Maveniotuio Osooaliag, 2013-2014

Tunuo HAektpoAdywv Mnxavikwv & Mnxavikwyv YIoAoylotwy

AuMAwpaTKA epyaocia
Oéua:

«Avarnrtuén epyaleiwv daxeiplong oe Acuppata Aiktua
AlcOntipwv»

«Development of Management Tools for Wireless Sensor
Networks»

Jupewvidng MoAuxpovng

EruBAEnwV KaOnyntnc:

Kopakng ABavaotog (Aéktopag KabBnyntnig)

JuverBAEnwv Kabnyntnc:

AAANG Znupidwv (AvamAnpwtn¢ Kabnyntng)

BoAog, ZemtéuPplog 2014

Euxaplotiec

Me tnv oAokAnpwon tn¢ AuTAwpaTIKNAG Epyaciag pou ¢pépw €1¢ MEPAG TLG MPOTITUXLOKEG
OMOUSEC Hou 0TO TUAMA HAekTpoAOywv Mnxavikwyv kat Mnxovikwv YTOAOYLOTWY Tou
Mavemotnuiov Osocoaliag.

Oa nBela va ekPpAcw TNV EUYVWHOOUVN HUOU OToV €TBAENMWY TNG AUTTAWUATIKAG LOU
epyooiag, Aéktopa ToUu TUAMATOG HAekTpoAOywv Mnxavikwv Kot Mnxoavikwy
Yroloylotwv K. ABavaclo Kopdkn yla tnv moAUTiun kabodriynon mou pou mpooédepe
KaTA TNV SLAPKELD TWV OTIOVSWV HoU. H mapoucia Tou 0TO TUAMA ATOV KOTAAUTLKA yLa
Vv andédaon Hou va aoxoAnbw He Tov Topéa Twv Atktuwv H/Y. Akoun, Ba nBeha va tov
EUXOPLOTHOW Yla TNV SuvatoTNTA OV HoU Tpoadépel va elpat pEAog Tou NITlab kat va
OVANTUOOW CUVEXWCE TLC YVWOELG OV TIAVW OTOV TOMEA TWV ALKTUWV.

Entiong, Ba nBela va euxaplotiow Bepud ta maldid mou anoteAouv tnv opdda tou NiTlab
HEOW TwV omolwv to StaBacpa kal n uAomoinon Stadopwv projects ATAV PLa EUXAPLOTN
Swadkaoia. ISlatépwe Ba nBsda va euxoplotiow tov umoyrndlo Sibaktopa ToOU
TuAuotog HAekTpoAoywv Mnxavikwy kat Mnxavikwy YroAoylotwv Kaldapidn MNavvn yia
™V amneploplotn PBonbela tou Kal TNV KaBodriynon TOU KATA TNV EKMOVNON TNG
AutAwpoatikig Epyaciag pou.

T€Aog, Ba NBeAa va eUX0PLOTAIOW TNV OLKOYEVELX MOV yLa TNV BonBela kat ta epodia mou
HOU Ttapeixe Ko Toug ¢pidoug pou yla Tnv umootApLEn Toug KoL TNV CUMIMOPACTACH TOUC
KB’ 6An tn SLapKELd TWV AKASNUALKWY OTIOUSWV HOoU.

AdlepwPEvo oTNV UNTEPA LOU Kal TNV adepdn Hou,
ApoAia kal Xpilotn

CONTENTS

CONTENTS ettt ettt sttt ettt e s bt e s bt s ae e st e et e e bt e eb e e saeesaeeemb e e b e e beesbeesmeesmbeenbeebeenbeesanenas 5
TTEPIAHWH ..ttt et b e sttt st et e bt e s bt e s ae e sa bt st e et e e b e e beesbeesmeesnneennean 7
FAY 2 A 12V Y G [N 8
R 101 o o [¥ ot o] o TR POV P RPN 9
2 Wireless Sensor Networks and Existing MAC and Network Protocols..........cccccceeeecvieeeennneen. 10
21 Wireless SENSOr NETWOIKSccc.eiiiiriieieeieeee ettt s e 10
2.2 IEEE 802.15.4 SEANAArd......eeitieieeitieiieeee ettt ettt s st e et e sbeesane e 10
2.2.1 L R B o o Y Tor- Y N - 1Y TR 11
2.1.2 B02.15.4 MAC LAYl i e e e e 11
2.1.3 802.15.4 NetWOrk MOdelcouuiiiiieiieeiee ettt sttt et e 11
2 00 25 N o o [T Y7o T USSR 11
D2 0 207 Vo o Yo [o Y =4 Y USSR 12
2.1.4 ONtop OF IEEE 802.15.4 ...ttt ettt e et e e et e e e e et e e e e abe e e e e abee e e enraeeeennenas 13
2.3 ZigBee ROULING ProtOCOlcceeiieiciieee ettt arae e e 13
2.2.1 UNderstanding ZiGBEe.......coiivuiiii ittt s 14
2.2.2 ZigBee as amesh ProtoCol ...t 14
2.3 DigiMesh™ NetWOrking ProtOCO!cvvvveeviiueiieiiiceecete sttt ettt et sre e sreenaesresreens 16
2.3.1 Understanding DIgIMESh™cuiiiiiiiiiicece ettt ettt et s sbeenaestesveens 16
3 Hardware devices used to implement WSN t0O0IS.........cccocciiieieiiiii it 16
70 R Y o [F 1 o PP PSP PPTOPROPRT 17
3.2 NITOS Wireless SENSOT IMOTE.......coiuiiiiriiiieeieesiee ettt st sr e s 18
TR T {2 T PSSPV PUPROPROPRT 18
3.4 [T o] o 1T o VA = 1SS USRRN 21
I 11070 (=T 0 T=T g L o LSRR 21
4.1 o] o] (o} -V AN oo] I PRSPt 22
4.1.1 EXISTING WSN TOPOIOZYueviieiiiiie ettt ettt e s e abae e e e ebae e e e eabae e e enreeas 22
4.1.2 HAIAWAIE ..ttt s e sttt et e r e sreennee e 23
4,13 Hardware configUrationccueeioiiii ittt e e 23
4.1.4 Implementation — SOftWArreuueiiii i e e 24

