ITANEIIIZTHMIO OEXXAAIAY

ITIOAYTEXNIKH XXOAH
TMHMA MHXANOAOT'QN MHXANIKON

EPT’TAXTHPIO AYNAMIKHYX 2Y2THMATQN

AIAXEIPIXH TQN ABEBAIOTHTQN XE ITPOXOMOIQXEIX
AITIOKPIZHYX KAI AEIOIIXTIAY KATAXKEYQN
AEIOINOIQNTAYX AEAOMENA METPHXEQN

Adoaxtopikn Awotpifn

AHMHTPA-XPIXTINA ITAITAAIQTH

Amhopotovyov I[Hoittikod Mnyavuco?, I1.0., 2009
M.A.E. Mnyavordyov Mnyavikov, I1.6., 2011

YrefAn0m yuo tnv ekTANp®OT HEPOVG TV
OTTOLTICEWV Y10l TNV OITOKTNGT TOV

AdokToptkod ATAGNOTOC

2015

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING
DEPARTMENT OF MECHANICAL ENGINEERING

SYSTEM DYNAMICS LABORATORY

MANAGEMENT OF UNCERTAINTIES IN STRUCTURAL
RESPONSE AND RELIABILITY SIMULATIONS USING
MEASURED DATA

Thesis by

DIMITRA-CHRISTINA PAPADIOTI

Diploma in Civil Engineering, University of Thessaly, 2009
M.Sc. in Mechanical Engineering, University of Thessaly, 2011

In partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

2015

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



H mapovoa épsvva €xer ocvyypnuotodomBel amd tv Evpornaiky "Evoon
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Evyoprotieg

H mapovoa dwdaktopikn owtpipn exkmoviOnke oto Epyoaotipio Avvouikng
SuoUdTOV Tov  TUAUOTOG MnyavoAdywv Mmnyavikov oto Ilavemotiuio
®eccaiiag.

dtdvovtog 610 TEAOG aLTNG TG Tpoomdbelag, mpdta am’ Ola, Bo MBela va
EVYOPIOTNOWM TOV EMPAETOVIO NG OOAKTOPIKNG epyaciag pov, Kabnynt .
Koota [Momadnuntpiov, yio v evldppovon, toldtiun Bondeia kot kabodnynon
tov KaBOAN T SudpKel NG ovvepyasiog Hog OAAG Kot ylo Tr OlopKi TOV
Tpoomabelo vo. pe HLUNGEL OTIC 0pyeS kol a&iec mov emKpPOTOLV otV O1EdvN|
emotnUoviky kowdtnta. Emiong, svyopiot® ta vmdéAouro péAN G TPYEAOVG
GUUPOVAEVTIKNG €MTPOTNG NG OWaKTOpKnG dwtpPng pov, Kabnyntég «.
Zompto Notowafa kot Adurpo Koatapuyuot, kabdg kot to vidioua wéAn g
EMTOUEALOVG EMLTPOTMNG Y10 TNV TPOGEKTIKT AVAYVOCT TNG EPYACTOG LOV KO Y10l TIG
moAvTIHES Vodeitelg toug. Evyapiotieg opeilw emiong otov k. Todmeha kabag
NTaV 0 TPAOTOG OV UE OidaEE TS PACIKES apyES TS AVVOIKNG MG TPOTTLYLOKY|
QOUTTPLO. KOl 1 O1000KOAMO TOV OMOTEAEGE KATOAVTIKO TOPAyovTo YloL TNV
petémeito.  emAoyn pov. Idwitepeg evyopilotieg opeihm emiong otov K.
[Moaykémovko Anpntpn ywoo v moAvtyun Pondewe tov Kotd v Obpkeld
EKTOVNONG NG O0aKTOPIKNG dtpPng Ko v dyoyn cvvepyasio pag. TEAoG,
eVYOPLOTIEG OPEIA® OTOLG UETAOIOOKTOPIKOVG @OoltNTéS Tov  Epyactnpiov
Avvapukng Zvomudtov Ntotolo Bayyéln, TTéppo Kupiako kar Saeed Eftekhar
Azam yw Vv dpiotn cvvepyosio Tov glyape KoTd TN SAPKELD TG EKTOVINONG TNG
TapoHGOS OOAKTOPIKNG OLaTpiPrc.

[Tove am’ O, elpot gvyvopmv oto ovlvyo pov Muiyddn, ywoo v aydmn kot
oAOYLYN VTTOGTNPIEN TOV, GTOV OO0V APIEPDOVE® QT TNV dtTPpT).

Anuntpa-Xpiotiva [Homadiwt
IovAlog 2015, Boroc.
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IIEPIAHYH

Avtikeipevo ¢ mapovoog Awrpifrig  amoterel M avdmtuén  pebddmv
povtelomoinong kot Olayeipiong tov  afefarotntov oty Oadikacio NG
Tpocopoimwong kotackevdv. 'Epugaon divetoar oty avantuén evog mbovotikov-
OTOTIOTIKOV TAGIoOL Yoo (0) TNV TOGOTIKOTOINoT TV ofefatoTnTOv TOL
VREIGEPYOVIOL  OTNV  EMAOYN  TOPOUETPIKOV — HOONUOTIKOV — HOVTEA®V
TPOGOUOIWMONG LUNYOVIK®OV GUGTNUATOV Kol EMTEPIKAOV SVVAUIKOV JEYEPCE®YV,
(B) Vv od1bdoon TV afePfoloTTOV AVTOV HECH TOV VITOAOYIGTIKOV HOVTEAW®V
TEMEPUCUEVOV GTOXEIMV otV TPOPLeyT TV afefatotitov peyedov andkpiong
Kot o&lomotiog  Evavtl  JlpOp®V  OPLOKAV  KOTOUGTACE®V OCQOAENG KoL
AertovpykdTTog  UNYovik®v  cvotnudtov. ITibovotikd/ctoyaostikd povtéia
YPNOCLOTOOVVTOL Y10 TNV TOGOTIKOTOINGT TV afePotoTnToV, evd eEEATYUEVES
pnefodoroyieg OTOYOOTIKNG TPOGOUOIMONG OmOTEAOVV 1O Pootkd epyareio
ouwdoong tov afefoaotntov péow TV mpocopowpdtwv. ‘Eva  1dwitepa
Koavotopo otorelo ¢ €pevvag amotedel M a&lomoinom UETPGE®V Yo TNV
Bektioon TOV HOOMUOTIKOV HOVIEA®Y TEPLYPAPNG TOV UNYOVIKOD GUGTHUOTOG,
Tov deyépoewv kol Tov afefatomtov pe Pdon T ototiotiky pebodoroyio
Bayes. Ot gpappoyég enideiéng eotidlovv (o) 6TV MGTONTOINGN TOV LOVIEA®YV,
TpoOPAreyYn TG aSlomotiag Kot dlepehivnon TG EMPPONg TV afefatotitev yio
KOTOOKELEG LEYAANG KApakag, kot (B) otnv TpoPreyn KOmT®ONG 6€ OAOKANPO TOV
QOPEN LETOAMKOV KATOOKELADV PACEL TEPLOPIGUEVOL aPLOUOL  AEITOLPYIKMV
UETPNCEDV TAAAVTOGCTC.

H mapovoa Awatpipn dopeitor and tpio cvoyetildpeva pép.

Mépog A: And v apyn| exndvnong e Awdaktopikng AatpiPng Eywve capésg 0Tt
Yo vo. kotaotel duvati M avéivon Kon doyeipion tov affefouomtov oe moATAOKN
HOVTEA KOTOCKELDV Omm¢ HovTého, e YMAO apBpo Pabumy ekevbepiog g Téng v
TOAADV YIAEOW®V, EKATOVTAO®V YAV 1) okOpLoL Kon ekaToppvpinv Babudy egubepiog,
KoBAG Kot LOVTEAN IOV TAPOVGIALOVY TOTUKES N=YPOULKOTITES GTIV CUUTEPIPOPEL TV
OOLIKAOV GTOYEI®V, NTAV OITOPOATNTI 1] EVOOUATOCT EEDTVOV TEXVIKOV UEIoNg Twv
emovodopPovopevay ypovoPopwv SOOIKAGLOV LIIOAOYICHOL TNG amdkplone. [ tov
oKOmO oTO PEYGAO HEPOG TNG EPELVITIKNG OPACTNPOTNTOG EOTIONCE GTNV OvAmTLEN
OTTOTEAECUATIKOV TEYVIKOV peiwone tov Pobumv ehevbepiog tov  pOVIEAOL TOVL
ovotuatog. Etvon yvootd 6t ywo ypopypukd poviého - péBodog ouvBeong twv
KOTOOKEVOOTIKOY  cuvictwomv (Component Mode Synthesis - CMS) pmopei va
TPooPEPEL To. (nrovpevo, mieovektporo. Opme o ypOvog Tov outonTeiton yioL Ty emitevén
™G Helwong eival GYETIKE HeYOAOG Kot OLGIOCTIKA 1 ast’ €VBeiog epopproy| avoupel o
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TAEOVEKTALLOTOL TNG HEBOOOL GHVOESTC TV KOTAGKEVOGTIKOV GUVIGTOGMV. [0t ToV 6Komd
avtd avamtOyOnKe Kouvotopog EBodog yoo TNV emitevén g peimwong twv Pabucdv
erevBepiag Y100 TOV TOAD peydho oplOpd EVIAAOKTIKOV HOVTEA®Y LE Baom v avdivon
TMV KOTOAGKEVOGTIKOV CUVIGTOOMV £VOG HOVO OVOLLOGTIKOD LLOVTEAOL TOL cuoThotoc. H
mpoTeEVOUEVN Hebodoloyia ivar EPUPUOGILN Y10 TIC TEPUTTMGELS TTOV Ol KOTUCKEVUOTIKEG
ocuvioTdoeg emAéyovton pe Pdon ™ mopopeTpomoinon tov poviédov. H pebodoroyia
amodetynie Wiaitepo ommoteAecpaTikn Yoo Vv dwyeipion afefaiotitwv oe Suvopkeg
OVOADGELS KOTAOKEVADV UEYOANG KAUaKaG KoODg oonyel o€ ONUaVTIKY Heimon Twov
Bobumv ekevbeplog aAhd kon Tov ¥pdvov dyeiptong Twv offefotoTNTV KoTd TPES Kot
TEPIOOOTEPES TACES LEYEOOVC. ZUYKEKPUEVOL TOPAOELYHOTO GE LOVTEAD TOADTAOK®Y
KOTAOKELMV EKATOVTAdV YMdadwv Bobudy ergubeplog, dmwg etvor T0 YPOKO LOVTEAO
™G YéPLpog ToL MeTadPov, £0e1Eav OTL 0 XPOVOS avEAVOTS TMV afEfAlOTHTOV LEWDVETOL
amd TéEN NUEPDV GE TAEN AlymV HOVO SEVTEPOAETTMV, TO OTTOTO OUTOTEAEL OPOCTIKY| LEIOT)
TOV ¥POVOL KO EMTIPEMEL YO TPOTH POPA TV Sloyeipon kor epappoy pebodwv
Sloyeipiong, TocoTikomoinong Kot S1ddoong afePotoTtmy 6e TOATAOKES KOTOUOKEVES.

H mopomdve teyvicn peimong tov Pabuav ehevbepiog amotedet moAd onpovtikd epyodeio
YO TV EKTTOVNOT TG Topovcog AakToptkig AtpiPg kabdg Hewdvel onpovTikd o
VIOAOYIOTIKO KOGTOG YioL TV OEIPLon VOGS LEYOAOD GYETIKOL OPLOLOD ETOVOANTTTIKOV
OVOADGEDV TIOL OToUTovVToL 6€  adyopibuovg Peitictomoinong kot o€ okyopifpovg
OTOYOOTIKI S TPOGOUOIMONG 7OV ¥PNOWWOTOWLVTOL  Kotd TV Jwyelplon v
afefaromrov o povtéda memepaciévey otoyeiov. Emiong ov mopamdve texvikég
omoTEAEGOV TTOAD OMUAVTIKO PYOALIo Yo TNV avarTuén tv peBddmv dayeipiong twv
afefaroTTmv oTIC TEYVIKES O1éyvmoNG TG SOLIKTS OKEPOLOTITOG TMV KATOGKEVMV .

Mépog B: Zta maicio exmovnong mg mopovcas Aorpirg avortdybnke To 6TatioTikd
mAaiclo Bayes yw v emioyn kot avoyvopior] LOVTEA®DY TETEPACUEVMV CTOLEIOV LE
Béion TV mANpoeopic. ToL TPOEPYETOL OO TIG LETPNGELS. LUYKEKPYLEVE, OAOKANPGONKE M
Bewpnticn) SWTOTMOOY] TOL TPOPANUOTOS EKTIUNGNG TMOV TOPOUETPOV  YPOLLLIKDV
HOVTEA®V Kataokeung pe ™ péBodo Bayes yio my mepintwon mov o1 SwdEoyleg Hetpnoeig
gfvon T 1IO0HOPPIKA YOPOKTNPICTIKE TNG KOTACKELTS (IO10GUYVOTNTES KoL WOLOLOPPES).
Emiong n mopomdve pebBodoroyio. viomoufnke ce AOYIGHIKO Kol 1 EQAPLOYT TNG GE
YPOLIKG LOVTEAQ TTEMEPUCHEVMV GTOLYEIV He TOAAOVG Pabovg ercvBepiog £0mae TOAD
UKOVOTIOMTIKG OOTEAEGHOTE. VYMANG akpifeac. YAomomBnkov emiong o€ AOYIGUIKO
dBéoyeg amd ™V PiAoypagpio evorhoktikég Swtunmoelg Bayes ko peiemnie n
OTTOTEAECUATIKOTNTAS TOLVG G OYéorn He TV Tpotewvopevn pebodoroyio. Emiong, m
Topovoo. AT EMKEVIPOONKE OTIV OVATTVLEN OMOTEAEGUATIKAY VITOAOYIGTIKOV
epydeiv Yoo mv TEptypad] TV ofefatoTOV TOV TOPAUETP®V EVOS LOVTEAOL TTOV
TOPOVSIALeL N ypoypukdmreg pe Pdorn ™ pébodo Bayes alhd kon v doyeipion tov
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afefarorov  oTov  LTOAOYICUO TV  ofeforoTNT®V  amOKPIONG  YPTCULOTOIDOVTOS
OGLUTTOTIKEG HeBOO0LE Ko PeBOOOVE GTOYOOTIKIG TPOGOUOIoNG. ATd TIC S100EGES
OTOYOOTIKEG HEDOOOLG YL TV TEPYpOPn TV OofePAIOTNTOV TOV  TOPOUUETPOV,
ypnoonomonke 1 puébodog Transitional MCMC. H Transitional MCMC eivon yevucr ko
EQOPUOCYUN GE YPOLLUKE KoL UN=YPOLLUKE HOVTEAD, OTG oumodelynke kon omd v
EPOPLOYN TNG Y10L TV OVODEDPNOT TV TIDV TOV TOPOUETPMV TMOV CUGTNLATOV E6pOCTG
OKAPOVG OYNLLOTOS LUKPNG KAILOKOLS,

2NV GUYKEKPYEV TIEPITTMOT| EYIVE YEVIKELOT) TG BempnTikig SloThmmong £T61 MOTE N
uébodog Bayes vo AopBdver vtoym Ot o1 LETPNGELS £ivait O YPOVOLGTOPIES OmdKPIoNG OvTl
TOV O0HOPPIKOV YOPUKTNPICTIKMVY KO ETOTG TO. PACLLOTH OTOKPIOTS TPOKEWYEVOD VoL
YIVEL 1] EKTIUNOM TOV TOPOUETPMV TMOV U1 YPOLUK®OV LOVTEAWDVY OVEPTIONG TOL OYNLLOTOG.
"o mv mepintwon v ¥povoicTopidy amdkpions VAomouOnke o Aoyioko pebodoroyio
1 omoia. AopPaver VOYN EVOAAOKTIKE paBNpOTKG LOVTELD, TPOPAEYNS GOAALOTOC GTHV
Stardmwon g pebddov tov Bayes. Zvuykexpyiéva ypnoipomonfnkay LoviéAo Tpofieymg
GPAALLOTOG LLE YWPO-YPOVIKEG GUGYETICELS, GE OVTIOEDT] LLE TOL LIAPYOVTOL LOVTEAQL TOL OTTOT0L
Bempolv acvoyETioTa ToL GEAALATO GTO YMPO Kot Tov Ypovo. Tpayporomoun)Onke Aowdy
pe emrouyio 1 dwyeipon v afeforotiTev (avoyvapion kot o1d0oT|) GE TEWPOLOTIKO
OKAPOG OYNLLOTOG LLE GLVOLAGHLO YPOLLIK®V KO 11 YPOLUUKADV cuvicToomy. H dwyeipion
TV YPOVOPOPOV ETAVOANTTIKOV OVOAVGEDV TOV HOVIEAOV TOU GULGTHUOTOG
QVTILETOTICTNKE LE TNV EVOOUATOON NG TEYVIKNG GUVOESNG KOTOGKEVOGTIKOV
GLVICTMGAV, OV CVOTTTOYXONKOY GTO TTPMTO PEPOG eKmOvnong g AwrpiPnc, ywou Tig
YPOLUIKEG GUVIGTMGES TOL GUGTNLLOTOS OIS EIVOIL TOL ETUEPOVG KATAGKEVAGTIKG GTOLYEINL
TOV GKAPOLS TOV OYNLLOTOG. KO TPOEKVYE TO LEWDLEVO UN-YPOLLUKO LLOVTEAD TTOL LEIDVEL
ONUOVTIKG, TOV VITOAOYIGTIKO ¥PpOVO IOV amonteiton Kafme vmpEe oNUOVTIKY LElmoT Tmv
BoBumv glevbepiog amd 50,000 o Arydtepouvg amd 100. Téhog, pe Pdon v a&lomoinom
TOV TEWPAUATIKOV HETPNCEWV OMO TIG EMUEPOVS CLVIGTAOCES (OKAPOG Kot
OVOPTNGELS) TOL TEPOUATIKOD OYNUHOTOS pmdpecav va  e&oyBodv  yprowyoa
GUUTEPACUOTO OYETIKA pE TNV dvvotdtnTa dlayeipiong tov afefalotntov oto
omuo pe Paom ™V avoyvoplon tovg Koi TV PabUovopunom Toug omd  EmUEPOVS
GUVIGTMGES.

Mépoc I': Mo dwitepo kaivotopog pebodoroyio yu v mpoPAeym g
ocvcompevong Prafav AOY® KOT®ONG G€ OAOKANPO TO (OPEN LETOAMK®DV
KATOOKELAOV HE a&lomoinoT TANPOPOPIOV OO LETPNGELS TG TOANVTIWTIKNG TOVGS
amoKploNng o€ MEPLOPICUEVO aplBud BEoemv o1V KOTAGKELT TPOTEIVETOL GTO
mhoio ¢ mopovcag AtaTping. Zvykekpyéva, yonoyomomdnkoy péBodot THmov
Kalman kot pébodor Modal Expansion yia tqv mpdyveon Tov ypovoisTopiidv TovV
TOPALOPPAOCEDY GE OAOKANPO TOV QOPER TOCO OMAMV OGO Kol TOADTAOK®V
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KOTOUOKELOV OO  TEPLOPICUEVO  aplOUd  UETPACE®V, OTOQEVLYOVIOG TNV
AVOYVAOPLOT TOV TPOUYLUTIKOV dleyEposwv. Me ypion tov kavova Palmgren-Miner
Kol Tov S-N Kapmddog konwong, ywve 1 TpoPreyn g PAAPNC AOyw KOT®ONG
Kot Tov gvamopeivavta ypovov {ong to¢ kataokevdv. H amddoon kot akpifela
™G mpotewvouevng pebodoroyiag mapovotdletar 1060 e €vol OmAOIKO GUGTHLO
AMyov povav Bobpmy eAsvBepiog pe U YPOLIKOTTO GE Lo VIIOKOTAGKEDT], OGO KOl LEGOL
amd ™V epappoy TG HEBOGOL GTO GTO Oy KPS KAILLOKOS IOV PEAETONKE GTO
0eutePo HEPOG NG AwTpiPric, HEPIKOV Oekddmv yMddwv Pobumv ercvbepiag, mov
TEPOUPAVEL TO YPOULIKO GKAPOG OYNUOTOG KO TOL TEGOEPQ, LU YPOLUIKE VITOGLGTILLOTO
TOV TPOYDV-avapTNEEMV. TEAOG, Ol POVOIGTOPIES TV TPOPAETIOUEV®V TOPAUOPPDCEDY
YPNoOTOmBNKAY e aEomoTiol Yo Ty TPOBAEYT TG KOTMGOTS TOL OYNLLOTOG KOL Y10l TV
onuuovpyion YopTdV KOMMONG KoL XOPTAV TOL evamopeivavtog ypdvog Cmng g
KOTOGKELTG,
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SUMMARY

The subject of current PhD thesis is the development of methods for the modeling
and management of uncertainties in structural simulations. Emphasis is given on
developing the probabilistic-statistical framework that is used for (a) quantifying
and calibrating uncertainty models of mechanical systems and external excitation
forces, in structural dynamics based on vibration measurements, as well as (b)
propagating these modeling uncertainties in structural dynamics simulations to
achieve updated robust predictions of system performance, reliability and safety.
The tools for identifying system and uncertainty models as well as performing
robust prediction analyses are the Bayesian Inference, Laplace methods of
asymptotic approximation and more accurate stochastic simulation algorithms,
such as Transitional Markov Chain Monte Carlo. These tools involve solving
optimization problems, generating samples for tracing and then populating the
important uncertainty region in the parameter space, as well as evaluating
integrals over high-dimensional spaces of the uncertain model parameters. A
moderate to very large number of repeated system analyses are required to be
performed over the space of uncertain parameters. Consequently, the
computational demands depend highly on the number of system analyses and the
time required for performing a system analysis. For such large-order finite
element models the computational demands in implementing asymptotic
approximations as well as stochastic simulation techniques may be excessive.
This study integrates an efficient Component Mode Synthesis technique that takes
into account the FE model parameterization to substantially alleviate the
computational burden associated with the Bayesian methodology. Another
innovative aspect of this thesis is the use of measurements in order to improve the
mathematical models that simulate the mechanical system, the excitation and the
uncertainties that arise, based on the Bayesian Inference. Finally, the
computational efficiency of the proposed techniques is demonstrated through
applications (a) in structural health monitoring, damage identification and
updating structural reliability of civil infrastructure, and (b) in predicting fatigue
for metallic structures through a limited number of acceleration measurements.

Part A: From the beginning of the current PhD thesis it became clear that in order
to perform the analysis and management of uncertainties for complex structural
models such as large DOF models involving hundreds of thousands or even
million DOF and models including localized nonlinearities, it was necessary the
analysis to be integrated with smart techniques for reducing the time consuming
analysis that appear in reliability simulations. For this reason, much effort of the
research was devoted to investigate efficient techniques for reducing the number
of degrees of freedom of the FE model simulating the structural system.
Specifically, component mode synthesis (CMS) techniques are widely used to
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carry out system analyses in a significantly reduced space of generalized
coordinates, thus alleviating the computational burden involved in the
implementation of methods for management of uncertainties. In this work, a novel
framework is presented for integrating the Craig-Bampton technique into existing
FE model updating formulations in order to reduce the time consuming operations
involved in reanalyses of large-order models of hundreds of thousands or even
millions degrees of freedom. The proposed method exploits the fact that in FE
model parameterization schemes the stiffness matrix of the structure often
depends linearly on the parameters of the model and also that a parameter usually
represents a global property (e.g. the modulus of elasticity) of a substructure. The
division of the structure into components is then guided by the FE
parameterization scheme so that the stiffness matrix that arise for each one of the
introduced components to depend linearly on only one of the parameters to be
estimated. The methodology proved to be very effective for the management of
uncertainties in the dynamic structural analysis of large-scale models, since it led
to a significant reduction both of the degrees of freedom and of the time
consumed for the management of uncertainties by three and more orders of
magnitude. Through the implementation of the framework to large order models
of structures involving hundreds of thousands of degrees of freedom, such as the
linear model of Metsovo bridge, it was demonstrated that the computational effort
was reduced drastically from days to a few seconds. This drastic reduction of the
computational time without compromising the accuracy allowed for first time the
uncertainty quantification and propagation of large order complex structures.

The above reduction techniques proved to be a very useful tool for the research
conducted in the context of current thesis due to the reduction of the
computational effort of reanalyses involved in stochastic optimizations and
simulations algorithms implemented for performing management of uncertainties
in structural response and reliability simulations the reduction of degrees of
freedom is a very important tool for the preparation of this thesis as it significantly
reduces the computational cost for the management of a large number of repeat
analyzes required in optimization algorithms and stochastic simulation algorithms
used in the management of uncertainties in finite element models. Finally the
above techniques were very useful for the development of a framework for
management of uncertainties that appear in structural health monitoring (SHM).

Part B: In the context of this thesis, a Bayesian framework for model parameter estimation
and class selection, based on vibration measurements, was developed. Specifically, the
theoretical framework for the parameter estimation problem for linear models using the
modal characteristics (eigenfrequencies and modeshapes) was first formulated and then
implemented in software. The results of the application of the proposed Bayesian
Framework, implemented in the developed software, for linear large DOF models were of
high accuracy.amotedéopata vymAng axpifewac. Moreover, different approaches of the
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Bayesian Framework, presented in relevant literature were implemented in software and
tested for their accuracy. Another field of great interest of this thesis was the development
of Bayesian tools, including asymptotic approximations and stochastic simulation
algorithms, for the quantification and management of uncertainties in parameter estimation
for both linear and nonlinear models. Among the stochastic simulation algorithms available
Transitional MCMC is one of the most promising and for this reason it was chosen to be
used. The Transitional MCMC is an algorithm of general use and can be applied to both
linear and non-linear models, as it was demonstrated in this thesis through its application to
a small scale experimental model of a vehicle with nonlinear wheel and
suspension components review for the model updating of the parameters of the
nonlinear.

In this case of this nonlinear model, the Bayesian framework was extended to cover the
case that the measurements are taken to be either response time histories or
response spectra functions instead of the modal characteristics that were used in
case of linear models. For the case that measured data is response time histories,
the proposed methodologies were implemented in software, taking into account
different approaches for calculating the prediction error that appears according to
Bayesian formulation. The Bayesian framework for uncertainty quantification,
calibration and propagation was successfully implemented in the case of the
experimental vehicle that was a combination of linear and nonlinear components.
Drastic reduction in computational effort to manageable levels was achieved using
component mode synthesis techniques that are presented in the context of this
thesis, for the linear vehicle frame obtaining a drastic reduction in the DOFs from
50,000 to less than 100. Finally, based on the measured output quantities of
interest of the components of the vehicle frame, interesting results were concluded
about the methodology that the estimates of the model parameter values and their
uncertainties for each component can be used to build the model for the combined
wheel-suspension-frame structure.

Part C: A novel framework is proposed for estimating damage accumulation due
to fatigue in the entire body of a metallic structure using vibration measurements
from a limited number of sensors. Fatigue is estimated using Palmgren-Miner
damage rule, S-N curves, rainflow cycle counting of the variable amplitude time
histories of the stress components, or frequency domain stochastic fatigue
methods based on PSD of the stress components. These methods can be applied to
any point in the structure and construct the complete fatigue map of the entire
structure, provided that the stress response characteristics (time histories or PSDs)
at all desirable points are available. These stress response characteristics are
predicted from limited number of vibration sensors using a high fidelity finite
element model and different prediction methods, including Kalman filter type
techniques, kriging approximations and modal expansion methods. The
effectiveness of the proposed methods is demonstrated using simulated data from
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a chain-like spring-mass model and a small-scale model of a vehicle structure.
The proposed framework can be used to construct fatigue damage accumulation
and lifetime prediction maps consistent with the actual operational conditions
provided by a monitoring system. These maps are useful for designing optimal
fatigue-based maintenance strategies for metallic structures taking into account all
uncertainties in modeling and fatigue predictions.
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1.Introduction 1

CHAPTER 1 Introduction

1.1 Research Context

1.1.1 Preface and Motivation

Structural dynamics plays an increasing role in the design and analysis of
engineering systems. In modern analysis of structural dynamics, much effort is
devoted to the derivation of accurate models of structures. Civil and mechanical
engineering are some examples of engineering disciplines which have become
more and more reliant on computational models and simulation results in order to
predict the performance of the analyzed structural system. Today's computational
resources make it more and more possible to analyze complex structures by
sophisticated numerical models, which are usually Finite Element (FE) models
(Bathe and Wilson, 1976; Bathe, 1996). Thus, the availability of an accurate
dynamic finite element model of a structure is very important for engineers as it
allows them to improve the dynamic design of the structure at computer level
resulting in an optimized design apart from savings in terms of money and time.

However, there may be some inaccuracies or uncertainties that may be associated
with a finite element model. Despite the available powerful computational tools,
numerical models are subject to the limitation of available data, physical theory,
mathematical representation and numerical solutions. First of all the discretization
error, arising due to approximation of a continuous structure by a finite number of
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1.Introduction 2

individual elements, is inherent to the finite element technique. Other inaccuracies
may be due to the assumptions and simplifications made by the analyst
concerning the choice of elements, modelling of boundary conditions, joints, etc.
These assumptions and simplifications have as a result that when tests are
performed to validate the analytical model, inevitably their results, notably natural
frequencies and modeshapes, do not coincide with the expected results from the
theoretic model. Given the availability of an accurate data acquisition and
measuring equipment the measured test data, though may not be precise, is
generally considered to be more accurate than analytical model predictions.

This has led to the development of techniques for the modification or correction
of a finite element model, based on the measured test data, also referred to as
model updating or model calibration. Generally speaking, the aim of model
updating is to use the modal properties, mainly identified modal frequencies and
mode shapes, in order to validate a finite element model (FEM) as well as update
the values of various properties of the FEM considered as unknown parameters,
such as material properties, geometrical properties and boundary conditions, in
order to obtain a reliable FEM model of the structure consistent with the measured
data (Mottershead and Friswell, 1993; Katafygiotis et al., 1998; Bohle and
Fritzen, 2003; Teughels, 2003; Christodoulou and Papadimitriou, 2007).

Finite Element model updating serves a wide array of purposes; this updated FE
model for instance can be used to carry out updated response predictions
consistent with the test data, or simply to identify unknown system parameters.
One of the most promising application areas of FE model updating is structural
health monitoring (SHM). By calibrating stiffness parameters of FE models, based
on observed modal characteristics, damage can be identified, quantified and
located. Here damage is defined as changes to the material and/or geometric
properties of these systems, including changes to the boundary conditions and
system connectivity, which adversely affect the system’s performance. In this
context, FE model updating is also used to improve predictions of structural
response and reliability.

1.1.2 Management of Uncertainties

FE model updating aims to modify or correct the initial FE model in order to
become an accurate reflection of the observed structural behavior. However, it is
always observed that even after the process of performing model updating, a
comparison between the output of the FE model and the respective results of the
experimental tests always reveals some discrepancies. These differences are due
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1.Introduction 3

to uncertainties that arise from the simplified assumptions and idealizations used
for developing models for simulating the behaviour of engineering structures, as
well as models for simulating the loads (mechanical, thermal, etc.) that are applied
on the structures. These uncertainties include:

Modelling uncertainties: arising in modelling the constitute behaviour of
materials, the damage mechanisms (e.g. due to fatigue, corrosion), the support
conditions of structures and their interaction with their environment, the
connection between structural members (fixity conditions, friction mechanisms,
impact phenomena), the geometric variability due to manufacturing processes.

Loading uncertainties: arising from the lack of detailed knowledge of the spatial
and temporal variation of the forces (mechanical, thermal, etc) applied to
engineering structures. Examples include spatial variability of road roughness
affecting the dynamics of vehicles, spatial and temporal variability of earthquake-
induced excitations on civil engineering structures, turbulent wind loads affecting
the design of aircrafts, variability of thermal loads affecting the design of a large
class of mechanical and aerospace structures.

Numerical uncertainties: stemming from PDE spatial discretization using finite
element methods, temporal discretization used in numerical time integration
schemes, rounding-off errors in numerical solutions due to computer inaccuracies.

The uncertainties may affect considerably the prediction of performance and
safety of the analyzed systems. Modeling tools and techniques are necessary for
identifying accurate mechanical models taking into account all uncertain factors,
properly quantify uncertainties for the purpose of integrating them with the
mechanical models, as well as analyze through model simulation the effect of
uncertainties on the performance of engineering structures.

In the context of this thesis, emphasis is given on model uncertainties. Over the
last decades, several approaches have been proposed for taking model
uncertainties into consideration. These approaches have been formulated in the
framework of the parametric, the non-parametric and the Bayesian approach.

1.1.2.1 Model Uncertainties within the parametric approach

Parameter uncertainties relate to the parameters of the mathematical mechanical
model; more specifically to material parameters, such as the elasticity modulus or
the mass density, and to geometrical parameters, such as the cross-section
dimensions of structural members. The uncertainty affecting these parameters,
mostly due to natural variability, can be accounted for by modelling these as
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1.Introduction 4

random quantities, i.e. by constructing a so-called parametric model of
uncertainties. Within this parametric approach, the uncertainty associated with
each of the parameters of the models is accounted for explicitly. The uncertainty
can thus be captured locally, down to a level corresponding to the degree of
resolution of the mathematical-mechanical model.

The parametric approach is well established in structural and mechanical
engineering; comprehensive reviews on stochastic mechanics can be found in the
work of Schueller (Schueller, 2001 and 2006; Schueller and Pradlwarter, 2009). A
wide array of methods exists to construct a stochastic representation of the
random parameters. One of the most widely used parametric approaches in
stochastic mechanics is the Stochastic Finite Element Method (SFEM), introduced
by Ghanem and Spanos (1991), where the FE system matrices are expressed in
terms of the underlying random FE model parameters.

This type of approach is suitable to quantify uncertainty that is due to the inherent
variability in the system parameters. On the other hand, uncertainty that is due to
the lack of knowledge regarding a system, does not explicitly depend on the
system parameters. For example, there can be unquantified errors associated with
the equation of motion (linear or nonlinear), in the damping model (viscous or
non-viscous), in the model of structural joints, and also in the numerical methods
(e.g. tolerances in the optimization and iterative algorithms, step sizes in the time-
integration method.)

It is evident that the parametric approach is not suitable to quantify uncertainty
that is due to the lack of knowledge regarding a system. As a result non-
parametric approaches have been proposed for this purposes (Soize, 2000 and
2001 and 2005).

1.1.2.2 Model Uncertainties within the non-parametric approach

According to Soize (2008 and 2010 and 2013),model uncertainties cannot be
taken into account by applying the parametric approach, which is underlined by
case studies in which it is shown that the desired discrepancy tolerated between
the output of the real system and the predicted output cannot be reached with the
parametric approach. The non-parametric model of uncertainties has been
proposed for structural dynamics problems, in order to capture model
uncertainties in addition to the parametric uncertainties. This approach is based on
the random matrix theory introduced in the 1930ies in the field of mathematical
statistics (Metha, 2004). The non-parametric approach has been developed by
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1.Introduction 5

introducing a new ensemble of random matrices, which differs from other known
ensembles of the random matrix theory.

