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ΠΕΡΙΛΗΨΗ 

Αντικείμενο της παρούσας Διατριβής αποτελεί η ανάπτυξη μεθόδων 

μοντελοποίησης και διαχείρισης των αβεβαιοτήτων στην διαδικασία της 

προσομοίωσης κατασκευών. Έμφαση δίνεται στην ανάπτυξη ενός πιθανοτικού-

στατιστικού πλαισίου για (α) την ποσοτικοποίηση των αβεβαιοτήτων που 

υπεισέρχονται στην επιλογή παραμετρικών μαθηματικών μοντέλων 

προσομοίωσης μηχανικών συστημάτων και εξωτερικών δυναμικών διεγέρσεων, 

(β) την διάδοση των αβεβαιοτήτων αυτών μέσω των υπολογιστικών μοντέλων 

πεπερασμένων στοιχείων στην πρόβλεψη των αβεβαιοτήτων μεγεθών απόκρισης 

και αξιοπιστίας έναντι διαφόρων οριακών καταστάσεων ασφάλειας και 

λειτουργικότητας μηχανικών συστημάτων. Πιθανοτικά/στοχαστικά μοντέλα 

χρησιμοποιούνται για την ποσοτικοποίηση των αβεβαιοτήτων, ενώ εξελιγμένες 

μεθοδολογίες στοχαστικής προσομοίωσης αποτελούν το βασικό εργαλείο 

διάδοσης των αβεβαιοτήτων μέσω των προσομοιωμάτων. Ένα ιδιαίτερα 

καινοτόμο στοιχείο της έρευνας αποτελεί η αξιοποίηση μετρήσεων για την 

βελτίωση των μαθηματικών μοντέλων περιγραφής του μηχανικού συστήματος, 

των διεγέρσεων και των αβεβαιοτήτων με βάση τη στατιστική μεθοδολογία 

Bayes. Οι εφαρμογές επίδειξης εστιάζουν (α) στην πιστοποίηση των μοντέλων, 

πρόβλεψη της αξιοπιστίας και διερεύνηση της επιρροής των αβεβαιοτήτων για 

κατασκευές μεγάλης κλίμακας, και (β) στην πρόβλεψη κόπωσης σε ολόκληρο τον 

φορέα μεταλλικών κατασκευών βάσει περιορισμένου αριθμού λειτουργικών 

μετρήσεων ταλάντωσης.  

Η παρούσα Διατριβή δομείται από τρία συσχετιζόμενα μέρη. 

Μέρος Α: Από την αρχή εκπόνησης της Διδακτορικής Διατριβής έγινε σαφές ότι 

για να καταστεί δυνατή η ανάλυση και διαχείριση των αβεβαιοτήτων σε πολύπλοκα 

μοντέλα κατασκευών όπως μοντέλα με υψηλό αριθμό βαθμών ελευθερίας της τάξης των 

πολλών χιλιάδων, εκατοντάδων χιλιάδων ή ακόμα και εκατομμυρίων βαθμών ελευθερίας, 

καθώς και μοντέλα που παρουσιάζουν τοπικές μη-γραμμικότητες στην συμπεριφορά των 

δομικών στοιχείων, ήταν απαραίτητη η ενσωμάτωση έξυπνων τεχνικών μείωσης των 

επαναλαμβανόμενων χρονοβόρων διαδικασιών υπολογισμού της απόκρισης. Για τον 

σκοπό αυτό μεγάλο μέρος της ερευνητικής δραστηριότητας εστίασε στην ανάπτυξη 

αποτελεσματικών τεχνικών μείωσης των βαθμών ελευθερίας του μοντέλου του 

συστήματος. Είναι γνωστό ότι για γραμμικά μοντέλα η μέθοδος σύνθεσης των 

κατασκευαστικών συνιστωσών (Component Mode Synthesis - CMS) μπορεί να 

προσφέρει τα ζητούμενα πλεονεκτήματα. Όμως ο χρόνος που απαιτείται για την επίτευξη 

της μείωσης είναι σχετικά μεγάλος και ουσιαστικά η απ’ ευθείας εφαρμογή αναιρεί τα 
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πλεονεκτήματα της μεθόδου σύνθεσης των κατασκευαστικών συνιστωσών. Για τον σκοπό 

αυτό αναπτύχθηκε καινοτόμος μέθοδος για την επίτευξη της μείωσης των βαθμών 

ελευθερίας για τον πολύ μεγάλο αριθμό εναλλακτικών μοντέλων με βάση την ανάλυση 

των κατασκευαστικών συνιστωσών ενός μόνο ονομαστικού μοντέλου του συστήματος. Η 

προτεινόμενη μεθοδολογία είναι εφαρμόσιμη για τις περιπτώσεις που οι κατασκευαστικές 

συνιστώσες επιλέγονται με βάση τη παραμετροποίηση του μοντέλου. Η μεθοδολογία 

αποδείχθηκε ιδιαίτερα αποτελεσματική για την διαχείριση αβεβαιοτήτων σε δυναμικές 

αναλύσεις κατασκευών μεγάλης κλίμακας καθώς οδηγεί σε σημαντική μείωση των 

βαθμών ελευθερίας αλλά και του χρόνου διαχείρισης των αβεβαιοτήτων κατά τρεις και 

περισσότερες τάξεις μεγέθους. Συγκεκριμένα παραδείγματα σε μοντέλα πολύπλοκων 

κατασκευών εκατοντάδων χιλιάδων βαθμών ελευθερίας, όπως είναι το γραμμικό μοντέλο 

της γέφυρας του Μετσόβου, έδειξαν ότι ο χρόνος ανάλυσης των αβεβαιοτήτων μειώνεται 

από τάξη ημερών σε τάξη λίγων μόνο δευτερολέπτων, το οποίο αποτελεί δραστική μείωση 

του χρόνου και επιτρέπει για πρώτη φορά την διαχείριση και εφαρμογή μεθόδων 

διαχείρισης, ποσοτικοποίησης και διάδοσης αβεβαιοτήτων σε πολύπλοκες κατασκευές. 

Η παραπάνω τεχνική μείωσης των βαθμών ελευθερίας αποτελεί πολύ σημαντικό εργαλείο 

για την εκπόνηση της παρούσας Διδακτορικής Διατριβής καθώς μειώνει σημαντικά το 

υπολογιστικό κόστος για την διαχείριση ενός μεγάλου σχετικά αριθμού επαναληπτικών 

αναλύσεων που απαιτούνται σε  αλγορίθμους βελτιστοποίησης και σε αλγορίθμους 

στοχαστικής προσομοίωσης που χρησιμοποιούνται κατά την διαχείριση των 

αβεβαιοτήτων σε μοντέλα πεπερασμένων στοιχείων. Επίσης οι παραπάνω τεχνικές 

αποτέλεσαν πολύ σημαντικό εργαλείο για την ανάπτυξη των μεθόδων διαχείρισης των 

αβεβαιοτήτων στις τεχνικές διάγνωσης της δομικής ακεραιότητας των κατασκευών . 

Μέρος Β: Στα πλαίσια εκπόνησης της παρούσας Διατριβής  αναπτύχθηκε το στατιστικό 

πλαίσιο Bayes για την επιλογή και αναγνώριση μοντέλων πεπερασμένων στοιχείων με 

βάση την πληροφορία που προέρχεται από τις μετρήσεις. Συγκεκριμένα, ολοκληρώθηκε η 

θεωρητική διατύπωση του προβλήματος εκτίμησης των παραμέτρων γραμμικών 

μοντέλων κατασκευής με τη μέθοδο Bayes για την περίπτωση που οι διαθέσιμες μετρήσεις 

είναι τα ιδιομορφικά χαρακτηριστικά της κατασκευής (ιδιοσυχνότητες και ιδιομορφές). 

Επίσης η παραπάνω μεθοδολογία υλοποιήθηκε σε λογισμικό και η εφαρμογή της σε 

γραμμικά μοντέλα πεπερασμένων στοιχείων με πολλούς βαθμούς ελευθερίας έδωσε πολύ 

ικανοποιητικά αποτελέσματα υψηλής ακρίβειας. Υλοποιήθηκαν επίσης σε λογισμικό 

διαθέσιμες από την βιβλιογραφία εναλλακτικές διατυπώσεις Bayes και μελετήθηκε η 

αποτελεσματικότητάς τους σε σχέση με την προτεινόμενη μεθοδολογία. Επίσης, η 

παρούσα Διατριβή επικεντρώθηκε στην ανάπτυξη αποτελεσματικών υπολογιστικών 

εργαλείων για την περιγραφή των αβεβαιοτήτων των παραμέτρων ενός μοντέλου που 

παρουσιάζει μη γραμμικότητες με βάση τη μέθοδο Bayes αλλά και την διαχείριση των 
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αβεβαιοτήτων στον υπολογισμό των αβεβαιοτήτων απόκρισης χρησιμοποιώντας 

ασυμπτωτικές μεθόδους και μεθόδους στοχαστικής προσομοίωσης. Από τις διαθέσιμες 

στοχαστικές μεθόδους για την περιγραφή των αβεβαιοτήτων των παραμέτρων, 

χρησιμοποιήθηκε η μέθοδος Transitional MCMC. Η  Transitional MCMC είναι γενική και 

εφαρμόσιμη σε γραμμικά και μη-γραμμικά μοντέλα, όπως αποδείχθηκε και από την 

εφαρμογή της για την αναθεώρηση των τιμών των παραμέτρων των συστημάτων έδρασης 

σκάφους οχήματος μικρής κλίμακας.  

Στην συγκεκριμένη περίπτωση έγινε γενίκευση της θεωρητικής διατύπωσης έτσι ώστε η 

μέθοδος Bayes να λαμβάνει υπόψη ότι οι μετρήσεις είναι οι χρονοιστορίες απόκρισης αντί 

των ιδιομορφικών χαρακτηριστικών και επίσης τα φάσματα απόκρισης προκειμένου να 

γίνει η εκτίμηση των παραμέτρων των μη γραμμικών μοντέλων ανάρτησης του οχήματος. 

Για την περίπτωση των χρονοϊστοριών απόκρισης υλοποιήθηκε σε λογισμικό μεθοδολογία 

η οποία λαμβάνει υπόψη εναλλακτικά μαθηματικά μοντέλα πρόβλεψης σφάλματος στην 

διατύπωση της μεθόδου του Bayes. Συγκεκριμένα χρησιμοποιήθηκαν μοντέλα πρόβλεψης 

σφάλματος με χωρο-χρονικές συσχετίσεις, σε αντίθεση με τα υπάρχοντα μοντέλα τα οποία 

θεωρούν ασυσχέτιστα τα σφάλματα στο χώρο και τον χρόνο. Πραγματοποιήθηκε λοιπόν 

με επιτυχία η διαχείριση των αβεβαιοτήτων (αναγνώριση και διάδοση) σε πειραματικό 

σκάφος οχήματος με συνδυασμό γραμμικών και μη γραμμικών συνιστωσών. Η διαχείριση 

των χρονοβόρων επαναληπτικών αναλύσεων του μοντέλου του συστήματος 

αντιμετωπίστηκε με την ενσωμάτωση της τεχνικής σύνθεσης κατασκευαστικών 

συνιστωσών, που αναπτύχθηκαν στο πρώτο μέρος εκπόνησης της Διατριβής, για τις 

γραμμικές συνιστώσες του συστήματος όπως είναι τα επιμέρους κατασκευαστικά στοιχεία 

του σκάφους του οχήματος. και προέκυψε το  μειωμένο μη-γραμμικό μοντέλο που μειώνει 

σημαντικά τον υπολογιστικό χρόνο που απαιτείται καθώς υπήρξε σημαντική μείωση των 

βαθμών ελευθερίας από 50,000 σε λιγότερους από 100. Τέλος, με βάση την αξιοποίηση 

των πειραματικών μετρήσεων από τις επιμέρους συνιστώσες (σκάφος και 

αναρτήσεις) του πειραματικού οχήματος μπόρεσαν να εξαχθούν χρήσιμα 

συμπεράσματα σχετικά με την δυνατότητα διαχείρισης των αβεβαιοτήτων στο 

όχημα με βάση την αναγνώριση τους και την βαθμονόμηση τους από επιμέρους 

συνιστώσες.  

Μέρος Γ: Μια ιδιαίτερα καινοτόμος μεθοδολογία για την πρόβλεψη της 

συσσώρευσης βλαβών λόγω κόπωσης σε ολόκληρο το φορέα μεταλλικών 

κατασκευών με αξιοποίηση πληροφοριών από μετρήσεις της ταλαντωτικής τους 

απόκρισης σε περιορισμένο αριθμό θέσεων στην κατασκευή προτείνεται στα 

πλαίσια της παρούσας Διατριβής. Συγκεκριμένα, χρησιμοποιήθηκαν μέθοδοι τύπου 

Kalman και μέθοδοι Modal Expansion για την πρόγνωση των χρονοιστοριών των 

παραμορφώσεων σε ολόκληρο τον φορέα τόσο απλών όσο και πολύπλοκων 
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κατασκευών από περιορισμένο αριθμό μετρήσεων, αποφεύγοντας την 

αναγνώριση των πραγματικών διεγέρσεων. Με χρήση του κανόνα Palmgren-Miner 

και των S-N καμπύλως κόπωσης, έγινε η πρόβλεψη της βλάβης λόγω κόπωσης 

και του εναπομείναντα χρόνου ζωής τως κατασκευών. Η απόδοση και ακρίβεια 

της προτεινόμενης μεθοδολογίας παρουσιάζεται τόσο με ένα απλοικό σύστημα 

λίγων μόνων βαθμών ελευθερίας με μη γραμμικότητα σε μία υποκατασκευή, όσο και μέσα 

από την εφαρμογή της μεθόδου στο στο όχημα μικρής κλίμακας που μελετήθηκε στο 

δεύτερο μέρος της Διατριβής, μερικών δεκάδων χιλιάδων βαθμών ελευθερίας, που 

περιλαμβάνει το γραμμικό σκάφος οχήματος και τα τέσσερα μη γραμμικά υποσυστήματα 

των τροχών-αναρτήσεων.Τέλος, οι χρονοιστορίες των προβλεπόμενων παραμορφώσεων 

χρησιμοποιήθηκαν με αξιοπιστία για την πρόβλεψη της κόπωσης του οχήματος και για την 

δημιουργία χαρτών κόπωσης και χαρτών του εναπομείναντος χρόνος ζωής της 

κατασκευής. 
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SUMMARY 

The subject of current PhD thesis is the development of methods for the modeling 

and management of uncertainties in structural simulations. Emphasis is given on 

developing the probabilistic-statistical framework that is used for (a) quantifying 

and calibrating uncertainty models of mechanical systems and external excitation 

forces, in structural dynamics based on vibration measurements, as well as (b) 

propagating these modeling uncertainties in structural dynamics simulations to 

achieve updated robust predictions of system performance, reliability and safety. 

The tools for identifying system and uncertainty models as well as performing 

robust prediction analyses are the Bayesian Inference, Laplace methods of 

asymptotic approximation and more accurate stochastic simulation algorithms, 

such as Transitional Markov Chain Monte Carlo. These tools involve solving 

optimization problems, generating samples for tracing and then populating the 

important uncertainty region in the parameter space, as well as evaluating 

integrals over high-dimensional spaces of the uncertain model parameters. A 

moderate to very large number of repeated system analyses are required to be 

performed over the space of uncertain parameters. Consequently, the 

computational demands depend highly on the number of system analyses and the 

time required for performing a system analysis. For such large-order finite 

element models the computational demands in implementing asymptotic 

approximations as well as stochastic simulation techniques may be excessive. 

This study integrates an efficient Component Mode Synthesis technique that takes 

into account the FE model parameterization to substantially alleviate the 

computational burden associated with the Bayesian methodology. Another 

innovative aspect of this thesis is the use of measurements in order to improve the 

mathematical models that simulate the mechanical system, the excitation and the 

uncertainties that arise, based on the Bayesian Inference. Finally, the 

computational efficiency of the proposed techniques is demonstrated through 

applications (a) in structural health monitoring, damage identification and 

updating structural reliability of civil infrastructure, and (b) in predicting fatigue 

for metallic structures through a limited number of acceleration measurements.   

Part A: From the beginning of the current PhD thesis it became clear that in order 

to perform the analysis and management of uncertainties for complex structural 

models such as large DOF models involving hundreds of thousands or even 

million DOF and models including localized nonlinearities, it was necessary the 

analysis to be integrated with smart techniques for reducing the time consuming 

analysis that appear in reliability simulations. For this reason, much effort of the 

research was  devoted to investigate efficient techniques for reducing the number 

of degrees of freedom of the FE model simulating the structural system. 

Specifically, component mode synthesis (CMS) techniques are widely used to 
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carry out system analyses in a significantly reduced space of generalized 

coordinates, thus alleviating the computational burden involved in the 

implementation of methods for management of uncertainties. In this work, a novel 

framework is presented for integrating the Craig-Bampton technique into existing 

FE model updating formulations in order to reduce the time consuming operations 

involved in reanalyses of large-order models of hundreds of thousands or even 

millions degrees of freedom. The proposed method exploits the fact that in FE 

model parameterization schemes the stiffness matrix of the structure often 

depends linearly on the parameters of the model and also that a parameter usually 

represents a global property (e.g. the modulus of elasticity) of a substructure. The 

division of the structure into components is then guided by the FE 

parameterization scheme so that the stiffness matrix that arise for each one of the 

introduced components to depend linearly on only one of the parameters to be 

estimated. The methodology proved to be very effective for the management of 

uncertainties in the dynamic structural analysis of large-scale models, since it led 

to a significant reduction both of the degrees of freedom and of the time 

consumed for the management of uncertainties by three and more orders of 

magnitude. Through the implementation of the framework to large order models 

of structures involving hundreds of thousands of degrees of freedom, such as the 

linear model of Metsovo bridge, it was demonstrated that the computational effort 

was reduced drastically from days to a few seconds. This drastic reduction of the 

computational time without compromising the accuracy allowed for first time the 

uncertainty quantification and propagation of large order complex structures. 

The above reduction techniques proved to be a very useful tool for the research 

conducted in the context of current thesis due to the reduction of the 

computational effort of reanalyses involved in stochastic optimizations and 

simulations algorithms implemented for performing management of uncertainties 

in structural response and reliability simulations the  reduction of degrees of 

freedom is a very important tool for the preparation of this thesis as it significantly 

reduces the computational cost for the management of a large number of repeat 

analyzes required in optimization algorithms and stochastic simulation algorithms 

used in the management of uncertainties in finite element models. Finally the 

above techniques were very useful for the development of a framework for 

management of uncertainties that appear in structural health monitoring (SHM). 

Part B: In the context of this thesis, a Bayesian framework for model parameter estimation 

and class selection, based on vibration measurements, was developed. Specifically, the 

theoretical framework for the parameter estimation problem for linear models using the 

modal characteristics (eigenfrequencies and modeshapes) was first formulated and then 

implemented in software. The results of the application of the proposed Bayesian 

Framework, implemented in the developed software, for linear large DOF models were of 

high accuracy.αποτελέσματα υψηλής ακρίβειας. Moreover, different approaches of the 
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Bayesian Framework, presented in relevant literature were implemented in software and 

tested for their accuracy. Another field of great interest of this thesis was the development 

of Bayesian tools, including asymptotic approximations and stochastic simulation 

algorithms, for the quantification and management of uncertainties in parameter estimation 

for both linear and nonlinear models. Among the stochastic simulation algorithms available 

Transitional MCMC is one of the most promising and for this reason it was chosen to be 

used. The Transitional MCMC is an algorithm of general use and can be applied to both 

linear and non-linear models, as it was demonstrated in this thesis through its application to 

a small scale experimental model of a vehicle with nonlinear wheel and 

suspension components review for the model updating of the parameters of the 

nonlinear. 

In this case of this nonlinear model, the Bayesian framework was extended to cover the 

case that the measurements are taken to be either response time histories or 

response spectra functions instead of the modal characteristics that were used in 

case of linear models. For the case that measured data is response time histories, 

the proposed methodologies were implemented in software, taking into account 

different approaches for calculating the prediction error that appears according to 

Bayesian formulation. The Bayesian framework for uncertainty quantification, 

calibration and propagation was successfully implemented in the case of the 

experimental vehicle that was a combination of linear and nonlinear components. 

Drastic reduction in computational effort to manageable levels was achieved using 

component mode synthesis techniques that are presented in the context of this 

thesis, for the linear vehicle frame obtaining a drastic reduction in the DOFs from 

50,000 to less than 100. Finally, based on the measured output quantities of 

interest of the components of the vehicle frame, interesting results were concluded 

about the methodology that the estimates of the model parameter values and their 

uncertainties for each component can be used to build the model for the combined 

wheel-suspension-frame structure. 

Part C: A novel framework is proposed for estimating damage accumulation due 

to fatigue in the entire body of a metallic structure using vibration measurements 

from a limited number of sensors. Fatigue is estimated using Palmgren-Miner 

damage rule, S-N curves, rainflow cycle counting of the variable amplitude time 

histories of the stress components, or frequency domain stochastic fatigue 

methods based on PSD of the stress components. These methods can be applied to 

any point in the structure and construct the complete fatigue map of the entire 

structure, provided that the stress response characteristics (time histories or PSDs) 

at all desirable points are available. These stress response characteristics are 

predicted from limited number of vibration sensors using a high fidelity finite 

element model and different prediction methods, including Kalman filter type 

techniques, kriging approximations and modal expansion methods. The 

effectiveness of the proposed methods is demonstrated using simulated data from 
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a chain-like spring-mass model and a small-scale model of a vehicle structure. 

The proposed framework can be used to construct fatigue damage accumulation 

and lifetime prediction maps consistent with the actual operational conditions 

provided by a monitoring system. These maps are useful for designing optimal 

fatigue-based maintenance strategies for metallic structures taking into account all 

uncertainties in modeling and fatigue predictions. 
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CHAPTER 1 Introduction  

1.1 Research Context 

1.1.1 Preface and Motivation 

Structural dynamics plays an increasing role in the design and analysis of 

engineering systems. In modern analysis of structural dynamics, much effort is 

devoted to the derivation of accurate models of structures. Civil and mechanical 

engineering are some examples of engineering disciplines which have become 

more and more reliant on computational models and simulation results in order to 

predict the performance of the analyzed structural system. Today's computational 

resources make it more and more possible to analyze complex structures by 

sophisticated numerical models, which are usually Finite Element (FE) models 

(Bathe and Wilson, 1976; Bathe, 1996). Thus, the availability of an accurate 

dynamic finite element model of a structure is very important for engineers as it 

allows them to improve the dynamic design of the structure at computer level 

resulting in an optimized design apart from savings in terms of money and time. 

However, there may be some inaccuracies or uncertainties that may be associated 

with a finite element model. Despite the available powerful computational tools, 

numerical models are subject to the limitation of available data, physical theory, 

mathematical representation and numerical solutions. First of all the discretization 

error, arising due to approximation of a continuous structure by a finite number of 
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individual elements, is inherent to the finite element technique. Other inaccuracies 

may be due to the assumptions and simplifications made by the analyst 

concerning the choice of elements, modelling of boundary conditions, joints, etc. 

These assumptions and simplifications have as a result that when tests are 

performed to validate the analytical model, inevitably their results, notably natural 

frequencies and modeshapes, do not coincide with the expected results from the 

theoretic model. Given the availability of an accurate data acquisition and 

measuring equipment the measured test data, though may not be precise, is 

generally considered to be more accurate than analytical model predictions. 

This has led to the development of techniques for the modification or correction 

of a finite element model, based on the measured test data, also referred to as 

model updating or model calibration. Generally speaking, the aim of model 

updating is to use the modal properties, mainly identified modal frequencies and 

mode shapes, in order to validate a finite element model (FEM) as well as update 

the values of various properties of the FEM considered as unknown parameters, 

such as material properties, geometrical properties and boundary conditions, in 

order to obtain a reliable FEM model of the structure consistent with the measured 

data (Mottershead and Friswell, 1993; Katafygiotis et al., 1998; Bohle and 

Fritzen, 2003; Teughels, 2003; Christodoulou and Papadimitriou, 2007). 

Finite Element model updating serves a wide array of purposes; this updated FE 

model for instance can be used to carry out updated response predictions 

consistent with the test data, or simply to identify unknown system parameters. 

One of the most promising application areas of FE model updating is structural 

health monitoring (SHM). By calibrating stiffness parameters of FE models, based 

on observed modal characteristics, damage can be identified, quantified and 

located. Here damage is defined as changes to the material and/or geometric 

properties of these systems, including changes to the boundary conditions and 

system connectivity, which adversely affect the system’s performance. In this 

context, FE model updating is also used to improve predictions of structural 

response and reliability. 

1.1.2 Management of Uncertainties 

FE model updating aims to modify or correct the initial FE model in order to 

become an accurate reflection of the observed structural behavior. However, it is 

always observed that even after the process of performing model updating, a 

comparison between the output of the FE model and the respective results of the 

experimental tests always reveals some discrepancies. These differences are due 
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to uncertainties that arise from the simplified assumptions and idealizations used 

for developing models for simulating the behaviour of engineering structures, as 

well as models for simulating the loads (mechanical, thermal, etc.) that are applied 

on the structures. These uncertainties include:  

Modelling uncertainties: arising in modelling the constitute behaviour of 

materials, the damage mechanisms (e.g. due to fatigue, corrosion), the support 

conditions of structures and their interaction with their environment, the 

connection between structural members (fixity conditions, friction mechanisms, 

impact phenomena), the geometric variability due to manufacturing processes.  

Loading uncertainties: arising from the lack of detailed knowledge of the spatial 

and temporal variation of the forces (mechanical, thermal, etc) applied to 

engineering structures. Examples include spatial variability of road roughness 

affecting the dynamics of vehicles, spatial and temporal variability of earthquake-

induced excitations on civil engineering structures, turbulent wind loads affecting 

the design of aircrafts, variability of thermal loads affecting the design of a large 

class of mechanical and aerospace structures.  

Numerical uncertainties: stemming from PDE spatial discretization using finite 

element methods, temporal discretization used in numerical time integration 

schemes, rounding-off errors in numerical solutions due to computer inaccuracies.  

The uncertainties may affect considerably the prediction of performance and 

safety of the analyzed systems. Modeling tools and techniques are necessary for 

identifying   accurate mechanical models taking into account all uncertain factors, 

properly quantify uncertainties for the purpose of integrating them with the 

mechanical models, as well as analyze through model simulation the effect of 

uncertainties on the performance of engineering structures.  

In the context of this thesis, emphasis is given on model uncertainties. Over the 

last decades, several approaches have been proposed for taking model 

uncertainties into consideration. These approaches have been formulated in the 

framework of the parametric, the non-parametric and the Bayesian approach.  

1.1.2.1 Model Uncertainties within the parametric approach  

Parameter uncertainties relate to the parameters of the mathematical mechanical 

model; more specifically to material parameters, such as the elasticity modulus or 

the mass density, and to geometrical parameters, such as the cross-section 

dimensions of structural members. The uncertainty affecting these parameters, 

mostly due to natural variability, can be accounted for by modelling these as 
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random quantities, i.e. by constructing a so-called parametric model of 

uncertainties. Within this parametric approach, the uncertainty associated with 

each of the parameters of the models is accounted for explicitly. The uncertainty 

can thus be captured locally, down to a level corresponding to the degree of 

resolution of the mathematical-mechanical model. 

The parametric approach is well established in structural and mechanical 

engineering; comprehensive reviews on stochastic mechanics can be found in the 

work of Schueller (Schueller, 2001 and 2006; Schueller and Pradlwarter, 2009). A 

wide array of methods exists to construct a stochastic representation of the 

random parameters. One of the most widely used parametric approaches in 

stochastic mechanics is the Stochastic Finite Element Method (SFEM), introduced 

by Ghanem and Spanos (1991), where the FE system matrices are expressed in 

terms of the underlying random FE model parameters. 

This type of approach is suitable to quantify uncertainty that is due to the inherent 

variability in the system parameters. On the other hand, uncertainty that is due to 

the lack of knowledge regarding a system, does not explicitly depend on the 

system parameters. For example, there can be unquantified errors associated with 

the equation of motion (linear or nonlinear), in the damping model (viscous or 

non-viscous), in the model of structural joints, and also in the numerical methods 

(e.g. tolerances in the optimization and iterative algorithms, step sizes in the time-

integration method.) 

It is evident that the parametric approach is not suitable to quantify uncertainty 

that is due to the lack of knowledge regarding a system. As a result non-

parametric approaches have been proposed for this purposes (Soize, 2000 and 

2001 and 2005). 

1.1.2.2 Model Uncertainties within the non-parametric approach  

According to Soize (2008 and 2010 and 2013),model uncertainties cannot be 

taken into account by applying the parametric approach, which is underlined by 

case studies in which it is shown that the desired discrepancy tolerated between 

the output of the real system and the predicted output cannot be reached with the 

parametric approach. The non-parametric model of uncertainties has been 

proposed for structural dynamics problems, in order to capture model 

uncertainties in addition to the parametric uncertainties. This approach is based on 

the random matrix theory introduced in the 1930ies in the field of mathematical 

statistics (Metha, 2004). The non-parametric approach has been developed by 
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introducing a new ensemble of random matrices, which differs from other known 

ensembles of the random matrix theory. 

The non-parametric method makes use of random matrix theory to construct a 

probabilistic model of the prediction model, resulting in random mass, stiffness 

and damping matrices, thus avoiding the need for explicit mapping of model 

parameters to the system matrices. More specifically, within this approach, the 

relaxation of the topological connectivity of the structural matrices aims at a 

consideration of the uncertainties in processes that are not modeled explicitly by 

structural parameters. Then the probability model model for the random matrices 

is constructed by using the principle of maximum entropy (Shannon, 1948). This 

method makes it possible to construct directly the probabilistic model of the 

generalized mass, damping and stiffness matrices which is proposed as an 

approach for considering the whole spectrum of uncertainties. 

By combining the parametric and non-parametric methods, model parameter 

uncertainty as well as model structure uncertainty can be included. This 

generalized approach allows to model the individual errors seperately, depending 

on the type and amount of information, that is available. For more details on this 

method and its applications, the reader is referred to Soize (2010) and Batou et al. 

(2011), respectively. 

1.1.2.3 Model Uncertainties within the Bayesian approach  

The Bayesian interpretation of probability does not distinguish between the above 

discussed two categories of uncertainties since all uncertainties are seen as 

uncertainties that is due to the lack of knowledge regarding a system and not due 

to the inherent variability in the system parameters. Probability is not interpreted 

as the relative occurrence of a random event in the long run, but as the plausibility 

of a hypothesis. The notation of an uncertain-valued parameter as a random 

variable, as used in the parametric approach, is a characteristic of the so-called 

frequentist interpretation of probability. On the other hand, the Bayesian 

intepretation of probability quantifies the uncertainty about propositions and 

therefore its domain contains both physical variables and models by themselves. 

The wider scope of the interpretation of probability in the Bayesian sense leads to 

the fact that the reason of uncertainty of both parameters and models is seen in the 

incomplete available information. Hence, also in the Bayesian framework, it refers 

to all kinds of uncertainties since also the unceratinties about parameter values are 

intepreted as lack of knowledge rather than as an intrinsic property of the real 

structure. 
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The Bayesian inference framework complements the probabilistic model 

description with a probabilistic model for the prediction error. The prediction 

error represents the difference between the model and the system output. It 

consists of two parts, the measurement error and also the fact that there are 

discrepancies between the model and the real system. Each probability model in 

the chosen model class is described by probability distributions of the unknown 

parameters and the prediction error. Based on the available data, the initial 

knowledge of the range of the unknown parameters is updated, making some 

parameter ranges more plausible if the data provide the necessary information. 

Therefore, the values of the model parameters are updated in order to better 

predict the output of the system, but due to the fact that there is no true value of 

the parameters, there is a gap between model output and measurement, which is 

bridged by the prediction error. Hence, the prediction error provides a means for 

considering those uncertainties that cause the remaining lack of knowledge which 

prohibits a perfect matching between model and real system.   

The Bayesian statistical framework represents a general, rational and powerful 

tool for model updating that is capable of handling the above stated difficulties 

(Beck and Katafygiotis, 1998; Katafygiotis and Beck, 1998). The Bayesian 

approach updates the relative plausibility of each model within a set of candidate 

models, which is quantified by the posterior probability distribution. Therefore, 

probability in the Bayesian sense is interpreted as the degree of plausibility of a 

hypothesis based on the conditioning information (Cox, 1946; Jaynes, 2003), 

where the hypothesis may refer to the structural parameters but also to the model 

itself. This interpretation makes it possible to extend the application of probability 

theory to fields where the frequentist interpretation may not be directly intuitive, 

as it is the case for one-of-a-kind structures, where no ensemble exists, and also in 

the case of limited data, where classical statistics is of limited applicability. 

Therefore, Bayesian statistics makes it possible to deal with the usual situation in 

industry, where a large amount of experimental data is infeasible due to high costs 

associated with test campaigns, and it provides a means for making decisions 

based on limited, incomplete information. 

1.1.3 Incorporation of Measured Data in Structural Response Simulations 

Methods for reducing the uncertainty about some unknown structural parameters 

expressed by the probability distributions assigned to them aim at an increase of 

the above mentioned level of information in order to further increase the 

credibility of the established model. This task can be accomplished by using 
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measured data into the analysis. The measured data can be either modal data or 

response time histories.  

The measured data used for FE model updating purposes can be obtained during 

forced, ambient or hybrid vibration testing (Peeters and De Roeck, 2001; 

Reynders and De Roeck, 2008). In cases where the input excitation is known, the 

response time histories, e.g accelerations measured at certain locations along the 

structure can be used directly by solving the equation of motion. However, since 

this condition is very rare for dynamic systems, in most cases of linear dynamic 

systems we use modal data that are identified by the measured response time 

histories using experimental (EMA) (Ntotsios, 2009), operational (OMA) (Felber, 

1993; Beck et al., 1994; Peeters and De Roeck, 1999; Verboten, 2002) or 

combined (OMAX) modal analysis methods (Reynders, 2009). An additional 

advantage of using modal characteristics is that they are relatively few in number 

but provide a comprehensive description of the overall dynamical behavior of a 

structure. However, in cases that nonlinearities are imposed on the structure, the 

response time histories are used instead of the modal data. 

The experimental activities serve the purpose of both improving the numerical 

model and they are also a means for determining the accuracy with respect to the 

intended use of the model. The enhancement of a numerical model based on 

experimental data is denoted as model updating and the subsequent process of 

determining the degree of accuracy of the established model is referred to as 

model validation. A model which meets the requirements in terms of accuracy is 

referred to as validated model. In the present thesis particular weight is attached to 

the dynamic behavior of structures, hence the above mentioned comparison is 

based on properties of the natural modes of the structure such as natural 

frequencies and mode shapes for linear structures. The combined use of 

frequencies and mode shapes serves an important goal: even though natural 

frequencies cn be measured relatively accurately and are generally quite sensitive 

to changes in structural stiffness, they provide only global information about the 

structure. Therefore, mode shape components are capable of providing localized 

information along the structure. For example, in the problem of locating damage 

the mode shape displacements are essential. In most cases, however, the mode 

shape components are less sensitive to changes in structure stiffness and are more 

difficult to measure accurately. 
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1.2 Organization of this Thesis 

The research work presented in the thesis contributes to three interrelated research 

areas of structural response and reliability simulations using vibration 

measurements:  

(1) Development of component mode synthesis techniques that are integrated 

with model updating methods and with Bayesian uncertainty and 

quantification framework for reducing the computation effort without 

sacrificing the accuracy presented in Chapters 2 and 3,  

(2) Development of Bayesian uncertainty and quantification framework for 

nonlinear systems, presented in Chapter 4, and  

(3) Development of methods for predicting the fatigue damage accumulation in 

the entire body of metallic structures exploiting vibration measurements from 

a limited number of sensors, presented in Chapter 5.  

In the first research area, for the analyzed structures in FE model parameterization 

schemes the stiffness matrix of the structures is assumed to depend linearly on 

only one of the parameters of the model. In the second research area , time 

histories are used to integrate the information contained in vibration 

measurements for making informed response predictions using the identified 

mechanical models. In the third research area, a problem that is formulated and 

solved for the first time is related to the estimation of fatigue damage 

accumulation in the entire body of a metallic structure using ambient vibration 

measurements collected from a limited number of sensors placed on the structure. 

The application areas of this research are mainly related to ground/air vehicle and 

civil structures. Emphasis though is given to applications on ground vehicles.  

A more detailed overview of the contents of this thesis is given in the following.  

Chapter 1: The research context and the general motivation of this PhD thesis is 

given.This chapter acts as a prologue to this work, by presenting in detail the 

meaning of  “management of uncertainties” and “using measured data” that 

appear in the title of this thesis.  

Chapter 2: The widely used deterministic finite element model updating methods 

are reviewed in this chapter and the Bayesian framework for parameter estimation 

and model class selection is presented. The Bayesian tools for identifying system 

and uncertainty models as well as performing model class selection are Laplace 

methods of asymptotic approximation and stochastic simulation algorithms such 

as Markov Chain Monte Carlo (MCMC) and Transitional MCMC. Both tools are 
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used to represent the posterior distribution of the parameters of a model class 

introduced to simulate the behavior of the engineering system, as well as compute 

multidimensional integrals over high-dimensional spaces of the uncertain model 

parameters, manifested in the formulations for model class selection. The 

asymptotic approximations involve solving optimization problems as well as 

computing the Hessian of certain functions in a small number of points in the 

parameter space. The stochastic simulation tools involve generating samples for 

tracing and then populating the important uncertainty region in the parameter 

space, as well as evaluating integrals over high-dimensional spaces of the 

uncertain model parameters. These tools require a moderate to very large number 

of system re-analyses to be performed over the space of uncertain parameters. 

Consequently, the computational demands depend highly on the number of 

system analyses and the time required for performing a system analysis. For 

complex models of engineering systems, one simulation may require a significant 

amount of time and the overall computational demands involved in the Bayesian 

tools may be substantial, or even excessive for stochastic simulation algorithms. 

This chapter proposes methods for drastically reducing the computational 

demands at the system, algorithm and hardware levels involved in the 

implementation of Bayesian tools. 

Chapter 3: A framework is presented for integrating the Craig-Bampton CMS 

technique into existing FE model updating formulations in order to reduce the 

time consuming operations involved in reanalyses of large-order models of 

hundreds of thousands or millions degrees of freedom. The proposed method 

exploits the fact that in FE model parameterization schemes the stiffness matrix of 

the structure often depends linearly on the parameters of the model and also that a 

parameter usually represents a global property (e.g. the modulus of elasticity) of a 

substructure. The division of the structure into components is then guided by the 

FE parameterization scheme so that the stiffness matrix that arise for each one of 

the introduced components to depend linearly on only one of the parameters to be 

estimated. In this case the fixed-interface and constraint modes of the components 

for any value of the model parameters can be obtained exactly from the fixed-

interface and constraint modes corresponding to a single reference FE model, 

avoiding re-analyses at component level. Additional substantial reductions in 

computational effort are also proposed by reducing the number of interface DOF 

using characteristic interface modes through a Ritz coordinate transformation. The 

repeated solutions of the component and interface eigen-problems are avoided, 

reducing drastically the computational demands in FE formulations, without 

compromising the solution accuracy. It is also shown that the linear expansions of 
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the original mass and stiffness matrices in terms of the structural parameters are 

preserved for the reduced mass and stiffness matrices. Thus, the reassembling of 

the reduced system matrices from the original matrices is also avoided in the 

execution of the system re-analyses. The only time consuming operation left is the 

re-analysis of the eigenproblem of the reduced-order model. It is finally 

demonstrated that the new developments are readily accommodated in existing FE 

model updating formulations and software with minimal modifications. Moreover, 

in this chapter, Bayesian estimators are proposed for damage identification 

(localization and quantification) of civil infrastructure using vibration 

measurements. The structural damage identification is accomplished by 

associating a FE model class to a damage location pattern in the structure, 

indicative of the location of damage. The effectiveness of the damage 

identification methodology is illustrated using simulated vibration data from a real 

bridge. It can be concluded that the proposed methodology, illustrated in this work 

using computationally efficient stochastic simulation algorithms, correctly 

identifies the location and the magnitude of damage. Surrogate models are also 

incorporated in the formulation to further alleviate the computational burden. 