4.2 WSN Graphic Depiction TOOIcceiii ittt e e e e e e e e e e e e e e e 28

421 Hardware SEtUP USEd.....ccuiiiiiiiii ettt et ee e s s bee e s s sbee e e s e e e e aneeas 29

4.2.2 Software IMplemMentation ... 30
4.2.2.1 Software Frameworks USEcooierieriiniiniieieesieesiee sttt ettt 34
4.3 RaSPhErry Pi WSN GatBWaY......cueeeiiciiieeeciiieeeeciiteeeeciteeeeeitteeeentreeessasaeeesnasaeeesnnsseeesnnsseeenas 35
A.3.1 HANAWAIE ittt ettt sttt ettt e b e s bt e s ae e st e e bt et e e sb e e s aeesaeesabeeabeebeennes 36
L A [o o] 1=Y 4 0 =T o - 4T o USRS 37
4.4 Raspberry Pi Gateway supporting 4G communication backbone.........cccccccevvvviiiininnnnn. 38
4.4.1 WWVIIMIAX <ttt ettt ettt e e e e ettt e e e e s e st b e e e e e e s e sasbeaeeeeeeseaansbbaaeeeesseannnnreaaeeens 39
4.4.2 LT E ettt sttt et e b e bt e s ae e bt e bt e b e e bt e be e eheeeabeeateebeebeenbeenaeena 40
4.5 Sleep mode integration in NITOS WSN City MOtE.......ccceiiiiiiiieiiciiee et 42
451 HaIAWAIE ..ttt sttt et b e be e s be e st e et e et e e nbeesbeesaeenas 42
4.5.2 [TaaT o1 1T =T o1 - 14 Te Yo APPSR 43
4.5.2.1 XBee CONTIGUIAtiONS ..ccccuiiiiieiiiie ettt e s rra e e e e erae e e sennraeeeas 44
453 Power Consumption Measurements........cceeevvieiiie i, 45

[=T =] (=L 47

IIEPIAHWYH

Otpaydaiol puBuotl avamntuéng twv AcUpuatwy Alktuwv AtoBntripwyv (AZA) tnv teAevtaia
Sekaetia £xeL BonOnoeL otnv SnuLloupyia AUTOVOUWYV KoL EAEYXOUEVWY UTTOSOUWY OTIWG
E€umva ktnpla, E€umveg MOAelg kTtA. Auty n Authwpatikr) Epyacio avamtuooel Tig
duvatotnteg tNg MPWTIOTUTNG TAatdoppag NITOS pe tnv ulomoinon 6Sladopwv
epyaleiwv AoyloptkoU Kal e€opTtNUATWY UAIKOU OL OTIOLEG ETUTPETOUV TOV BEATIWUEVO
€\eyxo Kol TNV KaAUtepn mapakoAouBnon tng mAatpopuac. Mo CUYKEKPLUEVA, OTO
mAaiola autng TG AutAwpatikng Epyaciag dnuoupyndnke éva epyaleio TtomoAoylag.
AutO Tto epyaleio AapPavel Kol AmeKOVIIEL TO OUVOALKO HOVOTIATL ETUKOLWVWVIOG KoL
SpopoAoynong twv Nén aventuypévwy AZA Kol TNV TOLOTNTA TOU KavoALol TG HeTay
TOUCG emikowvwviag. Akoun ulomowBnke éva Loxupd Gateway AZIA PBaclopévo otnv
geVéAktn Raspberry Pi mAatdopuo ocuvbuacpévo pe éva XBee aouUpuato interface.
Emiong, mpokewévou va Snuoupynooupe WSN clusters ol omoiol umootnpilouv
eupulwvikég backbone ouvbéoelg e€omAicape to Raspberry Pi Gateway pe USB dongles
TO omola EMITPEMOUV EMIKOWVWVIA TTAVW armo diktua 4" yeviag (LTE/WIMAX). EmumAéov
avantuéape éva é€unvo web-based ypadiko epyaleio To omolo amelkovilel real-time Tig
HETPAOELC TwV aloBnTipwv tou nén umdpyxovto¢ NITOS AZA. TENOG, UEAETAOAUE KOl
avantuéape plo pebodoloyia péow tng omoiag ot NITOS Acupuatotl Koppol pmopouv va
KOLLNBOUV TIPOKELUEVOU VA AELTOUPYOUV YLOL LEYAAEG XPOVLKEG TIEPLOSOUG.

ABSTRACT

The rapid evolution of Wireless Sensor Networks (WSNs) over the last decade assists the
formation of autonomous and controllable frameworks such as Smart-Buildings, Smart-
Cities etc. This thesis expands the capabilities of the NITOS WSN prototype platform by
developing several software tools and hardware components which allow enhanced
monitoring and control of the platform. More specifically, in the context of this thesis a
topology tool has been developed. This tool acquires and illustrates the overall
communication path and routing of the deployed WSNs and their link quality. In addition,
a powerful gateway node has been implemented using the versatile Raspberry Pi board
along with an XBee wireless interface. Furthermore, in order to create WSN clusters that
support broadband backbone connections we have equipped the Raspberry Pi gateway
with USB dongles that enable communication over 4G networks (LTE/WiMAX). Moreover,
we have developed an intuitive web-based graphical tool that depicts real-time sensor
measurements of the deployed NITOS WSNs. Finally, we have studied and implemented a
methodology through which NITOS WSN nodes can be set in sleep mode in order to
operate unattended for long periods of time.

1 Introduction

Smart environments represent the next evolutionary development step in building,
utilities, industrial, home, shipboard, and transportation systems automation. Like any
sentient organism, the smart environment relies first and foremost on sensory data from
the real world. Sensory data comes from multiple sensors of different modalities in
distributed locations. In this thesis we present several implementations which assist in the
monitoring and control of Wireless Sensor Networks (WSNs). In the second chapter we
give an introduction on WSNs and their existing MAC and Network Protocols. In the third
chapter we present the modules, platforms, architectures and standards used to build the
monitoring tools. Finally in the fourth chapter we exhibit the aforementioned tools,
hardware components and software features implemented in the context of this thesis.

2 Wireless Sensor Networks and Existing MAC and Network
Protocols

2.1 Wireless Sensor Networks

A wireless sensor network [1] is a collection of nodes organized into a cooperative
network. Each node consists of processing capability (one or more microcontrollers, CPUs
or DSP chips), may contain multiple types of memory (program, data and flash memories),
has an RF transceiver (usually with a single omnidirectional antenna), has a power source
(e.g. batteries and solar cells) and accommodates various sensors. A wireless sensor
network (WSN) generally consists of a base station (or “gateway”) that can communicate
with a number of wireless sensors via a radio link. Data is collected at the wireless sensor
node, compressed, and transmitted to the gateway directly or, if required, uses other
wireless sensor nodes to forward data to the gateway. The transmitted data is then
presented to the system by the gateway connection. Creating wireless networks can be
done using a variety of RF protocols, the most widely used protocol is the 802.15.4
standard.

2.2 1EEE 802.15.4 standard

The IEEE [2] 802.15.4 is a standard which specifies the physical layer and media access
control (MAC) for low-rate wireless personal area networks (WPANs). Devices are
conceived to interact with each other over a conceptually simple wireless network. The
definition of the network layers is based on the OSI (Open System Interconnection) model
although only the lower layers are defined in the standard, interaction with upper layers
is intended, possibly using an IEEE 802.2 logical link control sub-layer accessing the MAC
through a convergence sub-layer.