The non-parametric method makes use of random matrix theory to construct a
probabilistic model of the prediction model, resulting in random mass, stiffness
and damping matrices, thus avoiding the need for explicit mapping of model
parameters to the system matrices. More specifically, within this approach, the
relaxation of the topological connectivity of the structural matrices aims at a
consideration of the uncertainties in processes that are not modeled explicitly by
structural parameters. Then the probability model model for the random matrices
Is constructed by using the principle of maximum entropy (Shannon, 1948). This
method makes it possible to construct directly the probabilistic model of the
generalized mass, damping and stiffness matrices which is proposed as an
approach for considering the whole spectrum of uncertainties.

By combining the parametric and non-parametric methods, model parameter
uncertainty as well as model structure uncertainty can be included. This
generalized approach allows to model the individual errors seperately, depending
on the type and amount of information, that is available. For more details on this
method and its applications, the reader is referred to Soize (2010) and Batou et al.
(2011), respectively.

1.1.2.3 Model Uncertainties within the Bayesian approach

The Bayesian interpretation of probability does not distinguish between the above
discussed two categories of uncertainties since all uncertainties are seen as
uncertainties that is due to the lack of knowledge regarding a system and not due
to the inherent variability in the system parameters. Probability is not interpreted
as the relative occurrence of a random event in the long run, but as the plausibility
of a hypothesis. The notation of an uncertain-valued parameter as a random
variable, as used in the parametric approach, is a characteristic of the so-called
frequentist interpretation of probability. On the other hand, the Bayesian
intepretation of probability quantifies the uncertainty about propositions and
therefore its domain contains both physical variables and models by themselves.
The wider scope of the interpretation of probability in the Bayesian sense leads to
the fact that the reason of uncertainty of both parameters and models is seen in the
incomplete available information. Hence, also in the Bayesian framework, it refers
to all kinds of uncertainties since also the unceratinties about parameter values are
intepreted as lack of knowledge rather than as an intrinsic property of the real
structure.
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1.Introduction 6

The Bayesian inference framework complements the probabilistic model
description with a probabilistic model for the prediction error. The prediction
error represents the difference between the model and the system output. It
consists of two parts, the measurement error and also the fact that there are
discrepancies between the model and the real system. Each probability model in
the chosen model class is described by probability distributions of the unknown
parameters and the prediction error. Based on the available data, the initial
knowledge of the range of the unknown parameters is updated, making some
parameter ranges more plausible if the data provide the necessary information.
Therefore, the values of the model parameters are updated in order to better
predict the output of the system, but due to the fact that there is no true value of
the parameters, there is a gap between model output and measurement, which is
bridged by the prediction error. Hence, the prediction error provides a means for
considering those uncertainties that cause the remaining lack of knowledge which
prohibits a perfect matching between model and real system.

The Bayesian statistical framework represents a general, rational and powerful
tool for model updating that is capable of handling the above stated difficulties
(Beck and Katafygiotis, 1998; Katafygiotis and Beck, 1998). The Bayesian
approach updates the relative plausibility of each model within a set of candidate
models, which is quantified by the posterior probability distribution. Therefore,
probability in the Bayesian sense is interpreted as the degree of plausibility of a
hypothesis based on the conditioning information (Cox, 1946; Jaynes, 2003),
where the hypothesis may refer to the structural parameters but also to the model
itself. This interpretation makes it possible to extend the application of probability
theory to fields where the frequentist interpretation may not be directly intuitive,
as it is the case for one-of-a-kind structures, where no ensemble exists, and also in
the case of limited data, where classical statistics is of limited applicability.
Therefore, Bayesian statistics makes it possible to deal with the usual situation in
industry, where a large amount of experimental data is infeasible due to high costs
associated with test campaigns, and it provides a means for making decisions
based on limited, incomplete information.

1.1.3 Incorporation of Measured Data in Structural Response Simulations

Methods for reducing the uncertainty about some unknown structural parameters
expressed by the probability distributions assigned to them aim at an increase of
the above mentioned level of information in order to further increase the
credibility of the established model. This task can be accomplished by using
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measured data into the analysis. The measured data can be either modal data or
response time histories.

The measured data used for FE model updating purposes can be obtained during
forced, ambient or hybrid vibration testing (Peeters and De Roeck, 2001;
Reynders and De Roeck, 2008). In cases where the input excitation is known, the
response time histories, e.g accelerations measured at certain locations along the
structure can be used directly by solving the equation of motion. However, since
this condition is very rare for dynamic systems, in most cases of linear dynamic
systems we use modal data that are identified by the measured response time
histories using experimental (EMA) (Ntotsios, 2009), operational (OMA) (Felber,
1993; Beck et al., 1994; Peeters and De Roeck, 1999; Verboten, 2002) or
combined (OMAX) modal analysis methods (Reynders, 2009). An additional
advantage of using modal characteristics is that they are relatively few in number
but provide a comprehensive description of the overall dynamical behavior of a
structure. However, in cases that nonlinearities are imposed on the structure, the
response time histories are used instead of the modal data.

The experimental activities serve the purpose of both improving the numerical
model and they are also a means for determining the accuracy with respect to the
intended use of the model. The enhancement of a numerical model based on
experimental data is denoted as model updating and the subsequent process of
determining the degree of accuracy of the established model is referred to as
model validation. A model which meets the requirements in terms of accuracy is
referred to as validated model. In the present thesis particular weight is attached to
the dynamic behavior of structures, hence the above mentioned comparison is
based on properties of the natural modes of the structure such as natural
frequencies and mode shapes for linear structures. The combined use of
frequencies and mode shapes serves an important goal: even though natural
frequencies cn be measured relatively accurately and are generally quite sensitive
to changes in structural stiffness, they provide only global information about the
structure. Therefore, mode shape components are capable of providing localized
information along the structure. For example, in the problem of locating damage
the mode shape displacements are essential. In most cases, however, the mode
shape components are less sensitive to changes in structure stiffness and are more
difficult to measure accurately.
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1.2  Organization of this Thesis

The research work presented in the thesis contributes to three interrelated research
areas of structural response and reliability simulations using vibration
measurements:

(1) Development of component mode synthesis techniques that are integrated
with model updating methods and with Bayesian uncertainty and
quantification framework for reducing the computation effort without
sacrificing the accuracy presented in Chapters 2 and 3,

(2) Development of Bayesian uncertainty and quantification framework for
nonlinear systems, presented in Chapter 4, and

(3) Development of methods for predicting the fatigue damage accumulation in
the entire body of metallic structures exploiting vibration measurements from
a limited number of sensors, presented in Chapter 5.

In the first research area, for the analyzed structures in FE model parameterization
schemes the stiffness matrix of the structures is assumed to depend linearly on
only one of the parameters of the model. In the second research area , time
histories are used to integrate the information contained in vibration
measurements for making informed response predictions using the identified
mechanical models. In the third research area, a problem that is formulated and
solved for the first time is related to the estimation of fatigue damage
accumulation in the entire body of a metallic structure using ambient vibration
measurements collected from a limited number of sensors placed on the structure.
The application areas of this research are mainly related to ground/air vehicle and
civil structures. Emphasis though is given to applications on ground vehicles.

A more detailed overview of the contents of this thesis is given in the following.

Chapter 1: The research context and the general motivation of this PhD thesis is
given.This chapter acts as a prologue to this work, by presenting in detail the
meaning of “management of uncertainties” and “using measured data” that
appear in the title of this thesis.

Chapter 2: The widely used deterministic finite element model updating methods
are reviewed in this chapter and the Bayesian framework for parameter estimation
and model class selection is presented. The Bayesian tools for identifying system
and uncertainty models as well as performing model class selection are Laplace
methods of asymptotic approximation and stochastic simulation algorithms such
as Markov Chain Monte Carlo (MCMC) and Transitional MCMC. Both tools are
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1.Introduction 9

used to represent the posterior distribution of the parameters of a model class
introduced to simulate the behavior of the engineering system, as well as compute
multidimensional integrals over high-dimensional spaces of the uncertain model
parameters, manifested in the formulations for model class selection. The
asymptotic approximations involve solving optimization problems as well as
computing the Hessian of certain functions in a small number of points in the
parameter space. The stochastic simulation tools involve generating samples for
tracing and then populating the important uncertainty region in the parameter
space, as well as evaluating integrals over high-dimensional spaces of the
uncertain model parameters. These tools require a moderate to very large number
of system re-analyses to be performed over the space of uncertain parameters.
Consequently, the computational demands depend highly on the number of
system analyses and the time required for performing a system analysis. For
complex models of engineering systems, one simulation may require a significant
amount of time and the overall computational demands involved in the Bayesian
tools may be substantial, or even excessive for stochastic simulation algorithms.
This chapter proposes methods for drastically reducing the computational
demands at the system, algorithm and hardware levels involved in the
implementation of Bayesian tools.

Chapter 3: A framework is presented for integrating the Craig-Bampton CMS
technique into existing FE model updating formulations in order to reduce the
time consuming operations involved in reanalyses of large-order models of
hundreds of thousands or millions degrees of freedom. The proposed method
exploits the fact that in FE model parameterization schemes the stiffness matrix of
the structure often depends linearly on the parameters of the model and also that a
parameter usually represents a global property (e.g. the modulus of elasticity) of a
substructure. The division of the structure into components is then guided by the
FE parameterization scheme so that the stiffness matrix that arise for each one of
the introduced components to depend linearly on only one of the parameters to be
estimated. In this case the fixed-interface and constraint modes of the components
for any value of the model parameters can be obtained exactly from the fixed-
interface and constraint modes corresponding to a single reference FE model,
avoiding re-analyses at component level. Additional substantial reductions in
computational effort are also proposed by reducing the number of interface DOF
using characteristic interface modes through a Ritz coordinate transformation. The
repeated solutions of the component and interface eigen-problems are avoided,
reducing drastically the computational demands in FE formulations, without
compromising the solution accuracy. It is also shown that the linear expansions of
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the original mass and stiffness matrices in terms of the structural parameters are
preserved for the reduced mass and stiffness matrices. Thus, the reassembling of
the reduced system matrices from the original matrices is also avoided in the
execution of the system re-analyses. The only time consuming operation left is the
re-analysis of the eigenproblem of the reduced-order model. It is finally
demonstrated that the new developments are readily accommodated in existing FE
model updating formulations and software with minimal modifications. Moreover,
in this chapter, Bayesian estimators are proposed for damage identification
(localization and quantification) of civil infrastructure using vibration
measurements. The structural damage identification is accomplished by
associating a FE model class to a damage location pattern in the structure,
indicative of the location of damage. The effectiveness of the damage
identification methodology is illustrated using simulated vibration data from a real
bridge. It can be concluded that the proposed methodology, illustrated in this work
using computationally efficient stochastic simulation algorithms, correctly
identifies the location and the magnitude of damage. Surrogate models are also
incorporated in the formulation to further alleviate the computational burden.
Finally, parallel computing algorithms are combined with the proposed method to
efficiently distribute the computations in available GPUs and multi-core CPUs.

Chapter 4: A Bayesian uncertainty quantification and propagation (UQ&P)
framework is presented for identifying nonlinear models of dynamic systems
using vibration measurements of their components. The measurements are taken
to be either response time histories or frequency response functions of linear and
nonlinear components of the system. For such nonlinear models, stochastic
simulation algorithms are suitable Bayesian tools to be used for identifying
system and uncertainty models as well as perform robust prediction analyses. At
the system level, efficient computing techniques are integrated with Bayesian
techniques to efficiently handle large order models of hundreds of thousands or
millions degrees of freedom (DOF) and localized nonlinear actions activated
during system operation. Specifically, fast and accurate component mode
synthesis (CMS) techniques that have been proposed in Chapter 3 are used,
consistent with the FE model parameterization, to achieve drastic reductions in
computational effort. The UQ&P framework is applied to a small scale
experimental model of a vehicle with nonlinear wheel and suspension
components. Uncertainty models of the nonlinear wheel and suspension
components are identified using the experimentally obtained response spectra for
each of the components tested separately. These uncertainties, integrated with
uncertainties in the body of the experimental vehicle, are propagated to estimate
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the uncertainties of output quantities of interest for the combined wheel-
suspension-frame system. The computational challenges are outlined and the
effectiveness of the Bayesian UQ&P framework on the specific example structure
Is demonstrated.

Chapter 5: A novel framework for estimating damage accumulation due to
fatigue in the entire body of a metallic structure using vibration measurements
from a limited number of sensors is presented. Fatigue is estimated using the
Palmgren-Miner damage rule, S-N curves and rainflow cycle counting methods of
the variable amplitude time histories of the stress components. These methods can
be applied to any point in the structure and construct the complete fatigue map of
the entire structure, provided that the stress response characteristics (time histories
or PSDs) at all desirable points are available. These stress response characteristics
are predicted from limited number of vibration sensors using a high fidelity finite
element model and different prediction methods, including Kalman filter type
techniques, kriging approximations and modal expansion methods. The
effectiveness of the proposed methods is demonstrated using simulated data from
a chain-like spring-mass model and a small-scale model of a vehicle structure.
The proposed framework can be used to construct fatigue damage accumulation
and lifetime prediction maps consistent with the actual operational conditions
provided by a monitoring system. These maps are useful for designing optimal
fatigue-based maintenance strategies for metallic structures taking into account all
uncertainties in modeling and fatigue predictions.

Chapter 6: Summarizes the conclusions and the novel contributions of this work.
Also it presents suggestions for future research on issues related to this thesis.
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CHAPTER 2 Finite Element Model Updating Methods

in System Dynamics

2.1 Introduction

Finite element (FE) models are widely used to predict the dynamic characteristics
of systems. These models often give results that differ from the measured results
and therefore need to be updated to match the measured data. FE model updating
entails tuning the model so that it can better reflect the measured data from the
physical structure being modeled. One fundamental characteristic of a FE model
is that it can never be a true reflection of the physical structure but it will forever
be an approximation. The aim of FE model updating is the identification of a
better approximation model of the physical structure than the original model.

Structural model updating methods (Mottershead and Friswell, 1993; Marwala,
2010; Yuen and Kuok, 2011) are used to reconcile mathematical models, usually
discretized finite element (FE) models, with experimental data. Structural model
parameter estimation problems based on identified modal characteristics (modal
frequencies and mode shapes), are often formulated as weighted least-squares
problems (Mottershead and Friswell, 1993; Fritzen et al., 1998; Katafygiotis et al.,
1998; Yuen et al., 2006; Christodoulou and Papadimitriou, 2007; Moaveni et al.,
2008) in which metrics, measuring the residuals between measured and model
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predicted modal characteristics, are build up into a single weighted residuals
metric formed as a weighted average of the multiple individual metrics using
weighting factors. Standard optimization techniques are then used to find the
optimal values of the structural parameters that minimize the single weighted
residuals metric. Due to model error and measurement noise, the results of the
optimization are affected by the values assumed for the weighting factors. The
model updating problem has also been formulated as a multi-objective
optimization problem (Haralampidis et al., 2005; Christodoulou et al., 2008), that
allows the simultaneous minimization of the multiple metrics, eliminating the
need for using arbitrary weighting factors for weighting the relative importance of
each metric in the overall measure of fit. The multi-objective parameter estimation
methodology provides multiple Pareto optimal structural models in the sense that
the fit each Pareto optimal model provides in a group of measured modal
properties cannot be improved without deteriorating the fit in at least one other
modal group. The Normal Boundary Intersection algorithm (Das et al., 1998) is
used to compute the Pareto optimal solutions.

In addition, a Bayesian statistical framework (Beck , 1989; Sohn and Law, 1997,
Beck and Katafygiotis, 1998), for structural model parameter identification is used
to identify the values of the weights. Using Bayes theorem, the probability
distribution of the weight values based on the data is formulated as a probability
integral over the structural model parameters (Christodoulou and Papadimitriou,
2007). An asymptotic approximation is presented to analytical approximate this
probability distribution. The best values of the weights are selected as the ones
that maximize the probability distribution of the weights.

Bayesian techniques have also been proposed to quantify the uncertainty in the
parameters of a FE model, select the best model class from a family of
competitive model classes (Beck and Yuen, 2004; Yuen , 2010),, as well as
propagate uncertainties for robust response and reliability predictions
(Papadimitriou et al., 2001). Posterior probability density functions (PDFs) are
derived that quantify the uncertainty in the model parameters based on the data.
These PDFs are formulated in terms of the modal residuals involved in the
aforementioned single and multi-objectives deterministic methods. The Bayesian
tools for identifying uncertainty models as well as performing robust prediction
analyses are Laplace methods of asymptotic approximation and more accurate
stochastic simulation algorithms (SSA) such as Markov Chain Monte Carlo
(MCMC) (Metropolis et al., 1953), Transitional MCMC (Ching and Chen, 2007)
and Delayed Rejection Adaptive Metropolis (Haario et al., 2006). Similar to the
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2. Finite Element Model Updating Methods in System Dynamics 14

deterministic FE model updating techniques, the asymptotic approximations in the
Bayesian framework involve solving an optimization problem for finding the most
probable model, as well as estimating the Hessian of the logarithm of the posterior
PDF at the most probable model for describing the uncertainty in the model
parameters. The SSA algorithms involve generating samples for tracing and then
populating the important uncertainty region in the parameter space, as well as
evaluating integrals over high-dimensional spaces of the uncertain model
parameters.

The optimal structural models and their uncertainties resulting from model
updating methods can be used for improving the model response and reliability
predictions (Papadimitriou et al.,, 2001; Beck and Au, 2002), for assessing
structural health and identifying structural damage (Fritzen et al., 1998;
Katafygiotis et al., 1998; Yuen et al., 2006; Christodoulou and Papadimitriou,
2007; Metropolis et al., 1953, Vanik et al., 2000; Papadimitriou et al., 2001; Beck
and Au, 2002; Beck and Yuen, 2004; Haario et al., 2006; Ching and Chen, 2007;
Yuen, 2010) and for improving effectiveness of structural control devices
(Ntotsios et al., 2009).

This Chapter is organised as follows. The finite element model parameterization
for both linear and nonlinear formulations is presented in Section 2.2.
Deterministic FE model updating formulations using modal characteristics are
reviewed in Section 2.3. The framework for Bayesian model parameter estimation
and model class selection is outlined in Sections 2.4 and 2.5. The Bayesian tools
are given in detail in Section 2.6. In Section 2.7, the computational aspects that
arise from for finite element models with large number of DOFs are discussed and
methods for reducing the computational effort are proposed in Section 2.8.
Finally, conclusions are summarized in Section 2.9.

2.2  Finite Element Model Parameterization

Consider a parameterized class of linear structural models (e.g. a class of finite
element models) used to model the dynamic behaviour of the structure. The
structural model class, denoted byM , involves a set of model parameters
0 € R" . The equation of motion of such systems is

M (@)i(t) +C(0)u(t) + K(Qu(t) = T (1) (2.1)

where K(8) e R™, M(0) e R™"and C(#) € R™" are the global model stiffness ,
mass, and damping matrices respectively, u(t) is the displacement vector of the
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2. Finite Element Model Updating Methods in System Dynamics 15

model DOFs, f(t) is the vector of forces at the model DOFs, n is the number of
model DOFs.

The parameter set 6 is the set of free model parameters to be estimated using the

measured data. The parameter set is usually associated with geometrical, material,
stiffness or mass properties and boundary conditions. Examples of finite element
properties that can be included in the parameter set are: modulus of elasticity,
cross-sectional area, thickness, moment of inertia and mass density of the finite
elements comprising the model, as well as spring (translational or rotational)
stiffnesses used to model fixity conditions at joints or boundaries.

Using finite element model analysis, one derives the element stiffness and the
mass matrices, the stiffness and the mass matrices of the substructures formed by
a group of elements, and finally the global stiffness and the mass matrices. These
matrices depend on the properties of the structure, like modulus of elasticity, mass
density and the geometrical characteristics (e.g. cross-sectional area, thickness,

length and moments of inertia). Usually, a subgroup of these properties is selected
for updating. The properties that are updated are included in the parameter seté .

For the case of linear relation between the stiffness and mass matrices of the structural
model and the parameters set ¢ one has that

N()

K(0) =K, +> K60,
i=1

NI)
M(Q):MO+ZM,j0j

=1

(2.2)

where N, is the number of parameters used to parameterize the structural model, K,
and M, are assembled from element stiffness and mass matrices that do not depend on
0, and the K; and M ; are assembled from element stiffness and mass matrices that
depend linearly on 6. Once the parameterization has been done and the matrices
Ky» My, K and have been calculated and stored in computer’s memory, global

stiffness and mass matrices are easily calculated for each value of the parameters
0 using the parameterization (2.2). That parameterization is computationally

attractive since the model updating process requires the repeated computation of
global matrices for different values of the parameters 6.

In the general case where the relation between model stiffness and mass matrices,
and the parameters set @ is nonlinear, the global stiffness and mass matrices are

given by the following expressions
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Ny Ny

K@O)=K,+> K0, +> K, f(0))

Nl) Nll

M(0)=M,+> M 0+ Mg(0)

(2.3)

where f(¢;)and g(6;) are nonlinear functions of the parameter 6,. For each
value of the parameter set 6, the evaluation of the global matrices should be

repeated only for the elements that have non-linear relation between the element
matrices and the parameters . Then these matrices are composed in order to form
the non-linear part of the global matrices. This parameterization scheme is
computationally efficient, if there is only a small number of elements that have

non-linear relation between the stiffness and mass matrices and the parameters set
0.

In this chapter, we limit to the formulation to the case for which the stiffness and mass
matrices depend linearly on the model parameters ¢, as presented in (2.2) .

2.3 Deterministic FE Model Updating using Modal
Characteristics

Consider a parameterized linear FE model class M of a structure and let € R™

be a vector of free structural model parameters to be estimated using a set of
modal properties identified from vibration measurements. The identified modal
properties consist of the square of the modal frequencies, A, =&? and the mode

shape components q@r cR™ at N, measured DOFs, for r =1,---,m, where m is
the number of obs_erved modes. The values of the parameter vector 6 are
estimated so that the modal frequencies X (8)=w?(6) and modeshapes
& () € R™ predicted by the FE model, best matches the experimentally obtained
modal data D . For this, the following modal frequency and mode shape residuals

1, ©=y 0=y MO @4

r

and

5040~
4|

1,0=3©O=3

r=1

=>n-MAC@]  (25)
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2. Finite Element Model Updating Methods in System Dynamics 17

are introduced to measure the difference between the identified modal data and
the model predicted modal data for the modal frequency and modeshape

components, respectively, where g (Q):éfzﬁr @1, (Q)H2 is a normalization

constant that guaranties that the measured mode shape ér at the measured DOFs
is closest to the model mode shape g, (9)4,(9) predicted by the particular value
of @, MAC, =¢/¢, /(I , Illl &, II) is the modal assurance criterion between the

experimentally identified and model predicted mode shapes for the r- th mode,
and || z|’= z"z is the usual Euclidian norm.

The mode shape components 4 (0) = Lg, (@) eR™ at the N, measured DOFs
involved in (2.2) are computed from the complete mode shapes ¢, (9) € R" that
satisfy the eigenvalue problem

[K(@) = A (OM(D)]p, (0) =0 (2.6)

where K(0) e R™ and M () € R™" are respectively the stiffness and mass

matrices of the finite element model of the structure, N is the number of model
degrees of freedom (DOF), and LeR™™ is an observation matrix, usually
comprised of zeros and ones, that maps the N model DOFs to the N, observed

DOFs. For a model with large number of DOFs, N, the number of measurement
locations N, is a very small fraction of the model DOFs (N, < N ).

2.3.1 Modal Grouping Schemes

The grouping of the modal properties {w,(0), ¢,(6),r =1,---,m} into ngroups
and the selection of the measures of fit J,(6),---,J, (@) are usually based on user
preference.

The number and type of modal properties involved in the ith group as well as the
particular form of J,(@)may depend on the modal characteristics (mode type,

modal frequencies and/or modeshapes), their expected uncertainties, and their
significance of each modal property on the model identification. The modal
properties assigned to each group are selected by the user according to their type
and the purpose of the analysis. Among the various grouping schemes available,
the following are considered for illustration purposes.

A grouping scheme is defined so that each group contains one modal property, the
modal frequency or the modeshape for each mode. In this case, there are n=2m
measures of fit given by J;(6)=J, (¢)and J,.(0)=J,(0),i=1---,m. This

m+1

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



2. Finite Element Model Updating Methods in System Dynamics 18

grouping scheme, allows one to estimate all optimal models that trade-off the fit
in various modal frequencies and modeshapes. A special case of grouping is to
consider only the first m groups measuring the fit between the modal frequencies,
ignoring the fit in the modeshapes.

A second grouping scheme may be defined by grouping the modal properties into
two groups as follows. The first group contains all modal frequencies with the
measure of fit J, (&) selected to represent the difference between the measured and

the model predicted frequencies for all modes, while the second group contains
the modeshape components for all modes with the measure of fit J,(0) selected

to represents the difference between the measured and the model predicted
modeshape components for all modes. Specifically, the two measures of fit are

given by

3,(0) =%ZJ (©) @7)
and

JZ(Q)=%2J¢, © (28)

This selection allows one to estimate models that trade-off the overall fit in modal
frequencies with the overall fit in the modeshapes.

Finally, a third grouping scheme, may be selected so that a group contains the
modal frequency and all modeshape components at the measured DOFs for a
particular observed mode. In this case the number of groups equals the number of
observed modes n=m . The ith measure of fit J, (&) accounts for the mismatch

between the measured and the model predicted frequencies and modeshape
components for the i th measured mode. Specifically, can be given in the form

3, (0)+3,(0)

1O ="

(2.9)

This grouping scheme is appropriate when the objective of the identification is to
estimate all optimal models that trade-off the fit between different modes.

In the context of this thesis, the second grouping scheme, with the measures of fit
J,(@)and J,(0), is preferred for model updating purposes.
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2. Finite Element Model Updating Methods in System Dynamics 19

2.3.2 Formulation as single-objective optimization problem

The estimation of the model parameters is traditionally formulated as a
minimization of the weighted residuals

J(0;w) =w,J,(0) +w,J,(0) (2.10)

wherew, o«c [0,00), =12 and Z;wizl.The relative importance of the

residual errors in the selection of the optimal model is reflected in the choice of
the weights. The results of the identification depend on the weight values used.
The weight values depend on the adequacy of the model class used to represent
structural behaviour and the accuracy with which the measured modal data are
obtained. However, the choice of weight values is arbitrary since the modelling
error and the uncertainty in the measured data are usually not known apriori. The
single objective formulation is computationally attractive since conventional
minimization algorithms, such as Quasi-Newton algorithm, can be applied to
solve the problem. The objective function J(6;w) represents an overall measure

of fit between the measured and the model predicted characteristics. Conventional
weighted least squares methods assume equal weight values, w, =w, =1/2. This

conventional method is referred as the equally weighted modal residuals method.
2.3.3 Formulation as multi-objective optimization problem

The parameter estimation problem can be formulated as a multi-objective
optimization problem (Haralampidis et al., 2005; Christodoulou et al., 2008), of
finding the values of @ that simultaneously minimize the objectives

J(0) = (3.(9), J,(9)) (2.11)

where J(0) is the objective vector defined over the two-dimensional objective
space. For conflicting objectives J,(#)and J,(@), there is no single optimal
solution, but rather a set of alternative solutions, known as Pareto optimal

solutions, that are optimal in the sense that no other solutions in the parameter
space are superior to them when both objectives are considered.

Using multi-objective terminology, the Pareto optimal solutions are the non-

dominating vectors in the parameter space ©® , defined mathematically as follows.
A vector @< ® is said to be non-dominated regarding the set ® if and only if

there is no vector in ® which dominates . A vector @ is said to dominate a
vector @' if and only if

Ji(@)<3(0) Vie{l,--,n} and I je{l--n}:J;(0)<I;(0) (212)
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The set of objective vectors J(@)corresponding to the set of Pareto optimal
solutions @ is called Pareto optimal front. The characteristics of the Pareto

solutions are that the modal residuals cannot be improved in any modal group
without deteriorating the modal residuals in at least one other modal group.
Specifically, using the objective functions in (2.7) and (2.8), all optimal models
that trade-off the overall fit in modal frequencies with the overall fit in the
modeshapes are estimated.

The multiple Pareto optimal solutions are due to modelling and measurement
errors. The level of modelling and measurement errors affect the size and the
distance from the origin of the Pareto front in the objective space, as well as the
variability of the Pareto optimal solutions in the parameter space. The variability
of the Pareto optimal solutions also depends on the overall sensitivity of the
objective functions or, equivalently, the sensitivity of the modal properties, to
model parameter values @. Such variabilities were demonstrated for the case of
two-dimensional objective space and one-dimensional parameter space in the
work by Christodoulou and Papadimitriou (2007). It should be noted that in the
absence of modelling and measurement errors, there is an optimal value 6 of the
parameter set 6 for which the model based modal frequencies and modeshape

components match exactly the corresponding measured modal properties. In this
case, all objective functions Jl(é), Jz(é) take the value of zero and, consequently,

the Pareto front consists of a single point at the origin of the objective space

The solution obtained by optimizing (2.10) for any weight value is a Pareto
optimal solution [10]. However, in order to adequately describe the Pareto optimal
solutions by uniformly spaced points along the solution manifold in the parameter
space, the multi-objective optimization problem is preferred since varying the
weight value in (2.10) may miss significant portions of the Pareto optimal
solutions in the objective and parameter space. An advantage of the multi-
objective identification methodology is that all admissible solutions in the
parameter space are obtained. However, this is a time consuming task, it requires
that multi-objective optimization algorithms are available and that the number of
objectives remain small in order to limit the number of solutions required to fully
represent the multi-dimensional Pareto front.

2.4  Bayesian FE Model Updating using Modal Characteristics
Consider a parameterized class I\/\i of structural dynamics models used to predict

various output quantities of interest of a system. Let 6, € RV be a set of
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parameters in this model class that need to be estimated using experimental data.
Also, let TI(0;M)= w (0;M),6 (0;M)€ER™ ,r=1..,m be the

predictions of the modal frequencies and modeshapes predicted by a model in the
model class M, given a value of the parameter set 9,

$.(0;M,) = Ly, (6;M,) (2.13)

NN selects the N

0

where ¢ (6;M,) is the complete modeshape and L € R
measured DOFs from the N DOFs of the FE model.

The values of the model parameters 6 are considered to be uncertain. Probability

distributions are convenient mathematical tools to quantify the uncertainty in
these parameters. Specifically, the probability distribution of the parameter set 6,

quantifies how plausible is each possible value of the model parameters. The user
may assign a prior probability distribution 7.(6) to the model parameters to
incorporate prior information on the values of the model parameters. The
structural model and uncertainty propagation algorithms can be used to identify
the uncertainty in the prediction of the output quantities of interest. However, the
probability distribution 7,(¢) is subjective based on previous knowledge and

user experience.
In Bayesian inference, the interest lies in updating the probability distribution of
the model parameters 6, based on measurements and then propagate these

uncertainties through the structural dynamics model to quantify the uncertainty in
the output quantities of interest.

For this, let D = w,gﬁ e R .r=1,...,m be the available measured modal

frequencies w and modeshape components qé at N, measured DOFs, where m

is the number of observed modes. The Bayesian formulation starts by building a
probabilistic model that characterizes the discrepancy between the model
predictionsw (0;M,), ¢ (6;M,) obtained from a particular value of the model

parameters ¢, and the corresponding data D that are available from experiments.

This discrepancy always exists due to measurement and model errors. An error
term e is introduced to denote this discrepancy. The vector of prediction errors

e’ =1[eg" - e is defined as the difference between the measured modal

=

properties involved in D for all modes r =1,---,m and the corresponding modal
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properties predicted by a model in the model class M,. Specifically,

e =€) "] is given as:
@, =w (0;M,)+ e r=1...,m (2.14)
6 =% (0;:M) + H@H e r=1...,m (2.15)

where BP0 =4'¢" 14 ¢" is a normalization constant that accounts for the

different scaling between the measured and the predicted modeshape. The model
prediction errors are due to modeling error and measurement noise. A
probabilistic structure for the prediction error needs to be defined in order to
proceed with the Bayesian calibration. Let M _ be a family of probability model

classes for the error term e. This model class depend on a set of prediction error
parameters ¢, to be determined using the experimental data. Similarly to the
structural model parameters ¢,, probability distribution 7, (6,) is also assigned to
quantify the possible values of the prediction error parameters.

The Bayesian approach (Beck ,1989; Beck and Katafygiotis, 1998) to model
calibration is used for updating the values of the combined set 6 =(6,6,)

associated with the structural and the prediction error parameters. The parameters
0 and 6, can be considered to be independent with prior probability distribution

for the combined set given by #(0|M)=m(6|M) 7.(6,|M,), where
M={M,;,M.,} includes the structural and prediction error model classes. The
updated distribution p(@|D,M) of the parameters 6 , given the data D and the
model class M, results from the application of the Bayes theorem
p(D]0,M) m(¢|M)
p(DIM)

where p(D|68,M) is the likelihood of observing the data from the model class
and p(D|M) is the evidence of the model, given by the multi-dimensional
integral over the space of the uncertain model parameters.

p(e|D.M)=

(2.16)

p(DIM) =f(_) p(D]8,M) m(¢|M) do (2.17)

The updated probability distribution of the model parameters depends on the
selection of the prediction error e . Assuming that the prediction error model class

postulates zero-mean Gaussian models for the modal frequency and mode shape
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error terms e, and e, , respectively, with equal variances o° for all modal
frequency errors e, and equal variances o’ w, for all mode shape errors e,

Using probability density functions (PDF) to quantify uncertainty and following

the Bayesian formulation described in (Christodoulou and Papadimitriou, 2007,
Beck and Katafygiotis,1998; Vanik et al., 2000), the posterior PDF p(¢ | D,M) of

the structural model parameters ¢ and the prediction error parameter o given the
data D and the model class M can be obtained in the form

_ [p(DIM]™ { 1 }
p(@|D,M)=————F—5exXp| ——— J(G;W) | 7(@|M) (2.18)
( ,—272_0) (Np+1) 20 7

where

0)6.(0)— 4
B, (_)Qr(_z) 4 (2.19)

"4 @) -AF &
J@w=wy O S
r=1 v =1

A

4

represents the measure of fit between the experimentally obtained modal data and
the modal data predicted by a particular model in the class M, and | || is the usual

Euclidian norm.

In particular, the optimal value § of the model parameters corresponds to the

most probable value that is obtained by maximizing the posterior probability

distribution p(@| D, M) or, equivalently, minimizing the function
9(0;M)=—Inp(¢| D,M)

. , (2.20)
=[m(N, +1)/2)[o *I(0; W) +Ino’]—In7(0 | M)

For the case for which analytical expressions for II(0;M.) are available,

computationally efficient gradient-based optimization algorithms can be used to
obtain the optimal value of the model parameters by minimizing the function
g(8; M) with covariance equal to the inverse of the Hessian h(d) = VV' g(6,M)
of the function g(@;M) evaluated at the most probable value. For a uniform prior
distribution, the most probable value of the FE model parameters 6 coincides

with the estimate obtained by minimizing the weighted residuals in (2.10).