Finally, parallel computing algorithms are combined with the proposed method to 

efficiently distribute the computations in available GPUs and multi-core CPUs. 

Chapter 4: A Bayesian uncertainty quantification and propagation (UQ&P) 

framework is presented for identifying nonlinear models of dynamic systems 

using vibration measurements of their components. The measurements are taken 

to be either response time histories or frequency response functions of linear and 

nonlinear components of the system. For such nonlinear models, stochastic 

simulation algorithms are suitable Bayesian tools to be used for identifying 

system and uncertainty models as well as perform robust prediction analyses. At 

the system level, efficient computing techniques are integrated with Bayesian 

techniques to efficiently handle large order models of hundreds of thousands or 

millions degrees of freedom (DOF) and localized nonlinear actions activated 

during system operation. Specifically, fast and accurate component mode 

synthesis (CMS) techniques that have been proposed in Chapter 3 are used, 

consistent with the FE model parameterization, to achieve drastic reductions in 

computational effort. The UQ&P framework is applied to a small scale 

experimental model of a vehicle with nonlinear wheel and suspension 

components. Uncertainty models of the nonlinear wheel and suspension 

components are identified using the experimentally obtained response spectra for 

each of the components tested separately. These uncertainties, integrated with 

uncertainties in the body of the experimental vehicle, are propagated to estimate 
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the uncertainties of output quantities of interest for the combined wheel-

suspension-frame system. The computational challenges are outlined and the 

effectiveness of the Bayesian UQ&P framework on the specific example structure 

is demonstrated. 

Chapter 5: A novel framework for estimating damage accumulation due to 

fatigue in the entire body of a metallic structure using vibration measurements 

from a limited number of sensors is presented. Fatigue is estimated using the 

Palmgren-Miner damage rule, S-N curves and rainflow cycle counting methods of 

the variable amplitude time histories of the stress components. These methods can 

be applied to any point in the structure and construct the complete fatigue map of 

the entire structure, provided that the stress response characteristics (time histories 

or PSDs) at all desirable points are available. These stress response characteristics 

are predicted from limited number of vibration sensors using a high fidelity finite 

element model and different prediction methods, including Kalman filter type 

techniques, kriging approximations and modal expansion methods. The 

effectiveness of the proposed methods is demonstrated using simulated data from 

a chain-like spring-mass model and a small-scale model of a vehicle structure. 

The proposed framework can be used to construct fatigue damage accumulation 

and lifetime prediction maps consistent with the actual operational conditions 

provided by a monitoring system. These maps are useful for designing optimal 

fatigue-based maintenance strategies for metallic structures taking into account all 

uncertainties in modeling and fatigue predictions.   

Chapter 6: Summarizes the conclusions and the novel contributions of this work. 

Also it presents suggestions for future research on issues related to this thesis. 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



2. Finite Element Model Updating Methods in System Dynamics 12 

 

CHAPTER 2 Finite Element Model Updating Methods 

in System Dynamics 

2.1 Introduction 

Finite element (FE) models are widely used to predict the dynamic characteristics 

of systems. These models often give results that differ from the measured results 

and therefore need to be updated to match the measured data. FE model updating 

entails tuning the model so that it can better reflect the measured data from the 

physical structure being modeled. One fundamental characteristic of a FE model 

is that it can never be a true reflection of the physical structure but it will forever 

be an approximation. The aim of FE model updating is the identification of a 

better approximation model of the physical structure than the original model.  

Structural model updating methods (Mottershead and Friswell, 1993; Marwala, 

2010; Yuen and Kuok, 2011) are used to reconcile mathematical models, usually 

discretized finite element (FE) models, with experimental data. Structural model 

parameter estimation problems based on identified modal characteristics (modal 

frequencies and mode shapes), are often formulated as weighted least-squares 

problems (Mottershead and Friswell, 1993; Fritzen et al., 1998; Katafygiotis et al., 

1998; Yuen et al., 2006; Christodoulou and Papadimitriou, 2007; Moaveni et al., 

2008) in which metrics, measuring the residuals between measured and model 
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predicted modal characteristics, are build up into a single weighted residuals 

metric formed as a weighted average of the multiple individual metrics using 

weighting factors. Standard optimization techniques are then used to find the 

optimal values of the structural parameters that minimize the single weighted 

residuals metric. Due to model error and measurement noise, the results of the 

optimization are affected by the values assumed for the weighting factors. The 

model updating problem has also been formulated as a multi-objective 

optimization problem (Haralampidis et al., 2005; Christodoulou et al., 2008), that 

allows the simultaneous minimization of the multiple metrics, eliminating the 

need for using arbitrary weighting factors for weighting the relative importance of 

each metric in the overall measure of fit. The multi-objective parameter estimation 

methodology provides multiple Pareto optimal structural models in the sense that 

the fit each Pareto optimal model provides in a group of measured modal 

properties cannot be improved without deteriorating the fit in at least one other 

modal group. The Normal Boundary Intersection algorithm (Das et al., 1998) is 

used to compute the Pareto optimal solutions.  

In addition, a Bayesian statistical framework (Beck , 1989; Sohn and Law, 1997; 

Beck and Katafygiotis, 1998), for structural model parameter identification is used 

to identify the values of the weights. Using Bayes theorem, the probability 

distribution of the weight values based on the data is formulated as a probability 

integral over the structural model parameters (Christodoulou and Papadimitriou, 

2007). An asymptotic approximation is presented to analytical approximate this 

probability distribution. The best values of the weights are selected as the ones 

that maximize the probability distribution of the weights.  

Bayesian techniques have also been proposed to quantify the uncertainty in the 

parameters of a FE model, select the best model class from a family of 

competitive model classes (Beck and Yuen, 2004; Yuen , 2010),, as well as 

propagate uncertainties for robust response and reliability predictions 

(Papadimitriou et al., 2001). Posterior probability density functions (PDFs) are 

derived that quantify the uncertainty in the model parameters based on the data. 

These PDFs are formulated in terms of the modal residuals involved in the 

aforementioned single and multi-objectives deterministic methods. The Bayesian 

tools for identifying uncertainty models as well as performing robust prediction 

analyses are Laplace methods of asymptotic approximation and more accurate 

stochastic simulation algorithms (SSA) such as Markov Chain Monte Carlo 

(MCMC) (Metropolis et al., 1953), Transitional MCMC (Ching and Chen, 2007) 

and Delayed Rejection Adaptive Metropolis (Haario et al., 2006). Similar to the 
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deterministic FE model updating techniques, the asymptotic approximations in the 

Bayesian framework involve solving an optimization problem for finding the most 

probable model, as well as estimating the Hessian of the logarithm of the posterior 

PDF at the most probable model for describing the uncertainty in the model 

parameters. The SSA algorithms involve generating samples for tracing and then 

populating the important uncertainty region in the parameter space, as well as 

evaluating integrals over high-dimensional spaces of the uncertain model 

parameters.  

The optimal structural models and their uncertainties resulting from model 

updating methods can be used for improving the model response and reliability 

predictions (Papadimitriou et al., 2001; Beck and Au, 2002), for assessing 

structural health and identifying structural damage (Fritzen et al., 1998; 

Katafygiotis et al., 1998; Yuen et al., 2006; Christodoulou and Papadimitriou, 

2007; Metropolis et al., 1953, Vanik et al., 2000; Papadimitriou et al., 2001; Beck 

and Au, 2002; Beck and Yuen, 2004; Haario et al., 2006; Ching and Chen, 2007; 

Yuen, 2010) and for improving effectiveness of structural control devices 

(Ntotsios et al., 2009).  

This Chapter is organised as follows. The finite element model parameterization 

for both linear and nonlinear formulations is presented in Section 2.2. 

Deterministic FE model updating formulations using modal characteristics are 

reviewed in Section 2.3. The framework for Bayesian model parameter estimation 

and model class selection is outlined in Sections 2.4 and 2.5. The Bayesian tools 

are given in detail in Section 2.6. In Section 2.7, the computational aspects that 

arise from for finite element models with large number of DOFs are discussed and 

methods for reducing the computational effort are proposed in Section 2.8. 

Finally, conclusions are summarized in Section 2.9.  

2.2 Finite Element Model Parameterization 

Consider a parameterized class of linear structural models (e.g. a class of finite 

element models) used to model the dynamic behaviour of the structure. The 

structural model class, denoted by M , involves a set of model parameters 
N

R . The equation of motion of such systems is 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )M u t C u t K u t f t      (2.1) 

where ( ) n nK , ( ) n nM and ( ) n nC  are the global model stiffness , 

mass, and damping matrices respectively, ( )u t  is the displacement vector of the 
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model DOFs, ( )f t  is the vector of forces at the model DOFs, n  is the number of 

model DOFs. 

The parameter set  is the set of free model parameters to be estimated using the 

measured data. The parameter set is usually associated with geometrical, material, 

stiffness or mass properties and boundary conditions. Examples of finite element 

properties that can be included in the parameter set are: modulus of elasticity, 

cross-sectional area, thickness, moment of inertia and mass density of the finite 

elements comprising the model, as well as spring (translational or rotational) 

stiffnesses used to model fixity conditions at joints or boundaries.  

Using finite element model analysis, one derives the element stiffness and the 

mass matrices, the stiffness and the mass matrices of the substructures formed by 

a group of elements, and finally the global stiffness and the mass matrices. These 

matrices depend on the properties of the structure, like modulus of elasticity, mass 

density and the geometrical characteristics (e.g. cross-sectional area, thickness, 

length and moments of inertia). Usually, a subgroup of these properties is selected 

for updating. The properties that are updated are included in the parameter set . 

For the case of linear relation between the stiffness and mass matrices of the structural 

model and the parameters set  one has that  

 

0 ,

1

0 ,

1

( )

( )

N

j j

i

N

j j

j

K K K

M M M

 (2.2) 

where N  is the number of parameters used to parameterize the structural model, 0K  

and 0M  are assembled from element stiffness and mass matrices that do not depend on 

, and the , jK  and , jM  are assembled from element stiffness and mass matrices that 

depend linearly on . Once the parameterization has been done and the matrices 

0K , 0M , , jK  and have been calculated and stored in computer’s memory, global 

stiffness and mass matrices are easily calculated for each value of the parameters 

 using the parameterization (2.2). That parameterization is computationally 

attractive since the model updating process requires the repeated computation of 

global matrices for different values of the parameters . 

In the general case where the relation between model stiffness and mass matrices, 

and the parameters set  is nonlinear, the global stiffness and mass matrices are 

given by the following expressions 
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0 , ,

1 1

0 , ,

1 1

( ) ( )

( ) ( )

N N

j j i j

j i

N N

j j i j

j i

K K K K f

M M M M g

 (2.3) 

where ( )jf and ( )jg  are nonlinear functions of the parameter j . For each 

value of the parameter set , the evaluation of the global matrices should be 

repeated only for the elements that have non-linear relation between the element 

matrices and the parameters . Then these matrices are composed in order to form 

the non-linear part of the global matrices. This parameterization scheme is 

computationally efficient, if there is only a small number of elements that have 

non-linear relation between the stiffness and mass matrices and the parameters set 

. 

In this chapter, we limit to the formulation to the case for which the stiffness and mass 

matrices depend linearly on the model parameters , as presented in (2.2). 

2.3 Deterministic FE Model Updating using Modal 

Characteristics 

Consider a parameterized linear FE model class M  of a structure and let N
R  

be a vector of free structural model parameters to be estimated using a set of 

modal properties identified from vibration measurements. The identified modal 

properties consist of the square of the modal frequencies, 2ˆ ˆ
r r  and the mode 

shape components 0ˆ N

r  at 0N  measured DOFs, for 1, ,r m , where m  is 

the number of observed modes. The values of the parameter vector  are 

estimated so that the modal frequencies 2( ) ( )r r  and modeshapes 

0( )
N

r  predicted by the FE model, best matches the experimentally obtained 

modal data D . For this, the following modal frequency and mode shape residuals 

 
2

2

2
1 1

ˆ[ ( ) ]
( ) ( )

ˆr

m m

r r
r

r r r

J  (2.4) 

and 

 

2

2 2

2
1 1 1

ˆ( ) ( )
( ) ( ) [1 ( )]

ˆr r

m m m
r r r

r

r r r
r

J MAC 

    
   

  


       (2.5) 
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are introduced to measure the difference between the identified modal data and 

the model predicted modal data for the modal frequency and modeshape 

components, respectively, where 
2ˆ( ) ( ) / ( )T

r r r r        is a normalization 

constant that guaranties that the measured mode shape ˆ
r  at the measured DOFs 

is closest to the model mode shape ( ) ( )r r     predicted by the particular value 

of   , ˆ ˆ/(|| |||| ||)T

r r r r rMAC  is the modal assurance criterion between the 

experimentally identified and model predicted mode shapes for the r - th mode, 

and 2 T|| ||z z z  is the usual Euclidian norm.  

The mode shape components 0( ) ( )
N

r rL R      at the 0N  measured DOFs 

involved in (2.2) are computed from the complete mode shapes ( ) N

r R  that 

satisfy the eigenvalue problem 

 [ ( ) ( ) ( )] ( ) 0r rK M  (2.6) 

where ( ) n nK  and ( ) N NM R  are respectively the stiffness and mass 

matrices of the finite element model of the structure, N  is the number of model 

degrees of freedom (DOF), and 0N N
L R  is an observation matrix, usually 

comprised of zeros and ones, that maps the N  model DOFs to the 0N  observed 

DOFs. For a model with large number of DOFs, N , the number of measurement 

locations 0N  is a very small fraction of the model DOFs ( 0N N ).  

2.3.1 Modal Grouping Schemes 

The grouping of the modal properties { ( ),  ( ), 1, , }r r r m  into n groups 

and the selection of the measures of fit 1( ), , ( )nJ J  are usually based on user 

preference.  

The number and type of modal properties involved in the i th group as well as the 

particular form of ( )iJ may depend on the modal characteristics (mode type, 

modal frequencies and/or modeshapes), their expected uncertainties, and their 

significance of each modal property on the model identification. The modal 

properties assigned to each group are selected by the user according to their type 

and the purpose of the analysis. Among the various grouping schemes available, 

the following are considered for illustration purposes.  

A grouping scheme is defined so that each group contains one modal property, the 

modal frequency or the modeshape for each mode. In this case, there are 2n m  

measures of fit given by ( ) ( )
iiJ J and 1( ) ( )mJ J


   , 1, ,i m . This 
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grouping scheme, allows one to estimate all optimal models that trade-off the fit 

in various modal frequencies and modeshapes. A special case of grouping is to 

consider only the first m groups measuring the fit between the modal frequencies, 

ignoring the fit in the modeshapes.  

A second grouping scheme may be defined by grouping the modal properties into 

two groups as follows. The first group contains all modal frequencies with the 

measure of fit 1( )J selected to represent the difference between the measured and 

the model predicted frequencies for all modes, while the second group contains 

the modeshape components for all modes with the measure of fit 2 ( )J  selected 

to represents the difference between the measured and the model predicted 

modeshape components for all modes. Specifically, the two measures of fit are 

given by 

 
1

1

1
( ) ( )

r

m

r

J J
m

 (2.7) 

and  

 
2

1

1
( ) ( )

r

m

r

J J
m

 


   (2.8) 

This selection allows one to estimate models that trade-off the overall fit in modal 

frequencies with the overall fit in the modeshapes.  

Finally, a third grouping scheme, may be selected so that a group contains the 

modal frequency and all modeshape components at the measured DOFs for a 

particular observed mode. In this case the number of groups equals the number of 

observed modes n m . The i th measure of fit ( )iJ accounts for the mismatch 

between the measured and the model predicted frequencies and modeshape 

components for the i th measured mode. Specifically, can be given in the form  

 
( ) ( )

( )
2

i i

i

J J
J

  



  (2.9) 

This grouping scheme is appropriate when the objective of the identification is to 

estimate all optimal models that trade-off the fit between different modes.  

In the context of this thesis, the second grouping scheme, with the measures of fit 

1( )J and 2 ( )J , is preferred for model updating purposes. 
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2.3.2 Formulation as single-objective optimization problem 

The estimation of the model parameters is traditionally formulated as a 

minimization of the weighted residuals  

 1 1 2 2( ; ) ( ) ( )J w w J w J  (2.10) 

where [0, )iw   , 1,2i  and 
2

1
1ii

w .The relative importance of the 

residual errors in the selection of the optimal model is reflected in the choice of 

the weights. The results of the identification depend on the weight values used. 

The weight values depend on the adequacy of the model class used to represent 

structural behaviour and the accuracy with which the measured modal data are 

obtained. However, the choice of weight values is arbitrary since the modelling 

error and the uncertainty in the measured data are usually not known apriori. The 

single objective formulation is computationally attractive since conventional 

minimization algorithms, such as Quasi-Newton algorithm, can be applied to 

solve the problem. The objective function ( ; )J w  represents an overall measure 

of fit between the measured and the model predicted characteristics. Conventional 

weighted least squares methods assume equal weight values, 1 2 1/ 2w w . This 

conventional method is  referred as the equally weighted modal residuals method. 

2.3.3 Formulation as multi-objective optimization problem  

The parameter estimation problem can be formulated as a multi-objective 

optimization problem (Haralampidis et al., 2005; Christodoulou et al., 2008),  of 

finding the values of   that simultaneously minimize the objectives 

 1 2( ) ( ( ), ( ))J J J  (2.11) 

where ( )J  is the objective vector defined over the two-dimensional objective 

space. For conflicting objectives 1( )J and 2 ( )J , there is no single optimal 

solution, but rather a set of alternative solutions, known as Pareto optimal 

solutions, that are optimal in the sense that no other solutions in the parameter 

space are superior to them when both objectives are considered.  

Using multi-objective terminology, the Pareto optimal solutions are the non-

dominating vectors in the parameter space  , defined mathematically as follows. 

A vector    is said to be non-dominated regarding the set   if and only if 

there is no vector in   which dominates  . A vector   is said to dominate a 

vector '  if and only if  

 ( ) ( ')   {1, , }   and     {1, , } :  ( ) ( ')i i j jJ J i n j n J J  (2.12) 
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The set of objective vectors ( )J corresponding to the set of Pareto optimal 

solutions   is called Pareto optimal front. The characteristics of the Pareto 

solutions are that the modal residuals cannot be improved in any modal group 

without deteriorating the modal residuals in at least one other modal group. 

Specifically, using the objective functions in (2.7) and (2.8), all optimal models 

that trade-off the overall fit in modal frequencies with the overall fit in the 

modeshapes are estimated. 

The multiple Pareto optimal solutions are due to modelling and measurement 

errors. The level of modelling and measurement errors affect the size and the 

distance from the origin of the Pareto front in the objective space, as well as the 

variability of the Pareto optimal solutions in the parameter space. The variability 

of the Pareto optimal solutions also depends on the overall sensitivity of the 

objective functions or, equivalently, the sensitivity of the modal properties, to 

model parameter values  . Such variabilities were demonstrated for the case of 

two-dimensional objective space and one-dimensional parameter space in the 

work by Christodoulou and Papadimitriou (2007). It should be noted that in the 

absence of modelling and measurement errors, there is an optimal value ˆ  of the 

parameter set  for which the model based modal frequencies and modeshape 

components match exactly the corresponding measured modal properties. In this 

case, all objective functions 1 2
ˆ ˆ( ), ( )J J  take the value of zero and, consequently, 

the Pareto front consists of a single point at the origin of the objective space 

The solution obtained by optimizing (2.10) for any weight value is a Pareto 

optimal solution [10]. However, in order to adequately describe the Pareto optimal 

solutions by uniformly spaced points along the solution manifold in the parameter 

space, the multi-objective optimization problem is preferred since varying the 

weight value in (2.10) may miss significant portions of the Pareto optimal 

solutions in the objective and parameter space. An advantage of the multi-

objective identification methodology is that all admissible solutions in the 

parameter space are obtained. However, this is a time consuming task, it requires 

that multi-objective optimization algorithms are available and that the number of 

objectives remain small in order to limit the number of solutions required to fully 

represent the multi-dimensional Pareto front. 

2.4 Bayesian FE Model Updating using Modal Characteristics 

Consider a parameterized class Μi  of structural dynamics models used to predict 

various output quantities of interest of a system. Let iN
i R  be a set of 
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parameters in this model class that need to be estimated using experimental data. 

Also, let Μ Μ Μ( ; ) ( ; ), ( ; ) , 1, ,oN

i i r i i r i i
R r m  be the 

predictions of the modal frequencies and modeshapes predicted by a model in the 

model class iΜ  given a value of the parameter set i   

 Μ Μ( ; ) ( ; )
r i i r i i

L  (2.13) 

where Μ( ; )
r i i

 is the complete modeshape and oN NL R selects the  
0
N  

measured DOFs from the N  DOFs of the FE model.   

The values of the model parameters i  are considered to be uncertain. Probability 

distributions are convenient mathematical tools to quantify the uncertainty in 

these parameters. Specifically, the probability distribution of the parameter set i  

quantifies how plausible is each possible value of the model parameters. The user 

may assign a prior probability distribution ( )i i  to the model parameters to 

incorporate prior information on the values of the model parameters. The 

structural model and uncertainty propagation algorithms can be used to identify 

the uncertainty in the prediction of the output quantities of interest. However, the 

probability distribution ( )i i  is subjective based on previous knowledge and 

user experience.  

In Bayesian inference, the interest lies in updating the probability distribution of 

the model parameters i  based on measurements and then propagate these 

uncertainties through the structural dynamics model to quantify the uncertainty in 

the output quantities of interest.   

For this, let ˆˆ , , 1, ,oN

r r
D R r m  be the available measured modal 

frequencies ˆ
r

 and modeshape components ˆ
r
 at 

0
N  measured DOFs, where m  

is the number of observed modes. The Bayesian formulation starts by building a 

probabilistic model that characterizes the discrepancy between the model 

predictions Μ( ; )
r i i

, Μ( ; )
r i i

 obtained from a particular value of the model 

parameters i  and the corresponding data D  that are available from experiments. 

This discrepancy always exists due to measurement and model errors. An error 

term e  is introduced to denote this discrepancy. The vector of prediction errors  
( ) ( ) ( )

1[ , , ]i i i
me e e  is defined as the difference between the measured modal 

properties involved in D  for all modes 1, ,r m  and the corresponding modal 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



2. Finite Element Model Updating Methods in System Dynamics 22 

 

properties predicted by a model in the model class iΜ . Specifically, 
( ) ( ) ( )[  ]i i i
r r r
e e e  is given as: 

 Μ ( )ˆ ( ; ) ˆ 1, ,
r

i

r r i i r
e r m  (2.14) 

 

 Μ( ) ( )ˆ ˆ( ; ) 1, ,i i
r r r i i r r

e r m  (2.15) 

where ( ) ( ) ( )ˆ ˆ/i T i T i

r r r r r      is a normalization constant that accounts for the 

different scaling between the measured and the predicted modeshape. The model 

prediction errors are due to modeling error and measurement noise. A 

probabilistic structure for the prediction error needs to be defined in order to 

proceed with the Bayesian calibration. Let Μ
e
 be a family of probability model 

classes for the error term e . This model class depend on a set of prediction error 

parameters e  to be determined using the experimental data. Similarly to the 

structural model parameters i , probability distribution ( )e e  is also assigned to 

quantify the possible values of the prediction error parameters.  

The Bayesian approach (Beck ,1989; Beck and Katafygiotis, 1998) to model 

calibration is used for updating the values of the combined set ( , )i e  

associated with the structural and the prediction error parameters. The parameters 

i  and e  can be considered to be independent with prior probability distribution 

for the combined set given by ( | ) ( | )i i iΜ Μ ( | )e e eΜ , where 

i eΜ={Μ ,Μ }  includes the structural and prediction error model classes. The 

updated distribution ( | , )p D Μ  of the parameters , given the data D  and the 

model class Μ , results from the application of the Bayes theorem  

 
( | , ) ( | )

( | , )
( | )

p D
p D

p D

Μ Μ
Μ

Μ
 (2.16) 

where ( | , )p D Μ  is the likelihood of observing the data from the model class 

and ( | )p D Μ  is the evidence of the model, given by the multi-dimensional 

integral over the space of the uncertain model parameters. 

 ( | ) ( | , ) ( | ) p D p D dΜ Μ Μ  (2.17) 

The updated probability distribution of the model parameters depends on the 

selection of the prediction error e . Assuming that the prediction error model class 

postulates zero-mean Gaussian models for the modal frequency and mode shape 
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error terms 
r

e  and 
r

e , respectively, with equal variances 2  for all modal 

frequency errors 
r

e  and equal variances 2

2/ w  for all mode shape errors
r

e . 

Using probability density functions (PDF) to quantify uncertainty and following 

the Bayesian formulation described in (Christodoulou and Papadimitriou, 2007; 

Beck and Katafygiotis,1998; Vanik et al., 2000), the posterior PDF ( | , )p D Μ  of 

the structural model parameters  and the prediction error parameter  given the 

data D  and the model class Μ  can be obtained in the form  

 

 
0

1

( 1) 2

[ ( | )] 1
( | , ) exp ( ; )  ( | )

22
m N

p D
p D J w   







 
  

 

Μ
Μ Μ  (2.18) 

where  
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ˆ ˆ

m m
r r r

r r

r rr
r

J w w w
      


  


    (2.19) 

 

represents the measure of fit between the experimentally obtained modal data and 

the modal data predicted by a particular model in the class Μ , and  is the usual 

Euclidian norm.  

In particular, the optimal value ˆ  of the model parameters corresponds to the 

most probable value that is obtained by maximizing the posterior probability 

distribution ( | , )p D Μ  or, equivalently, minimizing the function  

 
2 2

0

( ; ) ln ( | , )

            [ ( 1) / 2)][ ( ; ) ln ] ln ( | )

g p D

m N J w

Μ Μ

Μ
 (2.20) 

For the case for which analytical expressions for Μ( ; )
i i

 are available, 

computationally efficient gradient-based optimization algorithms can be used to 

obtain the optimal value of the model parameters by minimizing the function 

( ; )g Μ  with covariance equal to the inverse of the Hessian ( ) ( , )Th g Μ  

of the function ( ; )g Μ  evaluated at the most probable value. For a uniform prior 

distribution, the most probable value of the FE model parameters coincides 

with the estimate obtained by minimizing the weighted residuals in (2.10). 

2.5 Bayesian Model Selection 

The Bayesian probabilistic framework can also be used to compare two or more 

competing model classes and select the optimal model class based on the available 
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data. Consider a family
Fam i

Μ = {Μ 1, , }i k , of k  alternative, competing, 

parameterized FE and prediction error model classes, and let i
N

i
R  be the free 

parameters of the model class Μ
i
. The posterior probabilities Μ( | )

i
P D of the 

various model classes given the data D  is [16] 

 
Μ Μ

Μ
Μ

( | ) ( )
( | )

( | )
i i

i
Fam

p D P
P D

p D
 (2.21) 

where Μ( )
i

P is the prior probability and Μ( | )
i

p D is the evidence of the model 

class Μ
i
. The optimal model class Μ

best
 is selected as the one that maximizes 

Μ( | )
i

P D given by (2.21) . Model class selection is used to compare between 

alternative model classes and select the best model class (Muto and Beck, 2008), 

as well as for structural damage identification (Ntotsios et al., 2009). 

2.6 Bayesian Uncertainty Propagation 

Let q  be an output quantity of interest in structural dynamics simulations. 

Posterior robust predictions of q  are obtained by taking into account the updated 

uncertainties in the model parameters given the measurementsD . Let ( | , )p q Μ  

be the conditional probability distribution of q  given the values of the parameters. 

Using the total probability theorem, the posterior robust probability distribution 

( | , )p q D Μ  of q , taking into account the model Μ  and the data D , is given by 

(Papadimitriou et al., 2001). 

 ( | , ) ( | , ) ( | , ) p q D p q p D dΜ Μ Μ  (2.22) 

as an average of the conditional probability distribution ( | , )p q Μ  weighting by 

the posterior probability distribution ( | , )p D Μ  of the model parameters. Let 

( ; )G q  be a function of a deterministic output quantity of interest ( )q . A 

posterior robust performance measure of the system given the data D  is 

(Papadimitriou et al., 2001). 

 [ ( ; ) | , )] ( ; ) ( | , ) E G q D G q p D dΜ Μ  (2.23) 

For ( ; ) ( )G q q  and 2( ; ) ( ( ) [ ( ) | , ])G q q E q D Μ , the measure (2.23) is 

the robust mean and the variance of the output quantity of interest q  taking into 

account the model parameter uncertainties that are estimated by the data D .  
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2.7 Bayesian Tools 

The Bayesian tools for identifying uncertainty models and performing robust 

prediction analyses are Laplace methods of asymptotic approximation and 

stochastic simulation algorithms. 

2.7.1 Asymptotic Approximation 

2.7.1.1 Parameter Estimation  

For large enough number of measured data, the posterior distribution of the model 

parameters in (2.18) can be asymptotically approximated by a Gaussian 

distribution (Beck and Katafygiotis, 1998). 

 
1/2

/2

ˆ| ( ) | 1 ˆ ˆ ˆ( | , ) exp ( ) ( )( )
(2 ) 2

T

N

h
p D hΜ  (2.24) 

centered at the most probable value ˆ  of the model parameters with covariance 

matrix equal to the inverse of the Hessian ( ) ( , )Th g Μ  of the function 

( ; )g Μ  in (2.20) evaluated at the most probable value ˆ . This approximation is 

also known as the Bayesian central limit theorem. The asymptotic expression 

(2.24), although approximate, provides a good representation of the posterior PDF 

for a number of applications involving even a relatively small number of data. 

Given the Gaussian approximation (2.24), the marginal distributions of the 

parameters are readily obtained to be Gaussian distributions with means and 

variances equal to the individual means appearing in the mean vector ˆ  and the 

variances appearing in the diagonal elements of the covariance matrix 1 ˆ( )h  

The asymptotic approximation (2.24) fails to provide an adequate representation 

of the posterior probability distribution in the case of multimodal distributions. To 

improve on the asymptotic approximation, one needs to identify all modes of the 

posterior PDF and consider them in the asymptotic expression by considering a 

weighted contribution of each mode with weights based on the probability volume 

of the PDF in the neighborhood of each mode (Beck and Katafygiotis, 1998). The 

weighted estimate is reasonable, provided that the modes are separable. For 

interacting modes or closely spaced modes, this estimate is inaccurate due to 

overlapping of the regions of high probability volume involved in the interaction. 

Numerical implementation problems arise in multi-modal cases, associated with 

the inconvenience in estimating all modes of the distribution (Metropolis et al., 

1953). The asymptotic approximation fails to provide acceptable estimates for un-
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identifiable cases (Katafygiotis and Lam, 2002), manifested for relatively large 

number of model parameters in relation to the information contained in the data.  

The results from the asymptotic estimate are also useful for efficiently populating 

the posterior PDF with samples generating from MCMC algorithms. For uni-

modal posterior PDFs, the asymptotic estimate can be performed as a first step in 

a Bayesian analysis to obtain information and identify the importance region in 

the parameter space of high posterior probability volume. Then the mode of the 

distribution can be used as a starting point of a stochastic simulation algorithm for 

exploring the support of the posterior PDF, while the Hessian at the mode 

provides valuable information for selecting the proposal PDF in MCMC 

algorithms. For multi-modal posterior PDFs with disjoint supports, the 

information from an asymptotic approximation may be misleading since other 

important regions in the parameter space may be easily missed. As a result, the 

stochastic simulation algorithms starting from the mode provided by the 

asymptotic estimate will usually fail to adequately explore the parameter space 

and identify the domains with high probability volume.  

2.7.1.2 Model Selection  

For model selection, an asymptotic approximation (Papadimitriou and 

Katafygiotis, 2001; Beck and Yuen, 2004; Yuen, 2010) based on Laplace’s 

method can also be used to give an estimate of the evidence integral in (2.17) that 

appears in the model selection equation (2.21). Substituting this estimate in (2.21), 

the final asymptotic estimate for Μ( | )
i

P D  is given in the form  

 

ˆ ˆ2 ( | , ) ( | )
( | ) ( )

ˆ( | )det ( , )

in

i i i i

i i

Fam i i i

p D
P D P

p D h

Μ Μ
Μ Μ

Μ Μ
 (2.25) 

where ˆ
i  is the most probable value of the parameters of the model class Μ

i
 and 

( ) ( , )T

i ih g Μ  is the Hessian of the function ( ; )i i ig Μ  given in (2.20) for 

the model class Μ
i
. It should be noted that the asymptotic estimate for the 

probability of a model class Μ
i
 can readily be obtained given the most probable 

value and the Hessian of the particular mode. For the multi modal case the 

expression (2.25) can be generalized by adding the contributions from all modes.  

2.7.1.3 Uncertainty Propagation  

For the robust prediction integrals such as (2.22) or (2.23) a similar asymptotic 

approximation can be applied to simplify the integrals. Specifically, substituting 
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the posterior PDF ( | , )p D Μ  from (2.16) into (2.23), one obtains that the robust 

prediction integral is given by (Papadimitriou et al., 2001). 

 

( ; ) ( | , ) ( | ) 

[ ( ; ) | , )]
( | )

                        

G p D d

E G q D
p D

Μ Μ Μ

Μ
Μ

 (2.26) 

Introducing the function  

 ( ; ) ln[ ( ; ) ( | , ) ( | )]Gr G p DΜ Μ Μ Μ  (2.27) 

the integral in (2.26) takes the form of Laplace integral which can be 

approximated as before in the form:  

 
exp[ ( )] 2

exp[ ( )] 
det ( )

m

G

G

G

r
r d

H
 (2.28) 

where  is the value of  that minimizes the function ( ; )Gr Μ , and ( , )GH Μ  is 

the Hessian of the function ( ; )Gr Μ  evaluated at . Substituting in (2.26), using 

(2.25) to asymptotically approximate the term ( | )p D Μ  and replacing ( )Gr  by 

(2.27), it can be readily derived that [ ( ; ) | , )]E G q D Μ  is given by the asymptotic 

approximation (Tierney and. Kadane, 1986) 

 

ˆ( | , ) ( | ) det ( , )
[ ( ) | , )] ( ; )  

ˆ ˆ( | , ) ( | ) det ( , )

                        

p D h
E G q D G

p D H

Μ Μ Μ
Μ Μ

Μ Μ Μ  (2.29) 

The error in the asymptotic estimate is of order 2N  . However, the asymptotic 

estimate requires solving two extra optimization problems, one for the mean and 

one for the variance of ( ; )G q . In general, one needs to carry out GN  extra 

optimization problems, where 2 GN  is the number of output quantities of interest. 

Such optimization problems are independent and can be performed in parallel. 

Similarly, the asymptotic approximation for the posterior robust probability 

distribution ( | , )p q D Μ of q  is given by 

 

ˆ( | , ) ( | ) det ( , )

ˆ ˆ( | , ) ( | ) det ( , )
( | , ) ( ( ( )); ) 

                  

p D h

p D H
p q D p q q

Μ Μ Μ

Μ Μ Μ
Μ Μ

 (2.30) 

where ( )q  is the value of   that minimizes the function  
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 ( ; ) ln[ ( | , ) ( | , ) ( | )]pr p q p DΜ Μ Μ Μ  (2.31) 

and ( ( ), )pH q Μ  is the Hessian of the function ( ; )Gr Μ  evaluated at . The 

estimate of the robust posterior probability distribution of q  using (2.30) can be 

implemented efficiently in a parallel computer cluster, carrying out 

simultaneously the optimization problems for a range of q  values.  

2.7.1.4 Gradient-Based Optimization Algorithms  

The optimization problems that arise in the asymptotic approximations are solved 

using available single objective optimization algorithms. The optimization of 

( ; )g  Μ  given in (2.20), with respect to   can readily be carried out numerically 

using any available algorithm for optimizing a nonlinear function of several 

variables. In particular, iterative gradient-based optimization algorithms can be 

conveniently used to achieve fast convergence to the optimum. However, to 

guarantee the convergence of the gradient-based algorithms for models involving 

a relatively large number of DOFs, the gradient of the objective function with 

respect to the parameter set   has to be estimated with sufficient accuracy. It has 

been observed that numerical algorithms such as finite difference methods for 

gradient evaluation do not converge due to the fact that the errors in the numerical 

estimation may provide the wrong directions in the search space, especially for 

intermediate parameter values in the vicinity of a local/global optimum. The 

remedy is to provide analytical expressions for the gradients of the objective 

function. This, however, requires the development of the analytical equations for 

the gradients of the response quantities of interest involved in the objective 

function ( ; )g  Μ  which, for complex models of systems, might not be convenient 

or it may be impossible to accomplish for non-smooth systems.  

Adjoint methods, if applicable for a system, provide a fast estimate of the 

gradients of the objective function with respect to all parameters, which is 

computationally very effective since it requires the solution of a single adjoint 

problem for finding the gradients, independently of the number of variables in the 

set   . Example of adjoint methods for Bayesian parameter estimation can be 

found in (Ntotsios and Papadimitriou, 2008) for linear structural dynamics 

applications of the Bayesian framework based on modal frequencies and mode 

shapes. In particular, for linear representation of the stiffness and mass matrices 

with respect to the model parameters, adjoint methods can be made model non-

intrusive. For nonlinear models of structures, the adjoint techniques are model 

intrusive, requiring tedious algorithmic and software development that in most 

cases are not easily integrated within the commercial software packages. Selected 
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examples of model intrusiveness includes the sensitivity formulation for 

hysteretic-type nonlinearities in structural dynamics and earthquake engineering 

[Barbato and Conte, 2005; Barbato et al., 2007) and the adjoint formulation for 

certain classes of turbulence models in computational fluid dynamics applications 

(Papadimitriou and Papadimitriou, 2013)  

Independent of the computer resources available, a drawback of the gradient-

based optimization algorithms is that they may convergence to a local optimum, 

failing to estimate the global optimum for the cases where multiple local/global 

optima exist.  

2.7.1.5 Stochastic Optimization Algorithms  

Evolution strategies are more appropriate and effective to use in cases of multiple 

local/global optima. Evolution strategies are random search algorithms that 

explore better the parameter space for detecting the neighborhood of the global 

optimum, avoiding premature convergence to a local optimum. A disadvantage of 

evolution strategies is their slow convergence at the neighborhood of an optimum 

since they do not exploit the gradient information. However, evolutionary 

strategies are highly parallelizable so the time to solution in a HPC environment is 

often comparable to conventional gradient based optimization methods, with the 

extra advantages that evolutionary stategies will have a better chance of finding 

the global optimum. In addition, stochastic optimization algorithms do not require 

the evaluation of the gradient of the objective function with respect to the 

parameters. Thus, they are model non-intrusive since there is no need to formulate 

the adjoint problem. In some cases the adjoint formulation requires considerable 

algorithmic development time to set up the equations for the adjoint problem and 

implement this formulation in software. In other cases (e.g. contact and impact 

problems) the development of an adjoint formulation or analytical equations for 

the sensitivity of objective functions to parameters is not possible.  

Stochastic optimization algorithms can be used with parallel computing 

environments to find the optimum for non-smooth functions or for models that an 

adjoint formulation is not possible to develop. Examples include hysteretic 

models of structural components, as well as problems involving contact and 

impact. In the absence of a HPC environment, the disadvantage of the stochastic 

optimization algorithms arises from the high number of system re-analyses which 

may make the computational effort excessive for real world problems for which a 

simulation may take minutes, hours or even days to complete.  
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The covariance matrix adaptation (CMA) algorithm (Hansen et al., 2003) exhibits 

fast convergence properties among several classes of evolutionary algorithms, 

especially when searching for a single global optimum. The Hessian estimation 

required in Bayesian asymptotic approximations can be computed using the 

Romberg method (Lyness and Moler, 1969). This procedure is based on a number 

of system re-analyses at the neighborhood of the optimum, which can all be 

performed independently for problems involving either calibration or propagation, 

and are thus highly parallelizable. 

