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and Solar Magnetic Activity 

 

AMALIA GKANA 

University of Thessaly, Department of Economics 

 

Supervisor: Prof. Loukas Zachilas, Assistant Professor 

 

Abstract 

This thesis contributes to the understanding of the complex population dynamics. In the first part of 

this thesis deterministic models describing predator-prey interactions and the spread of an infectious 

disease are investigated under new assumptions; the economic impacts of the outbreaks and infectious 

disease epidemics corresponding to the prey populations studied in this part are examined as well. We 

start with a predator-prey model with Holling type I functional response by incorporating prey refuge 

in the system; it is shown that refuge in some cases exhibits random-like dynamics leading to prey 

population outbreaks. Following, a dynamical system suitable for species having no overlap between 

successive generations is investigated; assuming that population evolves in discrete-time steps we 

investigate the prey refuge effect on predator-prey interactions. We show that reproduction in certain 

intervals is important and should be taken into account since it could help in the identification of pest 

population outbreaks. Finally, a deterministic epidemic model for the spread of gonorrhea is 

investigated by taking into account the interval between successive clinical cases; our modified model 

exhibits a wider array of dynamics. Moreover, chaos control is obtained in order to see how the male 

latex condom use during sexual intercourse affects the incidence of gonorrhea.  

In the second part of this thesis we investigate the solar magnetic activity using the sunspot numbers. 

We analyze the monthly and yearly mean sunspot-number data; we perform future predictions trying 

to forecast the solar activity during the next months and decades by using a neural network-type core 

algorithm. In order to test the predictive accuracy of our proposed models we perform several monthly 
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and yearly post-facto predictions comparing them with the actual sunspot numbers. We provide 

evidence that the yearly sunspot-number data can be used for long-term predictions. Our yearly 

predictions indicate that the level of solar activity is likely to be reduced significantly during the next 

90 years. Finally, we re-evaluate our proposed models for predicting solar activity in the light of the 

recently revised sunspot-number data, indicating that there is no significant degradation in their 

performance.  

The third and last part of this thesis connects all the topics studied in the previous parts; we investigate 

the existence of terrestrial and extraterrestrial relationships. We start by providing some background 

review of the existing literature on the possible connection between solar activity and terrestrial 

(biological and economic) phenomena. Finally, we attempt to find a correlation between solar activity 

and agricultural economy by studying the wheat prices in Early Modern Britain. The results of our 

study suggest the existence of a link between solar activity and wheat market. However, an 

inconsistency is observed in the wheat prices between two solar minima (Maunder and Dalton 

Minima). We suggest that the rapid transformation in farming techniques taken during the Maunder 

Minimum leading to grain-output increase, could be a response to the radical climate change of the 

coldest phase of the Little Ice Age, resulting to this inconsistency.  

 

Περίληψη 

Η συγκεκριμένη διατριβή συμβάλλει στην κατανόηση των πολύπλοκων πληθυσμιακών δυναμικών 

συστημάτων. Στο πρώτο μέρος της διατριβής ντετερμινιστικά μοντέλα που περιγράφουν 

αλληλεπιδράσεις αρπακτικών-θηραμάτων και τη μετάδοση μιας μολυσματικής ασθένειας  

εξετάζονται υπό το φως νέων υποθέσεων˙ οι οικονομικές επιπτώσεις των πληθυσμιακών εξάρσεων 

και επιδημιών των μολυσματικών ασθενειών που αντιστοιχούν στους πληθυσμούς των θηραμάτων 

που μελετώνται σε αυτό το πρώτο μέρος εξετάζονται επίσης. Αρχικά, ένα μοντέλο αρπακτικού-

θηράματος με συνάρτηση αντίδρασης Holling Τύπου Ι μελετάται, εισάγοντας στο σύστημα 

δυνατότητα προστασίας των θηραμάτων από τα αρπακτικά˙ η προστασία των θηράματων σε 

ορισμένες περιπτώσεις οδηγεί σε φαινομενικά τυχαίες δυναμικές συμπεριφορές και πληθυσμιακές 

εξάρσεις θηραμάτων εμφανίζονται το σύστημα. Στη συνέχεια, ένα δυναμικό σύστημα κατάλληλο για 

είδη πληθυσμών δίχως επικάλυψη διαδοχικών γενεών μελετάται˙ υποθέτοντας ότι οι πληθυσμοί 

εξελίσσονται διαχρονικά σε διακριτά βήματα, εξετάζεται η επίδραση της δυνατότητας προστασίας 

των θηραμάτων στις αλληλεπιδράσεις αρπακτικού-θηράματος. Δείχνουμε ότι η αναπαραγωγή σε 

συγκεκριμένα χρονικά διαστήματα είναι σημαντική και θα έπρεπε να λαμβάνεται υπόψη, καθώς θα 
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μπορούσε να συμβάλλει στην αναγνώριση των εξάρσεων που εμφανίζονται σε πληθυσμούς βλαβερών 

εντόμων. Τέλος, ένα ντετερμινιστικό επιδημιολογικό μοντέλο για την μετάδοση της γονόρροιας 

μελετάται, λαμβάνοντας υπόψη το διάστημα που μεσολαβεί ανάμεσα σε διαδοχικές μολύνσεις˙ το 

τροποποιημένο προτεινόμενο μοντέλο εκδηλώνει ένα ευρύτερο φάσμα δυναμικών συμπεριφορών. 

Επιπλέον, έλεγχος χάους πραγματοποιείται για να εξετάσουμε πως η χρήση ανδρικού προφυλακτικού 

κατά τη διάρκεια σεξουαλικής επαφής επηρεάζει τα περιστατικά γονόρροιας.   

Το δεύτερο μέρος της διατριβής ασχολείται με τη μελέτη της ηλιακής μαγνητικής δραστηριότητας 

μέσω του αριθμού ηλιακών κηλίδων. Διεξάγεται ανάλυση των μηνιαίων και ετήσιων δεδομένων του 

αριθμού ηλιακών κηλίδων˙ επιπρόσθετα, μελλοντικές προβλέψεις πραγματοποιούνται για την 

πρόγνωση ηλιακής δραστηριότητας μέσα στους επόμενους μήνες και δεκαετίες κάνοντας χρήση 

αλγόριθμου νευρονικών δικτύων. Για τον έλεγχο ακρίβειας των μελλοντικών προβλέψεων των 

προτεινόμενων μοντέλων μας, μηνιαίες και ετήσιες παρελθοντικές προβλέψεις διεξάγονται και 

συγκρίνονται με τους αντίστοιχους πραγματικούς αριθμούς ηλιακών κηλίδων. Δείχνεται ότι τα ετήσια 

δεδομένα ηλιακών κηλίδων μπορούν να χρησιμοποιηθούν για μακροπρόθεσμες προβλέψεις. Οι 

ετήσιες προβλέψεις μας δείχνουν ότι το επίπεδο ηλιακής δραστηριότητας αναμένεται να μειωθεί 

σημαντικά κατά τη διάρκεια των επόμενων 90 ετών. Τέλος, διεξάγεται επαναξιολόγηση των 

προτεινόμενων μοντέλων μας για την πρόβλεψη ηλιακής δραστηριότητας, υπό το φως των πρόσφατα 

αναθεωρημένων δεδομένων του αριθμού ηλιακών κηλίδων, δείχνοντας ότι δεν υπάρχει σημαντική 

επίδραση στην απόδοσή τους.    

Το τρίτο και τελευταίο μέρος συνδέει όλα τα θέματα που μελετώνται στα προηγούμενα μέρη της 

διατριβής. Εξετάζεται η ύπαρξη συσχέτισης ανάμεσα σε γήινα και εξωγήινα φαινόμενα, ξεκινώντας 

με μία ανασκόπηση της υπάρχουσας βιβλιογραφίας σχετικά με την πιθανή σύνδεση μεταξύ ηλιακής 

δραστηριότητας και γήινων (βιολογικών και οικονομικών) φαινομένων. Στη συνέχεια, προσπάθεια 

εύρεσης πιθανής συσχέτισης μεταξύ ηλιακής δραστηριότητας και αγροτικής οικονομίας 

πραγματοποιείται, μελετώντας τις τιμές των σιτηρών στην Βρετανία των Πρώιμων Νεότερων χρόνων. 

Τα αποτελέσματα της μελέτης μας υποδεικνύουν πιθανή σύνδεση μεταξύ ηλιακής δραστηριότητας 

και αγοράς σιτηρών. Μία ασυνέπεια παρατηρείται ωστόσο στις τιμές των σιτηρών μεταξύ δύο 

ηλιακών ελαχίστων (Maunder και Dalton Ελάχιστα). Προτείνουμε ότι η ραγδαία μεταβολή στις 

αγροτικές τεχνικές που έλαβε μέρος κατά τη διάρκεια του Maunder Ελαχίστου οδηγώντας σε 

αυξημένη παραγωγή σιτηρών, θα μπορούσε να είναι μία αντίδραση στην μεγάλη κλιματική αλλαγή 

της πιο ψυχρής περιόδου της Μικρής Εποχής Παγετώνων, οδηγώντας σε αυτήν την ασυνέπεια.   
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Chapter 1 

Introduction 

This thesis contributes to the understanding of the complex population dynamics. The dissertation is 

developed in six chapters and interpolates material from six published research papers by the author 

(Gkana and Zachilas, 2013, Gkana and Zachilas, 2015a; Gkana and Zachilas, 2015b; Gkana and 

Zachilas, 2015c; Zachilas and Gkana, 2015; Gkana and Zachilas, 2016). Some material from each of 

these papers has been also incorporated into this introductory chapter. In Chapter 1 we present all the 

analytic, qualitative, and numerical techniques that we use to investigate the complex dynamical 

systems studied in this thesis. Chapters 2 and 3 start by providing some background review of the 

existing literature on dynamical systems describing predator-prey interactions and epidemics of 

infectious diseases. In these chapters we focus on the research of predator-prey interactions and 

transmission of infectious diseases by further modifications of various population models in order to 

make them more realistic. In Chapter 2 we start by investigating the effect of refugia on a predator-

prey dynamical system with passive predators. Further, we examine the effect of prey refuge on the 

evolution of populations which have no overlap between successive generations. Finally, the economic 

repercussions of the outbreaks and infectious disease epidemics corresponding to the prey populations 

studied in this chapter are also examined. In Chapter 3, we investigate the transmission dynamics of 

an infection disease by taking into account the time interval length between successive clinical cases. 

Sections 2.1 and 2.2 use material from Gkana and Zachilas (2013) and Gkana and Zachilas (2015a), 

respectively. Section 3.1 is based on Gkana and Zachilas (2015b).  

In Chapter 4 we investigate the solar magnetic activity using the sunspot numbers. We start by 

providing some basic information on solar magnetic activity; a brief introduction to neural networks 

that we use in Sections 4.1 – 4.3 to perform sunspot-number predictions is also given. In Sections 4.1 

and 4.2 we analyze the monthly and yearly sunspot numbers in order to study whether they come from 

a stochastic or a deterministic chaotic process. We also propose monthly and yearly neural network 

models; we test their predictive accuracy by performing various post-facto reconstructions. Further, 

we perform future sunspot-number predictions in order to forecast the solar activity during the next 

months and decades. In Section 4.3 we re-evaluate the performance of our proposed neural network 

models in the light of the recently revised sunspot-number data. Sections 4.1, 4.2, and 4.3 are based 

on Gkana and Zachilas (2015c), Zachilas and Gkana (2015), and Gkana and Zachilas (2016), 

respectively. In the last part of this thesis, Chapter 5, we investigate the existence of solar-terrestrial 
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connection. Α summary of the existing literature on the possible link between extraterrestrial (solar 

activity) and terrestrial (biological and economic) phenomena is provided. Based on the studies of 

solar-agricultural connection, we investigate the existence of relationship between solar activity and 

London & Southern England wheat market in Early Modern Britain. In Chapter 6 an overall summary 

of the main findings of the studies presented in this thesis, discussion and suggestions for future 

research are given. 

1.1 Dynamical Systems 

In this thesis we study mathematical models of systems that evolve in time (i.e. dynamical systems). 

The models consist of the following three elements: the independent variable, the dependent variables, 

and the parameters. The independent variable is the time. The dependent variables are functions of the 

time. The parameters do not depend on time but can be adjusted by natural causes or by a scientist 

running the experiment depending on the specifics of the application at hand. However in many models 

only approximate values are known for the parameters. Determining how the behavior of the dependent 

variables changes when one adjusts the parameters is the most important aspect of the study of a model 

(Blanchard et al., 2006). 

The notion of a dynamical system includes the following (Boccara, 2010): (i) a phase space S whose 

elements represent all the possible states of the system, (ii) the time t which may be discrete or 

continuous, (iii) and an evolution law that allows the determination of the state at time t from the 

knowledge of the states at all previous times. Dynamical systems may be divided into two brand 

categories according to whether the time variable may be considered as continuous or discrete. Thus 

the dynamics of a given one-dimensional system is described by (i) differential equations or (ii) finite 

difference equations: 

(i)  
dx

x f x
dt

   

(ii)  1t tx f x    

In this thesis we study systems describing the evolution of phenomena occurring at discrete time 

intervals (e.g. the growth process of a species that breed at specific time). Discrete dynamical systems 

are also known as iterated maps. Moreover, we study only time-invariant systems known as 

autonomous. Autonomous systems evolve according to equations that are determined entirely by the 

values of the dependent variables (Blanchard et al., 2006). One-dimensional (1D) maps have the form 
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 1n nx f x   where nx  . Starting from a point 0x  one may generate a sequence that is the iterative 

procedure of a discrete dynamical system (Elaydi, 2005):         0 0 0 0, , , ,...x f x f f x f f f x  

where     2

0 0f x f f x ,      3

0 0f x f f f x , …, etc. 

 0f x  is the known as the 1st iterate of 0x  under f,  2

0f x  is the known as the 2nd iterate of 0x  under 

f, and  0

nf x  is the nth iterate of 0x  under f. The set of all iterates   0 : 0nf x n  , where  0

0 0f x x  

by definition, is called the orbit of 0x  (Elaydi, 2005). 

We focus on systems of nonlinear difference equations that involve more than one dependent variable; 

i.e. two-dimensional (2D) maps. Nonlinear 2D maps have the form: 

 

 

1

1

,

,

n n n

n n n

x f x y

y g x y








            (1) 

f  and g  are nonlinear functions of ,n nx y  (e.g. quadratic)  

While n-dimensional (ND) maps have the form: 

 

 

 

1 1 2

1 1

2 1 2

1 2

1 2

1

, ,...,

, ,...,

, ,...,

N

n n n n

N

n n n n

N N

n N n n n

x f x x x

x f x x x

x f x x x













 

Since in this thesis we study only two-dimensional maps we will stick to 2D. Hence, suppose we have 

the above nonlinear 2D map (Equation (1)). A solution to a system of two equations is a pair of 

functions that describe the dependent variables as functions of time. To determine these functions we 

must solve both equations    , , ,n n n nf x y g x y  simultaneously (Blanchard et al., 2006). 

Unfortunately, finding the exact solutions of discrete maps is rarely possible. Hence, there is a 

combination of three different methods one can use to study the solutions of a system (Blanchard et 

al., 2006): (i) the analytic approach where one searches for explicit formulas that describe the behavior 

of solutions, (ii) the qualitative approach which involves using geometry to give an overview of the 

behavior of solutions, (iii) and the numerical approach where the computer approximates the solution 

we seek. However, even with these techniques, it is unable for one to describe even 1D nonlinear 
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iterations completely. The reason is that many discrete nonlinear maps behave in a complex and 

unpredictable manner (Blanchard et al., 2006).  

Overall, the dynamics of the proposed and modified models of the following chapters are investigated 

as follows (Blanchard et al., 2006): (i) the meaning of the variables and parameters is described, (ii) 

explanation is given on why each system is the way it is, (iii) analytic, qualitative, and numerical 

techniques are used in order to describe the dynamics of each model, (iv) justifications for the specific 

values chosen for the parameters are given, concluding with (v) discussion on which model (basic vs. 

modified) describes better the real-world system.  

1.1.1 Discretization of continuous-time dynamical systems 

Discrete-time models are often directly applicable to time-series data and may represent contacts which 

are restricted to a specific time or time period more accurately (Allen et al., 2004). Therefore, it may 

be easier to compare the output of discrete-time models with statistical real-world data. Moreover, 

parameters in discrete time models can be more easily related to data that have been collated over 

discrete time interval (Getz and Lloyd-Smith, 2006). Discretizing a continuous-time model has the 

following advantages (Ramani et al., 2004): 

1. The epidemic statistics are collected from given time intervals, not continuously. This makes 

discrete-time models more realistic than the continuous ones.  

2. The discrete-time models provide natural simulators for the continuous-time models. Thus, one can 

not only study with good accuracy the behavior of the continuous-time model, but also evaluate the 

effect of larger time steps. 

3. With discrete-time models one can use the entire arsenal of methods that have been developed for 

the study of mappings and lattice equations, either from integrability and/or chaos points of view. 

There are several ways to discretize a continuous-time model. However, the approach of discretizing 

the differential equations of a dynamical system has the advantage that can keep track of the known 

properties of the continuous time system (Hadeler and Gerstmann, 1990). In Sections 2.2 and 3.1 we 

use the Euler’s algorithm to discretize two continuous-time dynamical systems describing the 

predator-prey interactions and the transmission of an infectious disease. The Euler’s method is a 

numerical scheme that can be used to discretize the differential equations of a continuous-time 

dynamical system. Consider the first-order differential equation (Elaydi, 2005):   ,x f t x t  with 

 0 0x t x  and 0t t b  . Dividing the interval  0 ,t b  into N equal subintervals, the size of each 
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subinterval is called the step size of the method and is denoted by  0b t N   . This step size defines 

the nodes 0 1 2, , ,..., Nt t t t , where 0jt t j  . The Euler’s method approximates x  by 

    x t x t   . Substituting this values into the differential equation gives 

      ,x t x t g t x t    .  

And for 
0t t n   we obtain      0 0 0 01 ,x t n x t n g t n x t n                  for 

0,1,2,..., 1n N  . Adapting the difference equation notation and replacing  0x t n  by  x n  gives 

the Euler’s algorithm (Elaydi, 2005): 

     1 ,x n x n f n x n                (2)   

1.1.2 Fixed points and stability criteria in two-dimensional maps 

Equilibrium solutions or equilibrium points or fixed points are the simplest orbits for dynamical 

systems (Blanchard et al., 2006). In 1D discrete dynamical systems a point *x  in the domain of f is 

said to be fixed point if it is a constant solution of f:  * *f x x  (Elaydi, 2005).  Accordingly, in 2D 

systems the fixed point is a pair of constant functions in which the system is at rest; i.e. solution curves 

where nx  and ny  never vary. Hence, the orbit of a fixed point is a constant sequence 
* * *, , ,...x x x   and 

* * *, , ,...y y y  . By solving the equations  * * *,f x y x  and  * * *,g x y y  we find the fixed points of a 

2D discrete dynamical system. Another basic type of orbit for discrete dynamical systems is the stable 

periodic solution or periodic cycle. The orbit of a periodic cycle is a sequence of k distinct points which 

under the iterated action are repeatedly visited by the system always in the same order. The resulting 

sequence is known as “k-period cycle” (Barnett et al., 2006). Hence, the orbit of a cycle of period k is 

the repeating sequence      1 1 2 2, , , ,..., ,k kx y x y x y .  

Suppose the 2D map (Equation (1)) has a fixed point at  * *,x y . A fixed point  * *,x y  of a 2D system 

is called attracting if there is an interval around  * *,x y  having the property that every initial point in 

this interval has an orbit that remains in the interval and tends to  * *,x y  under iteration of the map. 

The fixed point is called repelling if there is an interval around  * *,x y  having the property that every 

initial point in this interval – except  * *,x y  – has an orbit that leaves the interval under iteration of 

the map. A fixed point that is neither attracting nor repelling is called neutral or indifferent (Blanchard 
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et al., 2006). Analytic techniques can be used to study the behavior of solutions around a fixed point. 