2.2.1 802.15.4 Physical layer

Physical layer is the initial layer in the OSI reference model used worldwide. The physical
layer (PHY) ultimately provides the data transmission service, as well as the interface to
the physical layer management entity, which offers access to every layer management
function and maintains a database of information on related personal area networks.
Thus, the PHY manages the physical RF transceiver and performs channel selection and
energy and signal management functions. It operates on one of three possible unlicensed
frequency bands:

e 868.0-868.6MHz: Europe - 1 channel
e 902.0-928.0MHz: North America - up to 10 channels
e 2400-2483.5 MHz: Worldwide — up to 16 channels

Supported Bit Rates:

e 868.0-868.6MHz: 20, 40, 100, 250 Kb/s
e 902.0-928.0MHz: 40,250 Kb/s
e 2400-2483.5 MHz: 250 Kb/s

2.1.2 802.15.4 MAC Layer

This standard defines a communication layer at the 2"¢ |evel of the OSI model. The
medium access control (MAC) enables the transmission of MAC frames through the use of
the physical channel. Besides the data service, it offers a management interface and itself
manages access to the physical channel and network beaconing. It also controls frame
validation, guarantees time slots and handles node associations. Finally, it offers hook
points for secure services.

2.1.3 802.15.4 Network model

2.1.3.1 Node Types

The standard defines two types of network nodes. The first one is the full-function device
(FFD). It can serve as the coordinator of a personal area network just as it may function as
a common node. It implements a general model of communication which allows it to talk
to any other device: it may also relay messages, in which case it is dubbed a coordinator
(PAN coordinator when it is in charge of the whole network). On the other hand there are
reduced-function devices (RFD). These are meant to be extremely simple devices with very
modest resource and communication requirements; due to this, they can only
communicate with FFDs and can never act as coordinators.

http://en.wikipedia.org/wiki/OSI_model

2.1.3.2 Topologies

Networks can be built as either peer-to-peer or star networks. However, every network
needs at least one FFD to work as the coordinator of the network. Networks are thus
formed by groups of devices separated by suitable distances. Each device has a unique
64-bit identifier, and if some conditions are met short 16-bit identifiers can be used
within a restricted environment. Namely, within each PAN domain, communications will
probably use short identifiers.

Peer-to-peer (or point-to-point) networks can form arbitrary patterns of connections
and their extension is only limited by the distance between each pair of nodes. They are
meant to serve as the basis for ad hoc networks capable of performing self-management
and organization. Since the standard does not define a network layer, routing is not
directly supported, but such an additional layer can add support for multi-hop
communications. Further topological restrictions may be added; the standard mentions
the cluster tree as a structure which exploits the fact that an RFD may only be associated
with one FFD at a time to form a network where RFDs are exclusively leaves of a tree,
and most of the nodes are FFDs. The structure can be extended as a generic mesh
network whose nodes are cluster tree networks with a local coordinator for each cluster,
in addition to the global coordinator.

A more structured star pattern is also supported, where the coordinator of the network
will necessarily be the central node. Such a network can originate when an FFD decides
to create its own PAN and declare itself its coordinator, after choosing a unique PAN
identifier. After that, other devices can join the network, which is fully independent from
all other star networks.

2.1.4 Ontop of IEEE 802.15.4

There are several protocols which use IEEE 802.15.4 [4] as its MAC layer. The most known
is ZigBee [5], although the protocol is the basis for several other specifications such as:

o Wireless HART [6]: It is the wireless version of the HART protocol which is the most
used in the automation and industrial applications which require real time. It uses
Time Synchronized Mesh Protocol (TSMP). A "time coordinator" node is required
in order to assign the time slot to all the motes.

e ISA - SP100 [7]: It also centers in the process and factory automation. It is being
developed by the Systems and Automation Society (ISA) and tries to be an standard
for this kind of projects.

e B6LOWPAN [8]: As the may point out it is the implementation of the IPv6 stack on
top of 802.15.4 to let any device be accessible from and to the Internet.

e MiWi [9]: It is designed for low data transmission rates and short distance

¢ Mesh protocols: A lot of different mesh networking protocols have been and are
being implemented by companies over the 802.15.4 MAC layer. One in particular
is Digi’s [11] DigiMesh™. DigiMesh™ is a proprietary peer-to-peer networking
topology for use in wireless end-point connectivity solutions. The nature of its
peer-to-peer architecture allows DigiMesh™ to be both easy to use and equipped
with advanced networking features, including support for sleeping routers and
dense mesh networks.

Reference guide to 802.15.4 description: [3].

2.3 ZigBee Routing Protocol

This standard defines a communication layer at level 3 and up in the OSI model. Its main
purpose is to create a network topology (hierarchy) in order to let a number of devices
communicate and set extra communication features such as authentication, encryption,
association and application services in the upper layer. It was created by a set of
companies which form the ZigBee Alliance.

OSI Model 802.15.4 / ZigBee

Application Layer Zig8ee App Objects
+
A Tty ZigBee
Transport Layer ZigBee Security Services XBee ZB
ZigBee Routing

Network Layer (AODV)
Logical Link Control 802,11 LLC
Media Access Control 802.15.4 MAC 802.15.4

XBee OEM
Physical Layer B6BMH2Z/915MHZ/2.A4GH2

2.2.1 Understanding ZigBee

ZigBee offers basically four kinds of different services:

o Extra Encryption services (application and network keys implement extra 128bits
AES encryption)

e Association and authentication (only valid nodes can join to the network).

¢ Routing protocol: AODV [11], a reactive ad hoc protocol has been implemented to
perform the data routing and forwarding process to any node in the network.

e Application Services: An abstract concept called "cluster" is introduced. Each node
belongs to a predefined cluster and can take a predefined number of actions.
Example: the "house light system cluster" can perform two actions: "turn the lights
on", and "turn the lights off".

ZigBee is a layer dedicated to organize the network. The first thing a node (router or end-
device) joining the network has to do is to make a request to the coordinator for a network
address (16-bit), as part of the association process. All the information in the network is
routed using this address and not the 64-bit MAC address. In this step authentication and
encryption procedures are performed.

Once a node has joined the network it can send information to its siblings through the
routers which are always awake awaiting for packets. When the router gets the packet
and the destination is in its radio of signal, the router first determines if the destination
end-device is awake or sleeping. In the first case the router sends the packet to the end
device, however if it is sleeping, the router will buffer the packet until the end device node
wakes up and asks for buffered packets.

2.2.2 ZigBee as a mesh protocol

ZigBee networks can operate as Mesh networks. There are three kinds of nodes in a ZigBee
network:

e Coordinator: is the "master" device, it governs the entire network.

e Routers: they route the information which sent by the end devices.
e End devices: (motes): they are the sensor nodes, the ones which acquire the
information from their accommodated sensors.

Coordinator and routers cannot be battery powered, motes can. ZigBee creates star
topologies. There are some basic rules:

e The end devices connect to a router or a coordinator.

e The routers can connect among them and with the coordinator.

e The routers and coordinators cannot sleep. They have to save in their buffer the
packets which are destined for the end devices.

¢ The end devices can sleep.

The concept "Mesh Network" relays in the Ad hoc communications, also called peer to
peer (P2P). This means all the devices in the network can communicate with each other
directly. They have to be able to discover each other and send broadcast messages to all
the siblings. They have to be able to create networks like the one represented in the image
below.