2.5 Bayesian Model Selection

The Bayesian probabilistic framework can also be used to compare two or more
competing model classes and select the optimal model class based on the available
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data. Consider a familyM, ~={M i=1---,k}, of k alternative, competing,

parameterized FE and prediction error model classes, and let 0 € R Dbe the free
parameters of the model class M . The posterior probabilities P(M, | D) of the
various model classes given the data D is [16]
D|M) P(M
p(D[M) P(M) .2
p(D M

P(M, | D) =

Fam )

where P(M)is the prior probability and p(D | M,)is the evidence of the model

i

class M,. The optimal model class M, _ is selected as the one that maximizes

best

P(M. | D)given by (2.21) . Model class selection is used to compare between

alternative model classes and select the best model class (Muto and Beck, 2008),
as well as for structural damage identification (Ntotsios et al., 2009).

2.6  Bayesian Uncertainty Propagation

Let g be an output quantity of interest in structural dynamics simulations.
Posterior robust predictions of g are obtained by taking into account the updated
uncertainties in the model parameters given the measurements D . Let p(q|é&,M)
be the conditional probability distribution of g given the values of the parameters.

Using the total probability theorem, the posterior robust probability distribution
p(q| D,M) of g, taking into account the model M and the data D, is given by

(Papadimitriou et al., 2001).
p(aID,M) = [ p(al,M) p(8] D, M) do (222)

as an average of the conditional probability distribution p(q|#&,M) weighting by
the posterior probability distribution p(@|D,M) of the model parameters. Let
G(qg;0) be a function of a deterministic output quantity of interest q(d). A

posterior robust performance measure of the system given the data D is
(Papadimitriou et al., 2001).

E[G(d;8) | D,M)] = [ G(a;0) p(8] D,M) do (2.23)

For G(0;0) =q(¢) and G(q;0) = (q(9) —E[q(8)| D,MI)*, the measure (2.23) is
the robust mean and the variance of the output quantity of interest g taking into
account the model parameter uncertainties that are estimated by the data D .
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2.7 Bayesian Tools

The Bayesian tools for identifying uncertainty models and performing robust
prediction analyses are Laplace methods of asymptotic approximation and
stochastic simulation algorithms.

2.7.1 Asymptotic Approximation
2.7.1.1 Parameter Estimation

For large enough number of measured data, the posterior distribution of the model
parameters in (2.18) can be asymptotically approximated by a Gaussian
distribution (Beck and Katafygiotis, 1998).

|h(d) |2

0| D,M) =~
p(01D. M)~ ZE

exp —%(Q—Q)T h(@)(@ —d) (2.24)

centered at the most probable value § of the model parameters with covariance
matrix equal to the inverse of the Hessian h(d) =VV'g(¢d,M) of the function
g(9;M) in (2.20) evaluated at the most probable value @ . This approximation is

also known as the Bayesian central limit theorem. The asymptotic expression
(2.24), although approximate, provides a good representation of the posterior PDF
for a number of applications involving even a relatively small number of data.
Given the Gaussian approximation (2.24), the marginal distributions of the
parameters are readily obtained to be Gaussian distributions with means and
variances equal to the individual means appearing in the mean vector 6 and the

variances appearing in the diagonal elements of the covariance matrix h *(6)

The asymptotic approximation (2.24) fails to provide an adequate representation
of the posterior probability distribution in the case of multimodal distributions. To
improve on the asymptotic approximation, one needs to identify all modes of the
posterior PDF and consider them in the asymptotic expression by considering a
weighted contribution of each mode with weights based on the probability volume
of the PDF in the neighborhood of each mode (Beck and Katafygiotis, 1998). The
weighted estimate is reasonable, provided that the modes are separable. For
interacting modes or closely spaced modes, this estimate is inaccurate due to
overlapping of the regions of high probability volume involved in the interaction.
Numerical implementation problems arise in multi-modal cases, associated with
the inconvenience in estimating all modes of the distribution (Metropolis et al.,
1953). The asymptotic approximation fails to provide acceptable estimates for un-
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identifiable cases (Katafygiotis and Lam, 2002), manifested for relatively large
number of model parameters in relation to the information contained in the data.

The results from the asymptotic estimate are also useful for efficiently populating
the posterior PDF with samples generating from MCMC algorithms. For uni-
modal posterior PDFs, the asymptotic estimate can be performed as a first step in
a Bayesian analysis to obtain information and identify the importance region in
the parameter space of high posterior probability volume. Then the mode of the
distribution can be used as a starting point of a stochastic simulation algorithm for
exploring the support of the posterior PDF, while the Hessian at the mode
provides valuable information for selecting the proposal PDF in MCMC
algorithms. For multi-modal posterior PDFs with disjoint supports, the
information from an asymptotic approximation may be misleading since other
important regions in the parameter space may be easily missed. As a result, the
stochastic simulation algorithms starting from the mode provided by the
asymptotic estimate will usually fail to adequately explore the parameter space
and identify the domains with high probability volume.

2.7.1.2 Model Selection

For model selection, an asymptotic approximation (Papadimitriou and
Katafygiotis, 2001; Beck and Yuen, 2004; Yuen, 2010) based on Laplace’s
method can also be used to give an estimate of the evidence integral in (2.17) that
appears in the model selection equation (2.21). Substituting this estimate in (2.21),
the final asymptotic estimate for P(M, | D) is given in the form

7 (D] 0,M,) (0, M)
P(M) (2.25)

P(M | D) = - |
‘ p(D M, )det|h(8,M)] ‘

where Q is the most probable value of the parameters of the model class M. and
h(0) =VV'g,(0,M) is the Hessian of the function g,(6;M,) given in (2.20) for
the model class M. . It should be noted that the asymptotic estimate for the
probability of a model class M, can readily be obtained given the most probable

value and the Hessian of the particular mode. For the multi modal case the
expression (2.25) can be generalized by adding the contributions from all modes.

2.7.1.3 Uncertainty Propagation

For the robust prediction integrals such as (2.22) or (2.23) a similar asymptotic
approximation can be applied to simplify the integrals. Specifically, substituting
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the posterior PDF p(€ | D,M) from (2.16) into (2.23), one obtains that the robust
prediction integral is given by (Papadimitriou et al., 2001).

[ 6(e:M) p(D|8,M) n(2]M) do

E[G(q;0)| D,M)] = (2.26)
[G(a;0)| )] 5(D|M)

Introducing the function
I (€;M) =—In[G(¢; M) p(D[4,M) m(€ |M)] (2.27)

the integral in (2.26) takes the form of Laplace integral which can be

approximated as before in the form:

exp[—1s ()] V2 |

AT (2.28)

[ expl—r (&)1 d6 =

where § is the value of ¢ that minimizes the function r;(6;M), and H,(4,M) is
the Hessian of the function r;(6;M) evaluated at §. Substituting in (2.26), using
(2.25) to asymptotically approximate the term p(D|M) and replacing r (¢) by
(2.27), it can be readily derived that E[G(q;6)| D,M)] is given by the asymptotic
approximation (Tierney and. Kadane, 1986)

p(D |4, M)m(f | M) det [n(4, M)]

p(D |8, M)m(d |M)det[H (4, M)] (2.29)

E[G(a)| D,M)]=G(6; M)

The error in the asymptotic estimate is of order N~?. However, the asymptotic
estimate requires solving two extra optimization problems, one for the mean and
one for the variance of G(qg;0). In general, one needs to carry out N, extra

optimization problems, where 2N is the number of output quantities of interest.

Such optimization problems are independent and can be performed in parallel.

Similarly, the asymptotic approximation for the posterior robust probability
distribution p(q| D,M)of q is given by

P(D| 4, M) (8 | M) det[n(d,M)]
p(D |6, M)m(d | M) det|H (8, M)] (2.30)

p(q] D,M) = p(q(@(a));M)

where 6(q) is the value of & that minimizes the function
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r,(6:M) =—In[p(q|2,M) p(D|9,M) m(€ |M)] (2.31)

and Hp(é(q),M) is the Hessian of the function r;(8;M) evaluated at d. The
estimate of the robust posterior probability distribution of g using (2.30) can be

implemented efficiently in a parallel computer cluster, carrying out
simultaneously the optimization problems for a range of q values.

2.7.1.4 Gradient-Based Optimization Algorithms

The optimization problems that arise in the asymptotic approximations are solved
using available single objective optimization algorithms. The optimization of
g(8;M) given in (2.20), with respect to @ can readily be carried out numerically
using any available algorithm for optimizing a nonlinear function of several
variables. In particular, iterative gradient-based optimization algorithms can be
conveniently used to achieve fast convergence to the optimum. However, to
guarantee the convergence of the gradient-based algorithms for models involving
a relatively large number of DOFs, the gradient of the objective function with
respect to the parameter set ¢ has to be estimated with sufficient accuracy. It has
been observed that numerical algorithms such as finite difference methods for
gradient evaluation do not converge due to the fact that the errors in the numerical
estimation may provide the wrong directions in the search space, especially for
intermediate parameter values in the vicinity of a local/global optimum. The
remedy is to provide analytical expressions for the gradients of the objective
function. This, however, requires the development of the analytical equations for
the gradients of the response quantities of interest involved in the objective
function g(@;M) which, for complex models of systems, might not be convenient

or it may be impossible to accomplish for non-smooth systems.

Adjoint methods, if applicable for a system, provide a fast estimate of the
gradients of the objective function with respect to all parameters, which is
computationally very effective since it requires the solution of a single adjoint
problem for finding the gradients, independently of the number of variables in the
set ¢. Example of adjoint methods for Bayesian parameter estimation can be
found in (Ntotsios and Papadimitriou, 2008) for linear structural dynamics
applications of the Bayesian framework based on modal frequencies and mode
shapes. In particular, for linear representation of the stiffness and mass matrices
with respect to the model parameters, adjoint methods can be made model non-
intrusive. For nonlinear models of structures, the adjoint techniques are model
intrusive, requiring tedious algorithmic and software development that in most
cases are not easily integrated within the commercial software packages. Selected
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examples of model intrusiveness includes the sensitivity formulation for
hysteretic-type nonlinearities in structural dynamics and earthquake engineering
[Barbato and Conte, 2005; Barbato et al., 2007) and the adjoint formulation for
certain classes of turbulence models in computational fluid dynamics applications
(Papadimitriou and Papadimitriou, 2013)

Independent of the computer resources available, a drawback of the gradient-
based optimization algorithms is that they may convergence to a local optimum,
failing to estimate the global optimum for the cases where multiple local/global
optima exist.

2.7.1.5 Stochastic Optimization Algorithms

Evolution strategies are more appropriate and effective to use in cases of multiple
local/global optima. Evolution strategies are random search algorithms that
explore better the parameter space for detecting the neighborhood of the global
optimum, avoiding premature convergence to a local optimum. A disadvantage of
evolution strategies is their slow convergence at the neighborhood of an optimum
since they do not exploit the gradient information. However, evolutionary
strategies are highly parallelizable so the time to solution in a HPC environment is
often comparable to conventional gradient based optimization methods, with the
extra advantages that evolutionary stategies will have a better chance of finding
the global optimum. In addition, stochastic optimization algorithms do not require
the evaluation of the gradient of the objective function with respect to the
parameters. Thus, they are model non-intrusive since there is no need to formulate
the adjoint problem. In some cases the adjoint formulation requires considerable
algorithmic development time to set up the equations for the adjoint problem and
implement this formulation in software. In other cases (e.g. contact and impact
problems) the development of an adjoint formulation or analytical equations for
the sensitivity of objective functions to parameters is not possible.

Stochastic optimization algorithms can be used with parallel computing
environments to find the optimum for non-smooth functions or for models that an
adjoint formulation is not possible to develop. Examples include hysteretic
models of structural components, as well as problems involving contact and
impact. In the absence of a HPC environment, the disadvantage of the stochastic
optimization algorithms arises from the high number of system re-analyses which
may make the computational effort excessive for real world problems for which a
simulation may take minutes, hours or even days to complete.
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The covariance matrix adaptation (CMA) algorithm (Hansen et al., 2003) exhibits
fast convergence properties among several classes of evolutionary algorithms,
especially when searching for a single global optimum. The Hessian estimation
required in Bayesian asymptotic approximations can be computed using the
Romberg method (Lyness and Moler, 1969). This procedure is based on a number
of system re-analyses at the neighborhood of the optimum, which can all be
performed independently for problems involving either calibration or propagation,
and are thus highly parallelizable.

Note that an alternative way for uncertainty propagation that can substantially
expedite the propagation process as well as improve the accuracy of the estimates
in a HPC environment is to draw samples from the asymptotic Gaussian posterior
PDF and then provide a sampling estimate of the robust propagation integral. The
sample generation from the Gaussian posterior PDF and the propagation to
provide robust estimate of the uncertainties of a number of important quantities of
interest are fully parallelized processes.

2.7.2 Stochastic Simulation Algorithms

It should be noted that the asymptotic approximation is valid if the optimal Q
belongs to the domain © of integration in (2.17). For the cases for which this

condition is violated or for the case for which more accurate estimates of the
integral are required, one should use stochastic simulation methods to evaluate the
integral (2.17). The focus has thereby been put onto Markov Chain Monte Carlo
methods (MCMC) which reveal to be very efficient and which can tackle all
possible shapes of posterior pdfs. The basic principle of these methods is the use
of Markov Chains which will be addressed in the following. Markov Chain Monte
Carlo (MCMC) algorithms are used to efficiently draw samples from the posterior
distribution. MCMC variants such as Differential Evolution MC (Braak et al.
2006) or Differential Evolution Random Subsampling MC (DREAM) (Braak et
al. 2008) were introduced to improve parallel efficiency. These methods consist of
a population of chains that interact by exchanging information but at the same
time preserve the MCMC convergence characteristics at the individual chain
level. Another MCMC method which can be categorized in the framework of
Evolutionary Strategy MCMC methods (Drugan and Thierens 2010) is the
TMCMC (Ching and Chen, 2007). This method is a generalization of the method
proposed by Au and Beck (2002).extended by notions inherent to simulated
annealing algorithms.
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2.7.2.1 Metropolis Hasting Algorithm

The Metropolis algorithm (Metropolis et al., 1953) and its generalization to non-
symmetric proposal densities denoted by Metropolis Hasting algorithm (Hastings,
1970) constitute the basis for Markov Chain Monte Carlo methods. Starting from
any point 9 the algorithm generates a chain of length N , 0 i=1,---, N with
stationary distribution p(@) by using a transition kernel (namely the probability
for a state to change its value). The scheme of the Metropolis Hasting algorithm is
as follows:

1. Start with a value 6.

2. Using the current value, sample a candidate point £€“™ from the proposal
density ¢(¢]0")where g is an output quantity of interest in dynamic
simulations.

3. Take 9""V=¢" with probability p(¢“™,0")or §"""=0" with probability
1—p(¢"Y,67), where

» 7' . (i+1) 0(2') (i+1)
p(e", 0" )=min(1, p}EfQ(Z)))qéé({_(m‘me)) (2.32)

4. Go to step no.2

The direct application of the Metropolis Hasting algorithm to sample from the
posterior PDF in Bayesian updating reveals several difficulties. First, the shape of
the posterior distribution is not known apriori which might lead to the situation
that the starting sample is too far away from the target region. In addition, in case
of a peaked posterior PDF, a large step size (i.e. a proposal density with a large
standard deviation), the probability of reaching the area with high probability
mass is very low. On the other hand, if the step size is small, the convergence
might be too slow. Furthermore, the Markov Chain might get stuck in isolated
modes of a multi-modal PDF, i.e. there is a very small chance to move out,
because the sample will be rejected whenever it leaves this domain.

Hence, it is highly desirable to have an approach for stochastic simulation that is
effective in all possible cases of the type of posterior PDF since its properties are
not unknown beforehand. In the following, a frequently applied algorithms are
presented.

2.7.2.2 Transitional Markov Chain Monte Carlo Algorithm

Among the stochastic simulation algorithms available, the transitional MCMC
algorithm (Ching and Chen, 2007) which is a generalization of the MCMC
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algorithm proposed by Beck is one of the most promising algorithms for selecting
the most probable model as well as finding and populating with samples the
importance region of interest of the posterior pdf in (2.18), even in the
unidentifiable cases and multi-modal pdfs. The main idea of Transitional Markov
Chain Monte Carlo (TMCMC) algorithm is to iteratively proceed from the prior to
the posterior distribution. It starts with the generation of samples from the prior
PDF in order to populate the space in which also the most probable regions of the

posterior distribution lie. Then, some intermediate PDFs are defined, where the
shape does not change remarkably from the intermediate PDF p[j] to the next

plj+1]. The small change of the shape makes it possible to efficiently sample
according to p[j+1] if samples according top[j] have been generated. The

intermediate distributions are defined by
pli+1locp(DI0, M) p(0JM) (2.33)

with j=0,---,m as the step index and 0=03, <3, <---,.<B =1 Hence, the exponent
3. can be interpreted as the percentage of the total information provided by the
experimental data which is incorporated in the jth iteration of the updating
procedure 3,=0 corresponds to the prior distribution and for 3 =1 the samples
are generated from the posterior distribution.

Samples of the subsequent intermediate distribution p[j+1] are obtained by

generating Markov chains where the lead samples are selected from the
distribution p[j] by computing their probability weights with respect to p[j+1],

which are given by
oy p(D10" M) p(0” M)
p(DI6, M) p(8" M)

3

w(o, =p(D|9" M) (2.34)

where the upper index [=Ll,---,N denotes the sample number in the jih

iteration step. Each sample of the current step is generated using the Metropolis-
Hastings algorithm: The starting point of a Markov chain is a sample from the
previous step that is selected according to the probability equal to its normalized
weight

@(0 )=t (2.35)

Nj

Zw(gj(l))

=1

and the proposal density for the Metropolis-Hastings algorithm is a Gaussian
distribution centered at the preceding sample of the chain and with a covariance
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matrix ¥, which is equal to the scaled version of the estimated covariance matrix
of the current intermediate PDF:

Nj _ _
20262; E(Qj(l))(gj(l) _Qj(l)) (Qj(l) _Qj(l))T (2.36)
Where

N
@0 )0, (2.37)

=1

<

The parameter c is a scaling parameter that is used to control the rejection rate of
the Metropolis-Hastings algorithm at each step. The iterations are repeated until
B}:l is reached, i.e. until the samples are generated from the posterior

distribution. Due to the repeated execution of the normal mode analysis of the FE-
model, the computational effort of the Bayesian updating method might become
infeasible for large FE-models. Hence, in order to reduce the wall clock time, i.e.
the time between submitting the updating analysis and its completion, a
parallelized version of this algorithm is presented in Section 2.8.2.

2.8 Computational aspects for linear FE models with large
number of DOF

The computational demands in the aforementioned FE model updating
methodologies depend highly on the number of FE analyses and the time required
for performing a FE analysis. The optimal model in the proposed single
optimization and the Pareto models in the multi-objective optimization can be
estimated using available optimization algorithms. In particular, the optimization
of J(&;w)in (2.10) or g(f;M)in (2.20) can readily be carried out numerically
using any available gradient-based algorithm for optimizing a nonlinear function
of several variables. In addition, the set of Pareto optimal solutions can be
obtained using the Normal-Boundary Intersection (NBI) method [Das and Dennis,
1998), which is a very efficient algorithm for solving the multi-objective
optimization problem defined in (Christodoulou and Papadimitriou, 2007). Each
Pareto optimal solution is obtained by solving a single-objective optimization
problem using gradient-based constrained optimization algorithms (Christodoulou
et al., 2008). The computational time is of the order of the number of points used
to represent the Pareto front multiplied by the computational time required to
solve a single-objective optimization problem for computing each point on the
front.
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The gradient-based optimization algorithms require the estimation of the gradients
of the residuals J,(#)and J,(¢) defined in (2.7) and (2.8). This also contributes

significantly to the time required to complete an iteration. Herein, Nelson method
[Pradlwarter et al., 2002) is used to compute the gradients of the modal
frequencies and mode shapes. The advantage of the Nelson’s method compared to
other methods (Hinke et al., 2009) is that the gradients of the modal frequency and
mode shape of a mode are computed from the modal frequency and mode shape
of the same mode and there is no need to compute the modal frequencies and
mode shapes from other modes. Using adjoint formulations (Mace and Shorter,
2001), the computational demands for estimating the gradients of J,(€)and J,(0)
are independent of the number of parameters involved in the vector 8. The most
time consuming operation arises from the solution of a linear system with the
matrix of coefficients to be a slightly modified version of the symmetric, non-
positive definite, matrix K — A, M . This requires the factorization for the modified

K—X\M matrices of the lowest r=1,---,m modes involved in the residuals,
contributing significantly to the overall computational effort at each iteration.

For objective functions in (2.4) involving multiple local/global optima, gradient
based optimization algorithms may fail to converge to the global optimum.
Stochastic optimization algorithms (Goller et al., 2011; Goller, 2011) are
convenient tools for estimating the global optimum, avoiding premature
convergence to a local one. These non-gradient based stochastic optimization
algorithms require a significantly larger number of FE model re-analyses to be
performed compared to the FE model analyses involved in gradient-based
optimization algorithms, substantially increasing the computational demands.

The objective of this work is to examine the conditions under which substantial
reductions in the computational effort can be achieved by integrating dynamic
reduction techniques into the FE formulations, aiming at reducing the sizes of the
stiffness and mass matrices and eliminating the expensive re-analyses of
components eigenvalue problems due to the variations of the system parameters,
without compromising the solution accuracy.

Furthermore, Bayesian FE model updating techniques, based on SSA such as the
efficient TMCMC algorithm, involve drawing a large number of samples for
tracing and then populating the important region in the uncertain parameter space.
Compared to the previous algorithms, TMCMC require a substantially larger
number of FE model analyses since one FE analysis is required for each sample
generated in the TMCMC algorithm. Consequently, the computational demands
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can become excessive when the computational time for performing a FE analysis
is not negligible. The proposed Bayesian estimators requires a large number of FE
model simulations to be carried out which imposes severe computational
limitations on the application of the damage identification technique. For FE
models involving hundreds of thousands or even million degrees of freedom and
localized nonlinear actions activated during system operation these computational
demands for repeatedly solving the large-scale eigen-problems and the gradient of
the eigensolutions may be excessive.

2.9 Computational Challenges

For large order finite element models with hundreds of thousands or even million
DOFs encountered in structural dynamics, the computational demands involved
may be excessive, especially when a model simulation takes several minutes,
hours or even days to complete. Drastic reductions in the time to solution are
achieved by integrating surrogate models to reduce the number of full model
simulations within certain classes of stochastic simulation algorithms such as
TMCMC presented in Section 2.8.1, parallelization techniques to efficiently
distribute the computations in available multi-core CPUs presented in Section
2.8.2 and model reduction techniques to substantially reduce the order of high
fidelity large order finite element models presented in Section 2.8.3.

2.9.1 Surrogate Models

Surrogate models are used to reduce the computational time at the level of the
algorithm. The objective is to avoid the full structural dynamics model runs at a
sampling point in the parameters space by exploiting the function evaluations that
are available at the neighbour (design) points in order to generate an approximate
estimate. Surrogate models are well-suited to be used with the TMCMC method.
Details of the implementation of surrogate models with TMCMC algorithm are
given in Angelikopoulos et al. (2012). Specifically, following (Angelikopoulos et
al., 2012), a kriging technique (Lophaven et al., 2002) is used to approximate the
function evaluation at a new sampling point at a TMCMC stage using the function
evaluations at neighbour points in the parameter space available from previous
TMCMC stages. To ensure a high quality approximation, a surrogate estimate is
accepted only if it satisfies certain conditions as follows.

The surrogate estimate is based on a user-defined number of support points which
are in the neighbour of the surrogate point. The minimum number of support
points depends on the dimension of the uncertain parameter space and the order of
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the kriging interpolation. The surrogate point belongs to the convex hull of the
design points so that an interpolation is performed, while extrapolations are
prohibited. The design points correspond to actual system simulations and not
other surrogate estimates from previous stages, avoiding error propagation and
subsequent deterioration of the surrogate quality. The design point are kept the
same when generating the surrogate estimates within a chain of the TMCMC
stage, avoiding discontinuities in the estimates of the sampling points in a chain
caused by changing the design points. The surrogate estimate is checked whether
its predicted value is within the lower 95% quantile of all the design point’s
likelihood values accounted so far. The purpose of the threshold is to prevent
overshooting surrogate estimates as this will quickly lead to the breakdown of the
sampling procedure due to the concentration of most points around this
overshooting estimate. The surrogate estimate is accepted if the prediction error is
smaller than a user specified tolerance value.

It has been demonstrated that the proposed adaptive kriging method can achieve
up to one order of magnitude reduction in computational effort.

2.9.2 Parallel TMCMC Algorithm

At the computer hardware level, high performance computing techniques can be
used to reduce the computational time. Most MCMC algorithms involve a single
Markov chain and are thus not parallelizable. In contrast, the TMCMC algorithm
involves a large number of independent Markov chains that can run in parallel.
Thus, the TMCMC algorithm is very-well suited for parallel implementation in a
computer cluster. Specifically, parallelization is activated at every stage of the
TMCMC algorithm exploiting the large number of short, variable length, chains
that need to be generated starting from the leader samples determined from the
TMCMC algorithm at the particular stage. Static and dynamic scheduling
schemes can be conveniently used to optimally distribute these chains in a multi-
host configuration of complete heterogeneous computer workers. The static
scheduling scheme distributes the chains in the workers using a weighted round-
robin algorithm so that the number of likelihood evaluations is arranged to be the
same for each computer worker. The static scheduling scheme is computational
efficient when the computational time for a likelihood evaluation is the same
independently of the location of sample in the parameter space as well as when
surrogate estimates are not activated. The dynamic scheduling scheme is more
general, ensuring a more efficient balancing of the loads per computer worker in
the case of variable run time of likelihood function evaluations and unknown
number of surrogates activated during estimation. Specifically, each worker is
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periodically interrogated at regular time intervals by the master computer about its
availability and samples from TMCMC chains are submitted to the workers on a
first come first serve basis to perform the likelihood function evaluations so that
the idle time of the multiple workers is minimized. Details of the parallel
implementation of the TMCMC algorithm are given in Angelikopoulos et al.
(2012). (Haralampidis et al., 2005).

The highest computational efforts are associated to the solution of the eigenvalue
problem which is required for the evaluation of the likelihood function. Hence, the
parallelization strategy exploits the parallelism of those parts of the code where
eigensolutions are performed.

The simulation algorithm starts with the generation of samples from the prior
distribution and the evaluation of the probability weights E(Qj“))according to

(2.35) with j=0. This step can be scheduled completely in parallel since the
samples are independent.

At the iteration steps j=L,---,mthe lead samples are selected according to their

probabilities given by (2.34) and then Markov chains are generated with the
lengths equal to the number of times the respective lead samples are selected.
Samples forming a Markov chain depend on the previous sample, which implies
inherent dependence and which excludes therefore parallelization. However, the
chains themselves are independent from each other, which means that the
generation of different chains can be performed concurrently. The length of a
chain, which is equal to the number of eigenvalue solutions and therefore
proportional to the computational effort, is determined by the number of times the
lead sample is selected and differs for each chain. In order to obtain an optimal
work balance of each cluster node, the number of chains generated by each node
is determined such that the total number of function evaluations is on average the
same for each node.

Hence, the parallelized code works such that the master node determines the lead
samples according to (2.34) and sends matrices with the parameter values of the
lead samples together with the information about the length of the respective
chains to the slaves. The generation of the Markov chains is performed in parallel.
The matrices with the samples according to p[j+1] are then sent back to the
master node. After receiving all samples of this iteration step, the master node
evaluates the probability weights needed for the next iteration. These iteration

steps are repeated until samples of the posterior PDF are generated, i.e. until
J=m
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In the context of this thesis, only the so-called high-level parallelism associated
with the consecutive execution of full FE-analysis, is exploited.

2.9.3 Model Reduction Techniques

Model reduction techniques can be applied at the system level to reduce the order
of the model selected to simulate the behavior of the system. The objective is to
obtain reduced models that run significantly faster than the original high-fidelity
models, incorporating the important dynamics of the system analyzed so that the
simulations from the reduced model are sufficiently accurate.

In structural dynamics, dynamic reduction techniques have been integrated with
Bayesian techniques to carry out system analyses in a significantly reduced space
of generalized coordinates and thus efficiently handle large-order models of
hundreds of thousands or millions degrees of freedom and localized nonlinear
actions activated during system operation. Specifically, component mode
synthesis (CMS) techniques (Hurty, 1965; Craig and Bampton, 1968) can be used
to alleviate the computational burden associated with each model run in the re-
analyses required in the asymptotic and stochastic simulation methods. CMS
techniques divide the structure into components with mass and stiffness matrices
that are reduced using fixed-interface and constrained modes. Dividing the
structure into components and reducing the number of physical coordinates to a
much smaller number of generalized coordinates certainly alleviates part of the
computational effort. However, at each iteration or TMCMC sampling point one
needs to re-compute the eigen-problem and the interface constrained modes for
each component. This procedure is usually a very time consuming operation and
computationally more expensive that solving directly the original matrices for the
eigenvalues and the eigenvectors, due to the substantial computational overhead
that arises at component level.

The main objective in methods involving re-analyses of models with varying
properties is to avoid, to the extent possible, the re-computation of the
eigenproperties at the component or system level. Such techniques have been
incorporated in methods for uncertainty management in structural dynamics to
efficiently handle the computational effort in system re-analyses that arise from
FE model variations caused by variations in the values of the uncertain parameters
(Balmes, 1996; Mace and Shorter, 2001; Pradlwarter et al., 2002). In particular,
perturbation techniques (Pradlwarter et al., 2002) provide accurate results locally
for small variations of the model parameters about a reference structure. To
improve the accuracy of the approximations for large variation of the model
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parameters, methods have been proposed to approximate the modes at the
component or system level in terms of the modes of a family of structures
corresponding to support points in the parameter space (Hong, 2011). In Goller et
al. (2011), linear and quadratic interpolations of the structural mass and stiffness
matrix and the matrix of eigenvectors at the component and/or system level using
support points in the larger region in the parameter space have been proposed.
Such methods have been successfully used for model updating of large-order
models of structures (Goller et al., (2011) and for damage detection at component
level (Goller et al., (2011). These techniques proved to be quite effective in
substantially reducing the computational demands in problems requiring system
re-analyses. Fast and accurate CMS techniques, consistent with the finite element
(FE) model parameterization, will be proposed in Chapter 3 of current thesis to
achieve drastic reductions in computational effort.

2.10 Conclusions

The widely used deterministic finite element model updating methods are
reviewed in this chapter and the Bayesian framework for parameter estimation and
model class selection is presented. The Bayesian tools for identifying system and
uncertainty models as well as performing model class selection are Laplace
methods of asymptotic approximation and stochastic simulation algorithms such
as Markov Chain Monte Carlo (MCMC) and Transitional MCMC. Both tools are
used to represent the posterior distribution of the parameters of a model class
introduced to simulate the behavior of the engineering system, as well as compute
multidimensional integrals over high-dimensional spaces of the uncertain model
parameters, manifested in the formulations for model class selection. The
asymptotic approximations involve solving optimization problems as well as
computing the Hessian of certain functions in a small number of points in the
parameter space. The stochastic simulation tools involve generating samples for
tracing and then populating the important uncertainty region in the parameter
space, as well as evaluating integrals over high-dimensional spaces of the
uncertain model parameters. These tools require a moderate to very large number
of system re-analyses to be performed over the space of uncertain parameters.
Consequently, the computational demands depend highly on the number of
system analyses and the time required for performing a system analysis. For
complex models of engineering systems, one simulation may require a significant
amount of time and the overall computational demands involved in the Bayesian
tools may be substantial, or even excessive for stochastic simulation algorithms.
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This chapter proposes methods for drastically reducing the computational
demands at the system, algorithm and hardware levels involved in the
implementation of Bayesian tools.
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CHAPTER 3 Component Mode Synthesis Techniques

for FE Model Updating

3.1 Introduction

The optimization algorithms mentioned in Chapter 2 require a moderate to very
large number of FE reanalyses to be performed over the space of model
parameters. Consequently, the computational demands depend highly on the
number of FE re-analyses and the time required for performing a FE analysis. In
addition, gradient-based optimization algorithms require the estimation of the
gradients of the residuals which may also add substantially to the computational
effort. For high fidelity FE models involving hundreds of thousands or even
million DOF, the computational demands may be large or even excessive. The
present work proposes efficient methods based on dynamic reduction techniques
to alleviate the computational burden involved in the implementation of
deterministic and probabilistic (Bayesian) techniques for FE model updating.

Specifically, component mode synthesis (CMS) techniques (Hurty, 1965; Craig et
al., 1965; Craig, 1981) are widely used to carry out system analyses in a
significantly reduced space of generalized coordinates. Such techniques have been
incorporated in methods for uncertainty management in structural dynamics to
efficiently handle the computational effort in system re-analyses that arise from
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FE model variations caused by variations in the values of the uncertain parameters
(Balmes, 1996; Pradlwarter et al., 2002). Such variations in the values of the
model parameters require that the computation of the component and/or system
modes be repeated in each re-analysis. As a result, a computational overhead
arises at component level which may be substantial. The main objective in
methods involving re-analyses of models with varying properties is to avoid, to
the extent possible, the recomputation of the eigenproperties at the component or
system level. Perturbation techniques (Hinke et al., 2009; Mace and Shorter,
2001) provide accurate results locally for small variations of the model parameters
about a reference structure. To improve the accuracy of the approximations for
large variation of the model parameters, most efforts has been concentrated in
approximating the modes at the component or system level in terms of the modes
of a family of structures corresponding to support points in the parameter space
(Balmes, 1996). Linear and quadratic interpolations of the structural mass and
stiffness matrix and the matrix of eigenvectors at the component and/or system
level using support points in the larger region in the parameter space have been
proposed in (Goller et al., 2011). Such methods have been successfully used for
model updating of large-order models of structures (Goller et al., 2011; Goller,
2011), while similar methods have been developed for damage detection at
component level (Hong et al., 2011). Such techniques proved to be quite effective
in substantially reducing the computational demands in problems requiring system
re-analyses.

