as our goal. That is, we

seek experimental designs which will result in experimental data that are the most useful for identifying

the parameters of the model. The model parameters are uncertain, as are the experimental data, since no

experiment has taken place at the time of the design. These uncertainties are treated with the Bayesian

framework for uncertainty quantification (Beck and Katafygiotis, 1998), by assigning a prior probability

density function (PDF) for the parameters and a probabilistic model for the difference between the model

predictions and the data, known as the prediction error. The prior PDF of the model parameters reflects

our state of knowledge for the values of the parameters before any data collection experiment takes place.

It plays a very important role in the OED process since samples from the prior are used to simulate

data samples. The prediction error also plays a very important role since it quantifies how much the

experimental data can deviate from the model predictions and is a measure of how good our model is.

Since our objective is to learn about something by observing something else, the most intuitive field

to be used as a framework is Information Theory. The three basic quantities of Information Theory are:

Entropy, Relative Entropy (KL Divergence) and Mutual Information (Cover and Thomas, 2006). These

quantities have properties which relate them with each other, e.g. mutual information can be written

either as a KL-divergence or as a difference between two entropies in two ways (Cover and Thomas, 2006),

and the objective function can be written as a multi-dimensional integral using one of these quantities.

These different but equivalent forms can be used to formulate the multi-dimensional integral of the
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objective function, and its value can be approximated using either sampling or asymptotic methods.

Herein we use as the objective function the Conditional Mutual Information, defined as the mutual

information between the parameters and the data, conditioned on the design variables. This leads to

the decision-theoretic expected utility approach of Lindley (1956) with the KL-divergence between the

posterior and prior taken as the utility function, when the design variables are considered determinis-

tic. However, using the Conditional Mutual Information as defined in Information Theory (Cover and

Thomas, 2006) as the objective, provides the additional generalization that the design variables are

treated as random variables as well instead of considering them as deterministic. This allows for an easy

transformation of the design variables to a deterministic quantity whenever we wish, but also allows the

possibility of exploring the effect of uncertainty in them in the optimal design by assigning a probability

density function to them. That approach would yield optimal designs which are robust to small changes

of the design variables from their optimal value. Also the theory for handling nuisance parameters in

OED is developed. Nuisance parameters are parameters (either model or prediction error parameters)

that enter the formulation, are uncertain, but are not of interest and we do not wish to update them

through the data.

In general, the objective function can only be estimated by Monte Carlo sampling. Ryan (2003) has

proposed a Monte Carlo estimator which uses samples from the prior and likelihood PDFs to approximate

the expected information gain. This estimator of the objective function has been used by Huan and

Marzouk (2013, 2012) to perform OED with the help of surrogate models and stochastic optimization

techniques. Herein, we simplify the Monte Carlo estimator of (Ryan, 2003) by evaluating one term of the

estimator analytically. This improvement leads to an increased quality of the new estimator by reducing

its variance.

The new Monte Carlo estimator is shown to be consistent with the theoretical result of Sebastiani

and Wynn (2000) concerning the maximum entropy principle of the marginal likelihood, where the joint

entropy of the data and parameters was used in order to prove it. Here we demonstrate that it is possible

to arrive at the same theoretical result using the Conditional Mutual Information between the data and

parameters. More importantly, we present a Bayesian interpretation of the maximum entropy theorem

which is also apparent in the new proposed estimator of the objective function.

The theory of the asymptotic method is also developed and enriched with a new theorem which

explains the effect of a Gaussian prior PDF in the optimal design. The asymptotic method assumes

either: 1) a very small prediction error magnitude and a Gaussian posterior PDF or 2) a large number

of uncorrelated data, to simplify the estimation of the objective function considerably. It is shown

that the Gaussian prior variances of the model parameters act as weighting factors in the identification

of the parameters with the highest variance. That is, the optimal design favors the identification of

the parameters with the highest prior variance. As far as the new formula for the sampling objective

function estimator is concerned, the variance reduction achieved is demonstrated by a numerical example

in a simple analytic problem. Also, using the same problem we demonstrate the key difference between

the sampling and asymptotic approaches in OED. Summarizing, the work presented herein is:
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1. Formulation of OED based on the Conditional Mutual Information measure.

2. Probabilistic treatment of the design variables, and management of nuisance parameters.

3. New Bayesian evidence-based interpretation of the OED objective function.

4. New improved sampling estimator of the objective function with one term calculated analytically.

5. Asymptotic formulation of OED based on the small prediction error and Gaussian posterior as-

sumptions.

6. Theorem which explains the effect of the Gaussian prior variances on the optimal design in the

asymptotic OED formulation.

7. Numerical example demonstrating the theoretical findings.

6.2 Objective function formulation

Let θ denote the uncertain parameters of a model used to describe the behavior of a system, and y the

data (observables) resulting from an experiment performed on the system under the design described by

δ. Let p(θ) denote the prior PDF of the model parameters which describes our state of knowledge about

the parameters before any experiment takes place. The goal of OED is to find which experimental design

(described by δ) is the one that will provide data which are most informative for some purpose.

In the context of parameter inference as our goal, what we want is to select the design δ such as

that the data y will be most informative for the model parameters θ. The Mutual Information between

two random variables is exactly this. It is a scalar measure of the amount of information that these two

random variables share. Another way to state this is: the reduction in the uncertainty of one of the

variables after having observed the other. If one variable tells a lot about the other, then this reduction

of uncertainty is large, and thus the Mutual Information is large. The Mutual Information between θ

and y is defined as (Cover and Thomas, 2006):

I(θ; y) =

∫
Θ

∫
Y

p(θ, y) log
p(θ, y)

p(θ) p(y)
dθ dy (6.1)

which is the Relative Entropy between the joint PDF of θ and y and the independent approximation

of it using the product of their marginals. So it measures how much these two PDFs differ, essentially

measuring how much dependence (shared information) exists between them through their joint PDF.

6.2.1 Probabilistic design variables

At this point, we are going to condition everything on the design variables δ in order to obtain the

Conditional Mutual Information of θ and y conditioned on δ, because this is what we are really interested

in maximizing (with respect to δ). This is the mathematically equivalent way of asking: ”Which design
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δ maximizes the information y carries about θ ?”. So the way that the design variables δ enter the

formulation is through conditioning. Therefore, the quantity I(θ; y|δ) is our objective function and we

want to maximize it as a function of δ. In Information Theory, the Conditional Mutual Information of

θ and y conditioned on δ is defined as the expected value of the mutual information of θ and y given δ

(Cover and Thomas, 2006):

I(θ; y|δ) = Eδ[I(θ; y)|δ] =

∫
∆

p(δ)

∫
Θ

∫
Y

p(θ, y|δ) log
p(θ, y|δ)

p(θ|δ) p(y|δ)
dθ dy dδ (6.2)

where δ is treated as a random variable in general since we are in the Information Theoretic probabilistic

framework.

Note how this approach to formulate the objective function is general in the sense that the design

variables need not be deterministic. In most OED formulations the design variables are treated deter-

ministically, that is, for each value of δ the objective function uses this exact value of δ without taking

into account possible deviations from it. While this is accepted in theory, in practical situations the

conditions might not allow for the exact optimal design δ to take place in the experiment, and we have to

use a ”near-optimal” design δ
′

= δ + γ instead, for some small perturbation γ from the optimal design.

This could be the case when placing sensors on a structure, where the actual sensor positions might differ

slightly from the optimal positions estimated from the theoretical model. Then we wish to have a robust

design capable of withstanding small deviations from the true optimal design without causing significant

reduction in the objective function. This can be achieved mathematically in the proposed formulation

by keeping the design variables as random variables in Equation (6.2) and assigning to them a PDF p(δ)

describing their uncertainty. One could for example use a Gaussian PDF for each δ with a mean of δ and

a specified covariance matrix Σδ, p(δ) = N(δ,Σδ), quantifying how much the actual design variables can

deviate from the value δ for which we are evaluating the objective function. Then Equation (6.2) yields

a robust objective function with respect to changes in the design variables.

6.2.2 Deterministic design variables

We can always simplify to deterministic design variables by using the deterministic Dirac PDF for p(δ)

which is the limit-case of a Gaussian with zero variance. This work proceeds in that way, using deter-

ministic design variables. Therefore δ is the optimization variable and its values are left to be selected by

the algorithm which maximizes the objective function. Therefore, using the known property of the Dirac

delta function when it appears inside integrals, the objective function in Equation (6.2) becomes:

U(δ) = I(θ; y|δ) =

∫
Θ

∫
Y

p(θ, y|δ) log
p(θ, y|δ)

p(θ|δ) p(y|δ)
dθ dy (6.3)

Next we are going to demonstrate some ways in which this objective function can be expanded to take

forms which include other known quantities, such as KL Divergences and Entropies. Before we examine

those ways, we make the reasonable assumption that the prior PDF of the model parameters p(θ) does

not depend on the design variables δ, that is to say, p(θ|δ) = p(θ).
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By simply expanding the joint PDF as: p(θ, y|δ) = p(y|δ) p(θ|y, δ) and substituting into Equation

(6.3) we obtain:

U(δ) = I(θ; y|δ) =

∫
Θ

∫
Y

p(y|δ) p(θ|y, δ) log
p(y|δ) p(θ|y, δ)
p(θ|δ) p(y|δ)

dθ dy

=

∫
Y

p(y|δ)
∫

Θ

p(θ|y, δ) log
p(θ|y, δ)
p(θ)

dθ dy

= Ey|δ[DKL(p(θ|y, δ) || p(θ))]

(6.4)

Equation (6.4) shows that the Conditional Mutual Information between θ and y conditioned on δ can also

be expressed as the Expected KL Divergence (Information Gain) from the posterior to the prior where

the expectation has to be taken over all possible outcomes (data) of the particular experiment with design

δ. The posterior p(θ|y, δ) depends on the data y|δ so the expectation w.r.t y|δ gives an average of the

information gain about the parameters θ, based on all data that can result from experiment δ as described

by the likelihood function. This is in fact the expected utility objective function proposed by Lindley

(1956) under a decision-theoretic framework, when the KL Divergence from posterior to prior is used

as the utility function. This was also pointed out by Huan and Marzouk (2013, 2012). However, note

how this result was obtained here as a special case of the presented formulation, only when the design

variables are deterministic.

6.2.3 Handling nuisance parameters

Oftentimes our models have parameters which are uncertain, but at the same time we are not interested

in finding out the values of these parameters through the data. That is, in the Bayesian formulation, we

do not want to update the uncertainty in those parameters but we do want to take into account their

uncertainty. Since we do not want to update the uncertainty in the nuisance parameters using the data,

we should not include them into the posterior distribution. So we distinguish between the parameters

that are updated (θ) and the nuisance parameters which are not updated (φ). The nuisance parameters

φ can also include other parameters entering the formulation such as prediction error parameters. By

also including the nuisance parameters φ in the objective function, Equation (6.4) becomes a function of

δ and φ

U ′(δ, φ) = Ey|δ,φ[DKL(p(θ|y, δ, φ) || p(θ))] (6.5)

where we assumed that the prior PDF for the θ parameters is not affected by the nuisance parameters φ.

Then by taking the expectation over φ the objective function taking into account the uncertainty in

the nuisance parameters is:

U(δ) = Eφ[U ′(δ, φ)] =

∫
Φ

Ey|δ,φ[DKL(p(θ|y, δ, φ) || p(θ))] p(φ) dφ (6.6)

where p(φ) is the probability distribution which describes the uncertainty in the nuisance parameters φ.

The integral over Φ can be performed numerically using Sparse grid methods (Bungartz and Griebel,
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2004; Gerstner and Griebel, 1998) because in most cases p(φ) will be a simple PDF such as Gaussian

or Uniform and the Sparse Grid points and weights are readily available for these distributions for any

number of dimensions of φ. Therefore, the inclusion of nuisance parameters into the objective function

is done through averaging over them according to the specified PDF which describes their uncertainty.

Note that this uncertainty does not get updated since φ is not included in the posterior. Next we assume

for simplicity that nuisance parameters do not exist.

6.3 Sampling approximation of the objective function

By applying Bayes’ rule and substituting the posterior PDF in Equation (6.4) we can derive a form which

includes the likelihood and prior functions, and is suitable for approximation with Monte Carlo sampling:

U(δ) = I(θ; y|δ) =

∫
Y

p(y|δ)
∫

Θ

p(θ|y, δ) log
p(θ|y, δ)
p(θ)

dθ dy

=

∫
Y

p(y|δ)
∫

Θ

p(y|θ, δ) p(θ)
p(y|δ)

log
p(y|θ, δ) p(θ)
p(y|δ) p(θ)

dθ dy

=

∫
Y

∫
Θ

p(y|θ, δ) p(θ) log
p(y|θ, δ)
p(y|δ)

dθ dy

=

∫
Y

∫
Θ

p(θ, y|δ) [log p(y|θ, δ)− log p(y|δ)] dθ dy (6.7)

where samples (θi, yi)|δ from the joint PDF p(θ, y|δ) = p(θ) p(y|θ, δ) can be used to approximate the

integral in Equation (6.7) with a Monte Carlo sum. The evidence p(y|δ) is itself approximated with an-

other (nested) Monte Carlo sum from its known definition: p(y|δ) =
∫

Θ
p(y, θ|δ) dθ =

∫
Θ
p(y|θ, δ) p(θ) dθ

and therefore the Monte Carlo estimator of the objective function is:

U(δ) ≈ 1

N

N∑
i=1

log p(yi|θi, δ)− log

 1

M

M∑
j=1

p(yi|θi,j , δ)


 (6.8)

Equation (6.8) is in fact the estimator proposed by Ryan (2003) which was also used by Huan and

Marzouk (2013, 2012). The advantage of the sampling approach is that it solves the exact problem,

without making any assumption about the posterior PDF or the form of the integral in Equation (6.7).

Also, as a Monte Carlo estimate, it is guaranteed to be more and more accurate as the number of samples

increases. The downside is that for (N,M) samples, for the outer and inner sum respectively, there are

N + NM likelihood function evaluations involved for different values of the model parameters. Every

likelihood function evaluation, whether it is to draw a data sample or to calculate the density at a

data value, involves a model run for the specific parameters. So this results in N + NM model runs.

This creates an enormous computational burden especially when the model is already computationally

expensive such as a finite element model. Also, we must keep a large enough number of inner and outer

samples (N,M) in order to reduce the bias and variance of the estimator (Ryan, 2003; Huan and Marzouk,

2013, 2012).
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6.3.1 Objective function simplification

In this section, further theoretical steps are taken which reduce the complexity of the objective function

of Equation (6.7) and hence improve the quality of the Monte Carlo estimator of Equation (6.8). Also

they provide more insight into the nature of the objective function. Instead of using Equation (6.7) as it

is to introduce Monte Carlo sampling, we develop it even further as:

U(δ) =

∫
Y

∫
Θ

p(y|θ, δ) p(θ) log p(y|θ, δ) dθ dy −
∫
Y

∫
Θ

p(y|θ, δ) p(θ) log p(y|δ) dθ dy (6.9)

and note that the first term can be written as:∫
Y

∫
Θ

p(y|θ, δ) p(θ) log p(y|θ, δ) dθ dy

=

∫
Θ

p(θ)

{∫
Y

p(y|θ, δ) log p(y|θ, δ) dy
}
dθ

= −
∫

Θ

p(θ)

{
−
∫
Y

p(y|θ, δ) log p(y|θ, δ) dy
}
dθ

= −
∫

Θ

p(θ)[H(p(y|θ, δ))] dθ

= −Ep(θ)[H(p(y|θ, δ))] (6.10)

where H(p(x)) = −
∫
X
p(x) log p(x) dx denotes the entropy of a PDF p(x), and therefore the first term

of the objective function is simply the minus of the expectation of the likelihood entropy over the prior.

At this point we should remind that the likelihood function is built using the prediction error equation

for the data:

y = g(θ, δ) + e (6.11)

where e is the prediction error term, which is almost always modeled as a Gaussian random vector (due to

the Principle of Maximum Entropy (Cover and Thomas, 2006)) with zero mean and a covariance matrix

which generally can depend on both the model parameters θ and design variables δ:

e ∼ N(0,Σe(θ, δ)) (6.12)

which means that the likelihood function (when viewed as a function of the data y as in Equation (6.10))

p(y|θ, δ) is also Gaussian:

p(y|θ, δ) = N(g(θ, δ),Σe(θ, δ)) (6.13)

which in turn means that its entropy is known and depends only on the covariance matrix of the prediction

error vector:

H(p(y|θ, δ)) =
Ns
2

[log(2π) + 1] +
1

2
log |Σe(θ, δ)| (6.14)

where Ns is the dimension of the prediction error vector e which is equal to the dimension of the model

prediction vector g(θ, δ), equal to the number of sensors.
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Therefore, the term inside the expectation of Equation (6.10) is simply the likelihood entropy which

is always known since the likelihood function is defined by the user. So the integral over y of the first

term of the objective function can always be done analytically no matter what likelihood function we use.

In most of the cases the likelihood is Gaussian and the entropy is given by Equation (6.14), but even if

not Gaussian, the entropy is still known. So what we achieved with this was effectively to simplify the

double integral of the first term down to a single integral over θ. This obviously improves the quality of

the Monte Carlo estimator since now we do not have to use both data samples yi and parameter samples

θi for the approximation of the first term, but only θi samples from the prior p(θ).

Further simplification can be achieved when we use a likelihood function that does not depend on

the parameters θ. In OED usually the parameters θ only include the model parameters and the analysis

is done (or even repeated) for several fixed magnitudes of the prediction error to explore its effect in

the optimal design since it is not known in advance and we would like to know its effect for various

magnitudes. This makes sense because OED is performed with the goal of finding the optimal design for

learning the model parameters and not the prediction error. Assuming this is the case, the covariance

matrix of the prediction error vector does not depend on θ and the likelihood entropy in Equation (6.14)

becomes independent of θ:

H(p(y|θ, δ)) =
Ns
2

[log(2π) + 1] +
1

2
log |Σe(δ)| ≡W (δ) (6.15)

where W (δ) denotes the likelihood entropy that depends only on the design variables δ.

Therefore the expectation of Equation (6.10) w.r.t. the prior parameters θ vanishes and the objective

function of Equation (6.9) becomes:

U(δ) = −W (δ)−
∫
Y

∫
Θ

p(y|θ, δ) p(θ) log p(y|δ) dθ dy (6.16)

If the likelihood does depend on θ then the expectation of Equation (6.10) needs to be performed, but

this is still a simple integral only over θ that numerically requires just evaluations of the known likelihood

entropy for multiple θ values. It is still simpler than the previous form of the double integral over y and

θ.

Now we deal with the second term which can be written as:

−
∫
Y

∫
Θ

p(y|θ, δ) p(θ) log p(y|δ) dθ dy

= −
∫
Y

log p(y|δ)
{∫

Θ

p(y|θ, δ) p(θ) dθ
}
dy

= −
∫
Y

log p(y|δ)
{∫

Θ

p(y, θ|δ) dθ
}
dy

= −
∫
Y

log p(y|δ) p(y|δ) dy

= H(p(y|δ))

(6.17)

which is the entropy of the data for given design variables δ. We should remind that unlike the Bayesian

parameter estimation methodology where the data are already known (i.e. from experiment or simulated
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data) here in OED the data are not known but treated as a random variable. Therefore, the evidence

p(y|δ) which is a constant scalar value in Bayesian parameter estimation, is a probability density function

in OED which has its own entropy. So the objective function takes the form:

U(δ) = H(p(y|δ))−W (δ) (6.18)

where W (δ) is the likelihood entropy found from Equation (6.15).

This form of the objective function in Equation (6.18) as the difference between two entropies (evi-

dence and likelihood) is similar to the one obtained later in Equation (6.27), which is also a difference

between two entropies (prior and posterior). These forms are equivalent but use different quantities.

The form of Equation (6.18) is more difficult to understand since it involves the entropy of the evidence

p(y|δ). Assuming that the likelihood entropy does not depend functionally on δ, the objective function

is maximized w.r.t. δ when the entropy of the evidence is maximized. Sebastiani and Wynn (2000)

arrived at the same theoretical result but using the joint entropy of the parameters and data. However,

an intuitive Bayesian explanation of this theoretical result is presented, which is demonstrated after the

derivation of the final Monte Carlo estimator of the objective function for clarity purposes.

6.3.2 Simplified Monte Carlo estimator

In order to use the new form of the objective function with the simplified first term we still have to

introduce Monte Carlo sampling and obtain the estimator:

U(δ) ≈ −W (δ)− 1

N

N∑
i=1

log p(yi|δ) (6.19)

where N random samples (θi, yi)|δ from the joint PDF p(θ, y|δ) = p(θ) p(y|θ, δ) were used to approximate

the integral with a Monte Carlo sum. The θi samples from the prior PDF p(θ) are easily drawn since

the prior PDF is a well known distribution such as a Uniform or Gaussian PDF, and then the yi data

samples are drawn from the corresponding θi samples by simulating a draw from the likelihood function

which is known. Then the evidence p(yi|δ) =
∫

Θ
p(yi, θ|δ) dθ =

∫
Θ
p(yi|θ, δ) p(θ) dθ is approximated using

another sum with M samples from p(θ):

U(δ) ≈ −W (δ)− 1

N

N∑
i=1

log

 1

M

M∑
j=1

p(yi|θi,j , δ)

 (6.20)

where the θj samples can again be drawn randomly from p(θ). However, it is highly recommended for

those θj samples to not be drawn again but rather be the same with the θi samples drawn for the

outer sum, because of the reduced number of required model evaluations from N + NM to just N , but

also because of the extremely small values of the evidence that may arise if different samples are used,

especially for small prediction error and high dimensions of the model predictions. That would require
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far too many M samples to help the evidence estimation which would increase the computational effort

dramatically. So the estimator of the objective function finally is:

U(δ) ≈ −W (δ)− 1

N

N∑
i=1

log

 1

N

N∑
j=1

p(yi|θj , δ)

 (6.21)

where the θj samples are the same θi samples drawn for the approximation of the outer integral in

Equation (6.19) and j is just a dummy index.

Equation (6.21) constitutes an improved version of Equation (6.8) because one term less is approxi-

mated with Monte Carlo, which means that there is less room for error in the estimate. This was due

to the analytic steps taken in Equations (6.9),(6.10),(6.15),(6.16) to calculate one of the terms of the

objective function exactly, therefore eliminating the need to approximate that term with Monte Carlo.

Also thanks to Equation (6.17) we now know that the second term (the one approximated with sampling)

is the entropy of the data for the given design δ, H(p(y|δ)). For Gaussian likelihoods that depend on the

parameters θ, the only change would be that |Σe(δ)| should be replaced by 1
N

∑N
i=1 |Σe(δ, θ

i)|.
Equation (6.21) can be developed further as:

U(δ) ≈ −W (δ)− 1

N

N∑
i=1

− logN + log
N∑
j=1

p(yi|θj , δ)


= −W (δ)− 1

N

−N logN +
N∑
i=1

log
N∑
j=1

p(yi|θj , δ)


= −W (δ) + logN − 1

N

N∑
i=1

log

N∑
j=1

p(yi|θj , δ)

= logN −W (δ)− 1

N
log

N∏
i=1

N∑
j=1

p(yi|θj , δ)

(6.22)

Note that the quantity in the logarithm of the right term is the product of the evidences p(yi|δ) for

all yi data samples, for the given design variables δ. Let that be denoted by:

P (δ; ys, θs) =
N∏
i=1

N∑
j=1

p(yi|θj , δ) (6.23)

where ys and θs denote the full set of N samples from p(θ, y|δ) = p(θ) p(y|θ, δ).
Then the objective function estimator becomes:

U(δ) ≈ logN −W (δ)− 1

N
log P (δ; ys, θs) (6.24)

Without loss of generality we can exponentiate the objective function to remove the many logarithms

of the right hand side. This poses no issue with the optimization because our goal is to maximize U(δ)

and since the exponential is a monotonic function the maximum of exp[U(δ)] occurs in the same δ with
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the maximum of U(δ). If we are also interested in the actual value of the objective function except the

location of the maximum we can always find it by taking the logarithm.

exp[U(δ)] ≈ N {(2πeb)Ns |Σe(δ)|}−1/2 P−1/N ⇒

exp[U(δ)] ≈ N

(2πeb)Ns/2 |Σe(δ)|1/2 P 1/N

(6.25)

where P = P (δ; ys, θs) was defined in Equation (6.23) and eb is the base of the natural logarithm.