ZigBee creates star network topologies, not mesh ones. To create a completely mesh
network such as the one showed in the image below all the nodes have to have the same
role, all of them have to be "end devices + routers"” so that they can route their sibling
information and sleep when no action is required (conserving energy).

The DigiMesh™ [10] protocol (over 802.15.4) sets a completely distributed network
where all the nodes can communicate using P2P datagrams.

Reference guide to ZigBee protocol description: [1].

2.3 DigiMesh™ Networking Protocol

As mentioned above DigiMesh™ is a proprietary P2P networking topology for use in
wireless end-point connectivity solutions. The nature of its peer-to-peer architecture
allows DigiMesh™ to be both easy to use and equipped with advanced networking
features, including support for sleeping routers and dense mesh networks. Overhead
associated with the protocol and data payload is optimized for network performance
and addressing is made simple so you spend less time defining your network, and more
time on your application.

2.3.1 Understanding DigiMesh™

DigiMesh™ was developed to address the needs of a broad category of wireless end-
point connectivity applications. DigiMesh™ is an ideal solution for setups that require:

e Robust mesh networking (no Parent/Child dependencies)

e Support for advanced mesh networking, including dense networks

e A power-optimized protocol with support for sleeping routers for power-sensitive
or battery-dependent networks

e An easy-to-use protocol that simplifies mesh networking (no need to define and
organize coordinators, routers or end-nodes)

e The ability to deploy wireless solutions in both 900 MHz & 2.4 GHz

3 Hardware devices used to implement WSN tools
In order to be able to implement the tools of this thesis several hardware modules had to
be used. These modules are presented below.

3.1 Arduino
The most common open-source electronics platform is Arduino [14]. Arduino is a single-
board microcontroller, the hardware consists of an open-source hardware board
designed around an 8-bit Atmel AVR microcontroller or a 32-bit Atmel ARM. The Arduino
platform is low-cost and can be used in a variety of projects. An important aspect of the
Arduino is the standard way that connectors are exposed, allowing the CPU board to be
connected to a variety of interchangeable add-on modules known as shields. Most
boards include a 5 volt linear regulator and a 16 MHz crystal oscillator. What
differentiates the Arduino from other platforms is that an Arduino's microcontroller is
pre-programmed with a boot loader that simplifies uploading of programs to the on-chip
flash memory, compared with other devices that typically need an external programmer.

The Arduino board can easily be programmed through a cross-platform Arduino
Software IDE

The Arduino platforms used in the context of this thesis are:

e Arduino DUE [16] It is the first Arduino board based on a 32-bit ARM [15]
core microcontroller. It is a powerful board that has a CPU Clock at
84MHz, 96 Kbytes of SRAM and 512 Kbytes of Flash memory for code.

e Arduino Ethernet Shield [17]: This Ethernet Shield allows an Arduino board
to connect to the internet. It is based on the WizNet W5100 Ethernet chip.
It supports up to 4 simultaneous socket connections. The Ethernet Shield
has a standard RJ-45 connection with an integrated line transformer and
Power over Ethernet (PoE) enabled. Also there is an onboard micro-SD card
slot, which can be used to store files for serving over the network.

3.2 NITOS Wireless Sensor Mote
The prototype NITOS wireless sensor mote [19], is comprised of open-source and
configurable modules. NITOS mote features the ATmega32u4 [18] microcontroller
running at 8MHz and operating at 3.3V. The aforementioned microcontroller is fully
compatible with the Arduino platform that enables ease of software development and
provides compatibility with several commercial sensing modules. Moreover, the
platform is equipped with an XBee [22] radio interface that enables communication with
the respective gateway. The XBee module is a tiny device ideal for setting up mesh
networks and has a defined rate of 250 kbps. This module uses the IEEE 802.15.4 stack
which is the basis for the Zigbee protocol. Apart from the Xbee module, NITOS mote can
also feature a WiFi wireless interface in order to communicate with WiFi gateways. The
developed mote currently features specific sensing modules, an air temperature and
humidity sensor, a light intensity sensor and a human presence sensor. Various types of
sensing modules and actuators can be further integrated exploiting existing Arduino
software that implements several existing communications protocols. The firmware can
be easily uploaded through the on-board USB connection.

3.3 XBee
The XBee radios are a set of RF modules designed to operate under the IEEE 802.15.4
networking protocol. They are developed by Digi International and provide low-cost
wireless connectivity to WSN nodes. These modules provide high-throughput and low
latency communication. Communication is achieved through a UART.

In this thesis there have been used two types of XBee modules.
e The XBee 802.15.4 (Series 1) [25] and its variant the XBee PRO 802.15.4
(Series 1) which are devices that operate at 2.4GHz and provide wireless

communication based on the IEEE 802.15.4 standard. Their specifications
are listed below:

XBee PRO 802.15.4 (Series 1)
Power output ImW North American & | 63mW North American

10mW International
Indoor/Urban range Up to 90m

Outdoor/RF line-of- | Up to 90m Up to 1.6km
sight range

Transmit current 45 mA (@ 3.3 V) boost | 215 mA (@ 3.3 V)
mode 35 mA (@ 3.3 V)
normal mode

Receive current 50 mA (@ 3.3 V) 55 mA (@ 3.3 V)

Power-down sleep <10 pA <10 pA
current

e The XBee ZB (Series 2) [26] and its variant the XBee PRO ZB (Series 2) which
are devices that also operate at 2.4GHz and provide wireless
communication based on the ZigBee protocol. They offer interoperability
with other ZigBee devices. Some of their specifications are shown below:

XBee ZB (Series 2) XBee PRO ZB (Series 2)

Power output 2mW North American & |63mW North American
International version 10mW International

Indoor/Urban range | Up to 40m Up to 90m

Outdoor/RF line-of- | Up to 120m Up to 1.5km
sight range

Transmit current 40 mA (@3.3 V) 220mA (@ 3.3V)

Receive current 62 mA (@ 3.3 V)
mode @ 3.3V

Power-down sleep 4uA

current

The XBee modules can be configured through Digi’s XCTU program. The XCTU is a
multi-platform application designed to enable developers to interact with the XBee
RF module. This interaction includes firmware updates in order to change
operating modes (e.g. from ZigBee Coordinator to ZigBee Router) and to manage
and configure the RF devices.

XBees have two modes of operation:

e AT Command Mode (Transparent Mode): The XBees that operate in AT
Command Mode can be configured through simple AT commands issued
through the serial UART. The XBee module enters the command mode
when the characters “+++” are sent to the XBee. Afterwards the XBee
replies with “OK” and the XBee is in command mode. An example of an AT
command is “ATID” which returns/sets the XBees PAN ID.

e APl Mode: API (Application Programming Interface) mode is a frame-based
method for sending and receiving data to and from a radio's serial UART.
These frames are called ZigBee Device Objects [27]. The APl is an
alternative to the default transparent mode. The APl allows the
programmer the ability to:

o Change parameters without entering command mode
o View RSSI and source address on a packet by packet basis
o Receive packet delivery confirmation on every transmitted packet

A typical APl packet format is:

3.4 Raspberry Pi
The Raspberry Pi [28] is a low cost (525-535), small, single-board computer that was first
released on February 2012. It is a highly versatile platform that was designed to have a
wide variety of capabilities. It can be used as a basic computer, as a DIY platform or even
as a WSN Gateway. The Pi features an ARM CPU, HDMI Output, 256-512MB RAM, USB
hosting, Ethernet port and several GPIO Pins. There are three models available in the
market, model A, model B and model B+.