In this work, a framework is presented for integrating the Craig-Bampton CMS
technique (Craig and Bampton, 1965; Craig, 1981) into existing FE model
updating formulations in order to reduce the time consuming operations involved
in reanalyses of large-order models of hundreds of thousands or millions degrees
of freedom. The proposed method exploits the fact that in FE model
parameterization schemes the stiffness matrix of the structure often depends
linearly on the parameters of the model and also that a parameter usually
represents a global property (e.g. the modulus of elasticity) of a substructure. The
division of the structure into components is then guided by the FE
parameterization scheme so that the stiffness matrix that arise for each one of the
introduced components to depend linearly on only one of the parameters to be
estimated. In this case the fixed-interface and constraint modes of the components
for any value of the model parameters can be obtained exactly from the fixed-
interface and constraint modes corresponding to a single reference FE model,
avoiding re-analyses at component level. Additional substantial reductions in
computational effort are also proposed by reducing the number of interface DOF
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using characteristic interface modes through a Ritz coordinate transformation. The
repeated solutions of the component and interface eigen-problems are avoided,
reducing drastically the computational demands in FE formulations, without
compromising the solution accuracy. It is also shown that the linear expansions of
the original mass and stiffness matrices in terms of the structural parameters are
preserved for the reduced mass and stiffness matrices. Thus, the reassembling of
the reduced system matrices from the original matrices is also avoided in the
execution of the system re-analyses. The only time consuming operation left is the
re-analysis of the eigenproblem of the reduced-order model. It is finally
demonstrated that the new developments are readily accommodated in existing FE
model updating formulations and software with minimal modifications.

Moreover, in this chapter, Bayesian estimators (Christodoulou et al., 2008) are
proposed for damage identification (localization and quantification) of civil
infrastructure using vibration measurements. The structural damage identification
is accomplished by associating a FE model class to a damage location pattern in
the structure, indicative of the location of damage. Damage occurring at one or
more structural components can be monitored by updating an appropriately
parameterized FE model with parameters associated with the properties of the
monitored structural components. The actual damage occurring in the structure is
predicted by Bayesian model selection and updating of a family of parameterized
model classes with the members in the model class family introduced to monitor
the large number of potential damage scenarios covering most critical parts of the
structure. Bayesian inference ranks the plausible damage scenarios according to
the posterior probability of the corresponding parameterized FE model classes to
fit the measurements. The most probable FE model class is indicative of the
location of damage, while the severity of damage is inferred from the posterior
probability of the model parameters of the most probable model class.

This Chapter is organised as follows. The mathematical background for the Craig-
Bampton CMS technique and a technique to reduce the DOF in the interface
between components using characteristic interface modes, is outlined in Section
3.2. The integration of the CMS technique with model updating formulations is
given in Section 3.3. In Section 3.4 the effectiveness of the proposed algorithms,
in terms of computational efficiency and accuracy, is demonstrated with
application on model updating and damage identification of a bridge using
simulated data and a high fidelity model with hundreds of thousands of DOF.
Conclusions are summarized in Section 3.5.
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3.2 Component Mode Synthesis

3.2.1 Formulation using fixed-interface modes

In CMS techniques (Craig and Bampton, 1965; Craig, 1981), a structure is
divided into several components. For each component, the unconstrained DOF are
partitioned into the boundary DOF, denoted by the subscript b and the internal
DOF, denoted by the subscript I . The boundary DOF of a component include
only those that are common with the boundary DOF of adjacent components,
while the internal DOF of a component are not shared with any adjacent
component. The stiffness and mass matrices K and M of a component S are
partitioned to blocks related to the internal and boundary DOF as follows

(s) (s) (s) (s)
M i M ib Kii Kib

(s) (s) (s) (s)
M bi M bb Kbi Kbb

MO — ) — (3.1)

where the indices i and b are sets containing the internal and boundary DOF of
the component. According to the Craig-Bampton fixed-interface mode method,
the Ritz coordinate transformation u® = [u®",u®™T" = ¥® p®  where

(s) (s)
CI)ik \Ijib

P —
(s) (s)
Obk Ibb

(3.2)

is used to relate the physical displacement coordinates u® eR™  of the

component to the generalized

. ats) . ~ ~ . .
coordinates p® =[p®7, p@ " e R",A® =A® + AP | using the kept fixed-

interface normal modes ®% R satisfying the eigen-problem

KO0 = MPaA ©3)
and the interface constrained modes T eR"™Y  given by
TP =—[K® ]71 K§.The matrix A =diag(4”,+,2%)) e R%%" js diagonal
containing the eigenvalues A", j=1,---,A%, of the kept fixed-interface normal

modes. The fixed-interface modes ®{ are considered to be mass normalized,
satisfying "M &0 =18 and dPTKEPP = A

. i A A(S) 7(8) A AS) /() .
The component’s mass and stiffness matrices M® c¢ R" ™" and K® c¢R" " in

the new reduced set of generalized coordinates p® are transformed as follows
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M® =T\ (S)\IJ(S), KO — pOTKEOgp® (3.4)

with the partitions for the component mass matrices MéE)ERH'ﬁS)Xn'&S),

MO eR¥™ ™ MO eR™™ and  stiffness matrices K e R*
RS e R% and K e R™™” given respectively by
=1
M =MET =OTMOWE +pETM (3.5)
MO = (BETME 4+ MO L gETME 4 MO
and
RS — A©
KE = K" =07 (3.6)
KO = KO — KOKOTKE = K + poTKE
For convenience, the relationships (3.5) and (3.6) between the reduced and the
original stiffness and mass matrices of a component, with A and ® given by
(3.3), can be written in compact form as [K®,M©®]=&[K® M®] using the
operator G
In the substructure assembly process, the vector p=[p®",.-, p™]" € R" of all

generalized coordinates for each components is introduced. Letting
q=[p®",--, p™",u I €R™ be the vector of independent generalized

coordinates formed from the generalized coordinates (fixed-interface modal and
boundary coordinates) of all components, where u] =[u®",---,u™ ] and N, is

the number of interfaces/boundaries, the following transformation is introduced
R = A
KS = K" =0 (3.7)
Kéﬁ) Kég) Kés)[K(S)] 1K_(5) Kés) —|—\I/(S)T K(S)
1 ib

nyxn,

where the component coupling matrix S&€R™ ™ couples the independent
generalized coordinates with the generalized coordinates of each component.

Ny XN,

The assembled Craig-Bampton stiffness matrix K cR™™ and mass matrix
M c R™™ for the reduced vector q of generalized coordinates are given by
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~

K® 0 0
NS A
K®=s"l0 . 0 |S=) F[KY] (3.8)
0 o0 R
and
M® 0 0
N .
M®=s" 0 . 0 |S=) F[M¥] (3.9)
0 o MM

where the new mathematical operator FS[K(S’] is conveniently introduced by the
second part of equation (2.14) as

F[K®]=S"blockdiag(0 o, 0 s 00 K0 iy v+, 0 0y )S (3.10)

where 0, eR™ denotes a  matrix  of  zeroes, and
blockdiag[K®,---,K™)]1c R™ ™ denotes a block diagonal matrix having as

diagonal blocks the matrices K,s=1,---,N_. The operator F, will be used later
to simplify the integration of the CMS into the FE formulation.

Solving the reduced eigen-problem
K®Q =M%Q A (3.11)

associated with the reduced mass and stiffness matrices M and KCB,

respectively, one obtains the modal frequencies in A = diag(w’) € R""™ and the

Ny XN,

corresponding mode shapes Q = [dl,"‘,dnq] eR™ of the reduced system.

Noxn

Introducing the constant matrix $ € R"™ to map the vector [u®",---,u™"] of
the physical coordinates of each structural component to the physical coordinates
uof the structure at N, measured DOF such that g:§£) and using (3.7), the

physical mode shapes ¢, € R™ r of the original structure at the N, measured DOF

are recovered from the mode shapes §, € R™ of the reduced system as follows

¢, =SWsq, = Lq, (3.12)

where L=S¥S € R"™and ¥ = blockdiag[¥®, ---, s R™ "
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3.2.2 Reduction of the interface DOF using characteristic interface modes

Further reduction in the generalized coordinates can be achieved by replacing the
interface DOFs by a reduced number of constraint interface modes (Castanier et

al., 2001). For this, the physical displacement coordinates u® e R™ at a
boundary/interface between two or more components are represented in terms of
the generalized coordinates g{'}eRmS) of the interface by the Ritz coordinate
transformation

gél} :V{l}g{l} (3.13)

D cm

i=1,---,N,, where the columns of V® € R™ ™ form the reduced basis of the

m" -dimensional space.and m{" is the number of elements in the basis.

The following transformation from the CMS generalized coordinates g to the

reduced order model generalized coordinates

N, N
o=[pP", -, pMIT CET L (W ER™, n =) AP +> "m, that contains

s=1 1=1
the kept fixed interface modes and the kept constraint interface modes, is
introduced as

q=Vu (3.14)

where V =blockdiag(l g, 1 ), V&, V) e R™™ and 1 is the identity

ﬁlgwc)a
matrix of dimension n. Using (3.14), the reduced mass and stiffness matrices take
the form K =VTK®V and M =V"M®V and the resulting eigenvalue problem at
the reduced system level becomes

K[ =MTA (3.15)
where the diagonal matrix A contains the modal frequencies and the matrix
e R™™™ contains the corresponding n, mode shapes of the reduced system.

The kept characteristic interface modes of the matrix V¥ satisfy the eigen-
problem

2 CBy {1} _ n7 CBy {31}
K%V —M%IV Q) (3.16)

where 6, is the index set denoting the positions of the generalized coordinates

u®® eR™ in the vector q corresponding to the interface | , while the stiffness

. I} (1) m(D ~ () m) . -
and mass matrices KEE eR™ ™" and M;:s cR™ ™" in (3.16) are the partitions
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s

- - n () (1) A
of the reduced stiffness and mass matrices K;’s cR™ ™" and M;f €ER

associated with the coordinates u® € R™ at the |-th interface. These partitions

are readily obtained from the corresponding partitions of the stiffness and mass
matrices of the components connecting to the interface | in the form

Kes = > K (3.17)
seCy
and
Mg => M (3.18)

seC

where C, is the integer set that contains the components that connect to the
interface |, and b, is the index set corresponding to the interface | in the vector
us of the component s. Note that the stiffness matrix K of the reduced system is
diagonal, given by K =diag(A®,---, AN, Q® ... M=)} 'with diagonal elements
the eigenvalues of each fixed interface and constraint interface mode.

The components of the mode shape matrix Q=[¢, --,§, ]€R™™ of the

eigenvalue problem (3.11) are related to the components of the mode shape matrix
I'=[y,7, 1€ R™ ™ of the eigenvalue problem (3.15) through the relationship

G, =V~, . Specifically, using (3.12), the mode shapes ¢, of the original structure
at the N, measured DOF are recovered from the mode shapes+, of the reduced
system as follows

¢ = STV, =LV~, =L, (3.19)

where [ =LV = STSV ¢ RNox™

3.3 Model Updating using CMS

The component mode synthesis procedure is next integrated into the finite
element model updating formulation. The linear dependence of the mass and
stiffness matrices on the parameter set 6 implies that at the component level the
mass and stiffness matrices as well as their partitions admit a similar
representation, that is
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N/)
K® — Kés) _|_Z K‘(js)ej
N (3.20)
(s) _ (s) (s)
MO =M +> "M,

i1

Attention is focused on two special cases of the parameterization (3.20) for a

component s.In the first case (3.3.1) it is assumed that the mass and stiffness
matrix of a component sdo not depend on the model parameters iné. In the

second case (3.3.2) the stiffness matrix of a component s depends linearly only on
one model parameter, say ¢, , in the parameter vector ¢, while the mass matrix

M ® = M #is constant independent of ¢ .

3.3.1 Component stiffness and mass matrix is constant

In this case one has thatK® =K and M® =M The component fixed-

interface and constrained modes are independent of the parameter values. Only a
single analysis is required to estimate the fixed-interface and constrained modes
for the particular component s. Within the model updating iteration scheme, these
component modes are computed once and are then used in the iterations involved.
The computational saving in the iterative process of model updating arises from
the fact that the eigenvalue problem to compute the eigenvalues and mode shapes
of the kept interface modes as well as the solution of the linear system to compute
the constrained interface modes are not repeated at each iteration.

N/)
KO =K +) KD,
" (3.21)
(s) _ (s) (s)
MO =M +Z;M, 20,
J=

3.3.2 Component stiffness matrix is proportional to model parameters

This case is enforced by dividing the structure into components based on the
parameters introduced in the FE model for each physical substructure. Let A; be

the set of components that depend on the j-th variable 6; . The stiffness matrix
of a component s takes the form

K& =KW, (3.22)

Equivalently, the relation (3.21) holds also for the partitions of the stiffness
matrix. Substituting the partitions K = K0, and M’ =M {0, in (3.3), it is
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readily derived that the matrix of the kept eigenvalues and eigenvectors of the
component fixed-interface modes are given with respect to the parameter ¢, in the

form

A9 =A%, and P, =B (3.23)

where the matrices A® and & are solutions of the following eigen-problem
KODY = MOBPRY (3:24)
and thus they are independent of the values of ¢, or the FE model variations at
the component level due to changes in the model parameter. Also using the

stiffness matrix partitions K{¥ = K{6, and K’ = K0, , the constrained modes

are given by the constant matrix

‘I’i(ﬁ) =— Ki(S)T1 Ki(bS) =— Ki(S)T1 Ki(bS) (3.25)

also independent of the values of the parameter ¢; or FE model variations at

component level. Thus, a single component analysis is required to provide the

exact estimate of the fixed-interface modes from (3.22) and the constrained modes
from (3.24) for any value of the model parameter 6, .

Substituting into the reduced mass and stiffness matrices (3.5) and (3.6) the
partitions of the stiffness matrix (3.21), the eigenproperties (3.22) and the
interface constraint modes (3.24) of the component s , it is straightforward to
verify that the reduced stiffness matrix of component s takes the form

A

K® =K®g, (3.26)

where the reduced matrix K® and the reduced mass matrix M ® are constant

matrices given by [K®,M©]=&[K®, M7, independent of the values of the
model parameters 6.

Introduce next the index set > to contain the structural components s that depend
on a parameter in the vector §. Then the set ¥ ={,---,N . }— contains the

component numbers for which their properties are constant and independent on
the values of the parameter vector . Substituting (3.21) into (3.8), the stiffness

matrix of the Craig-Bampton reduced system admits the representation
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A ~ A N” A
K® — K(S)gj KCB — KOCB +Z K’(J?BQJ. (3.27)

j=1

and the mass matrix is given by M =M$®, where the coefficient matrices KS®
and I{CJ.B in the expansion (3.26) are assembled from the component stiffness
matrices, defined in (3.25), by

KE=S"F[K®] and KP®=3 F[KO] (3.28)

) $;€A,;

The sum in the second of (3.27) takes into account that more than one components
s€A; may depend on the parameter 0, .

It is important to note that the assembled matrices Kg® and K<®of the Craig-

Bampton reduced system in the expansion (3.26) are independent of the values of
0. In order to save computational time, these constant matrices are computed and
assembled once and, therefore, there is no need this computation to be repeated
during the iterations involved in optimization due to the changes in the values of
the parameter vector 6. This aforementioned procedure results in substantial
computational savings since it avoids (a) re-computing the fixed-interface and
constrained modes for each component, and (b) assembling the reduced matrices
from these components. The formulation guarantees that the reduced system is
based on the exact component modes for all values of the model parameters. In
addition, using (3.19) and the fact that ¥ and thus ¥ are independent of @, the

observation matrix L= SWS in (3.19) is constant, independent of the parameter
vector 6.

The modal frequency and mode shape residuals involved in the objective J(6;w)
have the same exactly form as in finite element model updating without using
CMS, with ¢,(€) and the constant matrix L in ¢ (d) =Ly, (€) be replaced by
G, (9) and the constant matrix L =SS, respectively. Available model updating

formulations and software can thus be readily used to handle the parameter
estimation by just replacing the eigenvalue problem of the original mass and
stiffness matrices with the eigenvalue problem (3.11) of the reduced system
matrices with K®(6) given by (3.26) and M (9) = NS |, as well as replacing

the constant matrix L of zeros and ones by the constant matrix L = SUS.

Special attention should be given when the size of the reduced mass and stiffness
matrices are dominated by a large number of interface DOF. In this case, the
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coordinate transformation (3.13) can be used to further reduce the number of
interface DOF for one or more interfaces. Using (3.18), it is clear that the stiffness
matrix of the eigenvalue problem involved in (3.16) depends on the parameters
associated with the components that connect to the interface |. The variability of
these parameters affects the characteristic interface modes V, which are functions

of these parameters. Exact estimates of the characteristic interface modes in
iterative algorithms can only be obtained by repeatedly solving (3.16) for each
different value of the respective parameters. For large number of DOF at the
interface, such re-analyses at the interface level may increase substantially the
computational demands. Interpolation schemes (Teughels et al., 2003) can be used
to approximate the characteristic interface modes at the interface level in terms of
the characteristic interface modes at a number of support points in a significantly
reduced space of model parameters associated with the components that connect
to the interface.

Alternatively, selecting V, in (3.13) to be constant, independent of , the
formulation significantly simplifies, with the reduced stiffness matrix to be given
by

Nl) ~
K=K+> K0, (3.29)
j=1

where K, =VTKS?V and K ; =VTKSV are constant matrices, while the reduced

mass matrix be given by the constant matrix M,=V M . The modal
frequency and mode shape residuals involved in the objective function J(@;w) in

the model updating formulations have exactly the same form as in finite element
model updating without using CMS with 4 (¢)and the constant matrix L in

$.(0) =L, (0) be replaced by ~,(¢) defined in (3.15) and the constant matrix
L =SWSV defined in (3.19), respectively. The choice of constant V, is critical in

order to get accurate results with the least number of characteristic interface
modes over the region of variation of the model parameters associated with the
interfacel . In FE model updating, the V, can be chosen as the eigenvectors of the

lowest modes of the eigenvalue problem (3.16) corresponding to a reference
model of the structure, avoiding the computational cost involved with the
repetitive solution of (3.16) at each iteration. This, however, may deteriorate the
accuracy of the predictions for large variations of the model parameters. To
improve convergence and maintain the accuracy of the final optimal estimate in
iterative optimization algorithms, the reduced basis forming V, can be updated
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every few iterations The computational efficiency and accuracy of reducing the
interface DOF using constant V, will be demonstrated in the application section.

It should be pointed out that the significant savings arising partly from the
reduction of the size of the eigenvalue problem from n to n, in the proposed

model reduction technique and partly from the fact that the estimation of the the
component fixed-interface modes and the characteristic interface modes need not
to be repeated for each iteration involved in the algorithms. Moreover, for
gradient-based optimization algorithms required in model updating schemes,
further computational savings are obtained due to the reduction of the size of the
matrix of the linear system that needs to be factorized in the adjoint formulation
(COMSOL AB COMSOL Multiphysics User’s Guide, 2005), from the size n for
the full matrices K —\.M to the size n, for the reduced-order matrices K —\ M .

Attention should also be paid on the optimal number of components that should
be used to represent a substructure with stiffness that depends linearly on a single
parameter. More components within such substructure introduce extra interface
DOFs or characteristic interface modes which increase the size and affect the
sparsity structure of the reduced matrices K and M . The total size of the
reduced matrices is also affected by the number of the fixed interface modes for
all components introduced for the substructure. From the computational point of
view, the optimal choice of components for such a substructure would be to select
the number of components and the optimal spatial division which will result in a
reduced system that requires the least computational time for analysis. However,
as the number of interface DOFs or characteristic interface modes increases by the
introduction of more components per substructure, it is unlikely that the resulting
increase in the size of the reduced matrices be effectively compensated by a
decrease in the total number of fixed interface modes arising from the multiple
components that represent the single substructure. Thus, in case where detailed
optimal component selection studies are not available, the wisest choice is to
select a single component per substructure.

Following the formulation proposed, the aforementioned framework can be
extended to handle the case for which the component stiffness and mass matrices
depend nonlinearly on a single parameter ¢, of the system parameter set 6. This

is the case for which the stiffness and mass matrices of a component s€ A,
depend nonlinearly on 6,, ie. K& =K®@f©@,) and M®=M®g®@©,) ,
where f©(0,) and g®(¢,) are nonlinear functions of the parameter ¢,. The
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interface modes, the modal frequencies and the interface constrained modes of a
component can readily be computed by the corresponding interface modes, modal
frequencies and interface constrained modes of the same component for a
reference structural configuration corresponding to a particular nominal value of
the parameter set ¢ as well as the current value of the parameterd;. In the

nonlinear case, a representation similar to K% =Kg®+> K9, and
=1

M®® = NS® is no longer applicable and the reduced mass and stiffness matrices

of the reduced structure should be re-assembled from the component mass and
stiffness matrices for the new value of ;. This procedure also saves substantial

computational effort since it avoids re-computing the fixed-interface and
constrained modes for each component.

As a final note, it is worth mentioning the treatment of a component in the CMS
process for the general case for which the component stiffness and mass matrices
depends on two or more parameters in the vector €. In these cases, in order to
obtain exact estimates of the component modes, the solution of the eigenvalue
problems for such a component is not avoided. The fixed-interface and
characteristic interface modes have to be recomputed in each iteration involved in
the model updating procedure and used to form the reduced stiffness and mass
matrices of the components. This repeated computation, however, is usually
confined to a small number of components. Interpolation schemes can also be
adopted to avoid re-analyses at the component or interface level by approximating
the fixed interface modes and/or the characteristic interface modes at various
values of the model parameters in terms of the corresponding modes of a family
of models defined at a number of support points in the parameter space (Teughels
et al., 2003). However, it should be pointed out that the use of interpolating
schemes for approximating the fixed interface and the characteristic interface
modes is an open issue and further analyses are required to evaluate the
effectiveness of such techniques in the general case.

3.4  Applications

The purpose of the application is to demonstrate the computational efficiency and
accuracy of the proposed component mode synthesis technique for finite element
model updating. For this, the method is applied to update a model of the Metsovo
bridge of Egnatia Odos motorway, shown in Figure 3.1.
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3.4.1 Description and FE Model of Metsovo Bridge

The Metsovo bridge is the highest reinforced concrete bridge of Egnatia Odos
motorway located in Greece, with the height of the taller pier P2 equal to 110m.
The total length of the bridge is 537m. The bridge has 4 spans, of length 44.78m,
117.87m, 235.00m, 140.00m and three piers of which pier P1, 45m high, supports
the boxbeam superstructure through pot bearings (movable in both horizontal
directions), while P2 and P3 piers (110 m and 35 m, respectively) connect
monolithically to the superstructure. The total width of the deck is 13.95m. The
superstructure is prestressed of single boxbeam section, of height varying from the
maximum 13.5m in its support to pier P2 to the minimum 4.00m in key section.
Piers P2 and P3 are founded on huge circular @12.0m rock sockets in the steep
slopes of the Metsovitikos river, in a depth of 25m and 15m, respectively.

Figure 3.1: General View of Metsovo bridge.

The commercial software package COMSOL Multiphysics [36] is used for
developing the FE model of the bridge. For this, the structure was first designed in
CAD environment and then imported in COMSOL Multiphysics modelling
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environment. The models were constructed based on the design plans, the
geometric details and the material properties of the structure. The following
nominal values of the material properties of the concrete deck, piers and
foundations are considered. For the concrete deck, the nominal value of the
Young’s modulus is taken to be E =37Gpa, the Poison’s ratio » =0.2 and the
density p=2548kg/m?*. For the piers and the foundation the nominal value of
the Young’s modulus is taken to be E =34Gpa. A detailed FE model is created

using three-dimensional tetrahedron quadratic Lagrange finite elements to model
the whole bridge. An extra coarse mesh with quadratic Lagrange elements are
chosen to predict the lowest 20 modal frequencies and mode shapes of the bridge.
The selected model has 97,636 finite elements and 562,101 DOF.

3.4.2 Effectiveness of CMS technique

For demonstration purposes, the bridge is divided into nine physical components
shown schematically in Figure 3.2.. Six components are related to the four spans
of the bridge deck, while three components are related to the three piers. The eight
interfaces between the components are also shown in Figure 3.2..

Interface 1

Interface 3

Ps

Interface 4

: .\'"

9 “Interface 8

P

'.Figure 3.2: Components of FE model of Metsovo bridge
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() (b)

Figure 3.3: (a) A typical 5m section of the deck with its FE mesh, (b) a typical
4m section of the tallest pier with its FE mesh.

Each deck component consists of several 4-5m deck sections. A typical 5m
section is shown in Figure 3.3 (a) along with its FE mesh. The tallest pier also
consists of several sections. A typical 4m pier section is also shown in Figure 3.3
(b) along with its FE mesh. It should be noted that the size of the elements in the
FE mesh is the maximum possible one that can be considered, with typical
element length of the order of the thickness of the deck cross-section. The entire
simulation for assembling the mass and stiffness matrices of the structure or its
components is performed within the COMSOL Multiphysics modelling
environment and exported in Matlab environment for further processing using
CMS techniques and FE model updating software.

The cut-off frequency w, is introduced to denote the highest modal frequency

value that is of interest in FE model updating. In this study the cut-off frequency
is selected to be equal to the 20th modal frequency of the nominal model. For the
specific model, this frequency is obtained from modal analysis to be w, =4.6 Hz.
The effectiveness of the CMS technique as a function of the number of modes
retained for each component is next evaluated. For each component it is selected
to retain all fixed interface modes that have frequency less than w,, =pw, , a
multiple of the cut-off frequency w,_ , where the value of the multiplication factor
p affects computational efficiency and accuracy of the model reduction
technique. Representative values of p range from 2 to 10. The total number of
internal DOF and retained modes for p=8, p=5 and p=2 within all the

components are reported in the second row of Table 3.1.
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Table 3.1: Total number of internal and interface DOF for the full (unreduced)

and reduced models.

Structure Retained Retained Retained
Interfaces without modes modes modes
Reduction p=8, p=5, p=2,
v =200 v =200 =200
Total Internal
DOFs 558,801 286 100 31
Total
Boundary 3.300 306 306 306
DOFs
Total DOFs 562,101 592 406 337
106 E L |5 L L L L T T T
105 ;‘ v 7 Y4 3
g 10" .
[a)
e § - ¥ Full Model |
g 3 K + p=8 ]
g 10 : X p=5 E
) - * p:2
i C
E 10°: E
Z £ + + - 3
[ = % + " +
10" . % & . . - X %< L
100 r r r r r r r r r
1 2 3 4 5 6 7 8 9

Component Number

Figure 3.4: Number of DOF per component of the FE model of Metsovo bridge.
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The total number of internal and boundary DOF of the unreduced model are
reported in the second column of Table 3.1 based on the components and
interfaces shown in Figure 3.2. The total number of internal DOF per component
and the number of modes retained per component for different values is shown in
Figure 3.4. It is clear from the results in Table 3.1 and Figure 3.4 that a more than
three orders of magnitude reduction in the number of DOF per component is
achieved using CMS. For the case p =8, a total of 286 internal modes out of the
558,801 are retained for all 9 components. Figure 3.5 shows the fractional error
between the modal frequencies computed using the complete FE model and the

modal frequencies computed using the CMS technique as a function of the mode
number for p=2 , p=5 and p=38. It can be seen that the fractional error for

the lowest 20 modes fall below 10 for p =8, 10°%for p =5 and 10%for p=2 ,

which ensures high levels of accuracy. The total number of DOF of the reduced
model p =8 is 3,586 which consist of 286 fixed interface generalized coordinates

and 3,300 constraint interface DOF for all components.

10- = L L U |8 L L L L U |8 L L L L U |8 L L L [ S
107k /& 1
3 I Q - ) |
§ 10 E \@ Bl /i\ o ( 2 B
] ; - Q/ ~ / \ . } /%ﬁ =N § o 3
g N % /kw/ ]
2 i > oo X .
8 10} [ g ’ ]
L ; fa < : ) E
r S 2< p:5
10-5 F — p:2
—Hp=8,v=200
r O - p=5, v=200
10_6 r r r r r r r r r O ) p:2 ,V:200

r r r r r r
1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Eigenfrequency Number

Figure 3.5: Fractional modal frequency error between the predictions of the full

model and the reduced model as a function of eigenmode number and for different
values of p and v
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It is thus obvious that a large number of generalized coordinates for the reduced
system arises from the interface DOF. A further reduction in the number of
generalized coordinates for the reduced system can be achieved by retaining only
a fraction of the constrained interface modes.

The number of DOF per interface is shown in the third column of Table 3.2. For
each interface defined in Table 3.1, it is selected to retain all modes that have
frequency less than w,,, , a multiple of the cutoff frequency w, , where the
multiplication factor p is user and problem dependent. The number of modes

retained per interface for » =200 is given in the last column of Table 3.2. The
number of retained interface modes is approximately 10% of the interface DOF
for each interface. Figure 3.5 presents results for the fractional error between the
modal frequencies computed using the CMS method with retained characteristic
interface modes for » =200 for each interface and the modal frequencies
computed using the complete FE model as a function of the mode number. It can
be seen that the fractional error for most of the lowest 20 modes of the structure
fall well below 107 for » =200 and p values as low as p =5 . Thus, the value
of » =200 gives accurate results in this case, while the number of retained
interfaces modes for all interfaces is 306 which corresponds to 10% of the total
number of interface DOF.

Table 3.2: Information for each interface involved in the modelling (with number
of interface DOFs)

Interfaces Adjacent  Interface  Retained
Components DOFs modes
v =200
1 1-2 441 46
2 2-3 258 27
3 2-4 432 47
4 4-5 441 42
5 5-6 423 46
6 6-7 660 33
7 6-8 495 49
8 8-9 150 16
Total DOFs 3,300 306
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The reduced system for p=5 and »=200 has 406 DOF from which 100

generalized coordinates are fixed-interface modes for all components and the rest
306 generalized coordinates are characteristic interface modes for all 8 interfaces.
Obviously the number of generalized coordinates is drastically reduced by more
than three orders of magnitude compared to the number of DOF of the original
unreduced FE model. The significant reduction in number of generalized
coordinates of the reduced system and the increased accuracy of the results are
promising for using the proposed model reduction method in FE model updating.

3.4.3 FE model updating using sinle- and multi- objective formulation

For demonstration purposes, the FE model is parameterized using five parameters
associated with the modulus of elasticity of one or more structural components
shown in Figure 3.2. The parameterization is graphically depicted in Figure 3.6.
Specifically, the first two parameters ¢, and 6, account respectively for the

modulus of elasticity of the pier components 3 and 7 of the bridge. The parameter
6, accounts for the modulus of elasticity of the components 1 and 2 of the deck,

Figure 3.6: FE model parameterization based on 5 parameters.

the parameter 6, accounts for the components 4 and 5, while the parameter 6,
accounts for the components 6 and 8. Note that for the three substructures
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parameterized by a single parameter 6, , 6, or 6, , two components per

substructure have been introduced, demonstrating the flexibility of the proposed
methodology. The component 9 is not parameterized. The parameters are
introduced to scale the nominal values of the properties that they model so that the
value of the parameters equal to one correspond to the nominal value of the FE
model. The nominal FE model corresponds to values of 6, =---=6, =1.

For the purpose of the present analysis, simulated, noise contaminated, measured
modal frequencies &’ and mode shapes ér are generated by perturbing the values

of the modal properties w,,and ¢, ., corresponding to the nominal FE model for

~

0 =1, according to the expressions &; =w, (1+n)and érz(fo,ﬁu(fo,r

[
wheren_ ~ N(0,s*) are samples from a zero-mean normal distribution with
variance s , and ¢

~r

is a zero-mean normal random vector with diagonal

covariance matrix e’l . The standard deviations s and e of the perturbed terms
control mainly the size of the model and measurement errors for the modal
frequencies and the mode shapes. The assumed constant noise level for the
different modeshape components may not exactly reflect the actual differences

Figure 3.7: Sensor configuration involving 36 sensors.
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observed in real applications between the predictions from a model and the actual
behavior of the structure since model error will cause dissimilar noise levels at
different modeshape components. However, for the purpose of this study, which is
to demonstrate the efficiency of the proposed CMS scheme, the addition of
constant noise level to different modeshape components is sufficient. Herein, the
magnitudes of the error terms are chosen to be s, =1%and e, =3%.

The FE model is updated using the simulated modal data for the lowest ten
modes. A sensor configuration involving 36 sensors is considered. The sensors are
placed along the deck and the piers at the locations and directions as shown in
Figure 3.7, measuring along the longitudinal, transverse and vertical directions.

To investigate the accuracy and computational efficiency of the proposed CMS
formulation, the FE model updating is first performed using the single objective
optimization method by selecting the weight in (4) to be w=1. Results for the
accuracy of the model parameters and the computational effort are presented in
Table 3.3 for the following six cases involving different reduction schemes in
internal and boundary DOF: (a) p=8, (b) p=5, (c) p=2 , (d) p=8 and
v =200, () p=5 and » =200, and (f) p=2 and » =200. The initial values
of the parameters used to carry out the optimization are ¢, =1.2, i=1,---,5. The
errors in the fourth column of the table are defined by the norm

\/ gt _ gl / pful

parameter estimates 6°*' obtained from the CMS-reduced FE model and the
optimal estimates ™" obtained from the full (non - reduced) FE model. The
percentage difference of the optimal estimates for the full model from the values

0 =1 of the nominal model is (6™ —1)" x100 = (0.57,1.87,1.09,0.61,1.21)" and

it is due to the noisy data considered. The results in Table 2.3 clearly suggest that

the error in the estimates of the model parameters is very small for the case of
reducing the internal DOF using p=8, p=5 and p=2 . The fluctuation in the

p Values of the parameters errors reported in Table 3.3 as a function of the values
should not be surprising since, due to the noise added, the experimental modal
data do not coincide with the modal data predicted by the unreduced model.

2/N(, x1000f the fractional errors of the optimal model

The number of function evaluations and the computational effort are also shown
in Table 3.3. The computational time for carrying out the optimization for the
reduced-order models is 5% of the time required for the full model. Consequently,
significant gains in computational effort are achieved without sacrificing the
accuracy in the model parameter estimates. A further reduction in the
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Table 3.3: Accuracy and computational effort for FE model updating based on
full and reduced ordermodels of Metsovo bridge.

Equally Weighted Method Multi-
objective
ME(IJIEeIs l-lj-g)tgls . . Me_thod
Error (%) Function Time Time
Max Mean Evaluations (sec) (sec)
Full Model 562,101  0.00 0.00 8 14,251 321,352
p=2=8 3,586 0.04 0.03 14 766 15,050
p=>5 3,400 0.69 0.43 13 677 12,282
p=2 3,331 030 017 13 674 11,437
p=28,r=200 592 017 011 14 12 197
p=25,r=200 406 0.62 0.46 13 8 128
p=2,r=200 337 046 0.24 13 6 109

computational effort, close to two order of magnitude, is achieved by reducing the
interface degrees of freedom using »~ =200, while the accuracy is maintained to
acceptable levels since the errors are smaller than 0.46%. Overall, for p =8 and
v =200, the computational effort is drastically reduced by three to four orders of
magnitude, without sacrificing in accuracy since the error norm is 0.11%.