Further simplification could be achieved by assuming that the prediction error covariance matrix is

diagonal of the form Σe = σ2I where I is the identity matrix, which would calculate its determinant

analytically. However, this is not done in order to allow for the more interesting general case of the

correlated prediction error matrix which means a non-diagonal Σe matrix.

Equation (6.25) is an improvement of Equation (6.8) as an estimator of the objective function for the

following reasons:

1. It uses Monte Carlo sampling for one term less so it is expected to be more accurate in general.

2. It is useful for gaining physical insight into the nature of the objective function and Optimal

Experimental Design.

6.3.3 Intuitive Bayesian interpretation of the objective function

Next we examine Equation (6.25) to gain some physical insight into the problem of model-based Optimal

Experimental Design. We seek to maximize the objective function U(δ). Under the assumption that

the likelihood entropy does not depend on the design variables δ, this is equivalent to minimizing P =

P (δ; ys, θs). We now proceed to show that this result is consistent with the theoretical result of Sebastiani

and Wynn (2000) stated earlier.

From the definition of P in Equation (6.23) we can see that since P is the product of evidences of

all data samples yi, it is numerically minimized w.r.t. δ when all data samples yi attain their lowest

evidence value. This might seem counter-intuitive at first, since we know from Bayesian parameter

estimation (model updating) that a high evidence is a sign of a good model and something we would

welcome. But here we should note an important difference with OED. In contrast to model updating

where the data are known and fixed, in OED they are unknown and treated as a random variable. This

means that many different data values should be accounted for. The optimal design is the one which

gives good parameter estimates for all data values that may arise, and doesn’t favor some data over

others. This is achieved by keeping the distribution of the evidence as spread as possible over the data

space, which effectively lowers the values of the distribution at the individual data points. We need to

keep in mind that since p(y|δ) is a probability distribution, low values of p(yi, δ) simply imply that the

distribution is as spread as possible over the data space. This is not to say that we prefer low evidences

to high evidences. To make this clear, lets assume for simplicity that the data yi for 3 different designs

follow normal distributions (1d data) with different standard deviations:
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Figure 6.1: Evidence densities for different designs.

We can see that even though the first design (blue) gives a higher evidence at the central data values,

it fails for the others. The situation gets better in the second design (black) and is best in the third

design (red) where an adequate fit is preserved for all possible data values. Also note that the entropies

of the distributions are increasing. This is in agreement with Equation (6.18) and (Sebastiani and Wynn,

2000), which suggested that the optimal design is the one which maximizes the entropy of the evidence

distribution.

So even though a small evidence value might sound bad at first for a specific data point, from the

OED perspective it is more important to be able to keep a constant fit with all the data despite their

uncertainty, than to have a good fit with some data that might arise and a bad fit with all the rest. By

minimizing the individual evidences of all data samples we are increasing the entropy of the evidence

distribution, making it more spread out in the data space, and therefore ensuring that it is more like the

red one than the blue one in Figure 6.1. Therefore, we can expect to have a good fit with the data on

average, despite their uncertainty. This constitutes a novel ”flat-evidence” interpretation of OED.

6.4 Asymptotic approximation of the objective function

From the properties of the Conditional Mutual Information we know that it can also be expressed as

(Cover and Thomas, 2006):

U(δ) = I(θ; y|δ) = H(p(θ|δ))−H(p(θ|y, δ)) (6.26)

117

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 12:38:19 EEST - 18.191.97.154



where the entropy of the prior PDF conditioned on δ, H(p(θ|δ)), is independent of δ because p(θ|δ) = p(θ)

and thus H(p(θ|δ)) = H(p(θ)) = constant = c as far as the optimization w.r.t δ is concerned. So we

have:

U(δ) = I(θ; y|δ) = H(p(θ))−H(p(θ|y, δ)) = c−H(p(θ|y, δ)) (6.27)

Equation (6.27) can be interpreted as the reduction in uncertainty of θ due to the knowledge of y|δ.
This added knowledge that came from y|δ about θ is their mutual information. Equation (6.27) is easily

proved by continuing from Equation (6.4) - the expected KL Divergence form - and breaking down the

logarithm of the posterior/prior fraction into a difference, instead of applying Bayes’ rule as was done

earlier. Specifically:

U(δ) = I(θ; y|δ) =

∫
Y

p(y|δ)
∫

Θ

p(θ|y, δ) log
p(θ|y, δ)
p(θ)

dθ dy

=

∫
Y

∫
Θ

p(θ, y|δ) log p(θ|y, δ) dθ dy −
∫
Y

∫
Θ

p(θ, y|δ) log p(θ) dθ dy

= −H(p(θ|y, δ))−
∫

Θ

∫
Y

p(θ, y|δ) dy log p(θ) dθ

= −H(p(θ|y, δ))−
∫

Θ

p(θ|δ) log p(θ) dθ

= H(p(θ))− H(p(θ|y, δ))

= c− H(p(θ|y, δ))

(6.28)

which shows that what is actually being optimized (minimized) w.r.t δ is the Conditional Entropy of θ

conditioned on y and δ, which is by definition the expectation w.r.t y|δ of the entropy of the posterior

for some specific value of the data:

H(p(θ|y, δ)) = −
∫
Y

∫
Θ

p(θ, y|δ) log p(θ|y, δ) dθ dy

= −
∫
Y

p(y|δ)
∫

Θ

p(θ|y, δ) log p(θ|y, δ) dθ dy

= Ey|δ
{
H(p(θ|Y = y, δ))

}
(6.29)

This form of the objective function is the simplest to understand since it breaks down to two terms one

of which does not affect the optimization w.r.t δ because of the independence of the prior on δ. This,

however, is not to say that the prior does not play a role in the objective. It still affects the results

through the posterior from Bayes’ theorem. This form is suitable for asymptotic approximations because

it directly involves the posterior PDF, in contrast with the previous form which involved the likelihood

and prior and hence were convenient for sampling approaches. The direct involvement of the posterior

offers the possibility of approximating it with a Gaussian PDF whose entropy has a known form that

depends only on the covariance matrix of the Gaussian.

In the asymptotic method first the posterior is approximated with a Gaussian PDF (which requires

first and second derivatives of the model prediction w.r.t. parameters θ) so that its entropy has a known
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form, and then the integral over the data y is simplified under the assumption of either: 1) very small

prediction error magnitude or 2) large number of uncorrelated data. Note that when the assumption 2)

is made, this automatically implies the validity of the Gaussian posterior assumption due to the Bayesian

Central Limit Theorem. By introducing the Gaussian posterior assumption we have:

H(p(θ|y, δ)) = −
∫
Y

p(y|δ)
∫

Θ

p(θ|y, δ) log p(θ|y, δ) dθ dy

=

∫
Y

p(y|δ)H(p(θ|Y = y, δ)) dy

=

∫
Y

{∫
Θ

p(y|θ, δ) p(θ) dθ
}
H(p(θ|Y = y, δ)) dy

=

∫
Y

∫
Θ

H(p(θ|Y = y, δ)) p(y|θ, δ) p(θ) dθ dy

=

∫
Θ

∫
Y

H(p(θ|Y = y, δ)) p(y|θ, δ) p(θ) dy dθ

≈ 1

N

N∑
i=1

H(p(θ|Y = yi, δ))

≈ 1

N

N∑
i=1

1

2
log((2πeb)

Nθ |Σp(θ|yi,δ)|)

≈ 1

2N

N∑
i=1

[
Nθ(log(2π) + 1) + log |Σp(θ|yi,δ)|

]
≈ 1

2N

[
NNθ(log(2π) + 1) +

N∑
i=1

log |Σp(θ|yi,δ)|

]

≈
Nθ
2

(log(2π) + 1) +
1

2N

N∑
i=1

Nθ∑
j=1

log λji

(6.30)

where N samples (θi, yi)|δ from the joint PDF p(θ, y|δ) = p(θ) p(y|θ, δ) were used to approximate the

double integral with a Monte Carlo sum, and λji is the j-th of the Nθ eigenvalues of the posterior PDF

covariance matrix for the i-th of the N data samples yi. The determinant was substituted with the

product of the eigenvalues of the covariance matrix, and the logarithm of the product property was used.

Note that in the fourth line the posterior entropy for data point Y = y was moved inside the integral

over Θ. This is possible because it does not depend on θ, but only on y (and δ).

Up to this point we have not introduced the small prediction error magnitude or the large number

of uncorrelated data assumption, but only the Gaussian posterior assumption. So the objective function

is the average (expected) posterior entropy over many data samples. Since the posterior is Gaussian

its entropy depends only on the covariance matrix. From the theory of Gaussian approximation of the

posterior, for data point yi we know that the covariance matrix of the posterior is the minus inverse

of the Hessian w.r.t. model parameters θ (denoted as ∇2
θ) of the log-posterior, evaluated at the most

probable value of the parameters θ∗ (mean of the Gaussian posterior) which depends on yi. The Gaussian
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approximation of the posterior is based on the Taylor series expansion of the log-posterior (function of

θ) around its maximum, and keeping up to the quadratic term with the Hessian (second derivatives) of

the log-posterior evaluated at the maximum. The linear term with the first derivatives is zero because

the gradient of the log-posterior is zero at the maximum. Then by exponentiating the Taylor series

expansion the posterior takes the known Gaussian form. Therefore its precision depends on whether the

truncation of the higher-order-derivative terms is important or not. The Taylor series approximation of

the log-posterior is done at the point θ∗ of maximum posterior probability. By taking the logarithm of

Bayes’ rule we have the log-posterior:

log p(θ|yi, δ) = log p(yi|θ, δ) + log p(θ)− log p(yi|δ)

= log p(yi|θ, δ) + log p(θ)− C1

(6.31)

where the evidence term p(yi|δ) does not depend on θ. Then the Gaussian posterior covariance matrix is

Σp(θ|yi,δ) = [−∇2
θ[log p(θ|yi, δ)]]−1 | θ = θ∗

= [−∇2
θ[log p(yi|θ, δ)]−∇2

θ(log p(θ))]−1 | θ = θ∗

(6.32)

where θ∗ maximizes the log-posterior (6.31). Using the prediction error equation to model the discrepancy

between the model prediction and measurement

y = g(θ, δ) + e (6.33)

and assuming that the discrepancy e is zero-mean Gaussian with covariance matrix Σe(δ) the likelihood

is also Gaussian with PDF

p(yi|θ, δ) =
exp

(
− 1

2 J(yi, θ, δ)
)√

|2πΣe(δ)|
(6.34)

where J(yi, θ, δ) is the quadratic form defined as

J(yi, θ, δ) = (yi − g(θ, δ))TΣe(δ)
−1(yi − g(θ, δ)) (6.35)

then the log-likelihood is

log p(yi|θ, δ) = −1

2
J(yi, θ, δ)− log

(√
|2πΣe(δ)|

)
= −1

2
J(yi, θ, δ)− C2

(6.36)

where C2 does not depend on θ. Then the Hessian of the log-likelihood w.r.t. the model parameters θ

(first term of the Gaussian posterior covariance matrix of Equation (6.32)) is

∇2
θ[log p(yi|θ, δ)] = −1

2
∇2
θ[J(yi, θ, δ)]

= −1

2
∇2
θ[(y

i − g(θ, δ))TΣe(δ)
−1(yi − g(θ, δ))]

= −Dθ[y
i − g(θ, δ)]TΣe(δ)

−1Dθ[y
i − g(θ, δ)]−∇2

θ[y
i − g(θ, δ)]Σe(δ)

−1[yi − g(θ, δ)]
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= −Dθ[g(θ, δ)]TΣe(δ)
−1Dθ[g(θ, δ)] +∇2

θ[g(θ, δ)]Σe(δ)
−1[yi − g(θ, δ)] (6.37)

where Dθ [g(θ, δ)] denotes the Ns ×Nθ Jacobian matrix of first partial derivatives of the components of

g(θ, δ) w.r.t. θ and ∇2
θ [g(θ, δ)] is a row block matrix of Hessian matrices of the components of g(θ, δ),

∇2
θ [g(θ, δ)] =

[
∇2
θ g1(θ, δ), . . . ,∇2

θ gNs(θ, δ)
]
.

Note for linear models Note that for linear models w.r.t. the parameters, that is, g(θ, δ) = A(δ)θ +

b(δ), the Jacobian matrix is independent of θ, Dθ [g(θ, δ)] = A(δ) and the Hessian is zero ∇2
θ [g(θ, δ)] = 0.

Therefore (6.37) becomes

∇2
θ [log p(yi|θ, δ)] = −A(δ)TΣe(δ)

−1A(δ) (6.38)

which is independent of θ. Also, the Hessian of the log-prior is zero for uniform prior PDF or equal to the

inverse of the prior covariance matrix for Gaussian prior PDF (independent of θ). Then it is obvious from

(6.31) that the Hessian of the log-posterior is independent of θ. This means that higher-order derivatives

of the log-posterior w.r.t. θ are zero, and therefore the Gaussian approximation is exact for linear models

and not an approximation.

The optimal θ∗ where the posterior covariance matrix (6.32) is evaluated is the one that maximizes

the log-posterior of (6.31). By substituting the log-likelihood from (6.36) to (6.31) and taking the minus,

the optimal θ∗ equivalently minimizes:

1

2
J(yi, θ, δ)− log p(θ) + C3 (6.39)

where all the constants that do not depend on θ were merged into C3. So in order to do the Gaussian

approximation we need to solve the minimization problem (6.39) w.r.t. θ to find the optimal θ∗ for the

given yi. We also need to have both the first and second derivatives of the model prediction vector w.r.t.

the parameters θ. Then the posterior covariance matrix is given by Equations (6.32) and (6.37).

For small prediction error magnitude or a large number of uncorrelated data points, the following

simplification occurs in the objective function. Continuing from Equation (6.30):

U(δ) = H(p(θ|y, δ))

=

∫
Θ

p(θ)

{∫
Y

H(p(θ|Y = y, δ)) p(y|θ, δ) dy
}
dθ

=

∫
Θ

p(θ)I(θ) dθ

(6.40)

where the integral of the posterior entropy times the likelihood over the data is a function of θ and

was substituted with I(θ). Next, we show that I(θ) can be written in a way such that the Laplace

asymptotic approximation of integrals can be applied when either the prediction error magnitude is very

small, or when a large number of uncorrelated data is available (Tierney and Kadane, 1986; Bleistein and
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Handelsman, 1975).

I(θ) =

∫
Y

H(p(θ|Y = y, δ)) p(y|θ, δ) dy

=

∫
Y

H(p(θ|Y = y, δ))
exp

(
− 1

2 (y − g(θ, δ))TΣe(δ)
−1(y − g(θ, δ))

)√
|2πΣe(δ)|

dy

(6.41)

Without loss of generality, the prediction error covariance matrix can be written as Σe(δ) = σ2
eRe(δ),

where σ2
e is the magnitude of the prediction error covariance matrix and Re(δ) describes its possible

correlation structure. Then we set M = 1/σ2
e and obtain

I(θ) =

∫
Y

H(p(θ|Y = y, δ))
exp

(
M(− 1

2 ) (y − g(θ, δ))TRe(δ)
−1(y − g(θ, δ))

)√
|2πσ2

eRe(δ)|
dy

=

∫
Y

H(p(θ|Y = y, δ)) (2π)−Ns/2 σ−Nse |Re(δ)|−1/2 exp
(
M f(y)

)
dy

=

∫
Y

h(y) exp
(
M f(y)

)
dy

(6.42)

from which it is immediately obvious that the integral is of Laplace type when M is large, or equivalently

when σe is very small, with:

h(y) = H(p(θ|Y = y, δ)) (2π)−Ns/2 σ−Nse |Re(δ)|−1/2 (6.43)

and

f(y) = −1

2
(y − g(θ, δ))TRe(δ)

−1(y − g(θ, δ)) (6.44)

In order to apply the Laplace approximation we need the maximum y
0

of f(y) and its Hessian matrix

evaluated at that point. From the structure of f(y) as a quadratic form it is obvious that since the

correlation matrix Re(δ) is positive definite, its inverse Re(δ)
−1 is also positive definite and f(y) can only

be negative or zero. Therefore f(y) has a maximum of zero at y
0

= g(θ, δ), f(g(θ, δ)) = 0. Also, the

Hessian matrix of f(y) w.r.t. y is easily found to be ∇2
y f(y) = −Re(δ)−1 which is independent of y.

Then the Laplace approximation (Tierney and Kadane, 1986; Bleistein and Handelsman, 1975) states

that for large M :∫
Y

h(y) exp
(
M f(y)

)
dy ≈ h(g(θ, δ)) (2π)Ns/2M−Ns/2 | − ∇2

y f(g(θ, δ))|−1/2 exp
(
M f(g(θ, δ))

)
(6.45)

which in our case of h(y) and f(y) yields:

I(θ) ≈ H(p(θ|Y = g(θ, δ))) (2π)−Ns/2 σ−Nse |Re(δ)|−1/2 (2π)Ns/2 σNse |Re(δ)|1/2 exp (0) (6.46)

and after the cancellation of most of the terms the integral approximation simplifies to:

I(θ) ≈ H(p(θ|Y = g(θ, δ))) (6.47)

which is the posterior entropy evaluated for the data point equal to the model prediction for the specific

model parameters θ. Before substituting the value of the integral I(θ) into the objective function of
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(6.40), we first demonstrate that I(θ) can admit Laplace approximation independently of the magnitude

of the prediction error, provided that we have a large number of uncorrelated data. For uncorrelated

data the prediction error covariance matrix becomes diagonal. For simplicity and without affecting the

proof we assume that the variances of each component of the prediction error vector are the same, that

is: Σe(δ) = σ2
e INs , where INs is the Ns ×Ns identity matrix. Then I(θ) from (6.41) takes the form:

I(θ) =

∫
Y

H(p(θ|Y = y, δ))
exp

(
− 1

2 (y − g(θ, δ))TΣe(δ)
−1(y − g(θ, δ))

)√
|2πΣe(δ)|

dy

=

∫
Y

H(p(θ|Y = y, δ)) (2π)−Ns/2 σ−Nse |INs |−1/2 exp

(
− 1

2σ2
e

(y − g(θ, δ))T INs(y − g(θ, δ))

)
dy

=

∫
Y

H(p(θ|Y = y, δ)) (2π)−Ns/2 σ−Nse exp

(
− 1

2σ2
e

(y − g(θ, δ))T (y − g(θ, δ))

)
dy

=

∫
Y

H(p(θ|Y = y, δ)) (2π)−Ns/2 σ−Nse exp

(
− 1

2σ2
e

Ns∑
i=1

(yi − gi(θ, δ))2

)
dy

=

∫
Y

H(p(θ|Y = y, δ)) (2π)−Ns/2 σ−Nse exp

(
− Ns

2σ2
e

Ns∑
i=1

(yi − gi(θ, δ))2/Ns

)
dy

=

∫
Y

h(y) exp
(
M f(y)

)
dy

(6.48)

where

h(y) = H(p(θ|Y = y, δ)) (2π)−Ns/2 σ−Nse (6.49)

and

f(y) = − 1

2σ2
e

Ns∑
i=1

(yi − gi(θ, δ))2/Ns (6.50)

where the sum over the data points is the mean squared difference between the model prediction and the

data, which is always a finite and non-negative quantity. In the role of the large number M is now the

number of data points, M = Ns. Again it is easily seen that the maximum of f(y) is zero attained at

y
0

= g(θ, δ) and the Hessian of f(y) is −σ−2
e N−1

s INs .

Therefore, for large number of data points the Laplace approximation of I(θ) is:

I(θ) ≈ H(p(θ|Y = g(θ, δ))) (2π)−Ns/2 σ−Nse (2π)Ns/2N−Ns/2s |σ−2
e N−1

s INs |−1/2 exp
(
Ns f(g(θ, δ))

)
≈ H(p(θ|Y = g(θ, δ)))σ−Nse N−Ns/2s |σ−2

e N−1
s INs |−1/2 exp

(
Ns f(g(θ, δ))

)
≈ H(p(θ|Y = g(θ, δ)))σ−Nse N−Ns/2s σNse NNs/2

s exp (0)

≈ H(p(θ|Y = g(θ, δ)))

(6.51)

which is the same result as the one obtained under the assumption of very small prediction error magnitude

in (6.47).
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We have proved that the I(θ) integral defined in (6.41) admits Laplace asymptotic approximation

under two different assumptions:

1. The prediction error magnitude is very small.

2. The number of data points is large and the data are uncorrelated.

The result of the approximation is the same in both cases, and it is equal to the posterior entropy for

data equal to the model prediction for the specific model parameters. Then we continue by substituting

the approximated value of the integral I(θ) into the objective function of (6.40):

U(δ) ≈
∫

Θ

p(θ)H(p(θ|Y = g(θ, δ))) dθ

≈
N∑
i=1

wiH(p(θ|Y = g(θi, δ))

≈
N∑
i=1

wi
1

2
log((2πeb)

Nθ |Σp(θ|yi=g(θi,δ)|)

≈
N∑
i=1

wi
1

2

[
Nθ(log(2π) + 1) + log |Σp(θ|yi=g(θi,δ)|

]
≈
Nθ
2

(log(2π) + 1)
N∑
i=1

wi +
1

2

N∑
i=1

wi log |Σp(θ|yi=g(θi,δ)|

≈
Nθ
2

(log(2π) + 1) +
1

2

N∑
i=1

wi

 Nθ∑
j=1

log λji



(6.52)

where λji is the j-th of the Nθ eigenvalues of the posterior PDF covariance matrix for the i-th of the N

data samples yi, equal to the i-th model prediction vector g(θi, δ).

The integral over θ was approximated with a weighted sum where the points θi and weights wi can

be based on either Monte Carlo or some Sparse Grid method (Bungartz and Griebel, 2004; Gerstner and

Griebel, 1998). Note that due to the Laplace approximation of the I(θ) integral over the data y, the

integral of Equation (6.52) is only over the model parameters Θ, compared with the double integral of

Equation (6.30) which is over Θ and Y . This allows for the application of Sparse Grid methods in order

to estimate it, since the prior PDF p(θ) which serves as the weighting function is a common known PDF

such as uniform or Gaussian. Equation (6.52) is the expected posterior entropy over the prior PDF, also

proposed by Papadimitriou et al. (2000) using the robust information entropy concept.