In our implementation we used the Raspberry Pi Model B+ which features:

e 4 USB ports

e 40 GPIO pins

e 512MB RAM

e 700MHz ARM CPU

4 Implementations

The main motivation of my thesis was to implement certain tools for the NITOS WSN
Platform that would facilitate the monitoring and control of the platform. The tools
developed are the NITOS WSN Topology Tool, which is a tool that reports the Topology of
an existing WSN and the NITOS WSN Graphic Depiction Tool, which - as the name may
already reveal — is a web-based tool used to inform the user of the current measurements
acquired by the WSN mote sensors in graphical way. During the elaboration of my thesis
certain needs for hardware components and software features emerged. The hardware
component implemented is a powerful WSN Gateway that can be used to implement
more complex deployments and support more features than the restricted, in terms of
processing power and memory, Arduino platform. The platform used for this
implementation is the Raspberry Pi. In addition to the implementation of the WSN

Gateway we upgraded the Raspberry Pi WSN Gateway by adding a new feature that
cannot be supported by an Arduino WSN Gateway. This feature is the support for a 4G
communication backbone for the WSN. Another software upgrade is the integration of
coordinated cyclic sleep on the NITOS WSN City Mote. This feature allows for a WSN mote
that can operate autonomously for long periods of time solely by using a rechargeable Li-
Po battery as a power source and a solar panel for battery charging.

The implementations mentioned above are presented in more detail in the forthcoming
chapter.

4.1 Topology Tool

The NITOS WSN Topology Tool is a monitoring tool designed to report and display the
network topology of an existing WSN. The tool acquires the LQI Table (Link Quality
Indicator) and the Routing Table of each node. The acquisition is accomplished by sending
ZigBee Device Objects (ZDOs) through the XBee wireless interface of a dedicated Arduino-
based device.

4.1.1 Existing WSN Topology

The tool was implemented based on the characteristics of the deployed NITOS Indoor
WSN testbed. The NITOS Indoor WSN consists of several WSN motes and a WSN Gateway
based on the Arduino platform. The gateway node is connected through an Ethernet
network to the NITOS Server. Each NITOS WSN mote is equipped with a microcontroller,
several sensors and an XBee wireless interface. The wireless interface is configured to
operate in AT Command mode. In order to acquire the topology information of the WSN
we must use two types of ZDOs (0x0031 & 0x0032), and to be able to send the ZDOs we
need an XBee in APl mode. Due to the fact that we don’t want to modify the existing
topology and implementation of the WSN testbed we implemented a new dedicated
device. This device acts as an extra router that acquires the LQl and Routing tables of the
network and then reports them back to the server through an Ethernet connection.

4.1.2 Hardware

The hardware device constructed for the topology tool is based on the Arduino DUE, which
is a powerful board that can host and execute more complex code implementations such
as the NITOS WSN Topology Tool. Attached to the Arduino DUE is an Arduino Ethernet
Shield in order to run a web server on the device. And last the device is equipped with an
XBee S2 configured in API mode.

4.1.3 Hardware configuration

The implementation of the NITOS WSN Topology Tool required several hardware
modifications in order to work properly. The main modification was to increase the
Hardware Serial Buffer size, which is the buffer where the information that arrives on the
serial port is stored temporarily, from 64 bytes to 256 bytes. This configuration had to be
made because the ZDO packets sent and received by the XBees when in APl mode have a
size of more than 64 bytes. Without this modification the Arduino board that receives the
information from the XBee through the UART would lose these packets.

The modification done in the path:
“arduino-1.5.6-r2\hardware\arduino\sam\cores\arduino\RingBuffer.h”
is shown below:

#define SERIAL BUFFER SIZE 256

Another hardware configuration was to set the MAC address and IP address of the Web
Server that runs on the Arduino platform. And the last modification was to upload new

ZigBee Router firmware on the XBee S2 module that is able to communicate in APl mode
and set the network ID of the XBee in order to join the existing network. The configurations
for the XBee were executed through Digi’s X-CTU program.

4.1.4 Implementation - Software
After the construction of the dedicated device and the hardware configurations the new
NITOS Indoor WSN architecture is as shown in the image below. The device joins the
network and communicates with the NITOS server through its own Ethernet link. On the
device we uploaded code that is able to acquire the LQl and Routing tables of every device
in the network and report it when asked to.

The acquisition of the WSN topology commences periodically of on demand by a Ruby
script that runs on the NITOS Server and is executed in several sequential steps.

In the first step the script issues an HTTP Request to the NITOS DUE-like node with the
identifier “/scan”. Then the device sends an HTTP Reply “Scan Initiated”.

In the second step the dedicated device broadcasts an ATND (Node Discovery) command
in the form of a ZDO frame. Then the device awaits for a response from the nodes. The
response contains the 64-bit and 16-bit addresses of every node in the network. The
device receives the responses and stores them locally.

After the response reception the device issues one by one Management LQl Request
(0x0031) ZDOs, which is the ZDO that acquires the LQl table from the node, to every node
in the network and the nodes respond with the raw information in the form of a
Management LQI Response (0x8031) ZDO. The routing table is acquired after the LQl table
through a Management Rtg Request (0x0032) ZDO and the response is sent in a
Management Rtg Response (0x8032) ZDO. The device stores the information received in
order to send them back when the data are requested through another HTTP Request
issued to the device from the server that bears the identifier “/getdata”.

Subsequently, the data are stored in a MySQL server on the NITOS Server and are depicted
using an elegant User Interface which supports movable objects. The Ul is constructed
using PHP and a JavaScript [31] Diagraming framework called JointJS [29].

The visual outcome of the of the topology acquisition using the NITOS WSN Topology
Tool is shown in the picture below:

A second screenshot that displays a more complex WSN topology:

4.2 WSN Graphic Depiction Tool

The WSN Graphic Depiction Tool is a Web based GUI designed to reduce the gap that lies
between the users and the information that exists in a WSN and more specifically the
NITOS Indoor WSN. Rather than illustrating the data as obtained by a WSN Gateway in
their original format, which may be difficult and unpleasant to a user, the WSN Graphic
Depiction Tool presents that data in a user-friendly Tool that consists of several tabs. The
WSN Graphic Depiction Tool displays real-time measurements and graphs from data
obtained from different sensors that feature on the NITOS WSN motes.