Results are next presented for the multi-objective model updating framework.
Figure 3.8 and Figure 3.9 present the Pareto front and the Pareto optimal models,
respectively, computed using the full FE model and the six reduced-order models
introduced before. The Pareto front and optimal solutions are represented by 20
points computed by the Normal Boundary Intersection algorithm [Das and
Dennis, 1998). It is clear from Figure 3.8, that the quality of the estimates
provided is excellent for the reduced-order models (a) and (d), very good for the
reduced-order models (b) and (e), and acceptable for the reduced-order models (c)
and (f). The computational effort for performing the FE model updating using the
full and reduced-order models is reported in the last column of Table 3.3. The
computational time required to carry out the multi-objective optimization for
obtaining the Pareto optimal models using the full FE model is of the order of 89
hours (approximately four days).
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Compared to the full model, the computational demands are substantially reduced
by a factor of 20 for the reduced models (a) and (b), and by more than three orders
of magnitude for the reduced models (d) and (e).Specifically, the computational
time is 3-4 hours when only the internal DOF of each component are reduced and
2-3 minutes when both internal and interface DOF are reduced. A drastic
reduction in computational effort is thus achieved by using the reduced-order

models, without sacrificing in accuracy of the model parameter estimates as
shown in Figure 3.8 and Figure 3.9
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Figure 3.8: Comparison of Pareto fronts for the full and reduced-order FE
models.
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Figure 3.9: Comparison of Pareto models in the 2-d projection (6,, 6;) of the 5-d
parameter space for the full and reduced-order FE models.

3.4.4 Bayesian Model Updating Results using TMCMC

The finite element model is parameterized using five parameters associated with
the modulus of elasticity of one or more structural components shown in Figure
3.2. The parameterization is graphically depicted in Figure 3.6.

Simulated, noise contaminated, measured modal frequencies and mode shapes are
generated by adding a 1% and 3% Gaussian noise to the modal frequencies and
modeshape components, predicted by the nominal non-reduced finite element
models. The added Gaussian noise reflects the differences observed in real
applications between the predictions from a model of a structure and the actual
(measured) behavior of the structure. A sensor configuration involving 36 sensors
is considered. The sensors are placed along the deck and the piers, measuring
along the longitudinal, transverse and vertical directions. The finite element model
is updated using simulated modal data for the lowest ten modes.
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The Bayesian model updating is performed using the stochastic simulation
algorithm TMCMC with 1000 samples per TMCMC stage (Ching and Chen,
2007). Results for the accuracy of the reduced-order models and the

computational effort have been presented in Figure 3.5 for the following cases
involving reduction in internal and boundary DOFs: (a) p=8, (b) p=8 and

v =200, (c) p=5and » =200, and (d) p=2 and » =200. The results for the

log evidence as well as the mean parameter values for the different reduced-order
models are reported in Table 3.4. Comparing the log evidence of each reduced
model and also the corresponding mean values of the model parameters it is
evident that the various reduced-order models provide adequate accuracy,resulting
number of finite element model runs and the computational demands in minutes
for each reduced-order model are also is shown in Table 3.4.

The number of finite element model runs for each model depends on the number
of TMCMC stages which vary for each model class from 19 to 20. The
parallelization features of TMCMC (Angelikopoulos et al, 2015; Hadjidoukas et
al.,, 2015) were exploited, taking advantage of the available 8 workers to
simultaneously run eight TMCMC samples in parallel. For comparison purposes,
the computational effort for solving the eigenvalue problem of the original
unreduced finite element model is approximately 129 seconds. Multiplying this by
the number of TMCMC samples shown in Table 3.4 and considering that 8
samples run in parallel , the total computational effort for each model class is
expected to be of the order of 4 days. The results from the full finite element
model are not shown due to the excessive computational time required to obtain
results. In contrast, for the reduced-order model for p =8, the computational

demands are reduced to 16 hours (831 minutes as shown in Table 3.4 ), while for
the reduced-order models for p=8 and » =200 these computational demands
are drastically reduced to 14 minutes. It is thus evident from the results in Table
3.4 that a drastic reduction in computational effort for performing the structural
identification based on a set of monitoring data is achieved from four days for the
unreduced model classes to 14 minutes for the reduced model classes
corresponding to p =8 and » =200 without compromising the accuracy of the
proposed model updating methodology. This results in a drastic reduction in the
number of the computational effort of almost three orders of magnitude. A large
number of function evaluations, of the order of 70%, are also estimated using
surrogate models, resulting in extra reduction in the computational time. The
drastic reduction in computational time achieved for the present finite element
model of approximately 560,000 DOFs is evident.
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Table 3.4: Model updating results, model DOFs, number of FE simulations
(NFES) and computational effort (CE) in minutes for each model class.

FE Reduced Order Models
Cases

Evidence

(log)

Mean Total DOFs

NFES

CE
(Min)

Full Full Model

)
Il
oo

(@)

(b) p=8,1=200

(©) p=5,r=200

(d) p=2,r=200

1666.5

1670.5

1672.6

1666.3

1.005
1.019
1.011
1.006
1.012
1.008
1.021
1.010
1.004
1.011
1.008
1.022
1.007
1.012
1.007
1.007
1.016
1.009
1.005
1.007

562,101

3,586

592

406

337

20,000

20,000

20,000

20,000

20,000

6,000

831

14

9.5

8.5
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3.4.5 Damage ldentification using the Bayesian Formulation

The proposed model reduction technique is well suited in damage identification
applications that are based on FE model updating. This is illustrated next using the
Bayesian method for structural damage identification proposed in Ntotsios et al.
(Ntotsios et al., 2009). Specifically, a structure is divided into a number of
substructures and it is assumed that damage in the structure is confined in one or
more substructures, causing stiffness reduction in these damaged substructures. In
order to identify which substructure contains the damage and predict the level of
damage, a family of x model classes M, M is introduced, and the damage

identification is accomplished by associating each model class to damage
contained within a substructure. For this, each model class M, is parameterized

by a number of structural model parameters 6. controlling the stiffness in the

)

substructure i, while all other substructures are assumed to have fixed stiffness
values equal to those corresponding to the undamaged structure. Damage in the
substructure 7 will cause stiffness reduction which will alter the measured modal
characteristics of the structure. The model class M. that “contains” the damaged

substructure i will be the most likely model class to observe the modal data since
the parameter values i can adjust to the modified stiffness distribution of the
substructure i , while the other modal classes that do not contain the substructure
i are expected to provide a poor fit to the modal data.

Using the Bayesian model selection framework, the model classes are ranked
according to the posterior probabilities based on the modal data identified from
measurements. The most probable model class M, , that maximizes P(M. | D),

through its association with a damage scenario on a specific substructure, will be
indicative of the substructure that is damaged, while the posterior PDF of the
model parameters of the corresponding most probable model class M

best !
compared to the parameter values of the undamaged structure, will be indicative
ofthe severity of damage in the identified damaged substructure.

To demonstrate the methodology, the Metsovo bridge is divided into 15
substructures as shown in Figure 3.1. A number of competitive model classes
M and M are introduced to monitor various probable damage scenarios for the
bridge corresponding to single and multiple damages at different substructures.
The model class M contains one parameter related to the stiffness (modulus of
elasticity) of substructure i shown in Figure 3.10 . It can monitor damage
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Figure 3.10: Substructures of FE model of Metsovo bridge used for damage
identification.

associated with the stiffness reduction in the i substructure. The model class
M/ contains two parameters related to the stiffness of substructures i and j in
Figure 3.10. It can monitor damage associated with the stiffness reduction in
either substructures 7 and j or simultaneously at both substructures. The five-
parameter model shown in Figure 3.6 is also included in the family of model
classes to monitor simultaneous damages at five different substructures. This five-
parameter model class is denoted by M®**'. All model classes are generated
from the updated FE model of the undamaged structure. For each model class,
CMS techniques are used to alleviate the computational burden associated with
the model updating problems that needs to be solved. For this, two different cases
of reduced-order FE models are considered. The first case corresponds to models
obtained by reducing the internal DOF using p =8, while the second case

corresponds to models obtained by reducing both the internal and interface DOF
using p =8 and »~ =200. The Ritz basis for reducing the interface DOF were
selected to be the characteristic interface modes obtained from equation (3.19) for
the reference values

The number of components introduced for each model class depends on the
parameterization. Specifically, the model class M is divided into two, three or
four components. One component is selected to be the substructure i shown in
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Figure 3.10, while the remaining components are selected to be the parts of the
remaining structure that connect to the interfaces of component i . The model
classes MM, M™, M!™and M" have one interface, the model classes
M2, MP M MM and M!™ have two interfaces, while the model classes M,
M®and M" have three interfaces with the remaining structure. A similar
division into components is introduced for the family of M/’ model classes. For
example, model class M"*®js divided into four components, the first two
components coincide with the physical substructures 10 and 8, the third includes
the physical substructures 9, 11 to 15 and the fourth includes the substructures 1
to 7. The components in the M " model class are kept the same as the ones
used in Section 3.4.4. The reduced stiffness matrices K,and KJ. in the linear

representation (3.28) and the mass matrix I\7IO are assembled once for each model
class and are stored in a database of model classes.

For investigating the computational efficiency and accuracy of the reduced
models, a simulated damage is introduced at the highest pier (substructure 10 in
Figure 3.10), manifested as a stiffness reduction of 30% the nominal stiffness
value. Simulated, noise contaminated, measured modal frequencies and mode
shapes are generated for the damaged structure by adding a 1% and 3% Gaussian
noise to the modal frequencies and modeshape components generated from the
nominal non-reduced FE model with 30% reduction of the stiffness in the highest
pier. It is expected that the proposed Bayesian damage identification methodology
will promote M"”and M" and M®?**! as the most probable model classes
since these models classes monitor the stiffness of the component that contains the
actual damage.

The model class selection and the model updating is performed using the
stochastic simulation algorithm TMCMC with the following settings of the
TMCMC parameters: tolCov 1.0 , 0.2 and 1000 samples per TMCMC stage
(Ching and Chen, 2007). The results for the log evidence for representative model
classes and the corresponding magnitude of damages ¢ predicted by each model
class are reported in Table 3.5 for the two cases of reduced-order models. Herein,
for demonstration purposes, the percentage change Ag@ between the mean

estimates 8! (or 8!, 97"y of the model parameters of each model class and
the corresponding values §““? (or @U7wdl — gi-rermdl ) of the reference

(undamaged) structure measures the severity (magnitude) of damage computed by
each model class M (or M™!, MF#*],
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Table 3.5: Damage identification results, model DOF, number of FE simulations

(NFES) and computational effort (CE) in minutes for each model class.

Model Evidence Evidence A6, Ab, DOF DOF CE CE
Class =38 p=8  p=8 p=8 (NEFS) (NEFS) p=8 p=8
v =200 v — 200 p=28 p=28 v =200
v =200 (Min)
Mi
(o) (o) (%) (%) (i
M? 95446  954.93 +27.9 +26.5  1,724(8000)  438(8000) 123 3.5
M* 95499 95508 -157  -15.2 989(8000) 381(8000) 42 3
M6 988.17  989.32  -47.8  -47.3  1,747(9000)  441(9000) 134 3.6
M® 10055 10064 -31.3  -30.8  1,824(9000)  408(9000) 170 0.5
MU 17231 17233 -29.2 -29.2  1,393(9000)  388(12000) 173 4.6
MU 17225 1723.1  -29.0  -29.0  1,829(12000) 425(13000) 245 5.4
+4.0  +3.9
MU 17187 1719.0 -29.0  -29.0  2,485(14000) 433(13000) 509 5.5
+1.9  +1.3
MEPel 17004  1698.2  -1.3 -0.5  3,586(19000) 592(19000) 759 14
283  -285
+1.0 +0.9
+23  +15
+05  +0.5
Total 2155  40.1
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Comparing the log evidence of each model class and also the corresponding
magnitude of damages A0 predicted by each model class in Table 3.5 it is

evident that the proposed methodology correctly predicts the location and
magnitude of damage using the reduced-order model classes. Specifically, based
on the reduced-order models for p =8, the most probable model class is
M which predicts a mean 29.2% reduction in stiffness which is very close to the
inflicted 30%. Among all alternative model classes M", M7 M and
M # that contain the actual damage, the proposed methodology favors the
model class M"’ with the least number of parameters and it predicts the five
parameter model class M **as the least probable model. This is consistent with
theoretical results for model class penalization for over parameterization,
available for Bayesian model class selection (Beck and Yuen, 2004). The model
classes that do not contain the damage are not favored by the proposed
methodology. Based on the reduced-order models for p =8 and » = 200, the
predictions of the location and severity of damage are very close to the ones
obtained from the reduced-order models for p =8 for most model classes
included in Table 3.5. In particular, the most probable model class for p = 8 and

v =200 is also predicted to be M', while the mean damage severity is

predicted to correspond to 29.2% reduction in stiffness, exactly the same as the
one predicted with the reduced-order models for p = 8.

The resulting number of FE model re-analyses and the computational demands in
minutes for each model class are also is shown in Table 3.5. The number of FE
model runs for each model class depends on the number of TMCMC stages which
vary for each model class from 8 for the one-parameter model class to 19 for the
five-parameter model class. The resulting variable number of stages per model
class was automatically obtained from the TMCMC algorithm by keeping
constant the value tolCov of the TMCMC parameter to tolCov 1.0 . This
parameter controls the intermediate PDFs. For more details, the reader is referred
to the original publication of the TMCMC algorithm (Ching and Chen, 2007).The
parallelization features of TMCMC [38] were also exploited, taking advantage of
the available four-core multi-threaded computer unit to simultaneously run eight
TMCMC samples in parallel. For comparison purposes, the computational effort
for solving the eigenvalue problem of the original unreduced FE model is
approximately 139 seconds. Multiplying this by the number of TMCMC samples
shown in Table 3.5 and considering parallel implementation in a four-core multi-
threaded computer unit, the total computational effort for each mode class is
expected to be of the order of 3 to 7 days for 8,000 to 19,000 samples,
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respectively. The results from the full FE model are not shown due to the
excessive computational time required to obtain results for the model classes in
the database. For all eight model classes considered in Table 3.5, the total
computational effort using the unreduced models is estimated to be approximately
one month and seven 40 days. In contrast, for the reduced-order models for
p = 8, the computational demands for running all model classes are reduced to

30 hours (2155 minutes as shown in the last row of Table 3.5), while for the
reduced-order models for p = 8 and » = 200 these computational demands are
drastically reduced to 40 minutes. It is thus evident that a drastic reduction in
computational effort for performing the structural identification based on a set of
monitoring data is achieved from approximately 37 days for the unreduced model
classes to 40 minutes for the reduced model classes corresponding to 8 and 200,
without compromising the predictive capabilities of the proposed damage
identification methodology. This results in a drastic reduction in the
computational effort of more than three orders of magnitude.

3.5 Conclusions

Iterative optimization algorithms and stochastic simulation algorithms involved in
both deterministic and Bayesian FE model updating formulations require a
moderate to large number of FE model re-analyses. For large size FE models with
hundreds of thousands or even million DOF, the computational demands may be
excessive. Exploiting certain stiffness-related parameterization schemes, often
encountered in FE model updating formulations, to guide the division of the
structure into components results in exact linear representations of the Craig-
Bampton reduced stiffness matrix as a function of the model parameters with
coefficient matrices computed and assembled once from a single CMS analysis of
a reference structure. Further significant reductions in the size of the reduced
system are shown to be possible using characteristic interface modes estimated for
each interface between components. Re-analyses required in FE model updating
formulations are associated with the solution of the eigenproblem of the reduced-
order system, completely avoiding the re-analyses of the component fixed-
interface and characteristic interface modes as well as the re-assembling of the
reduced system matrices. FE model updating and damage identification results
using a solid model of a bridge demonstrated the implementation, computational
efficiency and accuracy of the proposed model reduction methodology. The
computational effort was reduced drastically by more than three orders of
magnitude. In particular, for the application in damage identification the
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computational time was reduced from approximately one month to several
minutes. Further computational savings can be obtained by adopting surrogate
modes to drastically reduce the number of reduced-order system re-analyses and
parallel computing algorithms to efficiently distribute the computations in available
multi-core CPUs (Angelikopoulos et al, 2015; Hadjidoukas et al., 2015).
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CHAPTER 4 Bayesian Uncertainty Quantification and
Propagation Framework for Nonlinear

Systems

4.1 Introduction

The type of nonlinearities encountered in structural dynamics include hysteretic
nonlinearities as well as nonlinearities arising from contact and impact between
surfaces, as well as from nonlinear isolation devices such as nonlinear dampers in
civil infrastructure and nonlinear suspension models in vehicles. In a number of
structural dynamics cases, the nonlinearities are localized in isolated parts of a
structure, while the rest of the structure behaves linearly. Such localized
nonlinearities can be found in vehicles where the frame usually behaves linearly
and the nonlinearities are activated at the suspension mainly due to the dampers.
In civil engineering structures the nonlinearities are at some cases localized at the
various structural elements (dampers, etc) introduced to isolate the structure
during system operation.

For nonlinear models of structures the quantification of the uncertainties in the
model parameters depends on the measured quantities that are available.
Depending on the type of application, two types of measured quantities are
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usually available: full response time histories or frequency response functions.
The likelihood formulation in the application of the Bayes theorem depends on the
type of the measured quantities provided.

Details on the formulation of the likelihood for the case where full measured
response time histories are available can be found in (Metallidis et al., 2003;
Metallidis et al., 2008; Jensen et al., 2013). The formulation often depends on the
user postulation of the prediction errors that represent the discrepancy that always
appears between the model predictions obtained from a particular value of the
model parameters and the corresponding data that are available from experiments.
The likelihood and the posterior pdfs of the parameters of a finite element model
are functions of the response time histories predicted by the finite element model.
Each posterior evaluation requires the integration of the nonlinear set of equation
of motion of the structure.

The formulation of the likelihood for the case where nonlinear frequency response
spectra are available can be found in (Jensen et al., 2014; Natsiavas et al., 2013).
The likelihood and the posterior pdf of the parameters of the nonlinear finite
element model are functions of the frequency response spectra predicted by the
finite element model. Each posterior evaluation requires the integration of the
nonlinear set of equation of motion of the structure for as many different numbers
of harmonic excitations as the number of frequency response spectra ordinates.
This, however, increases substantially the computational effort.

At the model level, model reduction techniques based on CMS are readily
applicable for special class of problems where the nonlinearities are localized at
isolated parts of the structure. In such cases the structure can be decomposed into
linear and nonlinear components and the dynamic behavior of the linear
components be represented by reduced models. An implementation of such
framework can be found in (Natsiavas et al., 2013) where it is demonstrated that
substantial reductions in the DOFs of the model can be achieved which eventually
yield to reduction in computational effort for performing a simulation run without
sacrificing the accuracy.

For Bayesian asymptotic approximations, analytical approximations of the
gradients of objective functions are not readily available. The development time
and software implementation may be substantial. For certain classes of hysteretic
nonlinearities, formulations for the sensitivities of the response quantities to
parameter uncertainties have been developed (Barbato et al., 2007) and can be
used within the Bayesian framework. However, it should be pointed out that such

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



4. Bayesian UQ&P Framework for Nonlinear Systems 78

formulation are model intrusive and are not easily integrated to commercial
computer software packages available for simulating nonlinear structural
dynamics problems. For the model cases where adjoint techniques can be applied,
the development time may be substantial. However, for a number of important
nonlinear class of models (e.g. impact, hysteretic) or output quantities of interests
(e.g. frequency response spectra), adjoint methods are not applicable. The absence
of adjoint formulation may substantially increase the computational cost and/or
render gradient-based optimization algorithms unreliable for use with Bayesian
asymptotic approximation tools. Stochastic optimization and stochastic
simulations algorithms within a HPC environment are respectively the preferred
algorithms to be used with Bayesian asymptotic and stochastic simulation tools.

At the algorithmic level, surrogate estimates are also applicable. For the case
where the measurements are given as full response time histories, the surrogate
estimates are applied to approximate the value of the log posterior PDF. For the
case where the measurements consist of nonlinear frequency response spectra, it is
more convenient computationally to apply the surrogate estimates for each
spectral ordinate of the spectrum (Natsiavas et al., 2013). In addition, in the latter
case, it should be pointed out that the frequency response spectral values can run
in parallel, taking advantage of HPC environments to speed up computations.

A Bayesian uncertainty quantification and propagation (UQ&P) framework is
presented for identifying nonlinear models of dynamic systems using vibration
measurements of their components. The measurements are taken to be either
response time histories or frequency response functions of linear and nonlinear
components of the system. For such nonlinear models, stochastic simulation
algorithms are suitable Bayesian tools to be used for identifying system and
uncertainty models as well as perform robust prediction analyses. The UQ&P
framework is applied to a small scale experimental model of a vehicle with
nonlinear wheel and suspension components. Uncertainty models of the nonlinear
wheel and suspension components are identified using the experimentally
obtained response spectra for each of the components tested separately. These
uncertainties, integrated with uncertainties in the body of the experimental
vehicle, are propagated to estimate the uncertainties of output quantities of interest
for the combined wheel-suspension-frame system. The computational challenges
are outlined and the effectiveness of the Bayesian UQ&P framework on the
specific example structure is demonstrated.

This chapter is organized as follows. In Section 4.2, the Bayesian framework for
uncertainty quantification, calibration and propagation is presented for the case
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that the measured response quantities are full response time histories. Moreover,
the Bayesian framework for the case that response spectra are utilized, is
presented in Section 4.3.The suitable Bayesian tools that are used for identifying
system and uncertainty models as well as perform robust prediction analyses are
also discussed in this section. In Section 4.4, the identification of the uncertainty
models of the nonlinear wheel and suspension components is investigated using
the experimentally obtained response spectra. The uncertainty models for the
vehicle frame are also obtained using experimental data. The uncertainty is
propagated to output quantities of interest for the combined wheel-suspension-
frame system. In Section 4.5, the computational challenges are outlined and the
effectiveness of the Bayesian UQ&P framework on the specific example structure
is demonstrated. Finally, the conclusions are summarized in Section 4.6.

4.2  Bayesian Framework using Response Time Histories

4.2.1 Parameter Estimation

Consider a parameterized FE model class M of a nonlinear structure and let
0 €R™ be the parameter set to be estimated using a set of measured response
quantities. In nonlinear structural dynamics, the measured quantities may consist
of full response time histories D= )7j(k)eRN°,j:L---No&kzl,m,ND at
N, DOF and at different time instants t =kAt, where k is the time index and
N, is the number of sampled data with sampling period At, or response spectra

D=y, € R ,k=1,--,N at different frequencies w,, where k is a frequency

domain index. In the context of this Section of Chapter 4, in order to apply the
Bayesian formulation for parameter calibration of non-linear models, we consider
that the data consists of measured time histories.

In addition, let y,(k;6,) € RY,j=1.--,N, &k =1,---,N_ be the predictions of
the response time histories for the same quantities (displacements, accelerations
and forces) and points in the structure, from the non-linear model corresponding
to a particular value of the parameter set § € R™ . The prediction error equation

between the sampled response time history of the quantity of interest at time
t =kAt and the corresponding response time history predicted from the model for

a particular value of the parameter set § € R™ can now take the form

9,0 =y, (ki 0] M) +-¢,(K) (4.1)
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where j=1,---N,and k=1,---,N, .

Prediction errors, measuring the fit between the measured and the model predicted
response time histories, are modeled by Gaussian distributions. The difference
between the measured and model predicted response is attributed to both
experimental errors and modeling error. The prediction errors of a response time
history at different time instants are assumed to be independent zero-mean
Gaussian variables with equal variances for all sampling data of a response time
history, but each time history is allowed to have a different prediction error
associated with it. This formulation takes into account the fact that each measured
time history is generally obtained from a different sensor (displacement,
acceleration or force sensor) with a different accuracy and noise level, and this
results in a number of prediction errors equal to the number of measured time
histories.

Under the zero-mean Gaussian assumption for the prediction error, the error term
& ~ N(1,2(6,)) is a Gaussian vector with mean zero =0 and covariance

3(6,) . It is assumed that the error terms g ,k =1,---,N, are independent. This

assumption may be reasonable for the case where the measured quantities are the
response spectra. However, for measured response time histories this assumption
is expected to be violated for small sampling periods. The effect of correlation in
the prediction error models is not considered in this study. The notation >(6,) is

used to denote that a model is postulated for the prediction error covariance
matrix that depends on the parameter setf,. The measured quantity Y, (k) also

follows a Gaussian distribution with mean yj(k;Q) and covariance >(6,),
§;(K)~N(y;(k;0),07). A diagonal matrix is a reasonable choice for the

covariance matrix, that is, 3(6,) = diag(c}y;) , where ajz are the variance

The prediction error e; provides a measure of the discrepancy between the

measured and model predicted quantities. As already stated in Chapter 2, this
generally breaks down to two terms for the prediction error, one for the
experimental error and one for the model error. In this study such a distinction is
not made, and the prediction error is thought of as a measure of the total
discrepancy between measurements and the model predictions without being able
to distinguish how much is due to experimental or modeling error. Depending on
the problem, and more specifically on the way the data was collected, o might be
considered known or unknown. In the most general case it is considered unknown
and therefore is included in the parameters for calibration, along with the
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structural model parameters. Herein, the prediction error parameters are

considered unknown and from now on are included in the parameters to be
calibrated given the data, along with the structural model parameters in the set 6.

The Bayesian method is used to quantify the uncertainty in the model parameters
as well as select the most probable FE model class among a family of competitive
model classes based on the measured data. The structural model class M is
augmented to include the prediction error model class that postulates zero-mean
Gaussian models. As a result, the parameter set is augmented to include the
prediction error parameters 6,. Using PDFs to quantify uncertainty and following

the Bayesian formulation (Beck and Katafygiotis, 2009; Christodoulou and
Papadimitriou, 2007; Yuen, 2010), the posterior PDF p(6|D,M) of the structural

model and the prediction error parameters ¢=(0 ,0 ) given the data D and the
model class M can be obtained in the form

(DM |
0|D,M)= exp|—=J(0)|7(6|M 4.2
P(EID.M) (2 det (@) P QJ(_) (M) (4.2)
where
10 = [y -9 = @)y@) -9 (4.3

is the weighted measure of fit between the measured and model predicted
quantities, 7(6|M) is the prior PDF of the model parameters ¢ and p(D|M) is the

evidence of the model class M.

For a large enough number of experimental data, and assuming for simplicity a
single dominant most probable model, the posterior distribution of the model
parameters can be asymptotically approximated by the multi-dimensional
Gaussian distribution (Beck and Katafygiotis, 2009; Christodoulou and
Papadimitriou, 2007; Yuen, 2010) centered at the most probable value § of the
model parameters that minimizes the function g(8;M)=—1In p(0|D,M) with
covariance equal to the inverse of the Hessian Ah(€)of the function g(0;M)
evaluated at the most probable value. For a uniform prior distribution, the most
probable value of the FE model parameters 6 coincides with the estimate
obtained by minimizing the weighted residuals. An asymptotic approximation
based on Laplace’s method is also available to give an estimate of the model
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evidence p(D|M) (Yuen, 2010). The estimate is also based on the most probable
value of the model parameters and the value of the Hessian A(€) .

The asymptotic approximations may fail to give a good representation of the
posterior PDF in the case of multimodal distributions or for unidentifiable cases
manifested for relatively large number of model parameters in relation to the
information contained in the data. For more accurate estimates, one should use
SSA to generate samples that populate the posterior PDF in (4.2). Among the SSA
available, the TMCMC algorithm (Beck and Katafygiotis, 2009) is one of the
most promising algorithms for selecting the most probable model class among
competitive ones, as well as finding and populating with samples the importance
region of interest of the posterior PDF, even in the unidentifiable cases and multi-
modal posterior probability distributions. In addition, the TMCMC samples
0,i=1---,N,, drawn from the posterior distribution can be used to yield an

estimate of the evidence p(D[M.) required for model class selection (Beck and

Katafygiotis, 2009; Christodoulou and Papadimitriou., 2007; Ching and Chen
,2007) . The TMCMC samples can further be used for estimating the probability
integrals encountered in robust prediction of various performance quantities of
interest (Papadimitriou et al., 2001).

4.2.2 Model Selection

The Bayesian probabilistic framework is also used to compare two or more
competing model classes and select the optimal model class based on the available

data. Consider a familyM= M i=1---,u , of p alternative, competing,
parameterized FE and prediction error model classes and let ¢ < R™ be the free

parameters of the model class M. . The posterior probabilities p(M.|D) of the
various model classes given the data D is (Beck and Au, 2002)

_ p(DIM,)P(M,)
p(M,|D)= P(DM._) (4.4)

where P(M.) is the prior probability and p(D[M,) is the evidence of the model
class M.. The optimal model class M, , is selected as the one that maximizes
p(M.|D) given by (4.4). For the case where no prior information is available, the
prior probabilities are assumed to be P(M )=1/4 , so the model class selection is

based solely on the evidence values.
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For model selection, an asymptotic approximation (Papadimitriou et al., 2001;
Beck and Yuen, 2004; Yuen, 2010) based on Laplace’s method can also be used
to give an estimate of the evidence integral in that appears in the model selection
equation (4.4). Substituting this estimate in (4.4) the final asymptotic estimate for
p(M_ |D) is given in the form

P Do) @ My
— P(M.) (4.5)
p(D[M,, )] det|h(0,M)]

P(Mi‘D):[

where Q is the most probable value of the parameters of the model class M. and
h(0)=VV'g,(0,M) is the Hessian of the function g,(6;M.) for the model
classM_ . It should be noted that the asymptotic estimate for the probability of a
model class M, can readily be obtained given the most probable value and the

Hessian of the particular mode. For the multi modal case the expression (4.5) can
be generalized by adding the contributions from all modes.

4.3 Bayesian Formulation for Parameter Estimation based on
Frequency Response Spectra

To apply the Bayesian formulation for parameter estimation of non-linear models
based on frequency response spectra (Yuen and Katafygiotis, 2003; Jensen et al.,
2014; Natsiavas et al., 2013), we consider that the data consists of measured

response spectra D= § €R™ k=1---,N at N, DOF and at different
frequencies w,, where k is a frequency domain index and N is the number of
sampled data in the frequency domain. In addition, let s (6, )€R™ k=1---,N

be the model response predictions of response spectra, corresponding to the DOFs
where measurements are available, given the model class M and the parameter set
6 € R™ . It is assumed that the observation data and the model predictions satisfy

the prediction error equation
S =56, M) +¢ (4.6)

where k=1---,N. The error term g ~ N(x,X(6,)) is a Gaussian vector with

mean zero p =0 and covariance 3(6,). It is assumed that the error terms g,
k=1---,N are independent, an assumption that is very reasonable for the case
that the measured data consists of response spectra. The measured quantity §
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also follows a Gaussian distribution with mean s (6,,) and covariance 3(6,),
§ ~N(5(6,).2(8))-
The likelihood function p(D|6,o), which quantifies the probability of obtaining

the data given a specific set of structural parameters and prediction error
parameters, is derived by noting that the measured response spectra §_are implied

from (4.6) to be independent Gaussian variables with mean s (6,) and variance
o’ . Taking advantage of the independence of the measured quantities both at

different frequencies of the same response spectra as well as between response
spectra measured at different locations, the likelihood is formulated as follows.

p(D|Q,g)=H1N‘[ p($;(k)16.0) (4.7)

Substituting with the formula for the Gaussian probability density function and
rearranging terms one obtains that

p(D|8.o)=

1 1 1 N )
NN, o exp{—— _22[§J(k)_sj(k;g)]} (4.8)
(«/27[) OH"iN 2430

=L

Introducing the overall fit function
_ 11
J(00)= N_Z_Z‘]j (9) (4.9)
where

j(K)=s; (k)] (4.10)

Z|+
M=
—
>

1

represents the measure of fit between the measured and the model predicted
response spectra, the likelihood function can be compactly written in the form

p(DIb.0)=—— e (Q;g)} (4.11)

0 o)
(Ver) "]

Substituting (4.11) in (2.16) one derives the posterior probability distribution of
the parameters in the form
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p(6.c|D)= E(Q’NQN) N exp{—%\] (Q;Q)} (4.12)
p(O)(V2z) " T]e}

It is clear from (4.11) and (4.12) that the likelihood and the posterior of the
parameters of the nonlinear finite element model are functions of the frequency
response spectra predicted by the finite element model. Each posterior evaluation
requires the integration of the nonlinear set of equation of motion of the structure
for as many different number of harmonic excitations as the number of frequency
response spectra ordinates. This, however, increases substantially the
computational effort.

4.4  Application to a Small Scale Laboratory Vehicle

4.4.1 Description of the laboratory vehicle structure

In order to simulate the response of a ground vehicle an experimental device was
selected and set up (Giagopoulos et al., 2001). More specifically, the selected
frame structure comprises a frame substructure with predominantly linear
response and high modal density plus four supporting substructures with strongly
nonlinear action. First, Figure 4.1(a) shows a picture with an overview of the
experimental set up. In particular, the mechanical system tested consists of a
frame substructure (parts with red, gray and black color), simulating the frame of
a vehicle, supported on four identical substructures. These supporting
substructures consist of a lower set of discrete spring and damper units, connected
to a concentrated (yellow color) mass, simulating the wheel subsystems, as well as
of an upper set of a discrete spring and damper units connected to the frame and
simulating the action of the vehicle suspension.
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(a)

(b)

Figure 4.1: (a) Experimental set up of the structure tested, (b) Dimensions of the
frame substructure and measurement points.

Also, Figure 4.1(b) presents more details and the geometrical dimensions of the
frame subsystem. Moreover, the measurement points indicated by 1-4 correspond
to connection points between the frame and its supporting structures, while the
other measurement points shown coincide with characteristic points of the frame.
Finally, point E denotes the point where the electromagnetic shaker is applied.
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4.4.2 Experimental Set Up

In order to identify the parameters of the four supporting subsystems, which
exhibit strongly nonlinear characteristics, a series of tests was performed. To
investigate this further, the elements of the supporting units were disassembled
and tested separately. First, Figure 4.2 shows a picture of the experimental setup
and presents graphically the necessary details of the experimental device that was
set up for measuring the stiffness and damping properties of the supports.

The experimental process was applied separately to both the lower and the upper
spring and damper units of the supporting substructures and can be briefly
described as follows. First, the system shown in Figure 4.2 is excited by harmonic
forcing through the electromagnetic shaker up until it reaches a periodic steady
state response. When this happens, both the history of the acceleration and the
forcing signals are recorded at each forcing frequency. Some characteristic results
obtained in this manner are presented in the following sequence of graphs. Next,
Figure 4.3 presents the transmissibility function of the system tested, obtained
experimentally for three different forcing levels while Figure 4.5 presents the
transmissibility function of a wheel DOF of the vehicle, obtained experimentally
for two different forcing levels.

Figure 4.2: Experimental set up for measuring the support stiffness and damping
parameters.
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Figure 4.3: Transmissibility function of the support system for three different
forcing levels.
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Figure 4.4: History of the external force applied with a fundamental harmonic
frequency w=4Hz .
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Figure 4.5: Transmissibility function of a wheel DOF of the vehicle for two
different forcing levels.
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Figure 4.6: History of the external force applied with a fundamental harmonic
frequency @ =3.4Hz .
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Specifically, transmissibility function is defined as the ratio of the root mean
square value of the acceleration to the root mean square value of the forcing signal
measured at each forcing frequency. The blue, red and black lines correspond to
the smallest, intermediate and largest forcing amplitude, respectively. Clearly, the
deviations observed between the forcing levels indicate that the system examined
possesses nonlinear properties. Moreover, neither the applied forcing is harmonic,
especially within the frequency range below @=10Hz. To illustrate this, Figure
4.4 shows two periods of the actual excitation force applied for the same three
excitation levels in obtaining the results of Figure 4.3, which were recorded at a
fundamental forcing frequency of w=4Hz. Moreover, Figure 4.6 shows two
periods of the actual excitation force applied to the vehicle for the two excitation
levels in obtaining the results of Figure 4.5, which were recorded at a fundamental
forcing frequency of w=3.4Hz.