Note that an alternative way for uncertainty propagation that can substantially 

expedite the propagation process as well as improve the accuracy of the estimates 

in a HPC environment is to draw samples from the asymptotic Gaussian posterior 

PDF and then provide a sampling estimate of the robust propagation integral. The 

sample generation from the Gaussian posterior PDF and the propagation to 

provide robust estimate of the uncertainties of a number of important quantities of 

interest are fully parallelized processes. 

2.7.2 Stochastic Simulation Algorithms 

It should be noted that the asymptotic approximation is valid if the optimal ˆ
i
 

belongs to the domain  of integration in (2.17). For the cases for which this 

condition is violated or for the case for which more accurate estimates of the 

integral are required, one should use stochastic simulation methods to evaluate the 

integral (2.17). The focus has thereby been put onto Markov Chain Monte Carlo 

methods (MCMC) which reveal to be very efficient and which can tackle all 

possible shapes of posterior pdfs. The basic principle of these methods is the use 

of Markov Chains which will be addressed in the following. Markov Chain Monte 

Carlo (MCMC) algorithms are used to efficiently draw samples from the posterior 

distribution. MCMC variants such as Differential Evolution MC (Braak et al. 

2006) or Differential Evolution Random Subsampling MC (DREAM) (Braak et 

al. 2008) were introduced to improve parallel efficiency. These methods consist of 

a population of chains that interact by exchanging information but at the same 

time preserve the MCMC convergence characteristics at the individual chain 

level. Another MCMC method which can be categorized in the framework of 

Evolutionary Strategy MCMC methods (Drugan and Thierens 2010) is the 

TMCMC (Ching and Chen, 2007). This method is a generalization of the method 

proposed by Au and Beck (2002).extended by notions inherent to simulated 

annealing algorithms.  
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2.7.2.1 Metropolis Hasting Algorithm  

The Metropolis algorithm (Metropolis et al., 1953) and its generalization to non-

symmetric proposal densities denoted by Metropolis Hasting algorithm (Hastings, 

1970) constitute the basis for Markov Chain Monte Carlo methods. Starting from 

any point (0)  the algorithm generates a chain of length N  , ( ), 1, ,i i N  with 

stationary distribution ( )p  by using a transition kernel (namely the probability 

for a state to change its value). The scheme of the Metropolis Hasting algorithm is 

as follows: 

1. Start with a value (0) . 

2. Using the current value, sample a candidate point ( 1)i  from the proposal 

     density ( )( | )iq where q  is an output quantity of interest in dynamic 

     simulations. 

3. Take ( 1) ( 1)i i with probability ( 1) ( )( , )i ip or ( 1) ( )i i  with probability  

     ( 1) ( )1 ( , )i ip , where 

 
( 1) ( ) ( 1)

( 1) ( )

( ) ( 1) ( )

( ) ( | )
( , ) min(1,

( ) ( | )

i i i
i i

i i i

p q
p

p q
 (2.32) 

4. Go to step no.2 

The direct application of the Metropolis Hasting algorithm to sample from the 

posterior PDF in Bayesian updating reveals several difficulties. First, the shape of 

the posterior distribution is not known apriori which might lead to the situation 

that the starting sample is too far away from the target region. In addition, in case 

of a peaked posterior PDF, a large step size (i.e. a proposal density with a large 

standard deviation), the probability of reaching the area with high probability 

mass is very low. On the other hand, if the step size is small, the convergence 

might be too slow. Furthermore, the Markov Chain might get stuck in isolated 

modes of a multi-modal PDF, i.e. there is a very small chance to move out, 

because the sample will be rejected whenever it leaves this domain. 

Hence, it is highly desirable to have an approach for stochastic simulation that is 

effective in all possible cases of the type of posterior PDF since its properties are 

not unknown beforehand. In the following, a frequently applied algorithms are 

presented. 

2.7.2.2 Transitional Markov Chain Monte Carlo Algorithm  

Among the stochastic simulation algorithms available, the transitional MCMC 

algorithm (Ching and Chen, 2007) which is a generalization of the MCMC 
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algorithm proposed by Beck is one of the most promising algorithms for selecting 

the most probable model as well as finding and populating with samples the 

importance region of interest of the posterior pdf in (2.18), even in the 

unidentifiable cases and multi-modal pdfs. The main idea of Transitional Markov 

Chain Monte Carlo (TMCMC) algorithm is to iteratively proceed from the prior to 

the posterior distribution. It starts with the generation of samples from the prior 

PDF in order to populate the space in which also the most probable regions of the 

posterior distribution lie. Then, some intermediate PDFs are defined, where the 

shape does not change remarkably from the intermediate PDF [ ]p j  to the next 

[ 1]p j . The small change of the shape makes it possible to efficiently sample 

according to [ 1]p j  if samples according to [ ]p j  have been generated. The 

intermediate distributions are defined by 

 Μ Μ[ 1] ( | , ) ( ,| )jp j p D p  (2.33) 

with 0, ,j m  as the step index and
0 1

0 , 1
m   Hence, the exponent 

j
 can be interpreted as the percentage of the total information provided by the 

experimental data which is incorporated in the jth  iteration of the updating 

procedure 
0

0  corresponds to the prior distribution and for 1
m

 the samples 

are generated from the posterior distribution. 

Samples of the subsequent intermediate distribution [ 1]p j  are obtained by 

generating Markov chains where the lead samples are selected from the 

distribution [ ]p j  by computing their probability weights with respect to [ 1]p j , 

which are given by 

 
Μ Μ

Μ
Μ Μ

1

1

( ) ( )
( ) ( )

( ) ( )

( | , ) ( | )
( ) ( | , )

( | , ) ( | )

j

j j

j

l l
l l

j l l

p D p
w p D

p D p
 (2.34) 

where the upper index 1, ,
j

l N  denotes the sample number in the jth  

iteration step. Each sample of the current step is generated using the Metropolis-

Hastings algorithm: The starting point of a Markov chain is a sample from the 

previous step that is selected according to the probability equal to its normalized 

weight 

 

( )

( )

( )

1

( )
( )

( )

l
jl

j Nj
l

j
i

w
w

w

 (2.35) 

and the proposal density for the Metropolis-Hastings algorithm is a Gaussian 

distribution centered at the preceding sample of the chain and with a covariance 
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matrix 
0
 which is equal to the scaled version of the estimated covariance matrix 

of the current intermediate PDF: 

 2 ( ) ( ) ( ) ( ) ( )

0
1

( )( )( )
Nj

l l l l l T

j j j j j
l

c w  (2.36) 

Where 

 ( ) ( )

1

( )
jN

l l

j j j
l

w  (2.37) 

The parameter c  is a scaling parameter that is used to control the rejection rate of 

the Metropolis-Hastings algorithm at each step. The iterations are repeated until 

1
j

 is reached, i.e. until the samples are generated from the posterior 

distribution. Due to the repeated execution of the normal mode analysis of the FE-

model, the computational effort of the Bayesian updating method might become 

infeasible for large FE-models. Hence, in order to reduce the wall clock time, i.e. 

the time between submitting the updating analysis and its completion, a 

parallelized version of this algorithm is presented in Section 2.8.2.  

2.8 Computational aspects for linear FE models with large 

number of DOF 

The computational demands in the aforementioned FE model updating 

methodologies depend highly on the number of FE analyses and the time required 

for performing a FE analysis. The optimal model in the proposed single 

optimization and the Pareto models in the multi-objective optimization can be 

estimated using available optimization algorithms. In particular, the optimization 

of ( ; )J w in (2.10) or ( ; )g Μ in (2.20) can readily be carried out numerically 

using any available gradient-based algorithm for optimizing a nonlinear function 

of several variables. In addition, the set of Pareto optimal solutions can be 

obtained using the Normal-Boundary Intersection (NBI) method [Das and Dennis, 

1998), which is a very efficient algorithm for solving the multi-objective 

optimization problem defined in (Christodoulou and Papadimitriou, 2007). Each 

Pareto optimal solution is obtained by solving a single-objective optimization 

problem using gradient-based constrained optimization algorithms (Christodoulou 

et al., 2008). The computational time is of the order of the number of points used 

to represent the Pareto front multiplied by the computational time required to 

solve a single-objective optimization problem for computing each point on the 

front. 
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The gradient-based optimization algorithms require the estimation of the gradients 

of the residuals 1( )J and 2 ( )J  defined in (2.7) and (2.8). This also contributes 

significantly to the time required to complete an iteration. Herein, Nelson method 

[Pradlwarter et al., 2002) is used to compute the gradients of the modal 

frequencies and mode shapes. The advantage of the Nelson’s method compared to 

other methods (Hinke et al., 2009) is that the gradients of the modal frequency and 

mode shape of a mode are computed from the modal frequency and mode shape 

of the same mode and there is no need to compute the modal frequencies and 

mode shapes from other modes. Using adjoint formulations (Mace and Shorter, 

2001), the computational demands for estimating the gradients of 1( )J and 2 ( )J  

are independent of the number of parameters involved in the vector  . The most 

time consuming operation arises from the solution of a linear system with the 

matrix of coefficients to be a slightly modified version of the symmetric, non-

positive definite, matrix rK M . This requires the factorization for the modified 

rK M  matrices of the lowest 1, ,r m  modes involved in the residuals, 

contributing significantly to the overall computational effort at each iteration.  

For objective functions in (2.4) involving multiple local/global optima, gradient 

based optimization algorithms may fail to converge to the global optimum. 

Stochastic optimization algorithms (Goller et al., 2011; Goller, 2011) are 

convenient tools for estimating the global optimum, avoiding premature 

convergence to a local one. These non-gradient based stochastic optimization 

algorithms require a significantly larger number of FE model re-analyses to be 

performed compared to the FE model analyses involved in gradient-based 

optimization algorithms, substantially increasing the computational demands. 

The objective of this work is to examine the conditions under which substantial 

reductions in the computational effort can be achieved by integrating dynamic 

reduction techniques into the FE formulations, aiming at reducing the sizes of the 

stiffness and mass matrices and eliminating the expensive re-analyses of 

components eigenvalue problems due to the variations of the system parameters, 

without compromising the solution accuracy.  

Furthermore, Bayesian FE model updating techniques, based on SSA such as the 

efficient TMCMC algorithm, involve drawing a large number of samples for 

tracing and then populating the important region in the uncertain parameter space. 

Compared to the previous algorithms, TMCMC require a substantially larger 

number of FE model analyses since one FE analysis is required for each sample 

generated in the TMCMC algorithm. Consequently, the computational demands 
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can become excessive when the computational time for performing a FE analysis 

is not negligible. The proposed Bayesian estimators requires a large number of FE 

model simulations to be carried out which imposes severe computational 

limitations on the application of the damage identification technique. For FE 

models involving hundreds of thousands or even million degrees of freedom and 

localized nonlinear actions activated during system operation these computational 

demands for repeatedly solving the large-scale eigen-problems and the gradient of 

the eigensolutions may be excessive.  

2.9 Computational Challenges 

For large order finite element models with hundreds of thousands or even million 

DOFs encountered in structural dynamics, the computational demands involved 

may be excessive, especially when a model simulation takes several minutes, 

hours or even days to complete. Drastic reductions in the time to solution are 

achieved by integrating surrogate models to reduce the number of full model 

simulations within certain classes of stochastic simulation algorithms such as 

TMCMC presented in Section 2.8.1, parallelization techniques to efficiently 

distribute the computations in available multi-core CPUs presented in Section 

2.8.2 and model reduction techniques to substantially reduce the order of high 

fidelity large order finite element models presented in Section 2.8.3.  

2.9.1 Surrogate Models 

Surrogate models are used to reduce the computational time at the level of the 

algorithm.  The objective is to avoid the full structural dynamics model runs at a 

sampling point in the parameters space by exploiting the function evaluations that 

are available at the neighbour (design) points in order to generate an approximate 

estimate. Surrogate models are well-suited to be used with the TMCMC method. 

Details of the implementation of surrogate models with TMCMC algorithm are 

given in Angelikopoulos et al. (2012). Specifically, following (Angelikopoulos et 

al., 2012), a kriging technique (Lophaven et al., 2002) is used to approximate the 

function evaluation at a new sampling point at a TMCMC stage using the function 

evaluations at neighbour points in the parameter space available from previous 

TMCMC stages. To ensure a high quality approximation, a surrogate estimate is 

accepted only if it satisfies certain conditions as follows.  

The surrogate estimate is based on a user-defined number of support points which 

are in the neighbour of the surrogate point. The minimum number of support 

points depends on the dimension of the uncertain parameter space and the order of 
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the kriging interpolation. The surrogate point belongs to the convex hull of the 

design points so that an interpolation is performed, while extrapolations are 

prohibited. The design points correspond to actual system simulations and not 

other surrogate estimates from previous stages, avoiding error propagation and 

subsequent deterioration of the surrogate quality. The design point are kept the 

same when generating the surrogate estimates within a chain of the TMCMC 

stage, avoiding discontinuities in the estimates of the sampling points in a chain 

caused by changing the design points. The surrogate estimate is checked whether 

its predicted value is within the lower 95% quantile of all the design point’s 

likelihood values accounted so far. The purpose of the threshold is to prevent 

overshooting surrogate estimates as this will quickly lead to the breakdown of the 

sampling procedure due to the concentration of most points around this 

overshooting estimate. The surrogate estimate is accepted if the prediction error is 

smaller than a user specified tolerance value.  

It has been demonstrated that the proposed adaptive kriging method can achieve 

up to one order of magnitude reduction in computational effort.  

2.9.2 Parallel TMCMC Algorithm 

At the computer hardware level, high performance computing techniques can be 

used to reduce the computational time. Most MCMC algorithms involve a single 

Markov chain and are thus not parallelizable. In contrast, the TMCMC algorithm 

involves a large number of independent Markov chains that can run in parallel. 

Thus, the TMCMC algorithm is very-well suited for parallel implementation in a 

computer cluster. Specifically, parallelization is activated at every stage of the 

TMCMC algorithm exploiting the large number of short, variable length, chains 

that need to be generated starting from the leader samples determined from the 

TMCMC algorithm at the particular stage. Static and dynamic scheduling 

schemes can be conveniently used to optimally distribute these chains in a multi-

host configuration of complete heterogeneous computer workers. The static 

scheduling scheme distributes the chains in the workers using a weighted round-

robin algorithm so that the number of likelihood evaluations is arranged to be the 

same for each computer worker. The static scheduling scheme is computational 

efficient when the computational time for a likelihood evaluation is the same 

independently of the location of sample in the parameter space as well as when 

surrogate estimates are not activated. The dynamic scheduling scheme is more 

general, ensuring a more efficient balancing of the loads per computer worker in 

the case of variable run time of likelihood function evaluations and unknown 

number of surrogates activated during estimation. Specifically, each worker is 
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periodically interrogated at regular time intervals by the master computer about its 

availability and samples from TMCMC chains are submitted to the workers on a 

first come first serve basis to perform the likelihood function evaluations so that 

the idle time of the multiple workers is minimized. Details of the parallel 

implementation of the TMCMC algorithm are given in Angelikopoulos et al. 

(2012). (Haralampidis et al., 2005).  

The highest computational efforts are associated to the solution of the eigenvalue 

problem which is required for the evaluation of the likelihood function. Hence, the 

parallelization strategy exploits the parallelism of those parts of the code where 

eigensolutions are performed.  

The simulation algorithm starts with the generation of samples from the prior 

distribution and the evaluation of the probability weights ( )( )l
j

w according to 

(2.35) with 0j . This step can be scheduled completely in parallel since the 

samples are independent. 

At the iteration steps 1, ,j m the lead samples are selected according to their 

probabilities given by (2.34) and then Markov chains are generated with the 

lengths equal to the number of times the respective lead samples are selected. 

Samples forming a Markov chain depend on the previous sample, which implies 

inherent dependence and which excludes therefore parallelization. However, the 

chains themselves are independent from each other, which means that the 

generation of different chains can be performed concurrently. The length of a 

chain, which is equal to the number of eigenvalue solutions and therefore 

proportional to the computational effort, is determined by the number of times the 

lead sample is selected and differs for each chain. In order to obtain an optimal 

work balance of each cluster node, the number of chains generated by each node 

is determined such that the total number of function evaluations is on average the 

same for each node. 

Hence, the parallelized code works such that the master node determines the lead 

samples according to (2.34) and sends matrices with the parameter values of the 

lead samples together with the information about the length of the respective 

chains to the slaves. The generation of the Markov chains is performed in parallel. 

The matrices with the samples according to [ 1]p j  are then sent back to the 

master node. After receiving all samples of this iteration step, the master node 

evaluates the probability weights needed for the next iteration. These iteration 

steps are repeated until samples of the posterior PDF are generated, i.e. until 

j m   
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In the context of this thesis, only the so-called high-level parallelism associated 

with the consecutive execution of full FE-analysis, is exploited. 

2.9.3 Model Reduction Techniques 

Model reduction techniques can be applied at the system level to reduce the order 

of the model selected to simulate the behavior of the system. The objective is to 

obtain reduced models that run significantly faster than the original high-fidelity 

models, incorporating the important dynamics of the system analyzed so that the 

simulations from the reduced model are sufficiently accurate.  

In structural dynamics, dynamic reduction techniques have been integrated with 

Bayesian techniques to carry out system analyses in a significantly reduced space 

of generalized coordinates and thus efficiently handle large-order models of 

hundreds of thousands or millions degrees of freedom and localized nonlinear 

actions activated during system operation. Specifically, component mode 

synthesis (CMS) techniques (Hurty, 1965; Craig and Bampton, 1968) can be used 

to alleviate the computational burden associated with each model run in the re-

analyses required in the asymptotic and stochastic simulation methods. CMS 

techniques divide the structure into components with mass and stiffness matrices 

that are reduced using fixed-interface and constrained modes. Dividing the 

structure into components and reducing the number of physical coordinates to a 

much smaller number of generalized coordinates certainly alleviates part of the 

computational effort. However, at each iteration or TMCMC sampling point one 

needs to re-compute the eigen-problem and the interface constrained modes for 

each component. This procedure is usually a very time consuming operation and 

computationally more expensive that solving directly the original matrices for the 

eigenvalues and the eigenvectors, due to the substantial computational overhead 

that arises at component level.  

The main objective in methods involving re-analyses of models with varying 

properties is to avoid, to the extent possible, the re-computation of the 

eigenproperties at the component or system level. Such techniques have been 

incorporated in methods for uncertainty management in structural dynamics to 

efficiently handle the computational effort in system re-analyses that arise from 

FE model variations caused by variations in the values of the uncertain parameters 

(Balmes, 1996; Mace and Shorter, 2001; Pradlwarter et al., 2002). In particular, 

perturbation techniques (Pradlwarter et al., 2002) provide accurate results locally 

for small variations of the model parameters about a reference structure. To 

improve the accuracy of the approximations for large variation of the model 
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parameters, methods have been proposed to approximate the modes at the 

component or system level in terms of the modes of a family of structures 

corresponding to support points in the parameter space (Hong, 2011). In Goller et 

al. (2011), linear and quadratic interpolations of the structural mass and stiffness 

matrix and the matrix of eigenvectors at the component and/or system level using 

support points in the larger region in the parameter space have been proposed. 

Such methods have been successfully used for model updating of large-order 

models of structures (Goller et al., (2011) and for damage detection at component 

level (Goller et al., (2011). These techniques proved to be quite effective in 

substantially reducing the computational demands in problems requiring system 

re-analyses. Fast and accurate CMS techniques, consistent with the finite element 

(FE) model parameterization, will be proposed in Chapter 3 of current thesis to 

achieve drastic reductions in computational effort.  

2.10 Conclusions 

The widely used deterministic finite element model updating methods are 

reviewed in this chapter and the Bayesian framework for parameter estimation and 

model class selection is presented. The Bayesian tools for identifying system and 

uncertainty models as well as performing model class selection are Laplace 

methods of asymptotic approximation and stochastic simulation algorithms such 

as Markov Chain Monte Carlo (MCMC) and Transitional MCMC. Both tools are 

used to represent the posterior distribution of the parameters of a model class 

introduced to simulate the behavior of the engineering system, as well as compute 

multidimensional integrals over high-dimensional spaces of the uncertain model 

parameters, manifested in the formulations for model class selection. The 

asymptotic approximations involve solving optimization problems as well as 

computing the Hessian of certain functions in a small number of points in the 

parameter space. The stochastic simulation tools involve generating samples for 

tracing and then populating the important uncertainty region in the parameter 

space, as well as evaluating integrals over high-dimensional spaces of the 

uncertain model parameters. These tools require a moderate to very large number 

of system re-analyses to be performed over the space of uncertain parameters. 

Consequently, the computational demands depend highly on the number of 

system analyses and the time required for performing a system analysis. For 

complex models of engineering systems, one simulation may require a significant 

amount of time and the overall computational demands involved in the Bayesian 

tools may be substantial, or even excessive for stochastic simulation algorithms. 
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This chapter proposes methods for drastically reducing the computational 

demands at the system, algorithm and hardware levels involved in the 

implementation of Bayesian tools. 
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CHAPTER 3 Component Mode Synthesis Techniques 

for FE Model Updating 

3.1 Introduction 

The optimization algorithms mentioned in Chapter 2 require a moderate to very 

large number of FE reanalyses to be performed over the space of model 

parameters. Consequently, the computational demands depend highly on the 

number of FE re-analyses and the time required for performing a FE analysis. In 

addition, gradient-based optimization algorithms require the estimation of the 

gradients of the residuals which may also add substantially to the computational 

effort. For high fidelity FE models involving hundreds of thousands or even 

million DOF, the computational demands may be large or even excessive. The 

present work proposes efficient methods based on dynamic reduction techniques 

to alleviate the computational burden involved in the implementation of 

deterministic and probabilistic (Bayesian) techniques for FE model updating. 

Specifically, component mode synthesis (CMS) techniques (Hurty, 1965; Craig et 

al., 1965; Craig, 1981) are widely used to carry out system analyses in a 

significantly reduced space of generalized coordinates. Such techniques have been 

incorporated in methods for uncertainty management in structural dynamics to 

efficiently handle the computational effort in system re-analyses that arise from 
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FE model variations caused by variations in the values of the uncertain parameters 

(Balmes, 1996; Pradlwarter et al., 2002). Such variations in the values of the 

model parameters require that the computation of the component and/or system 

modes be repeated in each re-analysis. As a result, a computational overhead 

arises at component level which may be substantial. The main objective in 

methods involving re-analyses of models with varying properties is to avoid, to 

the extent possible, the recomputation of the eigenproperties at the component or 

system level. Perturbation techniques (Hinke et al., 2009; Mace and Shorter, 

2001) provide accurate results locally for small variations of the model parameters 

about a reference structure. To improve the accuracy of the approximations for 

large variation of the model parameters, most efforts has been concentrated in 

approximating the modes at the component or system level in terms of the modes 

of a family of structures corresponding to support points in the parameter space 

(Balmes, 1996). Linear and quadratic interpolations of the structural mass and 

stiffness matrix and the matrix of eigenvectors at the component and/or system 

level using support points in the larger region in the parameter space have been 

proposed in (Goller et al., 2011). Such methods have been successfully used for 

model updating of large-order models of structures (Goller et al., 2011; Goller, 

2011), while similar methods have been developed for damage detection at 

component level (Hong et al., 2011). Such techniques proved to be quite effective 

in substantially reducing the computational demands in problems requiring system 

re-analyses. 

In this work, a framework is presented for integrating the Craig-Bampton CMS 

technique (Craig and Bampton, 1965; Craig, 1981) into existing FE model 

updating formulations in order to reduce the time consuming operations involved 

in reanalyses of large-order models of hundreds of thousands or millions degrees 

of freedom. The proposed method exploits the fact that in FE model 

parameterization schemes the stiffness matrix of the structure often depends 

linearly on the parameters of the model and also that a parameter usually 

represents a global property (e.g. the modulus of elasticity) of a substructure. The 

division of the structure into components is then guided by the FE 

parameterization scheme so that the stiffness matrix that arise for each one of the 

introduced components to depend linearly on only one of the parameters to be 

estimated. In this case the fixed-interface and constraint modes of the components 

for any value of the model parameters can be obtained exactly from the fixed-

interface and constraint modes corresponding to a single reference FE model, 

avoiding re-analyses at component level. Additional substantial reductions in 

computational effort are also proposed by reducing the number of interface DOF 
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using characteristic interface modes through a Ritz coordinate transformation. The 

repeated solutions of the component and interface eigen-problems are avoided, 

reducing drastically the computational demands in FE formulations, without 

compromising the solution accuracy. It is also shown that the linear expansions of 

the original mass and stiffness matrices in terms of the structural parameters are 

preserved for the reduced mass and stiffness matrices. Thus, the reassembling of 

the reduced system matrices from the original matrices is also avoided in the 

execution of the system re-analyses. The only time consuming operation left is the 

re-analysis of the eigenproblem of the reduced-order model. It is finally 

demonstrated that the new developments are readily accommodated in existing FE 

model updating formulations and software with minimal modifications. 

Moreover, in this chapter, Bayesian estimators (Christodoulou et al., 2008) are 

proposed for damage identification (localization and quantification) of civil 

infrastructure using vibration measurements. The structural damage identification 

is accomplished by associating a FE model class to a damage location pattern in 

the structure, indicative of the location of damage. Damage occurring at one or 

more structural components can be monitored by updating an appropriately 

parameterized FE model with parameters associated with the properties of the 

monitored structural components. The actual damage occurring in the structure is 

predicted by Bayesian model selection and updating of a family of parameterized 

model classes with the members in the model class family introduced to monitor 

the large number of potential damage scenarios covering most critical parts of the 

structure. Bayesian inference ranks the plausible damage scenarios according to 

the posterior probability of the corresponding parameterized FE model classes to 

fit the measurements. The most probable FE model class is indicative of the 

location of damage, while the severity of damage is inferred from the posterior 

probability of the model parameters of the most probable model class. 

This Chapter is organised as follows. The mathematical background for the Craig-

Bampton CMS technique and a technique to reduce the DOF in the interface 

between components using characteristic interface modes, is outlined in Section 

3.2. The integration of the CMS technique with model updating formulations is 

given in Section 3.3. In Section 3.4 the effectiveness of the proposed algorithms, 

in terms of computational efficiency and accuracy, is demonstrated with 

application on model updating and damage identification of a bridge using 

simulated data and a high fidelity model with hundreds of thousands of DOF. 

Conclusions are summarized in Section 3.5.  
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3.2 Component Mode Synthesis 

3.2.1 Formulation using fixed-interface modes 

In CMS techniques (Craig and Bampton, 1965; Craig, 1981), a structure is 

divided into several components. For each component, the unconstrained DOF are 

partitioned into the boundary DOF, denoted by the subscript b  and the internal 

DOF, denoted by the subscript i  . The boundary DOF of a component include 

only those that are common with the boundary DOF of adjacent components, 

while the internal DOF of a component are not shared with any adjacent 

component. The stiffness and mass matrices K  and M  of a component s  are 

partitioned to blocks related to the internal and boundary DOF as follows 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )
          

s s s s

s sii ib ii ib

s s s s

bi bb bi bb

M M K K
M K

M M K K
 (3.1) 

where the indices i  and b  are sets containing the internal and boundary DOF of 

the component. According to the Craig-Bampton fixed-interface mode method, 

the Ritz coordinate transformation ( ) ( ) ( ) ( ) ( )[ , ]s s T s T T s s

i bu u u p , where 

 

( ) ( )

( )

( ) ( )0

s s

s ik ib

s s

bk bbI
 (3.2) 

is used to relate the physical displacement coordinates 
( )( ) ss nu   of the 

component to the generalized 

coordinates
( )ˆ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ[ , ] ,
s

ns s T s T T s s s

k b k bp p p n n n  , using the kept fixed-

interface normal modes 
( ) ( )

( )
s s

i kn ns

ik satisfying the eigen-problem 

 ( ) ( ) ( ) ( ) ( )s s s s s

ii ik ii ik kkK M  (3.3) 

and the interface constrained modes 
( ) ( )

( )
s s

i bn ns

ib  given by 
1

( ) ( ) ( )s s s

ib ii ibK K .The matrix 
( ) ( )

( )
ˆ

ˆ ˆ( ) ( ) ( )

1( , , )
s s

k k
s

n
k

n ns s s

kk diag  


    is diagonal 

containing the eigenvalues ( )s

j , ( )ˆ1, , s

kj n , of the kept fixed-interface normal 

modes. The fixed-interface modes ( )s

ik  are considered to be mass normalized, 

satisfying ( ) ( ) ( ) ( )s T s s s

ik ii ik kkM I  and ( ) ( ) ( ) ( )s T s s s

ik ii ik kkK  

The component’s mass and stiffness matrices
( ) ( )ˆ ˆ( )ˆ
s s

n nsM  and 
( ) ( )ˆ ˆ( )ˆ
s s

n nsK in 

the new reduced set of generalized coordinates
( )sp  are transformed as follows  
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ,            s s T s s s s T s sM M K K  (3.4) 

with the partitions for the component mass matrices 
( ) ( )ˆ ˆ( )ˆ
s s

k kn ns

kkM , 
( ) ( )ˆ( )ˆ
s s

k bn ns

kbM , 
( ) ( )

( )ˆ
s s

b bn ns

bbM and stiffness matrices 
( ) ( )ˆ ˆ( )ˆ
s s

k kn ns

kkK , 
( ) ( )ˆ( )ˆ
s s

k bn ns

kbK and 
( ) ( )

( )ˆ
s s

b bn ns

bbK given respectively by 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ

ˆ ˆ

ˆ ( )

s s

kk kk

s s T s T s s s T s

kb bk ik ii ib ik ib

s s T s s s s T s s

bb ib ii bi ib ib ib bb

M I

M M M M

M M M M M

 (3.5) 

and 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( )

ˆ

ˆ ˆ 0

ˆ [ ]

s s

kk kk

s s T s

kb bk kb

s s s s s s s T s

bb bb bi ii ib bb ib ib

K

K K

K K K K K K K

 (3.6) 

For convenience, the relationships (3.5) and (3.6) between the reduced and the 

original stiffness and mass matrices of a component, with ( )s

kk   and ( )s

ik  given by 

(3.3), can be written in compact form as ( ) ( ) ( ) ( )ˆ ˆ[ , ] [ , ]s s s sK M K MG  using the 

operator G  

In the substructure assembly process, the vector 
( )(1)[ , , ] pc

nN TT Tp p p of all 

generalized coordinates for each components is introduced. Letting 
( )(1)[ , , , ] qc

nN TT T T

k k bq p p u  be the vector of independent generalized 

coordinates formed from the generalized coordinates (fixed-interface modal and 

boundary coordinates) of all components, where 
( )(1)[ , , ]bN TT T T

b b bu u u and bN  is 

the number of interfaces/boundaries, the following transformation is introduced 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( )

ˆ

ˆ ˆ 0

ˆ [ ]

s s

kk kk

s s T s

kb bk kb

s s s s s s s T s

bb bb bi ii ib bb ib ib

K

K K

K K K K K K K

 (3.7) 

where the component coupling matrix p qn n
S  couples the independent 

generalized coordinates with the generalized coordinates of each component.  

The assembled Craig-Bampton stiffness matrix ˆ q qn nCBK  and mass matrix 

ˆ q qn nCBM  for the reduced vector q  of generalized coordinates are given by  
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(1)

( )

1
( )

ˆ 0 0

ˆ ˆ0 0 [ ]

ˆ0 0

s

s

N

CB T s

s

s
N

K

K S S K

K

F  (3.8) 

and  

 

(1)

( )

1
( )

ˆ 0 0

ˆ ˆ0 0 [ ]

ˆ0 0

s

s

N

CB T s

s

s
N

M

M S S M

M

F  (3.9) 

where the new mathematical operator ( )ˆ[ ]s

s KF  is conveniently introduced by the 

second part of equation (2.14) as 

 (1) (1) ( 1) ( 1) ( 1) ( 1) ( ) ( )

( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ[ ] (0 , ,0 , ,0 , ,0 )s s s s Nc Nc

s T s

s n n n n n n n n
K S blockdiag K SF  (3.10) 

where 0 i j

i j  denotes a matrix of zeroes, and 

( )(1)ˆ ˆ[ , , ] p pc
n nN

blockdiag K K denotes a block diagonal matrix having as 

diagonal blocks the matrices ( )ˆ , 1, ,s

cK s N . The operator sF  will be used later 

to simplify the integration of the CMS into the FE formulation. 

Solving the reduced eigen-problem  

 ˆ ˆCB CBK Q M Q  (3.11) 

associated with the reduced mass and stiffness matrices ˆ CBM  and ˆ CBK , 

respectively, one obtains the modal frequencies in 2( ) q qN N

idiag  and the 

corresponding mode shapes 1̂
ˆ[ , , ] q q

q

n n

nQ q q  of the reduced system.  

Introducing the constant matrix 0ˆ pN n
S  to map the vector 

( )(1)[ , , ]cN TTu u  of 

the physical coordinates of each structural component to the physical coordinates 

u of the structure at 0N measured DOF such that ˆu Sp and using (3.7), the 

physical mode shapes 0N

r  r of the original structure at the 0N  measured DOF 

are recovered from the mode shapes ˆ qn

rq  of the reduced system as follows 

 ˆ ˆˆ ˆ
r r rS Sq Lq  (3.12) 

where 0ˆˆ qN n
L S S and 

( )(1)[ , , ] p pc
n nN

blockdiag   
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3.2.2 Reduction of the interface DOF using characteristic interface modes  

Further reduction in the generalized coordinates can be achieved by replacing the 

interface DOFs by a reduced number of constraint interface modes (Castanier et 

al., 2001). For this, the physical displacement coordinates 
( )

{ }
l

bml

bu  at a 

boundary/interface between two or more components are represented in terms of 

the generalized coordinates 
( )

{ }
l

kml  of the interface by the Ritz coordinate 

transformation 

 { } { } { }l l l

bu V  (3.13) 

1, , bi N , where the columns of 
( ) ( )

( )
l l

b km mlV  form the reduced basis of the 

( )l

bm -dimensional space.and ( )l

km  is the number of elements in the basis. 

The following transformation from the CMS generalized coordinates q  to the 

reduced order model generalized coordinates 

( ) { }(1) {1}[ , , , , , ]S b rN T N T nT T T

k kp p , ( ) ( )

1 1

ˆ
c bN N

s l

r k b

s l

n n m , that contains 

the kept fixed interface modes and the kept constraint interface modes, is 

introduced as 

 q V  (3.14) 

where (1) ( )

{ }{1}

ˆ ˆ
( , , , , , ) q rb

Nc
k k

n nN

n n
V blockdiag I I V V  and nI  is the identity 

matrix of dimension n . Using (3.14), the reduced mass and stiffness matrices take 

the form ˆ ˆT CBK V K V and ˆ ˆT CBM V M V and the resulting eigenvalue problem at 

the reduced system level becomes  

 ˆ ˆK M  (3.15) 

where the diagonal matrix  contains the modal frequencies and the matrix 
r rn n

 contains the corresponding rn  mode shapes of the reduced system.  

The kept characteristic interface modes of the matrix { }lV  satisfy the eigen-

problem  

 
{ } { } { }

ˆ ˆ ˆ ˆ
ˆ ˆ

l l l l

CB l CB l l

b b b b
K V M V  (3.16) 

where ˆ
lb  is the index set denoting the positions of the generalized coordinates 

( )
{ }

l
bml

bu  in the vector q  corresponding to the interface l  , while the stiffness 

and mass matrices 
( ) ( )

ˆ ˆ
ˆ

l l
b b

l l

m mCB

b b
K  and 

( ) ( )

ˆ ˆ
ˆ

l l
b b

l l

m mCB

b b
M  in (3.16)  are the partitions 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



3. Component Mode Synthesis Techniques for FE Model Updating 48 

 

of the reduced stiffness and mass matrices 
( ) ( )

ˆ ˆ
ˆ

l l
b b

l l

m mCB

b b
K  and 

( ) ( )

ˆ ˆ
ˆ

l l
b b

l l

m mCB

b b
M  

associated with the coordinates 
( )

{ }
l

bml

bu  at the l -th interface. These partitions 

are readily obtained from the corresponding partitions of the stiffness and mass 

matrices of the components connecting to the interface l  in the form 

 ( )

ˆ ˆ
ˆ ˆ

l ll l

l

CB s

b bb b
s C

K K  (3.17) 

and 

 ( )

ˆ ˆ
ˆ ˆ

l ll l

l

CB s

b bb b
s C

M M  (3.18) 

where lC  is the integer set that contains the components that connect to the 

interface l , and lb  is the index set corresponding to the interface l  in the vector 

{ }su of the component s . Note that the stiffness matrix K̂ of the reduced system is 

diagonal, given by 
( ) ( )(1) (1)ˆ ( , , , , , )c BN N

kk kk kk kkK diag     , with diagonal elements 

the eigenvalues of each fixed interface and constraint interface mode.  

The components of the mode shape matrix 1̂
ˆ[ , , ] q q

k

n n

nQ q q  of the 

eigenvalue problem (3.11) are related to the components of the mode shape matrix 

1[ , , ] r r

r

n n

n  of the eigenvalue problem (3.15) through the relationship 

ˆ
r rq V . Specifically, using (3.12), the mode shapes r of the original structure 

at the  0N  measured DOF are recovered from the mode shapes r  of the reduced 

system as follows 

 ˆ ˆ
r r r rS SV LV L  (3.19) 

where 0ˆˆ rN n
L LV S SV   

3.3 Model Updating using CMS 

The component mode synthesis procedure is next integrated into the finite 

element model updating formulation. The linear dependence of the mass and 

stiffness matrices on the parameter set  implies that at the component level the 

mass and stiffness matrices as well as their partitions admit a similar 

representation, that is  
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( ) ( ) ( )

0 ,

1

( ) ( ) ( )

0 ,

1

N

s s s

j j

i

N

s s s

j j

j

K K K

M M M

 (3.20) 

Attention is focused on two special cases of the parameterization (3.20) for a 

component s .In the first case (3.3.1) it is assumed that the mass and stiffness 

matrix of a component s do not depend on the model parameters in . In the 

second case (3.3.2) the stiffness matrix of a component s depends linearly only on 

one model parameter, say j  , in the parameter vector , while the mass matrix 

( ) ( )

0

s sM M is constant independent of  . 

3.3.1 Component stiffness and mass matrix is constant  

In this case one has that ( ) ( )

0

s sK K  and ( ) ( )

0

s sM M  The component fixed-

interface and constrained modes are independent of the parameter values. Only a 

single analysis is required to estimate the fixed-interface and constrained modes 

for the particular component s . Within the model updating iteration scheme, these 

component modes are computed once and are then used in the iterations involved. 

The computational saving in the iterative process of model updating arises from 

the fact that the eigenvalue problem to compute the eigenvalues and mode shapes 

of the kept interface modes as well as the solution of the linear system to compute 

the constrained interface modes are not repeated at each iteration.   

 

( ) ( ) ( )

0 ,

1

( ) ( ) ( )

0 ,

1

N

s s s

j j

i

N

s s s

j j

j

K K K

M M M

 (3.21) 

3.3.2 Component stiffness matrix is proportional to model parameters  

This case is enforced by dividing the structure into components based on the 

parameters introduced in the FE model for each physical substructure. Let j  be 

the set of components that depend on the j –th variable j  . The stiffness matrix 

of a component s  takes the form  

 ( ) ( )     s s

jK K  (3.22) 

Equivalently, the relation (3.21) holds also for the partitions of the stiffness 

matrix. Substituting the partitions 
( ) ( )s s

ii ii jK K  and 
( ) ( )M s s

ii ii jM  in (3.3), it is 
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readily derived that the matrix of the kept eigenvalues and eigenvectors of the 

component fixed-interface modes are given with respect to the parameter j in the 

form 

 ( ) ( ) ( )        and        s s s

j ik ik  (3.23) 

where the matrices ( )s  and ( )s

ik
 are solutions of the following eigen-problem 

 ( ) ( ) ( ) ( ) ( )s s s s s

ii ik ii ik kkK M  (3.24) 

and thus they are independent of the values of j  or the FE model variations at 

the component level due to changes in the model parameter. Also using the 

stiffness matrix partitions ( ) ( )s s

ii ii jK K  and ( ) ( )s s

ib ib jK K , the constrained modes 

are given by the constant matrix 

 ( ) ( ) 1 ( ) ( ) 1 ( )[ ] [ ]s s s s s

ib ii ib ii ibK K K K  (3.25) 

also independent of the values of the parameter j  or FE model variations at 

component level. Thus, a single component analysis is required to provide the 

exact estimate of the fixed-interface modes from (3.22) and the constrained modes 

from (3.24) for any value of the model parameter j  .  