In Chapters 2 and 3 analytical stability analysis1 is obtained in each section in order to investigate the 

local stability properties of the fixed points and the several local bifurcations our modified models 

undergo as well. In order to study the local behavior around a fixed point  * *,x y  we calculate the 

Jacobian matrix at  * *,x y . If we perturb around the fixed point  * *,x y  by some small amount ˆ ˆ,n nx y  

then (McKane, 2007): 

* *

1 1

* *

1 1

ˆ ˆ

ˆ ˆ

n n n n

n n n n

x x x x x x

y y y y y y

 

 

    

    
  

The nonlinear terms can be discarded after using Taylor series expansions around the fixed point: 

 
   

 
   

* * * *

* * * *

* * *

1

, ,

* * *

1

, ,

ˆ ˆ ˆ, ...

ˆ ˆ ˆ, ...

n n n

x y x y

n n n

x y x y

f f
x x f x y x y

x y

g g
y y g x y x y

x y





 
    

 

 
    

 

   

Notice that  * * *,x f x y  and  * * *,y g x y  by definition, so that they cancel. This then leaves us 

to write this in matrix (McKane, 2007): 

 * *

1

1

,

ˆ ˆ

ˆ ˆ

n n

n n

x y

f f

x xx y

y yg g

x y





  
     
    
     

   

  

That is, the Jacobian where the elements have been evaluated at the fixed point: 

 

   

   

* * * *

11 12* *

* * * *
21 22

, ,

,
, ,

n n

n n

f x y f x y

x y J J
J x y

J Jg x y g x y

x y

  
 

    
    

    
   

 

The eigenvalues of the Jacobian matrix J determine the stability of the equilibrium point  * *,x y . 

Suppose that 1 2,   are the eigenvalues of the Jacobian. The eigenvalues are the roots of the 

                                                 
1 The stability analysis results of the 2D maps studied in this thesis have been exhibited by using the software package 

Maxima (Available at: http://maxima.sourceforge.net/). 
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characteristic equation; hence, to find the eigenvalues, we need to derive the characteristic polynomial 

of the Jacobian matrix (Hirsch et al., 2004): 

     11 12 2

11 22 11 22 12 21

21 22

J J
det J I det J J J J J J

J J


  



 
       

 
 

The quantity 11 22J J  in this equation is the sum of the diagonal elements of the Jacobian matrix. This 

quantity is called the trace of the Jacobian and is denoted by 
11 22trJ J J  . The constant term 

11 22 12 21detJ J J J J   is the determinant of the Jacobian. Hence, the characteristic polynomial is 

  2det J I trJ detJ      . It has a nonzero solution if and only if   0det J    ; hence, solving 

this equation the two eigenvalues of the Jacobian matrix are given by: 

2

1,2

4

2

trJ tr J detJ


 
  

Moreover, applying Vieta’s formula (Viète, 1646) to the quadratic characteristic polynomial then the 

trace of the Jacobian matrix is the sum of the eigenvalues and the determinant is the product of the 

eigenvalues; i.e. if λ1 and λ2 the roots of   2

1 2 0trJ detJ            then: 

1 2 trJ    and 1 2 detJ    

By using Vieta’s equations 
1 2 trJ   , 1 2 detJ    and applying Jury’s conditions (1974) the fixed 

point is linearly asymptotically stable if and only if the trace and the determinant of the Jacobian satisfy 

the condition 1 2trJ detJ    or, equivalently (Boccara, 2010): 

1 0

1 0

1 0

trJ detJ

detJ

trJ detJ

  

 

  

             (3)  

Hence, knowing trJ  and detJ  tells us the eigenvalues of the Jacobian matrix and therefore everything 

about the geometry of solutions of the system. 

1.1.3 Classification of fixed points and local bifurcations 

The eigenvalues 1 2,   of the Jacobian matrix yield the information about stability of the system. There 

are three cases (Elaydi, 2005): (a) distinct real eigenvalues 1 2,  , (b) repeated real eigenvalues  , (c) 

complex conjugate eigenvalues i    . In case (a) the fixed point  * *,x y  is locally 
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asymptotically stable if both the eigenvalues lie inside the unit disk 1 1   and 2 1  . If they both 

lie outside the unit disk 1 1   and 2 1   the fixed point  * *,x y  is locally unstable. In particular: 

(i) if  
1 20 1     the fixed point is an asymptotically stable node, (ii) if 

1 2 1    the fixed point 

is an unstable node, (iii) if 
10 1   and 2 1   the fixed point is a saddle, (iv) if 

1 1   and 2 1   

the fixed point is a stable degenerate node – all the points on the vertical axis y  in phase space  ,x y  

are equilibrium points. In case (b) with two repeated eigenvalues: (i) if 
1 2 1    fixed point is 

asymptotically stable, (ii) if 
1 2 1    all the points on the horizontal axis x  in phase space  ,x y  

are equilibrium points – unstable degenerated case. In case (c) the Jacobian matrix has two complex 

conjugate eigenvalues 
1 i     and 2 i     with 0   and 2 4 0tr J detJ  . In this case: (i) 

if 1detJ   the fixed point is an asymptotically stable focus and there are two complex eigenvalues 

with real parts 1  , (ii) if 1detJ   the fixed point is an unstable focus and there are two complex 

eigenvalues with real parts 1  , if 1detJ   and 2 2trJ     the fixed point is a (stable) center 

and there are two complex eigenvalues with real parts 1  . 

In order for a model to be useful one must know how the variations in the control parameter values 

change the orbit structure of the system. When a small change in a parameter value a leads to a drastic 

change in the long-term behavior of solutions, then this change is known as a bifurcation. These 

changes may include the birth or death of fixed points and periodic cycles or changes in the type of 

these orbits. The parameter value 0a a  where the change occurs is known as the bifurcation point 

and is the threshold value above which the behavior of solutions alter significantly (Blanchard et al., 

2006). 

A fixed point is hyperbolic if none of the eigenvalues of the Jacobian matrix has unit modulus (i.e. 

1 1   and 2 1  ). If a fixed point is hyperbolic then for values of a varied parameter a sufficiently 

close to the bifurcation value 0a  the stability of the fixed point is not affected. If the fixed point is non-

hyperbolic – at least one eigenvalue has unit modulus (i.e. either 1 1   or 2 1  ) – then for values 

of a close to 0a  a totally new dynamical behavior can occur. Hence, non-hyperbolic points on maps 

are usually bifurcation points (Boccara, 2010). The types of local bifurcations we will meet in the 2D 

maps studied in this thesis are the Fold bifurcation, the Flip bifurcation, and the Neimark-Sacker 

bifurcation. Considering a 2D map    , , ,a af x y g x y  that depends on a parameter a : 
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1. In a Fold or Tangent or Saddle-node bifurcation fixed or periodic orbits suddenly appear or 

disappear; i.e. as the parameter passes through the bifurcation value 0a a , the birth of a fixed 

point  * *,x y  occurs which then splits into two fixed points    * * * *

1 1 2 2, , ,x y x y , and vice versa. 

Hence, there is an interval about the bifurcation value 0a  and another interval I in which the system 

has (Hirsch et al., 2004): (i) two hyperbolic fixed points – one asymptotically stable and one 

unstable – in I if 0a a , (ii) one non-hyperbolic fixed point in I if 0a a , (iii) no fixed points in I 

if 0.a a  

2. The Neimark-Sacker or Hopf bifurcation is an interesting transition for iterated maps where, as the 

varied parameter a passes through the bifurcation value 0a  the attracting fixed point  * *,x y  loses 

stability and an invariant curve (i.e. closed curve densely filled up by quasi-periodic2 motion) is 

born (Hirsch et al., 2004): (i) a stable fixed point if 0a a , (ii) a non-hyperbolic fixed point with 

the modulus of a pair of complex eigenvalues equal to one if 0a a , (iii) an unstable fixed point 

and all nonzero solutions spiral toward an isolated closed invariant curve as n → ∞ if 0a a ; all 

the orbits outside and inside the invariant curve approach the attracting curve under iterations of 

the map. 

3. Flip or period-doubling bifurcation is one of the most important types of bifurcations for discrete 

dynamical systems. This bifurcation produces a new periodic cycle having twice the period of the 

original cycle. In particular, the original orbit of period 
12n
 changes from attracting to repelling 

(or vice versa) and is accompanied by the birth of a new orbit of period 2n
 (Blanchard et al., 2006). 

Reverse flip or period-halving bifurcation is also possible with the new cycle having half the period 

of the original cycle. Hence, as the varied parameter a passes through the bifurcation value 0a : (i) 

one asymptotically stable fixed point if 0a a , (ii) one non-hyperbolic fixed point if 0a a , (iii) 

the original stable fixed point becomes unstable and a stable cycle of period 2 appears in the system 

if 0a a .  

Moreover, the stability conditions (Equation (3)) are associated with these three local bifurcations in 

the following way (Agliari et al., 2009): (i) the first condition 1trJ detJ    is associated with a Flip 

bifurcation and one real eigenvalue equal to 1 , (ii) the second condition 1detJ   is associated with 

                                                 
2 Quasi-periodic orbits are another type of attractors that look quite complicated since the motion never exactly repeats 

itself but the motion is never chaotic. The dynamics of a quasi-periodic attractor can be described as a mechanism consisting 

of two or more independent periodic motions (Barnett et al., 2006). 
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a Neimark-Sacker bifurcation and two complex eigenvalues crossing the unit circle (i.e. a pair of 

complex eigenvalues with unit modulus), (iii) the third condition 1trJ detJ   is associated with a 

Fold bifurcation and one real eigenvalue equal to 1 . 

1.2 Chaos 

The period-doubling process may occur repeatedly leading to an infinite sequence of period-doubling 

bifurcations. In this case, as the parameter continues to vary, the successive births of attracting cycles 

give rise to a new type of behavior – chaos – where we cannot fully explain what is happening to the 

orbits for values in this regime (Blanchard et al., 2006). The term “chaotic” seems to have been used 

for the first time by Li and York (1975) to qualify the apparently random behavior of deterministic 

non-periodic orbits of 1D maps. Moreover, May (1976) introduced the term “deterministic chaotic 

behavior” in his work where he studied the complex dynamics of a simple 1D population model. 

Roughly speaking, chaos is the aperiodic long-term behavior in a deterministic system that exhibits 

sensitive dependence on initial conditions (Strogatz, 1994). Hence, when a system exhibits chaos there 

are no regular cycles of any period (fixed points, periodic orbits, or quasi-periodic orbits); a chaotic 

orbit, although generated by a deterministic3 system, has all the characteristics of random behavior.  

Attractors4 with orbit structure more complicated than that of periodic or quasi-periodic motions are 

called strange attractors (Barnett et al., 2006). In particular, a strange attractor is defined to be an 

attractor that exhibits sensitive dependence on initial conditions (Eckmann and Ruelle, 1985). 

According to Ruelle (Ruelle, 1980; Ruelle and Takens, 1971), a bounded set kA  is a strange 

attractor for a map f if there is a k-dimensional neighborhood N of A such that for all t ,   

f t  N N , and if, for all initial points of N, the map f has sensitive dependence on initial conditions. 

The mechanisms that are responsible for the existence of a strange attractor are the (Gilmore, 1993): 

(i) stretching and (ii) compressing. The stretching is responsible for sensitive dependence on initial 

conditions. The compressing is responsible for the recurrent5 behavior exhibited by all chaotic systems. 

Each strange attractor contains a large number of unstable dense periodic orbits of many periodicities 

(Gilmore, 1993). However, when studying a dynamical system on a computer one needs an operational 

                                                 
3 Deterministic means that a system has no random or noisy inputs or parameters. The irregular behavior arises from the 

system’s nonlinearity, rather than from noisy driving forces (Strogatz, 1994). 
4 Roughly speaking an attractor is an invariant set with the property that nearby orbits are drawn to it asymptotically 

(Aronson et al., 1982).  
5 The compressing mechanism is responsible for patterns which almost repeat themselves throughout a chaotic data set 

ensuring that trajectories do not run off to infinity and return to a bounded region of phase space (Gilmore, 1993). 
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definition for strange attractor (Aronson et al., 1982): a dynamical system is said to have a strange 

attractor if there is an orbit which when followed for a long time does not appear to converge to a fixed 

point, a periodic orbit, or a quasi-periodic orbit. 

The scenario in which a parameter-dependent system that has a simple deterministic time evolution 

becomes chaotic as a parameter changes is known as “route to chaos” (Boccara, 2010). Hence, one 

route to chaos is the period-doubling route to chaos; i.e. as the parameter varies the infinite sequence 

of period-doubling bifurcations gives rise to a range that exhibit chaotic dynamics. Another one is the 

intermittency route to chaos discovered by Pomeau and Manneville (1980) where as the varying 

parameter passes through a critical value, long-time intervals with periodic oscillations (i.e. laminar 

phases) seems to be abruptly and randomly disrupted by strong chaotic bursts – named 

“intermittences” – of finite duration. These bursts occur at seemingly random times, much larger than 

– and not correlated with – the period of the underlying oscillations. As the parameter continues to 

vary the chaotic bursts become more frequent and regular oscillations are no longer apparent; i.e. fully 

developed chaos is attained.  

1.2.1 Lyapunov exponent 

One necessary condition for a system’s behavior to be chaotic is the sensitive dependence on initial 

conditions6. In real life the seed of an orbit is rarely known with complete accuracy. If a system exhibits 

chaos then this inaccuracy is really important; i.e. chaotic dynamical systems are exceptionally 

sensitive to small observation errors. In such a case, if one plot the time series for orbits initially very 

close, it is observed that after very few iterations they separate and thereafter bear little resemblance 

to one another. Hence, the small numerical errors that are always introduced in such numerical 

procedures are amplified by the action of the map making the predictions about the fate of orbits totally 

distrusted (Blanchard et al., 2006).  

However the “sensitive dependence on initial conditions” alone is not a sufficient condition for a 

system to be chaotic. Another indication is the Lyapunov Exponent which can be used to measure the 

“sensitive dependence on initial conditions” of a chaotic system (Boccara, 2010). In particular, if f is 

a map on  and  0 1, ,...x x  is a bounded orbit, then the orbit is called chaotic if (Alligood et al., 1996): 

(i) it is not asymptotically periodic, and (ii) its Lyapunov exponent is positive  0  . The Lyapunov 

                                                 
6 An initial condition for a 2D system yields a solution which consists of two functions ,n nx y  that, taken together, satisfy 

the system of the equations. Using an initial value for each dependent variable  0 0,x y  one can determine the way in which 

they evolve in time (Blanchard et al., 2006). 
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exponents for the dynamical systems studied in Chapters 2 and 3 were calculated using the algorithm 

introduced by Wolf et al. (1985). Considering two neighboring initial points 0x  and 0x   (where ε 

is the infinitesimally small difference between the two points; i.e. the error between the estimated and 

the actual initial value), if after n iterations of the map f the distance between the two nearby points 

   0 0

n nf x f x   grows exponentially, the Lyapunov exponent  0x  can be defined by 

     0

0 0

n xn nf x f x e


    (Boccara, 2010). In particular, by taking the logarithm and solving for 

 0x  the Lyapunov exponent is given by:  

 
     0 0 0

0

1 1
lim lim log lim log

n n n

n n

f x f x df x
x

n n dx




  

 
    

 0x  is the Lyapunov Exponent for an orbit with initial point 0x  and 
 0x

e


 is the average factor by 

which the distance between two neighboring points becomes stretched after one iteration. Moreover, 

applying the chain rule,        
0

1

1 2 0

0

...
n

n

n n ix x
i

df dx f x f x f x f x


 


      where   0if x   for all 

i, the Lyapunov exponent can be also expressed as (Boccara, 2010):  

   
1 1

0 0

1 1
lim log lim log

n n

i i
n n

i i

L f x f x
n n

 

 
 

     

where,  0

i

ix f x , for 0,1,2,..., 1i n    

Hence, the method of Lyapunov exponents measures the asymptotic exponential rate of convergence 

or divergence of infinitesimally nearby orbits, since it is evaluated in the limit of an indefinitely large 

numbers of iterations as n , assuming that the limit exists (Barnett et al., 2006). The sign of the 

Lyapunov exponent classifies the different types of a system’s dynamical behavior as follows (Wolf 

et al., 1985): (i) a positive Lyapunov exponent 0L   indicates chaos (diverged neighbouring orbits), 

(ii) a negative Lyapunov exponent 0L   defines a periodic orbit (converged neighbouring orbits), and 

(iii) a zero Lyapunov exponent 0L   represents an orbit with marginal stability. Often only the largest 

Lyapunov exponent [λmax] is calculated since it yields the greatest insight into the dynamics of the 

system (McCue and Troesch, 2011). A positive7 largest Lyapunov exponent indicates that nearby 

                                                 
7 A strictly positive largest Lyapunov exponent is often considers as a definition of “deterministic chaos” (Pikovsky and 

Politi, 2016).  
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orbits diverge exponentially in the corresponding direction and is intimately related to the lack of 

predictability; thus 
max 0   defines the chaotic behavior of a dynamical system (Barnett et al., 2006).  

Calculating the largest Lyapunov exponent from time series 

In Chapter 4 we investigate the presence of chaos in the monthly and yearly actual sunspot-number 

data by calculating the largest Lyapunov exponent [λmax]. We use the two methods developed by 

Rosenstein et al. (1993) and Kantz (1994) for calculating the largest Lyapunov exponent from time 

series directly. The two methods are similar; they calculate the largest Lyapunov exponent by 

searching for all neighbors within a neighborhood of the reference trajectory and compute the average 

distance between neighbors and the reference trajectory as a function of time (Rosenstein et al., 1993; 

Kantz, 1994). In particular, they developed independently an algorithm which calculates the largest 

Lyapunov exponent from time series directly as follows:  

 
1

1 1
ln

t

T

t i

t i Ut

S x x
T U

   

 

 
   

 
   

xt is the arbitrary point in time series, Ut is the neighborhood of xt, xi is the neighbor of xt, τ is the 

relative time scaled by sampling rate, T is the length of time series, S(τ) is the stretching factor with 

region of robust linear increase showing slope equal to Lyapunov exponent (Kantz, 1994).  

As mentioned above, chaos means unpredictability; an important factor in performing accurate 

predictions is the upper limit of predictability. The predictability of a system is essentially determined 

by the Lyapunov exponents. In particular, the magnitude of the largest Lyapunov exponent is an 

indicator of the time scale on which chaotic behavior can be predicted (Wolf, 1986). Hence, when a 

system has positive largest Lyapunov exponent, there is a “time horizon” beyond which prediction 

breaks down (Strogatz, 1994).  Specifically, the inverse of the largest Lyapunov exponent 

 pr max1T  , known as the Lyapunov time, is the characteristic time of instability (the perturbation 

doubles within such time interval) and identifies the predictability time (Pikovsky et al., 2001;  

Pikovsky and Politi, 2016); that is, the length of the time horizon on which predictions are effective. 

1.2.2 Chaos control in two-dimensional maps 

Although predictions in deterministic chaotic systems are distrusted, later studies showed that chaotic 

behaviors are controllable via small perturbations to the control phase trajectories of the systems. Plapp 

and Hübler (1990) proposed a method which control chaos by applying large perturbations to system 

parameters. Ott, Grebogi, and Yorke (1990) proposed a chaos control method known as the OGY 
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algorithm, showing that it is possible to convert the chaotic behavior of a dynamical system to periodic 

behavior by making small time-dependent perturbations in an accessible system parameter. They 

applied successfully their control method to the Henon map by creating a large variety of attracting 

periodic motions and choosing the most desirable amongst them. Their method relies on a large class 

of chaotic attractors having embedded within it an infinite number of unstable periodic orbits (Grebogi 

et al., 1988). The OGY algorithm has been applied to control various experimental systems (Ditto et 

al., 1990; Singer et al., 1991).  