A number of models of the restoring and damping forces, say f, and f

respectively, and shown in Figure 4.7 were tried for modeling the action of the
supports and compared with the experimental results.

Figure 4.7: Mathematical model of the experimental set up for measuring the
support stiffness and damping parameters

The classic linear dependence of the restoring force on the displacement and of
the damping forces on the velocity of the support unit was first assumed.
However, critical comparison with the experimental results using the Bayesian
model selection framework demonstrated that the outcome was unacceptable in
terms of accuracy. Eventually it was found that an acceptable form of the
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restoring forces is the one where they remain virtually in a linear relation with the
extension of the spring, namely

f(x)=kX (4.13)

while the damping force was best approximated by the following formula
C, X

Cyt [ X|

As usual, the linear term in the last expression is related to internal friction at the

support, while the nonlinear part is related to the existence and activation of dry
friction. More specifically, in the limit ¢, — Othe second term in the right hand

f,(X)=c X+ (4.14)

side of (4.14) represents energy dissipation action corresponding to dry friction.
On the other side, in the limitc, — oo, this term represents classical viscous action

and can actually be absorbed in the first term.

4.4.3 Model Reduction of the Vehicle Frame

Detailed finite element models were created that correspond to the model used for
the design of the experimental vehicle. The structure was first designed in CAD
environment and then imported in COMSOL Multiphysics finite element
modelling environment (COMSOL AB COMSOL Multiphysics User’s Guide,
2005). The models were constructed based on the geometric details and the
material properties of the structure. The finite element models for the vehicle were
created using three-dimensional triangular shell finite elements to model the
whole structure. A model of 15,202 finite elements having 45,564 DOF was
chosen for the adequate modelling of the experimental vehicle. This model is
shown in Figure 4.8. It should be noted that the size of the elements in the FE
mesh is the maximum possible one that can be considered, with typical element
length of the order of the thickness of the deck cross-section. The entire
simulation for assembling the mass and stiffness matrices of the structure or its
components is performed within the COMSOL Multiphysics modelling
environment and exported in Matlab environment for further processing using
CMS techniques and FE model updating methods.

Component mode synthesis methods (CMS) are implemented to substantially
reduce the computational effort and save significant computational time. The
hundreds of thousands of degrees of freedom (45,564 DOFs) of finite element
model of the vehicle are drastically reduced to a much smaller number (668
DOFs), by implementing CMS technique.
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The cut-off frequency w, is introduced to be the highest modal frequency that is

of interest in FE model updating. In this study the cut-off frequency is selected to
be equal to the 20™ modal frequency of the nominal model. i.e. @, =160.8531 Hz.

The first twenty modes of the vehicle frame are presented in Table 4.1.

Figure 4.8: Vehicle structure with its FE mesh

Figure 4.9: Components of FE model of vehicle structure.
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Table 4. 1: The first twenty identified and predicted modes of the vehicle frame

Difference
between

Identified Nominal FEM Identified and

Mode prichency  Freaueny | FEFredited
(H2) (Hz) Frequencies
(%)
1 23.2139 23.2348 0.0902
2 42.1225 39.1265 -7.1126
3 42.5020 41.6084 -2.1024
4 48.2753 47.2930 -2.0349
5 58.1552 57.5692 -1.0077
6 69.0429 66.2020 0.0151
7 69.4700 69.0533 -4.7042
8 80.0413 80.4391 0.4969
9 86.1449 83.2491 -3.3615
10 100.2428 101.6080 1.3619
11 102.5815 105.9357 3.2701
12 110.4424 106.6243 -3.4572
13 115.1205 112.5407 -2.2409
14 123.6425 129.0741 4.3930
15 127.6472 121.7747 -4.6006
16 132.4204 131.7794 -0.4841
17 134.9544 133.8787 -0.7970
18 138.9425 137.3287 -1.1615
19 148.6929 146.5237 -1.4590
20 164.3888 160.8531 -2.1497

For demonstration purposes, the vehicle is divided into eleven physical
components shown schematically in Figure 4.9. The first component is related to
the floor of the vehicle, while the rest ten components are related to the frame of
the structure. The thirteen interfaces between the components are also shown in
Figure 4.9.

The effectiveness of the CMS technique as a function of the number of modes
retained for each component is next evaluated. For each component it is selected
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to retain all modes that have frequency less than m,,, = paw,, where the p values

affect computational efficiency and accuracy of the CMS technique.
Representative p values range from 2 to 10. The total number of internal DOFs

per component before the model reduction is applied are shown in Figure 4.10.
The number of modes retained per components for various o values is also given
in Figure 4.10. For the case p =8 , a total of 65 internal modes are retained for all

11 components. The total number of DOFs of the reduced model is 1,253 which
consist of 65 fixed interface generalized coordinates and 1,188 constraint interface
DOFs for all components. It is clear that a one order of magnitude reduction in the
number of DOFs is achieved using CMS. The total number of internal DOF and
retained modes for p=8, p=5 and p=2 within all the components are
reported in the second row of Table 4.1. The total number of internal and
boundary DOF of the unreduced model are reported in the second
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Figure 4.10: Number of DOF per component of the FE model of vehicle
structure.
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column of Table 4.2 based on the components and interfaces shown in Figure 4.9.
It is clear from the results in Table 2.1 and Figure 4.10 that a more than two
orders of magnitude reduction in the number of DOF per component is achieved
using CMS.

Figure 4.11 shows the fractional error between the modal frequencies computed
using the complete FE model and the modal frequencies computed using the CMS
technique as a function of the mode number for p =2, 5 and 8. It can be seen that
the error for the lowest 20 modes fall below 10~ for p=8, 10 for p=5and
107 for p =2. A very good accuracy is achieved even for the case of p =2. The

significant reduction in number of generalized coordinates of the reduced system
and the increased accuracy of the results are promising for using the proposed
model reduction method in FE model updating.

It is thus obvious that a large number of generalized coordinates for the reduced
system arises from the interface DOF. A further reduction in the number of
generalized coordinates for the reduced system can be achieved by retaining only
a fraction of the constrained interface modes.

The number of DOF per interface is shown in the third column of Table 4.2. For
each interface defined in Table 4.1, it is selected to retain all modes that have
frequency less than w,,, , a multiple of the cutoff frequency w, , where the
multiplication factor p is user and problem dependent. The number of modes

retained per interface for » =200 is given in the last column of Table 4.2. The
number of retained interface modes is approximately 10% of the interface DOF
for each interface. Figure 4.11 presents results for the fractional error between the
modal frequencies computed using the CMS method with retained characteristic
interface modes for » =200 for each interface and the modal frequencies
computed using the complete FE model as a function of the mode number. It can
be seen that the fractional error for most of the lowest 20 modes of the structure
fall well below 107 for » =200 and p values as low as p =5 . Thus, the value
of » =200 gives accurate results in this case, while the number of retained
interfaces modes for all interfaces is 652 which corresponds to half of the total
number of interface DOF.
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Table 4.2: Total number of internal and interface DOF for the full (unreduced)
and reduced models.

Structure Retained Retained Retained
Interfaces without modes modes modes
Reduction p:8, p:5, p:2,
v =200 v =200 v =200
Total Internal
DOFs 44,376 65 46 16
Total Boundary
DOFs 1,188 652 652 652
Total DOFs 45,564 717 698 668
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Figure 4.11: Fractional modal frequency error between the predictions of the full

model and the reduced model as a function of eigenmode number and for different
values of p and v
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4.4.4 Model Updating of the Vehicle Frame

For demonstration purposes, the FE model is parameterized using six parameters
associated with the modulus of elasticity of one or more structural components

shown in Figure 4.9. The parameterization is graphically depicted in Figure 4.12.
Specifically, the first parameter 6, accounts for the modulus of elasticity of the

lower part of the experimental vehicle, the second parameter 6, accounts for the
modulus of elasticity of the parts (joints) that connect the lower part with the
upper part of the experimental vehicle, while the other four parameters 0,, 6, , 0,
and 6, account for the modulus of elasticity of the different components of the

upper part of the experimental vehicle Note that for substructures parameterized
by a single parameter, two or more components per substructure have been
introduced, demonstrating the flexibility of the proposed methodology. The
parameters are introduced to scale the nominal values of the properties that they
model so that the value of the parameters equal to one corresponds to the nominal

value of the FE model. The nominal FE model corresponds to values of
O =---=0,=1.

Figure 4.12: FE model parameterization based on 6 parameters

The FE model is updated using the simulated modal data for the lowest ten
modes. The first ten modeshapes of the vehicle frame predicted by the FE model,
created in Comsol, are graphically illustrated in Figures 4.13-4.22.
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Figure 4.13: Modeshape predicted by the finite element model for the first mode
at 23.23 Hz

Figure 4.14: Modeshape predicted by the finite element model for the second
mode at 39.13 Hz.
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Figure 4.15: Modeshape predicted by the finite element model for the third mode
at41.61 Hz.

Figure 4.16: Modeshape predicted by the finite element model for the fourth
mode at 47.29 Hz.

Figure 4.17: :Modeshape predicted by the finite element model for the fifth mode
at 57.57 Hz.
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Figure 4.18: Modeshape predicted by the finite element model for the sixth mode
at 66.20 Hz.

Figure 4.19: Modeshape predicted by the finite element model for the seventh
mode at 69.05 Hz.

Figure 4.20: Modeshape predicted by the finite element model for the eight mode
at 80.44 Hz.
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Figure 4.21: Modeshape predicted by the finite element model for the ninth mode
at 83.25 Hz.

Figure 4.22: Modeshape predicted by the finite element model for the tenth mode
at 101.60 Hz.

A sensor configuration involving 24 sensors is considered. The sensors are placed
along the frame at the locations and directions as shown in Figure 4.23, measuring
along the longitudinal, transverse and vertical directions. To investigate the
accuracy and computational efficiency of the proposed CMS formulation, the FE
model updating is first performed using the single objective optimization method
by selecting the weight in (4) to be w=1. Results for the accuracy of the model
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parameters and the computational effort are presented in Table 4.2 for the
following six cases involving different reduction schemes in internal and
boundary DOF: (a) p=8, (b) p=5, (c) p=2, (d) p=8 and » =200, (e)
p=>5and »=200,and (f) p=2 and »=200.

Figure 4.23: Sensor configuration involving 24 sensors

Table 4.3: Accuracy and computational effort for FE model updating based on full and
reduced order models of vehicle.

Multi-

FE Total Equally Weighted Method objective

Models DOFs Method
Error (%) Function Time Time
Max Mean Evaluations (sec) (sec)

Full Model 45,564 0.00 0.00 16 1,262 13,177
p=2=8 1,252 034 0.15 18 106 1,666
p=>5 1,234 026 0.13 18 103 1,610
p=2 1,204 5.05 2.26 17 96 1,467
p=28,r=200 717 041 0.18 18 25 394
p=>5,r=200 698 0.32 0.15 18 25 384
p=2,v=200 668 5.09 2.39 17 23 348
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The initial values of the parameters used to carry out the optimization are
0. =12, i=1---,6. The errors in the fourth column of the table are defined by

the norm \/H(Qest —p /g™

, /' N, <100 of the fractional errors of the optimal

model parameter estimates 9*' obtained from the CMS-reduced FE model and
the optimal estimates ™" obtained from the full (non - reduced) FE model.

The number of function evaluations and the computational effort are also shown
in Table 4.2. The computational time for carrying out the optimization for the
reduced-order models is 5% of the time required for the full model. Consequently,
significant gains in computational effort are achieved without sacrificing the
accuracy in the model parameter estimates. A further reduction in the
computational effort, close to two order of magnitude, is achieved by reducing the
interface degrees of freedom using »~ =200, while the accuracy is maintained to
acceptable levels .Overall, for p=8 and » =200, the computational effort is
drastically reduced by two to three orders of magnitude, without sacrificing in
accuracy since the error is smaller than 0.41%.
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Figure 4.24: Comparison of Pareto fronts for the full and reduced-order FE
models

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



4. Bayesian UQ&P Framework for Nonlinear Systems 104

Results are next presented for the multi-objective model updating framework.
Figure 4.24 and Figure 4.25 present the Pareto front and the Pareto optimal
models, respectively, computed using the full FE model and the six reduced-order
models introduced before. The Pareto front and optimal solutions are represented
by 20 points computed by the Normal Boundary Intersection algorithm (Das and

Dennis, 1998). It is clear from Figure 4.25, that the quality of the estimates
provided is excellent for the reduced-order models with p=8, p=5, p=8 &

v=200 and p=5 & v=200and very good for the reduced-order models with
p=2 and p=2 & v=200. The computational effort for performing the FE
model updating using the full and reduced-order models is reported in the last
column of Table 4.3. The computational time required to carry out the multi-
objective optimization for obtaining the Pareto optimal models using the full FE
model is of the order of 4 hours. Compared to the full model, the computational

demands are substantially reduced by a factor of 10 for the reduced models with
p=8, p=5and p=2 and by more than two orders of magnitude for the

reduced models with p=8 & v=200, p=5 & v=200 and p=2 & v =200.
Specifically, the computational time is almost half an hour when only the internal
DOF of each component are reduced and 5 minutes when both internal and
interface DOF are reduced.
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Figure 4.25: Comparison of Pareto models in the 2-d projection (#6,, 6,) of the 6-d

parameter space for the full and reduced-order FE models.
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A drastic reduction in computational effort is thus achieved by using the reduced-
order models, without sacrificing in accuracy of the model parameter estimates as
shown in Figure 4.24 and Figure 4.25.

4.5 Bayesian Uncertainty Estimation and Propagation of the
Vehicle Structure

The value of the parameters appearing in the assumed models of the restoring and
damping forces of the supports, like the coefficients k,c,,c, and c, in (4.13) and

(4.14) are determined by applying the Bayesian uncertainty quantification and
calibration methodology. Results are obtained based on experimental response
spectra values for both the displacement and acceleration of either the wheel or
the suspension component. It is assumed that the prediction errors in the Bayesian
formulation are uncorrelated  with prediction error  variance
¥ =diag(%,,>,) =diag(c’l,051), where ¥, =071 and X,=o0l are the
covariance matrices for the prediction errors corresponding to the displacements
and accelerations, respectively. The parameter space is six dimensional and
includes 6 =(k,c,,c,,c,;,0,,0,). Parameter estimation results are obtained using
the parallelized and surrogate-based version (Angelikopoulos et al., 2012) of the
TMCMC algorithm (Ching and Chen, 2007), with 500 samples per stage. Eight
computer workers were used to perform in parallel the computations involved in
the TMCMC algorithm. The computational time required to run all 5500 samples
for the 11 TMCMC stages, without surrogate approximation, for the SDOF model
is approximately 7 hours. Surrogate modeling (Angelikopoulos et al., 2012)
reduces further this time by approximately one order of magnitude. For
illustration purposes, results for the TMCMC samples projected in the two-
dimensional parameter spaces (k,c,), (k,c,),(k,c,),(k,a,),(k,0,),(c,c,), and
(c,,c;) are shown from Figure 4.26 to Figure 4.33 for the SDOF system,

corresponding to the suspension component.

It is clear that the uncertainties in the damping parameters c, and c, are relatively
high and c, and c, are highly correlated along certain directions in the parameter
space.
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Figure 4.26: Model parameter uncertainty: projection of TMCMC samples in the
two dimensional parameter space (k,c,)
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Figure 4.27: Model parameter uncertainty: projection of TMCMC samples in the
two dimensional parameter space (k,c,)
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Figure 4.28: Model parameter uncertainty: projection of TMCMC samples in the
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Figure 4.29: Model parameter uncertainty: projection of TMCMC samples in the
two dimensional parameter space (k,o,)
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Figure 4.30: Model parameter uncertainty: projection of TMCMC samples in the
two dimensional parameter space (k,o,)
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Figure 4.31: Model parameter uncertainty: projection of TMCMC samples in the
two dimensional parameter space (c,,c,)

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



4. Bayesian UQ&P Framework for Nonlinear Systems

109

Current Evaluation

0.9
0.8
°
0.7
0.6
32
(8]
0.5 o
0.4 ]
° o AJ,
¢ | (¢ L4
P o '.., °
0.3 boer g Y.
- 4 U4 ﬁo 1
g A
02 ' « ’.L !
0.4 0.5 6 0.7 0.8 0.9 1 1.1

7
I

140

135

130

125

120

Figure 4.32: Model parameter uncertainty: projection of TMCMC samples in the
two dimensional parameter space (c,,c;)
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Figure 4.33: Model parameter uncertainty: projection of TMCMC samples in the
two dimensional parameter space (c,,C;)
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The parameter uncertainties are propagated through the SDOF model to estimate
the uncertainties in the displacement and acceleration response spectra. The
results are shown in Figure 4.34 and Figure 4.35 for the displacement for
moderate and strong excitation level respectively and in Figure 4.36 and Figure
4.37 for the acceleration response spectra for moderate and strong excitation level
respectively, and are compared to the experimental values of the response spectra.
An adequate fit is observed. Discrepancies between the model predictions and the
experimental measurements are mainly due to the model errors related to the
selection of the particular forms of the restoring force curves in (4.13) and (4.14).
The Bayesian model selection strategy based on equation (4.5) can be used to
select among alternative restoring force models in an effort to improve the
observed fit.
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Figure 4.34: Uncertainty propagation: displacement response spectra uncertainty
along with comparisons with the experimental data for the suspension component
for moderate excitation level.
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Figure 4.35: Uncertainty propagation: displacement response spectra uncertainty
along with comparisons with the experimental data for the suspension component
for strong excitation level.
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Figure 4.36: Uncertainty propagation: acceleration response spectra uncertainty
along with comparisons with the experimental data for the suspension component
for moderate excitation level.
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Figure 4.37: Uncertainty propagation: acceleration response spectra uncertainty
along with comparisons with the experimental data for the suspension component
for strong excitation level.

The above procedure has been repeated for the wheel component to identify the
uncertainties in the linear stiffness and nonlinear damping model. The parameter
uncertainties are again propagated through the SDOF model of the wheel to
estimate the uncertainties in the displacement and acceleration response spectra.
The results are shown in Figure 4.38 and Figure 4.39 for the displacement for
moderate and strong excitation level respectively and in Figure 4.40 and Figure
4.41 for the acceleration response spectra for moderate and strong excitation level
respectively, and are compared to the experimental values of the response spectra.
An adequate fit is observed and for the case of the wheel component, while the
discrepancies between the model predictions and the experimental measurements
are again mainly due to the model errors related to the selection of the particular
forms of the restoring force curves in (4.13) and (4.14).
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Figure 4.38: Uncertainty propagation: displacement response spectra uncertainty
along with comparisons with the experimental data for the wheel component for

moderate excitation level.

x10*
1.5 T

Mean
5% Percentile
95% Percentile
Experimental

~ 1

1

£

1<

@

: ¢

[

Q

R}

2 ¥

0 o5 =

D
¢ & &
O
&
0 ! &
0 5 10 15 20 25

w (Hz)

Figure 4.39: Uncertainty propagation: displacement response spectra uncertainty
along with comparisons with the experimental data for the wheel component for

strong excitation level.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



4. Bayesian UQ&P Framework for Nonlinear Systems

114

0.25 T
Mean
5% Percentile
JF_ 95% Percentile
02 Jr ﬂﬁ; Experimental ||
%
€ 015
-~ ES
c
o
©
g ¢
01
(8]
< =
0.05 =
&
0
0 5 10 15 20 25

w (Hz)

Figure 4.40: Uncertainty propagation: acceleration response spectra uncertainty
along with comparisons with the experimental data for the wheel component for

moderate excitation level.
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Figure 4.41: Uncertainty propagation: acceleration response spectra uncertainty
along with comparisons with the experimental data for the wheel component for

strong excitation level.
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In addition, the uncertainties in nine stiffness-related parameters of the frame
component were also estimated using the Bayesian methodology and the
experimental values for the first ten modal frequencies and the mode shape
components at 72 locations of the frame (Papadimitriou et al., 2011). The linear
finite element model has 45564 DOFs. Due to excessive computational cost
arising in stochastic simulation algorithms, the model was further reduced,
retaining only the first 30 modes of the frame. using the CMS method for FE
model updating ,presented in Chapter 3 The reduced model has 30 DOFs,
resulting in substantial computational savings of more than two orders of
magnitude.

The estimates of the model parameter values and their uncertainties for each
component are used to build the model for the combined wheel-suspension-frame
structure. The number of DOFs of the nonlinear model of the combined structure
is 45568. The parametric uncertainties are then propagated to uncertainties in the
response of the combined structure. The CMS was again used to reduce the
number of DOFs to 34 and thus drastically reduce the computational effort that
arises from the re-analyses due to the large number of TMCMC samples and the
nonlinearity of the combined system.

Figure 4.42: Points of the vehicle that uncertainties are propagated to theirs
uncertainties for the acceleration transmissibility function.

Selected uncertainty propagation results are next presented. Specifically, the
parameters of the wheel model and the model of the frame structure are kept to
their mean values and only the uncertainties in the model parameters of the
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suspension components are considered. Such uncertainties are propagated to
uncertainties for the acceleration transmissibility function at some internal,
boundary and wheel points of the vehicle that are shown in Figure 4.42.

Specifically, uncertainties are propagated to uncertainties for the acceleration
transmissibility function at a point on the wheel W2 at the back left side of the
vehicle as shown in Figure 4.41, a point on the wheel W3 at the front right side of
the vehicle as shown in Figure 4.42, the connection of the wheel with the frame
B2 at the back left side of the vehicle as shown in Figure 4.43, the connection of
the wheel with the frame B3 at the front right side of the vehicle as shown in
Figure 4.44,and for three internal points on the frame 11, 12, 13 as shown in Figure
4.47, Figure 4.48 and Figure 4.49 respectively.
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Figure 4.43: Uncertainty propagation: acceleration transmissibility function
uncertainty for combined system for the wheel DOF W2

It is observed that a large uncertainty in the response spectra is obtained at the
resonance region close to 3.4 Hz, which is dominated by local wheel body
deflections. The response in the resonance regions close to 58 Hz and 68 Hz is
mainly dominated by deflection of the frame structure.
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Figure 4.44: Uncertainty propagation: acceleration transmissibility function
uncertainty for combined system for the wheel DOF W3
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Figure 4.45: Uncertainty propagation: acceleration transmissibility function
uncertainty for combined system for DOF B2 at connection between suspension

and frame
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Figure 4.46: Uncertainty propagation: acceleration transmissibility function
uncertainty for combined system for DOF B3 at connection between suspension
and frame.
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Figure 4.47: Uncertainty propagation: acceleration transmissibility function
uncertainty for combined system for frame DOF I1.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



4. Bayesian UQ&P Framework for Nonlinear Systems 119

014 T T T T T T T T T
. 0.14 * Mean .
012 JF 4+ 5% Percentile
I B R P 95% Percentile
o1l 0.1 |
« O
L L
z 0.08 =
€ 008l | |
<= 0.08 . ,
= .
E 0.06 T
2 EN
7] .
0.04
£ 006 32 33 34 35 36 '
(%2} %_‘3
c
<
F 0.04f 4
e S *
0.02 - e -
Ly *® = = ﬁ
oo ¥ %
E3 * *=
0 r r r r r r r r r
0 10 20 30 40 50 60 70 80 90 100

o (Hz)

Figure 4.48: Uncertainty propagation: acceleration transmissibility function
uncertainty for combined system for frame DOF 12.
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Figure 4.49: Uncertainty propagation: acceleration transmissibility function
uncertainty for combined system for frame DOF 13.
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It is observed that the uncertainties in the suspension parameters do not
significantly affect the response spectra at the resonance regions. As a result,
response spectra obtained experimentally in these resonance regions for the
complete vehicle model are not expected to be adequate to identify uncertainties
in the parameters of the suspension model.

4.6 Conclusions

A Bayesian UQ&P framework was presented for identifying nonlinear models of
dynamic systems using vibration measurements of their components. The use of
Bayesian tools, such as stochastic simulation algorithms (e.g., TMCMC
algorithm), may often result in excessive computational demands. Drastic
reduction in computational effort to manageable levels is achieved using
component mode synthesis, surrogate models and parallel computing algorithms.
The framework was demonstrated by identifying the linear and nonlinear
components of a small-scale laboratory vehicle model using experimental
response spectra available separately for each component. Such model uncertainty
analyses for each component resulted in building a high fidelity model for the
combined system to be used for performing reliable robust response predictions
that properly take into account model uncertainties. The theoretical and
computational developments in this work can be used to identify and propagate
uncertainties in large order nonlinear dynamic systems that consist of a number of
linear and nonlinear components.
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CHAPTER 5 Fatigue Monitoring in Metallic Structures
using Vibration Measurements from a

Limited Number of Sensors

5.1 Introduction

A permanently installed network of sensors in a structure is often used to record
output-only vibration measurements during operation. These vibration
measurements provide valuable information for estimating important dynamic
characteristics of the structures such as modal frequencies, modeshapes and modal
damping ratios, updating finite element models, monitoring the health of the
structure by identifying the location and severity of damage, identifying the
temporal/spatial variation of the loads applied on the structure (Lourens et al.,
2012), estimating the state ( Ching et al., 2006; Wu and Smyth, 2007; Hernandez
and Bernal, 2008; Chatzi and Smyth, 2009), and updating robust predictions of
system performance ( Papadimitriou et al., 2001; Beck, 2010). Recently, output-
only vibration measurements were proposed to use for the estimation of fatigue
damage accumulation in metallic components of structures (Papadimitriou,
Fritzen et al., 2011). This is an important safety-related issue in metallic structures
since information on fatigue damage accumulation is valuable for structural risk
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assessment and for designing optimal, cost-effective maintenance strategies.
Predictions of fatigue damage accumulation at a point of a structure can be
estimated using available damage accumulation models that analyze the actual
stress time histories developed during operation (Palmgren, 1924; Miner, 1945).

The stress response time histories can be readily inferred from strain response
time histories directly measured using strain rosettes attached to the structure.
However, such predictions are only applicable for the locations where
measurements are available. A large number of strain sensors are therefore
required to cover all hot spot locations in large structures encountered in
engineering applications. Due to practical and economical considerations, the
number of sensors placed in a structure during operation is very limited and in
most cases they do not cover all critical locations. Moreover, there are locations in
the structure that one cannot install sensors such as submerged structures,
underwater locations in offshore structures (oil refinery structures, offshore wind
turbines, offshore steel jackets, etc.), heated structural components, internal points
in solid structures, and non-approachable areas of large extended structures.
Available fatigue prediction methods based only on measurements cannot be used
to predict fatigue damage accumulation at such locations where measurements are
not available. In addition, in monitoring applications of a number of structures,
acceleration measurements are conveniently used instead of strain measurements.

In order to proceed with fatigue predictions one has to infer the strain/stress
response time histories characteristics based on the monitoring information
contained in vibration measurements collected from a limited number of sensors
attached to a structure. Such predictions are possible if one combines the
information in the measurements with information obtained from a high fidelity
finite element model of the structure. It is important to note that such estimations
will reflect the actual strain time history characteristics developed on the structure
during operation and thus the corresponding fatigue damage accumulation
estimates will be more representative of the fatigue accumulated in the structure at
the point under consideration. Repeating such estimates at all points in the
structure, one is able to develop realistic fatigue damage accumulation maps that
cover the entire structure.

These developments are very important for planning cost-effective maintenance
strategies of number of structures that take into account the actual condition of the
structure instead of being based on statistical models derived from data from a
group of structures.
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The work by Papadimitriou et al. (2011) was a first attempt along this direction.
Prediction of fatigue accumulation was based solely on the spectral characteristics
of the strain time histories, assuming that the time histories can be considered
stationary over short enough time intervals. Specifically, the fatigue damage
accumulation in critical locations of the entire structure was obtained by
integrating (a) methods for predicting strain/stress response time histories and
their correlation/spectral characteristics in the entire structure from output-only
measured response time histories available at limited locations in the structure,
and (b) frequency domain methods (Benasciutti and Tovo, 2006), for estimating
fatigue damage accumulation using the spectral characteristics of the predicted
strain/stress response time histories. In particular, Kalman filter methods were
used to predict the spectral characteristics of the strain/stress response time history
at various locations within structural components using measurements available at
a limited number of locations. The main assumption was that the excitation or
portions of the excitations can be approximated by a stationary stochastic process.

For a number of applications, however, the assumption of stationarity is either
violated or is not representative of the actual excitation conditions. An obvious
case in civil engineering where the non-stationarity of the excitation and response
is pronounced includes the passage of trains or heavy trucks over metallic bridges.
The fatigue under train or large truck loads is an important safety issue. However,
the damage accumulation predictions proposed in Papadimitriou et al. (2011) are
not applicable. Consequently, there is a need to use new estimation methods
capable of predicting the full strain response time histories that are more
appropriate in case of non-stationary excitations.

In this chapter, the problem of estimating the full strain time histories
characteristics at critical locations of the structure using operational vibration
measurements from a limited number of sensors is presented. The measurements
may consist of response time histories such as e.g. strain, acceleration, velocity,
displacement, etc. Moreover, this chapter deals with the use of such estimates to
predict fatigue damage accumulation in the entire body of a metallic structure and
lays out the formulation for estimating fatigue using output-only vibration
measurements and outlines methods for estimating the stress response history
characteristics required in deterministic and stochastic fatigue theories. Similar
estimation techniques can be used to estimate other important response
characteristics in the entire body of the structure, such as displacements,
velocities, accelerations, etc. The analyses in this study are first implemented to
the case of linear structures and then have been extended to cover nonlinear
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models of structures. The stress response quantities are predicted at locations
subjected to uni-axial stress states. The measured quantities are considered to be
accelerations, displacements or strains or a combination of accelerations,
displacements and strains.

The objective of this work is to formulate the fatigue prediction problem, illustrate
the methodology and point out its use in evaluating the damage accumulation in
the entire structure from a limited number of vibration measurements. For this, the
analyses in this study are restricted to the case of stress response predictions at
locations subjected to uni-axial stress states for both linear and nonlinear
structures. The extension to multi-axial stress processes can be accomplished by
using recent developments in frequency domain methods for stochastic fatigue
based on spectral techniques (Preumont and Piefort, 1994; You and Lee, 1996;
Pitoiset and Preumont, 2000). These methods reduce the multi-axial stress state to
an equivalent uniaxial stress state that can be treated by available fatigue
estimation techniques based on spectral methods.

This chapter is organized as follows. In Section 5.2, the deterministic and
stochastic fatigue damage accumulation formulations are outlined. Section 5.3
presents the methods for estimating the strain response time history characteristics
using operational vibration measurements, that are required in the fatigue
formulations. In Section 5.4, state of the art algorithms for joint identification of
state and input information are presented. Finally, Section 5.5 demonstrates the
effectiveness of the proposed methodology using a chain-like mass-spring multi-
degree-of-freedom (MDOF) structure and a small scale vehicle-like frame
structure. Conclusions are summarized in Section 5.6.

5.2  Fatigue monitoring using operational vibrations

5.2.1 Deterministic Fatigue Damage Accumulation

The Palmgren-Miner rule (Palmgren, 1924; Miner, 1945) is commonly used to
predict the damage accumulation due to fatigue. According to this rule, a linear
damage accumulation law at a point in the structure subjected to variable
amplitude stress time history is defined by the formula

D :i;— (5.1)

is n, the number of cycles at a stress level o,, N, is the number of cycles
required for failure at a stress level o, and k is the number of stress levels
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identified in a stress time history at the corresponding structural point. S-N fatigue
curves available from laboratory experiments on simple specimens subjected to
constant amplitude loads, are used to describe the number of cycles N, required
for failure in terms of the stress level o, . The number of cycles n. at a stress level

o; is usually obtained by applying stress cycle counting methods, such as the

rainflow cycle counting, on the stress time histories measured or estimated for the
point under consideration. The fatigue damage accumulation at a point requires
that the full stress time histories are available. The fatigue accumulation model
can be revised to account for a non-zero mean stress according to the Goodman
relationship (Tunna, 1986).

Aoy, = Ao, (1—2m) (5.2)
O,

u

where Aoy, is the modified stress cycle range, Aoy is the original stress cycle
range, o, Is the mean stress, and o, is the static strength of the material.

Applying Miner’s rule, the fatigue damage of a structural detail depends on the
stress range spectrum (stress range Ao and number of stress cycles n) and the
fatigue detail category classified in the Eurocode 3 (EN 1993-1-9 Eurocode 3,
2005) as follows:
e n. Ao
m+ J j ym+2 53
Z5><106 o ;5 106(A ) (3)

Ao > Aop Ao < A(Tj < Aop

where Ao, is the constant amplitude fatigue limit at 5x10° cycles; Ao, is the
cut-off limit; Ac; and Ao, are the i and j"stress ranges, n, and n; are the
number of cycles in each Ao, and Ao;block, and k, and k, represent the number
of different stress range blocks above or below the constant amplitude fatigue
limit Aoy, .

In Eurocode 3, each fatigue detail category is designated by a number which
represents, in N/mm?, the reference value Ao, for the fatigue strength at 2 million

cycles. As this study focuses on the accuracy of the fatigue damage predicted by
the proposed method, the fatigue detail category 36 is adopted to illustrate the
method. The following values of the parameters of the design S-N curves are
recommended by Eurocode for detail category 36: m=3, Ao, =26.5MPa

andAo, =14.5 MPa.
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5.2.2 Estimation of strains at finite element level

The relation between the strain and the displacement at all DOFs depends on the
type of the finite elements used. It can be readily obtained using the type of finite
element used, the shape functions and the coordinates of the nodes of the elements
and the strain points. Usually commercial finite element codes are not open to the
user to implement such relationships. As a result, for applications where the mass,
stiffness and modal properties are computed once in commercial finite element
codes and then they are transferred in Matlab for further processing, such relations
are not available and have to be build up. In the following, the procedure to build
the expression that relates the strains at a finite element with the element nodal
displacement is outlined.

Let £ denote the strain at a point within the finite element e and let u® be the

vector of nodal displacements. Assuming a linear model and using the finite
element formulation, the relation between the strain and the nodal displacement
vector is given by

Ne
£® =3 aly® @7y (5.4)
i=1

where N_ is the number of element DOFs, and a’® are constants that depend on

the element type, location of nodal points in space, the element shape functions
and the location of the strain point within the finite element. The relation between

the strain ¢® and the element nodal displacement vector u® is completely
defined by the coefficients al® which are independent of the loading type (static
or dynamic) or the temporal-spatial variation of the excitations. The N, unknown
a®, i=1---,N, , can then be computed from at least as many as N, static finite
element analyses as follows.