These sensors are:

e Temperature, Humidity, Luminosity
e Human Presence

e Radiation

e Energy Consumption

e Plant soil moisture, soil temperature
e (Camera

4.2.1 Hardware Setup Used

The hardware used it mainly consists of the NITOS Indoor WSN that hosts a wide variety
of sensors and several devices already implemented and deployed in NITlab. Apart from
the NITOS Indoor WSN , which we presented in the previous section, these devices are an
Arduino compatible camera and a pilot WSN deployment formed by a prototype
developed in NITlab, the NITOS City Mote.

4.2.2 Software Implementation

The software implementation process is quite similar to the development of a web-
platform. The tool was implemented on the NITOS server using some of the latest
technologies introduced to the web-development community. These technologies, which
will be presented more thoroughly in the forthcoming section, allow for a smooth user
experience and seamless real-time data refreshing. The data are collected from a WSN
Gateway through HTTP Requests which are issued from a Ruby script that runs on the
NITOS Server. The image below shows the raw data displayed by the WSN Gateway.

Afterwards the information are stored in a MySQL database and the tool displays the
information in a web browser.

There are tabs to separate the depiction of different implementations such as the
measurements of the NITOS Indoor WSN, the NITOS WSN, the NITOS WSN City Map and
the Camera. The WSN Graphic Depiction tool is shown in the pictures below.

In the WSN Lab tab we display the measurements collected from the WSN. These
measurements are the temperature, humidity, luminosity, human presence and door
status (open or closed).

In addition, there are multiple clickable objects that display in a pop-up window specific
information of the device clicked, such as the energy monitoring devices, the WSN Motes
and some standalone sensors.

In the energy monitoring devices we display the instant consumption in Amperes, the total
consumption in Ampere Hours, the total power consumption in Watt Hours and the device
status (open or closed).

Energy meter

Inst. consumption (Amps): 2.12
Total consumption (Ah): 66.11

Total consumption (Wh): 0.3005
Device status: OPEN

Time on: 18d23h12m24s

Last measurement: 20.4

In the WSN Mote pop-up we display the Node ID, Battery Voltage and whether the battery
is charging if the device has a battery attached, the time the device has been on-line and
the time of the last collected measurement.

The standalone sensors consist of a Geiger counter and a sensor mounted on a plant
dedicated to measure soil moisture and temperature.

Furthermore, in the same tab there are charts that depict the measurements the
temperature, humidity, luminosity and human presence of each room in the WSN Lab.

Moreover, the City tab displays a map and some markers to display an experimental
deployment of the NITOS City WSN. The markers, when clicked, display the information
collected from each WSN mote.

In addition, the Camera tab displays an image which is periodically taken from a Camera
module interfaced with an Arduino Board. After the picture is taken a Ruby script collects
the image, stores it in the NITOS Server and it is illustrated through the WSN Graphic
Depiction Tool.

Also featured in the Topology tab is the WSN Graphic Depiction Tool which displays the
data collected from the aforementioned Topology Tool.

4.2.2.1 Software Frameworks Used

The NITOS WSN Graphic Depiction Tool uses a wide variety of frameworks for the
illustration of the information collected. More specifically, the tabs are displayed using
HTMLS5 [30] and pure CSS3 [33]. In the WSN Lab tab we used the HTML5 SVG to draw and
position the images, a JavaScript framework called qTip which is a jQuery plugin used to
make the objects clickable and display information in a pop-up window. In addition, we
used AJAX [35] to refresh the content of the web-page without refreshing the whole
image. The charts were implemented using an open-source JavaScript library called
ChartlJS [32].

4.3 Raspberry Pi WSN Gateway

The requirement for a WSN Gateway that features higher capabilities, is more versatile
and can integrate more features than a limited Arduino-based Gateway, lead towards the
implementation of the Raspberry Pi WSN Gateway. The Raspberry Pi platform was chosen
because it has a small form factor, similar to the Arduino board, it features 4 USB ports
that can host different devices, it embeds an Ethernet port, it provides several General
Purpose Input Output (GPIO) Pins and it is low cost (roughly 25-30S). The Raspberry Pi has
2 pins for RX-TX communication. Using those pins we can achieve a UART communication
with a wireless interface.

4.3.1 Hardware
The Raspberry Pi model that we used is the latest Model B+. The B+ supports up to 4 USB
connections, has more GPIO pins and consumes less power than its predecessors.

For the needs of the implementation we designed a custom-made XBee shield using the
Fritzing Program [20] which is a software tool used to design Printed Circuit Boards (PCBs).

The wireless interface of the WSN Gateway is based on the XBee module. For this
implementation we used an XBee Series 2.

4.3.2 Implementation
The Raspberry Pi needed software configuration in order communicate with an XBee
through a serial port [36]. The configuration steps are described below:

First of all, we uploaded to the Pi’s microSD a system image called Raspbian (it is a free
operating system optimized for the Raspberry Pi and based on Debian). Afterwards, we
needed to edit the /boot/cmdline.txt file:

sudo cp /boot/cmdline.txt /boot/cmdline.txt.bak # Backup file
sudo vi /boot/cmdline.txt

Then remove all references to ttyAMAO (console and kdgboc) so the file looks similar to

dwc_otg.lpm enable=0 rpitestmode=1 console=ttyl root=/dev/mmcblkOp
rootfstype=ext4 rootwait

this:

Subsequently we edited the /etc/inittab:

sudo cp /etc/inittab /etc/inittab.bak # Backup file
sudo vi /etc/inittab

By commenting out the following line:

2:23:respawn:/sbin/getty -L ttyAMAO 115200 vtl100

Then we reboot the Raspberry Pi, connect the custom made XBee shield to the Pi and
attach an XBee S2 configured to operate as a WSNs Coordinator. We can test the
configuration by using Minicom.

sudo minicom -b 9600 -o -D /dev/ttyAMAO

To imitate the function of an Arduino WSN Gateway (Receive data from the motes and
run a web-server to display the information) we ported from an already existing WSN
Gateway Arduino code to Python. We wrote a Python script to read the serial pipe and to
store data to afile.

For the web server we used a Ruby script which implements a REST APl in order to serve
the file when an HTTP Request is issued.

4.4 Raspberry Pi Gateway supporting 4G communication

backbone
One of the many features the Raspberry Pi WSN Gateway can integrate is the support for
a 4G communication backbone. In the context of this thesis we implemented the 4G
communication backbone using the widely known technologies of WiMAX [38] and LTE
[40].

The communication was achieved through USB dongles attached to the Raspberry Pi WSN
Gateway. The dongles used are a Teltonika [39] UM6250 WiMAX USB Dongle and a
Huawei [41] E392 LTE USB Dongle.

The USB Dongles did not work right out of the box. Certain modifications were required
to be made.

4.4.1 WiMAX

The WiIMAX dongle installed on the Pi are provided by Teltonika with model UM6250.
These devices are using a small Linux client running on them which is configured to serve
the WiMAX network to the Linux OS as a simple Ethernet device. When we connect the
Teltonika WiIMAX USB Dongle to the Pi there is no need to install new drivers on the Pi,
because the drivers are already stored in the dongle. The dongle creates a new Ethernet
interface over the USB connection and has another interface called iccO which is the
interface that receives WiMAX traffic from the WiMAX base station. We have to assign the
192.168.0.X IP address to the Ethernet interface and then use the telnet command to
connect to the USB dongle using the 192.168.0.1 address.