Another interesting method to gain control over deterministic chaotic behavior has been proposed by 

Güémez and Matias (1993) known as the G.M. algorithm which stabilizes a given unstable periodic 

orbit by performing a feedback to the variable of the iterated map every n  iterations. In contrast to 

the OGY algorithm the G.M. algorithm does not change system parameters. Suppose we have the 

nonlinear two-dimensional map (Equation (1)). The G.M. control algorithm consists of the application 

of a proportional feedback  1 2,   to the variables of the system ,x y  in the form of pulses, every n  

iterations (Güémez and Matias, 1993): 

 

 

1

2

1

1

n n

n n

x x

y y





 

 
             (4) 

1 2,   represent the strength of the feedback for ,n nx y . Depending on the sign of 1 2,  , some part of 

the system variables ,x y  is injected or withdrawn from Equation (4), which depends on the value of 

the variables ,x y  at the moment n ; a new dynamical system is created based on the original one 

(Güémez and Matias, 1993; Codreanu and Danca, 1997b). By appropriately choosing Δn and 1 2,   it 

is possible to stabilize different unstable periodic orbits (Codreanu and Danca, 1997b). 

Güémez and Matias (1993) applied the G.M algorithm to the logistic map and the exponential map for 

various values of the parameters. Later, they also applied their algorithm in the case of a chemical 

system (Matias and Güémez, 1994); they considered that this method can be applied to biological 

systems as well. In addition, Codreanu and Danca (1997a) applied the G.M. method to a predator-prey 

model supporting its use in biological systems. In this thesis we apply the G.M. algorithm to an 

epidemic model which describes the transmission of an infection disease (Chapter 3).  
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1.3 Numerical Simulation Tools 

Considering the behavior of solutions away from the fixed points, the only way to study their behavior 

is via numerical simulations. In Chapters 2 and 3 various numerical simulation tools (Figure 1), such 

as parametric basins of attraction, bifurcation diagrams, phase plots, time series and largest Lyapunov 

exponent diagrams, are used in order to illustrate the stability analysis results and study further the 

complex dynamics of our systems. All numerical simulation results have been exhibited using the 

software package E&F Chaos (Diks et al., 2008; Available at: http://cendef.uva.nl/software/ef-

chaos/ef-chaos.html). 

 The phase plot  ,x y  is a diagram which illustrates the trajectories of a system that correspond to 

various initial conditions (Figure 1(a)). It can be used in order to investigate further the dynamical 

behavior and plot the attractors of the system (Diks et al., 2008). The set of all solution curves is 

known as the phase portrait of the system. All phase plot figures illustrate each system’s behavior 

for 1000 steps and for about 500000 iterations after a transient of 1000 iterations.   

 The parametric basins of attraction  ,a b  match different colors for periodic cycles of different 

period in a two-dimensional parametric space (Diks et al., 2008). The different colors in all 

parametric planes  ,a m  constructed in this thesis correspond to the following stable states (Figure 

1(b)): light-blue for attracting fixed point, dark-blue for two-period cycle, yellow for three-period 

cycle, pink for four-period cycle, orange for five-period cycle, red for six-period cycle, light-green 

for seven-period cycle, dark-green for eight-period cycle, grey for nine-period cycle and purple for 

ten-period cycle. The white area corresponds to those values of parameters for which the behavior 

of solutions may be quasi-periodic (invariant curves) or aperiodic (chaos; strange attractors). The 

black area is the set of parameters for which every orbit diverges to infinity. We plot this diagram 

for 500 transient iterations, 450×450 resolution and convergence distance epsilon 0.001. 

 The bifurcation diagram    * *, , ,x a y a  is an extremely helpful numerical simulation tool to 

understand the qualitative changes occurring in the orbits of solutions as a system parameter varies 

(Figure 1(c)). In particular it highlights how the characteristics of the stable orbits change as the 

value of varying parameter increases/decreases in a specific interval (Blanchard et al., 2006). The 

bifurcation diagrams constructed in this thesis illustrate the long run dynamical behavior 1000 

iterations after a transient of 1000 iterations. Describing the qualitative changes in the orbit 

structure of the system which take place when the control parameters are varied we obtain not only 

a snapshot of chaotic dynamics but also a description of its emergence.  
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(a)  (b)  

(c)  (d)  

(e)  

Figure 1 Numerical Simulation Tools. (a) Phase plot  ,x y , (b) Parametric basins of attraction  , ,a b  

(c) Bifurcation diagram    * *, , ,x a y a , (d) Lyapunov exponent diagram  ,  , (e) Time series 

diagrams    , , ,n nx n y n . 

 The Lyapunov exponent diagram  ,a  as a function of one of the model parameters a  is a 

numerical simulation tool that can be used to investigate the behavior of nonlinear dynamical 
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systems (Figure 1(d)). The plot illustrates for which values of the varying parameter two orbits 

with neighbouring initial conditions converge or diverge from one another exponentially, 

depending on the sign of the Lyapunov exponents. In this thesis we plot each Lyapunov exponent 

diagram for 5000 iterations after a transient of 300 iterations.  

 The times series diagrams    , , ,n nx n y n  is the best way to get information about the time variable 

t; they illustrate how fast the solutions traverses the curve (Figure 1(e)). The iteration count is 

plotted on the horizontal axis while the numerical values of the orbit on the vertical axis (Blanchard 

et al., 2006). 

1.4 Dynamical Analysis of Single Time Series 

In Sections 4.1 and 4.2 we analyze8 the monthly and yearly sunspot-number data in order to study 

whether they come from a stochastic or a deterministic chaotic process. Our data analysis is based on 

the method developed by Takens and Ruelle (1971) that shows how to reconstruct the m-dimensional 

phase space of a dynamical system from a single-variable observed times series, using the method of 

time delay coordinates. This method fills the other dimensions with lagged versions of one dynamical 

variable; for sufficient large m the reconstructed high-dimension system will be geometrically 

equivalent to the original system, producing an attractor of dimension D, 2 1m D   (Takens, 1981). 

The property of the attractor will not change, therefore the m-dimensional system can be used to study 

the dynamical behavior of the original system (Zhang, 1996).  

Packard et al. (1980) outline a simple method (time lag) developed by Ruelle and Takens (1971) for 

reconstructing a phase space from one dynamical variable denoted as   ix t , where 1,2...,i N ; let 

     1 2, ,..., Nx t x t x t  be measurements of a physical variable of length N in discrete time. From this 

sequence one can construct a set of m-dimensional vectors    1,2,..., 1i Nt m   X , of the form: 

           , , 2 ,..., 1i i ii ix t x t x t x t mt       X  (5) 

 ix t  is the ith element of the time series and the time delay (time lag)   is an integer multiple of Δt. 

In order to investigate the dynamics of our system in a space defined by delayed vectors of dimension 

                                                 
8 The sunspot-number data analysis has been integrated by using the software package Auguri (Available at: http://aag-

auguri.com/index.html).  
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[m], we first have to estimate the embedding parameters; i.e. the suitable time delay [τ] and the 

embedding dimension [m]. 

1.4.1 Embedding parameters: Time delay and embedding dimension 

In order to estimate the suitable time delay, we use the Average Mutual Information (AMI) introduced 

by Fraser and Swinney (1986) as a method to determine a reasonable time delay for nonlinear systems. 

The AMI is a generalization from the correlation function, which measures the linear correlations, to 

the case of nonlinear correlations between measurements. Fraser and Swinney (1986) suggested a 

method to estimate the value of   by estimating the first minimum of the mutual information between 

the embedded vectors. A measure of a mutual information between the elements of the time series 

 ix t , 1,2,...,i N  is: 

      
   

    
     2

,

,
, log

i i

i i

i i

x t x t T i i

P x t x t T
I T P x t x t T

P x t P x t T

 
    

  
   

T k t    max1,2,...,k k ,   iP x t  is the probability density at  ix t ,     ,i iP x t x t T  is the joint 

probability density at the pair    ,i ix t x t T . Hence, the delay  mT  of the first minimum of the AMI 

is chosen as a delay time   for time-delay reconstruction of a phase space (Fraser and Swinney, 1986). 

Further, in order to find the suitable embedding dimension [m], we use the False Nearest Neighbors 

(FNN) which has been first introduced by Kennel et al. (1992) as a convenient method to determine 

the minimal sufficient embedding dimension. This method uses the time-delay reconstruction of a 

phase space (Macek and Strumik, 2006); from the time series  ix t , 1,2,...,i N , a collection of m-

dimensional vectors  itX  are constructed to trace out an orbit of a dynamical system for a given time 

delay   (Equation (4)). Any element of the time series can be predicted as a function involving time-

delayed elements of the same series    i ix t m G t    X . If the dimension m of time-delay 

coordinates is too small, then there are many nearest neighbors    ,i jt tX X  that are close in the 

reconstructed space, but their images    ,i jx t m x t m    are very distant. When this is the case, 

points close to each other may have very different time evolution, and actually belong to different parts 

of the underlying attractor (Aittokallio et al., 1999). 

In order to determine the sufficient number m of time-delay coordinates one next looks at the nearest 

neighbor of each vector with respect to the Euclidean metric. Comparing the “(mτ + 1)”st coordinates 
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of  itX  and  jtX  – e.g.  ix t m  and  jx t m  – if the distance    i jx t m x t m     is large 

the points  itX  and  jtX  are close just by projection. They are false nearest neighbors and they will 

be pulled apart by increasing the dimension m. If the distances    i jx t m x t m     are 

predominantly small, then only a small portion of the neighbors are false and m can be considered a 

sufficient embedding dimension. In the FNN algorithm (Kennel et al., 1992) the neighbor is declared 

false if (Aittokallio et al., 1999): 

   

   i j

i j

tol

x t m x t m
R

t t

 



 


X X
          (6) 

or if  
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 
22

1

1 N

A i

i

R x t x
N 

     and x  is the mean of all points. The parameter 
tolR  in the first threshold test 

(Equation (5)) is fixed beforehand and in most studies it has been set to 10 – 20. The second criterion 

(Equation (7)) was proposed in order to provide correct diagnostics for noise and usually one takes 

2 2tolA  . If this test fails, then even the (mτ + 1-dimensional) nearest neighbors themselves are far apart 

in the extended mτ + 1 dimensional space and should be considered false neighbors. Using the above 

tests (Equations (6), (7)) one can check all m-dimensional vectors in the data set, and compute the 

percentage of false nearest neighbors. By increasing the dimension m this percentage should drop to 

zero or to some acceptable small number. In that case the embedding dimension is large enough to 

represent the dynamics. 

1.4.2 Correlation dimension 

For an orbit        1 2 3, , ..., Nx t x t x t x t  of the map f  on 
m

 the correlation dimension can be defined 

as follows (Alligood et al., 1996): if the orbit converges to an attractor, the correlation dimension of 

that orbit is also regarded as the correlation dimension of the attractor. The correlation dimension 

measures the probability that two points randomly chosen will be within a certain distance of each 

other, and can be computed using the correlation integral (Al-Shameri, 2012). Packard et al. (1980) 

showed that the geometrical form of the attractor can be reconstructed from the set of vectors  itX , 
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provided that m is greater than D; if an attractor exists, the vectors  itX  will lie on a D-dimensional 

subset of the embedding space Rm. A lower limit on the dimension D of the attractor can be calculated 

by computing the correlation integral introduced by Grassberger and Procaccia (1983a) defined as 

        2
, 1

1
i

m

i j
j

j

N

i

tC r tr
N






   X X ,    where     
    
    
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

    

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   


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    i jr t t  X X  is the Heavyside function, N is the number of observations, r is the distance in 

phase space, and 
 m

C  is the correlation integral for dimension m; the correlation integral is the 

probability that two points chosen at random are less than r units apart (Nesis et al., 2001). Grassberger 

and Procaccia (1983a) suggested that, for a system with behavior governed by a D-dimensional 

attractor, when r is less than the overall size of the attractor, then 
   m

C r r , where ν is called the 

correlation dimension. They showed that cD  ; moreover, for several model systems they found that 

cD  (Dc is the dimension of the attractor) so that ν is expected to be a good estimate of the exact 

dimensionality Dc (Nesis et al., 2001): 

     

0
lim cm D m

r
C r r


  or  

 ( )

0

ln
lim

ln

m

c
r

C r
D m

r
  

 ( )ln mC r  is the logarithm of the correlation integral for m-dimension; ln r  is the logarithm of the 

distance in phase space. For a dimension m we can calculate 
   m

C r  for increasing values of r. By 

finding the slope of a graph of the 
   ln
m

C r  with increasing values of ln r , through a linear 

regression, we can estimate the correlation dimension  cD m  for every embedding dimension m. By 

increasing m,  cD m  will eventually converge to its true value (Nesis et al., 2001).  

1.5 Recurrence Plots and Recurrence Quantification Analysis 

In Section 4.1 we use the Recurrence Plot and Recurrence Quantification Analysis to exploit and 

quantify the recurrent patterns that exist within the time series of a solar magnetic activity index (actual 

monthly sunspot-number data). The Recurrence Plots (RP) and the Recurrence Quantification Analysis 

(RQA) are numerical analysis methodologies that can be used in order to exploit and quantify the 

dynamic properties of a time series (Fabretti and Ausloos, 2005). Recurrence is a characteristic of 
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many dynamical systems introduced by Poincaré (1890). According to the Recurrence Theorem, the 

motion of a point is stable if it returns infinitely often to positions arbitrarily close to its initial position 

(Poincaré, 1890). The Recurrence Plots (RPs) are 2D graphs which are based on the phase space 

reconstruction introduced by Eckmann et al. (1987) in order to visualize the recurrences of trajectories 

of dynamical systems. The RQA is a statistical quantification of RP introduced later by Zbilut and 

Webber (1992) and Webber and Zbilut (1994) in order to quantify the diagonal (and vertical) line 

structures in RPs.  

The RP is a qualitative analysis tool that detects9 whether a time series x(t) exhibits chaotic behavior 

by searching for evidence of the unstable periodic orbits embedded in a chaotic system (Gilmore, 

1993). The points of the phase space of a dynamical system represent possible states of the system. 

Assuming that the state of the system at a fixed time t can be specified by d components, they can be 

considered to form a vector (Marwan et al., 2007):         1 2, , ...,
T

dx t x t x t x t    in the d-

dimensional phase space of the system. The time evolution is given by       x t d x t dt F x t   ,

: d dF    where the vectors  x t  define a trajectory in phase space. However not all relevant 

components to construct the state vector are known or can be measured and we are confronted with a 

time-discrete measurement of only one observable. This yields a scalar and discrete time series 

 iu u i t  , where i = 1, …, N and t  is the sampling rate of the measurement. In this case the phase 

space needs to be reconstructed (Takens, 1981). In order to reconstruct the phase space the time delay 

method is used (Marwan et al., 2007):  

 1
1

ˆ
m

ji j
j

x u e
 



   

m is the embedding dimension and τ is the time delay. The vectors 
ie  are unit vectors and span an 

orthogonal coordinate system ,( )i j i je e   . In order to analyze the time series the embedding 

dimension m and the time delay τ needs to be chosen appropriately. The RP measures recurrences of 

the trajectory 
d

ix   in phase space and can be formally expressed by the matrix (Marwan et al., 

2007): 

   , i ji j x x    R ,  , 1,...,i j N                      (8) 

                                                 
9 The RP reconstructs completely the stretching and compressing mechanisms which are responsible for generating the 

strange attractor and therefore can detect if a time series exhibit chaotic behavior (Gilmore, 1993).  
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N is the number of measured points ix , ε is a threshold distance,     the Heaviside function (i.e.

  0x  , if x < 0, and   1x   otherwise) and   is a norm. For ε-recurrent states (in an ε-

neighborhood) the following notion is introduced: i jx x    Ri, j ≡ 1. The RP is obtained by plotting 

the recurrence matrix (Equation (8)) using different colors for its binary entries (e.g. a black dot at the 

coordinates (i, j) if Ri, j ≡ 1 and a white dot if Ri, j ≡ 0). Both axes of the RP are time axes and show 

rightwards and upwards. Since Ri, j ≡ 
1

1
N

i
by definition, the RP has always a black main diagonal line, 

known as the Line of Identity (LOI). Moreover, the RP is symmetric by definition with respect to the 

main diagonal, i.e. Ri, j ≡ Rj, i. 

One of the strengths of the RPs is that they can capture dynamics in shorter time series than what is 

required to calculate Lyapunov exponents (Zou et al., 2007b). Typical patterns in RPs are linked to 

specific systems’ behaviors (Marwan et al., 2007). Various RP structures can be interpreted as follows 

(Belaire-Franch et al., 2002): (i) short line segments parallel to the main diagonal indicate that the time 

series is deterministic and the system’s attractor will be revisited by the trajectory sometime in the 

future (e.g. recurrent points forming distinct diagonals parallel to the main diagonal among scattered 

recurrent points), (ii) absence of structure corresponds to time series with purely random dynamics 

(e.g. uniformly scattered recurrent points). Finally, straight horizontal or vertical lines indicate a 

motion constant in time; i.e. a state that is not changing or changes very slowly (Marwan and Kurths, 

2005). In case of periodic dynamics the RP consists of very long diagonal lines (Kyrtsou et al., 2009). 

Moreover, in case of quasi-periodic dynamics the RP will show continuous diagonal lines besides 

regular dashed lines, while the RP of chaotic dynamics consists of many random lines of short length 

(Zou et al., 2007a). Abrupt changes in the dynamics of the system cause white areas or bands in the 

RP (Marwan et al., 2007). The RP from purely stochastic systems consist of a uniform array of points 

with no apparent structure (Aparicio et al., 2008); i.e. no diagonal lines at all. 

However, because the RPs can be difficult to interpret, several measures based on the RP structure can 

be used; that is, the RQA. The RQA is based on the quantification of the structures found in the RPs 

(i.e. the number and distributions of the recurrence point density and the diagonal and vertical line 

structures) by computing several variables (Marwan et al., 2007). In this thesis we use five of the most 

important RQA measures based on the recurrence density and diagonal lines: Recurrence Rate, 

Determinism, Maxline, Entropy, and Trend.  

 The Recurrence Rate (RR) is defined as the ratio of the number of recurrent points to the total 

number of recurrent points of a RP; it measures the recurrence density (Marwan et al., 2007). The 
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RR exclude the upward central diagonal which represents the distance between each embedded 

vector and itself (Belaire-Franch et al., 2002). 

   ,2
, 1

1 N

i j

i j

RR R
N

 


       where ,

1, ( , ) :

0,
i j

i j recurrent
R

otherwise


 


 

Embedded processes which are periodic have higher RR than processes which exhibit aperiodic 

dynamics.  

 Determinism (DET) is defined as the ratio of the number of recurrent points, which form the 

parallel diagonal lines of at least length lmin with respect to the main diagonal, to the total number 

of the recurrent points. The DET allows to distinguish between dispersed recurrent points and those 

that are organized in diagonal patterns (Belaire-Franch et al., 2002). 

 

 
min

1

N

l l

N

l

lP l
DET

lP l









             

           
1

, 1 0

1, 1 , ,, 1 1i j i l j l i k j k

lN

i j k

P l P l        



 

    R R R  the histogram of diagonal lines of 

length l (Marwan et al., 2007). The upward diagonal that DET quantifies are the signature of 

determinism since they represent strings of vectors repeating themselves in the future (Belaire-Franch 

et al., 2002). For purely stochastic processes the DET is close to zero, while deterministic processes 

correspond to DET significantly greater than zero (Aparicio et al., 2008).  

 Maxline (Lmax) is defined as the length of the longest diagonal line parallel to the main diagonal 

found in the RP (excluding the main diagonal). These measure is related to the exponential 

divergence of the phase space trajectory. The faster the trajectory segments diverge, the shorter are 

the diagonal lines (Marwan et al., 2007). 

  max 1
max lN

i i
L l


   

 
min

l l l
N P l


  is the total number of diagonal lines. Moreover, according to Eckmann et al. (1987) 

the length of the diagonal lines is related to the largest positive Lyapunov exponent. Trulla et al. (1996) 

suggested an approach to estimate the largest Lyapunov exponent; i.e. the Maxline is proportional to 

the inverse of the largest Lyapunov exponent.  
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 The Entropy (ENTR) refers to the Shannon entropy of the probability     lp l P l N  to find a 

diagonal line of exactly length l in the RP (Marwan et al., 2007). 

   
min

ln
N

l l

ENTR p l p l


    

ENTR reflects the complexity of the RP in respect of the diagonal lines (e.g. for uncorrelated noise the 

value of ENTR is rather small, indicating its low complexity) (Marwan et al., 2007). A high ENTR 

value indicates that much information are required in order to identify the system (Fabretti and 

Ausloos, 2005). 