The next simplification that occurs is that the minimization problem required to find θ∗ from Equation

(6.39) needs not to be performed, since J(yi, θ, δ) from Equation (6.35) has a clear minimum of zero at

θ = θi which was used to simulate yi = g(θi, δ). Zero is assured to be the minimum because J(yi, θ, δ)

is a quadratic form with a positive definite matrix Σe(δ)
−1. Σe(δ)

−1 is positive definite because it is the

inverse of the Σe(δ) prediction error covariance matrix which is positive definite by construction. This is
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true if we assume that the minimum of (6.39) w.r.t. θ occurs at the minimum of J(yi, θ, δ). This holds

when the prior PDF plays little or no role in the minimization w.r.t. θ, e.g. when the prior is uniform (no

dependence on θ) or Gaussian with large variances (the variation of p(θ) w.r.t θ is very small compared to

the variation of J(yi, θ, δ) w.r.t. θ). The later case of a uncorrelated Gaussian prior with large variances

Σp(θ) = diag(s2
1, . . . , s

2
Nθ

) can be explained as follows:

p(θ) = N(µp(θ),Σp(θ))⇒ log p(θ) = −1

2
(θ − µp(θ))TΣ−1

p(θ)(θ − µp(θ)) + C4 (6.53)

then (6.39) becomes:

1

2
J(yi, θ, δ) +

1

2
(θ − µp(θ))TΣ−1

p(θ)(θ − µp(θ)) + C5

1

2
(yi − g(θ, δ))TΣe(δ)

−1(yi − g(θ, δ)) +
1

2

Nθ∑
k=1

1

s2
k

(θk − µkp(θ))
2 + C5

(6.54)

where it is clear that for large prior variances s2
k compared to the components of the prediction error

covariance matrix Σe the second term is much smaller than the first and the main contribution in the

minimization comes from minimizing J(yi, θ, δ) which is zero for θ = θi which was used to simulate

yi = g(θi, δ), as stated above.

If the prior PDF does affect the minimization of (6.39) w.r.t. θ then the minimization can not

be avoided and must be performed with some minimization routine. However, that would render the

asymptotic method very computationally expensive since this minimization would be required for every

data sample yi = g(θi, δ). We proceed by assuming that the prior is either uniform or Gaussian with

large variances so that the minimum of (6.39) for a given yi occurs at the θ = θi which was used to

simulate yi, hence avoiding the minimization.

Also the second term of (6.37) is eliminated since g(θi, δ)− g(θ, δ) = 0 for θ = θi and therefore there

is no need for second derivatives of the model. So the posterior covariance matrix takes the simpler form:

Σp(θ|yi=g(θi,δ) = [Dθ[g(θ, δ)]TΣe(δ)
−1Dθ[g(θ, δ)]−∇2

θ(log p(θ))]−1|θ = θi (6.55)

For uniform prior the second term is obviously zero because the uniform PDF is independent of θ

Σp(θ|yi=g(θi,δ) = [Dθ[g(θ, δ)]TΣe(δ)
−1Dθ[g(θ, δ)]]−1|θ = θi (6.56)

For Gaussian prior with covariance Σp(θ) the posterior covariance matrix for data point yi = g(θi, δ)

becomes:

Σp(θ|yi=g(θi,δ) = [Dθ[g(θ, δ)]TΣe(δ)
−1Dθ[g(θ, δ)] + Σ−1

p(θ)]
−1|θ = θi (6.57)

We see that due to the assumption of either small prediction error magnitude or large number of uncor-

related data, combined with the Gaussian approximation of the posterior PDF (which becomes true for

large number of data), we only need the first derivatives of the model w.r.t. parameters θ to evaluate

the posterior covariance matrix and hence the posterior entropy for data point yi = g(θi, δ). The first
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derivatives can either be provided analytically or estimated numerically by some numerical differentiation

scheme. However, numerical estimation of the derivatives is prone to error and is also computationally

expensive. Therefore, the asymptotic method is truly useful only when the derivatives of the model

w.r.t. parameters are known analytically or can be estimated accurately. Otherwise it is best to use the

sampling method instead.

Once the Jacobian matrix is known, then the objective function is evaluated as a weighted sum of the

posterior entropies for various θi from Equation (6.52), with the posterior covariance matrices for the θi

given by Equations (6.55), (6.56) or (6.57).

Note that when the number of sensors is smaller than the number of parameters and we use a

uniform prior for the parameters, the posterior covariance matrix of Equation (6.56) is singular, leading

to some zero eigenvalues and zero determinant. In that case the posterior entropy can not be evaluated.

Papadimitriou and Lombaert (2012) used the product of the non-zero eigenvalues (pseudo-determinant)

to proceed with a uniform prior. However, if a Gaussian prior is used instead, its covariance matrix is

added to the first term and turns the posterior covariance of (6.57) into a non-singular matrix with a

non-zero determinant. Therefore, the Gaussian prior enables to perform OED even for cases where the

number of sensors is smaller than the number of model parameters we are trying to identify, without the

need to use the pseudo-determinant.

6.4.1 Linear models

When the model is linear w.r.t. the parameters, that is, g(θ, δ) = A(δ)θ+ b(δ), then the Jacobian matrix

is independent of θ, Dθ[g(θ, δ)] = A(δ) and the posterior covariance matrix in Equation (6.57) does not

depend on θ. Its determinant also does not depend on θ and the integral of Equation (6.52) reduces to a

constant which is the posterior entropy that depends only on δ.

U(δ) = H(p(θ|y, δ)) =
1

2
log((2πeb)

Nθ |Σp(θ|yi=g(θi,δ)|) (6.58)

where the posterior covariance matrix is independent of θ and y:

Σp(θ|yi=g(θi,δ) = [A(δ)TΣe(δ)
−1A(δ) + Σ−1

p(θ)]
−1 (6.59)

In this case the Gaussian approximation of the posterior PDF becomes exact as already proved by (6.31)

and (6.38) where we showed that the log-posterior has zero third and higher order derivatives w.r.t. θ.

Also, the Laplace approximation of the I(θ) integral over the data Y in (6.41) that was valid only

under the assumption of either small prediction error magnitude or large number of uncorrelated data,

becomes exact since the posterior entropy does not depend on the data any more and gets outside of the

integral, yielding the same result:∫
Y

H(p(θ|Y = y, δ)) p(y|θ, δ) dy = H(p(θ|Y = y, δ))

∫
Y

p(y|θ, δ) dy = H(p(θ|Y = y, δ)) (6.60)
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Note that in the above Equations (6.58), (6.59) and (6.60) the dependence of the posterior on the data

is written out in order to indicate that it is the posterior PDF, but there is no actual dependence on the

data.

Finally, the drop of the second term of Equation (6.37) which was true only under the assumption of

either small prediction error magnitude or large number of uncorrelated data, is now fully justified since

for linear models the Hessian of the model prediction vector is zero (∇2
θ[A(δ)θ + b(δ)] = 0), reducing the

entire term to zero.

The above effectively mean that for linear models the asymptotic method is exact and not an approx-

imation since all of its assumptions become true.

6.4.2 Effect of Gaussian prior variances

It turns out that Equation (6.57) has a very direct implication to the resulting optimal design. Next, a

theorem is presented which explains the effect of a Gaussian prior PDF on the optimal design. Specifically,

it is shown that the prior Gaussian variances of the parameters θ act as weighting factors which give more

preference to the identification of the parameters with the greatest prior variance. Hence, different optimal

designs arise when using different prior variances, which favor the identification of the corresponding

parameters.

First a diagonal covariance Σp(θ) = diag(s2
1, . . . , s

2
Nθ

) for the Gaussian prior is assumed and the effect

of the values of the variances is examined. These variances control the prior uncertainty in the values

of the Nθ model parameters. For clarity purposes, the dependence of the Jacobian matrix of the model

prediction vector on θ and δ is dropped and we set D = Dθ[g(θ, δ)] to denote the Ns × Nθ Jacobian

matrix. Let also Di denote the Nθ × 1 column vector which is the transpose of the i-th row of D and

corresponds to the first derivatives of the i-th component of g(θ, δ) w.r.t. the model parameters θ.

For simplicity, the case of optimally placing one sensor is considered first and then generalized for the

multiple sensor case. In the case of a single sensor at location i, the first term of the posterior covariance

matrix of Equation (6.57) reduces to σ−2DiD
T
i . Note that for one sensor the prediction error covariance

matrix is scalar Σe(δ) = σ2. Using the following known result for a square matrix B and two column

vectors u and v

det(uvT +B) = (1 + vTB−1u) det(B) (6.61)

the determinant of the posterior covariance matrix in Equations (6.52) and (6.57) takes the form

det
[
Σp(θ|yi=g(θi,δ)

]
=

1

det[σ−2DiD
T
i + Σ−1

p(θ)]
(6.62)

det
[
Σp(θ|yi=g(θi,δ)

]−1

= det[σ−2DiD
T
i + Σ−1

p(θ)]

= [1 + σ−2DT
i Σp(θ)Di] det(Σ

−1
p(θ))

= [1 + σ−2

Nθ∑
k=1

s2
kD

2
ik] det(Σ−1

p(θ))

(6.63)
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Note that the Gaussian prior variance s2
k of the k-th model parameter weights the contribution in the

sum of the model derivative w.r.t. the k-th parameter, at the sensor location described by δ; remind

that the Jacobian depends on both θ and δ, D = Dθ[g(θ, δ)]. The higher the value of the variance s2
k

is, the higher the contribution of Dik is on the determinant. Since our goal is to minimize the posterior

entropy (uncertainty), it is evident that the optimal design δ will give preference to the sensitivities of the

parameters that have higher prior uncertainty, i.e. higher s2
k values, and place the sensor at a location

δ where the derivative w.r.t. the k-th parameter Dik is large. In that way the determinant of (6.63) is

maximized, and the determinant of the posterior covariance matrix of (6.62) is minimized, which in turn

minimizes the posterior entropy in (6.52).

Next we complete the proof in a similar way for the general case of an arbitrary Ns number of sensors.

For this, we use the following known result of Linear Algebra

det(UWV T +B) = det(W−1 + V TB−1U) det(W ) det(B) (6.64)

and the determinant of the posterior covariance matrix in Equations (6.52) and (6.57) takes the form

det
[
Σp(θ|yi=g(θi,δ)

]
=

1

det[DTΣe(δ)−1D + Σ−1
p(θ)]

(6.65)

det
[
Σp(θ|yi=g(θi,δ)

]−1

= det
[
DTΣe(δ)

−1D + Σ−1
p(θ)

]
= det

[
D

′
Σe(δ)

−1D
′T + Σ−1

p(θ)

]
= det

[
Σe(δ) +D

′TΣp(θ)D
′
]

det
[
Σe(δ)

−1
]

det
[
Σ−1
p(θ)

]
= det

[
Σe(δ) +DΣp(θ)D

T
]

det
[
Σe(δ)

−1
]

det
[
Σ−1
p(θ)

]
(6.66)

where D
′

was temporarily set as the transpose of the Jacobian matrix D.

The next step of the proof is to expand the matrix product DΣp(θ)D
T as a sum of matrices created

from the outer products of the columns of D. For diagonal Σp(θ) we know from Linear Algebra that

DΣp(θ)D
T =

Nθ∑
k=1

s2
kD

kDkT (6.67)

where Dk is the k-th column of the Jacobian matrix which has the first derivatives of all Ns model

predictions g(θ, δ) w.r.t. the k-th model parameter. Then the determinant of the posterior covariance

matrix of (6.66) becomes

det
[
Σp(θ|yi=g(θi,δ)

]−1

= det

Σe(δ) +

Nθ∑
k=1

s2
kD

kDkT

 det
[
Σe(δ)

−1
]

det
[
Σ−1
p(θ)

]
(6.68)

Equation (6.63) is a special case of equation (6.68) when only one sensor is used (Ns = 1) and the

Jacobian matrix D becomes a row vector and its columns become scalars. In the multiple sensor case

we are dealing with a sum of rank-one matrices over the model parameter first derivatives, where each
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rank-one matrix is formed from the outer product of the first derivatives of the Ns model prediction

components w.r.t. the k-th parameter, Dk, weighted by the corresponding prior variance s2
k of that

parameter. So we see again that, similarly to the one sensor case, the Gaussian prior variance for the

k-th parameter s2
k acts as weighting factor, this time by giving greater weight to the matrix DkDkT

related to the model sensitivities w.r.t. the k-th parameter. The higher the value of the prior variance

s2
k is, the higher the contribution of the model sensitivities w.r.t. the k-th parameter is. So the optimal

design of sensor locations δ∗ is such that the model sensitivities w.r.t. the high-variance parameters are

the largest possible. This in turn maximizes the right-hand side of Equation (6.68) and minimizes the

posterior covariance matrix determinant (entropy). Therefore, the optimal design gives preference to the

identification of parameters which have the greatest prior uncertainty.

Note that the actual objective function is an average of posterior entropies for several points over the

parameter space θi described by the prior PDF p(θ), as shown in Equation (6.52). However, this does not

affect the validity of the theoretical result since it applies for every θi point individually, and on average

over all points.

An intuitive explanation of this theoretical result follows: Our objective is to gain the most information

about the model parameters when updating the prior to the posterior PDF. The prior uncertainty in

the parameters is quantified by the prior PDF. In order to gain insight about this result, we consider a

limiting case. Assume that most of the model parameters have very small prior variances and the rest

have large. The parameters with the very small variances are essentially already known, and learning

more about them will not increase the information gain substantially. It does not make sense to try

to identify parameters that are already known with very small uncertainty. In other words, there is

not enough room for information gain regarding those parameters. However, the parameters with the

large prior variances offer large information gain potential, since they are not known at all (almost),

and learning more about them would contribute largely to the overall information gain. Therefore, their

identification is preferred by the optimal design. Different weights (prior variances) can be attributed to

all the parameters, indicating their significance in the identification procedure.

This theoretical result enables us to perform more sophisticated OED with the asymptotic method,

which gives more weight to the identification of some parameters over others instead of all the parameters

having the same weight. This may be proved useful in cases were some of the model parameters are of

more interest than others because for example they play a more important role in the behavior of the

system. Small variances can be assigned to parameters that are not important so that the optimal design

will focus on the more important parameters with larger variances. Equal variances can always be used

to indicate that all the parameters are equally important. This theoretical result has been used for the

purpose of designing the optimal acceleration sensor locations for modal identification of a bridge, while

giving preference to specific modes of interest (Argyris et al., 2016). Whether or not the same theoretical

result can be proved under the sampling OED framework is an open question that is subject for future

research.
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6.5 Numerical application

In order to demonstrate the key difference between the two OED methods, but also to verify the increased

quality of the new proposed sampling estimator introduced in Section 6.3.2, a numerical example is carried

out in a simple analytical beam model with uncertain load.

6.5.1 Problem description

The illustrative problem that was selected in order to demonstrate the findings is the optimal sensor

placement in a simply supported beam that is under an uncertain point load. The beam is shown

schematically in Figure 6.2. Both the location a and magnitude P of the load are uncertain, and these

are the model parameters θ that we would like to identify from the experiment. We would like to perform

the experiment by placing strain sensors at the top surface at any point in the beam. So effectively we

are trying to find which is the optimal location of a number of strain sensors so that we identify both the

load magnitude and location. The strain of a simply supported beam under a known point load can be

found in any classical textbook of Strength of Materials. Therefore, the strain prediction from the model

at any location x is given by:

ε(x) = AP (L− a)x for 0 ≤ x ≤ a

= APa(L− x) for a < x ≤ L
(6.69)

where A is a constant that depends on the geometric and material properties of the beam. Without

loss of generality we assume that the constants are such that A = 1. Since our parameter vector θ is

θ = [P a]T we can immediately note that even though the model is linear in the load magnitude P , when

the load location a is also included as a parameter the model becomes non-linear due to the product

terms Pa that appear. Another factor that contributes to the non-linearity of the model predictions

w.r.t. the parameters θ is that it is a piece-wise model which changes its function depending on the

value x where we evaluate the strain, and the distance where the two pieces separate from each other is a

model parameter, namely a. The beam is of length 1 and the priors of the model parameters were chosen

to be uniform in the range [0.55 0.85] and [0.85 1.15] for the load location and magnitude, respectively.

A second symmetric prior for the load location was also examined in the range [0.35 0.65]. Therefore,

the uncertain load could be applied anywhere in the intervals [0.55 0.85] and [0.35 0.65] with equal

probability. The prediction error vector of the model predicted strains was chosen to be Gaussian with

zero mean and covariance matrix Σe = σ2 I where σ was chosen to be 1% and 10% of the average model

prediction for the given priors.
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Figure 6.2: Simply supported beam with applied load

Our goal is to find the optimal locations of strain sensors on the beam such that the most information

will be contained about the load magnitude and location. The design variables δ are the locations of

the strain sensors on the beam. In order to avoid having too many parameters by assigning each design

variable to a sensor coordinate, we simplify the design variables to just 2 parameters, the first being

the location of the first sensor and the second being the uniform distance between the sensors. In this

way we limit the number of optimization variables to just 2, despite the actual number of sensors. This

decision was backed up by preliminary results using the coordinates of each sensor as design variables,

which clearly showed that indeed they are uniformly spaced. The optimization of the objective function

w.r.t. the 2 design variables in order to find the optimal design is done using the CMA algorithm (Hansen

et al., 2003). The choice of this algorithm has to do with some of its convenient properties:

1. It is a gradient-free algorithm which does not require derivatives of the model prediction w.r.t.

the design variables (which are in many problems impossible to obtain), but only forward model

evaluations for given design variables.

2. It is a stochastic optimization algorithm with global-search capabilities and has higher chances to

locate the global optimum compared to gradient-based methods which can easily get trapped in

local optimal.

3. It is well-suited for noisy objective functions which are estimated through Monte Carlo methods.

4. It can be highly parallelized since at every iteration multiple model runs are required for differ-

ent design variables which can be executed in parallel and therefore reduce computational time

significantly.

6.5.2 Comparison of sampling estimators

In section 6.3.2 a simplified Monte Carlo estimator was derived which exploits the fact that the likelihood

entropy is known analytically and needs not to be approximated with samples. It was derived under

the assumption of the Gaussian likelihood (Gaussian prediction error vector) which is by far the most

common case because of the Maximum Entropy principle (Cover and Thomas, 2006). We claimed that

this simplification would result in a more accurate estimate of the objective function. In this section we
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demonstrate this with a numerical example. Specifically, we compare the two estimators by evaluating

the objective function 100 times with each estimator and compare the statistical descriptors of each

case. Remind that since we only have a Monte Carlo estimate of the objective function, there is also

unavoidably some noise associated with that estimate due to the random but specific θi and yi samples

used in the estimate. Therefore, each objective function evaluation gives a slightly different estimate when

those samples are randomly drawn again. An attempt is made to measure that variability by evaluating

the objective 100 times and taking the mean and standard deviation. This is done for both estimators of

Equations (6.8) and (6.25). Next, in order to eliminate any possible random artifacts of the estimators,

this is repeated for an increasing (but equal) number of samples for both estimators so that we have more

statistic data to compare.

In Figure 6.3 we see the mean ±2 standard deviations of 100 objective function evaluations for each

estimator, for a increasing number of samples. The objective function U(δ) was evaluated for 2 sensors

placed at the bounds of the uniform priors of the load location at [0.55 0.85] and [0.35 0.65]. In this

context, finding the optimal sensor location δ∗ is not of interest since our goal is just to compare the two

estimators. So any value δ would be sufficient to study the behavior of U(δ) under the two estimators.
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Figure 6.3: Comparison of variance of the two estimators. Blue: Equation (6.25), Red: Equation (6.8).

Top: Load location prior [0.55 0.85], Bottom: Load location prior [0.35 0.65].
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Notice how the proposed estimator indicated by the blue color has a smaller standard deviation than

the estimator proposed by Ryan (2003) indicated by the red color. This is consistent for all numbers of

samples and therefore not an artifact caused by the stochastic nature of the estimator. We see the expected

result that as the number of samples increases the objective function estimate stabilizes towards the true

value, and the variance decreases. This clearly shows that the quality of the estimator has improved not

by reducing its bias but by reducing its variance.

6.5.3 Results based on both sampling and asymptotic methods

Both sampling and asymptotic methods are used to perform optimal sensor placement on the beam for

model parameter inference. The objective function for the sampling method is Equation (6.25) which is

the expected KL-divergence between the posterior and prior PDFs or the Mutual Information between

the data and parameters equivalently. The objective function for the asymptotic method is Equation

(6.52) which is the expected posterior entropy over the prior. In order to compare results from both

methods Equation (6.27) is used which connects the two quantities through the entropy of the prior

PDF. In the following results, the expected posterior entropy is used as the objective function, therefore

the optimal design is the one that minimizes the objective.

The sampling method requires only evaluation of the model for various parameter points θi, which is

done from Equation (6.69), while the asymptotic method requires the first derivatives of the model w.r.t.

θ = [P a]T which are also readily available by taking the derivatives of Equation (6.69). Note how the

evaluation of the strains or the derivatives of the strains for various parameter points θi and given sensor

locations δ always requires examining the location of the sensors with respect to the location of the load

a which is a parameter. In order to illustrate the effect of the prediction error magnitude in the results

using both methods, two cases were examined with the prediction error standard deviation being 1% and

10% of the average model prediction for the given priors.

From the numerical perspective, both the sampling and asymptotic objective functions are integrals

which can always be approximated with Monte Carlo sampling. However, the asymptotic objective

function offers itself for more accurate numerical integration methods due to its simpler form of Equation

(6.52) compared to the sampling objective function of Equation (6.25). The simpler form is due to 2

reasons:

1. The asymptotic objective function is a single integral over Θ whereas the sampling is a double

integral over both Θ and Y .

2. The integral over Θ can be conveniently approximated with Sparse Grids since the prior PDF which

acts as the weighting function is a well-known PDF, whereas the integral over both Θ and Y can

only be approximated with Monte Carlo sampling because the product of the likelihood and prior

PDFs which acts as the weighting function is not necessarily a well-known PDF. Also, for small

number of model parameters, even numerical quadrature can be used to integrate the asymptotic

objective function.
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3. The sampling objective function, due to the fact that it also uses data samples yi except from

parameter samples θi it introduces another source of uncertainty due to yi. This is because the

data samples yi are sampled randomly by adding a disturbance (prediction error) in the model

prediction for the corresponding θi, g(θi, δ). This added source of randomness does not exist in the

asymptotic objective function because it does not require data samples but only parameter samples.

The data samples are considered equal to the model prediction for the corresponding θi under the

assumption of small prediction error.

Finally, we should note that during the optimization of the sampling objective function w.r.t. the

design variables, the θi samples used to estimate the objective were kept the same for all objective

function evaluations. This is common practice in the optimization of noisy objective functions given by

Monte Carlo estimates in order to avoid extra noise added to the procedure due to the sample variability,

making the optimization harder. In Section 6.5.2 the samples were deliberately re-drawn for every

objective function evaluation in order to show the reduced variability of the new estimator.

Next, the optimal sensor placement results are presented for 2, 3, 4, 5 and 20 sensors. For the

sampling objective function, 8.000 Monte Carlo samples were used to approximate it. In order to assess

the effect of that number of samples in the results, indicative runs with 2 sensors were also conducted

with 20.000 and 50.000 samples which confirmed the results produced using 8.000 samples, judging that

8.000 samples were sufficient. For the asymptotic objective function, numerical quadrature was used since

the integral over the parameters is only 2-dimensional. The number of iterations required to perform the

quadrature was of the order of 2.000, which should be compared with the 8.000 Monte Carlo samples

where the sampling objective function begins to stabilize, as shown in Section 6.5.2. The minimization

of the objective function (expected posterior entropy) in both the asymptotic and sampling methods was

done using the CMA algorithm (Hansen et al., 2003) for the reasons described in Section 6.5.1.

First, the case with the asymmetric load location prior of [0.55 0.85] is presented. Figure 6.4 shows

the optimal locations of sensors in the beam for 1% prediction error using both methods, and Figure

6.5 shows the same for the 10% case (the 20 sensor case is omitted in these figures for clarity purposes).