For this purpose, M (M > N,) static loading patterns corresponding to load

vectors p;,---, Py . Let & and u® be the strain and nodal displacement vector,
respectively, obtained at the element level for the loading case p;. These

quantities are usually output quantities of a commercial finite element code and
can be readily obtained from the output file. Then using (5.4), the following linear
system of M equations holds:

£ ® :H}E)Tg(e)7 j=1---\M (5.5)

]

If we consider the matrix
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£® = [ £, © ]T (5.6)
and the matrix
u®© — [!1(e) oy, © ]T (5.7)
the linear system (5.5) takes the matrix form
£® =y©a® (5.8)

The solution of this linear system is given by
a® =[uTu® ]’1 U®@re® (5.9)

We should note that M > N, and thus it is expected that at most N, equation in

(5.8) can be linearly independent. The number of M loading case should be
selected to be higher than N, and the corresponding loading patterns should be

carefully selected in order to make sure that N, lineally independent equations in
(5.5) are generated so that the matrix [U Ty (e)] in (5.9) is nonsingular. This step

is important to guarantee the accuracy of the unknowns a®® . Also, after the a'®
are estimated, the estimate should be validated by computing the predictions £®
of the strains from (5.8) using the estimated a® and comparing these predictions

with the strain values & already obtained by the finite element model for each
loading case.

The aforementioned procedure is repeated for all desirable strain points and the
corresponding finite elements <e> on which these strain points belong. Once the

relation between the strain ¢ and the element nodal displacement u® has been

established, then the relation between the strain and the whole model
displacement vector u, containing the displacement at all DOFs, can be obtained

by using the transformation
g® =1%y (5.10)

where L is a matrix of zeros and ones that relates the entries in the respective
vectors u® and u. Finally, substituting (5.10) into (5.4), the relation between
strains at element level and displacement vector u is given by

g(e) — g(e)T L(e)g (511)
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5.2.3 Stochastic Fatigue Damage Accumulation

Alternatively, for the cases where the full stress response time histories are not
available from measurements, frequency domain methods based on spectral
moments (Lutes and Larsen, 1990; Benasciutti and Tovo, 2006), can be used to
predict the expected damage due to fatigue using the linear damage law (5.1). The
methodology assumes that the stress is considered to be a stationary Gaussian
stochastic process and that the power spectral density of the stress process at a
structural location is available. For linear systems excited by time-varying loads
that can be modeled by stationary stochastic processes, these power spectral
densities can be straightforward computed using available random vibration
results (Lutes and Sarkani, 2004).

Using frequency domain methods for fatigue estimation under stochastic
excitations (Lutes and Larsen, 1990), and the continuous version of the damage
accumulation law (5.1), the expected fatigue damage accumulation rate for a uni-
axial stochastic stress process using the Dirlik formula (Dirlik, 1985), for the

probability distribution of the stress levels for Gaussian stochastic stress
processes, is given as a function of the spectral moments A, A, 4,, 4, of the stress

process (Benasciutti and Tovo, 2006), i.e.

D=D(4, 4,4, 4,) (5.12)
where the form of D=D(A,,4,4,,4,) can be found in (Benasciutti and Tovo,
=1/D,
corresponding to a critical expected damage value E[D]=D, =1. The

2006). The expected time of failure due to fatigue (fatigue lifetime) is T,

ife
aforementioned formulation assumes that the stress process at a point is uni-axial.
For multi-axial stress states one can apply available methods (Pitoiset and
Preumont , 2000), to extend the applicability of the present methodology. It is

clear that the expected fatigue damage rate D at a point in the structure depends
only on the spectral moments A, i=0,1,2,4, of the stress process o(t). Using

the definition of the spectral moments A, = f|a)|j80(a))da), the spectral

moments and the fatigue predictions at a point of a structure eventually depend
only on the power spectral density S_(w) of the stress process o(t). The power

spectral densities of the stress response processes at a point can be calculated from
measurements, provided that these measurements are long enough to be
considered stationary. This issue of predicting the power spectral densities of the
stress processes in the entire body of the structure using measurements at limited
locations is addressed at the next Section 5.3.2.
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5.3  Strain Monitoring using output only vibration
measurements

The objective of this section is to predict the characteristics of strain responses,
such as power spectral densities or full strain time histories, at all hot spot
locations in a structure using output-only vibration measurements collected from a
limited number of sensors attached to the structure. Such predictions are
integrated with the fatigue damage accumulation laws to estimate the fatigue in
the whole structure taking into account real measurements, instead of postulated
excitation models that in most cases are not representative of the actual behavior
of the structure.

5.3.1 Continuous-time state space formulation of equations of motion

It is assumed that the system can be represented by a linear model subjected to a
number of excitations. The equations of motion are given by the following set of
N second-order differential equations resulting from a spatial discretization
(finite element analysis) of the structure The equations of motion are given by the
following set of N second-order differential equations resulting from a spatial
discretization of the structure, e.g. by finite element analysis

MU(t) +Cu(t) + Ku(t) = L, p(t) (5.13)

where u(t)e R™ is the displacement vector, M, C and KeR“™ are
respectively the mass, damping and stiffness matrices, p(t) e R is the applied
excitation vector, and L, e R™ ™~ js a matrix comprised of zeros and ones that
maps the N, excitation loads to the N output DOFs. Throughout the analysis, it

is assumed that the system matrices M, C and K are symmetric. Let
y(t) e R"= pe the vector that collects all N measurements at different

locations of the structure at time t. These measurements are expressed in terms of
the displacement/strain, velocity and acceleration vectors as

y(0) = Lu() + Lu(t) + Lu() (5.14)

where L, L, and L, e R"="" are selection matrices for accelerations, velocities

meas

and displacements/strains, respectively. These measurements are generally
collected from sensors such as accelerometers, strain gauges, etc.

Introducing the state vector x' =[u" u']eR>*

written in the state space form

, the equation of motion can be
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Xx=Ax+B.p(t) (5.15)
while the measured output vector X(t) is given by the observation equation
X(t):GC>_<+JC_p(t) (5.16)
where
'% — 0 I c RN (5 17)
-M7'K -M7C '
is the state transition matrix,
B, = 0 e R?VMn (5.18)
c M 7le .
G, =[L,-LM'K L,—LM'C]eRNm=<N (5.19)

is the output influence matrix, and

-1 N neas XNin
J=LM™L, eR (5.20)

is the direct transmission matrix.

Assuming that the structure is classically damped, and introducing the coordinate
transformation u(t) =®&(t) the modal coordinate vector £(t)e R™, the

modeshape matrix @ <R™™ and the diagonal matrix Q° =diag(w’) e R™™ of
the eigenvalues o/, satisfying K& = M®A, the state vector x e R*" is given in
terms of the modal state vector z" =[£" &1 R¥" in the form

® 0
X = { 0 q)}; e R*M (5.21)

where the modal state vector z and the measurement vector 3_/(t) satisfy
equations (7) and (8), respectively, with

A = ng —Ir} e R2™2m (5.22)
B, { _? }e R2mNin (5.23)
oL,
G, =[L,®-L D> L d-L O] eRNm=" (5.24)
J=LODTL, eRMmweMn (5.25)
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I'=diag(2¢,w,) € R™™ and ¢, is the damping ration of the r mode, where L,,
L, and L, eR"="" are selection matrices for accelerations, velocities and

displacements/strains, respectively. These measurements are generally collected
from sensors such as accelerometers, strain gauges, etc.

Depending on whether the objective is to predict the power spectra densities or
the full time histories of the strains, the following techniques can be applied.

5.3.2 Stationary Stochastic Excitations

A first attempt to compute the fatigue at the entire body of a structure using
vibration measurements at a limited number of locations has been presented in
(Papadimitriou et al., 2011), assuming that the excitation can be represented by a
stationary stochastic process and the system is linear, thus meaning that the
response is a stationary stochastic process. The power spectral densities S_(w) of
the strains at different locations where measurements are not available can be
computed with respect to the cross power spectra densities §y(w) of the responses

at measured locations. A Kalman filter approach, integrating information from the
finite element model of the structure and the measurements, was presented to
estimate the power spectral densities S_(w). The cross power spectra densities

§y(w) of the measured response are obtained by analyzing adequately long
measured time histories. The PSD S_(w) of the stresses are obtained by using the
linear stress strain relationships for linear elastic material. Given the PSD S_(w)
of the stresses, the moments A required in the stochastic fatigue prediction

formulas are readily computed and used to provide an estimate of the damage
accumulation using the formulation in Section 5.2.2. The whole formulation was
presented for a single stochastic excitation but it can be readily extended to cover
the case of several stochastic excitations applied at different points in a structure.

Another method that is applicable in the case of stochastic excitation and linear
systems is the kriging technique (Papadimitriou, 2009) which, under stationarity
conditions, can be used to predict the strain time histories at unmeasured locations
in a structure in terms of the strain time histories measured at optimally selected
locations (Papadimitriou et al., 2011). An alternative Kalman filter-type method
for wind-induced strain estimation and fatigue from output only vibration
measurements that explicitly account for spatial correlation and for the colored
nature of the excitation and fatigue predictions have also been presented
(Hermandez al., 2013).
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5.3.3 Non-Stationary Deterministic Excitations

The previous formulation assumes that the response can be considered to be
stationary. However, for a number of applications the nonstationarity dominates
the features of the excitation and the response, such as in civil engineering
problems involving, for example, the passage of trains or heavy trucks over
metallic bridges. The damage accumulation prediction proposed in (Papadimitriou
et al.,, 2011) is not applicable in such nonstationary cases. New estimation
methods capable of predicting the full acceleration and strain response time
histories, applicable to the case of non-stationary excitations, have been developed
in (Lourens, Papadimitriou et al., 2012). Specifically, a joint input-state estimation
filter proposed in (Lourens, Papadimitriou et al., 2012) was adopted and extended
to estimate strain response time histories in the entire body of the structure using
output-only vibration measurements collected from the sensor network.

5.3.3.1 Modal Expansion Technique

A class of techniques that can be used in the case of deterministic non-stationary
excitation and linear systems is the modal expansion method. The displacement,
acceleration and strain response of a structure at various locations can be
represented as u(t) = d&(t), U(t) = DE(M), £(t) =L DEE) =D £(t), where £(t) are
the modal coordinate vector, while ® and @, are the modeshape matrices for

displacements and strains respectively. Using this expansion for the case of
measured strain responses £(t), one can in principle obtain the modal coordinates

from

S =(@,@,) "D E(1) (5.26)

where for a nonsingular matrix (®'® )™ the number of sensors should be at least

equal to the number of contributing modes. Once these modal coordinates have
been identified, then the strain responses ¢, (t) at unmeasured locations can be

obtained from equation
£y ()=, (1) (5.27)

where the modeshape component values @,  in (5.26) are based on those

predicted by a finite element model of the structure. The modeshape components
@, can be replaced by the ones identified by a modal identification method. It is

worth noting that assuming that the response and the excitation can be represented
by stationary processes, the PSD of the strain responses at unmeasured locations

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 13:26:06 EEST - 3.14.255.206



5. Fatigue Monitoring in Metallic Structures using Vibration Measurements 133

can also be predicted from the CPSD of the responses obtained from vibration
measurements so that the stochastic fatigue techniques can also be applied.

It should be noted that optimal sensor location methods are already available to
use for improving the accuracy of the estimates. The problem of optimizing the

sensor locations is formulated as a problem of finding the sensor locations that
provide the best estimates of the modal coordinates £(t). This problem has first

been addressed in (Papadimitriou, 2004) and efficient computational techniques
have been provided (Giagopoulos and Natsiavas, 2007) based on the modeshapes
of a finite element model. A drawback of the formulation based on modal
expansion is that the predictions are sensitive to model and measurement errors.
Also, the predictions make efficient use of strain or displacement measurements
which are less frequently employed in monitoring systems. For acceleration
measurements one can derive g(t) and use double integration to estimate &(t).

However, such double integration is a source of extra processing errors which are
expected to affect the predictions of strains.

5.4  State of the Art Algorithms for Joint Input-State Estimation

Although the state identification has been a task that is frequently addressed in
recent years, the joint identification of state and input information is a topic less
treated so far in the literature. It is widely recognized that structural systems are
inherently characterized by uncertainty, relating to measurement errors, sensor
noise, and inefficacy of the numerical models and lack of a priori knowledge on
the system and loading conditions. In practice, one common approach is to
assume the unknown input as a zero mean white Gaussian process and make use
of the aforementioned Bayesian techniques for state estimation. However, in
many cases this assumption is violated and therefore it may lead to major adverse
effects on the accuracy of the estimations. To address this issue, a number of
optimal filtering techniques in the presence of unknown input have been
proposed.

In a pioneering work, Kitanidis developed an unbiased minimum-variance
recursive filter for input and state estimation of linear systems without direct
transmission; his algorithm did not make any a-priori assumption on the input
(Kitanidis, 1987). Gillijns and De Moor proposed a new filter for joint input and
state estimation for linear systems without direct transmission (Gillijns and De
Moor, 2007). Their filter is globally optimal in the minimum-variance unbiased
sense. Later Gillijns and De Moor developed a new formulation of the
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aforementioned filter which included a direct transmission term in its structure
(Gillijns and De Moor, 2007).

In more recent years, Lourens (Lourens, Papadimitriou et al., 2012) has proposed
an extension of the method developed in (Gillijns and De Moor, 2007) to deal
with the numerical instabilities that arise when the number of sensors surpasses
the order of the model, i.e. when a large number of sensors is used in combination
with a reduced-order model assembled from a relatively small number of modes.
It was reported that, although the algorithm provides a reasonable prediction of
the accelerations, the input force and displacement estimates are affected by
spurious low frequency components that must be filtered out in this case. This
approach is developed in Section 5.4.1. Moreover, Lourens, Reynders et al.
(2012) have proposed an augmented Kalman filter (AKF) for unknown force
identification in structural systems, and concluded that the AKF is prone to
numerical instabilities due to un-observability issues of the augmented system
matrix. Details about the augmented state-space model and the Kalman Filter
equations used are given in Section 5.4.2

It is worth noting, that in dealing with the drift that appears in displacements
Chatzi (Chatzi and Fuggini, 2015) and later Naets (Naets et al., 2015) have
proposed a technique that avoids drift effect in the estimated displacements by
introducing artificial dummy displacement measurements into the observation
vector. This technique, known as augmented Kalman filter with dummy
measurements is presented in Section 5.4.3.

Moreover, a dual implementation of the Kalman filter is proposed by Eftekhar
Azam et al. (2015) to estimate the unknown input and state of a discrete-time state
space model. Eftekhar Azam et al. (2015) have shown that the expert guess on the
covariance of the unknown input provides a tool for avoiding the so-called drift
effect in the estimated input force and displacements, since the drift is linked to
the integral nature of these quantities in the presence of acceleration information.
The dual Kaman filter approach is presented in Section 5.4.4.

Finally, we should mention that although all the above mentioned state of the art
techniques are proposed for joint input and state estimation, the current chapter is
interested in the accurate estimation of the displacements strains and stresses in
order to obtain a robust prediction of fatigue that is the objective of this chapter
and the input estimation itself is a secondary goal compared to state estimation.
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5.4.1 Joint Input — State Estimation Technique

The approach is based on a filter that has the structure of the Kalman filter, which
is used to jointly estimate the inputs and the full state of a linear system using a
limited number of vibration measurements. This filter extends Gillijns and De
Moor’s (Gillijns and Moor, 2007) joint input-state estimation algorithms to handle
structural dynamics applications. In contrast to the method proposed in
(Papadimitriou et al., 2011), no assumptions are made on the spatial and temporal
characteristics of the applied loads, as well as the number and location of the
excitations on the structure.

The proposed methodology was validated using simulated data from a laboratory
beam structure subjected to impulse-type and stochastic excitations as well
simulated measurements from a railway bridge (Papadimitriou et al., 2012). The
proposed Kalman-type filters were demonstrated to be accurate for estimating
acceleration time histories at unmeasured locations in the structure. For
displacement and strain time histories, the filter estimates were inaccurate due to
low frequency shift manifested in the time histories. Such inaccuracies were
corrected by applying a high frequency filter to the modal estimates provided by
the joint input-state estimation filter technique. The main steps of the joint input-
state estimation algorithm based on combined acceleration and strain
measurements (Lourens et al., 2012) are next presented.

5.4.1.1 Formulation of discrete-time State-Space Model

Using the sampling rate 1/ At the discrete-time state space model corresponding
to (5.15) and (5.16) is

X = AX +Bp, +W, (5.28)
W= Gx, + JEk T4 (5.29)

where X, = x(kAt), P, = p(kat) and Y, = y(kAt), k =1,...,N,, are the digitized

state, load and output vectors, A=e"*" is the state transition matrix for the
discrete formulation, B=(A-1)A'B,, G=G, and J =J_. It is noteworthy that,

in this approach the G and J matrices are converted from continuous time to
discrete via a zero-order-hold (ZOH) assumption, which assumes a constant inter-
sample behavior for the input. It should be noted at this point, that Bernal (Bernal
and Ussia, 2015) has carried out a thorough study of other more realistic
assumptions on the inter-sample behaviors of the input for dynamic systems and
concluded that a Dirac comb impulse assumption can significantly improve the
discretization accuracy. A further analysis of this issue lies beyond the scope of
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this thesis The ZOH assumption is adopted here in for the further purpose of
allowing the direct cross-comparison of this methodology with the methodologies
presented in next sections.

The discrete-time state space equations (5.28) and (5.29) have been supplemented
with the random vectors w, and v, to account for the stochastic system and

measurement noise, respectively. It is assumed that w, and v, are mutually

uncorrelated, zero mean, white noise processes with known covariance matrices
Q — E[\ka\LVI] c R2m><2m and R — E[”L_Jkl_)l] c RNmeastmeas .

5.4.1.2 Gillijns and De Moor’s Joint Input — State Estimation Algorithm

Let X, be the estimate of the state x, given the load {yn}'n:0 and let
P = EL(x% — R ) (X — Ry )] be the error covariance matrix. Based on the filter

proposed in Lourens et al. (2012) the force and the state estimates are computed
recursively in three steps: the input estimation

R, =GP, ,G" + R € RN
M, = R 1) TITR T € RNnMness (5.30)
P =M, (d, —G% ;) €eR™™
the measurement update
L, = Pk|kflGT|§k_l € R2™Nmeas
R = R + L (de =GRy, — 0y ) € R2md

R ™| T 2mx2m (531)
Bk = P — L (Re = Pypgd L ER
Pxp[klk] = PX-IFJ[klk] = _Lk‘]Pp[k|k] c R2m><N|n
and the time update
Xk+]4k = A),Zk\k + pklk c R2md
o | A (5.32)
P =[A B] B K PP[k\k] |+ eremen
px[k[K] DIKIK]

The initial unbiased state estimate X, , and its error covariance matrix P, , are
assumed known.

In structural dynamics applications, numerical instabilities may arise when the
number of contributing structural modes is less than the number of sensors or the
number of loads applied to the structure. These instabilities are due to numerical
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deficiencies of the inverse of the matrices R,, J'R,*J and JP,,,,J". To avoid

these numerical deficiencies, the inverses of the aforementioned matrices are
computed by truncating the expansion obtained by a singular value
decomposition, keeping only the terms associated with the dominant singular
values. The proposed technique is shown to avoid the numerical rank deficiency
of the aforementioned matrices in (Lourens et al., 2012).

It has been demonstrated (Lourens et al.,, 2012). that the best estimates are
obtained by assuming the location of the forces to be unknown. This is a realistic
situation encountered in all practical applications with operational vibrations. The
forces are spatially distributed over the boundary of the structure. However, using
the fact that there is a correlation between the spatially distributed forces, one can
replace the forces by a number of independent forces acting on the structure. In
the joint input-state estimation algorithm, a set of equivalent forces is thus
assumed to act at a number of arbitrarily chosen locations. These locations are
chosen to correspond to the locations of the measurements used in the filter for the
estimation. In this case, the filter was demonstrated to provide improved estimates
of the states. It should be noted that the estimates of the equivalent forces do not
correspond to any estimates of the unknown input forces.

In the context of this thesis, this work has also been extended for the case where
the measured quantities are only strains by modifying the approach presented in
Gillijns and De Moor’s (Gillijns and Moor, 2007) for input-state estimation of
systems to handle structural dynamics applications. In this case, the discrete-time
state space model corresponding to (5.15) and (5.16) is

Xy = AXy + BEk + W, (5.33)

Y = GX + 1, (5.34)

where matrices Aand Bhave been defined in (5.28),the output influence
matrixG is

G=[L, 0]eRMNm=?" (5.35)
and the direct transmission matrix J is given by the equation
J =GB g RN (5.36)

The main steps of this extended joint input-state estimation algorithm are next
presented in three steps the input estimation
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R, =GP ,G" + R € RN
M, = (JTR1J) TR, € RNt (5:37)
Py =M, (d, —CX%, ,) € RN
the measurement update
L =Py .G R € RM™Nres
R = Rpes + B € R™
R = Rige + L (dy =GRy ) € R*™
N, =BM, € R2mxNmeas

H,=1-N,G e R™" (5.38)
S, = —N,R, € Ramtmeas
P*klk = Hkpk|k,1HkT +N,R N, € R¥™m
P =P — L (P G" +5;) e R*™"
and the time update
R (5.39)

Pox = APk|kAT +Q e R*™en

The stress time histories at a point of a structure are obtained by using the linear
stress strain relationships for linear elastic material. Given the stress time
histories, the damage accumulation due to fatigue are obtained by cycle count
methods, S-N fatigue curves and the linear fatigue damage accumulation laws
presented in Section 5.2.1.

5.4.2 Augmented Kalman Filter

The proposed technique essentially consists of a standard Kalman filter (Kalman,
1960) applied to an augmented state-space model (Lourens et al. 2012) in which
the forces are added to the unknown state vector. In Section 5.4.2.1 the augmented
model is developed first, followed by a presentation of the filter equations in
Section 5.4.2.2.

5.4.2.1 Augmented State-Space Model

The augmented state-space model is derived starting from the classical discrete-
time state equation (5.33), which is supplemented with an equation which directly
relates the force vectors at times k and k +1
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Py = Pt (5.40)

where 7, is assumed to be a mutually uncorrelated, zero mean, white noise
process with known covariance matrix S = E[n,n, ].

R(2m+Ni )<

By combining (5.33) and (5.40) and redefining the state vector x° e
where the superscript a refers to augmented

a | X«
X = (5.41)
P,
an augmented state equation is obtained
Xea = AX +E (5.42)
The matrix A, e RE™NM<@meNn s defined as:
A B
A :{0 | } (5.43)

where the system matrices A and B have been defined in (5.28) and the noise
vector g, € R™MN" again assumed unknown, accounts for the modelling errors

w, € R*™ as well as the force increment 7, € R™" and is defined as

Wy
Sy = {_ ] (5.44)
T

The classical discrete time observation equation (5.29) with unknown noise vector
v, € R"™== becomes in the augmented model

Yi = Ga X +4, (5.45)

where 'y, € RN represents the measured data vector and the matrix
G, € RNm="CmNn) s assembled from the output influence and direct transmission
matrices G and J as follows:

G, =[G J] (5.46)
The output influence matrix G=G, has been defined in (5.24) and the direct
transmission matrix J = J_ has been defined in (5.25).
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To summarize, the state and observation equation defining the augmented state-
space model are formulated by equations (5.42) and (5.45).

5.4.2.2 Kalman Filter Equations for the Augmented State-Space Model

Before presenting the filter expressions, it is useful to give some definitions and
clarify the underlying assumptions. Firstly, the discrete-time state space equations
(5.42) and (5.45) have been supplemented with the random vectors w, € R",

G R™ and v, € R"= to account for noise, that are assumed to be a mutually

uncorrelated, zero mean, white noise process with known covariance matrix
— E W WT c R2mx2m, S _ E n 77T c RmeNm and R — E v Q_JT c RNmeasXNmeas
—k =k k "1k k—=k

respectively.

Moreover, let make the convention that X/, is the estimate of the state X, given
the load {yn}'n=0 and Ry = E[(x; — &)(xg — %5, ]€ REM N mtin) s the error
covariance matrix. According to this convention, X5 , refers to an initial estimate
of x* at timek =0. Both the initial state estimate %; , and its error covariance
matrix POfl are assumed known.

Based on the filter proposed in (Lourens, Reynders et al., 2012) the Kalman filter
equations for the discrete-time state-space system of equations (5.42) and (5.45)
are now presented in terms of the measurement update, where the previously
predicted state estimate is updated with the new observation, and the time update,
where the state is advanced based on the model equations:

The measurement update
L = Pk|kfleaT (G, Pk\k—leaT + R)71 € REM*Nin)Nnes
Rix = Ripr + L (Y — G R ;) € REMH (5.47)
Pk|k = Pk|k—1 - LkGa Pk|k—1 S Rm N2 )
and the time update
XkaHJk = Aa)_A(ﬁk e R

T (2m+N;, )x(2m+N;,) (5.48)
Pk = ARKA +Q, €R

where Q, € R®™ N mNe) fin conjunction with the augmented noise vector
Cx € R™N" from (5.44), is the augmented covariance matrix and is given by:

Q0
Qa—{o S} (5.49)
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5.4.3 Augmented Kalman Filter with dummy measurements

In Section 5.4.2, it was shown that in order to obtain a coupled estimation of both
the states and the forces, the regular state vector is augmented with the unknown
forces and these are estimated in the same fashion as the other states by providing
a basic model for the forces.

However, Naets (Naets, 2015) has shown that the case where the estimation is
performed based on acceleration measurements is not observable, which leads to
unreliable estimates and that only in the case of a full position measurement full
observability can be guaranteed. In order to circumvent the observability issues,
Naets proposes the addition of dummy measurements on the position of all the
degrees of freedom in order to prevent drift. In this approach, the acceleration
measurements take care for the transient behavior while the dummy
measurements provide long-term stability.

In Section 5.4.3.1 the augmented model, in the case that dummy measurements
are used, is developed first, followed by a presentation of the filter equations in
Section 5.4.3.2.

5.4.3.1 State-Space Model for the Augmented Kalman Filter with dummy
measurements

In order to obtain a stable simulation, dummy measurements (Naets et al., 2015)
are proposed to be added for the positions. This approach is similar to the one
proposed by Chatzi (Chatzi and Fuggini, 2015) for stabilizing tracking for civil
structure monitoring purposes. In structural systems the deformation of the
structure is bounded and an order of magnitude for the deformation can typically
be estimated apriori (possibly based on a simulation). These bounds for the
deformation can then be considered as the uncertainty on a dummy measurement
which indicates that the deformation is zero. The dummy measurements have
measurement equations

Gy X 4y =0 (5.50)

where
G,, =[Ly 0 0] RMNrme"CmNa) (5.51)
This equation states that the position of the DOFs is zero with an uncertainty v,
with covariance R,, = E[v,,v;,]1€ R "™ "= The entries of this covariance

matrix R,, can be used for the tuning of the final Kalman filter in order to
generate desirable results. The covariance Ry, should be chosen an order of
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magnitude higher than the actual motion of the system, because a smaller
covariance will constrain the estimates too much and lead to erroneous results. On
the other hand, if the covariance is chosen to high, the dummy measurement will
not be capable to properly restrict the drift on the estimates, which is not desirable
in the context of this thesis since the main objective of this chapter is the accurate
prediction of the displacements of the system in order to get accurate estimates of
the fatigue prediction. Within an order of magnitude change, the results of the
estimator are relatively insensitive to the exact value of R, .

Due to the relatively large uncertainty on these dummy measurements they will
not contribute considerably to the fast estimation typically required for force
estimation. They will however prevent the long term drift created by the
acceleration measurements and allow an effective means to stabilize the estimated
covariance of the filter. Finally, if the steady-state position of the system is known
to not be the zero-state, the dummy measurements should be adjusted in order to
take this behavior in to account.

5.4.3.2 Kalman Filter Equations for the Augmented State-Space Model with
dummy measurements

Based on the filter proposed in (Naets et al., 2015) the Kalman filter equations for
the discrete-time augmented state-space system are now presented. The discrete
time Kalman filtering equations are typically split into two steps. In the first step,
we get the equations presented in (5.48). In the second step, these estimates are
corrected through the following equations:

The correction step

-1

K — P Ga Ga P Ga R 0 RZNmeasXZNmeas

k+1 = Pk K-+ + 0 R S

dm de de dm
B G T

, , Y| 1G] _—

a _ a m+Ni, )x1
)_(k+11k+1 - xk+1|k + Kk+1 0 - )—(k+]Jk €R : (552)

de
- a (2m+N;, )x(2m+N;,)
Pk+1|k+1 - Pk+1|k - Kk+1 Pk+14k €R :
dm

Using the correction step (5.52), the fictitious dummy measurements dictate the
estimator to return to an undeformed state and lead to a stable estimation
approach.
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5.4.4 Dual Kalman Filter

A dual implementation (Eftekhar Azam et al., 2015) of the Kalman filter is
proposed to estimate the unknown input and states of a state-space model.
However, the input estimation itself is a secondary goal compared to state
estimation, as the objective of this thesis is to estimate the fatigue damage
accumulation. In this approach, it is assumed that a limited number of noisy
acceleration measurements are available. The successive structure of the
suggested filter prevents numerical problems attributed to un-observability and
rank deficiency of the Augmented Kalman Filter. Additionally, it is shown that
the expert guess on the covariance of the unknown input provides a tool for
avoiding the so-called drift effect in the estimated input force and displacements.
The drift is linked to the integral nature of these quantities in the presence of
acceleration information.

In Section 5.4.4.1 the state —space model that is used in this approach is presented.
The Kalman Filter equations that are used in the context of Dual Kalman Filter are
given in Section 5.4.4.2.

5.4.4.1 State-Space Model for Dual Kalman Filter

Starting from the discrete time state-space equations (5.28) and (5.29), the
problem is to estimate the unknown input p, and the hidden or partially observed
state x, of the system using the noisy observations y,. In the context of this

problem, a dual implementation of the Kalman filter is proposed in this section.
The proposed solution could be divided in two stages, with the Kalman Filter
pertaining to both stages. At each time iteration, the fictitious process equation
(5.40) serving for calibration of the input force is introduced.

Then, it is assumed that an estimation of the state at time t, is available. By using

equations (5.29) and (5.40), a new state-space equation can be obtained, where the
observed quantity is y,, the new state is p, and the state x, of the system plays

the role of a known input to the system:

Ek+l - Bk +7_7k

(5.53)
Yo =GXy +Ipy + 4,

Through implementation of the Kalman filter, an online estimation of p,., can be

obtained. Then, once the estimation of P is performed, it can in a next step be

substituted in equations (5.28) and (5.29), and a subsequent Kalman filter
implementation could be used for estimating X, ., -
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At this point, it is worth noting that, the procedure needs a-priori information on
expected value and covariance of the state and input at time t,. Moreover, similar
to the Augmented Kalman Filter, the value of the process noise
S = E[n, ]€ RM™ ™" for equation (5.48) must be properly chosen so that an

accurate estimate of the unobserved state and the unknown input could be
achieved. The proper choice of the value of the covariance noise is sometimes
called the tuning knob of the system, and methods relying on the use of Bayesian
techniques, maximizing the likelihood of measurements with respect to the noise
parameters, have recently been proposed for a proper adjustment (Yuen et al.,
2007). Also, it is very helpful to clarify the nature of the influence of the
covariance matrices Q=E[wWw ]€ R*™",  S=E[nn ]eR"™" and

R = E[y, v, ] € R"=""m==  The process noise covariance matrices Q and S reveal

the confidence put on the utilized model of the system. The lower this is, the more
accurate the model is considered to be. The observation noise covariance R
reveals the confidence put in the acquired measurements. The lower this is, the
tighter the estimator is forced to fit the recorded data.

5.4.4.2 Dual Kalman Filter Equations
The Dual Kalman Filter is initialized using the initial state X, ,and its variance
Fy_1and the initial input force f, ; and its variance R/ ,. Hereafter, it computes

the force and state estimates recursively in three stages for each one: the input
estimation, the measurement update and the time update:

Initialization of the filter at time t:

Xop1 = E[Xo]
T = EL% A o (5.54)
I:)0|—1 =E[(x - 50|_1)(Zo _)_(0|_1) ]
Po-1 = E[Po]
o . (5.55)
PO\—l = E[(Bo - Eo|_1)(£)o - Eo|_1) ]
Prediction and update stage for the input:
1. Evolution of the input and prediction of covariance of input:
- _ c RNinxl
Be= Py (5.56)
Pkp* — Pkﬁ’({[ +S c RNinXNin

2. Calculation of Kalman gain for input:
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M p_ PP—JT (JPp—JT 4 R)—l c RNianmeas (557)
k k k
3. Time update of the prediction for input:
P = P, +MP2(y, =GR, —Ip,) eR™"

(5.58)
Pkﬁ( — pkpf _ Mkp‘JPkFF e RNin*Nin

Prediction and update stage for the state:
1. Evolution of the input and prediction of covariance of state:
X = A)_A(k|k71 + BE)k|k e R*™

- T 2mx2m (5'59)
F’k = APk|k—1A +QeR

2. Calculation of Kalman gain for state:
M, =P G"(GR G" +R)* e R¥™MNm=s (5.60)

3. Time update of the prediction for state:
Ry =X +M, (Y -GX —Jp,,) € R™¢

5.61
Pk|k — Pk_ _ MkGPk_ c R2mx2m ( )

Using the above presented equations and by fine-tuning the covariance of the
fictitious process noise of the unknown input, a reasonable estimate of the state is
obtained. The expert guess on the covariance of the unknown input is of great
importance, since it provides a tool for avoiding the so-called drift in the
estimated displacements, that are useful for an accurate fatigue damage
estimation.

55 Applications

5.5.1 N-DOF Spring — Mass Chain- Like Model

A 30-DOF spring-mass chain like model, shown in Figure 5.1, is used to
demonstrate the effectiveness of the proposed methodologies. The model is
comprised of two substructures. The first substructure contains the first body, with
massm, , in the chain and the two springs k, and k, attached to this mass, while

the second substructure consists of the rest of the 29-DOF. This sub-structuring
approach allows us to isolate the large components of the structure that behave
linearly from the isolated parts that may behave nonlinearly. Thus, the proposed
methodologies can be applied to the linear substructures. It is assumed herein that
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the second 29-DOF substructure behaves linearly, while the first substructure may
consist of nonlinear springs as shown in Figure 5.2.

Figure 5.1: 30-DOF spring mass chain-like model.

Figure 5.2: 30-DOF spring mass chain-like model with the first substructure
including nonlinear spring

More specifically, the first substructure includes the first body in the chain, with
mass m,, that is attached through a linear spring with stiffness k;, to the ground

and through a nonlinear spring k, to mass m,. As a result, a nonlinear restoring
force f, is developed in this substructure and is selected to have the following

specific form:
fo =K X+ -X° (5.62)

where x=x,—%, k =10° and g =11-10". Then, the second subsystem

includes the remaining 29-DOF spring-mass system, as shown in Figure 5.2. The
value of each mass of the 29-DOF model system is m,=m, =---=m,, =0.3 kg

and the stiffness value of each spring is set to be k, =---=k,, =15x10* N/m.
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This substructure is linear and is assumed to exhibit classical damping properties,
with a common damping ratio £ =0.005in all of its modes. The undamped

natural frequencies of the system are reported in Table 5.1 .