 The Trend is a linear regression coefficient over the recurrence point density RRτ
10 of the diagonals 

parallel to the main diagonal line as a function of the time distance between these diagonals and 

the main diagonal line (Marwan et al., 2007). 

  

 
1

2

1

2

2

N

N

N RR RR
TREND

N

 











 







 

TREND provides information about the non-stationarity of the time series (Marwan et al., 2007). High 

values of TREND are associated with a non-stationary process having strong trend (Fabretti and 

Ausloos, 2005). 

 

 

  

                                                 
10 It is the τ-recurrence rate for the diagonal lines with distance τ from the main diagonal line; it can be interpreted as the 

probability that a state recurs to its ε-neighborhood after τ time steps (Marwan et al., 2007). 
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Chapter 2 

Predator-Prey Interactions and Prey Refuge 

Predation is one variety of biological interactions between species where a predator feeds on its prey 

(Begon et al., 2006). According to the way predators feed on their prey, various categories of predators 

may be distinguished (Thompson, 1982): (i) parasites; they live throughout a major period of their life 

in a single host – their attack is harmful but rarely lethal (e.g. tapeworms, tuberculosis bacteria), (ii) 

grazers; they also consume only parts of their prey without causing immediate death – however, they 

attack large numbers of prey during their lifetime (e.g. sheep, biting flies), (iii) true predators; they 

also attack many prey during their lifetime – however, they quickly kill their prey (e.g. wolves, 

plankton-eating aquatic animals). In this chapter we study the population dynamics of predator-prey 

systems with true predators only. 

The simplest population model in continuous-time was firstly introduced by Verhulst (1838) and 

describes the growth rate of the population of a single species. This model is known as the logistic 

differential equation. Lotka (1925) and Volterra (1926) later were the first who proposed the simplest 

predator-prey model with two species; they described the predator-prey interaction by introducing the 

known Lotka-Volterra predator-prey continuous-time model. A drawback of Lotka-Volterra model, 

which makes this model unrealistic, is that the predator never becomes saturated, while in the absence 

of predator the prey population grows exponentially. A somewhat realistic 2D predator-prey model 

should at least take into account the following features (Boccara, 2010): (i) intraspecific competition; 

i.e. competition between individuals belonging to the same species, (ii) predator’s functional response; 

i.e. the relation between the predator’s consumption rate and the prey density, (iii) predator’s numerical 

response; i.e. the efficiency with which extra food is transformed into extra predation. 

The functional response problem in the Lotka-Volterra model was solved by Holling (1959, 1965). He 

suggested three kinds of functional responses for different species of predator, which are called Holling 

type I, II and III. The function indicates the number of prey killed by one predator at various prey 

densities. According to Holling (1959, 1965) the functional response at low prey density depends upon 

the predator: (i) if the predator eats one type of prey the functional response should be linear, (ii) if the 

predator eats different types of prey the functional response should increase as a power greater than 

one of prey density. Thus, Rosenzweig and MacArthur (1963) later studied the Lotka-Volterra model 

with logistic growth rate of prey, while the saturation of the predator has been taken into account by a 
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Holling type II functional response. The Rosenzweig-MacArthur’s model is one of the basic models 

since the predator-prey coexistence is not limited to a stable equilibrium; a limit cycle appears when 

the stable equilibrium undergoes the Hopf bifurcation.  

The research of the predator-prey interactions for many years focused mainly on continuous predator-

prey models, where the dynamics could produce only stable equilibrium or limit cycles. However, in 

recent years the research has turned to discrete-time predator-prey models, where it seems that their 

dynamics may include a much richer set of patterns. Maynard Smith (1968) firstly studied the Lotka-

Volterra predator-prey model with logistic growth rate of prey in discrete time. Hadeler and Gerstmann 

(1990) studied the discrete-time version of the Rosenzweig-MacArthur model. Danca et al. (1997) 

later studied a simple discrete-time predator-prey model with Holling type I taking place and showed 

that such a simple discrete model can exhibit chaotic dynamics. Later, Liu and Xiao (2007) studied the 

Rosenzweig-MacArthur predator-prey model with Holling type I, proving once again that the discrete 

system exhibits far richer dynamics compared to the continuous model. He and Lai (2011) also reached 

to the same conclusion, investigating another Lotka-Volterra type predator-prey system with Holling 

type III functional response (Murray, 1993) in discrete time, showing that the discrete-time model 

exhibits more complicated dynamics. A discrete-time version of the Leslie-Gower predator-prey 

model have been studied by Huo and Li (2004).  

However, since many prey populations incorporate some form of refuge available, a prey refuge 

provides a more realistic predator-prey model. Maynard Smith (1974) showed that a constant 

proportion refuge did not alter the dynamics of the neutrally stable Lotka-Volterra model, while a 

constant number refuge of any size replaced the neutrally stable behavior with a stable equilibrium. 

Also, Hassel (1978) showed that a large refuge to a model, which in the absence of a refuge exhibits 

divergent oscillations, replaces the oscillatory behavior with a stable equilibrium. Later, Kar (2005) 

studied a predator-prey model with Holling type II functional response incorporating a prey refuge, 

proving that when the positive equilibrium point is unstable, one stable limit cycle appears in the 

system. Huang et al. (2006) extended Chen and Zhang’s (1986) model and studied the case of the 

predator-prey model with Holling type III functional response incorporating prey refuge. They also 

concluded that refuge had a stabilizing effect on predator-prey interactions. Finally, Zhuang and Wen 

(2011) studied a discrete-time version of Leslie’s (1948, 1958) predator-prey system with a prey 

refuge. Thus, we observe that many studies have shown that refugia have a stabilizing effect on 

predator-prey interactions. However, as Taylor (1984) mentioned, it would be an oversimplification to 

assume this is always the case. 
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2.1 Prey Refuge in a Predator-Prey Model with Holling Type I 

Functional Response11 

In this section we extend Danca’s et al. (1997) Lotka-Volterra model with Holling type I functional 

response by incorporating prey refuge. The Holling type I functional response mainly refers to passive 

predators like spiders which wait for their prey to come close in order to capture them (Holling, 1959). 

Spiders are the main predators of insects. A single spider eats one hundred insects at least in a year 

and therefore it is estimated that in temperate countries the annual total weight of insects the spiders 

eat is larger than the weight of the human population (Pollock, 1993). So from this perspective, spiders 

in the role of predators, which prey on vectors, can be really useful to humans. However, by 

incorporating a prey refuge into Danca’s et al. (1997) model, we assume that insects are able to protect 

themselves from spiders and escape from predation in some way. Does prey refuge stabilizes the 

predator-prey interactions as many studies have shown or leads eventually to population outbreaks? 

This is the main question we try to answer in this section. 

2.1.1 Extending the basic model by incorporating prey refuge 

Danca et al. (1997) studied the following discrete predator-prey model with Holling type I12 functional 

response taking place: 

 1

1

1n n n n n

n n n

x ax x bx y

y dx y





  



   (9) 

They showed that as the rate growth of prey increases, chaotic dynamics appear in the system and the 

predator-prey interactions become irregular. Particularly, they showed that for the parameter values 

0.2, 3.5b d   , as parameter a varies in the interval 0  4a  , the dynamical system (Equation (9)) 

exhibits a strange attractor (Figure 2). 

                                                 
11 This section is based on the publication “Incorporating prey refuge in a prey-predator model with Holling type I 

functional response: Random dynamics and population outbreaks” (Gkana, A., Zachilas, L.: 2013, Incorporating prey 

refuge in a prey-predator model with Holling type I functional response: Random dynamics and population outbreaks, 

Journal of Biological Physics 39(4), 587-606.). 
12 The shape of the Holling type I functional response is linear. So if the predators are spiders and the preys are biting flies, 

the number of flies killed by one spider is proportional to the flies’ density (Holling, 1959). 
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Figure 2 The strange attractor without prey refuge (m = 0) for a = 3.99654. 

Extending Danca’s et al. (1997) Lotka-Volterra model by incorporating prey refuge, we take the 

following predator-prey system: 

   

 

1

1

1 1

1

n n n n n

n n n

x ax x b m x y

y d m x y





   


 

   (10) 

nx  is the prey population after n generations with 0 1nx   and ny  is the predator population after n 

generations; 0a  is the rate growth of the prey in the absence of predators, in the presence of plenty 

food and all other requirements; 0b   is the foraging efficiency of the predator – it measures the 

intensity of the predator’s negative impact on the prey population’s growth; 0d   is the rate growth 

of the predator; mx  is a refuge protecting the prey from the predator and  1– m x  is the prey available 

to the predator, where  0,1m . Thus, we extend the basic model (Equation (9)) by adding the new 

terms  n nbmx y   and  n ndmx y  associated with a refuge protecting the prey from the predator. 

2.1.2 Fold, flip and Neimark-Sacker bifurcations 

The dynamical system (Equation (10)) has the following three fixed points, the origin (E1), a boundary 

fixed point (E2) and a fixed point for which both populations survive (E3): 
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   

 

 
   

* *

1

* *

2

* *

3 2

: , 0,0

1
: , , 0

1 11
: , ,

2

E x y

a
E x y

a

a dm a d a
E x y

dm d bdm bdm bd



 
  
 

    
   

   

 

The Jacobian matrix at any point  ,x y  is: 

 
   

   

1 1

1 1

2
,

n n

n n n n n

n nn n

n n

x x

x y bm b y ax a bm b x
J x y

d dm y d dm xy y

x y

 

 

  
       
    
      
 
  

 

The determinant of the Jacobian matrix is: 

     2, 2 2 n ndetJ x y adm ad x ad adm x      

According to the stability criteria of fixed points for 2D maps (Subsection 1.1.2), in order to study the 

local behavior around each of the three fixed points we calculate the Jacobian matrix at 
1 2 3, ,E E E . 

Each fixed point is asymptotically stable (i.e. the eigenvalues 1 2,  , either real or complex, have a 

modulus less than one) if the determinant and the trace of the Jacobian at 
1 2 3, ,E E E  satisfy the 

condition 1 2trJ detJ    (Equation (3)). 

Local stability of the fixed point E1 

The Jacobian matrix at    * *

1 : , 0,0E x y   is: 

 1

0

0 0

a
J E

 
  
 

 

With eigenvalues 
1 2, 0a   , determinant  1 0detJ E   and trace  1trJ E a . For 1a   both 

eigenvalues lie inside the unit circle  1 2, 1    and the origin is a stable node, For 1a   one 

eigenvalue lies outside the unit circle and the other inside  1 21, 1    and the origin is a saddle. 

For 1a   the fixed point is a stable degenerate node  1 21, 1   ; the fixed point is non-hyperbolic 

and this parameter value is associated with the stability condition 1trJ detJ   (Equation (3)) and a 
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real eigenvalue crossing the unit circle at +1. So 1a   is a bifurcation point at which a Fold bifurcation 

occurs. 

Local stability of the fixed point E2 

The Jacobian matrix at  * *

2

1
: , , 0

a
E x y

a

 
  
 

 is: 

 

   

   
2

1 1
2

1 1
0

a bm a b
a

a
J E

a dm a d

a

   
 

 
   

 
 

 

The eigenvalues of the Jacobian matrix at E2 are given by 
   

1

1 1a dm a d

a


  
   and 2 2 a   .  

The determinant and the trace are:  
   2 2

2

3 2 3 2a a dm a a d
detJ E

a

     
  and 

 
    2

2

1 1 2a dm a d a a
trJ E

a

    
  .  

Using the stability conditions (Equation (3)) we obtain the following: 

1. If 
 

 

1

1

a d a
m

a d

 



 and 1a   then 

2E  is an unstable node; both eigenvalues lie outside the unit 

circle  1 2, 1    

2. If 
 

 

1

1

a d a
m

a d

 



 and 

1
1

3
1

dm d
a

dm d

dm d
a

dm d


   


  

  

 then 
2E is a saddle; one eigenvalue lies outside the 

unit circle and the other inside 
 

 
1 2

1 2

1, 1

1, 1

 

 

 

 
 

3. If 
1 1

dm d dm d
a

dm d dm d

 
 

   
 then 

2E is a stable node; both eigenvalues lie inside the unit circle 

 1 2, 1    
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4. If 
1

dm d
a

dm d




 
 then 

2E  is non-hyperbolic  1 1  ; this parameter value is associated with the 

stability condition 1trJ detJ   (Equation (3)) and a real eigenvalue crossing the unit circle at +1. 

So this is another bifurcation point at which a Fold bifurcation occurs in the system. 

Local stability of the fixed point E3 

The Jacobian matrix at  
   * *

3 2

1 11
: , ,

2

a dm a d a
E x y

dm d bdm bdm bd

    
   

   
 is: 

 
   3

1 1
1

dm d a b

dm d d
J E

a dm a d a

bm b

  
 

 
    

 
 

 

With eigenvalues  

      

      

2 2 2 2 2

1

2 2 2 2 2

2

4 4 8 8 4 4 4 4 2 2

2 2

4 4 8 8 4 4 4 4 2 2

2 2

a d m a d ad m a d ad a dm d a

dm d

a d m a d ad m a d ad a dm d a

dm d





          
 



          




 

determinant  3

2adm ad a
detJ E

dm d

 



 and trace  3

2 2dm d a
trJ E

dm d

 



.  

And using the stability conditions (Equation (3)) we obtain the following: 

1. If 
1

dm d
a

dm d




 
 and 

 

 

 

 

3 3 1

3 1

a d a a d a
m

a d a d

   
 

 
 then 

3E is a saddle; one eigenvalue lies 

outside the unit circle and the other inside  1 21, 1    

2. If 
1 2

dm d dm d
a

dm d dm d

 
 

   
 and 

 

 

 

 

1 2 3 3

1 3

a d a a d a
m

a d a d

   
 

 
 then 

3E is a stable focus 

(complex eigenvalues with real parts 1 2 1    and  3 1detJ E  ) or a stable node (both 

eigenvalues lie inside the unit circle; i.e. 1 2, 1   ). 

3. If 
2

dm d
a

dm d




 
 and 

 

 

1 2

1

a d a
m

a d

 



 then 

3E  is an unstable focus; complex eigenvalues with 

real parts 1 2 1    and  3 1detJ E  . 
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4. If 
 

 

1

1

a d a
m

a d

 



 then 

3E  is an unstable node; both eigenvalues lie outside the unit circle 

 1 2, 1   . 

5. If 
1

dm d
a

dm d




 
 then 

3E is non-hyperbolic  2 1  ; this parameter value is associated with the 

stability condition 1trJ detJ   (Equation (3)) and a real eigenvalue crossing the unit circle at +1. 

So this is a bifurcation point at which a Fold bifurcation occurs in the system. 

6. If 
 

 

1 2

1

a d a
m

a d

 



 and 

2

dm d
a

dm d




 
 then 

3E  is a center (i.e. complex eigenvalues with real 

parts 1 2 1    and  3 1detJ E  ,  32 2trJ E    ); this parameter value is associated with 

the stability condition 1DetJ   (Equation (3)) and two complex eigenvalues crossing the unit circle 

simultaneously. So this is a bifurcation point at which a Neimark-Sacker bifurcation occurs in the 

system. 

7. If 
 

 

3 3

3

a d a
m

a d

 



 then 

3E  is non-hyperbolic  1 1   ; this parameter value is associated with 

the first stability condition 1trJ detJ    (Equation (3)) and one real eigenvalue crossing the unit 

circle at –1. Hence, this parameter value corresponds to a bifurcation point at which a Flip 

bifurcation occurs in the system. 

2.1.3 Stabilization of chaotic dynamics, routes to chaos and random-like dynamics 

We use various numerical simulation tools (Section 1.3) to study the complex dynamics of the 

dynamical system (Equation (10)). In order to see the effect of refuge on predator-prey interactions, 

we choose the initial conditions 
0 0.83x   and 

0  0.55y  . We also assume b d  since observational 

studies of spiders have shown that, while many species have very low capture rates of prey (parameter 

b) (Edgar, 1969; Nyffeler and Breene, 1990), they produce many offspring (parameter d) (i.e. female 

spiders lay up to 3,000 eggs in one or more silk egg sacks (Ruppert et al., 2004)). This paradox “low 

foraging efficiency – high offspring production” is likely related with the fact that spiders have very 

low metabolic rates compared to other animals. On average, the resting metabolic rate of spiders is 

70% of that of comparable ectothermic arthropods13 (Anderson, 1970). This is ecologically an 

important factor that allows spiders to survive extended periods of time (which are sometimes in excess 

                                                 
13 This low resting metabolic rate may be due to the fact that they use hydrostatic pressure for extending their appendages 

(Anderson and Prestwich, 1975). 
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of 200 or 300 days) without food14 (Anderson, 1974). Furthermore, even when spiders elevate their 

metabolic rate during activities (such as searching for food15, producing webs16, producing eggs17, 

courtship18), the increase in respiration and metabolic rate is relatively low to other animals; two to six 

times resting rates (Anderson and Prestwich, 1982). Hence, the general low metabolic rates make them 

very efficient in their use of energy, so that despite their low foraging efficiency, they have high 

reproduction rates. Thus, the parameters 0.2b   and 3.5d   (Danca et al., 1997) are fixed19 and we 

vary the parameters of the growth rate of prey a and refuge m. 

Simultaneous variation of rate growth of prey and refuge parameters 

We plot the parametric basins of attraction for the parameter values  0, 4.35a  and  0,1m  to see 

how the dynamics of the system change as refuge increases (Figure 3). Observing the 2D parameter 

space we point out the following: 

 For small values of prey refuge 0 0.254m   as the rate growth of prey a  increases, the stable 

fixed point (light blue area) is giving rise to non-periodic behavior (white area). So, adding a small 

refuge does not seem to alter significantly the dynamics of the basic model (Equation (9)). 

 For slightly higher values of refuge 0.254 0.467m  , we see that as a  increases, the aperiodic 

dynamics is being replaced by a stable equilibrium. So, by adding more prey refuge, the refuge 

stabilizes the predator-prey interactions. 

 However, for even higher values of prey refuge 0.467 1m  , the stabilizing effect of refuge is 

not the case anymore. Now, as a  takes higher values, the stable fixed point, through successive 

period-doubling bifurcations, 2-period cycle (dark blue area), 4-period cycle (pink area), 8-period 

cycle (dark green area), is giving rise to non-periodic behavior (white area). So, adding a large 

refuge makes the system unstable once again. 

 

                                                 
14 In addition, spiders can further reduce their metabolic rate below their already low levels, when they experience periods 

of food limitation (Anderson, 1974). 
15 Many spiders, including both web building and wandering spiders are sit-and-wait predators that spend very little time 

in active locomotion (Prestwich, 1977). For example, the wolf spider Pardosa amentata, the daily energy loss attributed to 

locomotion was estimated to be only 1% of the daily energy usage of spiders (Ford, 1977). 
16 The energetic costs of web production are relatively small because web building is often a short process and some spiders 

are able to recycle web proteins, which can substantially reduce the metabolic cost of silk production (Ford, 1977). 
17 For example the wolf spider Pardosa lugubris, the females invest 26% in reproduction and males invest only 16% (Edgar, 

1971). 
18 Male spiders invest 81% of their ingested energy in respiration, while females invest 73% (Edgar, 1971). This difference 

in respiration rate between the sexes is likely related to the high energetic needs of males for agonistic encounters with 

competing males and for courting females (Kotiaho et al., 1998). 
19 We use the same parameter values that are also used in Danca’s et al. (1997) paper, so that our results to be comparable 

with those of the basic model (Equation (9)).  
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Figure 3 The parametric basins of attraction (a, m). 