The WiMAX dongle is capable of receiving incoming connections because it is running a
tiny Linux distribution called pCLinux. After the connection has been initiated we configure
the iptables of the WiMAX dongle in order to swap the destination header of packets that
are destined for the iccO interface with a new destination, the Ethernet interface. The next
step is to route the traffic of the WSN Gateway through the Ethernet interface that is
created from the WiMAX USB Dongle

After those steps we have internet connection through the WiMAX Base Station.

The series of commands are shown below:

ifconfig tel0 192.168.0.46/24 up

telnet 192.168.0.1 700

/bin/iptables -t nat -A PREROUTING -d 192.168.55.XX -j DNAT --to 192.168.0.YY
route del default gw dev telO

route add -net 192.168.55.0/24 gw 192.168.0.1 dev tel0

4.4.2 LTE

The configuration process for the LTE USB Dongle set-up are different. The LTE Dongle
features a slot for a SIM card which means that the LTE connection specifics are taken care
of by the USB Dongle.

When we connect the LTE USB Dongle to the Raspberry Pi we must install drivers for the
device. These drivers are called gmi_wwan and if they are not present in the system we
can install them with a simple sudo apt-get install command.

The USB Dongle connects to the Raspberry Pi using a serial port. In order to have
communication with the LTE network we need to send some AT commands to the LTE USB
Dongle. We simply open a serial communication port using e.g. Minicom and we send
these commands over serial.

The sequence of the AT commands sent are:

AT+CGDCONT=1, 1, "default"
AT~NDISDUP=1, 1, "default"
AT+CGATT=1

When connected, we set a specific IP address, which is assigned from the Evolved Packet
Core (EPC), in the internal WWAN interface of the Dongle and then the connection is up
and running.

4.5 Sleep mode integration in NITOS WSN City Mote

NITlab has deployed a small-scale pilot WSN in Volos City, consisting of 15 nodes
deployed around the NITlab facility that reports air temperature humidity and noise
pollution.

In the context of this thesis we added an extra feature to the existing prototype NITOS
WSN City Mote. This extra feature is the integration of a sleeping mechanism that allows
every node in a mesh network to sleep in order to conserve energy. The feature is of high
importance because it allows a WSN that is based on WSN Motes which are battery
powered and are charged using solar panels to operate autonomously for long periods of
time.

4.5.1 Hardware

The hardware on which the sleeping mechanism was developed is the NITOS WSN City
Mote. The city mote among the standard features of a Wireless Sensor Mote
(Microprocessor, Wireless Interface, a variety of sensors) embeds a Li-Po battery which is

recharged by a solar panel. The Microprocessor is an ARM Cortex-M4 and the Wireless
interface is comprised of an XBee Series 1 module. This module can operate in the
DigiMesh™ mode which allows for a Mesh network with sleeping routers. The network
topology is as shown in the picture below:

Where the XBee which is mounted on the WSN Gateway acts as a coordinator to the entire
network, which means that every node sends the measurements it collects to the WSN
Gateway.

4.5.2 Implementation

In order to implement this feature we configured the XBee module to operate in a
Coordinated Cyclic Sleep Mode. This mode is supported by the XBee modules and can
make the XBee modules of an entire DigiMesh network to sleep and wake up at the same
time. The sleep coordination is taken care of by a sleep coordinator which is assigned
statically or elected by the modules. The sleep coordinator broadcasts the sleep and wake
time values to the other XBee modules. Furthermore when the XBee sleeps it has a
dedicated pin that can be sensed to determine whether the module is awake or asleep.

This pin is pin number 13 on the XBee pinout. This pin is HIGH when the xbee is operating
and LOW when the XBee is asleep. Another pin, the CTS pin has exactly the inverted output
of the ON/Sleep pin. When the XBee is asleep this pin is HIGH and when it wakes up the
pin is set to LOW.

To enable the microprocessor to enter a low power sleep mode we used an Arduino library
called LowPower_Teensy3 [42]. This library is designed to operate with the Teensy 3.0 and
supports the sleep mode that we wanted to implement. In addition, this library gives us
the capability to downclock the ARM microprocessor in order to conserve power
whenever the full processing power of the ARM Cortex-M4 is not needed. The Teensy 3.0
is a single board microcontroller which bears the Cortex-M4, the same as the NITOS WSN
City Mote. Because the LowPower_Teensy3 library wakes the ARM microprocessor when
the interrupt is set to 0, we attached the CTS pin to a pin on the ARM Cortex-M4
microcontroller, which we set as an interrupt pin in order to wake the microprocessor and
started sampling this pin to determine if the XBee is awake or asleep. The microcontroller
senses when the XBee has gone to sleep and enters a low power sleep mode.

4.5.2.1 XBee configurations

In order to have a sleeping capable network we had to configure the XBee S1 settings [43].
These settings are done through the XCTU program. We had to configure the XBee which
is mounted on the WSN Gateway as a sleep coordinator. The WSN Gateway is always
awake and is the best candidate to be a sleep coordinator.

In the coordinator we set the SM (Sleep Mode) variable of the XBee to Sleep Support (7)
which means awake but sleep aware, the SO variable to 0x05. We also have to set the SP
(Sleep Time) to our preferred sleep time for the entire network and the ST (Wake Time)
to the time we want our network to be awake. These values (SP and ST) are set in a
hexadecimal representation.

In every other XBee in the network which acts as a router (sleeping devices) we have to
set the only the SM variable to Synchronized Cyclic Sleep (8). The Sleep Time and Wake
Time values are sent to the Routers from the Sleep Coordinator.

After these settings we will have a network that sleeps for SP*10 ms and operates for ST*1
ms.

4.5.3 Power Consumption Measurements
In addition to the coordinated sleep mode we collected some power consumption
measurements from the NITOS WSN City Mote that are presented below:

Clock speed Awake (ARM + XBee) Asleep

2 MHz 52 mA 0.01 mA
4 MHz 53.5 mA 0.01 mA
8 MHz 56.2 mA 0.01 mA
16 MHz 58.9 mA 0.01 mA
24 MHz 65 mA 0.01 mA
48 MHz 69.5 mA 0.01 mA
96 MHz (overclocked) 74.2 mA 0.01 mA

We measured the power consumption of the NITOS WSN City Mote. The first burst
indicates that the mote has been awaken in order to acquire temperature measurements,
while the second one shows the fire of the XBee timer that awakes the entire mote. In this
last case the XBee receives the collected temperature value from the microprocessor and
transmits it through the established mesh network to the Gateway node.