Due to the presence of the interconnecting nonlinear spring in the first
substructure, the equations of motion of this example system are strongly
nonlinear, since the value of the nonlinear term in (5.62) is not restricted to be
small compared to the value of the corresponding linear term. Therefore, the
equations of motion are solved numerically by applying a variable step Runge-
Kutta Method. Here, this was done in place of performing an experiment for
determining the acceleration, velocity and displacement time histories of the 30-
DOF model. More specifically, the full 30-DOF nonlinear model is first solved in
the time domain by numerical differentiation, after applying a selected
displacement base excitation x, (t) to the nonlinear substructure. The form of the

applied excitation is presented in Figure 5.3, while the time history of the force
F(t) applied to mass m, is illustrated in Figure 5.4.

Xg (M)
)

8k i

_10 r r r r r r r r r
0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2

Time (sec)

Figure 5.3: Displacement Time History selected as base excitation.
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Figure 5.4: Time History of force F(t)applied to mass m, .

The force F(t)is given from the following specific form:
F(t) =k, -x,(t)+c, - X, (t) (5.63)

where k,=2,5-10°and c,=0 . Simulated, noise contaminated, response time
histories are generated from the 30-DOF model by applying the force F(t) to the
mass m, . Displacements, velocities, accelerations and strains are recorded and are
used as the exact estimates against which comparisons of predictions from the 29-
DOF model will be made. The calculated displacement and velocity time histories
at mass m,are presented in Figure 5.5 and Figure 5.6 respectively. Then, these

calculated displacement and velocity time histories are used as a base excitation to
the second linear substructure, as shown in Figure 5.2. The force f(t) from the

nonlinear spring to mass m, is graphically depicted in Figure 5.7. Finally, the

solution of this 29-DOF model provides predictions for the dynamic response of
the linear substructure.
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Figure 5.5: Experimental Displacement Time History at DOF 2 of the 30-DOF
system.
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Figure 5.6: Experimental Velocity Time History at DOF 2 of the 30-DOF system.
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Figure 5.7: Time History of force f (t)applied from nonlinear spring as input to
the linear substructure

Specifically, predictions of displacement, accelerations and strains are obtained
from the proposed methods using the 29-DOF model. The input f(t) at the
connection of the 29-DOF model with the other structure, that is graphically
illustrated in Figure 5.7, is considered unknown. Moreover, it should be noted that
the values of the masses and the springs of the 29-DOF model are the same as the
ones used to simulate the measurements.

Throughout the numerical analysis, it is assumed that only acceleration
measurements of the response of the structure at the masses are available. This is
the common case in structural dynamics; in practice, the displacements and
velocities are difficult, or even sometimes impossible to measure. Therefore, the
problem lies in estimating the displacements of all masses of the system by using
noisy observations acquired from acceleration sensors. Specifically, nine
acceleration sensors are placed at DOFs 1, 6, 11, 16, 18, 21, 24, 26 and 29 of the
model. Moreover, in order to represent measurement error in the simulated data, a
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Table 5.1: The undamped natural frequencies of the 29-DOF model

No of Mode Frequency (Hz)
1 5.9917
2 17.9582
3 29.8737
4 41.7046
5 53.4173
6 64.9785
7 76.3556
8 87.5162
9 98.4287
10 109.0623
11 119.3866
12 129.3726
13 138.9919
14 148.2171
15 157.0223
16 165.3823
17 173.2735
18 180.6736
19 187.5615

20 193.9178
21 199.7244
22 204.9648
23 209.6243
24 213.6895
25 217.1491
26 219.9931
27 222.2135
28 223.8040
29 224.7601

zero mean white Gaussian noise is added to the simulated acceleration time
histories of the system. A choice was made to relate the level of added noise to
the standard deviation of the signal as follows:

y=y+yor (5.64)

where § and XeRNrepresent, respectively, the polluted and unpolluted time
histories at a given sensor location, y is the noise level, o signifies the standard
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deviation of the considered data time history, and r € R" is a vector of random
values drawn independently from a normal distribution with zero mean and unit
standard deviation. The influence of the level of the covariance of noise of the
acceleration sensors R, = (yo)>on the accuracy of the predicted estimates is also

examined in the context of this thesis.

First of all, the nine acceleration time histories polluted with y =5% Gaussian

white noise, that is added to the simulated data to account for modeling and
measurement errors, are used to identify the state (displacements and velocities)
of the system at all DOFs following the Kalman-type filter that is proposed in
Section 5.4.1. The initial state x, is assumed zero and the covariance matrix of the
process noise Q and the covariance matrix of the observation noise R are

assigned values of 10™ and 10 on the diagonal, respectively. In accordance
with what they represent, these values are chosen so as to have the order of the
square roots of the diagonal elements of Q and R corresponding to a small
percentage of the highest peaks in the measured state and response, respectively.
It is also worth noting to report that the estimated displacements are filtered using
a 3rd order Chebyshev high-pass filter. The low cut-off frequency in the high pass
filter is chosen to be 0.3 times the modal frequency value of the lowest
contributing mode of the structure. Then the filtered displacements predicted by
this method are used to estimate the strains at the springs.

Moreover, the modal expansion method, proposed in Section 5.3.3.1, is also used
to estimate the strains in the structure at all springs using simulated displacement
measurements at the above nine DOFs. Results for strain predictions obtained
from the Gillijns and De Moor’s filter and the modal expansion method are
presented in Figure 5.8 for the 19 spring of the 29-DOF model and in Figure 5.9
for the 25 spring. The predictions are compared with the simulated measurements.
From the Figure 5.8 and Figure 5.9, it is clear that the comparisons show that
strain predictions from both methods are very close to the exact ones. Specifically,
the error between the measured and predicted strain time histories is estimated to
be 18% for DOF 19 and 19% for DOF 25 in the case that the extension of Gillijns
and De Moor’s filter proposed by Lourens et al. (2012) is used. On the other hand,
when modal expansion method is used, the error between the measured and
predicted stress time histories is estimated to be 0.12% for DOF 19 and 0.13% for
DOF 25. It is obvious that the modal expansion method gives more accurate
predictions of the stress time histories at all DOFs for the spring mass chain
system than the extension of Gillijns and De Moor’s filter proposed by Lourens et
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al. (2012) but the main disadvantage of this method is that cannot be implemented
eniently in practice since in the most cases we have
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Figure 5.8: Estimated and simulated stress time histories at DOF 19.
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acceleration measurements and not displacement or strain measurements that
modal expansion method uses in order to predict the strain response of a system.

For this purpose, the accuracy of the other two proposed filters, Dual Kalman
Filter and the Augmented Kalman Filter, for the prediction of the displacement
and stress time histories of the 29-DOF system at all DOFs will be examined in
order to get more accurate estimates of displacement and stress predictions and
use them for the accurate prediction of fatigue damage accumulation.

For the implementation of Dual Kalman Filter for the prediction of displacements
and stresses at all DOFs of the 29-DOF model, in the case that we have the nine
polluted with Gaussian white noise acceleration time histories, the selection of the
appropriate values for covariance parameters was necessary. The covariance
matric of the process noise Q, the covariance matric of the observation noise R
and the covariance matric of the input noise S are assigned values of 10™ , 107"
and 10" on the diagonal, respectively. In all the simulations the model deployed in
the algorithms is assumed to be accurate, hence the process noise is set to a small
value Q=10"x1; henceforth | is an identity matrix of appropriate dimension.

In other words, the process noise covariance matrix reveals the confidence put on
the utilized model of the system. Since a low value is chosen, the model is
considered to be very accurate. Moreover, the value that is chosen for the
observation noise covariance reveals the fact that there is measurement error in
the acquired measurements and the estimator is not tightly forced to fit the
recorded data. In Figure 5.10 and in Figure 5.11 the estimated and simulated stress
time histories for DOF 19 and DOF 25 respectively are presented and compared
to those predicted by the extension of Gillijns and De Moor’s filter proposed by
Lourens et al. (2012). It is obvious that estimates of higher accuracy are obtained
when Dual Kalman Filter is utilized. Specifically, the error between the measured
and predicted stress time histories is estimated to be 0.07% for DOF 19 and 0.08%
for DOF 25, even much lower than those in the case of modal expansion method.

Finally, the Augmented Kalman Filter is utilized for the prediction of
displacements selecting the above presented values for covariance matrices. The
estimated and simulated stress time histories for DOF 19 and DOF 25 respectively
are presented and compared to those predicted by the extension of Gillijns and De
Moor’s filter proposed by Lourens et al. (2012) and Dual Kalman Filter in Figure
5.12 and Figure 5.13 respectively. The error between the measured and predicted
stress time histories is estimated to be 32% for DOF 19 and 37% for DOF 25, and
is much higher than those estimated in the other methods. The low levels of
accuracy in predicting the stress time histories at all DOFs of the 29-DOF model,
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Figure 5.14: Fatigue Damage accumulation of the 29 DOF model.

Finally, using the predicted stress time histories at all DOFs predicted using the
Dual Kalman Filter and utilizing the available S-N fatigue curves as described in
Section 5.2.2, the Miner’s rule is applied to estimate the fatigue damage
accumulation for all DOFs of the 29 DOF model. The spring mass chain system is
made of steel and the fatigue detail category 36 is adopted to illustrate the method.
The static strength of steel is assigned the value o, =440 MPa. According to

Eurocode 3 for detail category 36, the following values of the parameters of the
design S-N curves are recommended: m=3, Ao, =26.5MPa and Ao, =14.5

MPa. In Figure 5.14 the fatigue damage accumulation estimates for all DOFs
using the stress time histories predicted by the Dual Kalman Filter are compared
to those estimated by using the simulated stress time histories. From Figure 5.14
is clear that fatigue damage accumulation is estimated with very high accuracy, a
fact that reveals that the methodology for estimating damage due to fatigue on the
entire body of a structure by combining linear damage accumulation laws, S-N
fatigue curves, rainflow cycle-counting algorithms, and acceleration
measurements at a limited number of locations is a valuable tool for designing
optimal fatigue-based maintenance strategies in a wide variety of structures.
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5.5.2 Small Scale Vehicle-like Frame Structure

The accuracy and effectiveness of the new methodology was also demonstrated
by applying it to a more complex mechanical system. Specifically, the framework
is also demonstrated using the experimental small scale vehicle-like body,
presented in Chapter 4 and shown in Figure 5.15. The vehicle structure is
designed to simulate the frame substructure of a vehicle in a small scale of length
2m, width 1m and height 1.4 m. The frame substructure is made of steel with
Young’s  modulus E =210GPa, Poison’s  ratio v=0.3 and
density p = 7850kg/m®.  Figure 5.15 presents details of the geometrical

dimensions of the frame and the sensor instrumentation that was used in order to
produce simulated experimental data at 36 selected locations for the case of the
vehicle. Details of material and geometrical dimensions of the frame can be found
in Giagopoulos and Natsiavas (2007).

The basic idea in the case of the vehicle is the following: the selected frame
structure comprises a frame structure with predominantly linear response and high
modal density plus four substructures - supporting systems with strongly
nonlinear action. These supporting systems consist of a lower set of linear discrete
spring-damper units, connected to a concentrated mass, simulating the wheel
subsystems, as well as of an upper set of a nonlinear discrete spring-damper
(bushings) units connected to the frame and simulating the action of the vehicle
suspension. More specifically, the nonlinear restoring and damping forces in the
suspensions were selected to have the same form as those of the 30-DOF spring-
mass chain model, which was presented in Section 5.51. The measurement points,
indicated by points 3, 4, 28 and 29 in Figure 5.15, correspond to connection points
between the frame and its supporting structures, while the rest 34 measurement
points shown in Figure 5.15 were chosen on the frame. This sub-structuring
approach allows us, based on the framework proposed in the case of the 30-DOF
spring mass model, to isolate the large component of the frame of the vehicle that
behaves linearly from the four isolated supporting subsystems that behave
nonlinearly. Thus, the proposed methodologies can be applied to the linear vehicle
frame.

Next, the procedure followed in the previous application was applied to this
system. Namely, a nonlinear transient response analysis of the full vehicle model
(frame and supports) was performed first, by applying four different stochastic
road excitations to the wheel subsystems.
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Figure 5.15: Sensor Instrumentation of vehicle frame.

Then, instead of performing experiments, the model was solved by using direct
integration method. Specifically, a numerical method belonging to the well-
known class of Newmark’s methods (with parameters f=1/4 and y=1/2) was
applied for determining the acceleration and displacement time histories for the 36
points in three directions, graphically depicted in Figure 5.15. At this point, we
should mention that the model that was numerically solved instead of performing
experiments exhibits some differences in the meshing from the finite element
model that will be used for performing the proposed methodologies. These
differences yield in a maximum 8% difference in the eigenfrequencies between
the two models, importing a kind of measurement error.

Displacement and acceleration time histories are recorded and are used as the
exact estimates against which comparisons of predictions from the vehicle model
will be made. The “measured” histories of the acceleration at boundary location 3,
in the three directions (X-longitudinal, Y-transverse, Z-vertical), are presented in
Figure 5.16, Figure 5.17 and Figure 5.18, respectively.

The finite element model, consisting of 15,202 finite elements and having 45,564
DOF, is used, after keeping only the first 30 modes, with the proposed methods to
estimate the state of the structure at all DOFs. Then the strain predictions are then
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obtained from the state estimates and the material properties. The excitations
applied at the connections of the frame structure with the vehicle suspension are
considered unknown.
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Figure 5.16: Acceleration time history at boundary location 3 in X direction.

Dof 8

15

0.5 ’}‘

Acceleration(g)

-0.5 I W u u[ ‘“

-1.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

Figure 5.17: Acceleration time history at boundary location 3 in Y direction.
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Figure 5.18: Acceleration time history at boundary location 3 in Z direction.

Fourteen acceleration sensors are used at DOFs 1, 3, 4, 7, 12, 14, 15, 17, 22, 27,
28, 29, 31, 36 of the model. The sensor locations are shown in Figure 5.15. The
Kalman-type filter and the modal expansion method are used to estimate the state
of the structure at all DOFs using the acceleration sensors, respectively.
Moreover, a 5% noise is added to the simulated data to account for modeling and
measurement errors. In the Kalman Filter, the initial state x, is assumed zero and
the covariance matrice of the process noise Q and the covariance matrice of the

observation noise R are assigned values of 10™ and 10 on the diagonal,
respectively. Moreover, the estimated displacements are filtered using a 3rd order
Chebyshev high-pass filter. The low cut-off frequency in the high pass filter is
chosen to be 0.3times the modal frequency value of the lowest contributing mode
of the structure. The modal expansion method is also used to estimate the
displacements in the structure using simulated displacement measurements at the
above fourteen points. Results for displacement predictions obtained from the
Kalman-type filter and the modal expansion method are presented in Figure 5.19-
Figure 5.21 for the Point 2 of the top of the frame in three directions and in
Figure 5.22-Figure 5.27 for Point 16 and Point 23 at the bottom of the frame in
three directions. The predictions are compared with the simulated measurements.
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Figure 5.20: Displacement time history at Point 2 in Y direction.
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Figure 5.21: Displacement time history at Point 2 in Z direction.
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Figure 5.22: Displacement time history at Point 16 in X direction.
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Figure 5.23: Displacement time history at Point 16 in Y direction.
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Figure 5.24: Displacement time history at Point 16 in Z direction.
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Figure 5.25: Displacement time history at Point 23 in X direction.
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Figure 5.26: Displacement time history at Point 23 in Y direction.
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Figure 5.27: Displacement time history at Point 23 in Z direction.

From the comparison, it is clear that that the modal expansion method gives more
accurate predictions of the displacement time histories than the extension of
Gillijns and De Moor’s filter proposed by Lourens et al. (2012), where a low-
frequency drift is observed in all figures. For this purpose, the Dual Kalman Filter
will be implemented in order to predict displacement time histories at all DOFs of
the wvehicle and use them for the accurate prediction of fatigue damage
accumulation.

For the implementation of Dual Kalman Filter for the prediction of displacements
at all DOFs of the vehicle, in the case that we have the fourteen polluted with
Gaussian white noise acceleration time histories, the selection of the appropriate
values for covariance parameters was necessary. The covariance matric of the
process noise Q, the covariance matric of the observation noise R and the
covariance matric of the input noise S are assigned values of 10™ |, 10™ and 10"
on the diagonal, respectively. Results for displacement predictions obtained from
the Kalman-type filter and the Dual Kalman Filter are presented in Figure 5.28-
Figure 5.30 for the Point 2 of the top of the frame in three directions and in Figure
5.31-Figure 5.36 for Point 16 and Point 23 at the bottom of the frame in three
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directions. The predictions are compared with the simulated measurements. It is
obvious that estimates of higher accuracy are obtained when Dual Kalman Filter
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Figure 5.28: Displacement time history at Point 2 in X direction.
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Figure 5.29: Displacement time history at Point 2 in Y direction.
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Figure 5.30: Displacement time history at Point 2 in Z direction.
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Figure 5.31: Displacement time history at Point 16 in X direction.
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Figure 5.32: Displacement time history at Point 16 in Y direction.
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Figure 5.33: Displacement time history at Point 16 in Z direction.
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Figure 5.34: Displacement time history at Point 23 in X direction.
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Figure 5.35: Displacement time history at Point 23 in Y direction.
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Figure 5.36: Displacement time history at Point 23 in Z direction.
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is utilized. Specifically, the error between the measured and predicted
displacement time histories is estimated to be lower than 6%, as shown in Figure
5.37.

The strain and stress time histories are obtained for all finite elements of the
vehicle, using the displacement time histories predicted by DKF at all DOFs and
the relationships between stains and displacements that are given in Section 5.2.2.
The predicted stress time histories in all three directions are presented in Figure
5.38 for Point 2, in Figure 5.39 for Point 16 and in Figure 5.40 for Point 23.
Moreover, the predicted strain time histories in all three directions are presented
in Figure 5.41 for Point 2, in Figure 5.42 for Point 16 and in Figure 5.43 for Point

23.
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Figure 5.38: Stress time history at Point 2.
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Figure 5.40: Stress time history at Point 23.
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Figure 5.42: Strain time history at Point 16.
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Figure 5.43: Strain time history at Point 23.

Finally, using the predicted stress time histories at all DOFs predicted by using the
Dual Kalman Filter and utilizing the available S-N fatigue curves as described in
Section 5.2.2, the Miner’s rule is applied to estimate the fatigue damage
accumulation for four points on the vehicle frame that we have uniaxial tension.
The four points, for which fatigue damage is estimated are presented in Figure
5.44. For the estimation of fatigue damage, the static strength of steel is assigned
the value o, =440 MPa . Moreover, according to Eurocode 3 for detail category

36, the following values of the parameters of the design S-N curves are
recommended: m=3, Ao, =26.5MPa and Ao, =14.5 MPa. We should also

note that in the case of the vehicle fatigue is estimated only for some points on the
bottom of the vehicle frame where we have mainly uniaxial tension while on the
rest part of the vehicle severe shear stresses are imposed. However, it is worth
noting that in the case of a structure that only uniaxial stresses are imposed on it,
there is the potential of plotting the fatigue map since the code that has been
developed in Matlab with cooperation with the interaction of Comsol gives as
output plots like those presented for the plot of strains on the vehicle frame.
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Figure 5.44: Points with uniaxial tension for fatigue calculation.

Table 5.2: Fatigue Damage accumulation for points on the vehicle

Prediction of Fatigue Damage due to

Point . . .

o, by simulated | o, by | simulated o,, by simulated

DKF O xx DKF Oy DKF Oy
P1 2.5569x107°| 2.5222x107°| 0.0844| 0.0823 | 6.2161x10™*| 6.0857x10™*
P2 5.7142x107*| 5.3388x10™*| 0.0122| 0.0103 | 7.7101x107°| 7.1322x10°
P3 4.4954%x107*| 4.0748x107*| 0.0059| 0.0051 | 8.6952x10°| 8.5413x10°
P4 1.1972x10™*| 1.143x10™* | 0.0010 0.0009 2.3108x107* | 2.2964x107*
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The creation of fatigue maps on the vehicle are useful for designing optimal
fatigue-based maintenance strategies for protecting structures like vehicles against
failure due to fatigue.

5.6 Conclusions

A novel use of monitoring information for estimating fatigue damage
accumulation in the entire body of metallic structures is outlined in this work.
This is accomplished by combining fatigue damage accumulation laws with
stress/strain predictions based on output only vibration measurements collected
from a limited number of sensors. Methods for estimating strains by integrating
high fidelity finite element model and estimation techniques were summarized.
The predictions are currently based on linear model of structures. The accuracy of
the proposed methods for fatigue predictions in the entire body of the structure
depends on the number and location of sensors in the structures, the number of
modes contributing in the dynamics of the structure, and the size of the model
error and measurement error.

The proposed methodologies have also been extended to cover nonlinear models
of structures. Applications cover a large variety of metallic structures, including
ground and air vehicles, civil engineering structures such as steel buildings, high
towers and railway/motorway bridges, industrial structures, wind turbine blades
and supporting structures/masts, offshore structures, etc. The proposed
methodology can be used to construct fatigue damage accumulation and lifetime
prediction maps consistent with the actual operational conditions provided by a
monitoring system. Such fatigue maps are useful for designing optimal fatigue-
based maintenance strategies for metallic structures using structural vibration
information collected from a sensor network.
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CHAPTER 6 Conclusions — Future Work

6.1 Conclusions

The research work presented in the thesis deals with the management of
uncertainties in structural response and reliability simulations using measured
data. In the context of this thesis, it was shown that uncertainties play an
important role in the prediction of the performance and safety of structural
systems. Uncertainties arise in the process of simulating the behavior of these
systems. Uncertainties are manifested from the assumptions and compromises that
enter into the development of mathematical models of structural systems as well
as the applied loads. Such uncertainties lead to significant uncertainties in the
predictions made using simulations. Since simulations constitute the basis for
design and maintenance decisions in order to meet desirable system performance
and safety requirements, uncertainties affect these decisions and have to be
accounted for in simulations. For this, stochastic/probabilistic models offer
suitable mathematical tools for quantifying and propagating uncertainties in
structural engineering simulations.

A specific focus of this thesis is the management of uncertainties that appear in
model updating problem of structural systems. Structural model updating is an
inverse problem according to which a model of a structure, usually a finite
element model, is adjusted so that either the calculated time histories, frequency
response functions, or modal parameters best match the corresponding quantities
measured or identified from the test data. This inverse process aims at providing
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updated models and their corresponding uncertainties based on the data. These
updated models are expected to give more accurate response predictions to future
loadings, as well as allow for an estimation of the uncertainties associated with
such response predictions. In practice, the inverse problem of model updating is
usually ill-conditioned due to insensitivity of the response to changes in the model
parameters, and non-unique because of insufficient available data relative to the
large number of model parameter needed to describe the desired model

The widely used deterministic methods for solving the structural model updating
problem formulated both as single-objective and multi-objective optimization
problem are reviewed in Chapter 2. The main theme of this chapter was to present
a Bayesian statistical framework for structural model parameter identification that
is used to identify the values of the weights that appear in structural model
updting. Using Bayes theorem, the probability distribution of the weight values
based on the data is formulated as a probability integral over the structural model
parameters. Bayesian techniques are also proposed to quantify the uncertainty in
the parameters of a FE model, select the best model class from a family of
competitive model classes, as well as propagate uncertainties for robust response
and reliability predictions. Posterior probability density functions (PDFs) are
derived that quantify the uncertainty in the model parameters based on the data.
These PDFs are formulated in terms of the modal residuals involved in the
aforementioned single and multi-objectives deterministic methods. The Bayesian
tools for identifying uncertainty models as well as performing robust prediction
analyses are presented. These include Laplace methods of asymptotic
approximation and more accurate stochastic simulation algorithms (SSA) such as
Markov Chain Monte Carlo (MCMC), Transitional MCMC and Delayed
Rejection Adaptive Metropolis. Similar to the deterministic FE model updating
techniques, the asymptotic approximations in the Bayesian framework involve
solving an optimization problem for finding the most probable model, as well as
estimating the Hessian of the logarithm of the posterior PDF at the most probable
model for describing the uncertainty in the model parameters. The SSA
algorithms involve generating samples for tracing and then populating the
important uncertainty region in the parameter space, as well as evaluating
integrals over high-dimensional spaces of the uncertain model parameters.

The optimal structural models and their uncertainties resulting from model
updating methods can be used for improving the model response and reliability
predictions, for assessing structural health and identifying structural damage and
for improving effectiveness of structural control devices. Engineers in practice are
frequently requested to implement the above model updating methods in complex
engineering systems including hundreds of thousands or even million degrees of
freedom. Chapter 2 proposes methods for drastically reducing the computational
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demands at the system, algorithm and hardware levels involved in the
implementation of Bayesian tools. At the system level, model reduction
techniques can be applied to reduce the order of the model selected to simulate the
behavior of the system.

The importance of these reduction techniques was demonstrated in Chapter 3. In
this chapter, a framework was presented for integrating the Craig-Bampton CMS
technique into existing FE model updating formulations in order to reduce the
time consuming operations involved in reanalyses of large-order models of
hundreds of thousands or millions degrees of freedom. The proposed method
exploits the fact that in FE model parameterization schemes the stiffness matrix of
the structure often depends linearly on the parameters of the model and also that a
parameter usually represents a global property (e.g. the modulus of elasticity) of a
substructure. The division of the structure into components is then guided by the
FE parameterization scheme so that the stiffness matrix that arise for each one of
the introduced components to depend linearly on only one of the parameters to be
estimated. In this case the fixed-interface and constraint modes of the components
for any value of the model parameters can be obtained exactly from the fixed-
interface and constraint modes corresponding to a single reference FE model,
avoiding re-analyses at component level. Additional substantial reductions in
computational effort are also proposed by reducing the number of interface DOF
using characteristic interface modes through a Ritz coordinate transformation. The
repeated solutions of the component and interface eigen-problems are avoided,
reducing drastically the computational demands in FE formulations, without
compromising the solution accuracy. It is also shown that the linear expansions of
the original mass and stiffness matrices in terms of the structural parameters are
preserved for the reduced mass and stiffness matrices. Thus, the reassembling of
the reduced system matrices from the original matrices is also avoided in the
execution of the system re-analyses. The only time consuming operation left is the
re-analysis of the eigenproblem of the reduced-order model. It is finally
demonstrated that the new developments are readily accommodated in existing FE
model updating formulations and software with minimal modifications. The
effectiveness of the proposed algorithms, in terms of computational efficiency and
accuracy, was demonstrated with application on model updating and damage
identification of a bridge using simulated data and a high fidelity model with
hundreds of thousands of DOF.

In Chapter 4, a Bayesian uncertainty quantification and propagation (UQ&P)
framework was presented for identifying nonlinear models of dynamic systems
using vibration measurements of their components. The accuracy of the Bayesian
UQ&P framework to identify models of linear and nonlinear components of a
system was shown through the application on a small scale experimental model of
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a vehicle. The identification of the uncertainty models of the nonlinear wheel and
suspension components is investigated using the experimentally obtained response
spectra. The uncertainty models for the vehicle frame are also obtained using
experimental data. The uncertainty is propagated to output quantities of interest
for the combined wheel-suspension-frame system. The computational challenges
and efficiency of the Bayesian UQ&P framework are outlined. The effectiveness
of the framework on the specific example structure is discussed.

In Chapter 5, the problem of estimating the full strain time histories characteristics
at critical locations of the structure using operational vibration measurements
from a limited number of sensors is presented. The measurements may consist of
response time histories such as e.g. strain, acceleration, velocity, displacement,
etc. Moreover, this chapter deals with the use of such estimates to predict fatigue
damage accumulation in the entire body of a metallic structure and lays out the
formulation for estimating fatigue using output-only vibration measurements and
outlines methods for estimating the stress response history characteristics required
in deterministic and stochastic fatigue theories. Similar estimation techniques can
be used to estimate other important response characteristics in the entire body of
the structure, such as displacements, velocities, accelerations, etc. The analyses in
this study are first implemented to the case of linear structures and then have been
extended to cover nonlinear models of structures. The stress response quantities
are predicted at locations subjected to uni-axial stress states. The measured
quantities are considered to be accelerations, displacements or strains or a
combination of accelerations, displacements and strains. The objective of this
chapter is to formulate the fatigue prediction problem, illustrate the methodology
and point out its use in evaluating the damage accumulation in the entire structure
from a limited number of vibration measurements. For this, the analyses in this
study are restricted to the case of stress response predictions at locations subjected
to uni-axial stress states for both linear and nonlinear structures.

Summarizing the current thesis contributes to the following three interrelated
research areas of management of uncertainties using vibration measurements: (1)
development of component mode synthesis techniques that are integrated with
model updating methods (2) development of Bayesian uncertainty and
quantification framework for both linear and nonlinear systems and (3) fatigue-
based damage accumulation predictions in the entire body of metallic structures
using a limited number of vibration sensors. Finally, the novel contributions in
this thesis are as follows.

e |terative optimization algorithms and stochastic simulation algorithms
involved in both deterministic and Bayesian FE model updating
formulations require a moderate to large number of FE model re-analyses.
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For large size FE models with hundreds of thousands or even million
DOF, the computational demands may be excessive. Exploiting certain
stiffness-related parameterization schemes, often encountered in FE model
updating formulations, to guide the division of the structure into
components results in exact linear representations of the Craig-Bampton
reduced stiffness matrix as a function of the model parameters with
coefficient matrices computed and assembled once from a single CMS
analysis of a reference structure. Further significant reductions in the size
of the reduced system are shown to be possible using characteristic
interface modes estimated for each interface between components. Re-
analyses required in FE model updating formulations are associated with
the solution of the eigenproblem of the reduced-order system, completely
avoiding the re-analyses of the component fixed-interface and
characteristic interface modes as well as the re-assembling of the reduced
system matrices. FE model updating and damage identification results
using a solid model of a bridge demonstrated the implementation,
computational efficiency and accuracy of the proposed model reduction
methodology. The computational effort was reduced drastically by more
than three orders of magnitude. In particular, for the application in damage
identification the computational time was reduced from approximately one
month to several minutes. Further computational savings can be obtained
by adopting surrogate modes to drastically reduce the number of reduced-
order system re-analyses and parallel computing algorithms to efficiently
distribute the computations in available multi-core CPUs .

e A Bayesian UQ&P framework was presented for identifying nonlinear
models of dynamic systems using vibration measurements of their
components. The use of Bayesian tools, such as stochastic simulation
algorithms (e.g., TMCMC algorithm), may often result in excessive
computational demands. Drastic reduction in computational effort to
manageable levels is achieved using component mode synthesis, surrogate
models and parallel computing algorithms. The framework was
demonstrated by identifying the linear and nonlinear components of a
small-scale laboratory vehicle model using experimental response spectra
available separately for each component. Such model uncertainty analyses
for each component resulted in building a high fidelity model for the
combined system to be used for performing reliable robust response
predictions that properly take into account model uncertainties. The
theoretical and computational developments in this work can be used to
identify and propagate uncertainties in large order nonlinear dynamic
systems that consist of a number of linear and nonlinear components.
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e A novel use of monitoring information for estimating fatigue damage
accumulation in the entire body of metallic structures is outlined in this
work. This is accomplished by combining fatigue damage accumulation
laws with stress/strain predictions based on output only vibration
measurements collected from a limited number of sensors. Methods for
estimating strains by integrating high fidelity finite element model and
estimation techniques were summarized. The predictions are currently
based on linear model of structures. The accuracy of the proposed methods
for fatigue predictions in the entire body of the structure depends on the
number and location of sensors in the structures, the number of modes
contributing in the dynamics of the structure, and the size of the model
error and measurement error. The proposed methodologies have also been
extended to cover nonlinear models of structures. Applications cover a
large variety of metallic structures, including ground and air vehicles, civil
engineering structures such as steel buildings, high towers and
railway/motorway bridges, industrial structures, wind turbine blades and
supporting structures/masts, offshore structures, etc. The proposed
methodology can be used to construct fatigue damage accumulation and
lifetime prediction maps consistent with the actual operational conditions
provided by a monitoring system. Such fatigue maps are useful for
designing optimal fatigue-based maintenance strategies for metallic
structures using structural vibration information collected from a sensor
network.

6.2 Future Work

The developed strategies of this thesis certainly open the door for future research
activities. This concerns especially the application of stochastic updating
algorithms for large and complex FE models. While a successful implementation
of the Bayesian updating algorithms in the FE model of Metsovo bridge was
shown in this thesis, there are several possibilities for improvements in further
applications. More specifically, in the current application the physical parameters
have been grouped into various categories and these categories have been
updated. The next interesting step would consist in splitting the groups down to
the level of physical parameters. This however requires an additional step, namely
the application of sensitivity analysis in order to identify the most important
parameters since an independent treatment of all structural parameters of a real FE
model, which might amount up to several thousands, is not feasible.

Furthermore, another recommendation for future work relates to the deterministic
model updating problem. Over the last years, a substantial amount of research has
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been performed in the context of efficient vibration-based FE model updating
techniques for effective damage assessment. Many authors advocate that it is
beneficial to use other residual definitions such as modal strain energy or modal
flexibilities, other types of experimental data such as frequency response
functions or modal strains, or combining several types of data in multi-objective
optimization schemes. Therefore, it is suggested to extend the methods proposed
to FE model updating schemes which make use of these alternative objective
function configurations.

Another interesting issue that is not investigated in the context of this thesis is the
application of Bayesian inference in robust optimal experimental design and
specifically in a civil engineering context often referred to as optimal sensor
placement (OSP). The relation between OSP and Bayesian model updating is
briefly summarized in the following: a sensor configuration can be determined
such that the information obtained from the data regarding the model parameters
is maximized. For instance, in the context of damage assessment by FE model
updating, it can be verified that OSP leads to configurations where more sensors
are situated in arreas attaining high modal curvature. Moreover, all current
research related to OSP remains mostly limited to optimality with respect to
parameter inference; this could be extended to OSP for optimal predictive
response. Moreover, in view of the recommendation made above, it is suggested
to assess OSP for heterogeneous sensor networks, i.e where various types of
experimental data are combined.

Finally, related to suggested future work, it is suggested to thoroughly investigate
the accuracy of implementing asymptotic approximations as Bayesian tools in real
structures instead of implementing the stochastic simulation algorithms that were
used in the context of this thesis. The use of asymptotic expressions reduces the
computational demand for the determination of the full posterior pdfs to a single
deterministic optimization routine. The accuracy of the implementation of
stochastic simulation algorithms as a tool for identifying uncertainty models and
performing robust prediction analyses in the Bayesian framework was
demonstrated in the context of this thesis. But the investigation of the accuracy of
asymptotic approximation expressions still remains a challenge to be investigated
for future work.
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