 Higher values of the refuge parameter 1m   do not correspond to positive equilibrium and 

therefore it has no realistic ecological significance. 

Predator-prey interactions as the prey refuge increases for various rate growth of prey values 

In order to see in detail what happens in both populations’ species, as the refuge parameter increases, 

we use the bifurcation diagrams. We plot the bifurcation diagram, as the system’s parameter increases 

in the interval  0,1m  for various values of parameter a and we distinguish the following cases 

(Figure 4): 

1. For low growth rate of prey 0 1.45a  , as refuge increases in  0,1m  the prey population 

survives in a small quantity, because of the low reproduction rate, while the predators cannot 

survive because of refuge. As we see in Figure 4(a), with such low birth rate of prey 1.1a   all 

preys are able to find refuge and the food is enough to feed them all, while predators cannot find 

food at all and become extinct immediately. So in this case the system has a stable boundary 

equilibrium point    * *, 0.091,0x y   where both populations are fixed in time. 
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(a)  

(b)  

(c)  

Figure 4 (Continued.) 
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(d)  

(e)  

(f)  

Figure 4 (Continued.) 
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(g)  

(h)  

Figure 4 The bifurcation diagrams (m, x*) and (m, y*) as m varies in the interval [0, 1] for the parameter 

values: (a) a = 1.1, (b) a = 2, (c) a = 2.8, (d) a = 3.5, (e) a = 3.2, (f) a = 3.56, (g) a = 3.7 and (h) a = 

3.983. 

2. For average birth rate of prey 1.45 2.3a   and small prey refuge 0.45m   both populations 

survive  * *0, 0x y   temporarily (Figure 4(b)). This happens because for such growth rate 

2a   the prey density is larger than the amount of refuge. Therefore, the predators are able to find 

preys to eat and since their population increases faster than the prey population 3.5 2d a    the 

predator population survives in a higher quantity than the prey population  * *y x  temporarily. 

As prey refuge increases, more and more preys find refuge and therefore the prey population 

increases, while the predator population decreases. When the amount of refuge is 0.45m   all 

preys are able to find refuge and since the food is enough to feed them all, they survive in larger 

density  * 0.514x   due to their higher birth rate. On the other hand, predators cannot find food 
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anymore and become extinct  * 0y  . Moreover, this qualitative change in the behavior of 

solutions, as the refuge parameter increases, is associated with a local bifurcation. For 2a   

(Figure 4(b)) in particular and 0.4286m , the fixed point  * *

3 : 0, 0E x y   is a stable node and 

the boundary fixed point    * *

2 : , 0.5, 0E x y   is a saddle (the origin    * *

1 : , 0,0E x y   is always 

a saddle since 2 1a   ). For 0.4286m   both fixed points become non-hyperbolic; the 

eigenvalues of the Jacobian matrix at 
3E  are  1 20.0001, 1    and the eigenvalues at 

2E  are 

 1 21, 0   . For 0.4286m  , 
3E  becomes a saddle and 

2E  becomes a stable node. Hence, as 

the varying parameter passes through the critical value 0.4286m   both fixed points undergo a 

Fold bifurcation. 

3. For high birth rate of prey 2.3 3a   and exceptionally small values of refuge 0.11m  , we 

observe aperiodic dynamics in both populations’ species (Figure 4(c)). This happens because the 

high reproduction rate of prey 2.8a  , combined with the exceptionally small amount of refuge, 

have as a result that a large number of preys are not able to find refuge and to protect themselves 

from predators. The high birth rate of predators has as a result that both populations will appear 

irregular oscillations. However, for 0.11m   refuge stabilizes the system to a positive fixed point 

 * *, 0x y  , while the predator population is temporarily higher than the prey population 

 * *y x  again. For even higher values of prey refuge 0.56m  , all preys are able to find refuge 

and food, and because of their higher birth rate, they survive in an even larger density  * 0.67 .x   

The predators cannot find preys; they do not have food and become extinct  * 0y   once again. 

4. However, for higher growth rate of prey 3 3.57a  , the increase of the amount of refuge does 

not always stabilize the system. As we see in Figure 4(d), for 0.53m   refuge replaces the chaotic 

regimes with a stable positive equilibrium in both populations  * * 0y x  . However, once the 

prey refuge exceeds the threshold 0.53m  , the system loses stability and all orbits in prey 

population lie on an attracting four-period cycle  * : 0.387,0.507,0.83,0.88x . At the same time, 

the predator population decreases up to extinction  * 0y  , once again. Particularly, as parameter 

a increases in the interval  3, 3.57  and for an amount of refuge 0.5m  , successive period-

doubling bifurcations appear in prey population; 2-period cycle (Figure 4(e)), 4-period cycle 

(Figure 4(d)) and 8-period cycle (Figure 4(f)). This is because, once predators become extinct and 

since the birth rate of preys is significantly high, the available food is not enough to feed the large 
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prey density. Therefore, the prey population becomes slowly unstable, as their birth rate increases 

continuously. 

5. Finally, for even higher birth rate of prey 3.57a  , as refuge takes higher values 0.523m  , the 

successive cycles of higher periods in prey’s population lead to chaotic behavior; period-doubling 

route to chaos (Figure 4(g)). Thus, once predators become extinct, the exceptionally high 

reproduction rate of prey and the resource limitation compete with each other, leading sometimes 

the prey population to extinction  * 0.01x   and sometimes to excessive growth  * 1x   once 

again (Figure 4(h)). However, now, the chaotic dynamics in prey population looks like random. 

Particularly, observing both chaotic regimes in Figure 4(h), we see that for small prey refuge 

0.237m , the system alternates between chaotic behavior and periodic behavior, while for higher 

values of prey refuge 0.372m , the system produces dynamics, which seems to have lost almost 

all its determinism. So, we observe that for such high reproduction rate 3.983a  , refuge not only 

destabilizes the system, but moreover makes the prey’s population behavior almost random. 

6. Moreover, observing the behavior of predator’s population for 3.7a  , just before predators 

become extinct (Figure 4(g)), we see a small chaotic region. This chaotic regime could be also a 

result of the competition between the reproduction rate of prey and their resource limitation. 

Particularly, because of the resource limitation, many preys are not able to find food and die. But 

the piles of dead preys are food for the predators. While due to the high growth rate of prey, preys 

die in irregular frequencies. So maybe these two facts lead eventually to the appearance of chaotic 

behavior in predator’s population too. 

Predator-prey interactions for high rate growth of prey and small refuge 

Another useful numerical simulation tool that can be used to investigate the predator-prey interactions 

is the phase diagram  ,x y . The strange attractor (Figure 2) appears in the system for high rate growth 

of prey. In order to see how refuge replaces the chaotic strange attractor with a stable equilibrium point 

(i.e. stabilizes the predator-prey interactions), we plot the phase diagrams for the parameter value 

3.986a  , as refuge varies in the interval  0, 0.24m  (Figure 5). 

 For 0m   the origin    * *

1 : , 0,0E x y   is a saddle (with eigenvalues  1 23.986, 0    ; it 

remains saddle for every value of the varying parameter m  since 3.986 1a   ), the boundary 

fixed point    * *

2 : , 0.7491, 0E x y   is an unstable node (with eigenvalues 

 1 22.6219, 1.986      it remains unstable node as m  increases), the fixed point 
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   * *

3 : , 0.2857, 9.2357E x y   is an unstable focus (with eigenvalues 1,2 0.4306 1.2341i   , 

determinant  3 1.7083 1detJ E    and trace  3 0.8611trJ E  ) and all solutions converge to the 

strange attractor (Figure 5(a)). 

(a)  (b)

(c)  (d)

(e)  (f)   

Figure 5 (Continued.) 
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(g)  (h)

(i)  (j)  

Figure 5 The phase plots (x, y) for growth rate of prey a = 3.986 and refuge parameter values: (a) m = 

0, (b) m = 0.0267, (c) m = 0.0848, (d) m = 0.0921, (e) m = 0.097, (f) m = 0.1067, (g) m = 0.1791, (h) 

m = 0.1794, (i) m = 0.2351 and (j) m = 0.24. 

 As the refuge parameter increases in the range 0 0.0286m  , the strange attractor deforms and 

becomes less complicated. The strange attractor splits, locks into a stable 4-period cycle and near 

the value 0.02868m  , reappears more deformed (Figure 5(b)). 

 For the refuge parameter values 0.029 0.092m  , the strange attractor becomes less and less 

complicated. Particularly, near the value 0.065m  , the strange attractor evolves into a strange 

contiguous band (Figures 5(c), 5(d)). 

 The contiguous strange band breaks apart into a motion of period 5 near the value 0.0926m   

(Figure 5(e)) and then it splits again into a motion of period 10 at 0.1067m   (Figure 5(f)). 
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 For higher values of the parameter 0.11 0.1777m  , a series of period-halving bifurcations takes 

place in both populations (20-period cycle at 0.112m  , 10-period cycle at 0.1164m  , and a 5-

period cycle at 0.133m  ). The system has an ordered behavior (Figure 5(g)). 

 For even higher values of the refuge parameter 0.1777 0.235m  , the locally stable orbit of 

period 5 gives rise to a kinked curve at 0.179m   (Figure 5(h)). The kinked curve loses and gains 

stability consecutively, deforms and becomes an invariant circle near the value 0.22m   (Figure 

5(i)). At this point the prey coexists with the predator population and both oscillate among all the 

states of the invariant circle. 

 Eventually, the invariant circle diminishes in size and near the value 0.2372m   the fixed point 

   * *

3 : , 0.3746, 9.7863E x y   undergoes a subcritical Neimark-Sacker bifurcation becoming a 

center (  3 1detJ E   and  3 0.507 2trJ E    ). For 0.2372 0.443m  , 
3E  becomes a stable 

focus fixed point (with complex eigenvalues and  3 1detJ E  ), where both populations settle 

down (Figure 5(j)).  

 

In Figure 6 we plot the phase diagram for growth rate of prey 3.7a   as the refuge parameter increases 

in the interval  0.515, 0.55m  – the small chaotic region (Figure 4(g)). We can observe the fountain 

phenomenon (Hadeler and Gerstmann, 1990) just before predators become extinct. 

 For the parameter value 0.515m   the origin    * *

1 : , 0,0E x y   is a saddle fixed point 

 3.7 1a   , the boundary fixed point    * *

2 : , 0.7297, 0E x y   is an unstable node (with 

eigenvalues  1 21.2387, 1.7    ; it remains unstable node as m  increases) and all solutions 

converge to the fixed point    * *

3 : , 0.5891, 5.3642E x y  , which is a stable node (with 

eigenvalues 
1 20.9068, 0.7271     ). 

 As the refuge parameter increases in the range 0.515 0.522m  , the attracting fixed point 

 * *

3 : 0E y x   near the value 0.52m   undergoes a Flip bifurcation  1 1   , becomes a 

saddle and a 2-period cycle appears surrounding it. The attracting cycle of period 2 loses stability 

via another period-doubling bifurcation giving rise to a stable orbit of period 4 at 0.522m   

(Figure 6(a)). 

 Close to the value 0.5224m  , we observe a period-doubling route to chaos and the trajectory 

mimics the Feigenbaum bifurcation diagram (Figure 6(b)).  
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 Chaos appears in both populations and as refuge increases in the interval 0.5224 0.5364m  , the 

trajectory is pushing upward (Figure 6(c)). 

(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 6 The phase plots (x, y) for growth rate of prey a = 3.7 and refuge parameter values: (a) m = 

0.52278, (b) m = 0.52282, (c) m = 0.53266, (d) m = 0.536003, (e) m = 0.54436 and (f) m = 0.54696. 
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 Near the value 0.53647m  , the chaotic motion is being replaced by a 6-period cycle (Figure 

6(d)). 

 For higher values of the refuge parameter 0.5365 0.55m  , chaos reappears in the system (Figure 

6(e)) and the predator population decreases continuously until, finally, it becomes extinct (Figure 

6(f)). 

Small versus large prey refuge 

We plot the Lyapunov exponent diagram ( , )a   as the growth rate of prey increases in the interval 

 2.2, 4.1a  for three cases of the refuge parameter: (a) if there is no prey refuge  0m   (Figure 7), 

(b) if we have small refuge  0.1m   (Figure 8), and (c) if we have large refuge  0.783m   (Figure 

9). If there is no prey refuge  0m  , for low birth rate of prey 2.329 3.195a  , the populations 

oscillate between quasi-periodic and periodic behavior and the Lyapunov exponents vary among 

negative and exceptionally small positive values 0.001i  . For average to high birth rate of prey 

3.195 3.578a  , the system alternates between chaotic and high-periodical behavior and the 

Lyapunov exponents vary among negative and rather higher positive values 0.086i  , in compare to 

the previous interval of birth rate of prey. For exceptionally high birth rate of prey 3.578 4a  , 

chaotic dynamics appear in both populations and the Lyapunov exponent reaches its maximum value 

max 0.296364  , for growth rate of prey 4.002179a  . 

 

Figure 7 The Lyapunov exponent diagram (a, λ) without refuge m = 0. 
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Figure 8 The Lyapunov exponent diagram (a, λ) along with the bifurcation diagram (a, x*) with small 

refuge m = 0.1. 

For small prey refuge  0.1m  , periodic and quasi-periodic dynamics along with exceptionally small 

Lyapunov exponent values 0.002i   appear for average to high birth rate of prey 2.738 3.67a  . 

For high birth rate of prey 3.67 3.77a  , the populations oscillate among chaotic and periodic 

behavior, while the Lyapunov exponents vary among negative and small positive values 0.037i  . 

For higher birth rate of prey 3.77 4.047a  , the period-doubling route to an order of chaotic bands 

and the largest value of the Lyapunov exponent, which corresponds to rate growth of prey 

4.043010a  , is remarkably low 
max 0.096923  . 

For large prey refuge  0.783m  , for which predators inevitably become extinct, the dynamical 

system (Equation (10)) becomes the well-known discrete-time logistic map. For average to high birth 

rate of prey 3 3.57a  , the system goes through successive period-doubling bifurcations and the 

Lyapunov exponents take only negative values 0i  . For high birth rate of prey 3.57 3.83a  , the 

period-doubling route to chaos and the Lyapunov exponents vary among negative and significantly 

high positive values 0.4434i  . For exceptionally high birth rate of prey 3.83 4.002a  , another 

series of period-doubling  3 2n  routes to chaos and the largest Lyapunov exponent reaches the 

remarkably high value max 0.673651  , for growth rate of prey 3.998271a  . 
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Figure 9 The Lyapunov exponent diagram (a, λ) along with the bifurcation diagram (a, x*) with large 

refuge m = 0.783. 

Comparing the Lyapunov exponent diagrams without prey refuge to those with small refuge and large 

refuge, we point out the following: 

1. The minimal addition of a small refuge gives rise to periodic and quasi-periodic dynamics, even 

for high birth rate of prey 3.67a  , while chaotic dynamics appears only for exceptionally higher 

birth rates. Moreover, the maximum value of the Lyapunov exponent is considerably lower than 

the corresponding one without prey refuge 
max 0.0969 0.2964    (Figures 7, 8). Thus, a small 

prey refuge stabilizes the system for high birth rates of prey, while for exceptionally even higher 

birth rates, the predator-prey interactions become much less chaotic. Consequently, the oscillations 

of prey’s population are much smaller  * 0.14, 0.65x   and preys do not tend anymore neither to 

extinction nor to overgrowth (Figure 8). 

2. However, by adding a large refuge the system has a lot of similarities as if we would have only a 

single species with limited resources, while the situation changes drastically for high birth rate of 

prey 3.57a  . For such high birth rate, the dynamics of the system looks like random and therefore 

the prey population tends to extinction or to overgrowth  * 0,1x   with almost random changes 

(Figure 4(h)). The maximum Lyapunov exponent is higher than in the corresponding case without 

refuge 
max 0.6737 0.2964    (Figures 7, 9), the system is extremely chaotic and because of its 

dependence on initial conditions, it is almost impossible to predict the behavior of the prey’s 

population. 
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2.1.4 Prey refuge and population outbreaks: Mosquito outbreaks and escape anti-

predator strategy 

We have shown that although the addition of a small prey refuge stabilizes the predator-prey 

interactions, however the addition of a large refuge makes the prey population to behave even more 

chaotic than without refuge. While a small refuge could control the prey population, a large refuge 

leads to almost unpredictability (i.e. random-like prey population outbreaks). Therefore, by taking into 

consideration that the prey population could be biting insects which feed with human blood and that 

they were able to protect themselves effectively from passive predators like spiders, we may conclude 

that a pandemic could be possible. In real world pest insects are one of those insects which show 

population outbreaks (plagues), indeed (Pollock, 1993). Moreover, a huge number of many infectious 

diseases are usually transmitted into the human’s blood by insects (vectors) which feed on blood, such 

as mosquitoes (the best known disease vector) which spiders also eat (Last, 2001). 

Moreover, regarding our prey-refuge assumption, experiments with mosquito larvae and pupae have 

shown that mosquitoes exhibit predator-avoidance behavior. Mosquito pupae respond to physical 

disturbances20 (passing shadows, predators, hydrodynamic micro-disturbances) by diving down; it has 

been suggested that mosquito pupae use diving as an escape strategy to avoid predation (Rodriguez-

Preito et al., 2006). Rodríguez-Prieto et al. (2006) studied the anti-predator responses of Culex pipiens 

(vector of Japanese encephalitis, meningitis, and urticarial) to predation and found that pupae dive and 

remain below when a shadow repeatedly crosses the surface, suggesting that the diving behavior of 

Culex pipiens plays a role in escaping from aerial or terrestrial predators. Futami et al. (2008) also 

tested this mosquito-diving behavior using immature Anopheles gambiae21 (the major malaria vector 

in Africa) and the wolf spider Pardosa messingerae22. Their results showed that mosquito larvae 

avoided the spider by diving more frequently and for longer periods; this diving behavior allows 

mosquitoes (Anopheles gambiae) to escape predation by terrestrial predators (wolf spiders) providing 

evidence to support further the predator-avoidance hypothesis. Hence, this predator-avoidance 

behavior could increase further the probability of having mosquito outbreaks leading to infectious 

disease outbreaks. 

                                                 
20 Mosquito pupae detect threats in the environment through hydrodynamic disturbances and by visual stimuli (Rodriguez-

Preito et al., 2006). 
21 Anopheles gambiae is a surface feeder and is thus much more vulnerable to terrestrial and aerial predators (Futami et al., 

2008). 
22 Pardosa messingerae is often observed on the water surface at breeding sites of Anopheles gambiae in Western Kenya 

(Futami et al., 2008). 
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Of course this is just a simple mathematical predator-prey model and in real world there are other 

predators, which prey on insects like biting insects too. So, even if spiders would become extinct, other 

predators could control the biting insects’ population (biological control) (Pollock, 1993). Moreover, 

humans have developed various chemical methods in order to control pest populations. However, 

history has shown that despite of any kind of vector control, significant pandemics have been recorded 

over the years. According to WHO (2014), one sixth of the illness and disability suffered worldwide 

is due to vector-borne diseases (malaria, dengue, yellow fever, etc…), with more than half the world’s 

population currently estimated to be at risk. Hence, our modified proposed model seems to be more 

appropriate for describing the real world pest population outbreaks (such as mosquito outbreaks) than 

the original predator-prey model. 

2.2 Non-overlapping Generation Species and Prey Refuge23 

As mentioned above, discrete-time models often produce more complex predator-prey dynamics than 

those observed in continuous-time models and therefore they are considered as more realistic. 

Moreover, many species of insects have no overlap between successive generations and therefore 

population evolves in discrete time steps (Liu and Xiao, 2007). In this section we use Huang et al. 

(2006) dynamical system as our basic model and we try to describe the predator-prey interactions in a 

more realistic way, by taking into account the fact that species reproduce in certain intervals. We 

investigate whether prey refuge stabilizes the predator-prey interactions as it does in Huang et al. 