Substituting into the reduced mass and stiffness matrices (3.5) and (3.6) the 

partitions of the stiffness matrix (3.21), the eigenproperties (3.22) and the 

interface constraint modes (3.24) of the component s  , it is straightforward to 

verify that the reduced stiffness matrix of component s takes the form 

 ( ) ( )ˆˆ s s

jK K  (3.26) 

where the reduced matrix ( )ˆ sK and the reduced mass matrix ( )ˆ sM are constant 

matrices given by ( ) ( ) ( ) ( )

0

ˆ ˆ[ , ] [ , ]s s s sK M K MG , independent of the values of the 

model parameters .  

Introduce next the index set  to contain the structural components s  that depend 

on a parameter in the vector . Then the set {1, , }sN contains the 

component numbers for which their properties are constant and independent on 

the values of the parameter vector . Substituting (3.21) into (3.8), the stiffness 

matrix of the Craig-Bampton reduced system admits the representation  
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 ( ) ( )

0 ,

1

ˆˆ ˆ ˆ ˆ
N

s s CB CB CB

j j j

j

K K K K K  (3.27) 

and the mass matrix is given by 0
ˆ ˆCB CBM M , where the coefficient matrices 0

ˆ CBK  

and ,
ˆ CB

jK  in the expansion (3.26) are assembled from the component stiffness 

matrices, defined in (3.25), by 

 ( ) ( )

0 ,

ˆˆ ˆ ˆ[ ]        and        [ ]
j j

CB s CB s

s j s

s s

K K K KF F  (3.28) 

The sum in the second of (3.27) takes into account that more than one components 

js  may depend on the parameter j .  

It is important to note that the assembled matrices 0
ˆ CBK  and ,

ˆ CB

jK of the Craig-

Bampton reduced system in the expansion (3.26) are independent of the values of 

. In order to save computational time, these constant matrices are computed and 

assembled once and, therefore, there is no need this computation to be repeated 

during the iterations involved in optimization due to the changes in the values of 

the parameter vector . This aforementioned procedure results in substantial 

computational savings since it avoids (a) re-computing the fixed-interface and 

constrained modes for each component, and (b) assembling the reduced matrices 

from these components. The formulation guarantees that the reduced system is 

based on the exact component modes for all values of the model parameters. In 

addition, using (3.19) and the fact that ( )s and thus  are independent of , the 

observation matrix ˆL̂ S S  in (3.19) is constant, independent of the parameter 

vector . 

 The modal frequency and mode shape residuals involved in the objective ( ; )J w  

have the same exactly form as in finite element model updating without using 

CMS, with ( )r   and the constant matrix L in ( ) ( )r rL     be replaced by 

ˆ ( )rq   and the constant matrix ˆL̂ S S , respectively. Available model updating 

formulations and software can thus be readily used to handle the parameter 

estimation by just replacing the eigenvalue problem of the original mass and 

stiffness matrices with the eigenvalue problem (3.11) of the reduced system 

matrices with ˆ ( )CBK  given by (3.26) and 0
ˆ ˆ( )CB CB  , as well as replacing 

the constant matrix L of zeros and ones by the constant matrix ˆL̂ S S .  

Special attention should be given when the size of the reduced mass and stiffness 

matrices are dominated by a large number of interface DOF. In this case, the 
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coordinate transformation (3.13) can be used to further reduce the number of 

interface DOF for one or more interfaces. Using (3.18), it is clear that the stiffness 

matrix of the eigenvalue problem involved in (3.16) depends on the parameters 

associated with the components that connect to the interface l . The variability of 

these parameters affects the characteristic interface modes lV  which are functions 

of these parameters. Exact estimates of the characteristic interface modes in 

iterative algorithms can only be obtained by repeatedly solving (3.16) for each 

different value of the respective parameters. For large number of DOF at the 

interface, such re-analyses at the interface level may increase substantially the 

computational demands. Interpolation schemes (Teughels et al., 2003) can be used 

to approximate the characteristic interface modes at the interface level in terms of 

the characteristic interface modes at a number of support points in a significantly 

reduced space of model parameters associated with the components that connect 

to the interface.  

Alternatively, selecting lV in (3.13) to be constant, independent of , the 

formulation significantly simplifies, with the reduced stiffness matrix to be given 

by 

 ,

1

ˆ ˆ ˆ
N

j j

j

K K K  (3.29) 

where 0 0
ˆ ˆT CBK V K V and , ,

ˆ ˆT CB

j jK V K V  are constant matrices, while the reduced 

mass matrix be given by the constant matrix 0 0
ˆ ˆT CBM V M V . The modal 

frequency and mode shape residuals involved in the objective function ( ; )J w  in 

the model updating formulations have exactly the same form as in finite element 

model updating without using CMS with ( )r  and the constant matrix L in 

( ) ( )r rL      be replaced by ( )r  defined in (3.15) and the constant matrix 

ˆL̂ S SV  defined in (3.19), respectively. The choice of constant lV  is critical in 

order to get accurate results with the least number of characteristic interface 

modes over the region of variation of the model parameters associated with the 

interface l . In FE model updating, the lV can be chosen as the eigenvectors of the 

lowest modes of the eigenvalue problem (3.16) corresponding to a reference 

model of the structure, avoiding the computational cost involved with the 

repetitive solution of (3.16) at each iteration. This, however, may deteriorate the 

accuracy of the predictions for large variations of the model parameters. To 

improve convergence and maintain the accuracy of the final optimal estimate in 

iterative optimization algorithms, the reduced basis forming lV  can be updated 
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every few iterations The computational efficiency and accuracy of reducing the 

interface DOF using constant lV will be demonstrated in the application section. 

It should be pointed out that the significant savings arising partly from the 

reduction of the size of the eigenvalue problem from n  to rn  in the proposed 

model reduction technique and partly from the fact that the estimation of the the 

component fixed-interface modes and the characteristic interface modes need not 

to be repeated for each iteration involved in the algorithms. Moreover, for 

gradient-based optimization algorithms required in model updating schemes, 

further computational savings are obtained due to the reduction of the size of the 

matrix of the linear system that needs to be factorized in the adjoint formulation 

(COMSOL AB COMSOL Multiphysics User’s Guide, 2005), from the size n  for 

the full matrices rK M to the size rn  for the reduced-order matrices ˆ ˆ
rK M . 

Attention should also be paid on the optimal number of components that should 

be used to represent a substructure with stiffness that depends linearly on a single 

parameter. More components within such substructure introduce extra interface 

DOFs or characteristic interface modes which increase the size and affect the 

sparsity structure of the reduced matrices K̂  and M̂  . The total size of the 

reduced matrices is also affected by the number of the fixed interface modes for 

all components introduced for the substructure. From the computational point of 

view, the optimal choice of components for such a substructure would be to select 

the number of components and the optimal spatial division which will result in a 

reduced system that requires the least computational time for analysis. However, 

as the number of interface DOFs or characteristic interface modes increases by the 

introduction of more components per substructure, it is unlikely that the resulting 

increase in the size of the reduced matrices be effectively compensated by a 

decrease in the total number of fixed interface modes arising from the multiple 

components that represent the single substructure. Thus, in case where detailed 

optimal component selection studies are not available, the wisest choice is to 

select a single component per substructure. 

Following the formulation proposed, the aforementioned framework can be 

extended to handle the case for which the component stiffness and mass matrices 

depend nonlinearly on a single parameter j  of the system parameter set . This 

is the case for which the stiffness and mass matrices of a component js  

depend nonlinearly on j , i.e. 
( ) ( ) ( ) ( )   s s s

jK K f  and 
( ) ( ) ( ) ( )    s s s

jM M g , 

where 
( ) ( )   s

jf  and 
( ) ( )s

jg  are nonlinear functions of the parameter j . The 
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interface modes, the modal frequencies and the interface constrained modes of a 

component can readily be computed by the corresponding interface modes, modal 

frequencies and interface constrained modes of the same component for a 

reference structural configuration corresponding to a particular nominal value of 

the parameter set  as well as the current value of the parameter j . In the 

nonlinear case, a representation similar to 0 ,

1

ˆ ˆ ˆ
N

CB CB CB

j j

j

K K K  and 

0
ˆ ˆCB CB  is no longer applicable and the reduced mass and stiffness matrices 

of the reduced structure should be re-assembled from the component mass and 

stiffness matrices for the new value of j . This procedure also saves substantial 

computational effort since it avoids re-computing the fixed-interface and 

constrained modes for each component.  

As a final note, it is worth mentioning the treatment of a component in the CMS 

process for the general case for which the component stiffness and mass matrices 

depends on two or more parameters in the vector . In these cases, in order to 

obtain exact estimates of the component modes, the solution of the eigenvalue 

problems for such a component is not avoided. The fixed-interface and 

characteristic interface modes have to be recomputed in each iteration involved in 

the model updating procedure and used to form the reduced stiffness and mass 

matrices of the components. This repeated computation, however, is usually 

confined to a small number of components. Interpolation schemes can also be 

adopted to avoid re-analyses at the component or interface level by approximating 

the fixed interface modes and/or the characteristic interface modes at various 

values of the model parameters in terms of the corresponding modes of a family 

of models defined at a number of support points in the parameter space (Teughels 

et al., 2003). However, it should be pointed out that the use of interpolating 

schemes for approximating the fixed interface and the characteristic interface 

modes is an open issue and further analyses are required to evaluate the 

effectiveness of such techniques in the general case. 

3.4 Applications 

The purpose of the application is to demonstrate the computational efficiency and 

accuracy of the proposed component mode synthesis technique for finite element 

model updating. For this, the method is applied to update a model of the Metsovo 

bridge of Egnatia Odos motorway, shown in Figure 3.1.  
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3.4.1 Description and FE Model of Metsovo Bridge  

The Metsovo bridge is the highest reinforced concrete bridge of Egnatia Odos 

motorway located in Greece, with the height of the taller pier P2 equal to 110m. 

The total length of the bridge is 537m. The bridge has 4 spans, of length 44.78m, 

117.87m, 235.00m, 140.00m and three piers of which pier P1, 45m high, supports 

the boxbeam superstructure through pot bearings (movable in both horizontal 

directions), while P2 and P3 piers (110 m and 35 m, respectively) connect 

monolithically to the superstructure. The total width of the deck is 13.95m. The 

superstructure is prestressed of single boxbeam section, of height varying from the 

maximum 13.5m in its support to pier P2 to the minimum 4.00m in key section. 

Piers P2 and P3 are founded on huge circular Ø12.0m rock sockets in the steep 

slopes of the Metsovitikos river, in a depth of 25m and 15m, respectively. 

 

 

Figure 3.1: General View of Metsovo bridge. 

 

The commercial software package COMSOL Multiphysics [36] is used for 

developing the FE model of the bridge. For this, the structure was first designed in 

CAD environment and then imported in COMSOL Multiphysics modelling 
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environment. The models were constructed based on the design plans, the 

geometric details and the material properties of the structure. The following 

nominal values of the material properties of the concrete deck, piers and 

foundations are considered. For the concrete deck, the nominal value of the 

Young’s modulus is taken to be 37E Gpa , the Poison’s ratio 0.2  and the 

density 32548 /kg m . For the piers and the foundation the nominal value of 

the Young’s modulus is taken to be 34E Gpa . A detailed FE model is created 

using three-dimensional tetrahedron quadratic Lagrange finite elements to model 

the whole bridge. An extra coarse mesh with quadratic Lagrange elements are 

chosen to predict the lowest 20 modal frequencies and mode shapes of the bridge. 

The selected model has 97,636 finite elements and 562,101 DOF. 

3.4.2 Effectiveness of CMS technique  

For demonstration purposes, the bridge is divided into nine physical components 

shown schematically in Figure 3.2.. Six components are related to the four spans 

of the bridge deck, while three components are related to the three piers. The eight 

interfaces between the components are also shown in Figure 3.2..  

P2

P1

P3

Figure 3.2: Components of FE model of Metsovo bridge 
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(a)                                                                               (b) 

Figure 3.3: (a) A typical 5m section of the deck with its FE mesh, (b) a typical 

4m section of the tallest pier with its FE mesh. 

 

Each deck component consists of several 4-5m deck sections. A typical 5m 

section is shown in Figure 3.3 (a) along with its FE mesh. The tallest pier also 

consists of several sections. A typical 4m pier section is also shown in Figure 3.3 

(b) along with its FE mesh. It should be noted that the size of the elements in the 

FE mesh is the maximum possible one that can be considered, with typical 

element length of the order of the thickness of the deck cross-section. The entire 

simulation for assembling the mass and stiffness matrices of the structure or its 

components is performed within the COMSOL Multiphysics modelling 

environment and exported in Matlab environment for further processing using 

CMS techniques and FE model updating software. 

The cut-off frequency c  is introduced to denote the highest modal frequency 

value that is of interest in FE model updating. In this study the cut-off frequency 

is selected to be equal to the 20th modal frequency of the nominal model. For the 

specific model, this frequency is obtained from modal analysis to be 4.6c  Hz. 

The effectiveness of the CMS technique as a function of the number of modes 

retained for each component is next evaluated. For each component it is selected 

to retain all fixed interface modes that have frequency less than  max c  , a 

multiple of the cut-off frequency  c  , where the value of the multiplication factor 

 affects computational efficiency and accuracy of the model reduction 

technique. Representative values of  range from 2 to 10. The total number of 

internal DOF and retained modes for 8 , 5  and 2  within all the 

components are reported in the second row of Table 3.1.  
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Table 3.1: Total number of internal and interface DOF for the full (unreduced) 

and reduced models. 

Interfaces 

Structure 

without 

Reduction 

 

Retained 

modes 

8 , 

200  

 

Retained 

modes 

5 , 

200  

 

Retained 

modes 

2 , 

200  

Total Internal 

DOFs 
558,801 286 100 31 

Total 

Boundary 

DOFs 

     3.300 306 306 306 

Total DOFs 562,101 592 406 337 
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Figure 3.4: Number of DOF per component of the FE model of Metsovo bridge. 
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The total number of internal and boundary DOF of the unreduced model are 

reported in the second column of Table 3.1 based on the components and 

interfaces shown in Figure 3.2. The total number of internal DOF per component 

and the number of modes retained per component for different values is shown in 

Figure 3.4. It is clear from the results in Table 3.1 and Figure 3.4 that a more than 

three orders of magnitude reduction in the number of DOF per component is 

achieved using CMS. For the case 8 , a total of 286 internal modes out of the 

558,801 are retained for all 9 components. Figure 3.5 shows the fractional error 

between the modal frequencies computed using the complete FE model and the 

modal frequencies computed using the CMS technique as a function of the mode 

number for 2  , 5  and 8 . It can be seen that the fractional error for 

the lowest 20 modes fall below 10
-4

 for 8 , 10
-3 

for 5  and 10
-2 

for 2  , 

which ensures high levels of accuracy. The total number of DOF of the reduced 

model 8  is 3,586 which consist of 286 fixed interface generalized coordinates 

and 3,300 constraint interface DOF for all components.  
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=5

=2

=8 ,=200

=5, =200

=2 ,=200

 

Figure 3.5: Fractional modal frequency error between the predictions of the full 

model and the reduced model as a function of eigenmode number and for different 

values of   and     . 
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It is thus obvious that a large number of generalized coordinates for the reduced 

system arises from the interface DOF. A further reduction in the number of 

generalized coordinates for the reduced system can be achieved by retaining only 

a fraction of the constrained interface modes. 

The number of DOF per interface is shown in the third column of Table 3.2. For 

each interface defined in Table 3.1, it is selected to retain all modes that have 

frequency less than max  , a multiple of the cutoff frequency c  , where the 

multiplication factor  is user and problem dependent. The number of modes 

retained per interface for 200  is given in the last column of Table 3.2. The 

number of retained interface modes is approximately 10% of the interface DOF 

for each interface. Figure 3.5 presents results for the fractional error between the 

modal frequencies computed using the CMS method with retained characteristic 

interface modes for 200  for each  interface and the modal frequencies 

computed using the complete FE model as a function of the mode number. It can 

be seen that the fractional error for most of the lowest 20 modes of the structure 

fall well below 10
-3

 for 200  and  values as low as 5  . Thus, the value 

of 200  gives accurate results in this case, while the number of retained 

interfaces modes for all interfaces is 306 which corresponds to 10% of the total 

number of interface DOF.  

Table 3.2: Information for each interface involved in the modelling (with number 

of interface DOFs) 

Interfaces 
Adjacent 

Components 

Interface  

DOFs 

 

Retained 

modes 

200  

1 1-2 441 46 

2 2-3 258 27 

3 2-4 432 47 

4 4-5 441 42 

5 5-6 423 46 

6 6-7 660 33 

7 6-8 495 49 

8 8-9 150 16 

Total DOFs  3,300 306 

 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



3. Component Mode Synthesis Techniques for FE Model Updating 61 

 

The reduced system for 5  and 200  has 406 DOF from which 100 

generalized coordinates are fixed-interface modes for all components and the rest 

306 generalized coordinates are characteristic interface modes for all 8 interfaces. 

Obviously the number of generalized coordinates is drastically reduced by more 

than three orders of magnitude compared to the number of DOF of the original 

unreduced FE model. The significant reduction in number of generalized 

coordinates of the reduced system and the increased accuracy of the results are 

promising for using the proposed model reduction method in FE model updating. 

3.4.3 FE model updating using sinle- and multi- objective formulation  

For demonstration purposes, the FE model is parameterized using five parameters 

associated with the modulus of elasticity of one or more structural components 

shown in Figure 3.2. The parameterization is graphically depicted in Figure 3.6. 

Specifically, the first two parameters 1  and 2  account respectively for the 

modulus of elasticity of the pier components 3 and 7 of the bridge. The parameter 

3  accounts for the modulus of elasticity of the components 1 and 2 of the deck,  

 

 

Figure 3.6: FE model parameterization based on 5 parameters. 

 

the parameter 4  accounts for the components 4 and 5, while the parameter 5  

accounts for the components 6 and 8. Note that for the three substructures 
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parameterized by a single parameter 3  , 4  or 5  , two components per 

substructure have been introduced, demonstrating the flexibility of the proposed 

methodology. The component 9 is not parameterized. The parameters are 

introduced to scale the nominal values of the properties that they model so that the 

value of the parameters equal to one correspond to the nominal value of the FE 

model. The nominal FE model corresponds to values of 1 5 1. 

For the purpose of the present analysis, simulated, noise contaminated, measured 

modal frequencies 2ˆ
r

 and mode shapes ˆ
r  are generated by perturbing the values 

of the modal properties 0,r and 0,r , corresponding to the nominal FE model for 

1 , according to the expressions 2

0,
ˆ (1 )r r rn and 0, 0,

ˆ
r r r re    , 

where 2(0, )rn N s  are samples from a zero-mean normal distribution with 

variance 2s  , and re  is a zero-mean normal random vector with diagonal 

covariance matrix 2e I . The standard deviations s  and e  of the perturbed terms 

control mainly the size of the model and measurement errors for the modal 

frequencies and the mode shapes. The assumed constant noise level for the 

different modeshape components may not exactly reflect the actual differences 

 

 

Figure 3.7: Sensor configuration involving 36 sensors. 
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 observed in real applications between the predictions from a model and the actual 

behavior of the structure since model error will cause dissimilar noise levels at 

different modeshape components. However, for the purpose of this study, which is 

to demonstrate the efficiency of the proposed CMS scheme, the addition of 

constant noise level to different modeshape components is sufficient. Herein, the 

magnitudes of the error terms are chosen to be 1%rs and 3%re .  

The FE model is updated using the simulated modal data for the lowest ten 

modes. A sensor configuration involving 36 sensors is considered. The sensors are 

placed along the deck and the piers at the locations and directions as shown in 

Figure 3.7, measuring along the longitudinal, transverse and vertical directions. 

To investigate the accuracy and computational efficiency of the proposed CMS 

formulation, the FE model updating is first performed using the single objective 

optimization method by selecting the weight in (4) to be 1w . Results for the 

accuracy of the model parameters and the computational effort are presented in 

Table 3.3 for the following six cases involving different reduction schemes in 

internal and boundary DOF: (a) 8 , (b) 5 , (c) 2  , (d) 8  and 

200 , (e) 5  and 200 , and (f) 2  and 200 . The initial values 

of the parameters used to carry out the optimization are 1.2i , 1, ,5i . The 

errors in the fourth column of the table are defined by the norm 

2
/ / 100est full full N of the fractional errors of the optimal model 

parameter estimates est  obtained from the CMS-reduced FE model and the 

optimal estimates full  obtained from the full (non - reduced) FE model. The 

percentage difference of the optimal estimates for the full model from the values  

1 of the nominal model is ( 1) 100 (0.57,1.87,1.09,0.61,1.21)full T T  and 

it is due to the noisy data considered. The results in Table 2.3 clearly suggest that 

the error in the estimates of the model parameters is very small for the case of 

reducing the internal DOF using 8 , 5  and 2  . The fluctuation in the 

 values of the parameters errors reported in Table 3.3 as a function of the values 

should not be surprising since, due to the noise added, the experimental modal 

data do not coincide with the modal data predicted by the unreduced model. 

The number of function evaluations and the computational effort are also shown 

in Table 3.3. The computational time for carrying out the optimization for the 

reduced-order models is 5% of the time required for the full model. Consequently, 

significant gains in computational effort are achieved without sacrificing the 

accuracy in the model parameter estimates. A further reduction in the  
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Table 3.3: Accuracy and computational effort for FE model updating based on 

full and reduced ordermodels of Metsovo bridge. 

FE 

Models 

Total 

DOFs 

Equally Weighted Method Multi-

objective 

Method 

Error (%) Function 

Evaluations 

Time 

(sec) 

Time 

(sec) Max Mean 

Full Model 562,101 0.00 0.00 8 14,251   321,352 

8  3,586 0.04 0.03 14     766 15,050 

5  3,400 0.69 0.43 13     677 12,282 

2  3,331 0.30 0.17 13     674 11,437 

8 , 200     592 0.17 0.11 14       12      197 

5 , 200     406 0.62 0.46 13         8      128 

2 , 200     337 0.46 0.24 13         6     109 

 

computational effort, close to two order of magnitude, is achieved by reducing the 

interface degrees of freedom using 200 , while the accuracy is maintained to 

acceptable levels since the errors are smaller than 0.46%. Overall, for 8  and 

200 , the computational effort is drastically reduced by three to four orders of 

magnitude, without sacrificing in accuracy since the error norm is 0.11%. 

Results are next presented for the multi-objective model updating framework. 

Figure 3.8 and Figure 3.9 present the Pareto front and the Pareto optimal models, 

respectively, computed using the full FE model and the six reduced-order models 

introduced before. The Pareto front and optimal solutions are represented by 20 

points computed by the Normal Boundary Intersection algorithm [Das and 

Dennis, 1998). It is clear from Figure 3.8, that the quality of the estimates 

provided is excellent for the reduced-order models (a) and (d), very good for the 

reduced-order models (b) and (e), and acceptable for the reduced-order models (c) 

and (f). The computational effort for performing the FE model updating using the 

full and reduced-order models is reported in the last column of Table 3.3. The 

computational time required to carry out the multi-objective optimization for 

obtaining the Pareto optimal models using the full FE model is of the order of 89 

hours (approximately four days).  
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Compared to the full model, the computational demands are substantially reduced 

by a factor of 20 for the reduced models (a) and (b), and by more than three orders 

of magnitude for the reduced models (d) and (e).Specifically, the computational 

time is 3-4 hours when only the internal DOF of each component are reduced and 

2-3 minutes when both internal and interface DOF are reduced. A drastic 

reduction in computational effort is thus achieved by using the reduced-order 

models, without sacrificing in accuracy of the model parameter estimates as 

shown in Figure 3.8 and Figure 3.9 
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Figure 3.8: Comparison of Pareto fronts for the full and reduced-order FE 

models. 
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Figure 3.9: Comparison of Pareto models in the 2-d projection ( 3 , 5 ) of the 5-d 

parameter space for the full and reduced-order FE models. 

 

3.4.4 Bayesian Model Updating Results using TMCMC  

The finite element model is parameterized using five parameters associated with 

the modulus of elasticity of one or more structural components shown in Figure 

3.2. The parameterization is graphically depicted in Figure 3.6. 

Simulated, noise contaminated, measured modal frequencies and mode shapes are 

generated by adding a 1% and 3% Gaussian noise to the modal frequencies and 

modeshape components, predicted by the nominal non-reduced finite element 

models. The added Gaussian noise reflects the differences observed in real 

applications between the predictions from a model of a structure and the actual 

(measured) behavior of the structure. A sensor configuration involving 36 sensors 

is considered. The sensors are placed along the deck and the piers, measuring 

along the longitudinal, transverse and vertical directions. The finite element model 

is updated using simulated modal data for the lowest ten modes.  
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The Bayesian model updating is performed using the stochastic simulation 

algorithm TMCMC with 1000 samples per TMCMC stage (Ching and Chen, 

2007). Results for the accuracy of the reduced-order models and the 

computational effort have been presented in Figure 3.5 for the following cases 

involving reduction in internal and boundary DOFs: (a) 8 , (b) 8  and 

200 , (c) 5 and  200 , and (d) 2  and 200 . The results for the 

log evidence as well as the mean parameter values for the different reduced-order 

models are reported in Table 3.4. Comparing the log evidence of each reduced 

model and also the corresponding mean values of the model parameters it is 

evident that the various reduced-order models provide adequate accuracy,resulting 

number of finite element model runs and the computational demands in minutes 

for each reduced-order model are also is shown in Table 3.4. 

The number of finite element model runs for each model depends on the number 

of TMCMC stages which vary for each model class from 19 to 20. The 

parallelization features of TMCMC (Angelikopoulos et al, 2015; Hadjidoukas et 

al., 2015) were exploited, taking advantage of the available 8 workers to 

simultaneously run eight TMCMC samples in parallel. For comparison purposes, 

the computational effort for solving the eigenvalue problem of the original 

unreduced finite element model is approximately 129 seconds. Multiplying this by 

the number of TMCMC samples shown in Table 3.4 and considering that 8 

samples run in parallel , the total computational effort for each model class is 

expected to be of the order of 4 days. The results from the full finite element 

model are not shown due to the excessive computational time required to obtain 

results. In contrast, for the reduced-order model for 8 , the computational 

demands are reduced to 16 hours (831 minutes as shown in Table 3.4 ), while for 

the reduced-order models for 8  and 200  these computational demands 

are drastically reduced to 14 minutes. It is thus evident from the results in Table 

3.4 that a drastic reduction in computational effort for performing the structural 

identification based on a set of monitoring data is achieved from four days for the 

unreduced model classes to 14 minutes for the reduced model classes 

corresponding to 8  and 200  without compromising the accuracy of the 

proposed model updating methodology. This results in a drastic reduction in the 

number of the computational effort of almost three orders of magnitude. A large 

number of function evaluations, of the order of 70%, are also estimated using 

surrogate models, resulting in extra reduction in the computational time. The 

drastic reduction in computational time achieved for the present finite element 

model of approximately 560,000 DOFs is evident. 
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Table 3.4: Model updating results, model DOFs, number of FE simulations 

(NFES) and computational effort (CE) in minutes for each model class. 

Cases 
FE Reduced Order Models Evidence 

(log) 

Mean Total DOFs NFES 

 

CE 

(Min) 

 

Full 

 

Full Model ─ ─ 

 

562,101 

 

20,000 

 

6,000 

 

(a) 

 

8  1666.5 

1.005 

1.019 

1.011 

1.006 

1.012 

 

3,586 

 

20,000 

 

831 

 

(b) 

 

8 , 200   1670.5 

1.008 

1.021 

1.010 

1.004 

1.011 

       

 592 

 

20,000 

 

14 

 

(c) 

 

5 , 200  1672.6 

1.008 

1.022 

1.007 

1.012 

1.007 

        

  406 

 

20,000 

 

9.5 

 

(d) 

 

2 , 200  1666.3 

1.007 

1.016 

1.009 

1.005 

1.007 

        

337 

 

20,000 

 

8.5 
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3.4.5 Damage Identification using the Bayesian Formulation  

The proposed model reduction technique is well suited in damage identification 

applications that are based on FE model updating. This is illustrated next using the 

Bayesian method for structural damage identification proposed in Ntotsios et al. 

(Ntotsios et al., 2009). Specifically, a structure is divided into a number of 

substructures and it is assumed that damage in the structure is confined in one or 

more substructures, causing stiffness reduction in these damaged substructures. In 

order to identify which substructure   contains the damage and predict the level of 

damage, a family of model classes 
1
, , , is introduced, and the damage 

identification is accomplished by associating each model class to damage 

contained within a substructure. For this, each model class 
i
 is parameterized 

by a number of structural model parameters i  controlling the stiffness in the 

substructure i , while all other substructures are assumed to have fixed stiffness 

values equal to those corresponding to the undamaged structure. Damage in the 

substructure i  will cause stiffness reduction which will alter the measured modal 

characteristics of the structure. The model class 
i
 that “contains” the damaged 

substructure i  will be the most likely model class to observe the modal data since 

the parameter values i  can adjust to the modified stiffness distribution of the 

substructure i  , while the other modal classes that do not contain the substructure 

i  are expected to provide a poor fit to the modal data.  

Using the Bayesian model selection framework, the model classes are ranked 

according to the posterior probabilities based on the modal data identified from 

measurements. The most probable model class 
best

 that maximizes ( | )
i

P DΜ , 

through its association with a damage scenario on a specific substructure, will be 

indicative of the substructure that is damaged, while the posterior PDF of the 

model parameters of the corresponding most probable model class  
best

, 

compared to the parameter values of the undamaged structure, will be indicative 

ofthe severity of damage in the identified damaged substructure.  

To demonstrate the methodology, the Metsovo bridge is divided into 15 

substructures as shown in Figure 3.1. A number of competitive model classes 
[ ]i and [ , ]i j are introduced to monitor various probable damage scenarios for the 

bridge corresponding to single and multiple damages at different substructures. 

The model class [ ]i  contains one parameter related to the stiffness (modulus of 

elasticity) of substructure i  shown in Figure 3.10 . It can monitor damage  
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Figure 3.10: Substructures of FE model of Metsovo bridge used for damage 

identification. 

 

associated with the stiffness reduction in the i  substructure. The model class 
[ , ]i j contains two parameters related to the stiffness of substructures i  and j  in 

Figure 3.10. It can monitor damage associated with the stiffness reduction in 

either substructures i  and j  or simultaneously at both substructures. The five-

parameter model shown in Figure 3.6 is also included in the family of model 

classes to monitor simultaneous damages at five different substructures. This five-

parameter model class is denoted by [5 ]par . All model classes are generated 

from the updated FE model of the undamaged structure. For each model class, 

CMS techniques are used to alleviate the computational burden associated with 

the model updating problems that needs to be solved. For this, two different cases 

of reduced-order FE models are considered. The first case corresponds to models 

obtained by reducing the internal DOF using 8 , while the second case 

corresponds to models obtained by reducing both the internal and interface DOF 

using 8  and 200 . The Ritz basis for reducing the interface DOF were 

selected to be the characteristic interface modes obtained from equation (3.19) for 

the reference values 

The number of components introduced for each model class depends on the 

parameterization. Specifically, the model class [ ]i  is divided into two, three or 

four components. One component is selected to be the substructure i  shown in 
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Figure 3.10, while the remaining components are selected to be the parts of the 

remaining structure that connect to the interfaces of component i  . The model 

classes [1] , [10] , [14] and [15]  have one interface, the model classes 
[2] , [5] , [8] , [11]  and [12] have two interfaces, while the model classes [3] , 
[9]and [13]  have three interfaces with the remaining structure. A similar 

division into components is introduced for the family of [ , ]i j model classes. For 

example, model class [10,8] is divided into four components, the first two 

components coincide with the physical substructures 10 and 8, the third includes 

the physical substructures 9, 11 to 15 and the fourth includes the substructures 1 

to 7. The components in the [5 ]par model class are kept the same as the ones 

used in Section 3.4.4. The reduced stiffness matrices 0K̂ and ˆ
jK  in the linear 

representation (3.28) and the mass matrix 0M̂  are assembled once for each model 

class and are stored in a database of model classes. 

For investigating the computational efficiency and accuracy of the reduced 

models, a simulated damage is introduced at the highest pier (substructure 10 in 

Figure 3.10), manifested as a stiffness reduction of 30% the nominal stiffness 

value. Simulated, noise contaminated, measured modal frequencies and mode 

shapes are generated for the damaged structure by adding a 1% and 3% Gaussian 

noise to the modal frequencies and modeshape components generated from the 

nominal non-reduced FE model with 30% reduction of the stiffness in the highest 

pier. It is expected that the proposed Bayesian damage identification methodology 

will promote [10] and [10, ]i  and [5 ]par  as the most probable model classes 

since these models classes monitor the stiffness of the component that contains the 

actual damage. 

The model class selection and the model updating is performed using the 

stochastic simulation algorithm TMCMC with the following settings of the 

TMCMC parameters: tolCov 1.0 , 0.2 and 1000 samples per TMCMC stage 

(Ching and Chen, 2007). The results for the log evidence for representative model 

classes and the corresponding magnitude of damages i  predicted by each model 

class are reported in Table 3.5 for the two cases of reduced-order models. Herein, 

for demonstration purposes, the percentage change 
i

between the mean 

estimates [ ]i  (or [ , ]i j , [5 ]par ) of the model parameters of each model class and 

the corresponding values [ . ]ˆ i und  (or [ , . ]ˆ i j und , [5 . ]ˆ par und  ) of the reference 

(undamaged) structure measures the severity (magnitude) of damage computed by 

each model class [ ]i  (or [ , ]i j , [5 ]par ). 
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Table 3.5: Damage identification results, model DOF, number of FE simulations 

(NFES) and computational effort (CE) in minutes for each model class. 

Model 

Class 

Evidence 

8  

 

 

(log) 

Evidence 

8  

200  

 

(log) 

i  

8  

 

 

 (%) 

i  

8  

200  

 

 (%) 

DOF 

(NEFS) 

8  

DOF 

(NEFS) 

8  

200  

CE 

8

 

 

(Min) 

CE 

8  

200  

(Min) 

[2]
 954.46 954.93 +27.9 +26.5 1,724(8000) 438(8000) 123 3.5 

[4]
 954.99 955.08 -15.7 -15.2 989(8000) 381(8000) 42 3 

[6]
 988.17 989.32 -47.8 -47.3 1,747(9000) 441(9000) 134 3.6 

[8]
 1005.5 1006.4 -31.3 -30.8 1,824(9000) 408(9000) 170 0.5 

[10]
 1723.1 1723.3 -29.2 -29.2 1,393(9000) 388(12000) 173 4.6 

[10,7]

 

1722.5 1723.1 -29.0 

+4.0 

-29.0 

+3.9 

1,829(12000) 425(13000) 245 5.4 

[10,8]

 

1718.7 1719.0 -29.0 

+1.9 

-29.0 

+1.3 

2,485(14000) 433(13000) 509 5.5 

[5 ]par

 

1700.4 1698.2 -1.3 

-28.3 

+1.0 

+2.3 

+0.5 

-0.5 

-28.5 

+0.9 

+1.5 

+0.5 

3,586(19000) 592(19000) 759 14 

Total       2155 40.1 
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Comparing the log evidence of each model class and also the corresponding 

magnitude of damages 
i

predicted by each model class in Table 3.5 it is 

evident that the proposed methodology correctly predicts the location and 

magnitude of damage using the reduced-order model classes. Specifically, based  

on the reduced-order models for 8 , the most probable model class is 
[10] which predicts a mean 29.2% reduction in stiffness which is very close to the 

inflicted 30%. Among all alternative model classes [10] , [10,7] , [10,8] and 
[5 ]par  that contain the actual damage, the proposed methodology favors the 

model class [10]  with the least number of parameters and it predicts the five 

parameter model class [5 ]par as the least probable model. This is consistent with 

theoretical results for model class penalization for over parameterization, 

available for Bayesian model class selection (Beck and Yuen, 2004). The model 

classes that do not contain the damage are not favored by the proposed 

methodology. Based on the reduced-order models for 8  and 200 , the 

predictions of the location and severity of damage are very close to the ones 

obtained from the reduced-order models for 8  for most model classes 

included in Table 3.5. In particular, the most probable model class for 8  and 

200  is also predicted to be [10] , while the mean damage severity is 

predicted to correspond to 29.2% reduction in stiffness, exactly the same as the 

one predicted with the reduced-order models for 8 . 

The resulting number of FE model re-analyses and the computational demands in 

minutes for each model class are also is shown in Table 3.5. The number of FE 

model runs for each model class depends on the number of TMCMC stages which 

vary for each model class from 8 for the one-parameter model class to 19 for the 

five-parameter model class. The resulting variable number of stages per model 

class was automatically obtained from the TMCMC algorithm by keeping 

constant the value tolCov of the TMCMC parameter to tolCov 1.0 . This 

parameter controls the intermediate PDFs. For more details, the reader is referred 

to the original publication of the TMCMC algorithm (Ching and Chen, 2007).The 

parallelization features of TMCMC [38] were also exploited, taking advantage of 

the available four-core multi-threaded computer unit to simultaneously run eight 

TMCMC samples in parallel. For comparison purposes, the computational effort 

for solving the eigenvalue problem of the original unreduced FE model is 

approximately 139 seconds. Multiplying this by the number of TMCMC samples 

shown in Table 3.5 and considering parallel implementation in a four-core multi-

threaded computer unit, the total computational effort for each mode class is 

expected to be of the order of 3 to 7 days for 8,000 to 19,000 samples, 
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respectively. The results from the full FE model are not shown due to the 

excessive computational time required to obtain results for the model classes in 

the database. For all eight model classes considered in Table 3.5, the total  

computational effort using the unreduced models is estimated to be approximately 

one month and seven 40 days. In contrast, for the reduced-order models for 

8 , the computational demands for running all model classes are reduced to 

30 hours (2155 minutes as shown in the last row of Table 3.5), while for the 

reduced-order models for 8  and 200  these computational demands are 

drastically reduced to 40 minutes. It is thus evident that a drastic reduction in 

computational effort for performing the structural identification based on a set of 

monitoring data is achieved from approximately 37 days for the unreduced model 

classes to 40 minutes for the reduced model classes corresponding to 8 and 200, 

without compromising the predictive capabilities of the proposed damage 

identification methodology. This results in a drastic reduction in the 

computational effort of more than three orders of magnitude. 

3.5 Conclusions 

Iterative optimization algorithms and stochastic simulation algorithms involved in 

both deterministic and Bayesian FE model updating formulations require a 

moderate to large number of FE model re-analyses. For large size FE models with 

hundreds of thousands or even million DOF, the computational demands may be 

excessive. Exploiting certain stiffness-related parameterization schemes, often 

encountered in FE model updating formulations, to guide the division of the 

structure into components results in exact linear representations of the Craig-

Bampton reduced stiffness matrix as a function of the model parameters with 

coefficient matrices computed and assembled once from a single CMS analysis of 

a reference structure. Further significant reductions in the size of the reduced 

system are shown to be possible using characteristic interface modes estimated for 

each interface between components. Re-analyses required in FE model updating 

formulations are associated with the solution of the eigenproblem of the reduced-

order system, completely avoiding the re-analyses of the component fixed-

interface and characteristic interface modes as well as the re-assembling of the 

reduced system matrices. FE model updating and damage identification results 

using a solid model of a bridge demonstrated the implementation, computational 

efficiency and accuracy of the proposed model reduction methodology. The 

computational effort was reduced drastically by more than three orders of 

magnitude. In particular, for the application in damage identification the 
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computational time was reduced from approximately one month to several 

minutes. Further computational savings can be obtained by adopting surrogate 

modes to drastically reduce the  number of reduced-order system re-analyses and 

parallel computing algorithms to efficiently distribute the computations in available 

multi-core CPUs (Angelikopoulos et al, 2015; Hadjidoukas et al., 2015). 
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CHAPTER 4 Bayesian Uncertainty Quantification and 

Propagation Framework for Nonlinear 

Systems 

4.1 Introduction 

The type of nonlinearities encountered in structural dynamics include hysteretic 

nonlinearities as well as nonlinearities arising from contact and impact between 

surfaces, as well as from nonlinear isolation devices such as nonlinear dampers in 

civil infrastructure and nonlinear suspension models in vehicles. In a number of 

structural dynamics cases, the nonlinearities are localized in isolated parts of a 

structure, while the rest of the structure behaves linearly. Such localized 

nonlinearities can be found in vehicles where the frame usually behaves linearly 

and the nonlinearities are activated at the suspension mainly due to the dampers. 