The results are summarized in Tables 6.1 and 6.2, while Figure 6.6 is the plot of the objective function

(expected posterior entropy) versus the number of sensors.
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(a) Asymptotic (b) Sampling

Figure 6.4: Case of 1% prediction error: Optimal sensor locations

(a) Asymptotic (b) Sampling

Figure 6.5: Case of 10% prediction error: Optimal sensor locations
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Table 6.1: OSL results for 1% prediction error magnitude

Sampling Asymptotic

# of

sensors

Location of

first sensor

Distance

between

sensors

Objective

function

Location of

first sensor

Distance

between

sensors

Objective

function

2 0.5524 0.2815 -8.5128 0.55 0.3 -8.3365

3 0.5514 0.1472 -9.0091 0.55 0.15 -8.9095

4 0.5514 0.0991 -9.2086 0.55 0.1 -9.1480

5 0.5507 0.0745 -9.3504 0.55 0.075 -9.2941

20 0.5507 0.0156 -9.9165 0.55 0.0158 -9.8203

Table 6.2: OSL results for 10% prediction error magnitude

Sampling Asymptotic

# of

sensors

Location of

first sensor

Distance

between

sensors

Objective

function

Location of

first sensor

Distance

between

sensors

Objective

function

2 0.5587 0.1819 -4.6275 0.55 0.3 -3.8750

3 0.5548 0.1229 -4.8973 0.55 0.15 -4.4577

4 0.5546 0.0913 -5.0353 0.55 0.1 -4.7003

5 0.5522 0.0691 -5.2025 0.55 0.075 -4.8490

20 0.5528 0.0153 -5.6719 0.55 0.0158 -5.5842
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Figure 6.6: Expected posterior entropy versus number of sensors for both methods and prediction error

cases. Blue: 1% error, Red: 10% error, Black: 25% error. Circle: Sampling method, X: Asymptotic

method.

First we note that for only 2 sensors and 1% error, they are optimally placed in the bounds of the

uniform prior of the load location at [0.55 0.85] and not on the interior of the interval. This happens due

to the piece-wise nature of the model, which changes its function type depending on the value of the load

location parameter. In order to be able to identify both the load magnitude P and location a we need to

have strain sensors in both sides of the load location. If sensors are in the same side the model does not

have any way to know both P and a, no matter how many sensors we use. One can see that by noting

that the equation for the strains (6.69) is the same for any number of sensors, if the xi coordinates of

those sensors are all ≤ a or ≥ a. Then it is impossible to know both P and a using only one equation,

no matter how many sensors there are. One can only know their ratio, but not both. But since a is

uncertain and uniformly distributed in [0.55 0.85], the only way to ensure that the 2 sensors are going

to be in both sides of the load is to place them in the bounds at 0.55 and 0.85. As the number of sensors

is increasing, we see the tendency to cover the entire prior interval for the load location. This is done for

the same reason, in order to ensure having sensors in both sides of the load.

The next thing we note from the results, and especially from Figure 6.6 is that for 1% prediction

error the expected posterior entropy is lower than for the 10% prediction error with both methods (less

uncertainty in the identified parameters). This is in agreement with the Bayesian theory because less

uncertainty in the data (small prediction error) is expected to give less uncertainty in the identified
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parameters (small posterior entropy), and this is expressed in Figure 6.6.

From the same Figure 6.6 we can also draw other useful conclusions about the sampling and asymptotic

methods. The most notable difference is how the two methods are very close to each other for the 1%

prediction error, and they start to deviate significantly as the prediction error increases to 10% and 25%.

This is due to the assumption of the asymptotic method that the prediction error magnitude is very

small. Here we see that a 1% prediction error was sufficiently small to cause almost the same results

as with the sampling method, but with 4 times less computational effort used in the objective function;

2.000 numerical quadrature iterations for the asymptotic method compared to the 8.000 samples of the

sampling method. This applies to both the optimal objective values and optimal designs shown in Figure

6.4.

However, we also proved that the asymptotic method gets more accurate not only by lowering the

prediction error magnitude, but by increasing the number of uncorrelated data. This can be seen in the

numerical results, where it is evident that even for the 10% and 25% prediction error cases the asymptotic

method does approach the exact sampling method as the number of sensors is increasing. The higher

the prediction error magnitude is, the more data points are required in order to converge to the sampling

method. This shows that the asymptotic method can be considered even for non-negligible prediction

errors, provided that the number of sensors (data) is large enough. Plots like Figure 6.6 can be used to

decide how many sensors are sufficient.

It is evident from Figure 6.5 that the asymptotic method was not capable of adjusting its optimal

designs for up to 5 sensors in response to the increase of the prediction error to 10%. Only the objective

values changed (Table 6.2), but the optimal designs remained the same for both 1% and 10% cases of

the prediction error magnitude. The sampling method, on the other hand, modified its optimal designs

according to the increase in the prediction error by shortening the distance between the sensors. Only

when the number of sensors reached 20 did the asymptotic method start to agree with the sampling

method. It seems from Tables 6.1 and 6.2 that as we increase the prediction error magnitude, the

distance between the sensors decreases, resulting in the far-right sensor moving away from the right prior

bound at 0.85 and towards the interior of the prior interval, as can be seen in Figure 6.5.

It is not obvious why this tendency exists, but it is speculated that it has to do with the asymmetric

prior of the load location at [0.55 0.85] with respect to the beam, which causes an uneven strain distri-

bution. Figure 6.7 shows the strain distributions in the beam for various random samples from the load

location prior PDF, together with the associated prior bounds. For simplicity, the load magnitude P

in these plots was set equal to 1. What should be noted in this Figure is how much sharper the strain

variations are close to the right bound at 0.85 compared to the left bound at 0.55. These sharp variations

cause the strains close to 0.85 to be much lower (on average) than the strains close to 0.55. This becomes

a problem when the prediction error increases because it can lead to very small strain readings from

sensors close to 0.85. Remind that the data samples yi which are used in the sampling objective function

are simulated by adding a disturbance (random draw) from the prediction error PDF N(0,Σe(δ)) to

the model predicted strains using the i-th parameter sample θi. When the prediction error increases,
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this added disturbance can lead to very small (also very large, but the small case is the one causing the

problem here) strain readings from a sensor close to 0.85 and this is not desired because ideally we would

want large strain readings for better identification. This is why the second sensor is optimally located

further inside the interval at 0.74 so that small strain readings from a sensor close to 0.85 are avoided.

In the left bound at 0.55 this is not a problem because as we can see from Figure 6.7 the strains close to

it are quite large on average.
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Figure 6.7: Strain distributions for multiple random samples of the load location for the asymmetric prior

PDF [0.55 0.85]

In order to check this intuitive explanation for the results, a second case with a symmetric load location

prior is used at [0.35 0.65]. In that case, as can be seen in Figure 6.8, the strain distributions are also

symmetric on average and there are no areas in the beam with sharper variations than others on average

as was the case with the asymmetric prior before. Therefore, according to our explanation, there should

not be any reason for the 2 sensors to avoid any bound more than the other, and the 2 sensors should

be placed symmetrically as well at the prior bounds. According to the proposed explanation, it is also

expected that as the prediction error magnitude increases, both of the sensors would move towards the

inside of the symmetric prior interval [0.35 0.65], while remaining symmetric. In the asymmetric prior

case the 2 sensors did not remain symmetric with the increase of the prediction error, and this behavior

was attributed to the sharper strain variations close to the right bound at 0.85, but with the symmetric

prior this reason does not exist anymore and therefore the sensor locations would still remain symmetric

even after the increase of the prediction error magnitude.

140

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 12:38:19 EEST - 18.191.97.154



0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Beam length

S
tr

ai
n

Strain distributions for random load locations

Figure 6.8: Strain distributions for multiple random samples of the load location for the symmetric prior

PDF [0.35 0.65]

The CMA algorithm was run again for the case of 2 sensors with the following change in the objective

function: the asymmetric load location prior PDF [0.55 0.85] was replaced by the symmetric prior PDF

[0.35 0.65]. Again, both cases of 1% and 10% prediction error magnitude were examined. For the 1%

error, the 2 sensors are optimally placed at 0.3546 and 0.6467 very close to the prior bounds, and for

the 10% error they are optimally placed at 0.3749 and 0.6245. The optimal sensor locations are in fact

symmetric, as expected. Also, the idea about the prediction error causing the sensors to move further

away from the prior bounds and towards the inside of the prior interval seems to be reinforced as well.

The optimal sensor locations are symmetric even for the 10% prediction error case, and we do not see

one sensor being more displaced than the other as was the case with the asymmetric prior. For the 1%

prediction error they remain symmetric, and approach the prior bounds at [0.35 0.65].

The above analysis allowed us to understand two basic ideas about this problem:

1. The sensors must be placed as close as possible to the uniform prior bounds in order to make sure

that we have sensors on both sides of the load application point which is uncertain.

2. We must avoid small strain readings from the sensors.

When the prediction error magnitude is small, both of the above points can be satisfied by placing sensors

very close to the uniform prior bounds for the load location. However, when the prediction error increases,

the strain readings from the sensor close to 0.85 can become dangerously small, so that the sensor has

to move towards the inside of the interval. Then there is a natural trade-off between the two above

mentioned ideas and an optimal location must be found where both are satisfied to a lesser degree. The
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sampling method is capable of finding that optimal trade-off point while the asymptotic method is not.

As more sensors are added in the beam, the far-right sensor can approach 0.85 because the rest of

the sensors make up for its potential small strain readings, while covering the entire prior interval which

is desired for having sensors in both sides of the load on average. The above clearly demonstrate that

there are notable disagreements between the two methods when the prediction error magnitude increases,

and that its effect cannot be studied with the asymptotic method but rather the computationally more

expensive sampling method must be used instead if we would like to perform such analysis.

Next, we should note from Figure 6.6 that especially for the 10% prediction error case, the objective

values obtained with the sampling method are lower (better) than the asymptotic method. This suggests

that the modified optimal designs obtained with the sampling method in Figure 6.5 are in fact better for

identifying the load parameters than their counterparts from the asymptotic method in the same Figure,

when the prediction error is 10%.

From Figure 6.6, it is also interesting how the entropy for just 2 sensors with 1% error is lower than

the entropy of 20 sensors with 10% error. This shows how important the effect of the prediction error is

in the identification. The fact that in the later case we have much more sensors does not imply that their

information is also much more useful, since every one of those 20 sensors has a 10% error associated with

its reading and therefore can make the identification much more difficult. This implies that good quality

in the data is much more important than quantity.

Finally, from Figure 6.6 we also observe the intuitive result from the Bayesian theory that as the

number of sensors increases the expected posterior entropy decreases. This is expected since more sen-

sors means more data and therefore better parameter inference with less uncertainty in the identified

parameters. We also see that this decrease in the posterior entropy is sharper for the first added sensors

and then it drops. This happens because if many sensors are already placed in the beam, adding one

more does not contribute very much to the total information from all sensors. Whereas when there is

a small number of sensors placed on the beam, a new sensor has a large contribution to the overall

information. This issue has been studied in detail by also introducing correlated prediction error models

with non-diagonal prediction error covariance matrices Σe(δ) by Papadimitriou and Lombaert (2012).

6.6 Conclusions

This chapter presented a novel evidence-based interpretation to Optimal Experimental Design, based on

a new improved equation for the objective function. This improved equation uses Monte Carlo sampling

for 1 term only instead of 2 terms, and calculates the other term analytically. As expected, this was

demonstrated numerically to reduce the variance of the estimator and hence increase its quality. It turns

out that the evidence is the crucial factor for OED, and the optimal design is the one that can maintain

a good fit with the data despite their uncertainty. Designs that give a good fit with only some of the

data and fail with others are not preferred.

Both the sampling and asymptotic methods to OED were developed, and objective functions used in
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different works were put under the same framework. It was shown that the asymptotic method requires

only the first derivatives of the model w.r.t. θ evaluated at different values of θ for given design variables

δ. The sampling method requires no derivatives, but only point-evaluation of the model. Using either the

KL divergence between posterior and prior or the posterior entropy as objective function (both averaged

over the data) result in the same optimal design since they only differ by a constant term which is the

prior entropy. An important theorem was developed for the asymptotic method, explaining the effect

of the Gaussian prior variances of the model parameters. This theorem proves that the Gaussian prior

variances act as weighting factors in the identification of the parameters with the highest variance. Hence,

the optimal design favors the identification of the parameters with the highest prior variance.

We also presented a general probabilistic framework for OED where the design variables themselves are

treated as uncertain variables, and showed that existing formulations with deterministic design variables

can be derived as special cases of the more general formulation. Even though not explored in this work,

the probabilistic framework can be used to find optimal designs that are robust to changes in the design

variables. The framework was also extended to handle nuisance parameters that enter the formulation but

we do not wish to update them, but rather include their uncertainty in the optimal design formulation.

Also note that we never introduced a utility function (Lindley, 1956) that depends on the data and

then have to take the expectation over the data because they are uncertain. Instead, this expectation

occurred naturally by using the Mutual Information between the parameters and data as the objective

function. This shows that the known theory of maximizing the expected utility function, when the

utility function is taken as the KL-Divergence between the posterior and prior PDFs of the parameters

(parameter inference), can be derived under the theory of maximizing the Mutual Information between

the parameters and data when the design variables are deterministic.

Finally, a numerical application was presented using a simple beam model in order to demonstrate:

1) The variance reduction achieved using the new improved formula for the sampling objective function

estimator, 2) The key difference between the sampling and asymptotic methods regarding the magnitude

of the prediction error and the number of data. When small prediction errors are considered, of the

order of 1% of the model and smaller, then the two methods seem to agree and the asymptotic method

is preferred over the sampling method because it is computationally less expensive. As the prediction

error magnitude was increased, the two methods started to diverge because the asymptotic method loses

its accuracy. However, increasing the number of data (sensors) helped the asymptotic method regain its

accuracy and led to agreement with the sampling method even for larger prediction errors.

Finally, we can conclude that the asymptotic method is reliable when the prediction error magnitude

is very small, or the number of data is very large. Plots like Figure 6.6 can be used to decide how many

sensors are sufficient for a given prediction error magnitude. Otherwise, if the number of sensors is small

or the prediction error magnitude is large, it is mandatory to use the sampling method.
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Chapter 7

Bayesian optimal sensor placement

for modal identification of civil

infrastructures

Original publication:

Argyris, C., Papadimitriou, C. and Panetsos, P. ”Bayesian Optimal Sensor Placement for Modal Identi-

fication of Civil Infrastructures”. In: Journal of Smart Cities, 2(2): 69-86, (2016).

Abstract

A Bayesian optimal experimental design (OED) method is proposed in this work for estimating the

best locations of sensors in structures so that the measured data are most informative for estimating

reliably the structural modes. The information contained in the data is measured by the Kullback-

Leibler (K-L) divergence between the prior and posterior distribution of the model parameters taken in

modal identification to be the modal coordinates. The optimal sensor placement that maximizes the

expected K-L divergence is shown also to minimize the information entropy of the posterior distribution.

Unidentifiability issues observed in existing formulations when the number of sensors is less than the

number of identified modes, are resolved using a non-uniform prior in the Bayesian OED. An insightful

analysis is presented that demonstrates the effect of the variances of Bayesian priors on the optimal

design. For dense mesh finite element models, sensor clustering phenomena are avoided by integrating

in the methodology spatially correlated prediction error models. A heuristic forward sequential sensor

placement algorithm and a stochastic optimization algorithm are used to solve the optimization problem

in the continuous physical domain of variation of the sensor locations. The theoretical developments and

algorithms are applied for the optimal sensor placement design along the deck of a 537 m concrete bridge.
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7.1 Introduction

Experimental measurements from civil infrastructures, including buildings, bridges, offshore structures,

wind turbines, industrial facilities, are often used to obtain the modes of these structures. The modes are

useful in structural performance evaluation (Simoen et al., 2013a), finite element model updating (Beck

and Katafygiotis, 1998; Yuen, 2012, 2010) and model-based structural health monitoring (Lam et al.,

2004; Vanik et al., 2000). A number of methodologies have been developed in the past to optimize the

location of sensors in order to maximize the information contained in the measurements for identifying

the structural modes. Among them, methods based on information theory are used to make rational

decisions consistent with the information provided by the measurements.

This chapter concentrates on optimal sensor placement design methods for modal identification based

on information theory. In the past, notable contributions to the sensor placement problem for modal

identification have been provided by the effective independence (EFI) method (Kammer, 1991) for uni-

axial and triaxial sensors (Li et al., 2009). Information theory measures, based on scalar measures of the

Fisher Information Matrix (FIM) (Shah and Udwadia, 1978; Udwadia, 1994) and on information entropy

(Papadimitriou et al., 2000; Yuen et al., 2001; Ye and Ni, 2012), proposed in the past for structural

parameter estimation problems, have been extended to be used for modal identification (Papadimitriou

and Lombaert, 2012) as well. An optimal sensor placement design for modal identification based on FIM

was proposed by Kammer (2005). The information entropy measure for parameter estimation introduced

by Papadimitriou et al. (2000), was extended by Papadimitriou (2004) to obtain useful expressions of

the information entropy as a function of the number of sensors, and was applied to modal identifica-

tion problems by Papadimitriou and Lombaert (2012). In particular, the information entropy measures

the uncertainty in the posterior distribution of the model parameters to be identified. The posterior

distribution is obtained from a Bayesian analysis that makes use of the prior distribution of the model

parameters. Up to now, the effect of the prior distribution in the optimal design has not been adequately

explored.

Applying the EFI and information entropy techniques to dense finite element models, the problem of

sensor clustering is manifested. The source of the problem is the failure to take into account the redundant

information provided from neighborhood sensor locations. The problem was adequately resolved using

spatially correlated prediction error models in the Bayesian formulation to exclude redundant information

from neighboring sensors (Papadimitriou and Lombaert, 2012). Stephan (2012) has also effectively tackled

the issue of information redundancy between sensors by introducing a measure of information redundancy.

Optimization algorithms have also been proposed to find the optimal sensor locations. For structural

parameter estimation problems multiple local/global optima make the solution of the optimization prob-

lem very challenging. Heuristic algorithms such as the backward and forward sequential sensor placement

(BSSP and FSSP) algorithms have been proposed to drastically reduce the computational effort (Kam-

mer, 2005; Papadimitriou, 2004). The optimal sensor placement strategies based on the information

entropy and FSSP was applied to bridge, towers and timber structures for optimizing the location of
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uniaxial and triaxial sensors (Chow et al., 2011). These algorithms are shown to be quite accurate. How-

ever, the use of the FSSP algorithm requires that identifiability issues are resolved for small number of

sensors. Unidentifiability issues arise from the aforementioned methods for modal identification when the

number of sensors placed in the structure is less than the number of identified modes. This is due to the

fact that the FIM becomes singular. Yuen and Kuok (2015) noted that introducing non-uniform priors

in the Bayesian posterior used in the information entropy measures resolves the problem. For uniform

priors, Papadimitriou and Lombaert (2012) obtained reasonable sensor placement designs by excluding

the zero eigenvalues from the product of the eigenvalues of the FIM used for computing the determinant

of the FIM that is required in information entropy formulations.

In this chapter we revisit the problem of sensor placement for modal identification. We formulate the

optimal experimental design problem based on the theory developed in Chapter 6, and especially on the

asymptotic method of Section 6.4. The theory is applied to the case of optimizing the location of sensors

in a real bridge. With the aid of the information contained in the prior PDF of the model parameters,

the posterior covariance matrix is non-singular for non-uniform priors and the optimal sensor placement

problem can be carried out also for the case where the number of sensors is less than the number of

modes.

A novelty in this chapter is to study the effect of the Gaussian prior uncertainties on the optimal sensor

design. For this, the theorem developed in Section 6.4.2 is used. The importance of spatial correlation in

the prediction error is also pointed out as the means of avoiding sensor clustering phenomena for finite

element models used to simulate civil infrastructures.

Theoretical developments are demonstrated by designing the optimal locations of a number of sensors

for a 537m long concrete bridge using a dense finite element mesh of approximately 830000 degrees of

freedom (DOF). The optimization is formulated in the physical continuous space of the design variables.

This avoids the large discrete design space that arises from the extremely large number of possible nodal

positions due to dense FE meshes. Multiple local optima are revealed that make the optimization prob-

lem very challenging. It is demonstrated that the computationally efficient heuristic FSSP algorithm

provides accurate solutions when compared to stochastic algorithms such as the covariance matrix adap-

tation (CMA-ES) (Hansen et al., 2003) able to estimate the global optimum with substantially higher

computational cost. Useful results are obtained which help guide experimentalists as to how the proposed

method can be used for designing the optimal sensor locations in practical applications. In particular, we

demonstrate that designs are also obtained for the very important case of number of sensors which are

less than the number of modes by using the information contained in the prior distribution. In particular,

this is important in designing the location of the reference sensors in a multiple sensor configuration set

up experiment conducted with a limited number of reference and roving sensors in order to obtain the

modal frequencies and reliably assemble the mode shapes from multiple setups. The effectiveness of the

methodology is illustrated by designing the optimal location of two reference sensors (one transverse and

one vertical) for the bridge. Finally, we draw attention to the sensor clustering issue and propose methods

to avoid it and finally we show the effect of uncertainty in the prior distribution on the optimal design.
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7.2 Bayesian optimal experimental design

The Bayesian optimal experimental design formulation was developed in detail in Chapter 6. Specifically,

the asymptotic method developed in Section 6.4 is used. Since our model is linear w.r.t. the parameters

to be identified from the experiment, the simplifications of Section 6.4.1 for linear models are used.

Therefore, the objective function is the posterior entropy which depends only on the design variables.

The posterior entropy for the special case of a linear model:

g(θ, δ) = A(δ)θ + b(δ) (7.1)

was given by Equations (6.58) and (6.59) in Section 6.4.1 which are repeated here for convenience:

U(δ) = H(p(θ|y, δ)) =
1

2
log((2πe)k|Σp(θ|yi=g(θi,δ),δ)|) (7.2)

where the posterior covariance matrix is independent of θ and y:

Σp(θ|yi=g(θi,δ),δ) = [QL(δ) + Σ−1
p(θ)]

−1 (7.3)

where QL(δ) is the FIM

QL(δ) = A(δ)TΣe(δ)
−1A(δ) (7.4)

Remind that since we have a linear model the asymptotic method is exact because all of its assumptions

are true, as was proven in Section 6.4.1.

7.2.1 Optimal designs

The optimal experimental design problem is formulated as finding the values δopt of the design variables

δ that minimize the posterior entropy H(p(θ|y, δ)):

δopt = arg min
δ

U(δ) = arg min
δ

H(p(θ|y, δ)) (7.5)

Optimal experimental design problems involving the design of the position of sensors often result in

multiple local and global solutions. This will be also evident in the results presented in the application

section. Also the gradient of the objective function with respect to the design variables in most cases of

practical interest cannot be evaluated analytically. To avoid premature convergence to a local optimum

and the evaluation of sensitivities of the utility function with respect to the design variables, stochastic

optimization algorithms can be used to find the optimum. Herein the CMA-ES algorithm (Hansen et al.,

2003) is used for solving the minimization problem, requiring only evaluation of the objective function at

different values of the design variables. For this, the problem is formulated as a continuous optimization

problem where the design variables are related to the coordinates of the sensors along the physical domain

of the structure. To account, however, of curved and disconnected one-dimensional or two-dimensional

domains, as well as to take into account the different types of sensors (vertical or transverse) that can

be placed along the curved domain, a mapping technique can be used to map the physical design space
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into a regular one-dimensional parent domain. The optimization is then conveniently carried out in the

parent domain. The method will be illustrated for one-dimensional curved domains in the application

section.

Heuristic algorithms have also been proposed to provide sub-optimal solutions. Notable are the for-

ward and backward sequential sensor placement algorithms (FSSP and BSSP) in which the optimization

is carried out sequentially. In the FSSP algorithm (Papadimitriou, 2004) the optimization is carried out

sequentially for a single sensor, say the i + 1 sensor, given that i sensors have already been placed in

their optimal locations. This procedure is repeated for i = 1, . . . , N0, where N0 is the total number

of sensors to be placed in the structure. The heuristic algorithms have been shown to be effective and

provided for several problems near optimal solutions (Papadimitriou and Lombaert, 2012). The FSSP

algorithm is used here for investigating its effectiveness for the optimal sensor placement problem for

modal identification.