(2006) model. In Subsection 2.2.1 we present the dynamical system Huang et al. (2006) studied in 

continuous time, and we introduce our modified model assuming that population evolves in discrete 

time steps. In Subsection 2.2.2 we investigate the stability properties of the fixed points of our discrete-

time dynamical system. In Subsection 2.2.3 we use various numerical simulation tools in order to study 

the complex dynamics of our system for average and large values of the refuge parameter. Finally, in 

Subsection 2.2.4 we end up with some concluding remarks, discussion and recommendations about 

the interpretation of the results of our study. 

 

                                                 
23 This section is based on the publication “Non-overlapping Generation Species: Complex Prey-Predator Interactions” 

(Gkana, A., Zachilas, L.: 2015, Non-overlapping Generation Species: Complex Prey-Predator Interactions, International 

Journal of Nonlinear Sciences and Numerical Simulation 16(5), 207-219.). 
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2.2.1 Modification of the basic model for species having no overlap between 

successive generations 

Huang et al. (2006) studied the following continuous-time predator-prey model with Holling type III24 

functional response by incorporating prey refuge: 

 

 

 

 

2 2

2

22 2

2 2

22 2

1

1

1

1

m x ydx
ax bx

dt m x

k m x ydy
cy

dt m x









 
  

 



  

 

                                                                                 (11) 

x is the prey population and y is the predator population at any time t; c > 0 is the death rate of predator; 

b > 0 is the intrinsic growth rate of prey; k > 0 is the conversion factor denoting the number of newly 

born predators for each captured prey. The term  2 2 2x x    denotes the Holling type III functional 

response according to which the predator consumes the prey, with α, β > 0. The term mx is the refuge 

protecting the prey from the predator; this leaves (1 – m) x of the prey available to the predator, where 

 0,1m . It was showed that as the refuge parameter m increases (for large refuge), the limit cycle is 

being replaced with a stable equilibrium, where both populations settle down (Huang et al., 2006). 

Assuming that species reproduce in certain intervals, we use the Euler’s algorithm to discretize the 

Huang et al. (2006) model. As described above (Subsection 1.1.1), we discretize the differential 

equations of the basic dynamical system (Equation (11)) by replacing dx/dt, dy/dt with the difference 

quotients    ,x x y y   . Thus, we obtain the discrete-time predator-prey dynamical system as 

follows: 

2 2
2

2 2 2

2 2

2 2 2

(1 )

(1 )

(1 )

(1 )

m x y
x x ax bx

m x

k m x y
y y cy

m x











  
     

   


 
       

                                        (12)                                                        

δ > 0 is the length of each time step size where the density of both populations grows by the addition 

of the newly born preys and predators – the fixed interval between generations; x, y are the prey and 

                                                 
24 The shape of the Holling type III functional response is S-shaped and corresponds to predators that increase their search 

activity with increasing prey density. Moreover, as the prey density increases, the prey mortality first increases and then 

decreases (Holling, 1959). 
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predator population in one generation and ,x y are the prey and predator population at the next time 

step.  

The number of individuals at the next generation depends only on the number of individuals at the 

preceding generation. Hence, generations do not overlap at any point (i.e. non-overlapping 

generations); they are distinct and the number of individuals in one time step is the offspring of 

individuals at the previous time step. 

2.2.2 Fold, Flip and Neimark-Sacker bifurcations 

In this subsection we investigate the stability properties of the fixed points of our system. System (12) 

has the following three fixed points: 

* *

1 : ( , ) (0,0)E x y    

* *

2 : ( , ) ,0
a

E x y
b

 
  
 

 

2 2
* *

3 2 2 2 2

( )
: ( , ) ,

1 ( ) (2 2 )

c

ck c km k a bc kk c
E x y

m ck c m c ck m ck c


   

  

 
    

      
 
 

  

The Jacobian matrix at any point (x, y) is 

 
 

 

2 2 2 2

2 2 2 22 2 2

2 2 2 2

2 2 2 22 2 2

2 (1 ) (1 )
2 1

(1 )(1 )
,

2 (1 ) (1 )
1

(1 )(1 )

m xy m xx x bx a
m xm xx y

J x y
y y

k m xy k m x
cx y

m xm x

 




 




  
          

             
                  
 

 

The determinant of the Jacobian matrix is 

   

2 2 2 2 2 2 2 4 3

2 32 2 2 2 2 2 2 2 2

(1 ) 2 (1 ) 2 (1 )
1 2 1

(1 ) (1 ) (1 )

k m x m xy k m x y
detJ c bx a

m x m x m x

    
 

  

                              

 

Once again, in order to study the local behavior around each of the three fixed points we calculate the 

Jacobian matrix at 
1 2 3, ,E E E  (Subsection 1.1.2). Using the determinant and the trace of the Jacobian, 

each fixed point is asymptotically stable if 1 2trJ detJ    (Equation (3)). 
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Stability at the fixed point E1 

The Jacobian matrix at * *

1 : ( , ) (0,0)E x y   is 1

1 0
( )

0 1

a
J E

c





 
  

 
. 

The Jacobian’s eigenvalues are 
1 21, 1a c       , the determinant is 

1( ) (1 )( 1)detJ E c a     

and the trace is 
1( ) 2trJ E a c    .  

So, using the three stability conditions (Equation (3)), we get 

1. If 
2

c
  , the fixed point * *

1 : ( , ) (0,0)E x y   is an unstable node; both eigenvalues lie outside the 

unit circle  1 21, 1   . 

2. If 
2

c
  , the fixed point * *

1 : ( , ) (0,0)E x y   is a saddle; one eigenvalue lies outside the unit circle 

and the other inside  1 21, 1   . 

3. If 
2

c
  , the fixed point * *

1 : ( , ) (0,0)E x y   is non-hyperbolic  1 21, 1    ; this parameter 

value is associated with the first stability condition 1trJ detJ    (Equation (3)) and one real 

eigenvalue crossing the unit circle at –1. So this is a bifurcation point at which the system 

undergoes a Flip bifurcation at E1. 

Stability at the fixed point E2 

The Jacobian matrix at E2 is 
 

 

2 2

2 2 2 2

2
2 2

2 2 2 2

(1 )
1

1
( )

(1 )
0 1

1

m a
a

m a b
J E

k m a
c

m a b











 
  

  
  

  
  

     

 

The eigenvalues of the Jacobian matrix are  

 2 2 2 2 2

1 22 2 2 2

( 1) ( 2 2 2) 1 ( )
, 1

( 2 1)

k c m k c m k c a b b c
a

m m a b

       
  



          
  

  
 

The determinant is 
 

2 2

2 2 2 2 2

(1 )
( ) (1 ) 1

1

k m a
detJ E a c

m a b


 



  
     

     

. 
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And the trace is 
  

2 2

2 2 2 2 2

(1 )
( ) 2

1

k m a
trJ E c a

m a b


 



 
    

   
 

. 

Using the stability conditions (Equation (3)) and let 
 

2

1 1
b ck c

F
k c a

 




 


 we obtain the following: 

1. If 1m F then the fixed point E2 is a stable node; both eigenvalues lie inside the unit circle 

 1 21, 1   . 

2. If 
1

2

m F

a









, then the fixed point E2 is non-hyperbolic 
 

 

1 2

1 2

1, 1

1, 1

 

 

  

  
; the parameter value 1m F  

is associated with the stability condition 1trJ detJ   (Equation (3)) and a real eigenvalue 

crossing the unit circle at +1. So this is a bifurcation point at which the system undergoes a Fold 

bifurcation at E2. 

3. If 1m F  and 
2

a
   then the fixed point E2 is a saddle; one eigenvalue lies outside the unit circle 

and the other inside  1 21, 1   . 

4. If 
2

a
   then the fixed point E2 is an unstable node; both eigenvalues lie outside the unit circle 

 1 21, 1   . 

Stability of the fixed point E3 

The Jacobian matrix at E3 is  

  

 

3
2

3

( 2 ) 2 2

( 1)
( )

(2 2 ) 2 2 (2 2 )
1

( 1)

k c k c m k c a km k bc c

kk m k c
J E

k c k c m k c a c bc b k

m k c

       

 

      

 

       
 

  
  

      
   

 

With determinant 
3( )detJ E   

            1 2 1 1 1 2 1 2
1

( 1)

k c m c k c m c c a c c k bc

k m k c

        

 

         


 
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And trace 
  

3
2

3

( 2 ) 2 2 2 2
( )

( 1)

k c k c m k c a km k bc
trJ E

k m k c

      

 

      
 

 
 

Using the stability conditions (Equation (3)) and let 
 

 
2 2

1 2
1

(2 1) 2 2

c k c bc
F

k c c k c c a

  

   

 
 

   
 and 

 

    
3

2
1

2 2

c k c bc
F

k c k c c a a k

  

     

 
 

    
 we get 

1. If 
2

1
bc

m
a ck c




 


 then the fixed point E3 is an unstable node; both eigenvalues lie outside the 

unit circle  1 21, 1   . 

2. If 3
2

1
bc

m F
a ck c




  


 then the fixed point E3 is a saddle; one eigenvalue lies outside the unit 

circle and the other inside  1 21, 1   . 

3. If 2

3

1
bc

m
a ck c

m F






 


 

, then the fixed point E3 is non-hyperbolic 
 

 

1 2

1 2

1, 1

1, 1

 

 

  

  
; the parameter 

value 3m F  is associated with the stability condition 1trJ detJ    (Equation (3)) and a real 

eigenvalue crossing the unit circle at –1. So this is a bifurcation point at which the system 

undergoes a Flip bifurcation at E3. The parameter value 
2

1
bc

m
a ck c




 


 is associated with the 

stability condition 1trJ detJ   (Equation (3)) and a real eigenvalue crossing the unit circle at +1; 

hence, this is a bifurcation point at which the system undergoes a Fold bifurcation at E3. 

4. If 
3 2F m F   then the fixed point E3 is a stable node (i.e. both eigenvalues lie inside the unit circle 

1 21, 1    or a stable focus (complex eigenvalues with real parts 1 2 1    and  

 3 1detJ E  ). 

5. If 2m F  then the fixed point E3 is center (i.e. complex eigenvalues with real parts 1 2 1    

and  3 1detJ E  ,  32 2trJ E   ); this parameter value is associated with the stability condition 

1detJ   (Equation (3)) and two complex eigenvalues crossing the unit circle simultaneously. So 

this is a bifurcation point at which a Neimark-Sacker bifurcation occurs in the system. 
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6. If 2m F  then the fixed point E3 is an unstable focus; complex eigenvalues with real parts 

1 2 1    and  3 1detJ E  ). 

2.2.3 Routes to chaos, strange attractors and prey population outbreaks 

In order to study the complex dynamics of system (Equation (12)) we use the numerical simulation 

tools: parametric basins of attraction, bifurcation diagrams, phase plots and Lyapunov exponent 

diagrams. We fix the parameters 1, 0.1, 0.5, 0.2, 0.09, 0.5a b k c            , we use for initial 

conditions the values  (0), (0) (0.5,0.8)x y   (Huang et al., 2006), and let the values of the refuge 

parameter and the step size vary. 

Simultaneous variation of step size and refuge parameters 

In order to have a first picture on the dependence of the dynamics of the system to the increase of the 

step size for various values of the refuge parameter, we plot the basins of attraction diagram for the 

parameter values [0,1]m   and [0,3.5]   (Figure 10). 

 

Figure 10 The parametric basins of attraction (m, δ). 

From the basins of attraction diagram we observe the following: 
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1. For small and average refuge (0 < m < 0.676) the system’s behavior is non-periodic. As the step 

size increases the white area is being replaced by the black area. All initial conditions give rise to 

extinction of both species. 

2. For the values of the refuge parameter (0.676 < m < 0.797), as the step size increases, the non-

periodic behavior is being replaced with an attracting fixed point (light blue area). 

3. For large refuge (0.797 < m < 1), as the step size takes larger values, the attracting fixed point goes 

through period-doubling bifurcations (2-period cycle, 4-period cycle, 8-period cycle) giving rise 

to non-periodic behavior (white area). 

Thus, adding a large refuge in the 2D map (Equation (12)) does not stabilize the predator-prey 

interactions anymore as it does in the continuous-time dynamical system (Equation (11)). 

Increasing the step size for average refuge 

We plot the phase diagram (x, y) for the average value of the refuge parameter m = 0.57 as the step 

size increases in the interval [0,3.1]  . We observe that the limit cycle of the continuous-time model 

develops a strange chaotic region (Figure 11).  

 As the step size increases in range 0 < δ < 2, the diameter of the stable limit cycle of the continuous-

time model (Figure 11(a)) increases and near to the value δ ≈ 0.19 becomes a closed invariant 

curve (Figure 11(b)).  

 The diameter of the closed curve increases continuously. Near to the value δ ≈ 1.9 the invariant 

curve interacts with the saddle fixed point  * *

2 , (10,0)E x y   and develops a first kink (Figure 

11(c)).  

 As δ passes through the value δ ≈ 2, the saddle fixed point  * *

2 , (10,0)E x y   goes through a 

bifurcation, where it loses stability and becomes a source. For 1.5 2   , the Jacobian matrix at 

 * *

2 , (10,0)E x y   has real eigenvalues 
1 2( , ) (1.013, 0.5)     (i.e. one eigenvalue lying outside 

the unit circle and the other inside (saddle)), while for , the real eigenvalues of the Jacobian matrix 

are  (i.e. both eigenvalues lying outside the unit circle (unstable node)). 

 As the step size increases in the range 2 < δ < 2.6, the closed curve develops more kinks (Figure 

11(d)). 

 As the step size takes larger values, δ > 2.6, and after many period-doubling bifurcations, the 

invariant curve develops a strange chaotic region (Figure 11(e)), becomes more complicated 

forming finally into a strange attractor (Figure 11(f)). 
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 (a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 11 The phase plot (x, y) for m = 0.57, as the step size increases in the range 0 < δ < 3.1. (a) The 

limit cycle of the continuous-time model (δ = 0.027), (b) the invariant curve grows in size (δ = 

0.21525), (c) the invariant curve develops a first kink (δ = 1.90975), (d) the invariant curve develops 

more kinks (δ = 2.5735), (e) the invariant curve develops a strange region (δ = 2.97175) and (f) the 

invariant curve becomes a strange attractor (δ = 3.06025). 
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The corresponding bifurcation diagram for both population species (δ, x*), (δ, y*) and the Lyapunov 

exponent diagram ( , )   for the average value of the refuge parameter m = 0.57, as the step size 

increases in the range 0 3.05   are illustrated in Figure 12. In Figure 12(b) we see in magnification 

how the characteristics of the fixed point in prey population change as the step size increases in range 

2.17 < δ < 2.57. Particularly, we observe that in this range, where the closed invariant curve develops 

more kinks (Figure 11(d)), the system undergoes several period-doubling and period-halving 

bifurcations and alternates between chaotic and periodic behavior of high periods. From the Lyapunov 

exponent diagram (Figure 12(c)) we observe that:  

 In the range 0 < δ < 2, where both populations coexist and oscillate between all the states of the 

closed invariant curve, the Lyapunov exponents vary among negative and exceptionally small 

positive values 0.001i  .  

(a)  

(b)  

Figure 12 (Continued.) 
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(c)  

Figure 12 The bifurcation diagrams (δ, x*), (δ, y*) and the Lyapunov exponent diagram ( , )   for m = 

0.57, as the step size increases in the range 0 < δ < 3.05. (a) The bifurcation diagrams (δ, x*) and (δ, 

y*), (b) magnification of the bifurcation diagram (δ, x*) and (c) the Lyapunov exponent diagram ( , ).   

 In the range 2 < δ < 2.6, where the system undergoes several period-halving and period-doubling 

bifurcations, the Lyapunov exponents vary among negative and higher positive values 

0.001 0.03i  .  

 While for δ > 2.6, where the system undergoes many period-doubling bifurcations, the Lyapunov 

exponents vary among even higher positive values. For δ = 2.9979 we have the maximum value

max 0.0642   for which the predator-prey interactions are the least predictable. 

Decreasing β for average refuge and large step size 

For the average value of the refuge parameter m = 0.57, for large step size δ = 3.08 and small number 

of newly born predators for each captured prey k = 0.3 (all the other parameters are fixed), we plot the 

phase diagram (x, y) as the value of β decreases in the range 0.77 < β < 1.07. We observe that the 

attracting fixed point via a Neimark-Sacker bifurcation gives rise to an invariant curve, which finally 

evolves into a strange attractor as the value of β decreases further (Figure 13). 

 As β decreases, a supercritical Neimark-Sacker bifurcation takes place near the value β ≈ 1.06. 

The stable focus fixed point    * *, 3,7x y   (Figure 13(a)) corresponding to coexistence loses 

stability, becomes an unstable focus and all trajectories approach a stable closed invariant curve 

(Figure 13(b)). 
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 The invariant curve grows in size as the value of β decreases and deforms (Figure 13(c)). Close to 

the value 0.83006  , the invariant curve splits and locks into a stable orbit of period 19 (Figure 

13(d)).  

(a)  (b)  

(c)  (d)

(e)  (f)  

Figure 13 (Continued.) 
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(g)  (h)  

Figure 13 The phase plot (x, y) for m = 0.57 and δ = 3.08, k = 0.3, as β decreases in the range 0.77 < 

β < 1.07. (a) The attracting fixed point (β = 1.052), (b) the closed invariant curve born (β =1.04), (c) 

the invariant curve slightly deformed (β = 0.839), (d) the invariant curve has a split (β = 0.83006), (e) 

the toothed wheel appearance (β = 0.80036), (f) the invariant curve becomes a contiguous ring (β = 

0.7997528), (g) the contiguous band more complicated (β = 0.7815368) and (h) the strange attractor 

(β = 0.780629036). 

 The invariant curve reappears slightly deformed (Figure 13(e)), appearing like a toothed wheel, 

which has been investigated by Aronson et al. (1982).  

 The invariant curve becomes a contiguous ring (Figure 13(f)), which as the varying parameter 

decreases further becomes even more complicated (Figure 13(g)).   

 Eventually the strange contiguous band evolves into a strange attractor (Figure 13(h)). 

By plotting the parametric basins of attraction diagram for 0 < β < 2.3 and 0.15 < k < 1.75, we can see 

for which values of the parameters (β, k) the supercritical Neimark-Sacker bifurcation takes place 

(Figure 14). We keep again fixed the parameters δ = 3.08 and m = 0.57. From the basins of attraction 

diagram we observe the following: 

1. For small number of newly born predators for each captured prey (0.2 < k < 0.38), as the value of 

β decreases, the light blue area (attracting fixed point) is being replaced with the white area 

(invariant curve and strange attractor) via the supercritical Neimark-Sacker bifurcation. As β 

decreases further the white area is being replaced with the black area (divergence to infinity) 

through some kind of catastrophe and any initial condition gives rise to extinction of both 

population species. 
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Figure 14 The parametric basins of attraction (β, k) for average refuge (m = 0.57) and large step size 

(δ = 3.08). 

2. For higher number of newly born predators for each captured prey (k > 0.38), we observe that 

scattered black areas appear inside the light blue areas. So, for the parameter values for which 

solutions converge to attracting fixed point, as β decreases, iterations suddenly evolve toward 

infinity and both populations become extinct. 

We also plot the corresponding bifurcation diagrams (β, x*) and (β, y*), along with the Lyapunov 

exponent diagram ( , )   as the varying parameter decreases in the interval 0.7807 < β < 1.07. We 

keep again fixed the parameters 3.08, 0.57, 0.3m k       (Figure 15). In Figure 15(b) we see in 

magnification a part of the bifurcation diagram in prey population (Figure 15(a)). We observe that the 

system’s behavior alternates between chaotic and periodic of high periods. Particularly: 

1. In range 0.8229 < β < 0.8292 both populations settle down on a 19-period cycle.  

2. Near to the value β ≈ 0.8129, as the value of β decreases, a series of period-doubling bifurcation 

(10 2 )n : (10-period cycle, 20-period cycle, 40-period cycle, etc.) lead to chaos. 
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(a)  

(b)  

(c)  

Figure 15 The bifurcation and the Lyapunov exponent diagrams for m = 0.57 and δ = 3.08, k = 0.3, as 

β decreases in the range 0.7807 < β < 1.07. (a) The bifurcation diagrams (β, x*) and (β, y*), (b) 

magnification of the bifurcation diagram (β, x*) and (c) the Lyapunov exponent diagram ( , )  . 
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3. For the values 0.8021 < β < 0.8068, another series of period-doubling and period-halving 

bifurcations (29 2 )n : (a 29-period cycle to a 58-period cycle and back to a 29-period cycle) lead 

to chaos once again. 