References

[1] Wireless Sensor Networks: https://www.cs.virginia.edu/~stankovic/psfiles/wsn.pdf

[2] Institute of Electrical and Electronics Engineers : http://www.ieee.org/index.html
[3] 802.15.4 vs ZigBee : http://www.sensor-networks.org/index.php?page=0823123150
[4] IEEE 802.15.4: http://en.wikipedia.org/wiki/IEEE 802.15.4

[5] ZigBee protocol : http://www.zigbee.org/

[6] Wireless HART : http://www.hartcomm?2.org/index.html

[7] ISA-SP100 :
http://www.isa.org/MSTemplate.cfm?MicrositelD=1134& CommitteelD=6891

[8] IETF IPv6 LOWPAN : http://ietfreport.isoc.org/ids-wg-6lowpan.html

[9] MiWi: http://www.microchip.com/pagehandler/en-

us/technology/personalareanetworks/technology/home.html

[10] Digi Mesh : http://www.digi.com/technology/digimesh/

[11] AODV Routing Protocol : http://en.wikipedia.org/wiki/AODV

[12] Digi : http://www.digi.com/

[13] X-CTU program : http://www.digi.com/products/wireless-wired-embedded-

solutions/zigbee-rf-modules/xctu

[14] Arduino : http://www.arduino.cc/

[15] ARM: http://www.arm.com/

[16] Arduino DUE: http://arduino.cc/en/Main/arduinoBoardDue

[17] Arduino Ethernet: http://arduino.cc/en/Main/arduinoBoardEthernet

[18] Atmega 32U4 Microcontroller :
http://dInmh9ip6v2uc.cloudfront.net/datasheets/Dev/Arduino/Boards/ATMega32U4.pd
f

[19] NITOS Wireless Sensor Mote:
http://nitlab.inf.uth.gr/NITlab/index.php/hardware/sensors/nitos-wireless-sensor-
platform

[20] Fritzing Software : http://fritzing.org/

[21] Arduino Ethernet Board : http://arduino.cc/en/Main/ArduinoBoardEthernet

[22] Atmel Corporation : http://www.atmel.com/

[23] XBee: http://en.wikipedia.org/wiki/XBee

[24] XBee radio interfaces : http://www.digi.com/xbee/

[25] XBee Series 1 802.15.4: http://www.digi.com/products/wireless-wired-embedded-
solutions/zigbee-rf-modules/point-multipoint-rfmodules/xbee-series1-modulettspecs

[26] XBee Series 2 ZigBee: http://www.digi.com/products/wireless-wired-embedded-

solutions/zigbee-rf-modules/zigbee-mesh-module/xbee-zb-module#fspecs

[27] Zigbee Device Obijects:

http://ftpl.digi.com/support/images/APP_NOTE XBee ZigBee Device Profile.pdf
[28] Raspberry Pi: http://en.wikipedia.org/wiki/Raspberry Pi

[29] JointJS: http://jointjs.com/

https://www.cs.virginia.edu/~stankovic/psfiles/wsn.pdf
http://www.ieee.org/index.html
http://www.sensor-networks.org/index.php?page=0823123150
http://en.wikipedia.org/wiki/IEEE_802.15.4
http://www.zigbee.org/
http://www.hartcomm2.org/index.html
http://www.isa.org/MSTemplate.cfm?MicrositeID=1134&CommitteeID=6891
http://ietfreport.isoc.org/ids-wg-6lowpan.html
http://www.microchip.com/pagehandler/en-us/technology/personalareanetworks/technology/home.html
http://www.microchip.com/pagehandler/en-us/technology/personalareanetworks/technology/home.html
http://www.digi.com/technology/digimesh/
http://en.wikipedia.org/wiki/AODV
http://www.digi.com/
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/xctu
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/xctu
http://www.arduino.cc/
http://www.arm.com/
http://arduino.cc/en/Main/arduinoBoardDue
http://arduino.cc/en/Main/arduinoBoardEthernet
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Dev/Arduino/Boards/ATMega32U4.pdf
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Dev/Arduino/Boards/ATMega32U4.pdf
http://nitlab.inf.uth.gr/NITlab/index.php/hardware/sensors/nitos-wireless-sensor-platform
http://nitlab.inf.uth.gr/NITlab/index.php/hardware/sensors/nitos-wireless-sensor-platform
http://fritzing.org/
http://arduino.cc/en/Main/ArduinoBoardEthernet
http://www.atmel.com/
http://en.wikipedia.org/wiki/XBee
http://www.digi.com/xbee/
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/point-multipoint-rfmodules/xbee-series1-module#specs
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/point-multipoint-rfmodules/xbee-series1-module#specs
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/xbee-zb-module%23specs
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/xbee-zb-module%23specs
http://ftp1.digi.com/support/images/APP_NOTE_XBee_ZigBee_Device_Profile.pdf
http://en.wikipedia.org/wiki/Raspberry_Pi
http://jointjs.com/

[30] HTML 5: http://en.wikipedia.org/wiki/HTML5

[31] JavaScript: http://en.wikipedia.org/wiki/JavaScript

[32] ChartJS: http://www.chartjs.org/

[33] CSS: http://en.wikipedia.org/wiki/Cascading Style Sheets
[34] Google Maps API: https://developers.google.com/maps/

[35] AJAX: http://en.wikipedia.org/wiki/Ajax (programming)

[36] Raspberry Pi and XBee: http://michael.bouvy.net/blog/en/2013/04/02/raspberry-pi-
xbee-uart-serial-howto/

[37] NITOS WiMAX: http://nitlab.inf.uth.gr/NITlab/index.php/testbed/wimax-
experimentation/simple-wimax-tutorial

[38] WIMAX: http://en.wikipedia.org/wiki/WiMAX

[39] Teltonika: http://www.teltonika.lt/en/

[40] LTE: http://en.wikipedia.org/wiki/LTE (telecommunication)

[41] Huawei: http://www.huawei.com/gr/

[42] Low power teensy library: https://github.com/duff2013/LowPower Teensy3
[43] DigiMesh™ Sleep settings:
http://www.digi.com/wiki/developer/index.php/Sleep Settings within DigiMesh

http://en.wikipedia.org/wiki/HTML5
http://en.wikipedia.org/wiki/JavaScript
http://www.chartjs.org/
http://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://developers.google.com/maps/
http://en.wikipedia.org/wiki/Ajax_(programming)
http://michael.bouvy.net/blog/en/2013/04/02/raspberry-pi-xbee-uart-serial-howto/
http://michael.bouvy.net/blog/en/2013/04/02/raspberry-pi-xbee-uart-serial-howto/
http://nitlab.inf.uth.gr/NITlab/index.php/testbed/wimax-experimentation/simple-wimax-tutorial
http://nitlab.inf.uth.gr/NITlab/index.php/testbed/wimax-experimentation/simple-wimax-tutorial
http://en.wikipedia.org/wiki/WiMAX
http://www.teltonika.lt/en/
http://en.wikipedia.org/wiki/LTE_(telecommunication)
http://www.huawei.com/gr/
https://github.com/duff2013/LowPower_Teensy3
http://www.digi.com/wiki/developer/index.php/Sleep_Settings_within_DigiMesh