In civil engineering structures the nonlinearities are at some cases localized at the 

various structural elements (dampers, etc) introduced to isolate the structure 

during system operation.  

For nonlinear models of structures the quantification of the uncertainties in the 

model parameters depends on the measured quantities that are available. 

Depending on the type of application, two types of measured quantities are 
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usually available: full response time histories or frequency response functions. 

The likelihood formulation in the application of the Bayes theorem depends on the 

type of the measured quantities provided.  

Details on the formulation of the likelihood for the case where full measured 

response time histories are available can be found in (Metallidis et al., 2003; 

Metallidis et al., 2008; Jensen et al., 2013). The formulation often depends on the 

user postulation of the prediction errors that represent the discrepancy that always 

appears between the model predictions obtained from a particular value of the 

model parameters and the corresponding data that are available from experiments. 

The likelihood and the posterior pdfs of the parameters of a finite element model 

are functions of the response time histories predicted by the finite element model. 

Each posterior evaluation requires the integration of the nonlinear set of equation 

of motion of the structure. 

The formulation of the likelihood for the case where nonlinear frequency response 

spectra are available can be found in (Jensen et al., 2014; Natsiavas et al., 2013). 

The likelihood and the posterior pdf of the parameters of the nonlinear finite 

element model are functions of the frequency response spectra predicted by the 

finite element model. Each posterior evaluation requires the integration of the 

nonlinear set of equation of motion of the structure for as many different numbers 

of harmonic excitations as the number of frequency response spectra ordinates. 

This, however, increases substantially the computational effort.  

At the model level, model reduction techniques based on CMS are readily 

applicable for special class of problems where the nonlinearities are localized at 

isolated parts of the structure. In such cases the structure can be decomposed into 

linear and nonlinear components and the dynamic behavior of the linear 

components be represented by reduced models. An implementation of such 

framework can be found in (Natsiavas et al., 2013) where it is demonstrated that 

substantial reductions in the DOFs of the model can be achieved which eventually 

yield to reduction in computational effort for performing a simulation run without 

sacrificing the accuracy.  

For Bayesian asymptotic approximations, analytical approximations of the 

gradients of objective functions are not readily available. The development time 

and software implementation may be substantial. For certain classes of hysteretic 

nonlinearities, formulations for the sensitivities of the response quantities to 

parameter uncertainties have been developed (Barbato et al., 2007) and can be 

used within the Bayesian framework. However, it should be pointed out that such 
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formulation are model intrusive and are not easily integrated to commercial 

computer software packages available for simulating nonlinear structural 

dynamics problems. For the model cases where adjoint techniques can be applied, 

the development time may be substantial. However, for a number of important 

nonlinear class of models (e.g. impact, hysteretic) or output quantities of interests 

(e.g. frequency response spectra), adjoint methods are not applicable. The absence 

of adjoint formulation may substantially increase the computational cost and/or 

render gradient-based optimization algorithms unreliable for use with Bayesian 

asymptotic approximation tools. Stochastic optimization and stochastic 

simulations algorithms within a HPC environment are respectively the preferred 

algorithms to be used with Bayesian asymptotic and stochastic simulation tools.  

At the algorithmic level, surrogate estimates are also applicable. For the case 

where the measurements are given as full response time histories, the surrogate 

estimates are applied to approximate the value of the log posterior PDF. For the 

case where the measurements consist of nonlinear frequency response spectra, it is 

more convenient computationally to apply the surrogate estimates for each 

spectral ordinate of the spectrum (Natsiavas et al., 2013). In addition, in the latter 

case, it should be pointed out that the frequency response spectral values can run 

in parallel, taking advantage of HPC environments to speed up computations.  

A Bayesian uncertainty quantification and propagation (UQ&P) framework is 

presented for identifying nonlinear models of dynamic systems using vibration 

measurements of their components. The measurements are taken to be either 

response time histories or frequency response functions of linear and nonlinear 

components of the system. For such nonlinear models, stochastic simulation 

algorithms are suitable Bayesian tools to be used for identifying system and 

uncertainty models as well as perform robust prediction analyses. The UQ&P 

framework is applied to a small scale experimental model of a vehicle with 

nonlinear wheel and suspension components. Uncertainty models of the nonlinear 

wheel and suspension components are identified using the experimentally 

obtained response spectra for each of the components tested separately. These 

uncertainties, integrated with uncertainties in the body of the experimental 

vehicle, are propagated to estimate the uncertainties of output quantities of interest 

for the combined wheel-suspension-frame system. The computational challenges 

are outlined and the effectiveness of the Bayesian UQ&P framework on the 

specific example structure is demonstrated. 

This chapter is organized as follows. In Section 4.2, the Bayesian framework for 

uncertainty quantification, calibration and propagation is presented for the case 
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that the measured response quantities are full response time histories. Moreover, 

the Bayesian framework  for the case that response spectra are utilized, is 

presented in Section 4.3.The suitable Bayesian tools that are used for identifying 

system and uncertainty models as well as perform robust prediction analyses are 

also discussed in this section. In Section 4.4, the identification of the uncertainty 

models of the nonlinear wheel and suspension components is investigated using 

the experimentally obtained response spectra. The uncertainty models for the 

vehicle frame are also obtained using experimental data. The uncertainty is 

propagated to output quantities of interest for the combined wheel-suspension-

frame system. In Section 4.5, the computational challenges are outlined and the 

effectiveness of the Bayesian UQ&P framework on the specific example structure 

is demonstrated. Finally, the conclusions are summarized in Section 4.6. 

4.2 Bayesian Framework using Response Time Histories 

4.2.1 Parameter Estimation 

Consider a parameterized FE model class Μ  of a nonlinear structure and let 
NR  be the parameter set to be estimated using a set of measured response 

quantities. In nonlinear structural dynamics, the measured quantities may consist 

of full response time histories ˆ ( ) , 1, & 1, ,oN

j o DD y k R j N k N  at 

oN  DOF and at different time instants t k t , where k  is the time index and 

DN  is the number of sampled data with sampling period t , or response spectra 

ˆ , 1, ,oN

kD y R k N  at different frequencies k , where k  is a frequency 

domain index. In the context of this Section of Chapter 4, in order to apply the 

Bayesian formulation for parameter calibration of non-linear models, we consider 

that the data consists of measured time histories.  

In addition, let ( ; ) , 1 , & 1, ,oN

j m o Dy k R j N k N  be the predictions of 

the response time histories for the same quantities (displacements, accelerations 

and forces) and points in the structure, from the non-linear model corresponding 

to a particular value of the parameter set N
R . The prediction error equation 

between the sampled response time history of the quantity of interest at time 

t k t   and the corresponding response time history predicted from the model for 

a particular value of the parameter set 
N

R  can now take the form 

 ˆ ( ) ( ; | ) ( )j j jy k y k e k  (4.1) 
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where 1, oj N  and 1, , Dk N  . 

Prediction errors, measuring the fit between the measured and the model predicted 

response time histories, are modeled by Gaussian distributions. The difference 

between the measured and model predicted response is attributed to both 

experimental errors and modeling error. The prediction errors of a response time 

history at different time instants are assumed to be independent zero-mean 

Gaussian variables with equal variances for all sampling data of a response time 

history, but each time history is allowed to have a different prediction error 

associated with it. This formulation takes into account the fact that each measured 

time history is generally obtained from a different sensor (displacement, 

acceleration or force sensor) with a different accuracy and noise level, and this 

results in a number of prediction errors equal to the number of measured time 

histories. 

Under the zero-mean Gaussian assumption for the prediction error, the error term 

( , ( ))k ee N  is a Gaussian vector with mean zero 0  and covariance 

( )e . It is assumed that the error terms , 1, ,k De k N  are independent. This 

assumption may be reasonable for the case where the measured quantities are the 

response spectra. However, for measured response time histories this assumption 

is expected to be violated for small sampling periods. The effect of correlation in 

the prediction error models is not considered in this study. The notation ( )e  is 

used to denote that a model is postulated for the prediction error covariance 

matrix that depends on the parameter set e . The measured quantity  ˆ
jy k  also 

follows a Gaussian distribution with mean  ;jy k   and covariance ( )e , 

    2ˆ ; ,j j jy k N y k   . A diagonal matrix is a reasonable choice for the 

covariance matrix, that is, 2 2
ˆ( )( )

j je diag y , where 2

j  are the variance  

The prediction error je  provides a measure of the discrepancy between the 

measured and model predicted quantities. As already stated in Chapter 2, this 

generally breaks down to two terms for the prediction error, one for the 

experimental error and one for the model error. In this study such a distinction is 

not made, and the prediction error is thought of as a measure of the total 

discrepancy between measurements and the model predictions without being able 

to distinguish how much is due to experimental or modeling error. Depending on 

the problem, and more specifically on the way the data was collected,   might be 

considered known or unknown. In the most general case it is considered unknown 

and therefore is included in the parameters for calibration, along with the 
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structural model parameters. Herein, the prediction error parameters are 

considered unknown and from now on are included in the parameters to be 

calibrated given the data, along with the structural model parameters in the set  . 

The Bayesian method is used to quantify the uncertainty in the model parameters 

as well as select the most probable FE model class among a family of competitive 

model classes based on the measured data. The structural model class Μ  is 

augmented to include the prediction error model class that postulates zero-mean 

Gaussian models. As a result, the parameter set is augmented to include the 

prediction error parameters e . Using PDFs to quantify uncertainty and following 

the Bayesian formulation (Beck and Katafygiotis, 2009; Christodoulou and 

Papadimitriou, 2007; Yuen, 2010), the posterior PDF M( | , )p D  of the structural 

model and the prediction error parameters ( , )
m e

 given the data D  and the 

model class Μ  can be obtained in the form 

 

1

/2

( | ) 1
( | , ) exp ( ) ( | )

2(2 det ( )) D oN N

e

p D
p D J

M
M M  (4.2) 

where 

 

 1

1

ˆ ˆ( ) ( ) ( ) ( )
m

T T

m e m

r

J y y y y  (4.3) 

is the weighted measure of fit between the measured and model predicted 

quantities, M( | )  is the prior PDF of the model parameters  and M( | )p D  is the 

evidence of the model class Μ . 

For a large enough number of experimental data, and assuming for simplicity a 

single dominant most probable model, the posterior distribution of the model 

parameters can be asymptotically approximated by the multi-dimensional 

Gaussian distribution (Beck and Katafygiotis, 2009; Christodoulou and 

Papadimitriou, 2007; Yuen, 2010) centered at the most probable value ˆ   of the 

model parameters that minimizes the function M Mg( ; ) ln ( | , )p D  with 

covariance equal to the inverse of the Hessian ( )h of the function Mg( ; )  

evaluated at the most probable value. For a uniform prior distribution, the most 

probable value of the FE model parameters  coincides with the estimate 

obtained by minimizing the weighted residuals. An asymptotic approximation 

based on Laplace’s method is also available to give an estimate of the model 
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evidence M( | )p D  (Yuen, 2010). The estimate is also based on the most probable 

value of the model parameters and the value of the Hessian ( )h  . 

The asymptotic approximations may fail to give a good representation of the 

posterior PDF in the case of multimodal distributions or for unidentifiable cases 

manifested for relatively large number of model parameters in relation to the 

information contained in the data. For more accurate estimates, one should use 

SSA to generate samples that populate the posterior PDF in (4.2). Among the SSA 

available, the TMCMC algorithm (Beck and Katafygiotis, 2009) is one of the 

most promising algorithms for selecting the most probable model class among 

competitive ones, as well as finding and populating with samples the importance 

region of interest of the posterior PDF, even in the unidentifiable cases and multi-

modal posterior probability distributions. In addition, the TMCMC samples 
( ) , 1, ,i

si N , drawn from the posterior distribution can be used to yield an 

estimate of the evidence ( | )
i

p D  required for model class selection (Beck and 

Katafygiotis, 2009; Christodoulou and Papadimitriou., 2007; Ching and Chen 

,2007) . The TMCMC samples can further be used for estimating the probability 

integrals encountered in robust prediction of various performance quantities of 

interest (Papadimitriou et al., 2001). 

4.2.2 Model Selection 

The Bayesian probabilistic framework is also used to compare two or more 

competing model classes and select the optimal model class based on the available 

data. Consider a familyM = Μ , 1, ,
i
i , of  alternative, competing, 

parameterized FE and prediction error model classes and let 
N

R  be the free 

parameters of the model class Μ
i
. The posterior probabilities ( | )

i
p D  of the 

various model classes given the data D  is (Beck and Au, 2002) 

 
( | ) ( )

( | )
( | )

i i
i

Fam

p D P
p D

p D
 (4.4) 

where ( )
i

P  is the prior probability and ( | )
i

p D  is the evidence of the model 

class Μ
i
. The optimal model class Μ

best
 is selected as the one that maximizes 

( | )
i

p D   given by (4.4). For the case where no prior information is available, the 

prior probabilities are assumed to be ( ) 1/
i

P  , so the model class selection is 

based solely on the evidence values. 
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For model selection, an asymptotic approximation (Papadimitriou et al., 2001; 

Beck and Yuen, 2004; Yuen, 2010) based on Laplace’s method can also be used 

to give an estimate of the evidence integral in that appears in the model selection 

equation (4.4). Substituting this estimate in (4.4) the final asymptotic estimate for 

( | )
i

p D  is given in the form  

 
2 ˆ ˆ( | , ) ( | )

( | ) ( )
ˆ( | ) det ( , )

in

i i i i
i i

Fam i i i

p D
P D P

p D h

Μ Μ
Μ Μ

Μ Μ
 (4.5) 

where ˆ  is the most probable value of the parameters of the model class 
i

Μ  and 

( ) ( , )T

i ih g Μ   is the Hessian of the function ( ; )i i ig Μ  for the model 

class
i

Μ . It should be noted that the asymptotic estimate for the probability of a 

model class 
i

Μ  can readily be obtained given the most probable value and the 

Hessian of the particular mode. For the multi modal case the expression (4.5) can 

be generalized by adding the contributions from all modes.  

4.3 Bayesian Formulation for Parameter Estimation based on 

Frequency Response Spectra 

To apply the Bayesian formulation for parameter estimation of non-linear models 

based on frequency response spectra (Yuen and Katafygiotis, 2003; Jensen et al., 

2014; Natsiavas et al., 2013), we consider that the data consists of measured 

response spectra ˆ , 1, ,oN

kD s R k N  at oN  DOF and at different 

frequencies k , where k  is a frequency domain index and N  is the number of 

sampled data in the frequency domain. In addition, let ( ) , 1 ,oN

k ms R k N  

be the model response predictions of response spectra, corresponding to the DOFs 

where measurements are available, given the model class Μ  and the parameter set 
N

m R . It is assumed that the observation data and the model predictions satisfy 

the prediction error equation  

 ˆ ( | )k k m ks s e  (4.6) 

where 1 ,k N . The error term ( , ( ))k ee N  is a Gaussian vector with 

mean zero 0  and covariance ( )e . It is assumed that the error terms ke , 

1 ,k N  are independent, an assumption that is very reasonable for the case 

that the measured data consists of response spectra. The measured quantity k̂s  
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also follows a Gaussian distribution with mean ( )k ms  and covariance ( )e , 

 ˆ ( ), ( )k k m es N s   .  

The likelihood function ( | , )p D , which quantifies the probability of obtaining 

the data given a specific set of structural parameters and prediction error 

parameters, is derived by noting that the measured response spectra k̂s  are implied 

from (4.6) to be independent Gaussian variables with mean ( )k ms  and variance 

2 . Taking advantage of the independence of the measured quantities both at 

different frequencies of the same response spectra as well as between response 

spectra measured at different locations, the likelihood is formulated as follows. 

     
0

1 1

ˆ| , | ,
N N

j

j k

p D p s k   
 

  (4.7) 

Substituting with the formula for the Gaussian probability density function and 

rearranging terms one obtains that  

  

 
   

0

0
0

2

2
1 1

1

1 1 1
ˆ| , exp ;

2
2

N N

j jN
NN

j kN j
j

j

p D s k s k  


   



  
     

  
 


 (4.8) 

Introducing the overall fit function 

    
0

2
10

1 1
;

N

j

j j

J J
N

  


   (4.9) 

where 

      
2

1

1
ˆ ;

N

j j j

k

J s k s k
N

 


     (4.10) 

represents the measure of fit between the measured and the model predicted 

response spectra, the likelihood function can be compactly written in the form 

  

 
 

0
0

0

1

1
| , exp ;

2
2

N
NN

N

j

j

NN
p D J   

 


 
  

 


 (4.11) 

Substituting (4.11) in (2.16) one derives the posterior probability distribution of 

the parameters in the form 
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  
 

 
 

0
0

0

1

,
, | exp ;

2
( ) 2

N
N N

N

j

j

N N
p D J

p D

  
   

 


 
  

 


 (4.12) 

It is clear from (4.11) and (4.12) that the likelihood and the posterior of the 

parameters of the nonlinear finite element model are functions of the frequency 

response spectra predicted by the finite element model. Each posterior evaluation 

requires the integration of the nonlinear set of equation of motion of the structure 

for as many different number of harmonic excitations as the number of frequency 

response spectra ordinates. This, however, increases substantially the 

computational effort. 

4.4 Application to a Small Scale Laboratory Vehicle 

4.4.1 Description of the laboratory vehicle structure 

In order to simulate the response of a ground vehicle an experimental device was 

selected and set up (Giagopoulos et al., 2001). More specifically, the selected 

frame structure comprises a frame substructure with predominantly linear 

response and high modal density plus four supporting substructures with strongly 

nonlinear action. First, Figure 4.1(a) shows a picture with an overview of the 

experimental set up. In particular, the mechanical system tested consists of a 

frame substructure (parts with red, gray and black color), simulating the frame of 

a vehicle, supported on four identical substructures. These supporting 

substructures consist of a lower set of discrete spring and damper units, connected 

to a concentrated (yellow color) mass, simulating the wheel subsystems, as well as 

of an upper set of a discrete spring and damper units connected to the frame and 

simulating the action of the vehicle suspension. 
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(a) 

 

 

(b) 

Figure 4.1: (a) Experimental set up of the structure tested, (b) Dimensions of the 

frame substructure and measurement points. 

 

Also, Figure 4.1(b) presents more details and the geometrical dimensions of the 

frame subsystem. Moreover, the measurement points indicated by 1-4 correspond 

to connection points between the frame and its supporting structures, while the 

other measurement points shown coincide with characteristic points of the frame. 

Finally, point E denotes the point where the electromagnetic shaker is applied. 
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4.4.2 Experimental Set Up 

In order to identify the parameters of the four supporting subsystems, which 

exhibit strongly nonlinear characteristics, a series of tests was performed. To 

investigate this further, the elements of the supporting units were disassembled 

and tested separately. First, Figure 4.2 shows a picture of the experimental setup 

and presents graphically the necessary details of the experimental device that was 

set up for measuring the stiffness and damping properties of the supports.  

The experimental process was applied separately to both the lower and the upper 

spring and damper units of the supporting substructures and can be briefly 

described as follows. First, the system shown in Figure 4.2 is excited by harmonic 

forcing through the electromagnetic shaker up until it reaches a periodic steady 

state response. When this happens, both the history of the acceleration and the 

forcing signals are recorded at each forcing frequency. Some characteristic results 

obtained in this manner are presented in the following sequence of graphs. Next, 

Figure 4.3 presents the transmissibility function of the system tested, obtained 

experimentally for three different forcing levels while Figure 4.5 presents the 

transmissibility function of a wheel DOF of the vehicle, obtained experimentally 

for two different forcing levels. 

 

 

      

Figure 4.2: Experimental set up for measuring the support stiffness and damping 

parameters. 
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Figure 4.3: Transmissibility function of the support system for three different 

forcing levels. 
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Figure 4.4: History of the external force applied with a fundamental harmonic 

frequency 4Hz   . 
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Figure 4.5: Transmissibility function of a wheel DOF of the vehicle for two 

different forcing levels. 
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Figure 4.6: History of the external force applied with a fundamental harmonic 

frequency 3.4Hz   . 
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Specifically, transmissibility function is defined as the ratio of the root mean 

square value of the acceleration to the root mean square value of the forcing signal 

measured at each forcing frequency. The blue, red and black lines correspond to 

the smallest, intermediate and largest forcing amplitude, respectively. Clearly, the 

deviations observed between the forcing levels indicate that the system examined 

possesses nonlinear properties. Moreover, neither the applied forcing is harmonic, 

especially within the frequency range below 10Hz  . To illustrate this, Figure 

4.4 shows two periods of the actual excitation force applied for the same three 

excitation levels in obtaining the results of Figure 4.3, which were recorded at a 

fundamental forcing frequency of 4Hz  . Moreover, Figure 4.6 shows two 

periods of the actual excitation force applied to the vehicle for the two excitation 

levels in obtaining the results of Figure 4.5, which were recorded at a fundamental 

forcing frequency of 3.4Hz  . 

A number of models of the restoring and damping forces, say rf  and df  

respectively, and shown in Figure 4.7 were tried for modeling the action of the 

supports and compared with the experimental results.  

 

 

Figure 4.7: Mathematical model of the experimental set up for measuring the 

support stiffness and damping parameters 

 

The classic linear dependence of the restoring force on the displacement and of 

the damping forces on the velocity of the support unit was first assumed. 

However, critical comparison with the experimental results using the Bayesian 

model selection framework demonstrated that the outcome was unacceptable in 

terms of accuracy. Eventually it was found that an acceptable form of the 
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restoring forces is the one where they remain virtually in a linear relation with the 

extension of the spring, namely 

  ( )rf x k x  (4.13) 

while the damping force was best approximated by the following formula 

  2
1

3

( )
| |

d

c x
f x c x

c x
 


 (4.14) 

As usual, the linear term in the last expression is related to internal friction at the 

support, while the nonlinear part is related to the existence and activation of dry 

friction. More specifically, in the limit 3 0c  the second term in the right hand 

side of (4.14) represents energy dissipation action corresponding to dry friction. 

On the other side, in the limit 3c  , this term represents classical viscous action 

and can actually be absorbed in the first term. 

4.4.3 Model Reduction of the Vehicle Frame 

Detailed finite element models were created that correspond to the model used for 

the design of the experimental vehicle. The structure was first designed in CAD 

environment and then imported in COMSOL Multiphysics finite element 

modelling environment (COMSOL AB COMSOL Multiphysics User’s Guide, 

2005). The models were constructed based on the geometric details and the 

material properties of the structure. The finite element models for the vehicle were 

created using three-dimensional triangular shell finite elements to model the 

whole structure. A model of 15,202 finite elements having 45,564 DOF was 

chosen for the adequate modelling of the experimental vehicle. This model is 

shown in Figure 4.8. It should be noted that the size of the elements in the FE 

mesh is the maximum possible one that can be considered, with typical element 

length of the order of the thickness of the deck cross-section. The entire 

simulation for assembling the mass and stiffness matrices of the structure or its 

components is performed within the COMSOL Multiphysics modelling 

environment and exported in Matlab environment for further processing using 

CMS techniques and FE model updating methods. 

Component mode synthesis methods (CMS) are implemented to substantially 

reduce the computational effort and save significant computational time. The 

hundreds of thousands of degrees of freedom (45,564 DOFs) of finite element 

model of the vehicle are drastically reduced to a much smaller number (668 

DOFs), by implementing CMS technique.  
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The cut-off frequency c  is introduced to be the highest modal frequency that is 

of interest in FE model updating. In this study the cut-off frequency is selected to 

be equal to the 20
th

 modal frequency of the nominal model. i.e. c 160.8531 Hz. 

The first twenty modes of the vehicle frame are presented in Table 4.1.  

 

 

Figure 4.8: Vehicle structure with its FE mesh 

 

Figure 4.9: Components of FE model of vehicle structure. 
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Table 4. 1: The first twenty identified and predicted modes of the vehicle frame 

 

Mode 

Identified 

Modal 

Frequency 

(Hz) 

Nominal FEM 

Predicted 

Frequency 

(Hz) 

Difference 

between 

Identified and 

FE Predicted 

Modal 

Frequencies 

(%) 

1 23.2139 23.2348 0.0902 

2 42.1225 39.1265 -7.1126 

3 42.5020 41.6084 -2.1024 

4 48.2753 47.2930 -2.0349 

5 58.1552 57.5692 -1.0077 

6 69.0429 66.2020 0.0151 

7 69.4700 69.0533 -4.7042 

8 80.0413 80.4391 0.4969 

9 86.1449 83.2491 -3.3615 

10 100.2428 101.6080 1.3619 

11 102.5815 105.9357 3.2701 

12 110.4424 106.6243 -3.4572 

13 115.1205 112.5407 -2.2409 

14 123.6425 129.0741 4.3930 

15 127.6472 121.7747 -4.6006 

16 132.4204 131.7794 -0.4841 

17 134.9544 133.8787 -0.7970 

18 138.9425 137.3287 -1.1615 

19 148.6929 146.5237 -1.4590 

20 164.3888 160.8531 -2.1497 

 

 

For demonstration purposes, the vehicle is divided into eleven physical 

components shown schematically in Figure 4.9. The first component is related to 

the floor of the vehicle, while the rest ten components are related to the frame of 

the structure. The thirteen interfaces between the components are also shown in 

Figure 4.9. 

The effectiveness of the CMS technique as a function of the number of modes 

retained for each component is next evaluated. For each component it is selected 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



4. Bayesian UQ&P Framework for Nonlinear  Systems 94 

 

to retain all modes that have frequency less than max c  , where the   values 

affect computational efficiency and accuracy of the CMS technique. 

Representative   values range from 2 to 10. The total number of internal DOFs 

per component before the model reduction is applied are shown in Figure 4.10. 

The number of modes retained per components for various   values is also given 

in Figure 4.10. For the case 8   , a total of 65 internal modes are retained for all 

11 components. The total number of DOFs of the reduced model is 1,253 which 

consist of 65 fixed interface generalized coordinates and 1,188 constraint interface 

DOFs for all components. It is clear that a one order of magnitude reduction in the 

number of DOFs is achieved using CMS. The total number of internal DOF and 

retained modes for  8 , 5  and 2  within all the components are 

reported in the second row of Table 4.1. The total number of internal and 

boundary DOF of the unreduced model are reported in the second 
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Figure 4.10: Number of DOF per component of the FE model of vehicle 

structure. 
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column of Table 4.2 based on the components and interfaces shown in Figure 4.9. 

It is clear from the results in Table 2.1 and Figure 4.10 that a more than two 

orders of magnitude reduction in the number of DOF per component is achieved 

using CMS.   

Figure 4.11 shows the fractional error between the modal frequencies computed 

using the complete FE model and the modal frequencies computed using the CMS 

technique as a function of the mode number for 2 , 5 and 8. It can be seen that 

the error for the lowest 20 modes fall below 510  for 8 , 410  for 5 and 
310  for 2 . A very good accuracy is achieved even for the case of 2 . The 

significant reduction in number of generalized coordinates of the reduced system 

and the increased accuracy of the results are promising for using the proposed 

model reduction method in FE model updating. 

It is thus obvious that a large number of generalized coordinates for the reduced 

system arises from the interface DOF. A further reduction in the number of 

generalized coordinates for the reduced system can be achieved by retaining only 

a fraction of the constrained interface modes. 

The number of DOF per interface is shown in the third column of Table 4.2. For 

each interface defined in Table 4.1, it is selected to retain all modes that have 

frequency less than max  , a multiple of the cutoff frequency c  , where the 

multiplication factor  is user and problem dependent. The number of modes 

retained per interface for 200  is given in the last column of Table 4.2. The 

number of retained interface modes is approximately 10% of the interface DOF 

for each interface. Figure 4.11 presents results for the fractional error between the 

modal frequencies computed using the CMS method with retained characteristic 

interface modes for 200  for each  interface and the modal frequencies 

computed using the complete FE model as a function of the mode number. It can 

be seen that the fractional error for most of the lowest 20 modes of the structure 

fall well below 10
-3

 for 200  and  values as low as 5  . Thus, the value 

of 200  gives accurate results in this case, while the number of retained 

interfaces modes for all interfaces is 652 which corresponds to half of the total 

number of interface DOF.  
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Table 4.2: Total number of internal and interface DOF for the full (unreduced) 

and reduced models. 

 

Interfaces 

Structure 

without 

Reduction 

 

Retained 

modes 

8 , 

200  

 

Retained 

modes 

5 , 

200  

 

Retained 

modes 

2 , 

200  

Total Internal 

DOFs 
44,376 65 46 16 

Total Boundary 

DOFs 
 1,188 652 652 652 

Total DOFs 45,564 717 698 668 
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Figure 4.11: Fractional modal frequency error between the predictions of the full 

model and the reduced model as a function of eigenmode number and for different 

values of   and    . 
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4.4.4 Model Updating of the Vehicle Frame 

For demonstration purposes, the FE model is parameterized using six parameters 

associated with the modulus of elasticity of one or more structural components 

shown in Figure 4.9. The parameterization is graphically depicted in Figure 4.12. 

Specifically, the first parameter 1  accounts for the modulus of elasticity of the 

lower part of the experimental vehicle, the second parameter 2  accounts for the 

modulus of elasticity of the parts (joints) that connect the lower part with the 

upper part of the experimental vehicle, while the other four parameters 3 , 4 , 5  

and 6  account for the modulus of elasticity of the different components of the 

upper part of the experimental vehicle Note that for substructures parameterized 

by a single parameter, two or more components per substructure have been 

introduced, demonstrating the flexibility of the proposed methodology. The 

parameters are introduced to scale the nominal values of the properties that they 

model so that the value of the parameters equal to one corresponds to the nominal 

value of the FE model. The nominal FE model corresponds to values of 

1 6 1 . 

 

Figure 4.12: FE model parameterization based on 6 parameters 

 

The FE model is updated using the simulated modal data for the lowest ten 

modes. The first ten modeshapes of the vehicle frame predicted by the FE model, 

created in Comsol, are graphically illustrated in Figures 4.13-4.22. 
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Figure 4.13: Modeshape predicted by the finite element model for the first mode 

at 23.23 Hz 

 

 

 

 

 

 

  

Figure 4.14: Modeshape predicted by the finite element model for the second 

mode at 39.13 Hz. 
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Figure 4.15: Modeshape predicted by the finite element model for the third mode 

at 41.61 Hz. 

                     

Figure 4.16: Modeshape predicted by the finite element model for the fourth 

mode at 47.29 Hz. 

                

Figure 4.17: :Modeshape predicted by the finite element model for the fifth mode 

at 57.57 Hz. 
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Figure 4.18: Modeshape predicted by the finite element model for the sixth mode 

at 66.20 Hz. 

 

 

Figure 4.19: Modeshape predicted by the finite element model for the seventh 

mode at 69.05 Hz. 

 

               

Figure 4.20: Modeshape predicted by the finite element model for the eight mode 

at 80.44 Hz. 
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Figure 4.21: Modeshape predicted by the finite element model for the ninth mode 

at 83.25 Hz. 

 

 

 

 

Figure 4.22: Modeshape predicted by the finite element model for the tenth mode 

at 101.60 Hz. 

 

A sensor configuration involving 24 sensors is considered. The sensors are placed 

along the frame at the locations and directions as shown in Figure 4.23, measuring 

along the longitudinal, transverse and vertical directions. To investigate the 

accuracy and computational efficiency of the proposed CMS formulation, the FE 

model updating is first performed using the single objective optimization method 

by selecting the weight in (4) to be 1w . Results for the accuracy of the model 
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parameters and the computational effort are presented in Table 4.2 for the 

following six cases involving different reduction schemes in internal and 

boundary DOF: (a) 8 , (b) 5 , (c) 2  , (d) 8  and 200 , (e) 

5  and 200 , and (f) 2  and 200 .  

 

 

Figure 4.23: Sensor configuration involving 24 sensors 

Table 4.3: Accuracy and computational effort for FE model updating based on full and 

reduced order models of vehicle. 

 

FE 
Models 

Total 
DOFs 

 
Equally Weighted Method 

Multi-
objective 
Method 

Error (%) Function 
Evaluations 

Time 
(sec) 

Time 
(sec) Max Mean 

Full Model 45,564 0.00 0.00 16 1,262     13,177 

8  1,252 0.34 0.15 18     106 1,666 

5  1,234 0.26 0.13 18     103 1,610 

2  1,204 5.05 2.26 17      96 1,467 

8 , 200     717 0.41 0.18 18       25   394 

5 , 200     698 0.32 0.15 18        25   384 

2 , 200     668 5.09 2.39 17        23   348 
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The initial values of the parameters used to carry out the optimization are 

1.2i , 1, ,6i . The errors in the fourth column of the table are defined by 

the norm 
2

( ) / / 100est full full N  of the fractional errors of the optimal 

model parameter estimates est  obtained from the CMS-reduced FE model and 

the optimal estimates full  obtained from the full (non - reduced) FE model.  

The number of function evaluations and the computational effort are also shown 

in Table 4.2. The computational time for carrying out the optimization for the 

reduced-order models is 5% of the time required for the full model. Consequently, 

significant gains in computational effort are achieved without sacrificing the 

accuracy in the model parameter estimates. A further reduction in the 

computational effort, close to two order of magnitude, is achieved by reducing the 

interface degrees of freedom using 200 , while the accuracy is maintained to 

acceptable levels .Overall, for 8  and 200 , the computational effort is 

drastically reduced by two to three orders of magnitude, without sacrificing in 

accuracy since the error is smaller than 0.41%. 
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Figure 4.24: Comparison of Pareto fronts for the full and reduced-order FE 

models  
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Results are next presented for the multi-objective model updating framework. 

Figure 4.24 and Figure 4.25 present the Pareto front and the Pareto optimal 

models, respectively, computed using the full FE model and the six reduced-order 

models introduced before. The Pareto front and optimal solutions are represented 

by 20 points computed by the Normal Boundary Intersection algorithm (Das and 

Dennis, 1998). It is clear from Figure 4.25, that the quality of the estimates 

provided is excellent for the reduced-order models with 8  , 5  , 8   & 

200   and 5   & 200  and very good for the reduced-order models with 

2   and 2   & 200  . The computational effort for performing the FE 

model updating using the full and reduced-order models is reported in the last 

column of Table 4.3. The computational time required to carry out the multi-

objective optimization for obtaining the Pareto optimal models using the full FE 

model is of the order of 4 hours. Compared to the full model, the computational 

demands are substantially reduced by a factor of 10 for the reduced models with 

8  , 5   and 2   and by more than two orders of magnitude for the 

reduced models with 8   & 200  , 5   & 200   and 2   & 200  . 

Specifically, the computational time is almost half an hour when only the internal 

DOF of each component are reduced and 5 minutes when both internal and 

interface DOF are reduced. 
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Figure 4.25: Comparison of Pareto models in the 2-d projection ( 4 , 6 ) of the 6-d 

parameter space for the full and reduced-order FE models. 
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A drastic reduction in computational effort is thus achieved by using the reduced-

order models, without sacrificing in accuracy of the model parameter estimates as 

shown in Figure 4.24 and Figure 4.25. 

4.5 Bayesian Uncertainty Estimation and Propagation of the 

Vehicle Structure 

The value of the parameters appearing in the assumed models of the restoring and 

damping forces of the supports, like the coefficients k , 1c ,
2c  and 

3c  in (4.13) and 

(4.14) are determined by applying the Bayesian uncertainty quantification and 

calibration methodology. Results are obtained based on experimental response 

spectra values for both the displacement and acceleration of either the wheel or 

the suspension component. It is assumed that the prediction errors in the Bayesian 

formulation are uncorrelated with prediction error variance 
2 2

1 2 1 2 )( , ) ( ,diag diag I I , where 2

1 1 I  and 2

2 2 I  are the 

covariance matrices for the prediction errors corresponding to the displacements 

and accelerations, respectively. The parameter space is six dimensional and 

includes 1 2 3 1 2( , , , , , )k c c c . Parameter estimation results are obtained using 

the parallelized and surrogate-based version (Angelikopoulos et al., 2012) of the 

TMCMC algorithm (Ching and Chen, 2007), with 500 samples per stage. Eight 

computer workers were used to perform in parallel the computations involved in 

the TMCMC algorithm. The computational time required to run all 5500 samples 

for the 11 TMCMC stages, without surrogate approximation, for the SDOF model 

is approximately 7 hours. Surrogate modeling (Angelikopoulos et al., 2012) 

reduces further this time by approximately one order of magnitude. For 

illustration purposes, results for the TMCMC samples projected in the two-

dimensional parameter spaces 1( , )k c , 2( , )k c , 3( , )k c , 1( , )k , 2( , )k , 1 3( , )c c , and 

2 3( , )c c  are shown from Figure 4.26 to Figure 4.33 for the SDOF system, 

corresponding to the suspension component.  

It is clear that the uncertainties in the damping parameters 1c  and 2c  are relatively 

high and 1c  and 2c  are highly correlated along certain directions in the parameter 

space.  

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



4. Bayesian UQ&P Framework for Nonlinear  Systems 106 

 

0.6 0.605 0.61 0.615 0.62 0.625 0.63 0.635 0.64
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

k

c
1

Current Evaluation

 

 

120

125

130

135

140

 

Figure 4.26: Model parameter uncertainty: projection of TMCMC samples in the 

two dimensional parameter space 1( , )k c  
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Figure 4.27: Model parameter uncertainty: projection of TMCMC samples in the 

two dimensional parameter space 2( , )k c   
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Figure 4.28: Model parameter uncertainty: projection of TMCMC samples in the 

two dimensional parameter space 3( , )k c  
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Figure 4.29: Model parameter uncertainty: projection of TMCMC samples in the 

two dimensional parameter space 1( , )k   
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Figure 4.30: Model parameter uncertainty: projection of TMCMC samples in the 

two dimensional parameter space 2( , )k  
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Figure 4.31: Model parameter uncertainty: projection of TMCMC samples in the 

two dimensional parameter space 1 2( , )c c   
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Figure 4.32: Model parameter uncertainty: projection of TMCMC samples in the 

two dimensional parameter space 1 3( , )c c  
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Figure 4.33: Model parameter uncertainty: projection of TMCMC samples in the 

two dimensional parameter space 2 3( , )c c   
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The parameter uncertainties are propagated through the SDOF model to estimate 

the uncertainties in the displacement and acceleration response spectra. The 

results are shown in Figure 4.34 and Figure 4.35 for the displacement for 

moderate and strong excitation level respectively and in Figure 4.36 and Figure 

4.37 for the acceleration response spectra for moderate and strong excitation level 

respectively, and are compared to the experimental values of the response spectra. 

An adequate fit is observed. Discrepancies between the model predictions and the 

experimental measurements are mainly due to the model errors related to the 

selection of the particular forms of the restoring force curves in (4.13) and (4.14). 

The Bayesian model selection strategy based on equation (4.5) can be used to 

select among alternative restoring force models in an effort to improve the 

observed fit. 
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Figure 4.34: Uncertainty propagation: displacement response spectra uncertainty 

along with comparisons with the experimental data for the suspension component 

for moderate excitation level. 
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Figure 4.35: Uncertainty propagation: displacement response spectra uncertainty 

along with comparisons with the experimental data for the suspension component 

for strong excitation level.  
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Figure 4.36: Uncertainty propagation: acceleration response spectra uncertainty 

along with comparisons with the experimental data for the suspension component 

for moderate excitation level. 
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Figure 4.37: Uncertainty propagation: acceleration response spectra uncertainty 

along with comparisons with the experimental data for the suspension component 

for strong excitation level. 