Respectively to the bifurcation diagram, from the Lyapunov exponent diagram (Figure 15(c)) we 

observe the following: 

1. As the value of β decreases in the range 0.83 < β < 1.07 the Lyapunov exponents vary among 

negative and small positive values λi < 0.0004, as we see in magnification. 

2. For smaller values 0.807 < β < 0.83, where period-doubling bifurcations occur in both populations, 

the Lyapunov exponents vary among negative and higher positive values λi < 0.06. 

3. As β takes even smaller values in the range 0.7807 < β < 0.807, the Lyapunov exponents vary 

among even larger positive values and reach the maximum value max 0.1572   for β ≈ 0.7809. 

(a)  (b)  

(c)  (d)  

Figure 16 (Continued.) 
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(e)  (f)  

(g)  (h)  

Figure 16 The phase plot (x, y) for large refuge (m = 0.8) and k = 0.2, β = 0.5, as δ increases in the 

range 2.63 < δ < 2.83. (a) Stable orbit of period 2 (δ = 2.64798), (b) stable orbit of period 4 (δ = 

2.6651), (c) period-doubling route to chaos (δ = 2.66632), (d) stable orbit of period 6 (δ = 2.694214), 

(e) chaos in both population species (δ = 2.720548), (f) trajectory is pushing upward (δ = 2.754064), 

(g) predator population decreases (δ = 2.785186) and (h) predators become extinct (δ = 2.82235). 

Increasing the step size for large refuge 

We keep fixed the parameters k = 0.2, β = 0.5 and plot the phase diagram (x, y) for large refuge (m = 

0.8), as the step size increases in the interval 2.63 < δ < 2.83 (Figure 16). 

 In the range 0 < δ < 2.65 both populations survive (x* > y*). All trajectories converge to the 

attracting fixed point (x*, y*) = (7.02, 4.27), where both populations are fixed in time.  

 As the step size increases, the two-period cycle x*: (6.174, 11.296) (Figure 16(a)) undergoes a 

period-doubling bifurcation and near the value δ ≈ 2.65 a stable four-period cycle appears in prey 

population x*: (5.051, 7.114, 11.135, 11.959) (Figure 16(b)). 
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 Close to the value δ ≈ 2.666, the period-doubling route to chaos and the trajectory mimics the 

Feigenbaum bifurcation diagram (Figure 16(c)). This is the so-called fountain phenomenon, which 

has been investigated by Hadeler and Gerstmann (1990).  

 In the range 2.69 < δ < 2.72, the chaotic behavior in prey population is replaced by a stable orbit 

of period six x*: (4.24, 6.77, 8.71, 10.48, 11.34, 12.28) (Figure 16(d)).  

 As the step size increases further in the range 2.72 < δ < 2.83, chaos appear in both population 

species (Figure 16(e)) and the trajectory is pushed upward (Figure 16(f)).  

 The predator population decreases continuously (Figure 16(g)) until the extinction (y* = 0) and 

only the prey population survives (x*: chaos) (Figure 16(h)). 

(a)  

(b)  

Figure 17 The bifurcation and the Lyapunov exponent diagrams for m = 0.8 and k = 0.2, β = 0.5 as δ 

increases in the range 2.5 < δ < 3.01. (a) The bifurcation diagrams (δ, x*), (δ, y*), (b) the Lyapunov 

exponent diagram ( , )  . 
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We also plot the corresponding bifurcation and Lyapunov exponent diagrams * *( , ),( , ),( , )x y     for 

the large value of the refuge parameter m = 0.8, as the step size increases in the interval 2.5 < δ < 3.01 

(Figure 17). In bifurcation diagram (Figure 17(a)), we observe that for values of the step size  

δ > 2.83 for which predators become extinct, a 3-period orbit appears in prey population and a series 

of period-doubling bifurcations (3 2 )n  lead to chaos once again. Once the predators become extinct, 

we have only a single species with limited resources. So for exceptionally large step size (δ ≈ 3), the 

reproduction rate of prey and the resource limitation compete each other, leading in some cases the 

prey population to extinction (x* ≈ 0.01)  and in other cases to overgrowth (x* ≈ 13.34). Thus, adding 

a large refuge leads to the extinction of the predator population and exhibits prey population outbreaks. 

From the Lyapunov exponent diagram (Figure 17(b)), we observe the following: 

1. For values of the step size δ < 2.666, where the period-doubling phenomenon takes place, the 

Lyapunov exponents take only negative values ( 0)i  . 

2. As the step size increases in the range 2.666 < δ < 2.69, where the period-doubling route to chaos 

appears, the Lyapunov exponents vary among positive values ( 0.1559)i  . In the range 2.72 < δ 

< 2.83, where the 6-period cycle is being replaced by chaotic behavior, Lyapunov exponents vary 

among larger positive values ( 0.4401)i  . 

3. For larger step size δ > 2.83, where only the prey population survives, Lyapunov exponents vary 

among even larger positive values. For δ ≈ 2.9991 we get the maximum value max 0.6784  .  

The maximum Lyapunov exponent (MLE) for large refuge is remarkably higher than that for average 

refuge 
max max

0.8 0.570.6784 0.0642m m     . Hence, adding a large refuge not only exhibits prey 

population outbreaks, but also makes the prey’s population dynamics extremely chaotic as well. 

Furthermore, once predators become extinct our modified model (Equation (12)) follows 

approximately the dynamics of the logistic map, which is well known for producing time series that 

look like random25. Therefore, although our system is deterministic, its behavior seems to be stochastic 

and because of its dependence on initial conditions it is almost impossible to predict the prey 

population outbreaks. 

                                                 
25 The logistic map 1 (1 )n n nx rx x    for r = 4 defines a dynamical system with seemingly random or stochastic behavior 

(Takens, 1993). 
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2.2.4 Prey refuge and population outbreaks: Locust plagues and aposematic anti-

predator strategy 

The results of our study show that the discrete-time model we suggest produces far more complex 

dynamics compared to the continuous-time version. In particular, we observe the following: 

1. Adding an average refuge in the continuous-time model results in the appearance of a stable limit 

cycle. On the other hand, adding an average refuge in the discrete-time version results in the 

appearance of a strange chaotic region developed on the invariant curve after many period-

doubling bifurcations. Moreover, for large step size and small number of newly born predators for 

each captured prey, the attracting fixed point is being replaced by a strange attractor via a Neimark-

Sacker bifurcation. 

2. Adding a large refuge in the continuous-time model stabilizes the predator-prey interactions and 

both populations settle down in a stable equilibrium point. On the other hand, adding a large refuge 

in the discrete-time version, the attracting fixed point is being replaced by chaotic behavior via 

period-doubling bifurcations. Moreover, as the step size increases, the predator population 

becomes extinct, while prey population outbreaks and random-like dynamics appear. 

The Holling type III functional response mainly refers to polyphagous vertebrate predators, like birds 

(Holling, 1959). Many species of birds prey on pest insects and therefore they are considered beneficial 

for humanity (Reid, 2006). For instance, many species of birds prey on locusts. Locusts are crop pest 

insects which show population outbreaks (locust plagues) regularly in real world. Rain allows the 

female to lay eggs in the sandy soil and because of the vegetation growth and the population outbreak, 

locusts devour all the vegetation (Pollock, 1993). Desert locusts (Schistocerca Gregaria) and the 

African migratory locust (Locusta Migratoria) are the most dangerous of the locust pests causing 

famines worldwide; they regularly cover vast areas of Northern Africa, Middle East, and Southwestern 

Asia (Uvarov, 1977). Concerning our assumption (reproduction in certain intervals), the population of 

desert locusts evolves in discrete time steps; they have two to five generations per year (Topaz et al., 

2008; Topaz et al., 2012) with every generation lasting from two to six months (Symmons and 

Cressman, 2001). Hence, our study indicates that reproduction in certain intervals is important and 

should be taken into account since it could help in the identification of insect pest population outbreaks, 

such as locust outbreaks. 

Moreover, the results of our study showed that increasing the amount of refuge leads to almost 

unpredictable increases in prey population density. So, if desert locusts are able to protect themselves 

from predation in some way, then population outbreaks of locusts could have devastating effects 
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worldwide. This could be considered as a rather realistic scenario since desert locusts present changes 

in their diet while shifting from solitary to gregarious phase in order to protect themselves from 

predation, indeed. Lab experiments and computer simulation showed that solitarious locusts were 

deterred at first contact with hyoscyamine – a plant compound that protects against predators – since 

they would not benefit from consuming the compound, because they escape predation by avoiding 

detection; by contrary, for high-density gregarious and transiens locusts, for whom crypsis is no longer 

an option, acquiring toxicity by feeding readily on the compound dramatically decreases predation risk  

(Despland, 2005).  

Concluding, once again, our modified proposed model seems to be more appropriate for describing 

the real world pest population outbreaks (such as locust plagues) than the original predator-prey model. 

2.3 Global Economic Repercussions: Pest Population Outbreaks and 

Vector-Borne Diseases 

2.3.1 Economic and food security impacts of locust plagues  

In Section 2.2 we showed that reproduction in certain intervals is important and should be taken into 

account since it could help in the identification of insect pest population outbreaks, such as locust 

outbreaks. As already mentioned, desert locusts (Schistocerca Gregaria) and the African migratory 

locust (Locusta Migratoria) are the most dangerous of the locust pests causing famines worldwide. 

Moreover, the results of our study showed that increasing the amount of refuge leads to almost 

unpredictable increases in prey population density. Hence, considering that desert locusts are able to 

protect themselves from predation by changing their diet while shifting from solitary to gregarious 

phase (as mentioned in Subsection 2.2.4), then locust outbreaks could have disastrous effects on global 

food security. 

A locust swarm can travel hundred kilometers per day, stripping most of the vegetation in its path 

(Kennedy, 1951). In particular, billions of locusts form swarms containing up to 1,010 members 

covering cross-sectional areas of up to 1000 km2 and traveling up to 102 km per day for a period of 

days or weeks as they feed (Uvarov, 1977). In 1999 the Locust Plague in Central Asia resulted in the 

devastation of millions of hectares (Thomas et al., 2000): (i) 7 million ha (70,000 km2) of land were 

devastated in Kazakhstan, (ii) 300,000 ha (3,000 km2) were destroyed in Uzbekistan, (iii) 2 million ha 

(20,000 km2) of land were infected with locust eggs in Pavlodar; the latter resulted in a severe locust 

outbreak in 2000 in China (930,000 ha (9,300 km2) of crops were affected in North-Central China, 
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more than 2 million ha (20,000 km2) of farmland were damaged in North-Western China, while 1.3 

million ha (13,000 km2) of farmland was predicted that would be further damaged). 2000 Locust 

Plague in Latin America (Nothern Peru) was one of the largest plagues; at least 15 million Peruvian 

Locusts (Scistocerra Piceifrons Peruviana) were recorded covering an estimated area of 50 square 

miles (130 km2) (Thomas et al., 2000). Brazil had several large locust outbreaks in the decade 1990 – 

2000; during the 1993 locust outbreak 2 million ha (20,000 km2) approximately were infested in Mato 

Grosso (Barrientos, 1995).  

The significant crop loss26 exacerbates problems of food storage and is a threat to food security and 

therefore it may cause famine (Pollock, 1993). For instance, the 1917 Locust Plague27 resulted in 

several increases to the price of food28 (New York Times, 1915b). The locust plague was also 

responsible for death and disbursement, due to diseases that were brought by the locusts (University 

of Utah, 2012). Another locust plague (2003 – 2005) in West and North Africa destroyed $ 2.5 billion 

in crops (Bell, 2005). This desert locust plague was the worst occurred since 1987-88; locust swarms 

migrated extensively and over very long distances covering all vegetation over thousands or hundreds 

of hectares reaching the Cape Verde Islands, the Canary Islands, Southern Portugal, Egypt, Cyprus, 

and Israel (Lecoq, 2005).  

Pest control officials perform several operations (ground control methods using pesticides and 

biological agents, airborne control methods using aircrafts) to reduce the frequency and duration of 

locust emergencies. However, locust plagues persist and swarms invade other areas. Moreover, control 

measures cost a lot resulting in extensive economic damage. In 2004-05 the Australian Plague Locust 

Commission (APLC) undertook its largest control operation since 1976, treating 450,000 hectares for 

locust bands and swarms; the costs of the control operations (pesticide expenses and aircraft hire) 

varied from zero in 2002-03 to $ 3.7 million in 2004-05 (Love and Riwoe, 2005). The Commission’s 

total expenditure (costs related to control operations along with costs on staffing, field operations office 

and other expenses29) over the six year period, from 1999 – 2000 to 2004 – 2005, amounted to $ 27.2 

million (Love and Riwoe, 2005). During the desert locust plague in Africa (2003 – 2005), despite 

control efforts totaling $ 400 million, loss rates exceeded 50% in certain regions (Bell, 2005). Since 

                                                 
26 A medium-sized locust swarm can consume 80,000 tons of green vegetation or crops per day, enough to feed a population 

of 100,000 persons for a year (Desert Locust Control Organization-Eastern Africa). 
27 1917 Locust Plague lasted from March to October 1915 and stripped areas in and around Palestine of almost all vegetation 

(Library of Congress, 1915). 
28 On 10 April 25, 1915, flour costs $ 15 per sack, potatoes were six times the ordinary price, sugar and petroleum were 

unprocurable, money has ceased to circulate (New York Times, 1915a). 
29 The Commission’s expenditure on staffing, field operations office and other expenses from 1999 – 2000 to 2004 – 2005 

ranged between $ 2.6 and $ 3.1 million a year (Love and Riwoe, 2005). 
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1997 until 2000, more than $ 35 million were spent on pesticides for control of the migratory locust 

swarms (Locusta Migratoria) in Madagascar (Thomas et al., 2000). Thus, from this perspective birds 

as predators (as mentioned in Section 2.2, our modified model refers to polyphagous vertebrate 

predators like birds), which prey on desert locusts, encourage the locust biological control programs. 

However, studies indicate that global warming threatens bird species with extinction30, while at the 

same time provide optimum conditions for locusts to multiply and spread31.  

All of the above mentioned facts indicate that locust plagues need to be addressed by finding better 

ways to predict and control them in order to ensure global food security.  

2.3.2 Burden of vector-borne diseases on public health and economy 

In Section 2.1 we showed that while a small refuge could control the prey population, a large refuge 

leads to almost unpredictability (i.e. random-like prey population outbreaks). As mentioned above 

(Subsection 2.1.4), by taking into consideration that the prey population could be biting insects (e.g. 

mosquitoes) and that they were able to protect themselves effectively from passive predators like 

spiders (by using diving as an escape strategy to avoid predation), then the results of our study suggest 

that serious infectious diseases, which pests may carry, could spread through human populations across 

a large region and a pandemic could be a possible scenario.  

For instance, the viral disease “yellow fever” (viral haemorrhagic fever) is a mosquito-borne disease 

(Oldstone, 1998) transmitted by the Haemagogus and Aedes aegypti mosquito species (WHO, 2014); 

the parasitic disease “malaria”32 can be transmitted by female mosquitoes of the genus Anopheles, and 

has been also associated with causing brain tumors (Lehrer, 2010); the viral disease “dengue” is 

transmitted primarily by the Aedes aegypti female mosquito (WHO, 2014); the “Zika” virus can be 

transmitted primarily by the Aedes aegypti and Aedes albopictus mosquitoes (WHO, 2016d). All these 

mosquito-borne infectious diseases have significant direct and indirect costs (Tables 1 and 2) which 

affect the economic development of many countries globally.  

 

 

                                                 
30 Şekercioğlu (University of Utah, 2012) indicates that 100 – 2,500 land bird species may go extinct due to climate change 

according to the Intergovernmental Panel on Climate Change, which has predicted 1.1 – 6.4°C of global warming of the 

Earth’s surface by the year 2100. 
31 Yu et al. (2009) have found that over the last 100 years severe locust outbreaks generally happen in warm years. Their 

data suggest that locust outbreaks may become more common as the climate becomes warmer and drier. 
32 Malaria transmission occurs in 97 countries putting about 3.4 billion people – nearly half of the world’s population – at 

risk (WHO, 2014). 
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Malaria 

Malaria contributes to the poor health situation in Africa; according to the latest estimates from WHO, 

the disease is concentrated in Sub-Saharan Africa accounting for 88% of the world’s 214 million 

(range: 149 – 303 million) malaria cases and 90% of the world’s 438,000 (range: 236,000 – 635,000) 

malaria deaths33 annually (WHO, 2015). Malaria affects the national income in endemic African 

countries; Gallup and Sachs (2001) estimated that the economic impact of malaria (costs of health 

care, absenteeism, days lost in education, decreased productivity due to brain damage from cerebral 

malaria, and loss of investment and tourism) is estimated to cost Africa $ 12 billion34 every year. The 

total cost (sum of direct and indirect costs) of controlling malaria only in Ghana for 2002 was 

US$ 50.05 million (Asante and Asenso-Okyere, 2003); the direct cost of treatment and prevention (by 

households and health services) was US$ 26.16 million – represented 52% of the total cost, while the 

indirect cost in the form of workdays lost to the illness (malaria morbidity and mortality) was 

US$ 23.89 million – represented 48% of the total cost.  

Malaria is also a major cause of health-related absenteeism from school in endemic countries affecting 

intellectual development; malaria in Uganda impairs as much as 60% of children’s learning and 

cognitive ability affecting primary and secondary education programs (Ministry of Health, 2014). 

Moreover, malaria negatively affects a country’s productivity due to time lost by sick adults and carers 

of sick children. Cropper et al. (2000) found that sick adults in Ethiopia lost up to 21 days per malaria 

episode, while the time adults lost from caring for sick children was up to 12 days off work (per 

episode). 

Greece was the most malarial country in Europe in the early 1930s with vectors Anopheles elutus, 

Anopheles maculipennis and Anopheles superpictus; over a million cases (of a population of 6 or 7 

millions) of malaria and 5,000 deaths per year (Vine, 1948). Malaria-control efforts in Greece began 

in 1944 with the introduction of the insecticide “4-4́ dichloro-diphenyl-drichloroethane” (DDT), while 

Government raised its budgetary figure for malaria control from some £ 60,000 to £ 300,000 in 1946 

(Vine, 1948). Today, spending on malaria control commodities (ACTs, ITNs, insecticides and spraying 

equipment for IRS, and RDTs) is estimated to have increased over the past 11 years, from US$ 40 

million in 2004 to US$ 1.6 billion in 2014, globally (WHO, 2015).  

                                                 
33 Children under five are particularly susceptible to malaria death; in 2015 malaria killed an estimated 306,000 (range: 

219,000 – 421,000) under-fives globally, including 292,000 children in the African Region (WHO, 2015). 
34 The average cost of management alone since 2000 is estimated to be US$ 300 million annually (WHO, 2015).  
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Global financing for malaria control increased from an estimated US$ 960 million in 2005 to US$ 2.5 

billion in 2014; international funding for malaria control in 2014 was estimated at US$ 1.9 billion, 

while domestic funding for National Malaria Control Programs (NMCPs) was estimated at US$ 550 

million (WHO, 2015).     