7.3 Optimal sensor placement for modal identification

7.3.1 Formulation for modal identification

The optimal experimental design methodology is next implemented in structural dynamics for optimally

placing the sensors in the structure for modal identification. Considering a linear finite element model of

a structure, the equations of motion are given by

Mü+ C̃u̇+Ku = f (7.6)

where M , C̃ and K ∈ Rn×n are the mass, damping and stiffness matrices, respectively, u ∈ Rn is the

displacement vector and f is the forcing vector. Using modal analysis and assuming classically damped

modes, the response displacement and acceleration vectors are given by u = Φξ and ü = Φξ̈, respectively,

where Φ = [φ
1
, . . . , φ

m
] ∈ Rn×m is the matrix of mode shapes involving m contributing modes (m ≤ n)

that can be obtained by solving the eigenvalue problem KΦ = ΛMΦ, Λ is the diagonal matrix of

eigenvalues, ξ = [ξ1, . . . , ξm]T ∈ Rm is the vector of modal coordinates satisfying

ξ̈r + 2ζrωr ξ̇r + ω2
rξr = φT

r
f (7.7)

r = 1, . . . ,m, and ζr is the modal damping ratio. The strain vector is given by a similar expression

ε = Eξ, where E depends through the finite element modeling on the elements in the mode shape matrix

Φ.

The problem of estimating the modal coordinate vector ξ or ξ̈ using displacement/strain or acceler-

ation measurements is investigated. The modal coordinates ξ or ξ̈ contain the modal properties (modal

frequencies, modal damping ratios, participation factors). The objective in modal identification is to

place sensors (displacement, acceleration and/or strain sensors) so that the information contained in the

measured data is sufficient to estimate the modal coordinate vectorsξ or ξ̈, depending on the sensor type
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used. Introducing the parameter set θ to be either ξ or ξ̈ and denoting by g(θ; δ) ∈ RN0 the response

quantity that is measured by the sensors, one has the following equation between the modal model

predictions and the parameter set θ

g(θ; δ) = Φ(δ)θ = L(δ)Φθ (7.8)

where the matrix L(δ) ∈ RN0×n is the observation matrix and maps the n model DOF to the N0 measured

positions. The matrix L(δ) depends on the location vector δ defining the locations of the sensors in the

structure. If the measured positions coincide with the DOF of the model then the matrix L(δ) is comprised

of zeros and ones. For the general case for which the measured locations do not coincide with the DOF of

the FE model, the matrix L(δ) depends on the interpolation scheme used to obtain the response within

a finite element in terms of the finite element nodal responses. The above formulation allows sensors to

be placed in any point in the structure, not only at nodal points. Also it gives the flexibility to covert

the optimization problem for estimating the design variables to a continuous optimization problem over

the physical domain of the structure. For strain measurements the aforementioned analysis is the same

provided that the mode shape matrix Φ is replaced by the matrix E.

The model equation in (7.8) is the same as the one used in (7.1) with A(δ) = L(δ)Φ and b(δ) = 0 so

the objective function of (7.2) and (7.3) applies with the FIM of (7.4) given by

QL(δ) = {L(δ)Φ}TΣe(δ)
−1{L(δ)Φ} (7.9)

in terms of the mode shape components at the measured locations.

Based on the form (7.9), and using the dimensions of the matrices [L(δ)Φ]T ∈ Rm×N0 , Σ−1(δ;σ) ∈
RN0×N0 and L(δ)Φ ∈ RN0×m, the FIM is a non-singular matrix product only if the number of sensors

N0 is at least equal to the number of contributing modes m (N0 ≥ m). For N0 < m, the matrix product

is by construction singular and for uniform prior PDF the second term of the combined matrix of (7.3)

is zero so the determinant of the posterior covariance matrix will be zero for any sensor configuration.

Thus, for N0 < m the optimal sensor location problem cannot be performed for uniform prior PDF. This

means that the information content in the measured data and the prior is not sufficient to estimate all

the parameters simultaneously.

The Bayesian optimal experimental design formulation yields a nonsingular posterior covariance ma-

trix for N0 < m only if the prior is a non-uniform distribution. The non-uniform prior, say Gaussian,

yields a Hessian matrix Σ−1
p(θ) (prior covariance) that is added to the FIM QL(δ) and makes the combined

matrix QL(δ) + Σ−1
p(θ) non-singular. The FIM in (7.9) has exactly the same form as the one proposed by

Kammer (1991) for designing the optimal sensor locations using the EFI algorithm. The difference of

the present Bayesian formulation with the EFI algorithm is in the use of the prior information for the

model parameters which permits the design of optimal sensor locations for the case of number of sensors

which is less than the number of modes. The contribution from the prior is the result of the application

of the Bayesian optimal experimental design proposed herein based on minimizing the expected posterior

entropy. Alternatively, Yuen and Kuok (2015) have also proposed a non-uniform prior on the information
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entropy measure in order to solve this unidentifiability problem. For uniform prior and unidentifiable

case, Papadimitriou and Lombaert (2012) proposed the sum of the log of the nonzero eigenvalues in the

FIM to be maximized instead of the sum of the log of all eigenvalues. Herein these results are generalized

to incorporate prior uncertainty in the parameter estimates. This procedure allows to systematically

place the sensors optimally in the structure even for the unidentifiable case that arises for a small number

of sensors.

7.3.2 Effect of prior uncertainty

Next a diagonal covariance S = diag(s2
1, . . . , s

2
m) for the Gaussian prior is assumed and the effect of the

values of the variances is examined. These variances control the prior uncertainty in the values of the

model parameters. A theoretical result is provided that shows the effect of the assigned prior uncertainties

on the optimal design.

For simplicity, the case of optimally placing one sensor is considered first and then generalized for

the multiple sensor case. In the case of a single sensor, the FIM reduces to the form QL(δ) = σ−2ϕ
i
ϕT
i

,

where ϕ
i

= [Φi1,Φi2, . . . ,Φim]T is a vector of dimension m that consists of the values of each mode shape

at the sensor location denoted here as i. Note that for one sensor the prediction error covariance matrix

Σe(δ) is scalar with Σe(δ) = σ2. Using the following known result for a square matrix B and two vectors

u and v

det(uvT +B) = (1 + vTB−1u) det(B) (7.10)

then det[Q] ≡ det[QL(δ) + Σ−1
p(θ)] in (7.3) takes the form

det[Q] = det[σ−2ϕ
i
ϕT
i

+ Σ−1
p(θ)] = [1 + σ−2ϕT

i
Σp(θ)ϕi] det(Σ−1

p(θ)) = [1 + σ−2
m∑
k=1

s2
kΦ2

ik] det(Σ−1
p(θ)) (7.11)

Note that the variance s2
k of the k-th parameter (modal coordinate) weights the contribution in the sum

of the value of the k-th mode shape at the sensor location. The higher the value of the variance s2
k, the

higher the contribution of the k-th mode shape on the determinant. So it is evident that the optimal

design will give preference to the modes that have higher prior uncertainty, i.e. higher s2
k values.

Next we complete the proof for the general case of arbitrary number of N0 sensors. For this, we use

the following known result

det(UWV T +B) = det(W−1 + V TB−1U) det(W ) det(B) (7.12)

Setting for simplicity Ψ = L(δ)Φ, then det[Q] = det[QL(δ) + Σ−1
p(θ)] takes the form

det[Q] = det[ΨTΣe(δ)
−1Ψ + Σ−1

p(θ)]

= det[Σe(δ) + ΨΣp(θ)Ψ
T ] det[Σ−1

p(θ)] det[Σe(δ)
−1]

= det
[
Σe(δ) +

∑m
k=1 s

2
kψk(δ)ψTk (δ)

]
det[Σ−1

p(θ)] det[Σe(δ)
−1]

= det
[
Σe(δ) +

∑m
k=1 s

2
k||ψk(δ)||2ψ̃k(δ)ψ̃Tk (δ)

]
det[Σ−1

p(θ)] det[Σe(δ)
−1]

(7.13)
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where ψk(δ) is the k-th mode shape evaluated at the sensor locations, ψ̃k(δ) is the unit-normalized mode

shape, ||ψk(δ)||2 is the Euclidean norm square of the mode shape.

Equation (7.11) is a special case of equation (7.13) when only one sensor is used and Ψ becomes a

row vector and its columns become scalars. In the multiple sensor case we are dealing with a sum of

rank-one matrices over the model parameters, where each rank-one matrix ψk(δ)ψTk (δ) is formed from

the k-th mode shape ψk(δ), weighted by the corresponding prior variance s2
k of that mode. So we see

again that, similarly to the one sensor case, the Gaussian prior variance s2
k acts as weighting factor, this

time by giving greater weight to the matrix ψk(δ)ψTk (δ) related to the k-th mode. The variance s2
k of

the k-th mode weights the contribution in the sum of the value of the k-th rank-one matrix formed from

the k-th mode shape that is evaluated at the sensor locations. The higher the value of the variance s2
k,

the higher the contribution of the rank-one matrix of the k-th mode shape on the det[Q]. So the optimal

design of sensor locations again gives preference to the modes that are assigned by a user to have higher

prior uncertainty.

It should be noted that the idea of favoring one or more modes in the design of the optimal sensor

configuration by appropriately selecting the prior variances can be useful in model updating and damage

detection applications. Specifically, in damage detection and localization the proposed optimal sensor

placement design can be used to increase the information about the damage location and size contained

in the measured data by favoring, for example, local modes known to be more sensitive to local damage.

To avoid reducing the robustness of the proposed optimal sensor placement algorithm for identifying the

least favored modes, one may choose to optimally allocate a fraction of the available sensors in an effort

to favor a small number of the contributing modes, ensuring that the optimal placement of the rest of

the sensors maintain adequate levels of robustness.

7.4 Application

The proposed methodology is used to optimize the location of acceleration sensors placed at the deck level

of the Metsovo bridge. Numerical results are shown for up to 30 sensors for the spatially uncorrelated

and spatially correlated prediction error models. The effect of the spatial correlation as well as the effect

of the selection of the uncertainty in the prior distribution on the optimal designs is also investigated.

Finally, the optimal design of a small number of reference sensors to be used as common sensors in

multiple configuration setups is illustrated.

7.4.1 Bridge description and FE model

The Metsovo bridge of Egnatia Motorway, schematically shown in Figure 7.1, is crossing the deep ravine of

Metsovitikos river, 150m over the riverbed. This is the highest bridge of the Egnatia Motorway, with the

height of the tallest pier equal to 110m. The total length of the bridge is 537m. The bridge has 4 spans of

length 44.78m, 117.87m, 235m, 140m and 3 piers of which M1(45m) supports the boxbeam superstructure
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through pot bearings (movable in both horizontal directions), while M2(110m) and M3(35m) piers connect

monolithically to the structure.

Figure 7.1: Longitudinal view of the Metsovo bridge.

A detailed FE model of the bridge is created using 3-dimensional tetrahedron quadratic Lagrange

finite elements. The mesh is chosen to accurately predict the lowest twenty modal frequencies and mode

shapes of the bridge. The model also considers the interaction with soil by modeling the soil stiffness

with solid blocks surrounding the piers and abutments. The FE model has 830,000 DOF. The size of

the elements in the mesh is controlled by the thickness of the deck and piers box-like cross-sections.

The typical element length is of the order of the thickness of the deck cross-section. The complex 3D

geometry of the bridge was designed in SolidWorks and the FE model was created and solved in COMSOL

Multiphysics by importing the 3D geometry from SolidWorks. The modulus of elasticity for the concrete

were taken from design considerations to be 37e9 Pa and 34e9 Pa for the deck and the piers, respectively.

The modulus of elasticity for the solid blocks was taken to be 9e9 Pa. The stiffness and mass matrices of

the finite element model are used to obtain the mass normalized mode shapes to be used in the optimal

sensor placement methodology.

7.4.2 Optimal sensor placement

The purpose of the OED is to optimally locate a number of acceleration sensors such that one gets the

most informative data for identifying the lowest 10 modes. Using the FE model, the lowest 10 mode

shapes needed in the design of the optimal sensor locations were computed and stored. These modes

consist of 5 transverse modes, with mode shapes that deform the bridge and deck in the transverse

direction, and 5 vertical modes mode, with mode shapes that bend the deck in the vertical direction.

The transverse mode numbers are {1, 2, 4, 6, 8}, while the bending mode number are {3, 5, 7, 9, 10}. The

optimal locations of sensors are obtained by minimizing the posterior entropy. Herein, results will be

presented in terms of the information entropy measure. It should be noted that in our case the number

of parameters (modal coordinates) is Nθ = m = 10.
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Continuous optimization in parent domain

Due to the fact that measurements on the bridge deck have to be taken without traffic interruptions, the

sensors in the structure are only allowed to be placed along the pedestrian sidewalks (left and right). For

demonstration purposes, in this study it will be assumed that sensors are placed along the one sidewalk

marked in Figure 7.2 with red line. The line along the sidewalk over which sensors can be placed is a

curved one and in order to perform the optimization problem along the curved line we develop a mapping

of the curved line in a much simpler parent domain of a straight line. Each point in the physical curved

line is mapped to a point in the straight parent line. To introduce such a mapping one can follow concepts

developed in finite element analysis to map an arbitrary one-dimensional element in space in a parent

element of specified length. It should be noted that the curved one-dimensional domains (red line) in

Figure 7.2 consists of the straight elements that are the vertices of the neighbor tetrahedral finite elements

used to model the bridge. So these straight vertices are mapped in the sequence that are encountered

from left to the right edge of the bridge to a parent element so that the left corner of the red curve is

mapped to the parent location 0, while the right corner of the red curve is mapped to the parent location

1. Specifically, the 0m to 537m curved line along the deck is mapped to the parent domain from 0 to 1.

To account for the different type of sensors that can be placed on the physical structures, in our case

sensors measuring in the vertical and the transverse directions, the physical curved line with transverse

sensors placed on it is mapped to a parent element from 0 to 1, while the physical curved line with

vertical sensors placed on it is mapped to a parent element from 1 to 2. In this way one can efficiently

handle the two types of transverse and vertical sensors without the need to distinguish them during the

optimization. The optimization is performed in the parent domain with the design variables, indicating

the location of the sensors in the parent domain, to vary from 0 to 2. A design value inside the parent

domain [0,1] corresponds to a transverse sensor which is mapped through the aforementioned mapping

to a point on the physical domain (red curve) in Figure 7.2. Similarly, a design value inside the parent

domain [1,2] corresponds to a vertical sensor which is mapped to a point on the physical domain (red

curve) in Figure 7.2.

The mode shape value at a point in the parent domain is obtained by the mode shape value at the

corresponding point in the physical domain. Consider the mapping of points from 0 to 1 in the parent

domain to the physical domain. Since the mapped point in the physical domain might not correspond

to a node of the finite element model, the mode shape value is obtained by interpolation using the mode

shape values at the two neighboring nodes of that point in the transverse direction. A similar procedure

is used for points between 1 and 2 in the parent domain to find the mode shape component in the vertical

direction.
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Figure 7.2: Optimization along pedestrian walkway of the deck.

Using this mapping strategy the optimization is performed in a more sophisticated way than what

was used in the past. Instead of performing multiple optimizations for one sensor at a time which

is predetermined to be either a transverse or vertical sensor, now it is allowed to optimize for several

sensors simultaneously on the bridge pedestrian sideway, without predetermining the types of the sensors.

Instead, it is left for the optimization to decide which of the sensors will be transverse and which will be

vertical, depending on what region they lie in the parent domain.

So the optimization proceeds as follows. The design vector δ is a vector with as many elements as

the number of uniaxial sensors. Each element of this vector describes both the location and the type

(transverse or vertical) of a sensor. Each element of the design vector δ is a number on the interval [0

2]. This effectively allows for the optimization of many sensors simultaneously, which includes making

the decision about the types of sensors as well along with their location. This is more realistic and gives

more freedom to the approach than predetermining how many sensors of each type one should include in

δ.

Note that the optimal sensor placement methodology can also be readily applied to design a set of

triaxial instead of uniaxial sensors. In this case the information from each tri-axial sensor will be the

combined information obtained from the three sensor components in each direction. The aforementioned

concept can also be extended to design a combination of uniaxial (e.g. transverse and vertical) and

triaxial sensors by mapping the physical curved line with triaxial sensors placed on it to a parent element

from 2 to 3. In this way the three type of sensors can efficiently be handled. However, the triaxial sensors

will always be preferred to the transverse or vertical uniaxial sensors since the information gain from a

uniaxial sensor placed in an optimal position will always be less than the information gain from a triaxial

sensor placed at the same position. To favor a uniaxial sensor in relation to a triaxial sensor one has to

introduce additional constrains that penalize the placement of triaxial sensors by taking into account the

extra cost of the sensor and the information gain a triaxial sensor will provide in relation to a uniaxial
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sensor. However, this complicates the optimization, with the subject falling outside the scope of the

present work. The previous concepts can be extended to design a combination of different uniaxial and

triaxial sensor types such as acceleration, displacement and strain sensors.

Numerical results for spatially uncorrelated prediction error model

An uncorrelated prediction error model is used with diagonal covariance matrix Σ(δ;σ) = σ2IN0 , where

IN0
∈ RN0×N0 is the identity matrix, with the value of the single prediction error parameter chosen to

be σ = 0.01. A Gaussian prior with relatively large uncertainties is used. As a result, the posterior

covariance matrix is non-singular and the design can proceed for any number of sensors. The covariance

matrix of the Gaussian prior is set to S = 103Im, with s2
1 = . . . = s2

m = 103.

Results for up to N0 = 9 sensors are first obtained. Note that in this case the number of sensors

is less than the number of modes (m = 10) and so the FIM is singular. The FSSP method is used to

obtain the optimal sensor locations. It should be noted, however, that the sensor locations obtained by

the heuristic FSSP method are verified that are the global optima, also obtained by the CMA-ES global

optimizer (Hansen et al., 2003).

The optimal location of the first sensor corresponds to the minimum of the information entropy. The

information entropy as a function of the location of the sensor is drawn in Figure 7.3(a) at the parent

domain. It can be seen that there are 9 local minima. Figure 7.3(b) shows the contour plots of the

information entropy as a function of two sensor locations in the parent domain. A large number of local

optima is also observed (blue color). The number of optima are expected to increase as the dimension of

the design space increases. Figures 7.3(a) and 7.3(b) confirm that there is a large number of local optima

and so gradient-based optimization methods will be trapped to a local optimum and will not be able to

obtain a global optimum. Stochastic algorithms such as CMA-ES have much higher chances to pinpoint

the global optimum.

For the case of optimizing the location of the first sensor, a vertical sensor was obtained rather than

a transverse one. The two minima at 1.58 and 1.91 in the parent domain in Figure 7.3(a) are smaller

than all the rest, which implies that for the 1st sensor it is best to be a vertical sensor in one of these two

locations which correspond to distances on the bridge of 310m and 487m, respectively, from the left end.

The minimum at 1.91 (487m) is slightly smaller, but the difference is negligible for practical purposes.
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Figure 7.3: Information entropy vs the location of a sensor in parent domain

Another interesting observation in Figure 7.3(a) is that at the two ends of the bridge (at points 0, 1

and 2 in the parent domain) the value of the posterior entropy is 48.72, which is exactly the information

entropy of the Gaussian prior. This makes sense, because in these points the mode shapes have zero

components and the FIM is zero, and therefore the only contribution to the posterior comes from the

prior. There are also other points which result in the posterior entropy being almost equal to the prior

entropy, which correspond to vertical sensors being placed in points of zero vertical response (locations

1.08, 1.3 and 1.74 in the parent domain) for all vertical mode shapes. These are points in the deck that

are above the piers where the vertical motion of the bridge is almost restrained. As one would intuitively

expect, the information gain from these designs (which is the difference between the prior and posterior

entropies) is zero.

The information entropy as a function of the location of the fourth sensor in the parent domain given

that the first three sensors have been placed in their optimal position is shown in Figure 7.3(c). A similar
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plot for the information entropy as a function of the position of the 5th sensor given that the first four

sensors have been placed in their optimal position, is shown in Figure 7.3(d). The optimal locations of

the first nine sensors are shown in Figure 7.4(a) and 7.4(b) for both the transverse and vertical sensors.

Also, information of the optimal locations of sensors and the corresponding information entropy values

is given in Table 7.1.
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Figure 7.4: Optimal locations of transverse and vertical sensors (Case of 9 sensors with uncorrelated

prediction error). The symbol x denotes the location of the piers along the deck.

Table 7.1: Optimal location in the physical domain and minimum information entropy for the first nine

sensors (N0 < m). V=Vertical, T=Transverse.

Sensor 1 2 3 4 5 6 7 8 9

Type V V V V T T T T T

Optimal Location (m) 487 310 257 85 466 267 69 348 166

Information Entropy 47.86 47.03 46.26 45.57 44.89 44.23 43.58 43.02 42.63

Note that the optimal location of the first two sensors is made up of the location of the global and the

next local optimum predicted in Figure 7.3(a). Also, from the results in Figure 7.4(b) the first 4 sensors

are vertical sensors. This is because, as can be seen from the Figures 7.4(a) and 7.4(b), vertical modes

have slightly higher displacements and therefore contribute more than the transverse modes to the FIM,

and therefore to the posterior covariance matrix. Also the vertical modes have more ”convenient” points

where several modes have high responses compared to the transverse modes. These result in preferring

the vertical modes compared to the transverse modes. Note that all modes are treated equally by selecting

the prior uncertainty to be the same for all modal coordinates. Finally, results in Figure 7.4(a) suggest
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that the last 5 sensors (5th to 9th sensors) are selected to measure in the transverse direction.

From the results in Figure 7.3(c) of the information entropy as a function of the location of the 4th

sensor, given that the first 3 sensors are placed at their optimal location, it is noticed that the vertical

sensor at 85m is slightly preferred from the three transverse sensors at 69m, 267m and 466m since the

minimum value of 45.57 in the information entropy for the vertical sensor is slightly smaller than the local

minimum value of 45.58 for the information entropy for the three transverse sensors. From the results in

Figure 7.3(d) of the information entropy as a function of the location of the 5th sensor, given that the

first 4 sensors are placed at their optimal location, it can be observed that any of the locations 69, 267

and 466m for a transverse sensor are candidates. These sensor locations are the optimal sensor locations

for the 5th, 6th and 7th sensor. The optimal sensors for the 8th and 9th sensor are transverse ones, with

optimal locations shown in Figure 7.4(a) and Table 7.1.

Observing the optimal sensor locations in relation to the mode shapes drawn in Figures 7.4(a) and

7.4(b), one should note that the results are reasonable for placing sensors in the suggested vertical or

transverse locations since in these locations the mode shape components correspond, in general, to their

higher values.

For up to nine sensors it is observed that placing two or more sensors in the same position corresponds

to the worst sensor location. This is confirmed also by the contour plots in Figure 7.3(b) where the placing

of the two sensors in the same position is not preferred (red colors). Also it is confirmed by the plots

in Figure 7.3 where it is clear that when a new sensor location coincides with an already placed sensor

location it gives large values of the information entropy as compared to the optimal one. So in the singular

FIM case with N0 < m, the problem of sensor clustering due to uncorrelated prediction error does not

occur.

The optimal location and type (transverse or vertical) of the next 11 sensors (10th to 20th) is also

considered. The design is performed using the FSSP algorithm. However, for selected number of sensors,

the accuracy of the results obtained from the FSSP algorithm is confirmed by running also the CMA-ES

algorithm. Both algorithms provide the same estimates. The information entropy as a function of the

location of the 10th sensor given that the first 9 sensors are placed at their optimal positions (shown in

Table 7.1) is presented in Figure 7.5(a). Figure 7.5(b) gives similar information but for optimizing the

location of the 19th sensor. The optimal sensor locations for the sensors from 10th to 20th, their type

(vertical or transverse) and the minimum information entropy are also given in Table 7.2 and in Figure

7.6.
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Figure 7.5: Information entropy vs the location of a sensor in parent domain.