 

The above procedure has been repeated for the wheel component to identify the 

uncertainties in the linear stiffness and nonlinear damping model. The parameter 

uncertainties are again propagated through the SDOF model of the wheel to 

estimate the uncertainties in the displacement and acceleration response spectra. 

The results are shown in Figure 4.38 and Figure 4.39 for the displacement for 

moderate and strong excitation level respectively and in Figure 4.40 and Figure 

4.41 for the acceleration response spectra for moderate and strong excitation level 

respectively, and are compared to the experimental values of the response spectra. 

An adequate fit is observed and for the case of the wheel component, while the 

discrepancies between the model predictions and the experimental measurements 

are again mainly due to the model errors related to the selection of the particular 

forms of the restoring force curves in (4.13) and (4.14).   
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Figure 4.38: Uncertainty propagation: displacement response spectra uncertainty 

along with comparisons with the experimental data for the wheel component for 

moderate excitation level. 
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Figure 4.39: Uncertainty propagation: displacement response spectra uncertainty 

along with comparisons with the experimental data for the wheel component for 

strong excitation level.  
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Figure 4.40: Uncertainty propagation: acceleration response spectra uncertainty 

along with comparisons with the experimental data for the wheel component for 

moderate excitation level. 
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Figure 4.41: Uncertainty propagation: acceleration response spectra uncertainty 

along with comparisons with the experimental data for the wheel component for 

strong excitation level. 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



4. Bayesian UQ&P Framework for Nonlinear  Systems 115 

 

In addition, the uncertainties in nine stiffness-related parameters of the frame 

component were also estimated using the Bayesian methodology and the 

experimental values for the first ten modal frequencies and the mode shape 

components at 72 locations of the frame (Papadimitriou et al., 2011). The linear 

finite element model has 45564 DOFs. Due to excessive computational cost 

arising in stochastic simulation algorithms, the model was further reduced, 

retaining only the first 30 modes of the frame. using the CMS method for FE 

model updating ,presented in Chapter 3 The reduced model has 30 DOFs, 

resulting in substantial computational savings of more than two orders of 

magnitude.  

The estimates of the model parameter values and their uncertainties for each 

component are used to build the model for the combined wheel-suspension-frame 

structure. The number of DOFs of the nonlinear model of the combined structure 

is 45568. The parametric uncertainties are then propagated to uncertainties in the 

response of the combined structure. The CMS was again used to reduce the 

number of DOFs to 34 and thus drastically reduce the computational effort that 

arises from the re-analyses due to the large number of TMCMC samples and the 

nonlinearity of the combined system. 

 

Figure 4.42: Points of the vehicle that uncertainties are propagated to theirs 

uncertainties for the acceleration transmissibility function. 

Selected uncertainty propagation results are next presented. Specifically, the 

parameters of the wheel model and the model of the frame structure are kept to 

their mean values and only the uncertainties in the model parameters of the 
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suspension components are considered. Such uncertainties are propagated to 

uncertainties for the acceleration transmissibility function at some internal, 

boundary and wheel points of the vehicle that are shown in Figure 4.42. 

Specifically, uncertainties are propagated to uncertainties for the acceleration 

transmissibility function at a point on the wheel W2 at the back left side of the 

vehicle as shown in Figure 4.41, a point on the wheel W3 at the front right side of 

the vehicle as shown in Figure 4.42, the connection of the wheel with the frame 

B2 at the back left side of the vehicle as shown in Figure 4.43, the connection of 

the wheel with the frame B3 at the front right side of the vehicle as shown in 

Figure 4.44,and for three internal points on the frame I1, I2, I3 as shown in Figure 

4.47, Figure 4.48 and Figure 4.49 respectively.  
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Figure 4.43: Uncertainty propagation: acceleration transmissibility function 

uncertainty for combined system for the wheel DOF W2 

It is observed that a large uncertainty in the response spectra is obtained at the 

resonance region close to 3.4 Hz, which is dominated by local wheel body 

deflections. The response in the resonance regions close to 58 Hz and 68 Hz is 

mainly dominated by deflection of the frame structure.  
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Figure 4.44: Uncertainty propagation: acceleration transmissibility function 

uncertainty for combined system for the wheel DOF W3 
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Figure 4.45: Uncertainty propagation: acceleration transmissibility function 

uncertainty for combined system for DOF B2 at connection between suspension 

and frame 
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Figure 4.46: Uncertainty propagation: acceleration transmissibility function 

uncertainty for combined system for DOF B3 at connection between suspension 

and frame. 
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Figure 4.47: Uncertainty propagation: acceleration transmissibility function 

uncertainty for combined system for frame DOF I1. 
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Figure 4.48: Uncertainty propagation: acceleration transmissibility function 

uncertainty for combined system for frame DOF I2. 
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Figure 4.49: Uncertainty propagation: acceleration transmissibility function 

uncertainty for combined system for frame DOF I3. 
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It is observed that the uncertainties in the suspension parameters do not 

significantly affect the response spectra at the resonance regions. As a result, 

response spectra obtained experimentally in these resonance regions for the 

complete vehicle model are not expected to be adequate to identify uncertainties 

in the parameters of the suspension model.  

 

4.6 Conclusions 

A Bayesian UQ&P framework was presented for identifying nonlinear models of 

dynamic systems using vibration measurements of their components. The use of 

Bayesian tools, such as stochastic simulation algorithms (e.g., TMCMC 

algorithm), may often result in excessive computational demands. Drastic 

reduction in computational effort to manageable levels is achieved using 

component mode synthesis, surrogate models and parallel computing algorithms. 

The framework was demonstrated by identifying the linear and nonlinear 

components of a small-scale laboratory vehicle model using experimental 

response spectra available separately for each component. Such model uncertainty 

analyses for each component resulted in building a high fidelity model for the 

combined system to be used for performing reliable robust response predictions 

that properly take into account model uncertainties. The theoretical and 

computational developments in this work can be used to identify and propagate 

uncertainties in large order nonlinear dynamic systems that consist of a number of 

linear and nonlinear components. 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



5. Fatigue Monitoring in Metallic Structures using Vibration Measurements 121 

 

CHAPTER 5 Fatigue Monitoring in Metallic Structures 

using Vibration Measurements from a 

Limited Number of Sensors 

5.1 Introduction 

A permanently installed network of sensors in a structure is often used to record 

output-only vibration measurements during operation. These vibration 

measurements provide valuable information for estimating important dynamic 

characteristics of the structures such as modal frequencies, modeshapes and modal 

damping ratios, updating finite element models, monitoring the health of the 

structure by identifying the location and severity of damage, identifying the 

temporal/spatial variation of the loads applied on the structure (Lourens et al., 

2012), estimating the state ( Ching et al., 2006; Wu and Smyth, 2007; Hernandez 

and Bernal, 2008; Chatzi and Smyth, 2009), and updating robust predictions of 

system performance ( Papadimitriou et al., 2001; Beck, 2010). Recently, output-

only vibration measurements were proposed to use for the estimation of fatigue 

damage accumulation in metallic components of structures (Papadimitriou, 

Fritzen et al., 2011). This is an important safety-related issue in metallic structures 

since information on fatigue damage accumulation is valuable for structural risk 
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assessment and for designing optimal, cost-effective maintenance strategies. 

Predictions of fatigue damage accumulation at a point of a structure can be 

estimated using available damage accumulation models that analyze the actual 

stress time histories developed during operation (Palmgren, 1924; Miner, 1945). 

The stress response time histories can be readily inferred from strain response 

time histories directly measured using strain rosettes attached to the structure. 

However, such predictions are only applicable for the locations where 

measurements are available. A large number of strain sensors are therefore 

required to cover all hot spot locations in large structures encountered in 

engineering applications. Due to practical and economical considerations, the 

number of sensors placed in a structure during operation is very limited and in 

most cases they do not cover all critical locations. Moreover, there are locations in 

the structure that one cannot install sensors such as submerged structures, 

underwater locations in offshore structures (oil refinery structures, offshore wind 

turbines, offshore steel jackets, etc.), heated structural components, internal points 

in solid structures, and non-approachable areas of large extended structures. 

Available fatigue prediction methods based only on measurements cannot be used 

to predict fatigue damage accumulation at such locations where measurements are 

not available. In addition, in monitoring applications of a number of structures, 

acceleration measurements are conveniently used instead of strain measurements. 

In order to proceed with fatigue predictions one has to infer the strain/stress 

response time histories characteristics based on the monitoring information 

contained in vibration measurements collected from a limited number of sensors 

attached to a structure. Such predictions are possible if one combines the 

information in the measurements with information obtained from a high fidelity 

finite element model of the structure. It is important to note that such estimations 

will reflect the actual strain time history characteristics developed on the structure 

during operation and thus the corresponding fatigue damage accumulation 

estimates will be more representative of the fatigue accumulated in the structure at 

the point under consideration. Repeating such estimates at all points in the 

structure, one is able to develop realistic fatigue damage accumulation maps that 

cover the entire structure. 

These developments are very important for planning cost-effective maintenance 

strategies of number of structures that take into account the actual condition of the 

structure instead of being based on statistical models derived from data from a 

group of structures. 
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The work by Papadimitriou et al. (2011) was a first attempt along this direction. 

Prediction of fatigue accumulation was based solely on the spectral characteristics 

of the strain time histories, assuming that the time histories can be considered 

stationary over short enough time intervals. Specifically, the fatigue damage 

accumulation in critical locations of the entire structure was obtained by 

integrating (a) methods for predicting strain/stress response time histories and 

their correlation/spectral characteristics in the entire structure from output-only 

measured response time histories available at limited locations in the structure, 

and (b) frequency domain methods (Benasciutti and Tovo, 2006),  for estimating 

fatigue damage accumulation using the spectral characteristics of the predicted 

strain/stress response time histories. In particular, Kalman filter methods were 

used to predict the spectral characteristics of the strain/stress response time history 

at various locations within structural components using measurements available at 

a limited number of locations. The main assumption was that the excitation or 

portions of the excitations can be approximated by a stationary stochastic process.  

For a number of applications, however, the assumption of stationarity is either 

violated or is not representative of the actual excitation conditions. An obvious 

case in civil engineering where the non-stationarity of the excitation and response 

is pronounced includes the passage of trains or heavy trucks over metallic bridges. 

The fatigue under train or large truck loads is an important safety issue. However, 

the damage accumulation predictions proposed in Papadimitriou et al. (2011) are 

not applicable. Consequently, there is a need to use new estimation methods 

capable of predicting the full strain response time histories that are more 

appropriate in case of non-stationary excitations.  

In this chapter, the problem of estimating the full strain time histories 

characteristics at critical locations of the structure using operational vibration 

measurements from a limited number of sensors is presented. The measurements 

may consist of response time histories such as e.g. strain, acceleration, velocity, 

displacement, etc. Moreover, this chapter deals with the use of such estimates to 

predict fatigue damage accumulation in the entire body of a metallic structure and 

lays out the formulation for estimating fatigue using output-only vibration 

measurements and outlines methods for estimating the stress response history 

characteristics required in deterministic and stochastic fatigue theories. Similar 

estimation techniques can be used to estimate other important response 

characteristics in the entire body of the structure, such as displacements, 

velocities, accelerations, etc. The analyses in this study are first implemented to 

the case of linear structures and then have been extended to cover nonlinear 
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models of structures. The stress response quantities are predicted at locations 

subjected to uni-axial stress states. The measured quantities are considered to be 

accelerations, displacements or strains or a combination of accelerations, 

displacements and strains. 

The objective of this work is to formulate the fatigue prediction problem, illustrate 

the methodology and point out its use in evaluating the damage accumulation in 

the entire structure from a limited number of vibration measurements. For this, the 

analyses in this study are restricted to the case of stress response predictions at 

locations subjected to uni-axial stress states for both linear and nonlinear 

structures. The extension to multi-axial stress processes can be accomplished by 

using recent developments in frequency domain methods for stochastic fatigue 

based on spectral techniques (Preumont and Piefort, 1994; You and Lee, 1996; 

Pitoiset and Preumont, 2000). These methods reduce the multi-axial stress state to 

an equivalent uniaxial stress state that can be treated by available fatigue 

estimation techniques based on spectral methods.  

This chapter is organized as follows. In Section 5.2, the deterministic and 

stochastic fatigue damage accumulation formulations are outlined. Section 5.3 

presents the methods for estimating the strain response time history characteristics 

using operational vibration measurements, that are required in the fatigue 

formulations. In Section 5.4, state of the art algorithms for joint identification of 

state and input information are presented. Finally, Section 5.5 demonstrates the 

effectiveness of the proposed methodology using a chain-like mass-spring multi-

degree-of-freedom (MDOF) structure and a small scale vehicle-like frame 

structure. Conclusions are summarized in Section 5.6. 

5.2 Fatigue monitoring using operational vibrations 

5.2.1 Deterministic Fatigue Damage Accumulation 

The Palmgren-Miner rule (Palmgren, 1924; Miner, 1945) is commonly used to 

predict the damage accumulation due to fatigue.  According to this rule, a linear 

damage accumulation law at a point in the structure subjected to variable 

amplitude stress time history is defined by the formula 

 
k

i

i i

n
D

N
  (5.1) 

is in  the number of cycles at a stress level i , iN  is the number of cycles 

required for failure at a stress level  i , and k  is the number of stress levels 
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identified in a stress time history at the corresponding structural point. S-N fatigue 

curves available from laboratory experiments on simple specimens subjected to 

constant amplitude loads, are used to describe the number of cycles iN  required 

for failure in terms of the stress level 
i . The number of cycles 

in  at a stress level 

i  is usually obtained by applying stress cycle counting methods, such as the 

rainflow cycle counting, on the stress time histories measured or estimated for the 

point under consideration. The fatigue damage accumulation at a point requires 

that the full stress time histories are available. The fatigue accumulation model 

can be revised to account for a non-zero mean stress according to the Goodman 

relationship (Tunna, 1986). 

 m
Rt R

u

(1 )


 


     (5.2) 

where Rt  is the modified stress cycle range, R  is the original stress cycle 

range, m  is the mean stress, and u  is the static strength of the material. 

Applying Miner’s rule, the fatigue damage of a structural detail depends on the 

stress range spectrum (stress range   and number of stress cycles n ) and the 

fatigue detail category classified in the Eurocode 3 (EN 1993-1-9 Eurocode 3, 

2005) as follows:  

 
1 2

i

2

6 6
1 1

         

( ) ( )
5 10 5 10

D L j D

k k
j jm mi i

j jD D

nn
D  (5.3) 

 where D  is the constant amplitude fatigue limit at 5×10
6
 cycles; L  is the 

cut-off limit; i  and j  are the thi  and thj stress ranges, in  and jn  are the 

number of cycles in each i and j block, and 1k  and 
2k  represent the number 

of different stress range blocks above or below the constant amplitude fatigue 

limit D . 

In Eurocode 3, each fatigue detail category is designated by a number which 

represents, in N/mm
2
, the reference value C  for the fatigue strength at 2 million 

cycles. As this study focuses on the accuracy of the fatigue damage predicted by 

the proposed method, the fatigue detail category 36 is adopted to illustrate the 

method. The following values of the parameters of the design S-N curves are 

recommended by Eurocode for detail category 36: 3m  , D 26.5  MPa 

and 14.5L   MPa.  
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5.2.2 Estimation of strains at finite element level  

The relation between the strain and the displacement at all DOFs depends on the 

type of the finite elements used. It can be readily obtained using the type of finite 

element used, the shape functions and the coordinates of the nodes of the elements 

and the strain points. Usually commercial finite element codes are not open to the 

user to implement such relationships. As a result, for applications where the mass, 

stiffness and modal properties are computed once in commercial finite element 

codes and then they are transferred in Matlab for further processing, such relations 

are not available and have to be build up. In the following, the procedure to build 

the expression that relates the strains at a finite element with the element nodal 

displacement is outlined. 

Let ( )e  denote the strain at a point within the finite element e  and let ( )eu be the 

vector of nodal displacements. Assuming a linear model and using the finite 

element formulation, the relation between the strain and the nodal displacement 

vector is given by 

 ( ) ( ) ( ) ( ) ( )

1

eN
e e e e T e

i i

i

a u a u


   (5.4) 

where eN  is the number of element DOFs, and ( )e

ia  are constants that depend on 

the element type, location of nodal points in space, the element shape functions 

and the location of the strain point within the finite element. The relation between 

the strain ( )e  and the element nodal displacement vector ( )eu  is completely 

defined by the coefficients ( )e

ia  which are independent of the loading type (static 

or dynamic) or the temporal-spatial variation of the excitations. The eN  unknown 
( )e

ia , 1, , ei N  , can then be computed from at least as many as eN  static finite 

element analyses as follows. 

For this purpose, M  ( )eM N  static loading patterns corresponding to load  

vectors 1, , Mp p . Let ( )e

j  and ( )e

ju  be the strain and nodal displacement vector, 

respectively, obtained at the element level for the loading case jp . These 

quantities are usually output quantities of a commercial finite element code and 

can be readily obtained from the output file. Then using (5.4), the following linear 

system of M  equations holds: 

 ( ) ( ) ( ) ,e e T e

j ju a                       1, ,j M  (5.5) 

If we consider the matrix 
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 ( ) ( ) ( )

1

T
e e e

M       (5.6) 

and the matrix 

 ( ) ( ) ( )

1

T
e e e

MU u u     (5.7) 

the linear system (5.5) takes the matrix form 

 ( ) ( ) ( )e e eU a   (5.8) 

The solution of this linear system is given by 

 
1

( ) ( ) ( ) ( ) ( )e e T e e T ea U U U 


     (5.9) 

We should note that eM N  and thus it is expected that at most eN  equation in 

(5.8) can be linearly independent. The number of M  loading case should be 

selected to be higher than eN  and the corresponding loading patterns should be 

carefully selected in order to make sure that eN  lineally independent equations in 

(5.5) are generated so that the matrix ( ) ( )e T eU U    in (5.9) is nonsingular. This step 

is important to guarantee the accuracy of the unknowns ( )ea . Also, after the ( )ea  

are estimated, the estimate should be validated by computing the predictions ( )ˆ e  

of the strains from (5.8) using the estimated ( )ea  and comparing these predictions 

with the strain values ( )e  already obtained by the finite element model for each 

loading case. 

The aforementioned procedure is repeated for all desirable strain points and the 

corresponding finite elements e  on which these strain points belong. Once the 

relation between the strain ( )e  and the element nodal displacement ( )eu  has been 

established, then the relation between the strain and the whole model 

displacement vector u , containing the displacement at all DOFs, can be obtained 

by using the transformation 

 ( ) ( )e eL u   (5.10) 

where ( )eL   is a matrix of zeros and ones that relates the entries in the respective 

vectors ( )eu  and u . Finally, substituting (5.10) into (5.4), the relation between 

strains at element level and displacement vector u  is given by 

 ( ) ( ) ( )e e T ea L u   (5.11) 
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5.2.3 Stochastic Fatigue Damage Accumulation 

Alternatively, for the cases where the full stress response time histories are not 

available from measurements, frequency domain methods based on spectral 

moments (Lutes and Larsen, 1990; Benasciutti and Tovo, 2006), can be used to 

predict the expected damage due to fatigue using the linear damage law (5.1). The 

methodology assumes that the stress is considered to be a stationary Gaussian 

stochastic process and that the power spectral density of the stress process at a 

structural location is available. For linear systems excited by time-varying loads 

that can be modeled by stationary stochastic processes, these power spectral 

densities can be straightforward computed using available random vibration 

results (Lutes and Sarkani, 2004). 

Using frequency domain methods for fatigue estimation under stochastic 

excitations (Lutes and Larsen, 1990), and the continuous version of the damage 

accumulation law (5.1), the expected fatigue damage accumulation rate for a uni-

axial stochastic stress process using the Dirlik formula (Dirlik, 1985), for the 

probability distribution of the stress levels for Gaussian stochastic stress 

processes, is given as a function of the spectral moments 0 1 2 4, , ,     of the stress 

process (Benasciutti and Tovo, 2006), i.e.  

 
0 1 2 4

( , , , )D D      (5.12) 

where the form of 0 1 2 4( , , , )D D      can be found in (Benasciutti and Tovo, 

2006). The expected time of failure due to fatigue (fatigue lifetime) is 1/lifeT D , 

corresponding to a critical expected damage value [ ] 1crE D D  . The 

aforementioned formulation assumes that the stress process at a point is uni-axial. 

For multi-axial stress states one can apply available methods (Pitoiset and 

Preumont , 2000), to extend the applicability of the present methodology. It is 

clear that the expected fatigue damage rate D  at a point in the structure depends 

only on the spectral moments i , 0,1,2,4i  , of the stress process ( )t . Using 

the definition of the spectral moments ( )
j

j S d   



  , the spectral 

moments and the fatigue predictions at a point of a structure eventually depend 

only on the power spectral density ( )S   of the stress process ( )t . The power 

spectral densities of the stress response processes at a point can be calculated from 

measurements, provided that these measurements are long enough to be 

considered stationary. This issue of predicting the power spectral densities of the 

stress processes in the entire body of the structure using measurements at limited 

locations is addressed at the next Section 5.3.2. 
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5.3 Strain Monitoring using output only vibration 

measurements 

The objective of this section is to predict the characteristics of strain responses, 

such as power spectral densities or full strain time histories, at all hot spot 

locations in a structure using output-only vibration measurements collected from a 

limited number of sensors attached to the structure. Such predictions are 

integrated with the fatigue damage accumulation laws to estimate the fatigue in 

the whole structure taking into account real measurements, instead of postulated 

excitation models that in most cases are not representative of the actual behavior 

of the structure.  

5.3.1 Continuous-time state space formulation of equations of motion  

It is assumed that the system can be represented by a linear model subjected to a 

number of excitations. The equations of motion are given by the following set of 

N  second-order differential equations resulting from a spatial discretization 

(finite element analysis) of the structure The equations of motion are given by the 

following set of N  second-order differential equations resulting from a spatial 

discretization of the structure, e.g. by finite element analysis  

 ( ) ( ) ( ) ( )pMu t Cu t Ku t L p t    (5.13) 

where 1( )  Nu t R  is the displacement vector, M , C  and  N NK R  are 

respectively the mass, damping and stiffness matrices, 
1

( )


 inN
p t R  is the applied 

excitation vector, and inN N

pL R


  is a matrix comprised of zeros and ones that 

maps the inN  excitation loads to the N output DOFs. Throughout the analysis, it 

is assumed that the system matrices M , C  and K  are symmetric. Let 
1

( )


 measN
y t R  be the vector that collects all measN  measurements at different 

locations of the structure at time t . These measurements are expressed in terms of 

the displacement/strain, velocity and acceleration vectors as 

 ( ) ( ) ( ) ( )a v dy t L u t L u t L u t    (5.14) 

where aL , vL  and measN N

dL R


  are selection matrices for accelerations, velocities 

and displacements/strains, respectively. These measurements are generally 

collected from sensors such as accelerometers, strain gauges, etc.     

Introducing the state vector 1 2[ ]    
T T T Nx u u R , the equation of motion can be 

written in the state space form  
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  c cx A x B p t   (5.15) 

while the measured output vector  y t  is given by the observation equation 

    c cy t G x J p t   (5.16) 

where 

 2 2

1 1

0
N N

c

I
A R

M K M C



 

 
  

  
 (5.17) 

is the state transition matrix,  

 
2

1

0
inN N

c

p

B R
M L





 
  
 

 (5.18) 

 
21 1[ ] measN N

c d a v aG L L M K L L M C R
         (5.19) 

is the output influence matrix, and  

 1 meas inN N

a pJ L M L R
   (5.20) 

is the direct transmission matrix.  

Assuming that the structure is classically damped, and introducing the coordinate 

transformation ( ) ( )u t t   the modal coordinate vector 1( )  mt R , the 

modeshape matrix  N mR  and the diagonal matrix 2 2( )    m m

rdiag R  of 

the eigenvalues 2

r , satisfying K M , the state vector 2 Nx R  is given in 

terms of the modal state vector 1 2[ ]T T T mz R      in the form  

 2 1
0

0

Nx z R 
 

  
 

 (5.21) 

where the modal state vector z  and the measurement vector  y t  satisfy 

equations (7) and (8), respectively, with  

 2 2

2

0
m m

c

I
A R  

  
  

 (5.22) 

 
2

1

0
inm N

c

p

B R
L





 
  

 
 (5.23) 

 
22[ ] measN m

c d a v aG L L L L R


          (5.24) 

 meas inN NT

a pJ L L R


    (5.25) 
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(2 ) m m

r rdiag R   and r  is the damping ration of the r  mode, where aL , 

vL  and measN N

dL R  are selection matrices for accelerations, velocities and 

displacements/strains, respectively. These measurements are generally collected 

from sensors such as accelerometers, strain gauges, etc.  

Depending on whether the objective is to predict the power spectra densities or 

the full time histories of the strains, the following techniques can be applied. 

5.3.2 Stationary Stochastic Excitations 

A first attempt to compute the fatigue at the entire body of a structure using 

vibration measurements at a limited number of locations has been presented in 

(Papadimitriou et al., 2011), assuming that the excitation can be represented by a 

stationary stochastic process and the system is linear, thus meaning that the 

response is a stationary stochastic process. The power spectral densities ( )S   of 

the strains at different locations where measurements are not available can be 

computed with respect to the cross power spectra densities ˆ ( )yS  of the responses 

at measured locations. A Kalman filter approach, integrating information from the 

finite element model of the structure and the measurements, was presented to 

estimate the power spectral densities ( )S  . The cross power spectra densities 

ˆ ( )yS   of the measured response are obtained by analyzing adequately long 

measured time histories. The PSD ( )S   of the stresses are obtained by using the 

linear stress strain relationships for linear elastic material. Given the PSD ( )S   

of the stresses, the moments i  required in the stochastic fatigue prediction 

formulas are readily computed and used to provide an estimate of the damage 

accumulation using the formulation in Section 5.2.2. The whole formulation was 

presented for a single stochastic excitation but it can be readily extended to cover 

the case of several stochastic excitations applied at different points in a structure. 

Another method that is applicable in the case of stochastic excitation and linear 

systems is the kriging technique (Papadimitriou, 2009) which, under stationarity 

conditions, can be used to predict the strain time histories at unmeasured locations 

in a structure in terms of the strain time histories measured at optimally selected 

locations (Papadimitriou et al., 2011). An alternative Kalman filter-type method 

for wind-induced strain estimation and fatigue from output only vibration 

measurements that explicitly account for spatial correlation and for the colored 

nature of the excitation and fatigue predictions have also been presented 

(Hermandez al., 2013). 
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5.3.3 Non-Stationary Deterministic Excitations 

The previous formulation assumes that the response can be considered to be 

stationary. However, for a number of applications the nonstationarity dominates 

the features of the excitation and the response, such as in civil engineering 

problems involving, for example, the passage of trains or heavy trucks over 

metallic bridges. The damage accumulation prediction proposed in (Papadimitriou 

et al., 2011) is not applicable in such nonstationary cases. New estimation 

methods capable of predicting the full acceleration and strain response time 

histories, applicable to the case of non-stationary excitations, have been developed 

in (Lourens, Papadimitriou et al., 2012). Specifically, a joint input-state estimation 

filter proposed in (Lourens, Papadimitriou et al., 2012) was adopted and extended 

to estimate strain response time histories in the entire body of the structure using 

output-only vibration measurements collected from the sensor network. 

5.3.3.1 Modal Expansion Technique   

A class of techniques that can be used in the case of deterministic non-stationary 

excitation and linear systems is the modal expansion method. The displacement, 

acceleration and strain response of a structure at various locations can be 

represented as ( ) ( )u t t  , ( ) ( )u t t  , ( ) ( ) ( )t L t t
 

      , where ( )t  are 

the modal coordinate vector, while   and 


  are the modeshape matrices for 

displacements and strains respectively. Using this expansion for the case of 

measured strain responses ˆ( )t , one can in principle obtain the modal coordinates 

from  

 1 ˆ( ) ( ) ( )
T T

t t
  

 


     (5.26) 

where for a nonsingular matrix 1
( )

T

 


   the number of sensors should be at least 

equal to the number of contributing modes. Once these modal coordinates have 

been identified, then the strain responses ( )
pr

t  at unmeasured locations can be 

obtained from equation  

 
,

( ) ( )
pr pr

t t


    (5.27) 

where the modeshape component values 
, pr

  in (5.26) are based on those 

predicted by a finite element model of the structure. The modeshape components 


  can be replaced by the ones identified by a modal identification method. It is 

worth noting that assuming that the response and the excitation can be represented 

by stationary processes, the PSD of the strain responses at unmeasured locations 
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can also be predicted from the CPSD of the responses obtained from vibration 

measurements so that the stochastic fatigue techniques can also be applied.  

It should be noted that optimal sensor location methods are already available to 

use for improving the accuracy of the estimates. The problem of optimizing the 

sensor locations is formulated as a problem of finding the sensor locations that 

provide the best estimates of the modal coordinates ( )t . This problem has first 

been addressed in (Papadimitriou, 2004) and efficient computational techniques 

have been provided (Giagopoulos and Natsiavas, 2007) based on the modeshapes 

of a finite element model. A drawback of the formulation based on modal 

expansion is that the predictions are sensitive to model and measurement errors. 

Also, the predictions make efficient use of strain or displacement measurements 

which are less frequently employed in monitoring systems. For acceleration 

measurements one can derive ( )t  and use double integration to estimate ( )t . 

However, such double integration is a source of extra processing errors which are 

expected to affect the predictions of strains. 

5.4 State of the Art Algorithms for Joint Input-State Estimation 

Although the state identification has been a task that is frequently addressed in 

recent years, the joint identification of state and input information is a topic less 

treated so far in the literature. It is widely recognized that structural systems are 

inherently characterized by uncertainty, relating to measurement errors, sensor 

noise, and inefficacy of the numerical models and lack of a priori knowledge on 

the system and loading conditions. In practice, one common approach is to 

assume the unknown input as a zero mean white Gaussian process and make use 

of the aforementioned Bayesian techniques for state estimation. However, in 

many cases this assumption is violated and therefore it may lead to major adverse 

effects on the accuracy of the estimations. To address this issue, a number of 

optimal filtering techniques in the presence of unknown input have been 

proposed. 

In a pioneering work, Kitanidis developed an unbiased minimum-variance 

recursive filter for input and state estimation of linear systems without direct 

transmission; his algorithm did not make any a-priori assumption on the input 

(Kitanidis, 1987). Gillijns and De Moor proposed a new filter for joint input and 

state estimation for linear systems without direct transmission (Gillijns and De 

Moor, 2007). Their filter is globally optimal in the minimum-variance unbiased 

sense. Later Gillijns and De Moor developed a new formulation of the 
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aforementioned filter which included a direct transmission term in its structure 

(Gillijns and De Moor, 2007).  

In more recent years, Lourens (Lourens, Papadimitriou et al., 2012) has proposed 

an extension of the method developed in (Gillijns and De Moor, 2007) to deal 

with the numerical instabilities that arise when the number of sensors surpasses 

the order of the model, i.e. when a large number of sensors is used in combination 

with a reduced-order model assembled from a relatively small number of modes. 

It was reported that, although the algorithm provides a reasonable prediction of 

the accelerations, the input force and displacement estimates are affected by 

spurious low frequency components that must be filtered out in this case. This 

approach is developed in Section 5.4.1. Moreover, Lourens, Reynders et al. 

(2012) have proposed an augmented Kalman filter (AKF) for unknown force 

identification in structural systems, and concluded that the AKF is prone to 

numerical instabilities due to un-observability issues of the augmented system 

matrix. Details about the augmented state-space model and the Kalman Filter 

equations used are given in Section 5.4.2 

It is worth noting, that in dealing with the drift that appears in displacements 

Chatzi (Chatzi and Fuggini, 2015) and later Naets (Naets et al., 2015) have 

proposed a technique that avoids drift effect in the estimated displacements by 

introducing artificial dummy displacement measurements into the observation 

vector. This technique, known as augmented Kalman filter with dummy 

measurements is presented in Section 5.4.3. 

Moreover, a dual implementation of the Kalman filter is proposed by Eftekhar 

Azam et al. (2015) to estimate the unknown input and state of a discrete-time state 

space model. Eftekhar Azam et al. (2015) have shown that the expert guess on the 

covariance of the unknown input provides a tool for avoiding the so-called drift 

effect in the estimated input force and displacements, since the drift is linked to 

the integral nature of these quantities in the presence of acceleration information. 

The dual Kaman filter approach is presented in Section 5.4.4. 

Finally, we should mention that although all the above mentioned state of the art 

techniques are proposed for joint input and state estimation, the current chapter is 

interested in the accurate estimation of the displacements strains and stresses in 

order to obtain a robust prediction of fatigue that is the objective of this chapter 

and the input estimation itself is a secondary goal compared to state estimation. 
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5.4.1 Joint Input – State Estimation Technique  

The approach is based on a filter that has the structure of the Kalman filter, which 

is used to jointly estimate the inputs and the full state of a linear system using a 

limited number of vibration measurements. This filter extends Gillijns and De 

Moor’s (Gillijns and Moor, 2007) joint input-state estimation algorithms to handle 

structural dynamics applications. In contrast to the method proposed in 

(Papadimitriou et al., 2011), no assumptions are made on the spatial and temporal 

characteristics of the applied loads, as well as the number and location of the 

excitations on the structure.  

The proposed methodology was validated using simulated data from a laboratory 

beam structure subjected to impulse-type and stochastic excitations as well 

simulated measurements from a railway bridge (Papadimitriou et al., 2012). The 

proposed Kalman-type filters were demonstrated to be accurate for estimating 

acceleration time histories at unmeasured locations in the structure. For 

displacement and strain time histories, the filter estimates were inaccurate due to 

low frequency shift manifested in the time histories. Such inaccuracies were 

corrected by applying a high frequency filter to the modal estimates provided by 

the joint input-state estimation filter technique. The main steps of the joint input-

state estimation algorithm based on combined acceleration and strain 

measurements (Lourens et al., 2012) are next presented.  

5.4.1.1 Formulation of discrete-time State-Space Model   

Using the sampling rate 1/ t  the discrete-time state space model corresponding 

to (5.15) and (5.16) is  

 1k k k kx Ax Bp w     (5.28) 

 kk k ky Gx Jp  (5.29) 

where ( ) kx x k t , ( )
k

p p k t   and ( )
k

y y k t  , 1,..., sk N , are the digitized 

state, load and output vectors, cA t
A e


  is the state transition matrix for the 

discrete formulation, 1( ) c cB A I A B  , cG G  and cJ J . It is noteworthy that, 

in this approach the G  and J  matrices are converted from continuous time to 

discrete via a zero-order-hold (ZOH) assumption, which assumes a constant inter-

sample behavior for the input. It should be noted at this point, that Bernal (Bernal 

and Ussia, 2015) has carried out a thorough study of other more realistic 

assumptions on the inter-sample behaviors of the input for dynamic systems and 

concluded that a Dirac comb impulse assumption can significantly improve the 

discretization accuracy. A further analysis of this issue lies beyond the scope of 
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this thesis The ZOH assumption is adopted here in for the further purpose of 

allowing the direct cross-comparison of this methodology with the methodologies 

presented in next sections. 

The discrete-time state space equations (5.28) and (5.29) have been supplemented 

with the random vectors kw  and k  to account for the stochastic system and 

measurement noise, respectively. It is assumed that kw  and k  are mutually 

uncorrelated, zero mean, white noise processes with known covariance matrices 
2 2[ ]T m m

k kQ E w w R  and [ ] meas measN NT

k kR E R .  

5.4.1.2 Gillijns and De Moor’s Joint Input – State Estimation Algorithm   

Let |
ˆ

k lx  be the estimate of the state kx  given the load  
0

l

n n
y


 and let 

| | |[( )( ) ]ˆ ˆ T

k l k kk l k lP E x xx x  be the error covariance matrix. Based on the filter 

proposed in Lourens et al. (2012) the force and the state estimates are computed 

recursively in three steps: the input estimation 

 

| 1

1 1 1

1

| | 1

( )

ˆ ˆ( )

meas meas

in meas

in

N NT

k k k

N NT T

k k k

N

k k k k k k

R GP G R R

M J R J J R R

p M d Gx R

 (5.30) 

the measurement update 

 

21

| 1

2 1

| | 1 | 1 |

2 2

| | 1 [ | ]

2

[ | ] [ | ] [ | ]

ˆ ˆ ˆ ˆ( )

( )

measm NT

k k k k

m

k k k k k k k k k k

T T m m

k k k k k k p k k k

T m Nin

xp k k xp k k k p k k

L P G R R

x x L d Gx Jp R

P P L R JP J L R

P P L JP R

 (5.31) 

and the time update 

 

2 1

1| | |

| [ | ] 2 2

!|

[ | ] [ | ]

ˆ ˆ

[   ]

m

k k k k k k

T
k k xp k k m m

k k T
px k k p k k

x Ax p R

P P A
P A B Q R

P P B

 (5.32) 

The initial unbiased state estimate 0 1x̂  and its error covariance matrix 0 1P  are 

assumed known.  

In structural dynamics applications, numerical instabilities may arise when the 

number of contributing structural modes is less than the number of sensors or the 

number of loads applied to the structure. These instabilities are due to numerical 
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deficiencies of the inverse of the matrices  
kR , 1T

kJ R J  and [ | ]

T

p k kJP J . To avoid 

these numerical deficiencies, the inverses of the aforementioned matrices are 

computed by truncating the expansion obtained by a singular value 

decomposition, keeping only the terms associated with the dominant singular 

values. The proposed technique is shown to avoid the numerical rank deficiency 

of the aforementioned matrices in (Lourens et al., 2012).  

It has been demonstrated (Lourens et al., 2012). that the best estimates are 

obtained by assuming the location of the forces to be unknown. This is a realistic 

situation encountered in all practical applications with operational vibrations. The 

forces are spatially distributed over the boundary of the structure. However, using 

the fact that there is a correlation between the spatially distributed forces, one can 

replace the forces by a number of independent forces acting on the structure. In 

the joint input-state estimation algorithm, a set of equivalent forces is thus 

assumed to act at a number of arbitrarily chosen locations. These locations are 

chosen to correspond to the locations of the measurements used in the filter for the 

estimation. In this case, the filter was demonstrated to provide improved estimates 

of the states. It should be noted that the estimates of the equivalent forces do not 

correspond to any estimates of the unknown input forces.  

In the context of this thesis, this work has also been extended for the case where 

the measured quantities are only strains by modifying the approach presented in 

Gillijns and De Moor’s (Gillijns and Moor, 2007) for input-state estimation of 

systems to handle structural dynamics applications. In this case, the discrete-time 

state space model corresponding to (5.15) and (5.16) is  

 1k k k kx Ax Bp w     (5.33) 

 kk ky Gx  (5.34) 

where matrices A and B have been defined in (5.28),the output influence 

matrixG  is 

 
2

[ 0] measN m

dG L R


    (5.35) 

and the direct transmission matrix J  is given by the equation 

 
2meas inN N

J GB R


   (5.36) 

The main steps of this extended joint input-state estimation algorithm are next 

presented in three steps the input estimation 
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| 1

1 1 1

1

| | 1

( )

ˆ ˆ( )

meas meas

in meas

in

N NT

k k k

N NT T

k k k

N

k k k k k k

R GP G R R

M J R J J R R

p M d Gx R

 (5.37) 

the measurement update 

 

21

| 1

* 2 1

| | 1 |

* * 2 1

| | |

2

2 2

2

* 2 2

| | 1

* * 2

| | |

ˆ ˆ ˆ

ˆ ˆ ˆ( )

( )

measm NT

k k k k

m

k k k k k k

m

k k k k k k k k

m Nmeas

k k

m m

k k

m Nmeas

k k k

T T m m

k k k k k k k k k

T T m

k k k k k k k k

L P G R R

x x Bp R

x x L d Gx R

N BM R

H I N G R

S N R R

P H P H N R N R

P P L P G S R 2m

 (5.38) 

and the time update 

 

2 1

1| |

2 2

!| |

ˆ m

k k k k

T m m

k k k k

x Ax R

P AP A Q R
 (5.39) 

The stress time histories at a point of a structure are obtained by using the linear 

stress strain relationships for linear elastic material. Given the stress time 

histories, the damage accumulation due to fatigue are obtained by cycle count 

methods, S-N fatigue curves and the linear fatigue damage accumulation laws 

presented in Section 5.2.1.  

5.4.2 Augmented Kalman Filter  

The proposed technique essentially consists of a standard Kalman filter (Kalman, 

1960) applied to an augmented state-space model (Lourens et al. 2012) in which 

the forces are added to the unknown state vector. In Section 5.4.2.1 the augmented 

model is developed first, followed by a presentation of the filter equations in 

Section 5.4.2.2. 

5.4.2.1 Augmented State-Space Model   

The augmented state-space model is derived starting from the classical discrete-

time state equation (5.33), which is supplemented with an equation which directly 

relates the force vectors at times k  and 1k   

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



5. Fatigue Monitoring in Metallic Structures using Vibration Measurements 139 

 

 
1 k kk

p p 

   (5.40) 

where k  is assumed to be a mutually uncorrelated, zero mean, white noise 

process with known covariance matrix [ ]T

k kS E . 

By combining (5.33) and (5.40) and redefining the state vector (2 ) 1in
a m N

x R
 

 , 

where the superscript a  refers to augmented 

 
ka

k

k

x
x

p

 
 
  

   (5.41) 

an augmented state equation is obtained 

 1

a a

k ka kx A x     (5.42) 

The matrix (2 ) (2 )m Nin m Nin

aA R     is defined as: 

 
0

a

A B
A

I

 
  
 

 (5.43) 

where the system matrices A  and B  have been defined in (5.28) and the noise 

vector m Nin

k R  , again assumed unknown, accounts for the modelling errors 

2m

kw R  as well as the force increment Nin

k R   and is defined as 

  
k

k

k

w




 
  
  

   (5.44) 

The classical discrete time observation equation (5.29) with unknown noise vector 
measN

k R , becomes in the augmented model 

 
a

kk a ky G x  (5.45) 

where measN

ky R  represents the measured data vector and the matrix 

(2 )meas inN m N

aG R  is assembled from the output influence and direct transmission 

matrices G  and J  as follows: 

 [   ]aG G J  (5.46) 

The output influence matrix cG G  has been defined in (5.24) and the direct 

transmission matrix cJ J  has been defined in (5.25). 
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To summarize, the state and observation equation defining the augmented state-

space model are formulated by equations (5.42) and (5.45). 

5.4.2.2 Kalman Filter Equations for the Augmented State-Space Model   

Before presenting the filter expressions, it is useful to give some definitions and 

clarify the underlying assumptions. Firstly, the discrete-time state space equations 

(5.42) and (5.45) have been supplemented with the random vectors m

kw R , 

Nin

k R   and  measN

k R  to account for noise, that are assumed to be a mutually 

uncorrelated, zero mean, white noise process with known covariance matrix 
2 2[ ]T m m

k kQ E w w R , [ ]T Nin Nin

k kS E R  and [ ] meas measN NT

k kR E R  

respectively.  

Moreover, let make the convention that |
ˆa

k lx  is the estimate of the state 
a

kx  given 

the load  
0

l

n n
y


 and 

(2 ) (2 )

| | |[( )( ) ]ˆ ˆ in in
a a m N m Na a T

k kk l k l k lP E x x Rx x  is the error 

covariance matrix. According to this convention, 0| 1
ˆax  refers to an initial estimate 

of 
a

x  at time 0k  . Both the initial state estimate 0| 1
ˆax  and its error covariance 

matrix 0 1P  are assumed known.  

Based on the filter proposed in (Lourens, Reynders et al., 2012) the Kalman filter 

equations for the discrete-time state-space system of equations (5.42) and (5.45)

are now presented in terms of the measurement update, where the previously 

predicted state estimate is updated with the new observation, and the time update, 

where the state is advanced based on the model equations: 

The measurement update 

 

(2 )1

| 1 | 1

(2 ) 1

| | 1 | 1

(2 ) (2 )

| | 1 | 1

( )

( )ˆ ˆ ˆ

in meas

in

in in

m N NT T

k k k a a k k a

m Na a a

k k k k k k a k k

m N m N

k k k k k a k k

L P G G P G R R

L y G R

P P L G P R

x x x  (5.47) 

and the time update 

 

(2 ) 1

1| |

(2 ) (2 )

1 | |

ˆ ˆ in

in in

m Na a

k k a k k

m N m NT

k k k a k k a a

A R

P A P A Q R

x x
 (5.48) 

where 
(2 ) (2 )in inm N m N

aQ R  ,in conjunction with the augmented noise vector 
m Nin

k R   from (5.44), is the augmented covariance matrix and is given by: 

 
0

0
a

Q
Q

S

 
  
 

 (5.49) 
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5.4.3 Augmented Kalman Filter with dummy measurements  

In Section 5.4.2, it was shown that in order to obtain a coupled estimation of both 

the states and the forces, the regular state vector is augmented with the unknown 

forces and these are estimated in the same fashion as the other states by providing 

a basic model for the forces. 

However, Naets (Naets, 2015) has shown that the case where the estimation is 

performed based on acceleration measurements is not observable, which leads to 

unreliable estimates and that only in the case of a full position measurement full 

observability can be guaranteed. In order to circumvent the observability issues, 

Naets proposes the addition of dummy measurements on the position of all the 

degrees of freedom in order to prevent drift. In this approach, the acceleration 

measurements take care for the transient behavior while the dummy 

measurements provide long-term stability. 

In Section 5.4.3.1 the augmented model, in the case that dummy measurements 

are used, is developed first, followed by a presentation of the filter equations in 

Section 5.4.3.2. 

5.4.3.1 State-Space Model for the Augmented Kalman Filter with dummy 

measurements   

In order to obtain a stable simulation, dummy measurements (Naets et al., 2015) 

are proposed to be added for the positions. This approach is similar to the one 

proposed by Chatzi (Chatzi and Fuggini, 2015) for stabilizing tracking for civil 

structure monitoring purposes. In structural systems the deformation of the 

structure is bounded and an order of magnitude for the deformation can typically 

be estimated apriori (possibly based on a simulation). These bounds for the 

deformation can then be considered as the uncertainty on a dummy measurement 

which indicates that the deformation is zero. The dummy measurements have 

measurement equations 

 0
a

dm dmG x  (5.50) 

where  

 
(2 )

[   0  0] meas inN m N

dm dG L R  (5.51) 

This equation states that the position of the DOFs is zero with an uncertainty dm  

with covariance [ ] meas measN NT

dm dm dmR E R . The entries of this covariance 

matrix dmR  can be used for the tuning of the final Kalman filter in order to 

generate desirable results. The covariance dmR  should be chosen an order of 
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magnitude higher than the actual motion of the system, because a smaller 

covariance will constrain the estimates too much and lead to erroneous results. On 

the other hand, if the covariance is chosen to high, the dummy measurement will 

not be capable to properly restrict the drift on the estimates, which is not desirable 

in the context of this thesis since the main objective of this chapter is the accurate 

prediction of the displacements of the system in order to get accurate estimates of 

the fatigue prediction. Within an order of magnitude change, the results of the 

estimator are relatively insensitive to the exact value of dmR . 

Due to the relatively large uncertainty on these dummy measurements they will 

not contribute considerably to the fast estimation typically required for force 

estimation. They will however prevent the long term drift created by the 

acceleration measurements and allow an effective means to stabilize the estimated 

covariance of the filter. Finally, if the steady-state position of the system is known 

to not be the zero-state, the dummy measurements should be adjusted in order to 

take this behavior in to account.  

5.4.3.2 Kalman Filter Equations for the Augmented State-Space Model with 

dummy measurements   

Based on the filter proposed in (Naets et al., 2015) the Kalman filter equations for 

the discrete-time augmented state-space system are now presented. The discrete 

time Kalman filtering equations are typically split into two steps. In the first step, 

we get the equations presented in (5.48). In the second step, these estimates are 

corrected through the following equations: 

The correction step 

 

1

2 2

1 1| 1|

(2 )

1| 1 1| 1 1|

0
  

0

0
ˆ ˆ ˆ

meas meas

in

T T

a a a N N

k k k k k

dmdm dm dm

T

ak m Na a a

k k k k k k k

dm

G G G R
K P P R

RG G G

Gy
K R

G
x x x 1

(2 ) (2 )

1| 1 1| 1 1|
in in

a m N m N

k k k k k k k

dm

G
P P K P R

G

 (5.52) 

Using the correction step (5.52), the fictitious dummy measurements dictate the 

estimator to return to an undeformed state and lead to a stable estimation 

approach. 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



5. Fatigue Monitoring in Metallic Structures using Vibration Measurements 143 

 

5.4.4 Dual Kalman Filter  

A dual implementation (Eftekhar Azam et al., 2015) of the Kalman filter is 

proposed to estimate the unknown input and states of a state-space model. 

However, the input estimation itself is a secondary goal compared to state 

estimation, as the objective of this thesis is to estimate the fatigue damage 

accumulation. In this approach, it is assumed that a limited number of noisy 

acceleration measurements are available. The successive structure of the 

suggested filter prevents numerical problems attributed to un-observability and 

rank deficiency of the Augmented Kalman Filter. Additionally, it is shown that 

the expert guess on the covariance of the unknown input provides a tool for 

avoiding the so-called drift effect in the estimated input force and displacements. 

The drift is linked to the integral nature of these quantities in the presence of 

acceleration information. 

In Section 5.4.4.1 the state –space model that is used in this approach is presented. 

The Kalman Filter equations that are used in the context of Dual Kalman Filter are 

given in Section 5.4.4.2. 

5.4.4.1 State-Space Model for Dual Kalman Filter   

Starting from the discrete time state-space equations (5.28) and (5.29), the 

problem is to estimate the unknown input kp  and the hidden or partially observed 

state kx  of the system using the noisy observations ky . In the context of this 

problem, a dual implementation of the Kalman filter is proposed in this section. 

The proposed solution could be divided in two stages, with the Kalman Filter 

pertaining to both stages. At each time iteration, the fictitious process equation 

(5.40) serving for calibration of the input force is introduced. 

Then, it is assumed that an estimation of the state at time kt  is available. By using 

equations (5.29) and (5.40), a new state-space equation can be obtained, where the 

observed quantity is ky , the new state is kp  and the state kx  of the system plays 

the role of a known input to the system:  

 
1 k kk

kk k k

p p

y Gx Jp






 

  
 (5.53) 

Through implementation of the Kalman filter, an online estimation of 
1k

p


 can be 

obtained. Then, once the estimation of 
1k

p


 is performed, it can in a next step be 

substituted in equations (5.28) and (5.29), and a subsequent Kalman filter 

implementation could be used for estimating 1kx  . 
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At this point, it is worth noting that, the procedure needs a-priori information on 

expected value and covariance of the state and input at time 0t . Moreover, similar 

to the Augmented Kalman Filter, the value of the process noise 

[ ]T Nin Nin

k kS E R  for equation (5.48) must be properly chosen so that an 

accurate estimate of the unobserved state and the unknown input could be 

achieved. The proper choice of the value of the covariance noise is sometimes 

called the tuning knob of the system, and methods relying on the use of Bayesian 

techniques, maximizing the likelihood of measurements with respect to the noise 

parameters, have recently been proposed for a proper adjustment (Yuen et al., 

2007). Also, it is very helpful to clarify the nature of the influence of the 

covariance matrices 2 2[ ]T m m

k kQ E w w R , [ ]T Nin Nin

k kS E R  and 

[ ] meas measN NT

k kR E R . The process noise covariance matrices Q  and S  reveal 

the confidence put on the utilized model of the system. The lower this is, the more 

accurate the model is considered to be. The observation noise covariance R  

reveals the confidence put in the acquired measurements. The lower this is, the 

tighter the estimator is forced to fit the recorded data. 

5.4.4.2 Dual Kalman Filter Equations   

The Dual Kalman Filter is initialized using the initial state 0| 1x̂ and its variance 

0| 1P and the initial input force 0| 1p̂  and its variance 0| 1

pP . Hereafter, it computes 

the force and state estimates recursively in three stages for each one: the input 

estimation, the measurement update and the time update: 

Initialization of the filter at time 0t : 

 
0 0

00| 1

0| 1 0| 1 0| 1

[ ]

[( )( ) ]

ˆ

ˆ ˆ T

E

E x x

x x

x xP



  


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 (5.54) 
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ˆ ˆp T
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p p
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
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 (5.55) 

Prediction and update stage for the input: 

1. Evolution of the input and prediction of covariance of input: 

 

1

| 1

| 1
in

in in

N

k

N Np p

k k k

k k R

S R

p p

P P







 

  
 (5.56) 

2. Calculation of Kalman gain for input: 
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 1( ) inN Nmeasp p T p T

k k kJ JP J R RM P       (5.57) 

3. Time update of the prediction for input: 

 

1

|

|

| 1( )ˆ ˆ in

k k k

in in

Np

k k k

N Np p p p

k k k k k

k kG J R

J R

p p y x pM

P P M P
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 

    

  
 (5.58) 

Prediction and update stage for the state: 

1. Evolution of the input and prediction of covariance of state: 

 

2 1

|

2 2

| 1

| 1
ˆ ˆ m

k k k

T m m

k k k

k kA B R

A A Q R

x x p

P P

 

 



  

  
 (5.59) 

2. Calculation of Kalman gain for state: 

 
21( ) measm NT T

k k kG GP G R RM P       (5.60) 

3. Time update of the prediction for state: 

 

2 1

| |

2 2

|

( )ˆ ˆ
k k k

m

k k k k k

m m

k k k k k

G J R

G R

x x y x pM

P P M P

  

  

    

  
 (5.61) 

Using the above presented equations and by fine-tuning the covariance of the 

fictitious process noise of the unknown input, a reasonable estimate of the state is 

obtained. The expert guess on the covariance of the unknown input is of great 

importance, since it provides a tool for avoiding the so-called drift in the 

estimated displacements, that are useful for an accurate fatigue damage 

estimation. 

5.5 Applications 

5.5.1 N-DOF Spring – Mass Chain- Like Model  

A 30-DOF spring-mass chain like model, shown in Figure 5.1, is used to 

demonstrate the effectiveness of the proposed methodologies. The model is 

comprised of two substructures. The first substructure contains the first body, with 

mass 1m , in the chain and the two springs 1k   and 2k  attached to this mass, while 

the second substructure consists of the rest of the 29-DOF. This sub-structuring 

approach allows us to isolate the large components of the structure that behave 

linearly from the isolated parts that may behave nonlinearly. Thus, the proposed 

methodologies can be applied to the linear substructures. It is assumed herein that 
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the second 29-DOF substructure behaves linearly, while the first substructure may 

consist of nonlinear springs as shown in Figure 5.2. 

 

Figure 5.1: 30-DOF spring mass chain-like model. 

 

Figure 5.2: 30-DOF spring mass chain-like model with the first substructure 

including nonlinear spring  

More specifically, the first substructure includes the first body in the chain, with 

mass 1m , that is attached through a linear spring with stiffness 1k  to the ground 

and through a nonlinear spring 2k  to mass 2m . As a result, a nonlinear restoring 

force kf  is developed in this substructure and is selected to have the following 

specific form:  

 3

k s kf k x x     (5.62) 

where 2 1x x x  , 510sk   and 71,1 10k   . Then, the second subsystem 

includes the remaining 29-DOF spring-mass system, as shown in Figure 5.2. The 

value of each mass of the 29-DOF model system is 2 3 30 0.3m m m     kg  

and the stiffness value of each spring is set to be 4

3 29 15 10k k     /N m . 
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This substructure is linear and is assumed to exhibit classical damping properties, 

with a common damping ratio 0.005  in all of its modes. The undamped 

natural frequencies of the system are reported in Table 5.1 .  

Due to the presence of the interconnecting nonlinear spring in the first 

substructure, the equations of motion of this example system are strongly 

nonlinear, since the value of the nonlinear term in (5.62) is not restricted to be 

small compared to the value of the corresponding linear term. Therefore, the 

equations of motion are solved numerically by applying a variable step Runge-

Kutta Method. Here, this was done in place of performing an experiment for 

determining the acceleration, velocity and displacement time histories of the 30-

DOF model. More specifically, the full 30-DOF nonlinear model is first solved in 

the time domain by numerical differentiation, after applying a selected 

displacement base excitation ( )gx t   to the nonlinear substructure. The form of the 

applied excitation is presented in Figure 5.3, while the time history of the force 

( )F t  applied to mass 1m  is illustrated in Figure 5.4.  
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Figure 5.3: Displacement Time History selected as base excitation. 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



5. Fatigue Monitoring in Metallic Structures using Vibration Measurements 148 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

F
 (

N
)

Time (sec)
 

Figure 5.4: Time History of force ( )F t applied to mass 1m . 

 

The force ( )F t is given from the following specific form:  

 ( ) ( ) ( )w g w gF t k x t c x t     (5.63) 

where 52,5 10wk   and 0wc   . Simulated, noise contaminated, response time 

histories are generated from the 30-DOF model by applying the force ( )F t  to the 

mass 1m . Displacements, velocities, accelerations and strains are recorded and are 

used as the exact estimates against which comparisons of predictions from the 29-

DOF model will be made. The calculated displacement and velocity time histories 

at mass 2m are presented in Figure 5.5 and Figure 5.6 respectively. Then, these 

calculated displacement and velocity time histories are used as a base excitation to 

the second linear substructure, as shown in Figure 5.2. The force ( )f t  from the 

nonlinear spring to mass 2m  is graphically depicted in Figure 5.7. Finally, the 

solution of this 29-DOF model provides predictions for the dynamic response of 

the linear substructure. 
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Figure 5.5: Experimental Displacement Time History at DOF 2 of the 30-DOF 

system. 
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Figure 5.6: Experimental Velocity Time History at DOF 2 of the 30-DOF system. 
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Figure 5.7: Time History of force ( )f t applied from nonlinear spring as input to 

the linear substructure 

 

Specifically, predictions of displacement, accelerations and strains are obtained 

from the proposed methods using the 29-DOF model. The input ( )f t  at the 

connection of the 29-DOF model with the other structure, that is graphically 

illustrated in Figure 5.7, is considered unknown. Moreover, it should be noted that 

the values of the masses and the springs of the 29-DOF model are the same as the 

ones used to simulate the measurements. 

Throughout the numerical analysis, it is assumed that only acceleration 

measurements of the response of the structure at the masses are available. This is 

the common case in structural dynamics; in practice, the displacements and 

velocities are difficult, or even sometimes impossible to measure. Therefore, the 

problem lies in estimating the displacements of all masses of the system by using 

noisy observations acquired from acceleration sensors. Specifically, nine 

acceleration sensors are placed at DOFs 1, 6, 11, 16, 18, 21, 24, 26 and 29 of the 

model. Moreover, in order to represent measurement error in the simulated data, a 
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Table 5.1: The undamped natural frequencies of the 29-DOF model 

No of Mode Frequency (Hz) 

1 5.9917 

2 17.9582 

3 29.8737 

4 41.7046 

5 53.4173 

6 64.9785 

7 76.3556 

8 87.5162 

9 98.4287 

10 109.0623 

11 119.3866 

12 129.3726 

13 138.9919 

14 148.2171 

15 157.0223 

16 165.3823 

17 173.2735 

18 180.6736 

19 187.5615 

20 193.9178 

21 199.7244 

22 204.9648 

23 209.6243 

24 213.6895 

25 217.1491 

26 219.9931 

27 222.2135 

28 223.8040 

29 224.7601 

 

zero mean white Gaussian noise is added to the simulated acceleration time 

histories of the system.  A choice was made to relate the level of added noise to 

the standard deviation of the signal as follows: 

 y y r   (5.64) 

where y  and 
Ny R represent, respectively, the polluted and unpolluted time 

histories at a given sensor location,   is the noise level,   signifies the standard 
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deviation of the considered data time history, and Nr R is a vector of random 

values drawn independently from a normal distribution with zero mean and unit 

standard deviation. The influence of the level of the covariance of noise of the 

acceleration sensors 2( )aR  on the accuracy of the predicted estimates is also 

examined in the context of this thesis. 

First of all, the nine acceleration time histories polluted with 5%   Gaussian 

white noise, that is added to the simulated data to account for modeling and 

measurement errors, are used to identify the state (displacements and velocities) 

of the system at all DOFs following the Kalman-type filter that is proposed in 

Section 5.4.1. The initial state 0x  is assumed zero and the covariance matrix of the 

process noise Q  and the covariance matrix of the observation noise R  are 

assigned values of 1510  and 110  on the diagonal, respectively. In accordance 

with what they represent, these values are chosen so as to have the order of the 

square roots of the diagonal elements of Q  and R  corresponding to a small 

percentage of the highest peaks in the measured state and response, respectively. 

It is also worth noting to report that the estimated displacements are filtered using 

a 3rd order Chebyshev high-pass filter. The low cut-off frequency in the high pass 

filter is chosen to be 0.3 times the modal frequency value of the lowest 

contributing mode of the structure. Then the filtered displacements predicted by 

this method are used to estimate the strains at the springs.  

Moreover, the modal expansion method, proposed in Section 5.3.3.1, is also used 

to estimate the strains in the structure at all springs using simulated displacement 

measurements at the above nine DOFs. Results for strain predictions obtained 

from the Gillijns and De Moor’s filter and the modal expansion method are 

presented in Figure 5.8  for the 19 spring of the 29-DOF model and in Figure 5.9 

for the 25 spring. The predictions are compared with the simulated measurements. 

From the Figure 5.8 and Figure 5.9, it is clear that the comparisons show that 

strain predictions from both methods are very close to the exact ones. Specifically, 

the error between the measured and predicted strain time histories is estimated to 

be 18% for DOF 19 and 19% for DOF 25 in the case that the extension of Gillijns 

and De Moor’s filter proposed by Lourens et al. (2012) is used. On the other hand, 

when modal expansion method is used, the error between the measured and 

predicted stress time histories is estimated to be 0.12% for DOF 19 and 0.13% for 

DOF 25. It is obvious that the modal expansion method gives more accurate 

predictions of the stress time histories at all DOFs for the spring mass chain 

system than the extension of Gillijns and De Moor’s filter proposed by Lourens et 
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al. (2012) but the main disadvantage of this method is that cannot be implemented 

conveniently in practice since in the most cases we have  
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Figure 5.8: Estimated and simulated stress time histories at DOF 19. 
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Figure 5.9: Estimated and simulated stress time histories at DOF 25. 
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acceleration measurements and not displacement or strain measurements that 

modal expansion method uses in order to predict the strain response of a system. 

For this purpose, the accuracy of the other two proposed filters, Dual Kalman 

Filter and the Augmented Kalman Filter, for the prediction of the displacement 

and stress time histories of the 29-DOF system at all DOFs will be examined in 

order to get more accurate estimates of displacement and stress predictions and 

use them for the accurate prediction of fatigue damage accumulation. 

For the implementation of Dual Kalman Filter for the prediction of displacements 

and stresses at all DOFs of the 29-DOF model, in the case that we have the nine 

polluted with Gaussian white noise acceleration time histories, the selection of the 

appropriate values for covariance parameters was necessary. The covariance 

matric of the process noise Q , the covariance matric of the observation noise R  

and the covariance matric of the input noise S  are assigned values of 1510  , 110  

and 110  on the diagonal, respectively. In all the simulations the model deployed in 

the algorithms is assumed to be accurate, hence the process noise is set to a small 

value 1510Q I  ; henceforth I  is an identity matrix of appropriate dimension. 

In other words, the process noise covariance matrix reveals the confidence put on 

the utilized model of the system. Since a low value is chosen, the model is 

considered to be very accurate. Moreover, the value that is chosen for the 

observation noise covariance reveals the fact that there is measurement error in 

the acquired measurements and the estimator is not tightly forced to fit the 

recorded data. In Figure 5.10 and in Figure 5.11 the estimated and simulated stress 

time histories for DOF 19 and DOF 25 respectively are presented and compared 

to those predicted by the extension of Gillijns and De Moor’s filter proposed by 

Lourens et al. (2012). It is obvious that estimates of higher accuracy are obtained 

when Dual Kalman Filter is utilized. Specifically, the error between the measured 

and predicted stress time histories is estimated to be 0.07% for DOF 19 and 0.08% 

for DOF 25, even much lower than those in the case of modal expansion method. 

Finally, the Augmented Kalman Filter is utilized for the prediction of 

displacements selecting the above presented values for covariance matrices. The 

estimated and simulated stress time histories for DOF 19 and DOF 25 respectively 

are presented and compared to those predicted by the extension of Gillijns and De 

Moor’s filter proposed by Lourens et al. (2012) and Dual Kalman Filter in Figure 

5.12 and Figure 5.13 respectively. The error between the measured and predicted 

stress time histories is estimated to be 32% for DOF 19 and 37% for DOF 25, and 

is much higher than those estimated in the other methods. The low levels of 

accuracy in predicting the stress time histories at all DOFs of the 29-DOF model, 
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was expected since we used only acceleration measurements and has already been 

proven that we must use both acceleration  
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Figure 5.10: Estimated and simulated stress time histories at DOF 19. 
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Figure 5.11: Estimated and simulated stress time histories at DOF 25. 
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and displacement measurements in order to get accurate estimates of 

displacements and stresses in the case of Augmented Kalman Filter. 
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Figure 5.12: Estimated and simulated stress time histories at DOF 19. 
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Figure 5.13: Estimated and simulated stress time histories at DOF 25. 
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Figure 5.14: Fatigue Damage accumulation of the 29 DOF model. 

Finally, using the predicted stress time histories at all DOFs predicted using the 

Dual Kalman Filter and utilizing the available S-N fatigue curves as described in 

Section 5.2.2, the Miner’s rule is applied to estimate the fatigue damage 

accumulation for all DOFs of the 29 DOF model. The spring mass chain system is 

made of steel and the fatigue detail category 36 is adopted to illustrate the method. 

The static strength of steel is assigned the value 440u   MPa. According to 

Eurocode 3 for detail category 36, the following values of the parameters of the 

design S-N curves are recommended: 3m  , D 26.5  MPa and 14.5L   

MPa. In Figure 5.14 the fatigue damage accumulation estimates for all DOFs 

using the stress time histories predicted by the Dual Kalman Filter are compared 

to those estimated by using the simulated stress time histories. From  Figure 5.14 

is clear that fatigue damage accumulation is estimated with very high accuracy, a 

fact that reveals that the methodology for estimating damage due to fatigue on the 

entire body of a structure by combining linear damage accumulation laws, S-N 

fatigue curves, rainflow cycle-counting algorithms, and acceleration 

measurements at a limited number of locations is a valuable tool for designing 

optimal fatigue-based maintenance strategies in a wide variety of structures.  
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5.5.2 Small Scale Vehicle-like Frame Structure   

The accuracy and effectiveness of the new methodology was also demonstrated 

by applying it to a more complex mechanical system. Specifically, the framework 

is also demonstrated using the experimental small scale vehicle-like body, 

presented in Chapter 4 and shown in Figure 5.15. The vehicle structure is 

designed to simulate the frame substructure of a vehicle in a small scale of length 

2m, width 1m and height 1.4 m.  The frame substructure is made of steel with 

Young’s modulus 210E GPa , Poison’s ratio 0.3v  and 

density 37850kg m .  Figure 5.15 presents details of the geometrical 

dimensions of the frame and the sensor instrumentation that was used in order to 

produce simulated experimental data at 36 selected locations for the case of the 

vehicle. Details of material and geometrical dimensions of the frame can be found 

in Giagopoulos and Natsiavas (2007). 

The basic idea in the case of the vehicle is the following: the selected frame 

structure comprises a frame structure with predominantly linear response and high 

modal density plus four substructures - supporting systems with strongly 

nonlinear action. These supporting systems consist of a lower set of linear discrete 

spring-damper units, connected to a concentrated mass, simulating the wheel 

subsystems, as well as of an upper set of a nonlinear discrete spring-damper 

(bushings) units connected to the frame and simulating the action of the vehicle 

suspension. More specifically, the nonlinear restoring and damping forces in the 

suspensions were selected to have the same form as those of the 30-DOF spring-

mass chain model, which was presented in Section 5.51. The measurement points, 

indicated by points 3, 4, 28 and 29 in Figure 5.15, correspond to connection points 

between the frame and its supporting structures, while the rest 34 measurement 

points shown in Figure 5.15 were chosen on the frame. This sub-structuring 

approach allows us, based on the framework proposed in the case of the 30-DOF 

spring mass model, to isolate the large component of the frame of the vehicle that 

behaves linearly from the four isolated supporting subsystems that behave 

nonlinearly. Thus, the proposed methodologies can be applied to the linear vehicle 

frame. 

Next, the procedure followed in the previous application was applied to this 

system. Namely, a nonlinear transient response analysis of the full vehicle model 

(frame and supports) was performed first, by applying four different stochastic 

road excitations to the wheel subsystems. 
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Figure 5.15: Sensor Instrumentation of vehicle frame. 

 

Then, instead of performing experiments, the model was solved by using direct 

integration method. Specifically, a numerical method belonging to the well-

known class of Newmark’s methods (with parameters 1/ 4   and 1/ 2  ) was 

applied for determining the acceleration and displacement time histories for the 36 

points in three directions, graphically depicted in Figure 5.15. At this point, we 

should mention that the model that was numerically solved instead of performing 

experiments exhibits some differences in the meshing from the finite element 

model that will be used for performing the proposed methodologies. These 

differences yield in a maximum 8% difference in the eigenfrequencies between 

the two models, importing a kind of measurement error. 

Displacement and acceleration time histories are recorded and are used as the 

exact estimates against which comparisons of predictions from the vehicle model 

will be made. The “measured” histories of the acceleration at boundary location 3, 

in the three directions (X-longitudinal, Y-transverse, Z-vertical), are presented in 

Figure 5.16, Figure 5.17 and Figure 5.18, respectively. 

The finite element model, consisting of 15,202 finite elements and having 45,564 

DOF, is used, after keeping only the first 30 modes, with the proposed methods to 

estimate the state of the structure at all DOFs. Then the strain predictions are then 
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obtained from the state estimates and the material properties. The excitations 

applied at the connections of the frame structure with the vehicle suspension are 

considered unknown. 
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Figure 5.16: Acceleration time history at boundary location 3 in X direction. 
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Figure 5.17: Acceleration time history at boundary location 3 in Y direction. 
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Figure 5.18: Acceleration time history at boundary location 3 in Z direction. 

 

Fourteen acceleration sensors are used at DOFs 1, 3, 4, 7, 12, 14, 15, 17, 22, 27, 

28, 29, 31, 36 of the model. The sensor locations are shown in Figure 5.15. The 

Kalman-type filter and the modal expansion method are used to estimate the state 

of the structure at all DOFs using the acceleration sensors, respectively. 

Moreover, a 5% noise is added to the simulated data to account for modeling and 

measurement errors. In the Kalman Filter, the initial state 0x   is assumed zero and 

the covariance matrice of the process noise Q  and the covariance matrice of the 

observation noise R  are assigned values of 1510  and 410  on the diagonal, 

respectively. Moreover, the estimated displacements are filtered using a 3rd order 

Chebyshev high-pass filter. The low cut-off frequency in the high pass filter is 

chosen to be 0.3 times the modal frequency value of the lowest contributing mode 

of the structure. The modal expansion method is also used to estimate the 

displacements in the structure using simulated displacement measurements at the 

above fourteen points. Results for displacement predictions obtained from the 

Kalman-type filter and the modal expansion method are presented in Figure 5.19-

Figure 5.21  for the Point 2 of the top of the frame in three directions and in 

Figure 5.22-Figure 5.27 for Point 16 and Point 23 at the bottom of the frame in 

three directions. The predictions are compared with the simulated measurements.  
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Figure 5.19: Displacement time history at Point 2 in X direction. 
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Figure 5.20: Displacement time history at Point 2 in Y direction. 
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Figure 5.21: Displacement time history at Point 2 in Z direction. 
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Figure 5.22: Displacement time history at Point 16 in X direction. 
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Figure 5.23: Displacement time history at Point 16 in Y direction. 
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Figure 5.24: Displacement time history at Point 16 in Z direction. 
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Figure 5.25: Displacement time history at Point 23 in X direction. 
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Figure 5.26: Displacement time history at Point 23 in Y direction. 
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Figure 5.27: Displacement time history at Point 23 in Z direction. 

 

From the comparison, it is clear that that the modal expansion method gives more 

accurate predictions of the displacement time histories than the extension of 

Gillijns and De Moor’s filter proposed by Lourens et al. (2012), where a low-

frequency drift is observed in all figures. For this purpose, the Dual Kalman Filter 

will be implemented in order to predict displacement time histories at all DOFs of 

the vehicle and use them for the accurate prediction of fatigue damage 

accumulation. 

For the implementation of Dual Kalman Filter for the prediction of displacements 

at all DOFs of the vehicle, in the case that we have the fourteen polluted with 

Gaussian white noise acceleration time histories, the selection of the appropriate 

values for covariance parameters was necessary. The covariance matric of the 

process noise Q , the covariance matric of the observation noise R  and the 

covariance matric of the input noise S  are assigned values of 1510  , 410  and 110  

on the diagonal, respectively. Results for displacement predictions obtained from 

the Kalman-type filter and the Dual Kalman Filter are presented in Figure 5.28-

Figure 5.30 for the Point 2 of the top of the frame in three directions and in Figure 

5.31-Figure 5.36 for Point 16 and Point 23 at the bottom of the frame in three 
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directions. The predictions are compared with the simulated measurements. It is 

obvious that estimates of higher accuracy are obtained when Dual Kalman Filter  
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Figure 5.28: Displacement time history at Point 2 in X direction. 
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Figure 5.29: Displacement time history at Point 2 in Y direction. 
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Figure 5.30: Displacement time history at Point 2 in Z direction. 
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Figure 5.31: Displacement time history at Point 16 in X direction. 
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Figure 5.32: Displacement time history at Point 16 in Y direction. 
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Figure 5.33: Displacement time history at Point 16 in Z direction. 
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Figure 5.34: Displacement time history at Point 23 in X direction. 
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Figure 5.35: Displacement time history at Point 23 in Y direction. 
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Figure 5.36: Displacement time history at Point 23 in Z direction. 
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Figure 5.37: Error between predicted by DKF and simulated displacement time 

histories for all DOFs of the 36 points. 
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is utilized. Specifically, the error between the measured and predicted 

displacement time histories is estimated to be lower than 6% , as shown in Figure 

5.37. 

The strain and stress time histories are obtained for all finite elements of the 

vehicle, using the displacement time histories predicted by DKF at all DOFs and 

the relationships between stains and displacements that are given in Section 5.2.2. 

The predicted stress time histories in all three directions are presented in Figure 

5.38 for Point 2, in Figure 5.39 for Point 16 and in Figure 5.40 for Point 23. 

Moreover, the predicted strain time histories in all three directions are presented 

in Figure 5.41 for Point 2, in Figure 5.42 for Point 16 and in Figure 5.43 for Point 

23. 
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Figure 5.38: Stress time history at Point 2. 
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Figure 5.39: Stress time history at Point 16. 
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Figure 5.40: Stress time history at Point 23. 
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Figure 5.41: Strain time history at Point 2. 
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Figure 5.42: Strain time history at Point 16. 
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Figure 5.43: Strain time history at Point 23. 

 

Finally, using the predicted stress time histories at all DOFs predicted by using the 

Dual Kalman Filter and utilizing the available S-N fatigue curves as described in 

Section 5.2.2, the Miner’s rule is applied to estimate the fatigue damage 

accumulation for four points on the vehicle frame that we have uniaxial tension. 

The four points, for which fatigue damage is estimated are presented in Figure 

5.44. For the estimation of fatigue damage, the static strength of steel is assigned 

the value 440u   MPa . Moreover, according to Eurocode 3 for detail category 

36, the following values of the parameters of the design S-N curves are 

recommended: 3m  , D 26.5  MPa and 14.5L   MPa. We should also 

note that in the case of the vehicle fatigue is estimated only for some points on the 

bottom of the vehicle frame where we have mainly uniaxial tension while on the 

rest part of the vehicle severe shear stresses are imposed. However, it is worth 

noting that in the case of a structure that only uniaxial stresses are imposed on it, 

there is the potential of plotting the fatigue map since the code that  has been 

developed in Matlab with cooperation with the interaction of Comsol gives as 

output plots like those presented for the plot of strains on the vehicle frame. 
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Figure 5.44: Points with uniaxial tension for fatigue calculation. 

 

Table 5.2: Fatigue Damage accumulation for points on the vehicle 

 

 

Point 

Prediction of Fatigue Damage due to 

xx  by 

DKF 

simulated 

xx  

yy by 

DKF 

simulated 

yy  

xy  by 

DKF 

simulated 

xy  

P1 
52.5569 10

 

52.5222 10

 

0.0844

 

0.0823  46.2161 10

 

46.0857 10  

P2 
45.7142 10

 

45.3388 10

 

0.0122

 

0.0103  57.7101 10

 

57.1322 10  

P3 
44.4954 10

 

44.0748 10

 

0.0059

 

0.0051  58.6952 10

 

58.5413 10  

P4 
41.1972 10

 

41.143 10  0.0010  0.0009  42.3108 10  42.2964 10  
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The creation of fatigue maps on the vehicle are useful for designing optimal 

fatigue-based maintenance strategies for protecting structures like vehicles against 

failure due to fatigue. 

 

5.6 Conclusions 

A novel use of monitoring information for estimating fatigue damage 

accumulation in the entire body of metallic structures is outlined in this work. 

This is accomplished by combining fatigue damage accumulation laws with 

stress/strain predictions based on output only vibration measurements collected 

from a limited number of sensors. Methods for estimating strains by integrating 

high fidelity finite element model and estimation techniques were summarized. 

The predictions are currently based on linear model of structures. The accuracy of 

the proposed methods for fatigue predictions in the entire body of the structure 

depends on the number and location of sensors in the structures, the number of 

modes contributing in the dynamics of the structure, and the size of the model 

error and measurement error.  

The proposed methodologies have also been extended to cover nonlinear models 

of structures. Applications cover a large variety of metallic structures, including 

ground and air vehicles, civil engineering structures such as steel buildings, high 

towers and railway/motorway bridges, industrial structures, wind turbine blades 

and supporting structures/masts, offshore structures, etc. The proposed 

methodology can be used to construct fatigue damage accumulation and lifetime 

prediction maps consistent with the actual operational conditions provided by a 

monitoring system. Such fatigue maps are useful for designing optimal fatigue-

based maintenance strategies for metallic structures using structural vibration 

information collected from a sensor network. 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



6. Conclusions-Future Work 178 

 

CHAPTER 6 Conclusions – Future Work 

6.1 Conclusions 

The research work presented in the thesis deals with the management of 

uncertainties in structural response and reliability simulations using measured 

data. In the context of this thesis, it was shown that uncertainties play an 

important role in the prediction of the performance and safety of structural 

systems. Uncertainties arise in the process of simulating the behavior of these 

systems. Uncertainties are manifested from the assumptions and compromises that 

enter into the development of mathematical models of structural systems as well 

as the applied loads. Such uncertainties lead to significant uncertainties in the 

predictions made using simulations. Since simulations constitute the basis for 

design and maintenance decisions in order to meet desirable system performance 

and safety requirements, uncertainties affect these decisions and have to be 

accounted for in simulations. For this, stochastic/probabilistic models offer 

suitable mathematical tools for quantifying and propagating uncertainties in 

structural engineering simulations. 