Table 7.2: Optimal location in the physical domain and minimum information entropy for the 10th up

to the 20th sensor (N0 ≥ m). V=Vertical, T=Transverse, OL=Optimal Location (m), IE=Information

Entropy.

Sensor 10 11 12 13 14 15 16 17 18 19 20

Type V V V V T T T T T V V

OL (m) 487 310 251 85 251 69 460 348 160 482 310

IE 42.33 42.04 41.75 41.47 41.19 40.91 40.64 40.39 40.17 39.98 39.80

It is clear from the Figure 7.5(a) that the optimal location of the 10th sensor coincides with the

location of the 1st sensor. Actually the information entropy as function of the location of the 10th sensor

is qualitatively similar to the information entropy for one sensor in Figure 7.3(a) as a function of its

location. Comparing Figures 7.5(a) and 7.3(a), the local/global optimal appear at the same locations

which suggests that the optimal locations of the next nine sensors will be close to the optimal locations

of the first nine sensors. This is confirmed by comparing also the results in Table 7.2 with the results

in Table 7.1. Comparisons clearly demonstrate (see also Figure 7.6) that the optimal locations of the

sensors 9th to 20th coincide or they are very close to the optimal locations estimated for the first 9 sensors.

This sensor clustering is due to the incorrect assumption of the spatially uncorrelated prediction errors

(Papadimitriou and Lombaert, 2012). However, it seems that the sensor design obtained with uncorrelated

prediction errors are very reasonable and intuitive for the first nine sensors which correspond to the case

of singular FIM with N0 < m. To correct the problem of sensor clustering for more than 9 sensors one

has to introduce spatial correlation in the prediction errors.
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Figure 7.6: Optimal locations of transverse and vertical sensors (Case of 20 sensors with uncorrelated

prediction error). The symbol x denotes the location of the piers along the deck.

Numerical results for spatially correlated prediction error model

A spatially correlated prediction error model is assumed next. For this the covariance Σ(δ;σ) of the

prediction error at the sensor locations is selected to be non-diagonal with the (i, j) element of the form

Σij(δ;σ) = σ2R(δi − δj), where R(δi − δj) is the spatial correlation structure of the prediction error,

δi and δj are the locations of the i and j sensors, and σ2 is the strength of the prediction error. An

exponentially decaying correlation structure of the form R(δi− δj) = exp(−|δi− δj |/λ) is selected, where

λ is the correlation length.

Since in this formulation we allow for each sensor to be either a transverse or vertical sensor, correlation

is limited to sensors of the same type. That is, correlation exists between any two transverse sensors

or any two vertical sensors, but not between a transverse and a vertical sensor. The described model

allows for two different correlation length parameters (or correlation functions in general) to be used

for the transverse and vertical sensors, respectively. In the numerical results that follow, the correlation

parameters are chosen to be σ = 0.01 and λtrans = λvert = 10m or λtrans = λvert = 20m.

Optimal sensor placement results for the correlated prediction error models are shown in Figure 7.7

for two different correlation length of 10m and 20m respectively. The Gaussian prior is selected to be the

same as in the uncorrelated prediction error case. Results have been derived using the FSSP algorithm

and their accuracy has been also confirmed for representative sensor cases using the CMA-ES algorithm.

Comparing with the results of the uncorrelated case in Figure 7.6 it can be observed that the optimal

sensor locations for the first 9 sensors are the same as the uncorrelated prediction error case. For more

than 9 sensors, the sensor clustering problem is not present in the spatially correlated prediction error

case. The optimal locations of sensors 10th to 20th are not close to the locations obtained for the first 9
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sensors. In fact, they are more uniformly distributed in some of the areas of the bridge deck. Comparing

Figures 7.7(a,b) with Figures 7.7(c,d) it can be observed that the spacing of the sensors tends to increase

as one increases the correlation length from 10m to 20m. This is consistent with the theoretical results

obtained in Papadimitriou and Lombaert (2012).
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(c) Transverse sensors (λ = 20m)
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Figure 7.7: Optimal sensor locations for the case of 20 sensors with spatially correlated prediction error.

The symbol x denotes the location of the piers along the deck.

In Figure 7.8 the optimal information entropy as a function of the number of sensors is shown for

the uncorrelated and correlated prediction error cases and for 1 up to 30 sensors. The 0 sensor case

corresponds to the case where no sensors are placed and so the information entropy is that of the Gaussian

prior PDF. As expected, we notice that the optimal value of the information entropy for a given number

of sensors decreases as the number of sensors increases. For up to 9 sensors the entropies are identical

between the uncorrelated and correlated prediction error models. From the 10th sensor and on, the

correlated prediction error models lead to more information entropy (less information) and this entropy
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increases with the correlation length. This is due to the fact that the information provided by neighbor

sensors within the correlation length assumed is not significantly different and so this results in a drop

of the total information for the same number of sensors. Also, the curves with high correlation suggest

that the information provided by adding sensors in the structure is decreasing and eventually after a

number of sensors there is no significant information offered by additional sensors. This plot can be

used to decide on the number of sensors to be placed in the structure, given the correlation length. The

uncorrelated prediction error models provide misleading results since continuing adding sensors in the

structure has the effect of gaining additional information, independent of the number of added sensors,

which is counter-intuitive. Finally, the CMA-ES algorithm is also used to design the optimal sensor

locations and the resulting information entropy values for representative sensor cases, shown in Figure

7.8 for correlation length 20m, match exactly the information entropy values obtained using the FSSP

algorithm, confirming in this case the accuracy of FSSP algorithm.
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Figure 7.8: Optimal information entropy vs number of sensors.

7.4.3 Effect of prior uncertainty on optimal sensor placement

The results obtained so far correspond to an isotropic Gaussian prior where all prior uncertainties in the

parameters were selected to be the same. This gives equal weight to all parameters as far as the prior is

concerned, so there is no preference of a specific mode over another. The Gaussian prior covariance matrix

is a modeling choice that depends on user preference. Therefore, it can be fully manipulated according

to the needs. In Section 6.4.2 it was proved that by giving larger prior uncertainties to some specific

parameters (modes in this case) we are essentially giving more weight in these modes in the selection

of the optimal design. The insightful result of Section 6.4.2 states that a Gaussian prior can be used
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as a means to perform more sophisticated OED, where we give preference to some selected modes over

others. Different Gaussian prior variances for the different modes get transferred to the posterior and

result in different optimal designs, favoring the identification of modes with the largest prior variances.

The Bayesian framework for OED provides the means to fully quantify this preference of some modes (or

parameters for identification in general) over others through the prior.

In order to illustrate this, the simple case of one sensor is examined. We would like to give more

weight to the identification of the modal coordinates of the transverse modes. For this we lower the

variances of the bending modes from 1000 to 100, and keep the variances of the transverse modes at

1000. The information entropy as a function of the position of the 1st sensor is shown in Figure 7.9(a).

We see that the optimal design for the 1st sensor is now a transverse sensor in one of the already found

optimal locations for transverse sensors, shown in Figure 7.3(d). In fact, the plot for one sensor in Figure

7.9(a) is now qualitatively very similar to the plot of the 5th sensor shown in Figure 7.3(d), where the

first transverse sensor appears as optimal. With this change in the prior variances giving weight to the

transverse modes, the optimal designs have a preference for the transverse sensors now to show up as the

1st sensor and not the 5th.
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Figure 7.9: (a) Information entropy of 1st sensor vs location in parent domain using Gaussian prior

variance s2 = 1000 for transverse modes and s2 = 100 for vertical modes. (b) Optimal locations for 1st

sensor for prior variance of 1st mode equal to 500, 1000 and 2000. All other prior variances equal to 100.

Consider next the case of giving preference to the first modal coordinate which is transverse. The

design is performed by setting all prior variances, except the first, equal to 100, while we set the prior

variance of the first modal coordinate to different values s2
1 =300, 500, 1000 and 2000. For σ2

1 = 300

or for smaller values of s2
1, the optimal sensor is selected to be a vertical sensor. For values of s2

1 =500,

100 and 2000, the transverse sensor is selected. The location of the transverse sensor for these higher

values is shown in Figure 7.9(b). It is clear that increasing the value of s2
1 the sensor is located closer

to the location where the first mode has its maximum absolute deflection. This is consistent with the
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theoretical result of Section 6.4.2 which states that increasing the prior variance of the first mode gives

more and more weight to the identification of the first mode, making it more important in the optimal

sensor placement design.

7.4.4 Optimal sensor placement of reference sensors

The OED is next used to address the important problem of selecting the optimal location of a few

reference sensors in a multiple sensor configuration set up experiment conducted with a limited number

of reference and roving sensors in order to obtain the modal frequencies and assemble the mode shapes

from the multiple setups. The number of reference sensors is in most cases significantly smaller than

the number of modes to be identified. It is important in this case that the reference sensors, common in

most setups, contain the maximum possible information for all modes that are planned to be identified.

Wrong locations of the reference sensors may degrade the modal information for one or more modes,

degrading the accuracy of the corresponding assembled mode shape since such accuracy is based solely

on the information contained in the reference sensors.

The effectiveness of the methodology is illustrated by designing the optimal locations of one vertical

and one transverse reference sensor for identifying the lowest 10 modes of the bridge. It is clear from

the results in Figure 7.3(a) that the best location of the 1st sensor is at 487m measuring along the

vertical direction. This is also taken as the location of the vertical reference sensor. Figure 7.4(b)

demonstrates that the design of the reference sensor at 487m is rational since the deflection of all five

vertical mode shapes is high. To design the location of the 1st transverse reference sensor one could use

the results in Figure 7.9(a), obtained for the transverse modes after selecting the prior uncertainty to give

in the optimal design preferential treatment to these modes over the vertical modes. It is clear that the

transverse reference sensor can be selected as the location 268m (parent location 0.5) that corresponds

to the minimum information entropy in Figure 7.9(a). From Figure 7.4(a) it is seen that the transverse

reference sensor location 268m corresponds to high deflections of four out of the five transverse modes.

One of the transverse modes has relatively small deflection, a problem that arises from the trade-off that

has to be made in the design to get maximum information from all five modes. A solution to this problem

is to place a second transverse sensor on the structure at position 70m (the second best local optimum in

Figure 7.4(a)). In practice, using more reference sensors that the minimum required (two in this case) is

a good way to make sure that important information from reference sensors will not be lost. Concluding,

the vertical and transverse reference sensors in experiments with multi sensor configuration setups could

be 487m and 268m (and/or 70m), respectively.

7.5 Conclusions

An optimal sensor placement design for modal identification based on the posterior entropy as a measure

of the information contained in the data is presented. Using non-uniform priors, the Bayesian OED
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allows for optimal sensor placement to be performed even for the case when the number of sensors is less

than the number of identified modes. This is important when designing the optimal locations of a very

small number of reference sensors for the purpose of assembling the mode shapes using reference and

roving sensors in multiple sensor configuration setups. In this study the effect of the Gaussian prior on

the optimal design was thoroughly investigated. Insightful analytical expressions were derived to show

that larger uncertainty in the prior of a subset of modal coordinates can be used to give preference in this

subset in the optimal design of the sensor locations. The prior variances for all modes to be identified

can be altered to weight the importance of different modes in the design, favoring a number of modes

against the rest of the modes. The prior is the users’ choice and it can be used in different ways to achieve

different results, which is one of the strengths of Bayesian OED.

The methodology was applied to a 537m long reinforced concrete bridge in order to design the optimal

sensor configuration for identifying the lowest 10 modes. The optimization was performed in the con-

tinuous space of the design variables, through appropriate mapping from the physical space to a parent

domain. A large number of local optima were observed that result in a challenging optimization problem.

The problem is overcome using computationally efficient heuristic FSSP algorithms. The accuracy of the

FSSP algorithm was confirmed using the computationally demanding CMA-ES algorithm. A thorough

investigation of the effect of correlated and uncorrelated prediction error models was also performed. The

design for a smaller number of sensors than the number of modes was shown to be the same for spatially

uncorrelated and correlated prediction error models. Rational and intuitive results were obtained. For

more sensors than the number of modes the spatially correlated prediction error model gave intuitively

reasonable results, avoiding sensor clustering observed for uncorrelated prediction error models.

The proposed method offers a useful decision tool for designing the sensor locations in a structure

in order to obtain the maximum information for reliable modal identification of civil infrastructures and

industrial facilities using vibration measurements.
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Chapter 8

Bayesian optimal sensor location for

crack identification using strain

measurements

8.1 Introduction

This paper investigates the optimal experimental design problem related to finding the optimal location,

number and density of strain sensors in a loaded plate for the goal of accurate and reliable identification

of a crack using strain measurements. Then the optimal design is validated using simulated strain data

to perform Bayesian crack identification. In both cases a computational FE model of a cracked plate

under static loading is used as the forward model. Those two subjects were also studied in (Gaitanaros

et al., 2010), but using different theoretical foundations and computational tools.

The objective of the present study is twofold. Firstly, a Bayesian formulation for the optimal design of

strain sensor locations for crack identification is presented based on the expected KL-divergence measure.

Previous work addressing the issue of optimally locating a given number of sensors in a structure has been

carried out by several investigators. In particular, information theory based approaches (Kammer, 1991;

Kirkegaard and Brincker, 1994; Udwadia, 1994; Shah and Udwadia, 1978; Qureshi et al., 1980; Ucinski,

2000; Alana, 2010; Chow et al., 2011) have been developed to provide rational solutions to several issues

encountered in the problem of selecting the optimal sensor configuration. The optimal sensor configuration

is selected as the one that maximizes some norm (determinant or trace) of the Fisher information matrix

(FIM). In other studies (Heredia-Zavoni and Esteva, 1998; Heredia-Zavoni et al., 1999) the optimal sensor

configuration has been chosen as the one that minimizes the expected Bayesian loss function involving

the trace of the inverse of the FIM. A Bayesian framework to optimal sensor location for structural health

monitoring (SHM) has also been introduced in (Flynn and Todd, 2010). The optimal configuration is
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chosen to optimize (maximize or minimize) a Bayesian risk-based performance metric related to the

probability of damage detection or false alarm of all regions of the structure. The information entropy,

measuring the uncertainty in the model parameter estimates, was also introduced (Papadimitriou et al.,

2000) for designing optimal sensor configurations. It was shown (Papadimitriou, 2004; Papadimitriou and

Lombaert, 2012) that, asymptotically for very large number of data, the information entropy depends

on the determinant of the FIM, justifying the use of the determinant instead of the trace or other scalar

measures of FIM in previous approaches.

Herein, the KL-divergence is used to measure the quality of information that can be extracted from the

data used to detect a crack. The optimal strain sensor design is obtained as the one that maximizes the

expected KL-divergence (information gain) from the posterior to the prior PDFs of the crack parameters.

In contrast with works using asymptotic approximations to the objective function (Gaitanaros et al., 2010;

Papadimitriou, 2004; Papadimitriou and Lombaert, 2012), herein the more accurate sampling approach

is used where the objective function integral is approximated with a Monte Carlo sum (Ryan, 2003;

Huan and Marzouk, 2012, 2013). The change in the optimal design is investigated when different a priori

knowledge about the area of the crack location is taken into account, through the prior PDF.

Secondly, a methodology for the estimation of the crack parameters based on a Bayesian system

identification methodology is presented. The crack parameters may include crack location, size and

orientation. Their values are estimated using measured data from a structure subjected to static loading.

The location, size and orientation of the crack is inferred from the most probable values of the crack

parameters obtained as the ones that maximize the posterior probability distribution of the parameters

given the measured data.

The problem of crack detection in structures has received much attention over the years because of

its profound importance in structural health monitoring. Early detection of cracks is a key element for

preventing catastrophic failure and prolonging the life of structures. Crack identification information

can be used for developing cost-effective maintenance procedures for structures, improving their safety

and reducing their maintenance and rehabilitation costs, in a whole-life cost basis. Current inspection

techniques involve complex, time-consuming procedures, which can be very labor-intensive and expensive.

A fast, low-cost built-in structural health monitoring system involving a sensor array along with fast

processing techniques is needed to overcome the shortcomings of the current inspection techniques.

Model-based methods rely on some forward model simulating the behavior of the structure with a

crack, where the parameters of the model describe the crack. The most common tool for modeling the

forward problem is the finite element method (FEM) (Teughels and Roeck, 2005; He et al., 2001; Horibe

and Takahashi, 2007; Stavroulakis and Antes, 1998; Rus et al., 2005; Moore et al., 2011; Burczynski et al.,

2004; Krawczuk, 2002). Recently, the extended FE method (XFEM) has also been introduced as a way

to model discontinuities with several important advantages such as avoiding re-meshing for various flaw

scenarios (Moës et al., 1999; Sukumar et al., 2001). Works using the XFEM method as the forward model

to perform flaw detection include (Jung et al., 2013; Jung and Taciroglu, 2014; Nanthakumar et al., 2013,

2014; Sun et al., 2014, 2013).
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From the numerical perspective of locating the flaw from measured data, the problem can be treated

deterministically or probabilistically. In the deterministic approach some optimization algorithm is used

to solve the inverse problem of estimating the flaw parameters by minimizing a measure of fit with the

experimental data by adjusting the flaw parameters (Cawley and Adams, 1979; Chang and Liu, 2003;

Gadala and McCullough, 1999; Ostachowicz, 2008). Hybrid optimization methods based on evolutionary

strategies and gradient-based techniques were adopted in (Gaitanaros et al., 2010; Xu and Liu, 2002) in

order to overcome the well-known problems of the gradient-based methods which in many cases simply

arise from the unavailability of analytical gradients for the problem at hand. Genetic algorithms (GA)

(Burczynski et al., 2004) coupled with the XFEM method have been proposed (Rabinovich et al., 2007,

2009) to perform the required optimization which are gradient-free. The XFEM-GA combination has

been extended to detect flaws of various shapes, but by using a priori knowledge about the shape of the

flaw (Waisman et al., 2010), and then further improved to detect flaws of any shape without a priori

knowledge (Chatzi et al., 2011).

Deterministic methods in inverse problems such as model-based flaw identification only provide a

point estimate of the model parameters and do not take various sources of uncertainty into account.

Practically, modeling and measurement uncertainties are present and may have a significant effect in the

results of the flaw detection. Probabilistic methods are able to take these uncertainties into account and

provide the answer about the parameters in the form of probability density functions instead of point

estimates. Herein, the Bayesian approach to probabilistic modeling is utilized, which uses probability

as a way of quantifying the plausibilities associated with the values of the parameters of models given

the observed data (Beck and Katafygiotis, 1998; Katafygiotis et al., 1998; Beck, 2010). The Bayesian

framework for parameter estimation has been used in (Gaitanaros et al., 2010; Moore et al., 2011; Yin

et al., 2010) for detecting single flaws while it has also been applied to detect multiple flaws without

knowing their exact number a priori (Yan et al., 2015). For that purpose, the detection of an unknown

number of flaws was proposed to be formulated as a Bayesian model selection problem (Gaitanaros et al.,

2010; Beck and Yuen, 2004).

The presentation in this work is organized as follows. In Section 2, the Bayesian crack identification

methodology is presented for the general case of a cracked structure based on strain measurements. In

Section 3, a Bayesian formulation for the design of the optimal strain sensor locations for crack identi-

fication based on the expected KL-divergence measure is presented. The effectiveness of the proposed

identification and optimal sensor location methodologies is illustrated in Section 4 by applying them

to a FE model of a thin plate with a crack subjected to distributed loading. The simulated data are

generated by adding noise to the FE model predictions in order to simulate the effect of measurement

and model errors. Crack identification is performed for several cases of grids, numbers of sensors and

noise levels. Optimal strain sensor locations are derived, and the effect of using different types of sensor

grids is examined. Also the influence of the prediction error correlation model is studied. Finally, the

conclusions are summarized in Section 5.
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8.2 Bayesian crack identification

Consider a structure with a crack subjected to far field static loading (e.g. distributed stress, force,

etc.). The objective is to identify the crack location, size and orientation using measured data such as

strain measurements. We define a vector θ ∈ RNθ of the parameters that describe the crack, namely the

(Xc, Yc) coordinates of one of the crack tips, crack length L and orientation φ. Therefore Nθ = 4 and

the problem of crack identification is equivalent to the problem of estimating θ = {Xc, Yc, L, φ}T .

A Bayesian parameter estimation framework is used to estimate the value of θ and its associated

uncertainty, using information from the data set D(d) = {ĝ i(d), i = 1, . . . , N} which consists of N

readings of strain sensors located in the cracked structure at positions described by the design variables

d. Let Mm represent a model parametrized by θ, simulating the behavior of the cracked plate. This

model predicts the strains at the locations described by d for a given crack configuration described by

θ, namely g(d,θ). Herein, the model is associated with the solution of the stress and strain field in a

cracked plate, and is described in detail in Section 8.4.1.

In order to proceed with the Bayesian formulation for parameter estimation, one can use the prediction

error equation:

ĝ(d) = g(d,θ) + e(d) (8.1)

where e(d) is the prediction error vector which is a probabilistic quantity that describes the discrepancy

between the model predictions g(d,θ) and experimental data ĝ(d). The prediction error is due to

modeling errors and measurement noise, and is commonly treated as a Gaussian zero-mean random vector

with some user-specified covariance matrix, namely e(d) ≈ N(0,Σe(d)). The correlation structure of its

covariance matrix can depend on the sensor locations through the design variables d. For the purposes of

parameter estimation a diagonal (uncorrelated) prediction error covariance matrix is chosen. It does not

depend on d, Σe(d) = Σe(σi) = diag(σ2
1 , . . . , σ

2
N ), where σ2

i is the variance assigned to the i-th component

of the model prediction strain vector gi(d,θ). Next it is assumed for simplification that the variances for

each model prediction component are equal and the covariance matrix becomes: Σe(σi) = Σe(σ) = σ2I.

For prediction error formulations where the error depends on the model prediction the identity matrix

I can be substituted by a diagonal matrix of model predictions, Σe(σ) = σ2diag(g(d,θ)). A more

sophisticated study of the prediction error for crack identification problems can be found in (Gaitanaros

et al., 2010). Therefore, there is just one additional parameter added due to the prediction error, and

the augmented parameter vector becomes: θ = {Xc, Yc, L, φ, σ}. So the identification procedure includes

the identification of the prediction error parameter σ simultaneously with the identification of the crack

parameters.

According to the Bayesian system identification methodology (Beck and Katafygiotis, 1998), the

values of θ are modeled by a PDF that quantifies the plausibility of each possible value, given the data

set ĝ(d). From the Bayesian theorem, this PDF is the posterior PDF given by:

p(θ|ĝ(d)) =
π(θ)p(ĝ(d)|(d,θ))

p(ĝ(d))
(8.2)
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From Equation (8.1) it follows that the experimental data vector ĝ(d) also follows a Gaussian distri-

bution which means that the likelihood function is Gaussian (when viewed as a function of the data).

The prior PDF for the model and prediction error parameters π(θ) is assumed to be Uniform, and the

evidence term is a constant, therefore the posterior PDF can be written as:

p(θ|ĝ(d)) = c p(ĝ(d)|(d,θ)) = cN(ĝ(d)|g(d,θ), σ2I) (8.3)

where c is a constant such that the posterior PDF integrates to 1 and the notation N(x|µ,Σ) denotes

that the random vector x follows the multivariate Normal distribution with mean vector µ and covariance

matrix Σ. We see that the model evaluation enters the formulation through the likelihood function, and

especially through its mean. The posterior PDF, and hence the likelihood of Equation (8.3) is viewed as

a function of θ. Accordingly, the model prediction g(d,θ) is also viewed as a function of θ. For simple

models g(d,θ) is an analytical function of θ and a closed-form expression can be derived for the posterior

PDF. However, for numerical models, like FE models, there is no explicit formula for g(d,θ) and it can

only be evaluated point-wise for specific values of θ. Then in order to explore the posterior PDF, one can

resort to stochastic simulation methods which work by drawing many θ samples from the posterior PDF.

Then, one can use those samples as a representation of the actual posterior PDF and perform statistical

inference based on the samples. Herein, the TMCMC algorithm (Ching and Chen, 2007) is used to draw

samples from the posterior, which requires the ratio between two posterior values for two θ samples. This

even removes the need to know the normalizing constant c because one has from Equation (8.3) for the

ratio:
p(θ1|ĝ(d))

p(θ2|ĝ(d))
=
p(ĝ(d)|(d,θ1))

p(ĝ(d)|(d,θ2))
=
N(ĝ(d)|g(d,θ1), σ2I)

N(ĝ(d)|g(d,θ2), σ2I)
(8.4)

Consequently, only a point-wise evaluation of the forward model for different values of the parameters θ

which serve as the means of the Gaussian likelihoods is required by the algorithm. Then the evaluation

of the Gaussian densities is straightforward:

N(ĝ(d)|g(d,θ),Σe) =
exp

(
− 1

2 (ĝ(d)− g(d,θ))TΣ−1
e (ĝ(d)− g(d,θ))

)√
|2πΣe|

(8.5)

The TMCMC algorithm draws samples from the important high-probability region of the parameter

space by comparing posterior values for different parameters using the ratio of Equation (8.4) to decide

if a new candidate θ sample is going to be accepted or rejected. Higher posterior values are more likely

to be accepted, which leads to θ samples which give a better fit with the experimental data, as can be

seen from the minimization of the quadratic form of Equation (8.5). More details about the TMCMC

algorithm, its implementation and its application can be found in (Ching and Chen, 2007; Angelikopoulos

et al., 2015; Hadjidoukas et al., 2015).

8.3 Bayesian optimal sensor placement

The posterior PDF of Equation (8.2) completely describes the updated state of knowledge about the

parameters θ in light of the experimental data ĝ(d), while the prior PDF π(θ) describes our initial state
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of knowledge before the data were collected. Therefore, the ”distance” between the prior and posterior

PDF is the information gain about the parameters θ that was caused by the data ĝ(d). However, both

the prior and posterior are PDFs and one needs a suitable way to compare them and measure their

information difference about θ. One commonly used way to measure the ”distance” between two PDFs

is the Kullback-Leibler divergence (KL-div) (Cover and Thomas, 2006) which is a scalar measure of the

information gain about θ when going from the prior to the posterior PDF. Being a scalar measure of

information gain, the KL-div is a suitable measure to be used as an objective function for optimal sensor

placement. It depends on the experimental data ĝ(d) through the posterior, and the experimental data

depend on the design variables d since the sensor locations determine where the data is going to be

coming from. Therefore, we can view the KL-div as a function of d. Next the expectation is taken over

all the possible data resulting in the Expected KL-div as our final objective function. In this way the

KL-Div is averaged over all the possible data that can arise from the design d, based on the likelihood

and prior PDFs of our problem. This leads to the decision-theoretic expected utility approach of Lindley

(Lindley, 1956) with the KL-Div between the posterior and prior PDF taken as the utility function.

The Expected KL-Div (objective function) is defined as:

U(d) = Eĝ(d) [DKL(p(θ|ĝ(d)) ||π(θ))] (8.6)

=

∫
Ĝ

p(ĝ(d))

[∫
Θ

p(θ|ĝ(d)) log
p(θ|ĝ(d))

π(θ)
dθ

]
dĝ(d) (8.7)

In general, the objective function of Equation (8.6) can only be estimated by Monte Carlo sampling. Ryan

(Ryan, 2003) has proposed a Monte Carlo estimator which uses samples from the prior and likelihood

PDFs to approximate it with a double sum:

U(d) ≈ 1

N

N∑
i=1

log p(ĝ(d)i|(d,θi))− log

 1

M

M∑
j=1

p(ĝ(d)i|(d,θi,j))


 (8.8)

where samples (θi, ĝ(d)i)|d from the joint PDF p(θ, ĝ(d)|d) = π(θ) p(ĝ(d)|(d,θ)) were used to approx-

imate the integrals with Monte Carlo sums (Ryan, 2003). This estimator of the objective function has

also been used in (Huan and Marzouk, 2012, 2013) to perform optimal sensor placement with the help

of surrogate models and stochastic optimization techniques.

Note that for each parameter sample from the prior PDF the evaluation of the likelihood includes

one forward model run for the corresponding sample. Therefore, Equation (8.8) would require N +NM

forward model runs. In order to reduce that computational burden to just N model runs it is common

practice to use the same set of prior samples for both the outer and inner sum, accepting a small reduction

in the quality of the estimator (Huan and Marzouk, 2012, 2013):

U(d) ≈ 1

N

N∑
i=1

{
log p(ĝ(d)i|(d,θi))− log

{
1

N

N∑
i=1

p(ĝ(d)i|(d,θi))

}}
(8.9)

Therefore, in order to compute U(d) one has to perform the following steps:
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1. Draw N random parameter samples from the prior PDF π(θ)→ θi, for i = 1, . . . , N .

2. For each θi draw a random data sample from the likelihood function p(ĝ(d)|(d,θ))→ ĝ(d)i. This

step requires the forward model run.

3. Evaluate the log-densities of the likelihoods required in Equation (8.9) and calculate the sums. Note

that no further model runs are required for the second (inner) sum since the likelihood evaluations

for different means (samples) require the model outputs that have already been carried out in order

to draw the N data samples.

With Equation (8.9) providing a Monte Carlo estimate of the Expected KL-div (expected information

gain) as a function of the design variables d, one can use it as an objective function for performing optimal

sensor placement. The objective is to find the sensor design d that maximizes the expected information

gain.

8.4 Application

In this section the Bayesian optimal sensor placement and crack identification methodologies are applied

to a FE model of a square plate with a crack. The strain field is computed using a FE model described

in detail next.

8.4.1 Description of FE model

The FE model was developed in the commercial FE software ANSYS (ANSYS, 2013). The geometry of

the model, shown in Figure 8.1, is a square steel plate of dimensions 1× 1m which is fixed in its bottom

and left sides, while a static loading is distributed uniformly along the top side pointing upwards. The

material behavior is linear elastic with modulus of elasticity E = 210× 109Pa and Poisson ratio ν = 0.3,

and the analysis type is static. The model is parametrized by the crack location, length and orientation

as shown in Figure 8.1. The location of the crack is specified by the coordinates of one of the crack tips

(Xc, Yc), while the orientation is specified by the angle φ the crack makes with the bottom side of the

plate.
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Figure 8.1: Description of model parameters, boundary conditions and loading.

In this study, the system was modeled using 2D elements with 4 nodes having 2 DOFs at each node:

the displacements in each direction. The entire mesh consists of about 3300 elements, 3300 nodes, and

6600 DOFs. The exact number of nodes depends on the crack configuration since re-meshing is required

to be performed for each different crack location, orientation and size. The mesh for an arbitrary crack

is shown in Figure 8.2.

(a) (b)

Figure 8.2: (a): Finite Element mesh. (b): Finite Element mesh zoomed in crack area.
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For the calculation of the strain field around the crack the theory of Linear Elastic Fracture Mechanics

was applied (ANSYS, 2013). The static solution of the FE model yields the displacement field at all FE

nodes which in turn is transformed into the strain field at all FE nodes. The strain distribution field is

depicted in Figure 8.3.

(a) (b)

Figure 8.3: (a): Strain field. (b): Strain field zoomed in crack area.

8.4.2 Optimal sensor placement

In this section the sampling algorithm is applied in order to find the optimal locations of strain sensors

for crack identification. The sensors measure the plane strains on the surface of the plate in the vertical

direction which is parallel with the loading. Three alternative types of sensor grids with uniformly

distributed sensors are examined: 1) full square grid, 2) boundary square grid, and 3) circular grid. In

order to make comparisons between the 3 grids we use the same number of sensors for each grid. A N×N
full square grid has N2 sensors. To maintain the same number of sensors in the other two sensor grids we

place N2/4 sensors per side in the boundary square grid and uniformly distribute the N2 sensors along

the circumference in the circular grid.

The goal is to optimally design the placement of sensors so that we monitor a crack that could be

manifested inside a specific region Ω in the plate, with orientation values ranging from φmin to φmax

and crack sizes ranging from Lmin to Lmax. This information is inserted in the analysis by introducing

a uniform prior for the parameters of the crack. Specifically, the prior distribution of the location of the

crack is assumed to be uniform within the domain Ω, while the prior distribution of the orientation angle

and crack size are assumed to be uniform with supports the one dimensional domains [φmin, φmax] and

[Lmin, Lmax], respectively.

For demonstration purposes, results are obtained for the following values of the crack parameters:

Ω = [0.2, 0.8]× [0.2, 0.8], φmin = 0, φmax = 360, Lmin = 40mm and Lmax = 60mm. The optimal sensor
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placement algorithm is applied using a number of 1000 samples generated from the prior distribution of

the crack parameters. This requires as many as 1000 model runs that are performed offline. The number

of crack parameter samples is fixed for different values of the design variables d.

Three prediction error (likelihood) models are examined, one uncorrelated and two correlated models.

The uncorrelated prediction error model has a diagonal covariance matrix Σ = σ2I independent of

the design variables d. The correlated model has a non-diagonal covariance matrix of the form Σij =

σ2R(dij). The spatial correlation structure R(dij) of the prediction error was chosen to be exponential

R(dij) = exp(−dij/λ), where dij is the distance between the sensors i and j and λ is the correlation

length. In both models σ represents the strength of the prediction error and was chosen to be 1% of the

model prediction. In order to investigate the effect of the correlation length, two cases were examined:

λ = 100mm and λ = 200mm.

For a fixed number of sensors the design variables in d are the location of the grid and its size. The

location of the grid is defined by the location of its center (xg, yg) and its size is defined by the length a of

the side for the square grids and the diameter a for the circle. Thus, the design vector is d = (xg, yg, a).
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(a) Full square grid.
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(b) Boundary square grid.
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(c) Circular grid.

Figure 8.4: Design variables for the three grid types.

Preliminary optimal sensor placement results have verified the obvious idea that the optimal location

of the grid is the center of the plate. This is expected since the prior domain for the crack location is

the interior square [0.2, 0.8]× [0.2, 0.8] which is also centered at the center of the plate. With this prior

domain it would not be sensible for the grids to be optimal anywhere else but the center of the plate.

Therefore, the 3 sensor grids were fixed at the center of the plate such that only the effect of the grid

size was examined, for a fixed number of sensors each time. Accordingly, for each number of sensors the

objective function (expected KL-divergence) was evaluated as a function of the grid size. This analysis

was repeated for each one of the 3 grid types and prediction error correlation models. The optimal grid

size is the one which maximizes the objective function.

The maximum of the utility function for given number of sensors is plotted as a function of the number

of sensors. In Figure 8.5, nine (9) lines are presented corresponding to different grid types and correlation

models. The optimal grid size at which this maximum is attained for a fixed number of sensors is shown in
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Table 8.1 for the uncorrelated prediction error model. The analysis has been performed for the following

numbers of sensors: N2 for N = 2, . . . , 11.
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Figure 8.5: Objective function maxima versus number of sensors for each grid case and correlation case.

It can be seen very clearly that for all numbers of sensors the full square grid is the best of the 3 grids

for all three prediction error models considered. The second best is the boundary square grid, while the

circular grid is quite close to the boundary square grid. The grids provide similar information for small

numbers of sensors (< 16) while for larger numbers of sensors (> 16) the difference in the information

that each grid provides is evident. The full square grid outperforms the other two grids for the same

number of sensors.

It can be seem from Figure 8.5 that the information gain increases an the number of sensors, placed

in their optimal locations, increases. This increase is steep for small numbers of sensors (approximately

less than 60), signifying that the information gain is large, and slows down for sufficiently large numbers

of sensors, signifying that the amount of information gained form the optimal grids with extra sensors

is not considerable after a number of sensors has been optimally placed in the structure. The results in

Figure 8.5 are important for selecting the type of the sensor grid as well as the number of sensors to

be used by trading-off extra information with the cost of sensors and instrumentation. Regarding the

prediction error correlation length, we see that as the correlation length increases the information gain

slows down more quickly. This means that the same amount of information is gained with fewer number

of sensors required for the less spatial correlated prediction error case.

The full square grid is better than the other two grids for the same number of sensors, but with a
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different size. Table 8.1 shows the total information of Figure 8.5 together with the optimal grid sizes for

each grid type for the uncorrelated prediction error model. Optimal sensor placement designs are shown

for the cases of 36 and 81 sensors in Figure 8.6 for all 3 grid types. It can be seen that the size of the full

square grid is larger than the size of the other 2 grids, consistently covering a bigger area of the plate,

whereas the other two grids are optimal at smaller sizes. However, Figure 8.5 does not show at which

grid size the optimum occurs for a given number of sensors.

Thus, configurations with sensors only in boundary square grids are sub-optimal compared with full

square grids for the same number of sensors. Note that this result is true only on average, for the specific

prior PDF assigned for the crack parameters. It is possible that for another area in the plate monitored

for cracks the boundary square grid or the circular grid is better than the full square grid. However, if

the crack can be anywhere in the domain Ω defined by the prior PDF, the full grid is better on average.

Table 8.1: Optimal objective values and grid sizes for the uncorrelated prediction error case.

No. of sensors Full square Boundary square Circular

Objective Size Objective Size Objective Size

4 0.90 0.20 0.90 0.22 0.86 0.28

9 1.82 0.36 1.60 0.36 1.64 0.36

16 2.83 0.40 2.72 0.40 2.66 0.44

25 3.79 0.46 3.37 0.40 3.24 0.46

36 4.58 0.51 4.00 0.44 3.82 0.48

49 5.14 0.51 4.40 0.42 4.15 0.48

64 5.61 0.53 4.72 0.44 4.47 0.51

81 5.79 0.53 4.85 0.44 4.68 0.51

100 5.96 0.55 5.06 0.44 4.88 0.48

121 6.19 0.55 5.22 0.42 5.03 0.51
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Figure 8.6: Optimal grids for 36 (a,b,c) and 81 (d,e,f) sensors for each grid type with objective values.
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Performance of optimal sensor placement for monitoring cracks in sub-domains

The performance of the optimal sensor placement designs is evaluated for monitoring cracks in sub-

domains Ωi ⊂ Ω of the domain Ω used to design the sensor configuration. For this reason, the prior

domain Ω of the crack location is partitioned in the 3 sub-domains shown in Figure 8.7(a), representing

the interior, middle, and exterior parts of the prior domain. The information gain for monitoring for

a crack assuming that is contained in each one of the sub-domains Ωi is obtained by evaluating the

objective function using as support of the uniform prior PDF for the crack location each one of the three

sub-domains. The samples generated from the uniform prior for each sub-domain are shown in Figure

8.7(b). A number of 1000 samples per sub-domain is used to evaluate the objective function for each

sub-domain.

There is a subtle point here that needs to be properly addressed in order for the analysis to be

correct. Since the prior PDF is directly involved in the objective function, in order to compare the

objective function values between the different sub-domains, one needs to be sure that the prior PDFs

are equivalent, that is, they have the same entropy. Otherwise the values from different sub-domains

correspond to different prior PDFs and cannot be compared. For uniform prior PDFs in 2 dimensions

(x, y coordinates) this means that the total area of each sub-domain must be the same with all the other

sub-domains. Then the prior PDFs have the same entropy and the information gain for each sub-domain

can be compared with the others. For this reason, the sizes of the sub-domains in Figure 8.7 cannot be

arbitrary but were selected specifically such that the areas covered by the 3 sub-domains are equal. It

is simple to prove that in order for the 3 sub-domains to have the same area the sides of the squares

must satisfy the relations: b =
√

2
3a and c =

√
1
2b where a > b > c are the sides of the outer, middle,

and inner squares respectively. The requirement to have same areas in the sub-domains also makes sense

from a computational point of view because the same number of samples is used to cover the same areas.

Otherwise the objective function would be evaluated with a different accuracy in each sub-domain which

is not desirable.
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Figure 8.7: The three equal-area sub-domains without (a) and with (b) uniformly distributed random

samples.

Results for the objective function for each sub-domain, for three different numbers of sensors are

shown in Table 8.2 for the full square and the boundary square grids. Note that the objective function

values of Table 8.2 cannot be compared with those of Table 8.1 because of the different prior PDFs used

in Table 8.2. However, the values within Table 8.2 are suitable for comparison with each other because

of the reason mentioned above.

The full square grid provides similar information gain for all three sub-domains with the highest

information gain provided for sub-domain 1. This is expected since more of the sensors of the full square

grid receive higher readings when the crack is in sub-domain 1 than in sub-domains 2 and 3, as shown

in Figure 8.8(a). For the boundary square grid, the highest information gain is obtained for sub-domain

2, while the worst information is provided for sub-domain 1. By observing the optimal boundary square

configuration in Figure 8.8(b), this is very reasonable because its sensors fully cover the area in the sub-

domain 2, while they are further away from the sub-domain 1. Also note that the boundary square grid

gives a higher information gain for sub-domain 2 than the information gain provided by the full square

grid.

One needs to keep in mind that this analysis is done based on knowing that the crack is in each of

the 3 sub-domains. This becomes clear in the case of sub-domain 2. Only by knowing that the crack is

in sub-domain 2, the boundary square grid performs better than the full square grid. This is plausible,

because a look at the two grids in Figures 8.8(a) and 8.8(b) makes obvious that the boundary square grid

is much better suited for monitoring the cracks in sub-domain 2.

So, under different known information about the crack the optimal designs do change. However, this

does not change the fact that if the prior knowledge of the crack is the entire [0.2, 0.8]× [0.2, 0.8] domain

(union of all 3 sub-domains) then the full square grid is optimal, as was demonstrated earlier. One can

see that optimality is domain-dependent with the full square grid giving greater average information gain
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over the 3 sub-domains compared to the boundary square grid. Even though the boundary square grid is

significantly better if it is known that the crack is in sub-domain 2, on average, over all 3 sub-domains it

gives less information gain than the full square grid. Note that the average values over the 3 sub-domains

correspond to those found earlier in Table 8.1 which were for the entire [0.2, 0.8] × [0.2, 0.8] prior PDF

domain Ω.
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Figure 8.8: The three sub-domains along with the optimal: (a) 6×6 full square grid, (b) 10×10 boundary

square grid.

Table 8.2: Information gain comparisons for the 3 sub-domains for the full square and boundary square

grids.

Number of sensors Objective function

Domain 1 Domain 2 Domain 3 Average

Full square

36 4.74 4.57 4.30 4.53

49 5.40 5.20 4.80 5.13

64 5.80 5.70 5.40 5.63

Boundary square

36 2.25 5.71 4.08 4.01

49 2.70 6.00 4.58 4.42

64 2.92 6.35 4.95 4.74

8.4.3 Crack identification

In this section crack identification results are presented using the proposed Bayesian parameter estimation

methodology. The parameters θ = {Xc, Yc, L, φ}T of the model are those describing the crack tip location,
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length and orientation. The optimal sensor grids obtained in the previous section are used for crack

identification and parameter estimation. As in the previous analyses it is assumed that the strain sensors

measure in the vertical direction, which is parallel with the loading.

The initial state of knowledge about the crack is represented by the same uniform prior PDF also

used in the previous section, that is, the crack is located in the domain Ω = [0.2, 0.8]× [0.2, 0.8] and can

have any orientation φ ∈ [0, 360]. However, in the identification process also cracks with a greater length

are allowed, and therefore the uniform prior PDF bounds for the crack length were set to 10− 200mm.

Simulated data are used to demonstrate the framework. The simulated data are created by running

the FE model for a fixed (known) crack location, size and orientation and then contaminating the re-

sulting strains at the sensor locations by Gaussian noise. This noise is the source of uncertainty in the

identification results, and accounts for the model error combined with the sensor measurement error.

Based on the knowledge about the true crack parameters the identification results and their uncertainty

for various grids and noise levels can be assessed and useful conclusions can be drawn.

The Bayesian parameter estimation was carried out using the TMCMC algorithm (Ching and Chen,

2007) with 1000 samples per TMCMC stage to populate the posterior PDF of the model parameters.

Given the posterior samples, we estimate the most probable values of the model parameters along with

their associated uncertainty in the form of 90% intervals.

Crack identification results are presented for two cases. A small crack of size 50mm and a larger

crack of size 100mm which is expected to be easier to identify. For both cases the crack tip is located at

(0.4, 0.6) and the crack has an orientation of 45 degrees.

We study the effect of the following in the identification results.

1. Number of sensors for a given grid type.

How does increasing or decreasing the number of sensors affect the crack identification and its uncertainty

? How many sensors are needed in order to identify a small crack (50mm) accurately ? How many for

the larger crack (100mm) ?

2. Sensor.

Is it important if a full square grid is used instead of a boundary square grid or the opposite, for the same

number of sensors ? This question was properly addressed in the optimal sensor placement section where

it was shown that the full square grid is superior. It cannot be answered fully through the identification

process because one has always to choose a particular crack to work with, and that crack may favor one

grid over the other. So general conclusions can not be drawn unless a large number of cracks is examined.

However, this would be impractical since too many TMCMC runs would have to be performed. Despite

that, some illustrative identification results are obtained that compare the full square grid with the

boundary square grid.

3. Level of measurement and model error.

How does the measurement + model error affect the identification and its uncertainty ? Naturally one

would assume that more noise increases the inaccuracy of crack identification with a higher level of

uncertainty.
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Effect of number of sensors
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Figure 8.9: ID results for the 50mm crack with optimal full square grids from 2x2 to 7x7: Crack center

uncertainty.

Parameter estimation results such as the most probable value and the 90% uncertainty interval for the

location, the size and the orientation of the crack are presented in Figures 8.9 and 8.10 for different

numbers of N × N sensors, N ranging from 2 to 7, for the full square grid. Results correspond to 1%

noise. In these figures the identification results are presented visually in the plate, where the true crack

(location, size and orientation) is presented along with the most probable identified crack, and the 90%

uncertainty interval of the identified crack. The most probable crack is the one corresponding to the

posterior sample which gives the maximum posterior PDF of the model parameters. The 90% interval
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is a measure of the uncertainty associated with the identified crack. It provides information about the

spread of uncertainty in the crack location, size and orientation based on the strain data. It is estimated

by taking the 5% and 95% quantiles of the posterior samples and drawing two shapes in the plate based

on them. The first shape in Figure 8.9 is a rectangle and shows the crack center uncertainty. This

rectangle encloses 90% of the crack centers of the posterior samples (cracks) and makes up the majority

of the area where the crack center could be located. The full set of the 1000 crack center samples is also

shown by projecting the samples into the 2d parameter space (Xc, Yc). The second shape shown in Figure

8.10 is composed of two circular arches, one small and one big radius that quantify the uncertainty in the

crack length and orientation. The full set of the 1000 crack length-orientation samples are also shown

by projecting the samples into the 2d parameter space (L, φ). In contrast to the 90% interval of the

crack center, the position of the second shape in the plate is irrelevant, since only its size is important.

However, a convenient location of the center of the arches was selected to be the bottom left corner of the

first shape (Figure 8.9) for easy comparison of the uncertainty in the crack length with the uncertainty

in the crack center location.

The figures described above give a qualitative visual assessment of the identification results. For a

quantitative assessment, plots of the sample statistics as functions of the number of sensors for each of

the 4 parameters are shown in Figure 8.11. The sample statistics include the mean, the most probable

value and the 5% and 95% quantiles. Also the true values used to generate the simulated data are also

presented in Figure 8.11.
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Figure 8.10: ID results for the 50mm crack with optimal full square grids from 2x2 to 7x7: Length and

orientation uncertainty.
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Figure 8.11: ID results for the 50mm crack with optimal full square grids from 2x2 to 7x7: Sample

statistics vs number of sensors.