 A specific focus of this thesis is the management of uncertainties that appear in 

model updating problem of structural systems. Structural model updating is an 

inverse problem according to which a model of a structure, usually a finite 

element model, is adjusted so that either the calculated time histories, frequency 

response functions, or modal parameters best match the corresponding quantities 

measured or identified from the test data. This inverse process aims at providing 
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updated models and their corresponding uncertainties based on the data. These 

updated models are expected to give more accurate response predictions to future 

loadings, as well as allow for an estimation of the uncertainties associated with 

such response predictions. In practice, the inverse problem of model updating is 

usually ill-conditioned due to insensitivity of the response to changes in the model 

parameters, and non-unique because of insufficient available data relative to the 

large number of model parameter needed to describe the desired model  

The widely used deterministic methods for solving the structural model updating 

problem formulated both as single-objective and multi-objective optimization 

problem are reviewed in Chapter 2. The main theme of this chapter was to present 

a Bayesian statistical framework for structural model parameter identification that 

is used to identify the values of the weights that appear in structural model 

updting. Using Bayes theorem, the probability distribution of the weight values 

based on the data is formulated as a probability integral over the structural model 

parameters. Bayesian techniques are also proposed to quantify the uncertainty in 

the parameters of a FE model, select the best model class from a family of 

competitive model classes, as well as propagate uncertainties for robust response 

and reliability predictions. Posterior probability density functions (PDFs) are 

derived that quantify the uncertainty in the model parameters based on the data. 

These PDFs are formulated in terms of the modal residuals involved in the 

aforementioned single and multi-objectives deterministic methods. The Bayesian 

tools for identifying uncertainty models as well as performing robust prediction 

analyses are presented. These include Laplace methods of asymptotic 

approximation and more accurate stochastic simulation algorithms (SSA) such as 

Markov Chain Monte Carlo (MCMC), Transitional MCMC and Delayed 

Rejection Adaptive Metropolis. Similar to the deterministic FE model updating 

techniques, the asymptotic approximations in the Bayesian framework involve 

solving an optimization problem for finding the most probable model, as well as 

estimating the Hessian of the logarithm of the posterior PDF at the most probable 

model for describing the uncertainty in the model parameters. The SSA 

algorithms involve generating samples for tracing and then populating the 

important uncertainty region in the parameter space, as well as evaluating 

integrals over high-dimensional spaces of the uncertain model parameters.  

The optimal structural models and their uncertainties resulting from model 

updating methods can be used for improving the model response and reliability 

predictions, for assessing structural health and identifying structural damage and 

for improving effectiveness of structural control devices. Engineers in practice are 

frequently requested to implement the above model updating methods in complex 

engineering systems including hundreds of thousands or even million degrees of 

freedom. Chapter 2 proposes methods for drastically reducing the computational 
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demands at the system, algorithm and hardware levels involved in the 

implementation of Bayesian tools. At the system level, model reduction 

techniques can be applied to reduce the order of the model selected to simulate the 

behavior of the system. 

The importance of these reduction techniques was demonstrated in Chapter 3. In 

this chapter, a framework was presented for integrating the Craig-Bampton CMS 

technique into existing FE model updating formulations in order to reduce the 

time consuming operations involved in reanalyses of large-order models of 

hundreds of thousands or millions degrees of freedom. The proposed method 

exploits the fact that in FE model parameterization schemes the stiffness matrix of 

the structure often depends linearly on the parameters of the model and also that a 

parameter usually represents a global property (e.g. the modulus of elasticity) of a 

substructure. The division of the structure into components is then guided by the 

FE parameterization scheme so that the stiffness matrix that arise for each one of 

the introduced components to depend linearly on only one of the parameters to be 

estimated. In this case the fixed-interface and constraint modes of the components 

for any value of the model parameters can be obtained exactly from the fixed-

interface and constraint modes corresponding to a single reference FE model, 

avoiding re-analyses at component level. Additional substantial reductions in 

computational effort are also proposed by reducing the number of interface DOF 

using characteristic interface modes through a Ritz coordinate transformation. The 

repeated solutions of the component and interface eigen-problems are avoided, 

reducing drastically the computational demands in FE formulations, without 

compromising the solution accuracy. It is also shown that the linear expansions of 

the original mass and stiffness matrices in terms of the structural parameters are 

preserved for the reduced mass and stiffness matrices. Thus, the reassembling of 

the reduced system matrices from the original matrices is also avoided in the 

execution of the system re-analyses. The only time consuming operation left is the 

re-analysis of the eigenproblem of the reduced-order model. It is finally 

demonstrated that the new developments are readily accommodated in existing FE 

model updating formulations and software with minimal modifications. The 

effectiveness of the proposed algorithms, in terms of computational efficiency and 

accuracy, was demonstrated with application on model updating and damage 

identification of a bridge using simulated data and a high fidelity model with 

hundreds of thousands of DOF. 

In Chapter 4, a Bayesian uncertainty quantification and propagation (UQ&P) 

framework was presented for identifying nonlinear models of dynamic systems 

using vibration measurements of their components. The accuracy of the Bayesian 

UQ&P framework to identify models of linear and nonlinear components of a 

system was shown through the application on a small scale experimental model of 
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a vehicle. The identification of the uncertainty models of the nonlinear wheel and 

suspension components is investigated using the experimentally obtained response 

spectra. The uncertainty models for the vehicle frame are also obtained using 

experimental data. The uncertainty is propagated to output quantities of interest 

for the combined wheel-suspension-frame system. The computational challenges 

and efficiency of the Bayesian UQ&P framework are outlined. The effectiveness 

of the framework on the specific example structure is discussed. 

In Chapter 5, the problem of estimating the full strain time histories characteristics 

at critical locations of the structure using operational vibration measurements 

from a limited number of sensors is presented. The measurements may consist of 

response time histories such as e.g. strain, acceleration, velocity, displacement, 

etc. Moreover, this chapter deals with the use of such estimates to predict fatigue 

damage accumulation in the entire body of a metallic structure and lays out the 

formulation for estimating fatigue using output-only vibration measurements and 

outlines methods for estimating the stress response history characteristics required 

in deterministic and stochastic fatigue theories. Similar estimation techniques can 

be used to estimate other important response characteristics in the entire body of 

the structure, such as displacements, velocities, accelerations, etc. The analyses in 

this study are first implemented to the case of linear structures and then have been 

extended to cover nonlinear models of structures. The stress response quantities 

are predicted at locations subjected to uni-axial stress states. The measured 

quantities are considered to be accelerations, displacements or strains or a 

combination of accelerations, displacements and strains. The objective of this 

chapter is to formulate the fatigue prediction problem, illustrate the methodology 

and point out its use in evaluating the damage accumulation in the entire structure 

from a limited number of vibration measurements. For this, the analyses in this 

study are restricted to the case of stress response predictions at locations subjected 

to uni-axial stress states for both linear and nonlinear structures.  

Summarizing the current thesis contributes to the following three interrelated 

research areas of management of uncertainties using vibration measurements: (1) 

development of component mode synthesis techniques that are integrated with 

model updating methods (2) development of Bayesian uncertainty and 

quantification framework for both linear and nonlinear systems and (3) fatigue-

based damage accumulation predictions in the entire body of metallic structures 

using a limited number of vibration sensors. Finally, the novel contributions in 

this thesis are as follows. 

 Iterative optimization algorithms and stochastic simulation algorithms 

involved in both deterministic and Bayesian FE model updating 

formulations require a moderate to large number of FE model re-analyses. 
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For large size FE models with hundreds of thousands or even million 

DOF, the computational demands may be excessive. Exploiting certain 

stiffness-related parameterization schemes, often encountered in FE model 

updating formulations, to guide the division of the structure into 

components results in exact linear representations of the Craig-Bampton 

reduced stiffness matrix as a function of the model parameters with 

coefficient matrices computed and assembled once from a single CMS 

analysis of a reference structure. Further significant reductions in the size 

of the reduced system are shown to be possible using characteristic 

interface modes estimated for each interface between components. Re-

analyses required in FE model updating formulations are associated with 

the solution of the eigenproblem of the reduced-order system, completely 

avoiding the re-analyses of the component fixed-interface and 

characteristic interface modes as well as the re-assembling of the reduced 

system matrices. FE model updating and damage identification results 

using a solid model of a bridge demonstrated the implementation, 

computational efficiency and accuracy of the proposed model reduction 

methodology. The computational effort was reduced drastically by more 

than three orders of magnitude. In particular, for the application in damage 

identification the computational time was reduced from approximately one 

month to several minutes. Further computational savings can be obtained 

by adopting surrogate modes to drastically reduce the  number of reduced-

order system re-analyses and parallel computing algorithms to efficiently 

distribute the computations in available multi-core CPUs . 

 A Bayesian UQ&P framework was presented for identifying nonlinear 

models of dynamic systems using vibration measurements of their 

components. The use of Bayesian tools, such as stochastic simulation 

algorithms (e.g., TMCMC algorithm), may often result in excessive 

computational demands. Drastic reduction in computational effort to 

manageable levels is achieved using component mode synthesis, surrogate 

models and parallel computing algorithms. The framework was 

demonstrated by identifying the linear and nonlinear components of a 

small-scale laboratory vehicle model using experimental response spectra 

available separately for each component. Such model uncertainty analyses 

for each component resulted in building a high fidelity model for the 

combined system to be used for performing reliable robust response 

predictions that properly take into account model uncertainties. The 

theoretical and computational developments in this work can be used to 

identify and propagate uncertainties in large order nonlinear dynamic 

systems that consist of a number of linear and nonlinear components. 
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 A novel use of monitoring information for estimating fatigue damage 

accumulation in the entire body of metallic structures is outlined in this 

work. This is accomplished by combining fatigue damage accumulation 

laws with stress/strain predictions based on output only vibration 

measurements collected from a limited number of sensors. Methods for 

estimating strains by integrating high fidelity finite element model and 

estimation techniques were summarized. The predictions are currently 

based on linear model of structures. The accuracy of the proposed methods 

for fatigue predictions in the entire body of the structure depends on the 

number and location of sensors in the structures, the number of modes 

contributing in the dynamics of the structure, and the size of the model 

error and measurement error.  The proposed methodologies have also been 

extended to cover nonlinear models of structures. Applications cover a 

large variety of metallic structures, including ground and air vehicles, civil 

engineering structures such as steel buildings, high towers and 

railway/motorway bridges, industrial structures, wind turbine blades and 

supporting structures/masts, offshore structures, etc. The proposed 

methodology can be used to construct fatigue damage accumulation and 

lifetime prediction maps consistent with the actual operational conditions 

provided by a monitoring system. Such fatigue maps are useful for 

designing optimal fatigue-based maintenance strategies for metallic 

structures using structural vibration information collected from a sensor 

network. 

6.2 Future Work 

The developed strategies of this thesis certainly open the door for future research 

activities. This concerns especially the application of stochastic updating 

algorithms for large and complex FE models. While a successful implementation 

of the Bayesian updating algorithms in the FE model of Metsovo bridge was 

shown in this thesis, there are several possibilities for improvements in further 

applications. More specifically, in the current application the physical parameters 

have been grouped into various categories and these categories have been 

updated. The next interesting step would consist in splitting the groups down to 

the level of physical parameters. This however requires an additional step, namely 

the application of sensitivity analysis in order to identify the most important 

parameters since an independent treatment of all structural parameters of a real FE 

model, which might amount up to several thousands, is not feasible.  

Furthermore, another recommendation for future work relates to the deterministic 

model updating problem. Over the last years, a substantial amount of research has 
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been performed in the context of efficient vibration-based FE model updating 

techniques for effective damage assessment. Many authors advocate that it is 

beneficial to use other residual definitions such as modal strain energy or modal 

flexibilities, other types of experimental data such as frequency response 

functions or modal strains, or combining several types of data in multi-objective 

optimization schemes. Therefore, it is suggested to extend the methods proposed 

to FE model updating schemes which make use of these alternative objective 

function configurations. 

Another interesting issue that is not investigated in the context of this thesis is the 

application of Bayesian inference in robust optimal experimental design and 

specifically in a civil engineering context often referred to as optimal sensor 

placement (OSP). The relation between OSP and Bayesian model updating is 

briefly summarized in the following: a sensor configuration can be determined 

such that the information obtained from the data regarding the model parameters 

is maximized. For instance, in the context of damage assessment by FE model 

updating, it can be verified that OSP leads to configurations where more sensors 

are situated in arreas attaining high modal  curvature. Moreover, all current 

research related to OSP remains mostly limited to optimality with respect to 

parameter inference; this could be extended to OSP for optimal predictive 

response. Moreover, in view of the recommendation made above, it is suggested 

to assess OSP for heterogeneous sensor networks, i.e where various types of 

experimental data are combined. 

Finally, related to suggested future work, it is suggested to thoroughly investigate 

the accuracy of implementing asymptotic approximations as Bayesian tools in real 

structures instead of implementing the stochastic simulation algorithms that were 

used in the context of this thesis. The use of asymptotic expressions reduces the 

computational demand for the determination of the full posterior pdfs to a single 

deterministic optimization routine. The accuracy of the implementation of 

stochastic simulation algorithms as a tool for identifying uncertainty models and 

performing robust prediction analyses in the Bayesian framework was 

demonstrated in the context of this thesis. But the investigation of the accuracy of 

asymptotic approximation expressions still remains a challenge to be investigated 

for future work. 

 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



References 185 

 

References 

Alvin K.F., (1997), “Finite element model update via Bayesian estimation and 

minimization of dynamic residuals,” AIAA Journal, Vol. 35, pp.  879-886. 

Angelikopoulos P., Papadimitriou C., Koumoutsakos P., (2012), “Bayesian 

uncertainty quantification and propagation in molecular dynamics 

simulations: A high performance computing framework.”, Journal of 

Chemical Physics, Vol. 137(14). 

Angelikopoulos P., Papadimitriou C., Koumoutsakos P., (2015), “X-TMCMC: 

Adaptive Kriging for Bayesian inverse modelling”, Mechanical Systems 

and Signal Processing, Vol. 289, pp. 409-428. 

Eftekhar Azam S., Chatzi E., Papadimitriou C., (2015), “A dual Kalman filter 

approach for state estimation via output-only acceleration measurements”, 

Computer Methods in Applied Mechanics and Engineering, Vol. 60-61, 

pp. 866-886. 

Barbato M., Conte J.P., (2005), “Finite element response sensitivity analysis: a 

comparison between force-based and displacement-based frame element 

models.” Computer Methods in Applied Mechanics and Engineering, Vol. 

194(12-16), pp. 1479-1512. 

Barbato M., Zona A., Conte J.P., (2007), “Finite element response sensitivity 

analysis using three-field mixed formulation: General theory and 

application to frame structures”, International Journal for Numerical 

Methods in Engineering, Vol. 69(1), pp. 114-161. 

Balmes E., (1996), “Parametric families of reduced finite element models. Theory 

and applications.”, Mechanical Systems and Signal Processing, Vol. 10(4), 

pp. 381-394. 

Bathe K.J., Wilson E.L., (1976), “Numerical methods in finite element analysis”, 

Prentice Hall. 

Bathe K.J., (1996), “Finite Element Procedures”, Prentice Hall. 

Batou A., Soize C., Corus M., (2011), “Experimental Identification of an 

uncertain computational dynamical model representing a family of 

structures”. Computers and Structures, Vol.89, pp.1440-1448. 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



References 186 

 

Beck J.L., (1989), “Statistical System Identification of Structures”, Proceedings of 

the 5th International Conference on Structural Safety and Reliability 

(ASCE), San Francisco, pp.1395-1402. 

Beck J.L., May B.S., Polidori D.C. (1994), “Determination of modal parameters 

from ambient vibration data for structural health monitoring”, Proceedings 

of the 1st World Conference on Structural Control, Los Angeles, USA, pp. 

1395-1402. 

Beck J.L., Katafygiotis L.S., (1998), “Updating models and their uncertainties- I: 

Bayesian statistical framework”, Journal of Engineering Mechanics 

(ASCE), Vol. 124, pp. 455-461. 

Beck J.L., Au S.K., (2002), “Bayesian updating of structural models and 

reliability using Markov chain Monte Carlo simulation”, ASCE Journal of 

Engineering Mechanics, Vol.128(4), pp. 380-391. 

Beck J.L., Yuen K.V. (2004), “Model selection using response measurements: 

Bayesian probabilistic approach”, ASCE Journal of Engineering 

Mechanics, Vol. 130(2), pp. 192-203. 

Beck J.L., (2010), “Bayesian system identification based on probability logic”, 

Structural Control and Health Monitoring, Vol. 17(7), pp. 825–847. 

Benasciutti D, Tovo R., (2006), “Comparison of spectral methods for fatigue 

analysis of broad-band Gaussian random processes”, Probabilistic 

Engineering Mechanics, Vol. 21, pp. 287–299. 

Bernal D., Ussia A., (2015), “Sequential deconvolution input reconstruction”, 

Mechanical Systems and Signal Processing, Vol. 50-51, pp. 41-55, 2015. 

Bohle K., Fritzen C.-P., (2003), “Results obtained by minimizing natural 

frequency and mac-value errors of a plate model” Mechanical Systems and 

Signal Processing, Vol. 17(1), pp. 55-64. 

Castanier M.P., Tan Y.-C., Pierre C., (2001), “Characteristic constraint modes for 

component mode synthesis”, AIAA Journal, Vol. 39(6), pp. 1182-1187. 

Chatzi E.N., Smyth A.W., (2009) “The unscented Kalman filter and particle filter 

methods for nonlinear structural system identification with non-collocated 

heterogeneous sensing”, Structural Control and Health Monitoring, Vol. 

16, pp. 99–123. 

Chatzi E.N., Fuggini C., (2015) “Online Correction of Drift in Structural 

Identification Using Artificial White Noise Observations and an 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



References 187 

 

Unscented Kalman Filter,”, Special Volume of Smart Structures and 

Systems on Errors/uncertainties in sensors for Structural Health 

Monitoring, in press. 

Ching, J., Beck, J.L., Porter, K.A.,(2006), “ Bayesian state and parameter 

estimation if uncertain dynamical systems”, Probabilistic Engineering 

Mechanics, Vol. 21, pp. 81-96. 

Ching J., Chen Y.C., (2007), “Transitional Markov Chain Monte Carlo method 

for Bayesian updating, model class selection, and model averaging”, ASCE 

Journal of Engineering Mechanics, Vol. 133, pp. 816–832. 

Christodoulou K., Papadimitriou C., (2007), “Structural identification based on 

optimally weighted modal residuals”, Mechanical Systems and Signal 

Processing, Vol. 21, pp. 4-23. 

Christodoulou K., Ntotsios E., Papadimitriou C., Panetsos P., (2008), “Structural 

model updating and prediction variability using Pareto optimal models”, 

Computer Methods in Applied Mechanics and Engineering, Vol. 198 (1), 

pp. 138-149. 

COMSOL AB COMSOL Multiphysics User’s Guide, 2005 

[http://www.comsol.com/]. 

Cox R.T., (1946), “Probability, frequency and reasonable expectation”, American 

Journal of Physics, Vol. 14 (1), pp. 1-13. 

Craig Jr R.R.., Bampton M.C.C., (1968), “Coupling of substructures for dynamic 

analysis.”, AIAA Journal , Vol. 6(7), pp. 1313-1319. 

Craig Jr. R.R., (1981), “Structural Dynamics - An Introduction to Computer 

Methods”, John Wiley & Sons, New York. 

Das I., Dennis J.E. Jr., (1998), “Normal-boundary intersection: A new method for 

generating the Pareto surface in nonlinear multi-criteria optimization 

problems”, SIAM Journal of Optimization, Vol.8, pp. 631-657. 

Dirlik T., (1985), “Applications of Computers to Fatigue Analysis”, PhD Thesis, 

Warwick University. 

Fan W., Qiao P., (2011), “Vibration-based damage identification methods: a 

review and comparative study”, Structural Health Monitoring, Vol. 10(1), 

pp. 83-111. 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



References 188 

 

Felber A.J. (1993), “Development of a hybrid bridge evaluation system”, PhD 

Thesis, University of British Columbia, Vancouver, Canada. 

Fonseca J., Friswell M.I, Mottershead J., Lees A. (2005), “Uncertainty  

identification by the maximum likelihood method” Journal of Sound and 

Vibration, Vol. 288, pp.  587-599. 

Friswell M.I., Mottershead J.E. (1995), “Finite Element Model Updating in 

Structural Dynamics”, Kluwer Academic Publishers. 

Friswell M.I., Mottershead J.E., (2001), “Inverse methods in structural health 

monitoring”, Key Engineering Materials, Vol. 4, pp. 201-210. 

Fritzen C.P., Jennewein D., Kiefer T., (1998), “Damage detection based on model 

updating methods”, Mechanical Systems and Signal Processing, Vol. 

12(1), pp. 163-186. 

Giagopoulos, D., Natsiavas, S., Hybrid, (2007), “(Numerical-Experimental) 

Modeling of Complex Structures with Linear and Nonlinear Components”, 

Nonlinear Dynamics, Vol. 47, pp. 193-217. 

Giagopoulos D.,  Papadioti D.-C. Papdimitriou C., Natsiavas S. (2013), “Bayesian 

Uncertainty Quantification and Propagation in Nonlinear Structural 

Dynamics.” in International Modal Analysis Conference (IMAC), 

California. 

Gillijns, S., De Moor, B., (2007), “Unbiased minimum-variance input and state 

estimation for linear discrete-time systems”, Automatica, Vol. 43(1), pp. 

111–116. 

Gillijns, S., De Moor, B., (2007), “Unbiased minimum-variance input and state 

estimation for linear discrete-time systems with direct feedthrough”, 

Automatica, Vol. 43(5), pp. 934–937. 

Ghanem R.G., Spanos P., (1991), “Stochastic Finite Elements: A spectral 

approach”, Springer. 

Goller B., Broggi M., Calvi A., Schueller G.I, (2011), “A stochastic model 

updating technique for complex aerospace structures’, Finite Elements in 

Analysis and Design, Vol. 47, pp. 739-752. 

Goller B., Pradlwarter H.J., Schueller G.I., (2011), “An interpolation scheme for 

the approximation of dynamical systems”, Computer Methods in Applied 

Mechanics and Engineering, Vol. 200, pp. 414-423. 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



References 189 

 

Goller B., (2011), “Stochastic Model Validation of Structural Systems”, Ph.D. 

Dissertation, University of Innsbruck. 

Haario H., Laine M., Mira A., Saksman E., (2006), “DRAM: Efficient adaptive 

MCMC”, Statistics and Computing, Vol.16, pp. 339-354. 

Hansen N., Muller S.D., Koumoutsakos P., (2003), “Reducing the time 

complexity of the derandomized evolution strategy with covariance matrix 

adaptation (CMA-ES).” Evolutionary Computation, Vol. 11(1), pp. 1-18. 

Haralampidis Y., Papadimitriou C., Pavlidou M., (2005), “Multi-objective 

framework for structural model identification”, Earthquake Engineering 

and Structural Dynamics, Vol.34 (6), pp. 665-685. 

Hastings, W. K., (1970), “Monte Carlo sampling methods using Markov chains 

and their applications”, Biometrika, Vol. 57(1), pp. 97-109. 

Hadjidoukas P.E., Angelikopoulos P., Papadimitriou C., Koumoutsakos P., 

(2015), “Π4U: A high performance computing framework for Bayesian 

uncertainty quantification of complex models”, Journal of Computational 

Physics, Vol. 284, pp. 1-21. 

Hernandez  E.M., Bernal D., (2008), “State estimation in structural systems with 

model uncertainties”, ASCE Journal of Engineering Mechanics, Vol. 

134(3), pp. 252–257. 

Hernandez  E.M., Bernal D., Caracoglia L.,(2013), “On-line monitoring of wind-

induced stresses and fatigue damage in instrumented structures”, 

Structural Control and Health Monitoring, Vol. 20(10), pp. 1291-1302. 

Hinke L., Dohnal F., Mace B., Waters T., Ferguson N., (2009), “Component 

mode synthesis as a framework for uncertainty analysis”, Journal of Sound 

and Vibration, Vol. 324(1–2), pp. 161–178. 

Hong S.K., (2011), “Parametric reduced-order models for predicting the vibration 

response of complex structures with component damage and 

uncertainties”, Journal of Sound and Vibration, Vol. 330(6), pp. 1091-

1110. 

Hong S.K., Epureanu B.I., Castanier M.P., Gorsich D.J., (2011), “Parametric 

reduced-order models for predicting the vibration response of complex 

structures with component damage and uncertainties”, Journal of Sound 

and Vibration, Vol. 330, pp. 1091-1110. 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206

http://www.cse-lab.ethz.ch/images/teaching/uq_14/r16-JCP_14b_Bayesian_HPC_tools.pdf
http://www.cse-lab.ethz.ch/images/teaching/uq_14/r16-JCP_14b_Bayesian_HPC_tools.pdf


References 190 

 

Hurty W., (1965), “Dynamic analysis of structural systems using component 

modes.”,  AIAA Journal, Vol. 3(4), pp. 678–685. 

Jaynes E.T., (2003), “Probability Theory: The Logic of Science”, Cambridge 

University Press. 

Jensen H.A., Vergara C., Papadimitriou C., Millas A. , (2013), “ The use of 

updated robust reliability measures in stochastic dynamical systems.” 

Computer Methods in Applied Mechanics and Engineering, Vol. 267, pp. 

293-317. 

Jensen H.A., Millas A., Kusanovic D., Papadimitriou C., , (2014), “Model-

Reduction Techniques for Bayesian Finite Element Model Updating Using 

Dynamic Response Data” Computers and Structures, Vol. 279, pp. 301-

324. 

Kalman R., (1960), “A new approach to linear filtering and prediction problems”, 

Basic Eng. Trans. ASME, Vol. 82D, pp. 35–45. 

Kammer D.C., (1991), “Sensor placements for on orbit modal identification and 

correlation of large space structures”, Journal of Guidance, Control and 

Dynamics, Vol. 14, pp. 251-259. 

Katafygiotis L.S., Papadimitriou C., Lam H.F., (1998), “A probabilistic approach 

to structural model updating”, International Journal of Soil Dynamics and 

Earthquake Engineering, Vol. 17, pp. 495-507. 

Katafygiotis L.S., Beck J.L., (1998), “Updating models and their uncertainties. II: 

Model identifiability”, Journal of Engineering Mechanics (ASCE), Vol. 

124 (4), pp. 463-467. 

Katafygiotis L.S, Lam H.F. (2002), “Tangential-projection algorithm for manifold 

representation in unidentifiable model updating problems.”, Earthquake 

Engineering & Structural Dynamics, Vol. 31(4), pp. 791-812. 

Kitanidis P.K., (1987), “Unbiased minimum-variance linear state estimation”, 

Automatica, Vol. 23, pp. 775-778. 

Lopez I., Sarigul-Klijn N., (2010), “A review of uncertainty in flight vehicle 

structural damage monitoring, diagnosis and control”, Challenges and 

opportunities, Progress in Aerospace Sciences, Vol. 46(7), pp. 247-273. 

Lophaven S.N., Nielsen H.B., Søndergaard J., (2002), “DACE,A MATLAB 

Kriging Toolbox”, DTU: DK-2800 Kgs. Lyngby - Denmark. 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



References 191 

 

Lourens, E., Papadimitriou, C., Gillijns, S., Reynders, E., De Roeck, G., 

Lombaert, G., (2012), “Joint input-response estimation for structural 

systems based on reduced-order models and vibration data from a limited 

number of sensors”, Mechanical Systems and Signal Processing, Vol.29, pp. 

310–327. 

Lourens, E., Reynders, E., De Roeck, G., Degrande, G., Lombaert, G., (2012), 

“An augmented Kalman filter for force identification in structural 

dynamics”, Mechanical Systems and Signal Processing, Vol. 27(1), pp. 

446-460. 

Lutes LD,  Larsen CE., (1990),  “Improved spectral method for variable amplitude 

fatigue prediction”, Journal of Structural Engineering (ASCE), Vol. 116(4), 

pp. 1149-1164. 

Lutes LD., Sarkani S., (2004), “Random Vibrations: Analysis of Structural and 

Mechanical Systems”, Elsevier Butterworth-Heinemann. 

Lyness J.N., Moler C.B., (1969), “Generalized Romberg Methods for Integrals of 

Derivatives.”, Numerische Mathematik, Vol. 14(1), pp. 1-12. 

Marwala T., (2010), “Finite Element Model Updating Using Computational 

Intelligence Techniques: Applications to Structural Dynamics”, Springer. 

Mace B., Shorter P., (2001), “A local modal/perturbational method for estimating 

frequency response statistics of built-up structures with uncertain 

properties”, Journal of Sound and Vibration, Vol. 242(5), pp. 793–811. 

Metha M. L., (2004), “Random Matrices”. Elsevier. 

Metallidis, P., Verros, G., Natsiavas, S. & Papadimitriou, C, (2003), “Fault 

detection and optimal sensor location in vehicle suspensions.”, Journal of 

Vibration and Control, 2003. Vol. 9(3-4), pp. 337-359. 

Metallidis P., Stavrakis I., Natsiavas S., (2008), “Parametric identification and 

health monitoring of complex ground vehicle models.”, Journal of 

Vibration and Control, Vol. 14(7), pp. 1021-1036. 

Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E., (1953), 

“Equation of state calculations by fast computing machines”, The Journal 

of Chemical Physics, Vol. 21(6), pp. 1087-1092. 

Miner M.A.,(1945), “Cumulative damage in fatigue”, Applied Mechanics 

Transactions (ASME), Vol.12(3), pp. 159-164. 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



References 192 

 

Moaveni B., He X, Conte J.P., De Callafon R.A., (2008), “Damage identification 

of a composite beam using finite element model updating”, Computer-

Aided Civil and Infrastructure Engineering, Vol. 23(5), pp. 339-359. 

Moaveni B., He X, Conte J.P., De Callafon R.A., (2010), “Damage identification 

study of a seven-story full-scale building slice tested on the UCSD-NEES 

shake table”, Structural Safety, Vol. 32(5), pp. 347-356. 

Mottershead J.E., Friswell M.I, (1993), “Model updating in structural dynamics: 

A survey.” Jounal of Sound and Vibration, Vol. 167, pp. 347-375. 

Mottershead J., Mares C., James S., Friswell M.I., (2006), “Stochastic model 

updating: Part 2 – application to a set of physical structures.” Mechanical 

Systems and Signal Processing, Vol. 20(8), pp.  2171-2185. 

Muto M., Beck J.L., (2008) “Bayesian updating and model class selection using 

stochastic simulation”, Journal of Vibration and Control, Vol. 14, pp. 7–

34. 

Naets F., Cuadrado J., Desmet W., (2015), “Stable force identification in 

structural dynamics using Kalman filtering and dummymeasurements”, 

Mechanical Systems and Signal Processing, Vol. 50-51, pp. 235-248, 

2015. 

Ntotsios E., Papadimitriou C., (2008), “Multi-objective optimization algorithms 

for finite element model updating.” Proceedings of Isma 2008: 

International Conference on Noise and Vibration Engineering, Vol. 1-8, 

pp. 1895-1909. 

Ntotsios E., Papadimitriou C., Panetsos P., Karaiskos G., Perros K., Perdikaris 

Ph., (2009), “Bridge health monitoring system based on vibration 

measurements”, Bulletin of Earthquake Engineering, Vol.7(2), pp. 469-

483. 

Ntotsios E., (2009), “Experimental Modal Analysis using Ambient and 

Earthquake Vibrations: Theory, Software and Applications”, Master 

Thesis, Department of Mechanical Engineering, University of Thessaly. 

Palmgren A.,(1924), “ Die Lebensdauer von Kugallagern”, VDI-Zeitschrift, Vol. 

68(14), pp. 339-341. 

Papadimitriou C., Katafygiotis L.S., (2001), “A Bayesian Methodology for 

Structural Integrity and Reliability Assessment.”, International Journal of 

Advanced Manufacturing Systems, Vol. 4(1), pp. 93-100. 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



References 193 

 

Papadimitriou C., Beck J.L., Katafygiotis L.S., (2001), “Updating robust 

reliability using structural test data”, Probabilistic Engineering 

Mechanics, Vol. 16, pp. 103-113. 

Papadimitriou C.,(2004), “Optimal sensor placement methodology for parametric 

identification of structural systems”, Journal of Sound and Vibration, Vol. 

278(4), pp. 923-947. 

Papadimitriou C., Haralampidis G., Sobczyk K., (2005), “Optimal experimental 

design in stochastic structural dynamics”, Probabilistic Engineering 

Mechanics, Vol. 20, pp. 67-78. 

Papadimitriou C., (2009), “Fatigue Lifetime Predictions in Metallic Structures 

using Limited Number of Vibration Measurements”, SMIM2009, R. 

Iwankiewicz and Z. Kotulski (Eds), Warsaw, Poland. 

Papadimitriou C., Fritzen C.-P., Kraemer P., Ntotsios E., (2011), “Fatigue 

predictions in entire body of metallic structures from a limited number of 

vibration measurements using Kalman filtering”, Structural Control and 

Health Monitoring, Vol.18, pp. 554-573. 

Papadimitriou C., Ntotsios E., Giagopoulos D., Natsiavas S., (2012), “Variability 

of Updated Finite Element Models and their Predictions Consistent with 

Vibration Measurements”, Structural Control and Health Monitoring, Vol. 

19(5), pp. 630-654. 

Papadimitriou C., Lourens E.-M., Lombaert G., De Roeck G., Liu K. (2012), 

“Predictions of Fatigue Damage Accumulation in the Entire Body of 

Metallic Bridges by Analysing Operational Vibrations”, 3rd International 

Symposium on Life-Cycle Civil Engineering, Oct. 2012, Vienna, Austria. 

Papadimitriou D.I., Papadimitriou C., (2013), “Bayesian Estimation of Turbulence 

Model Parameters Using High-Order Sensitivity Analysis.”, Proceedings 

of FEMTEC 2013 Conference. , Las Vegas, USA. 

Peeters B., De Roeck G. (1999), “Reference-based stochastic subspace 

identification for output-only modal analysis”, Mechanical Systems and 

Signal Processing, Vol. 13 (6), pp. 855-878. 

Peeters B., De Roeck G., (2001), “One-year monitoring of the z24-bridge: 

environmental effects versus damage events”, Earthquake Engineering 

and Structural Dynamics, Vol. 30 (2), pp. 149-171. 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



References 194 

 

Pitoiset X., Preumont A.,(2000), “Spectral methods for multiaxial random fatigue 

analysis of metallic structures”, International Journal of Fatigue, Vol. 22, 

pp. 541–50. 

Pradlwarter H., Schueller G., Szιkely G., (2002), “Random eigenvalue problems 

for large systems”, Computers and Structures, Vol. 80, pp. 2415–2424. 

Reynders E., De Roeck G., (2008), “Reference-based combined deterministic-

stochastic subspace identification for experimental and operational modal 

analysis”, Mechanical Systems and Signal Processing, Vol. 22 (3), pp. 

617-637. 

Reynders E., (2009), “System Identification and modal analysis in structural 

mechanics.”, PhD Thesis, Department of Civil Engineering, KU Leuven. 

Schueller G., (2001), “Computational stochastic mechanics – recent advances”, 

Computers and Structures, Vol. 79, pp. 2225-2234. 

Schueller G., (2006), “Developments in stochastic structural mechanics”, Archive 

of Applied Mechanics, Vol. 75, pp. 755-773 

Schueller G., Pradlwarter H., (2009), “Uncertainty analysis of complex structural 

systems”, International Journal for Numerical Methods in Engineering, 

Vol. 80(6), pp. 881-913 

Shannon C. E, (1948), “A mathematical theory of communication”. Bell System 

Technical Journal, Vol.27, pp. 379-423. 

Sohn H, Law K.H., (1997), “Bayesian probabilistic approach for structural 

damage detection”, Earthquake Engineering and Structural Dynamics, 

Vol. 26, pp. 1259-1281. 

Soize C., (2000), “A nonparametric model of random uncertainties for reduced 

matrix models in structural dynamics”, Probabilistic Engineering 

Mechanics, Vol. 15, pp. 277-294 

Soize C., (2001), “Maximum entropy approach for modeling random uncertainties 

in transient elastodynamics”, Journal of the Acoustical Society of America, 

Vol. 109(5), pp. 1979-1996 

Soize C., (2005), “A comprehensive overview of a non-parametric probabilistic 

approach of model uncertainties for predictive models in structural 

dynamics”, Journal of Sound and Vibration, Vol. 288, pp. 623-652 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206

http://www.ncbi.nlm.nih.gov/pubmed/?term=Schu%26%23x000eb%3Bller%20G%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schu%26%23x000eb%3Bller%20G%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schu%26%23x000eb%3Bller%20G%5Bauth%5D


References 195 

 

Soize C., (2008), “Construction of probability distributions in high dimensions 

using the maximum entropy principle: applications to stochastic processes, 

random fields and random matrices,”, International Journal for Numerical 

Methods in Engineering, Vol. 75, pp. 1583-1611 

Soize C., (2010), “Generalized probabilistic approach of uncertainties in 

computational dynamics using random matrices and polynomial chaos 

decompositions,”, International Journal for Numerical Methods in 

Engineering, Vol. 81(8), pp. 939-970 

Soize C., (2013), “Stochastic modeling of uncertainties in computational 

structural dynamics - Recent theoretical advances”. Journal of Sound and 

Vibration, Vol.332 (10), pp.2379-2395 

Teughels A., Roeck G. De,. Suykens J.A.K, (2003), “Global optimization by 

coupled local minimizers and its application to FE model updating”, 

Computers and Structures, Vol. 81(24-25), pp. 2337-2351. 

Teughels A., (2003), “Inverse modelling of civil engineering structures based on 

operational modal data”, PhD Thesis, Department of Civil Engineering, 

KU Leuven. 

Teughels A., Roeck G. De, (2005), “Damage detection and parameter 

identification by finite element model updating”, Archives of 

Computational Methods in Engineering, Vol.12 (2), pp. 123-164. 

Tunna J.M., (1986), “Fatigue life prediction for Gaussian random loads at the 

design stage”, Fatigue and Fracture of Engineering Materials and 

Structures, Vol.9, pp. 169–184. 

Tierney L., Kadane J.B., (1986), “Accurate Approximations for Posterior 

Moments and Marginal Densities.”,  Journal of the American Statistical 

Association, Vol. 81(393), pp. 82-86. 

Vanik M.W., Beck J.L., Au S.K.,(2000), “Bayesian probabilistic approach to 

structural health monitoring”, ASCE Journal of Engineering Mechanics, 

Vol.126, pp. 738-745. 

Wu M., Smyth A.W., (2007), “Application of the unscented Kalman filter for 

real-time nonlinear structural system identification”, Structural Control 

and Health Monitoring, Vol. 14, pp. 971–990. 

Yuen K.V., Beck J.L., (2003), “Reliability-based robust control for uncertain 

dynamical systems using feedback of incomplete noisy response 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



References 196 

 

measurements”, Earthquake Engineering and Structural Dynamics, Vol. 

32(5), pp. 751-770. 

Yuen K.V., Katafygiotis L.S., (2003), “Bayesian Fast Fourier Transform 

Approach for Modal Updating Using Ambient Data”, Advanced Structural 

Engineering, Vol. 6(8), pp. 81-95. 

Yuen K.V., Au S.K., Beck J.L., (2004), “Structural damage detection and 

assessment using adaptive Markov Chain Monte Carlo simulation”, 

Journal of Structural Control and Health Monitoring, Vol. 11, pp. 327–

347. 

Yuen K.V., Beck J.L., Katafygiotis L.S., (2006), “Efficient model updating and 

health monitoring methodology using incomplete modal data without 

mode matching”, Structural Control and Health Monitoring, Vol.13, pp. 

91–107. 

Yuen K.V., Hoi K.I., Mok K.M, (2007), “Selection of noise parameters for 

Kalman filter”, Earthquake Engineering and Engineering Vibrations, Vol. 

6,pp. 49–56. 

Yuen K.V., (2010), “Recent developments of Bayesian model class selection and 

applications in civil engineering”, Structural Safety, Vol. 32(5), pp. 338-

346. 

Yuen K.V, Kuok S.C., (2011), “Bayesian methods for updating dynamic models”, 

Applied Mechanics Reviews, Vol. 64 (1). 

Verboven P. (2002), “Frequency domain system identification for modal 

analysis”, PhD Thesis, Department of Mechanical Engineering, Vrije 

Universiteit Brussel, Belgium. 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206