Sufficiently accurate estimates are obtained for sensor grids with N values as low as N = 4 (16

sensors). In particular, it is evident that for N = 4 the most probable crack (location and size) is very

close to the actual (nominal) crack. However, the uncertainty intervals are quite large for both the crack

center and length-orientation parameters. The uncertainty intervals shrink in size as more sensors are

added, and the identified crack moves closer and closer to the parameters of the nominal 50mm crack.

This is the expected behavior from the Bayesian theory of identification which promises improvement of

the results as the number of data is increased. One can conclude that with the 6× 6 full square grid the

50mm crack gets identified with small uncertainty. In general, the results in Figure 8.11 suggest that the

uncertainty in the size and orientation is higher than the uncertainty in the crack center location.

Similar results for the larger crack of 100mm are presented in Figures 8.12, 8.13 and 8.14. Comparing

with Figures 8.9, 8.10 and 8.11 it is clear that the identification of the 100mm crack is effective with less

number of sensors than the ones required for the 50mm crack.
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Figure 8.12: ID results for the 100mm crack with optimal full square grids from 2x2 to 7x7: Crack center

uncertainty.
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Figure 8.13: ID results for the 100mm crack with optimal full square grids from 2x2 to 7x7: Length and

orientation uncertainty.

189

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 12:38:19 EEST - 18.191.97.154



4 9 16 25 36 49

0.35

0.4

0.45

0.5

0.55

4 9 16 25 36 49
0.55

0.6

0.65

0.7

0.75

4 9 16 25 36 49
0

0.05

0.1

0.15

Number of sensors
4 9 16 25 36 49

0

50

100
φ

Number of sensors

 

mean
identified
true
quantiles

Xc (m) Yc (m)

L (m)
(deg)

Figure 8.14: ID results for the 100mm crack with optimal full square grids from 2x2 to 7x7: Sample

statistics vs number of sensors.

The 100mm crack is identified perfectly even from the 5 × 5 grid. Also from the 6 × 6 grid there is

practically no uncertainty even in the length-orientation parameters, compared to the 50mm case where

the uncertainty was larger. It is instructive to compare the 4×4 and 5×5 sensor grids for the 50mm and

100mm crack cases as far as the uncertainty intervals are concerned. This confirms the intuitive notion

that a larger crack is easier to identify accurately with fewer sensors than a smaller crack. The 50mm

crack required a 7 × 7 full grid (49 sensors) to pinpoint exactly its location, whereas the 100mm crack

required a 5× 5 grid (25 sensors, almost half those for the 50mm crack).

Summarizing the results of Figures 8.9 - 8.14 the following conclusions can be derived: 1) The quality

of crack identification increases as the number of strain sensors increases. This applies to both the most

probable identified crack and the uncertainty intervals for the crack parameters. 2) For the 50mm crack

the 7×7 full square grid was required to identify the crack with small uncertainty whereas for the 100mm

crack the 5 × 5 grid was sufficient. 3) The crack size and orientation parameters are harder to identify

than the crack location parameters as seen by comparing their respective uncertainty intervals. The

hardest parameter to identify is the crack orientation, since out of the 4 parameters this is the one with

the greatest posterior uncertainty, especially for the 50mm crack. 4) The rate with which the posterior

uncertainty decreases by the addition of more sensors is notably higher for the 100mm than for the 50mm

crack. This shows that a larger crack is easier to identify.

Next, results are presented in Figures 8.15, 8.16 and 8.17 using the boundary square grid on the
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50mm crack. Results should be compared to those obtained for the full square grid in Figures 8.9, 8.10

and 8.11.
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Figure 8.15: ID results for the 50mm crack with optimal boundary square grids from 2x2 to 13x13: Crack

center uncertainty.
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Figure 8.16: ID results for the 50mm crack with optimal boundary square grids from 2x2 to 13x13:

Length and orientation uncertainty.
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Figure 8.17: ID results for the 50mm crack with optimal boundary square grids from 2x2 to 13x13:

Sample statistics vs number of sensors.

Here the boundary square grid was tested using the same number of sensors as in the full square

grid case. Again, the grid sizes used were the optimal ones found for the specific number of sensors.

In general, no significant differences appear between the identification from the boundary square and

full square grids. However, the boundary square grid gives slightly worse results in terms of the crack

location, which is expressed by a greater crack center uncertainty compared with the full square grid case.

This shows that for the particular crack examined the two grids have almost equal performance, with the

full square grid slightly outperforming the boundary square grid. Although it was shown that the full

square grid is superior to the boundary square grid on average, over all possible cracks in the domain Ω,

for the particular crack considered in this study, only a slight preference of the full square grid over the

boundary square grid was observed.

Effect of measurement and model error level

Now the effect of the measurement and model error level on the identification results is investigated.

Naturally one would expect that an increasing noise level would lead to a quality reduction in the

identification. In order to demonstrate the effect of the noise, three different noise levels are used: 1%,

3% and 5%. In the following respective results the 6× 6 full square grid was applied to the identification

of a 50mm crack. The identification results for these cases are presented in Figures 8.18 and 8.19.
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Figure 8.18: ID results for the 50mm crack with optimal 6x6 full square grid. Left: Crack center

uncertainty, Right: Length and orientation uncertainty.
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Figure 8.19: ID results for the 50mm crack with optimal 6x6 full square grid: Sample statistics vs noise

level.

It is apparent from the results that the crack identification is sensitive to measurement/model errors

since an increase from 1% to 5% noise has a significant impact on both the most probable crack parameters

and the uncertainty intervals. In Figure 8.19 one can see the anticipated result that the uncertainty

intervals increase as the noise in the data is increased. The quality of the identification starts to deteriorate

rapidly, both for the optimal identified crack and its associated uncertainty.

8.5 Conclusions

A Bayesian optimal sensor placement methodology was presented for optimally designing the locations

of strain sensors in a structure for the purpose of identifying a crack using strain measurements. The

optimal locations of the strain sensors were derived based on the expected information gain (expected

KL-divergence) quantity which measures the information gain from the prior to the posterior PDF in a

Bayesian framework. Three types of sensor grids were examined and compared. A full square grid, a

boundary square grid and a circular grid were compared. The full square grid turned out to be the best for

identifying cracks in a square sub-domain of the plate. Optimal designs were obtained for an increasing

number of sensors for all three grid types. It was shown how the optimal design can change when different

a priori knowledge about the crack location is taken into account, through the Bayesian prior PDF. Also

the prediction error correlation model was examined. It was demonstrated how including correlation
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between the strain sensors results in less information gain from the measurements when increasing the

number of sensors.

The effectiveness of the optimal sensor locations was investigated by estimating the location, size and

orientation of a crack using a Bayesian parameter estimation (identification) methodology utilizing strain

measurements. The methodology was used to estimate the location, size and orientation of cracks using

information provided from strain measurements of optimally located sensors from a cracked plate sub-

jected to distributed static loading. Because of the Bayesian nature of the identification, the uncertainty

associated with the identified crack is also estimated. The results showed that the proposed identification

methodology can efficiently detect and completely identify an existing crack using simple grids of sensors,

even in the presence of measurement and model error, provided that this error is sufficiently small.

Parametric analyses were performed in order to study the effect of the number of sensors and noise level

in the quality of the identification results. These analyses provided useful insights about the minimum

number of sensors required to identify cracks of small and medium sizes accurately. It was also shown how

the addition of more sensors improved not only the identified crack but its uncertainty as well. Results

also verified the intuitive idea that a larger crack is easier to identify than a smaller crack, and this was

quantified by the required number of sensors. It was shown how the crack orientation is the hardest

parameter to identify compared to the size and location parameters. The effect of the noise level in the

experimental data was also investigated. Results showed that the analysis is very sensitive to noise and

an increase could deteriorate the identification quality significantly.
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Chapter 9

Conclusions

The main theme of this thesis was to develop Bayesian methodologies for uncertainty quantification,

propagation, model selection and optimal experimental design and apply them to real world engineering

problems. The Bayesian methodologies for uncertainty quantification were applied in model updating

problems of mechanics using experimental data obtained from field tests. Specifically, model updating

was performed in a high-fidelity detailed finite element model of a bridge, where experimentally identified

modal data were used to update the existing finite element model. The updating process refers to the

parameters of the model which were the stiffnesses of the deck, piers and that of the soil. Bayesian

parameter inference enabled us to learn about the possible values of those stiffnesses compared to where

we would expect them to be, and also allowed us to check the effect of different modeling scenarios

regarding the use of the modal data. The second application of model updating using real data was in a

hanger of an arch bridge, where model updating allowed us to find the tension force that was developed

in the hanger based on experimentally identified modal frequencies obtained from forced vibration tests.

The Bayesian methods proved to be valuable in order to understand the bounds where the tension

force could lie and the capability of different models to make accurate predictions. A third case of model

updating was carried out this time using a non-linear model of a seismically isolated bridge. The Bayesian

formulation was applied using experimentally measured time histories of various response quantities of

the bridge-isolator system. The parameters of the non-linear model equations were identified along with

their uncertainties, enabling for robust model predictions. Finally, a fourth model updating case was

carried out using simulated data, in a finite element model of a plate with a crack. The methodology

proved to be successful in detecting the crack using synthetic strain measurements, and also allowed us

to investigate the effect of the number of sensors and noise levels in the crack detection results.

Bayesian model selection proved to be a valuable tool in understanding which models are the best in

simulating the behavior of a structural component and which aspects of the model really matter, based on

experimental data. Specifically, model selection was used to rank several model classes of a hanger cable

and decide which is the best by utilizing information from measured modal frequencies of the hanger.
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It turned out that the flexibility of the support conditions of the hanger were extremely important to

its behavior and models with fixed supports were ruled out by Bayesian model selection, while flexible

models were favored.

In the problem of optimal experimental design, important theoretical contributions were made to both

the sampling and asymptotic approaches to estimate the objective function which provide further insight

into the problem. Numerical case-studies demonstrated the methodologies and verified the theoretical

findings. Optimal sensor locations were found for up to 20 acceleration sensors to be placed on the deck

of a bridge for modal identification. The effect of the prediction error model on the sensor locations

was found to be crucial, and the novel theorem about the effect of the Gaussian prior distribution was

demonstrated numerically. Also, optimal strain sensor grids were designed for crack detection in a cracked

plate under static loading. The methodologies proved to be useful in comparing the various sensor grids

with each other and finding the optimal grid size and location in the plate in order to identify the crack

which can exist in a specified domain in the plate.

Summarizing, the novel contributions of this thesis are:

1. Use of non-linear detailed finite element models to simulate hanger behavior under tensile loads,

which fully take into account the support conditions of the hanger.

2. Comparison of complex finite element models of hangers and simple beam models using the concept

of equivalent length in each of the two vibrational directions of the hanger.

3. Use of high-fidelity detailed finite element models of bridges which take the soil flexibility into

account.

4. Use of Bayesian model selection in order to rationally decide about the importance of the soil

flexibility.

5. Utilization of model-reduction techniques in order to make the Bayesian framework computationally

feasible.

6. Application of the Bayesian theories for the estimation of parameters of non-linear models of seis-

mically isolated bridges.

7. Theorem in the field of asymptotic Optimal Experimental Design which explains the effect of the

Gaussian prior variances in the optimal design. The variances are proved to act as weighting factors

for the identification of parameters with the largest variances. Therefore, the optimal design favors

the identification of those parameters instead of treating them all equally with the same weight.

8. Improved estimator of the objective function of sampling Optimal Experimental Design. The esti-

mator was simplified by calculating one term analytically, hence avoiding the need to approximate

it with Monte Carlo sampling. This effectively leads to reduced variance (better quality) of the

estimator.
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9. New evidence-based interpretation of Optimal Experimental Design based on the improved estima-

tor. The optimal design can be interpreted as the one which maximizes the entropy of the evidence.

This means that the best design is the one which gives a good fit with the data on average over the

uncertain data that may arise from each design.

10. Novel construction of the design variables in Optimal Sensor Placement which includes the type of

sensor as well instead of its location only. With this formulation it is possible to include the type of

sensor (orientation, measured quantity etc.) into the formulation as well and let the methodology

decide what is the optimal sensor type and in which location.

11. Application of the novel theorem developed in Chapter 6 which demonstrates the role of the Gaus-

sian prior variances as weighting factors for the corresponding parameters.

12. Comparison of sensor grids of various geometries for the purpose of Optimal Sensor Placement for

crack identification using strain measurements.

Some directions for potential future research are:

• Improve the computational tools required to do Bayesian analysis, specifically stochastic simulation

algorithms or methods to estimate multidimensional probability integrals efficiently.

• Improve or develop ways to estimate the evidence term of a Bayesian model efficiently and reliably,

which is crucial for Bayesian model selection.

• In the problem of optimal experimental design, introduce new estimators of the objective function

so that sampling is not required, or find ways to reduce the variance associated with the random

samples required by Monte Carlo numerical integration.

• In the asymptotic approach of optimal experimental design find ways to make it work reasonably

well even for larger prediction error without compromising the accuracy too much.

• If possible, derive some of the theoretical results of the asymptotic optimal experimental design

framework (such as the weighting role of the Gaussian prior variances) under the sampling frame-

work.

• Further research can be done regarding the way in which mode shape data are taken into account

into the Bayesian model updating scheme. Correlation models can be used to introduce correlation

between the components of the mode shape, or different probability distributions can be used to

describe the quantity 1−MAC2
r (θ).
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Appendix A: Software for

Experimental Modal Analysis

In this Appendix the software developed for experimental output-only (ambient) modal analysis is pre-

sented. The software is written in MATLAB and consists of four distinct and independent modules,

namely: Data, Pre-processing, Modal Identification and Post-processing. The main menu of the program

with the 4 modules is shown in Figure A.1.

Figure A.1: Main window of the program.

The Data module is used to load data from .mat files into the software. The data can be:

1. The experimentally measured ambient acceleration time histories of multiple sensors measuring at

the same time. The time histories of multiple sensors need to be arranged in the columns of a

matrix and stored into a .mat file along with the discretization time and the sensor labels. Multiple
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sets of measurements (.mat files) can be inserted into the program. This is the case when we are

measuring a large structure with a small number of sensors and have to take repeated measurements

at different locations of the structure (sensor configurations). An example of a .mat file containing

the simultaneous measurements of 18 sensors is shown in Figure A.2.

Figure A.2: Variables in a measurement .mat file: accel = matrix of simultaneous acceleration measure-

ments in the columns, dt = time between measurements (inverse of sampling rate), channeltext = label

of each sensor that corresponds to the columns of the accel matrix.

2. Modal identification results that had been saved from previous sessions and need not be produced

again from measurements. In this case the user works directly in the Post-processing module.

3. Variables defining the geometry of the measured structure for the purpose of visualizing the mode

shapes that result from modal identification. The geometry is a simple sketch of the structure

that consists of points (nodes), directions (DOFs) and lines (elements) connecting the points. The

matrices contained in the geometry .mat file describe the coordinates of the nodes, the node DOFs

and the element connectivity of the elements with the nodes. An illustrative example of a geometry

.mat file is shown in Figure A.3.

Figure A.3: Variables in a geometry .mat file: node coords = node (X,Y,Z) coordinates in rows, node dofs

= DOFs in (X,Y,Z) directions of each node, el nodes = nodes of each element, reference dofs = common

reference measured DOFs.

The Data module can also be used to convert measurements from another format (e.g. text files) to

appropriate .mat files that can be inserted into the program. The Data insertion module is shown in

Figure A.4.
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Figure A.4: Data insertion module.

In the Pre-processing stage the user can visually inspect the Power Spectral Density (PSD) and the

Singular Value Spectrum (SVS) of the ambient acceleration time histories (Figures A.5 and A.6 respec-

tively). Such visual inspection can provide valuable insight about the modal frequencies and damping

ratios of the structure. It is important to note that the PSD and SV spectrums are not utilized in

the Modal Identification procedure, rather they are only used to obtain a rough estimate of the natural

frequencies of the measured structure. This step is important in the Modal Identification methodology

used in the next step. Each sensor configuration can be inspected individually in the pre-processing

step, and specific channels of a configuration can be selected or de-selected from being used in the Modal

Identification process. This feature serves to potentially remove an unwanted sensor from the analysis

because of possible bad recording quality. The method used to estimate the PSD of the signals is Welchs

averaged periodogram method, and the parameters of the method can be adjusted by the user depending

on the length of the signal, the sampling rate, the desired frequency resolution in the spectrum, and the

desired variance of the estimated spectrum. The SV spectrum is obtained by calculating the singular

values of the Cross Power Spectral Density matrix for each frequency in the spectrum. It provides more

information than the PSD because it also takes into account the Cross Power Spectral Densities between

the acceleration signals. Its main merit comes from the fact that it has the ability to separate the noise

from the signal, and that it can reveal closely spaced modes that are not apparent in the PSD. This

was proven to be the case for the second and third modes of the Metsovo bridge which were revealed by

different singular values, as can be seen in Figure A.6.
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Figure A.5: Pre-processing: Auto Power Spectral Densities of multiple selected signals from a single

sensor configuration, along with PSD algorithm information.

Figure A.6: Pre-processing: Singular Value Spectrums of multiple selected signals from a single sensor

configuration.

The raw time histories of the ambient acceleration measurements can also be viewed for each of the

inserted sensor configurations, as shown in Figure A.7.
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Figure A.7: Raw ambient acceleration time histories.

After obtaining an estimate of the natural frequencies of the structure from observing the Singular

Value spectrum, the user can define the frequency bands which most probably contain the natural fre-

quencies of the structure (Bands button in Figures A.5 and A.6). These frequency bands are going to

be used by the Modal Identification module. The bands can be saved to be re-loaded in future sessions

(Figure A.8).

Figure A.8: Definition of frequency bands for Modal Identification.
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The Modal Identification module uses a Bayesian methodology (Au, 2012a,b) in order to extract the

modal frequencies, mode shapes, and modal damping ratios from the measured ambient acceleration time

histories of each sensor configuration. The method is based on the Fast Fourier Transform (FFT) of the

acceleration signals in specific bands of interest which are believed to contain the natural frequencies of

the structure. The Bayesian nature of the methodology also provides the uncertainty in the estimates of

the modal properties which can be thought of as experimental uncertainty. This information can be useful

for model updating purposes using experimental modal properties, since it can separate the measurement

error from the model error. Pictures from the Modal Identification module are shown in Figure A.9.

(a) (b)

(c)

Figure A.9: Modal Identification module.

After Modal Identification has been performed and the modal properties have been extracted from

each configuration, the next step is to visualize the results in the Post-processing module (Figure A.10).
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Figure A.10: Post-processing module main window.

In order to visualize the mode shapes it is necessary to combine all the local mode shapes identi-

fied from each configuration to produce the full mode shape at all measured degrees of freedom. The

methodology used to achieve this is a variation of the method proposed by Au (2011) and is based on

least squares fitting of each local mode shape with the full mode shape. The method is developed in

detail in Section 4.4.3 and relies on common measured degrees of freedom among all configurations, called

reference degrees of freedom.

For visual representation of the full mode shapes, it is also required that the user specifies the measured

points of each configuration in the geometry of the structure. Therefore, it is necessary to describe at

which point of the structure geometry and direction was each sensor measuring, for all configurations.

Then the identified mode shape components of each configuration can be correctly matched with the

appropriate point and direction in the geometry. This is done from the Define/Edit button of the Post-

processing main window (Figures A.11, A.12 and A.13).
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Figure A.11: Define/Edit configurations window.

Figure A.12: Selection of geometry points where sensors were placed.

Figure A.13: Assign geometry points and directions (DOF) to each channel (sensor) for all configurations.

The user can exclude specific channels or even entire configurations if their measurements were found
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to be unreliable in the Pre-processing analysis. There is also the possibility to save the channel-DOF

associations for all configurations in order to load them in future sessions from the Save/Load button of

the Post-processing main window. The status of all the sensor configurations can be viewed from the

Status button of the main Post-processing window (Figures A.14 and A.15).

Figure A.14: Sensor configurations selected for mode shape assembly for specific modes.

Figure A.15: Identified modal frequencies from each configuration.

After the channel-DOF associations have been defined, the mode shapes can be assembled from the

Assemble button of the Post-processing main window. After the assembly of the mode shapes the user

can view them from the Deform Shape button (Figures A.16, A.17 and A.18).
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Figure A.16: Assembled mode shape selection for visualization.

Figure A.17: First full mode shape.

Figure A.18: Second full mode shape.
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Usually not all geometry points were measured by a sensor, and those points have no associated mode

shape component. However, for visualization purposes we would like to associate those points with some

other measured points in order for them to deform as well. This is done from the Inactive DOFs menu

of the main Post-processing window (Figure A.19).

Figure A.19: Associate inactive DOFs with two active DOFs.

Then the inactive DOFs deform as the mean of the two associated DOFs. The inactive DOFs as-

sociations can be saved and loaded from the corresponding Save and Load buttons. The status of the

inactive DOFs associations can be viewed from the Inactive DOFs menu of the main Post-processing

window (Figure A.20).

Figure A.20: Status of inactive DOFs associations.
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The user can check the error of the assembled mode shapes which is the mismatch between the

assembled mode shape and the identified mode shape at a particular sensor configuration. This can be

done from the Configurations menu (Figures A.21 and A.22).

Figure A.21: Configuration 8 identified mode shape components and full assembled mode shape.

Figure A.22: Configuration 9 identified mode shape components and full assembled mode shape.

The reference sensors (common among all configurations) are marked with orange color, the locations
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of the sensors of the corresponding configuration are shown with green squares, and the identified mode

shape components are shown with the pink crosses.

Finally, a summary of all the results is presented from the Configurations → Details menu (Figure

A.23).

Figure A.23: Detailed results information: Statistics of identified modal frequencies and modal damping

ratios over all configurations and percentage mode shape errors for all configurations and modes.

The results plots can be exported to files from the Export Graph menu. Other auxiliary post-

processing actions can be performed from the menu bar of the main window, such as animate the mode

shapes and export images and videos of the mode shapes to files.

Illustrative mode shape results

In this Section we present illustrative identified mode shapes from various cases of real structures where

experimental ambient acceleration data were used to perform modal identification. Representative iden-

tified assembled mode shapes are shown in Figures A.24 - A.28.
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(a) First (b) Second (c) Third

Figure A.24: Experimentally identified mode shapes of a building located in Volos, Greece.

(a) 3D view (b) Side view

Figure A.25: First experimentally identified mode shape of a bridge located in Katerini, Greece.

213

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 12:38:19 EEST - 18.191.97.154



(a) 3D view (b) Top view

Figure A.26: Second identified mode shape of the Metsovo bridge.

(a) 3D view (b) Top view

Figure A.27: Sixth identified mode shape of the Metsovo bridge.
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(a) First identified mode shape (b) Second identified mode shape

Figure A.28: First two identified mode shapes of a bridge in Palini, Athens, Greece.
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Appendix B: Experimental time

histories

In this Appendix we present some selected experimental time histories obtained from the field tests

used in Chapters 3 and 4. These time histories were the raw data that were used to extract the modal

properties, which were eventually used as data in the Bayesian model updating. Illustrative forced

vibration time histories used in Chapter 3 along with their Fourier transform are shown in Figures B.1

and B.2. Illustrative ambient acceleration time histories used in Chapter 4 are shown in Figure B.3.

(a) (b)

Figure B.1: Hanger forced acceleration time histories.
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(a) (b)

Figure B.2: Hanger forced acceleration Fast Fourier Transforms.
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Figure B.3: Selected ambient acceleration time histories from Metsovo bridge.
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