Dengue 

Dengue is the most rapidly spreading mosquito-borne viral disease globally, having significant socio-

economic impacts in endemic countries. The disease is now endemic in more than 100 countries35 in 

the WHO regions of Africa, the Americas, the Eastern Mediterranean, South-East Asia and the 

Western Pacific and is becoming more severe over the years; the Americas, South-East Asia and 

Western Pacific regions are the most seriously affected (WHO, 2016a). Dengue cases worldwide have 

increased dramatically in recent decades; in three WHO regions the number of dengue cases reported 

has increased from 2.2 million in 2010 to 3.2 million in 2015 (WHO, 2016a). There are about 390 

million (range: 284 – 528 million) dengue infections (Bhatt et al., 2013) and 22,000 dengue deaths 

(Guzman and Isturiz, 2010) globally (per year). Large dengue outbreaks occurred globally the year 

2015; 169,000 cases in Philippines, over 111,000 cases in Malaysia, over 1.5 million cases in Brazil 

(approximately 3 times higher than in 2014), over 15,000 cases in Delhi, India (the worst outbreak 

since 2006) (WHO, 2016a).  

In the Americas alone 2.35 million dengue cases were reported in 2015 (WHO, 2016a); Shepard et al. 

(2011) estimated that the total economic cost of dengue illness in the Americas is US$ 2.1 billion per 

year. Later, Shepard et al. (2013) estimated the annual economic and disease burden of dengue illness 

in 12 countries in Southeast Asia (Cambodia, Malaysia, Thailand, Singapore, Viet Nam, Myanmar, 

Bhutan, Brunei, East Timor, Indonesia, Laos, and Philippines) over the decade of 2001 – 2010; the 

annual dengue-illness cost was US$ 950 million36 – ranged from US$ 610 million to US$ 1,384 million 

– with an annual average of 2.9 million dengue episodes and 5,906 deaths. About 52% of the total 

economic costs resulted from productivity lost (indirect costs) including non-fatal and fatal cases; the 

average annual direct costs amounted to US$ 451 million – ranged from US$ 289 million to US$ 716 

million – and the indirect costs were US$ 499 million – ranged from US$ 290 million to US$ 688 

million.  

                                                 
35 Brady et al. (2012) estimated that 3.9 billion people, in 128 countries, are at risk of infection with dengue. 
36 The annual dengue-illness costs in each of the twelve countries were: US$ 16.5 million in Cambodia, US$ 128 million 

in Malaysia, US$ 290 million in Thailand, US$ 67.1 million in Singapore, US$ 23.5 million in Viet Nam, US$ 14.5 million 

in Myanmar, US$ 295 million in Bhutan, US$ 636 million in Brunei, US$ 363 million in East Timor, US$ 323.2 million in 

Indonesia, US$ 5.1 million in Laos, and US$ 81 million in Philippines (Shepard et al., 2013). 
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Table 1 Burden of vector-borne diseases (Malaria and Dengue) in different regions globally. 

Infections Absenteeism Economic Cost 

Malaria: 97 endemic countries – 3.4 billion people at risk (WHO, 2014) 

Worldwide: 214 million 

cases and 438,000  

(WHO, 2015) 

Greece (early 1930s): over 

1 million cases and 5,000 

deaths (Vine, 1948) 

Uganda: affects 60% of 

children’s learning and 

cognitive ability  

(Ministry of Health, 2014) 

Ethiopia: sick adults – 21 days 

lost; carers of sick children – 12 

days lost (off work per episode)  

(Cropper et al., 2000) 

Africa: US$ 12 billion  

(Gallup and Sachs, 2001) 

Ghana (2002): US$ 50.05 million  

(Asante and Asenso-Okyere, 2003) 

Africa (since 2000): US$ 300 

million – management cost; Global 

financing (2014): US$ 2.5 billion; 

International funding (2014): US$ 

1.9 billion; Domestic funding for 

NMCPs (2014): US$ 550 million 

(WHO, 2015) 

Worldwide (2014): US$ 1.6 billion 

for control commodities  

(WHO, 2015) 

Greece (1946): £ 300,000 for 

vector control (Vine, 1948) 

Dengue: 128 endemic countries – 3.9 billion people at risk (Brady et al., 2012) 

Worldwide: 390 million 

cases (Bhatt et al., 2013) 

and 22,000 deaths 

(Guzman and Isturiz, 

2010) 

Southeast Asia (2001 – 

2010): 2.9 million cases 

and 5,906 deaths  

(Shepard et al., 2013) 

In 2015: 2.35 million 

cases in the Americas, 

169,000 cases in 

Philippines, over 111,000 

cases in Malaysia, over 

1.5 million cases in Brazil, 

over 15,000 cases in 

Delhi, India  

(WHO, 2016) 

Surat, India (June – December 

2006): patient and their 

caretakers – 50 days lost  

(per household)  

(Bhavsar et al., 2010)  

Cambodia: sick children – 6.6 

days off school; sick adults – 

14.2 days off work and 2.6 days 

off other activities  

(Suaya et al., 2010) 

Puerto Rico (2002 – 2010): 

patient and their caretakers – 

30.5 days lost (per episode) 

(Halasa et al., 2012) 

8 American and Asian 

countries: sick children – 5.6 

days off school; sick adults – 

9.9 days off work (per episode) 

(Suaya et al., 2009) 

The Americas: US$ 2.1 billion  

(Shepard et al., 2011) 

12 countries in Southeast Asia 

(2001 – 2010): US$ 950 million  

(Shepard et al., 2013) 

Puerto Rico (2002 – 2010): $ 46.4 

million (Halasa et al. 2012) 

8 countries in the Americas and 

Asia (2005 – 2006): Health sector 

cost – US$ 440 million  

(Suaya et al., 2009) 
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Halasa et al. (2012) estimated the annual average economic cost of dengue cases in Puerto Rico during 

the period 2002 – 2010; the annual cost averaged $ 38.7 million, while combining this with costs 

associated with dengue surveillance and vector control activities increased the total economic cost of 

dengue illness to $ 46.4 million. Finally, Suaya et al. (2009) estimated the health sector cost of dengue 

in eight countries (five in the Americas – Brazil, El Salvador, Guatemala, Panama, Venezuela – and 

three in Asia – Cambodia, Malaysia, Thailand) in 2005 – 2006; an average dengue episode represented 

14.8 lost days for ambulatory patients and 18.9 days for hospitalized patients giving a cost of US$ 440 

million. 

Moreover, dengue prevention through vector control activities has significant economic impacts. 

Brazil in 1997 budgeted US$ 0.6 billion for vector control (Pérez-Guerra et al., 2010). Pérez-Guerra 

et al. (2010) estimated the economic cost of dengue prevention through vector control activities in 

Puerto Rico for the years 2002 to 2007. The cost of dengue vector control in the public sector was 

US$ 46.22 million; the Puerto Rico Department of Health spent an average US$ 1.29 million per year, 

while 12 municipalities spent on average US$ 6.41 million per year. The average economic cost of 

dengue illness in Singapore from 2000 to 2009 ranged between $ 0.85 billion and $ 1.15 billion, of 

which control costs constitute 42% – 59% (Carrasco et al., 2011). Finally, several studies have shown 

that dengue illness is one of the leading causes of health-related absenteeism from school, work, and 

other activities. Bhavsar et al. (2010) estimated the indirect costs of dengue illness in Surat, India, 

during the 2006 dengue season (June 2006 – December 2006) by analyzing a total of 40 patients; an 

average of 50 days were lost from school37, work, and other activities by the patient and their caretakers 

in a household. Suaya et al. (2010) estimated the socioeconomic impact of hospitalized dengue in 

Cambodia; on average, a hospitalized dengue episode, resulted in a loss of 23.4 days38 (including both 

patient and other household members). In Puerto Rico, for the years 2002 – 2010, the average days of 

a patient’s school and work absenteeism were 7.2 days per dengue episode, while time lost because of 

caregiving raised the number of affected days to 30.5 days (Halasa et al., 2012). Suaya et al. (2009) 

estimated the indirect costs of dengue cases in eight American and Asian countries; students lost 5.6 

days of school, while those working lost 9.9 work days (per average dengue episode). 

 

 

                                                 
37 The mean days of total school absence in all household members were 11.4 days (Bhavsar et al., 2010). 
38 Of these days, an average of 6.6 days corresponded to school absenteeism, 14.2 days to work lost and 2.6 to other days 

lost (Suaya et al., 2010). 
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Yellow Fever and Zika Virus 

Yellow Fever originated in Africa (Carrington and Auguste, 2013), posing the greatest threat in 45 

endemic countries (32 in Africa, 13 in Central and South America) with almost 900 million people at 

risk (WHO, 2010). Between 1980 and 2012, 150 yellow fever outbreaks in 26 African countries were 

reported to WHO (Garske et al., 2014). Despite vector control and vaccination programs, the number 

of yellow fever cases remains high during the past two decades. The burden of yellow fever in Africa 

for the years 1995, 2005, and 2013 were estimated to be: 1.5 (range: 1.1 – 2.2) million number of 

infections with 95,000 (range: 24,000 – 220,000) number of deaths, 1.8 (range: 1.2 – 2.5) million 

number of infections with 110,000 (range: 27,000 – 250,000) number of deaths, and 1.3 million (range: 

850,000 – 1.8 million) number of infections with 78,000 (range: 19,000 – 180,000) number of deaths, 

respectively (Garske et al., 2014).  

Table 2 Burden of vector-borne diseases (Yellow fever and Zika virus) in different regions globally. 

Infections Economic Cost 

Yellow Fever: 45 endemic countries – 900 million people at risk (WHO, 2010) 

Africa: 1.5 million cases and 95,000 

deaths in 1995; 1.8 million cases and 

110,000 deaths in 2005; 1.3 million cases 

and 78,000 deaths in 2013  

(Garske et al., 2014) 

Kenya (1992 – 1994): US$ 104 million – indirect 

cost (Marine Medical Systems, 1997)  

Angola (2016): US$ 24.3 million for WHO’s work 

in Angola and DRC (WHO, 2016c) 

Zika Virus: 67 endemic countries (WHO, 2016e) – 93.4 million people at risk in the  

Americas (Perkins et al., 2016)  

Brazil: up to 1,500,000 cases  

(WHO, 2016d) 

Colombia: over 25,000 cases; Cape 

Verde: over 7,000 cases (WHO, 2016f) 

Worldwide: US$ 8.9 billion (Pandey, 2016) 

Latin America and Caribbean: US$ 3.5 billion – 

impact of 2016 Zika outbreak (World Bank, 2016a)  

WHO strategic plan (2016 Zika outbreak): US$ 56 

million (McCarthy, 2016) 

CDC response (2016 Zika oubreak): $ 194 million 

(Tavernise, 2016) 

Zika Strategic Plan (July 2016 – December 2017): 

US$ 122.1 million (WHO, 2016e) 

Yellow fever outbreaks have significant economic impacts. The yellow fever outbreak in Kenya (1992 

– 1993) led to an estimated loss of US$ 104 million due to poor publicity which resulted in 101,000 

less British tourists to Kenya in 1992 – 1994 (Marine Medical Systems, 1997). Recently, a yellow 
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fever outbreak occurred in Angola. Since the first identified yellow fever case (late December 2015) 

in Luanda, it has spread to all the 18 provinces of Angola; cases of yellow fever have also been 

exported from Angola to the Democratic Republic of Congo (DRC), China and Kenya (WHO, 2016b). 

WHO and 54 partner organizations launched a joint Strategic Response Plan for yellow fever with a 

total budget of US$ 94.1 million for the activities of all partners involved in the response; of this, US$ 

24.3 million is for WHO’s work in Angola and DRC (WHO, 2016c). 

Zika virus outbreaks were reported for the first time from the Pacific in 2007 and 2013 in Yap Island 

(Federated States of Micronesia) and French Polynesia, respectively (WHO, 2016d). The Zika virus 

has been spread to other countries ever since; it is now reported to be circulating in 26 countries and 

territories in Latin America and the Caribbean (McCarthy, 2016). Currently, there is an ongoing Zika 

virus epidemic in Latin America and the Caribbean; as of 12 February 2016, 39 countries have reported 

local circulation of Zika virus, and there is evidence of local transmission in six additional countries 

(WHO, 2016d). Perkins et al. (2016) estimated that 93.4 million (range: 81.6 – 117.1 million) people 

are at risk of infection with Zika virus in the Americas. From 2015 onwards Zika virus has expanded 

rapidly in 67 countries – mainly in the Americas Region but more recently spreading to Europe and 

countries in Africa, Asia and the Pacific (WHO, 2016e; WHO, 2016d). Today, the Brazilian national 

authorities estimate that up to 1,500,000 cases of Zika virus infection have occurred since the outbreak 

began (WHO, 2016d). According to WHO (2016f), after Brazil, Colombia has been the most-affected 

country, with over 25,000 suspected cases reported, while Cape Verde has reported more than 7,000 

suspected cases of Zika virus.  

The Zika virus has significant economic impact for the countries suffering from outbreaks. It has been 

estimated that the Zika virus cost the global economy a total of US$ 8.9 billion (Pandey, 2016). The 

World Bank (2016) estimated the short-term economic impact of the Zika Virus epidemic for 2016 in 

the Latin American and the Caribbean region to be a total of US$ 3.5 billion. Further, World Bank 

(2016) estimated that health care for infants infected with Zika virus over their lifetimes will exceed 

hundreds of billions of dollars. On February 16, 2016 the World Health Organization released a report 

outlining a US$ 56 million39 strategic plan to respond to the ongoing outbreaks of Zika virus disease 

in the Americas (McCarthy, 2016). Moreover, the US Centers for Disease Control and Prevention, by 

August 30, 2016, had spent $ 194 million to respond to the Zika outbreak in Latin America and 

Caribbean (Tavernise, 2016). Currently, WHO/Pan American Health Organization (PAHO) and 

                                                 
39 7.1 million for surveillance, 15.4 million for community engagement and risk communication, 6.4 million for vector 

control and personal protection, 14.2 million for care for those affected, 6.4 million for research, and 6.1 million for 

coordination (conducted by partners across sectors and services at the global, regional, and national levels) (WHO, 2016d). 
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partners have set out a strategic response to Zika that focuses on preventing and managing medical 

complications caused by Zika virus infection WHO (2016e); a total of US$ 122.1 million is necessary 

to effectively apply the Zika Strategic Response Plan (July 2016 – December 2017). 

Overall, we observe that despite all efforts, vector-borne diseases often burst into outbreaks causing 

devastating socioeconomic breakdowns. Hence, more research on mosquito outbreaks needs to be 

done to find better ways to predict and control them, in order to reduce the considerable health and 

economic burdens they inflict. 
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Chapter 3 

Infectious Disease Transmission and Serial Interval  

Mathematical models have been widely used from epidemiologists over the years to predict epidemics 

of infectious diseases. They have been used to develop a basic understanding of the relevant 

epidemiological patterns as well as to quantify the likely effects of different intervention strategies 

(policy development) (Hethcote and Yorke, 1984). The spread of an infection within a population 

divides the population into three disjoint groups (Kermack and McKendrick, 1927): (i) susceptible 

individuals; i.e. they contract the disease and become infective, (ii) infective individuals; i.e. they 

transmit the disease to others, (iii) removed individuals; i.e. they had the disease and are 

dead/permanently immune/isolated. This type of epidemic models with recovering and permanently 

immunity are known as SIR models. In case of infections that do not confer protective immunity, 

individuals become susceptible to the disease again as soon as they recover from the infection; this 

type of models are known as SIS models (Boccara, 2010). In this case there are no removed individuals. 

The SIS models have been widely used to describe sexually transmitted diseases (Hethcote and Yorke, 

1984).  

Continuous-time epidemic models have been widely used over the years in the investigation of the 

transmission of infectious diseases due to their mathematical tractability. Méndez and Fort (2000) 

studied a discrete deterministic epidemic model taking into account an incubation period. They showed 

how small outbreaks of the disease may be catastrophic to the population after the first evolution of 

the epidemic. Enatsu et al. (2012) proposed a discrete-time version of an SIS epidemic continuous-

time model with immigration of infectives, using the backward Euler method. Applying Lyapunov 

function techniques they established the global asymptotic stability of the disease-free and the endemic 

equilibrium. Li et al. (2008) established SI and SIS epidemic models with vital dynamics 

corresponding to the case that the infectives can recover from a disease or not. They showed that their 

behavior is the same as their corresponding continuous ones; below a threshold the disease dies out, 

while above the threshold the disease becomes endemic.  

However, discrete-time SIS epidemic models sometimes are capable of generating complex dynamics 

such as period-doubling and chaotic behavior, in contrast with continuous-time epidemic models. 

Allen (1994) considered discrete-time models of some well-known SI, SIR and SIS models and found 

that the discrete-time SI and SIR models have similar dynamical behavior with their continuous 
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analogues. However, for the SIS discrete-time model found that for some parameter values can exhibit 

period-doubling and chaotic behavior. Castillo-Chavez and Yakubu (2001) studied the role of various 

types of reproductive or recruitment regimes including contest and scramble competition on disease 

dynamics in a discrete-time SIS epidemic model. Another important aspect of modeling epidemics is 

the formulation of the incidence function. Li et al. (2010) discretized a continuous-time epidemic 

model with nonlinear incidence rate applying Euler scheme. Using qualitative analysis and numerical 

simulations they showed that the discrete-time model can result in a much richer set of patterns than 

the corresponding continuous-time model.  

3.1 A Gonorrhea Transmission Model: Time Interval between 

Successive Clinical Cases40 

3.1.1 The organism Neisseria gonorrhoeae 

Gonorrhea is one of the oldest known human illnesses. The organism Neisseria gonorrhoeae was first 

described by Neisser in 1879 and cultivated in 1982 (Marrazzo et al., 2010). Neisseria gonorrhoeae 

causes an estimated 62 million cases of gonorrhea worldwide each year (Gerbase et al., 1998). 

Gonorrhea is the second most commonly-reported notifiable disease in the United States. 

Approximately 700,000 new cases of gonorrhea occur in the United States each year (Weinstock et 

al., 2004). Furthermore, the financial impact of gonorrhea is high. Only the direct medical cost for 

gonorrhea treatment in the Unites States is estimated at $ 1,051,000,000 annually (Centers for Disease 

Control and Prevention, 2000).  

Infections due to Neisseria gonorrhoeae are a major cause of Pelvic Inflammatory Disease (PID) in the 

United States. PID can lead to serious outcomes in women such as tubal infertility, ectopic pregnancy, 

and chronic pelvic pain. In addition epidemiologic and biologic studies provide strong evidence that 

gonococcal infections facilitate the transmission of HIV infection (Fleming and Wasserheit, 1999). In 

men gonorrhea can cause a painful condition called epididymitis in the tubes attached to the testicles 

(Berger et al., 1979). Further, if left untreated, gonorrhea can also spread to the blood and cause 

Disseminated Gonococcal Infection (DGI), a condition that can be life threatening. DGI is usually 

characterized by arthritis, tenosynovitis, and/or dermatitis (Holmes et al., 1971). Moreover, the 

organism Neisseria gonorrhoeae has the ability to develop resistance against all clinically useful 

                                                 
40 This section is based on the publication “Bifurcations and chaos in discrete-time gonorrhea model” (Gkana, A., Zachilas, 

L.: 2015b, Bifurcations and chaos in discrete-time gonorrhea model, Chaotic Modeling and Simulation 1, 51-64.). 
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antibiotics. William Smith (2010) suggests that we are on the verge of a highly untreatable gonorrhea 

epidemic. Although gonorrhea was easily cured with antibiotics years ago, however bacteria develop 

resistance to treatments.  

Furthermore, the World Health Organization (WHO) recently put out an alert with regards to the 

reported cases of resistance to cephalosporin antibiotics – the last treatment option against gonorrhea 

– in several countries including Australia, France, Japan, Norway, Sweden and the United Kingdom 

(WHO, 2012). According to Dr. Manjula Lusti-Narasimhan from the Department of Reproductive 

Health and Research at WHO, gonorrhea is becoming a major public health challenge due to the high 

incidence of infections accompanied by dwindling treatment options. And after the failure from this 

last effective treatment, as there are no new therapeutic drugs in development, if gonococcal infections 

become untreatable the health implications will be significant. 

The first gonorrhea model, an integral equation model with time delays representing variation in the 

infectious period, was formulated by Cooke and Yorke (1973). They investigated the solutions’ 

behavior for a single homogeneous population. Reynolds and Chan (1974) studied a linear differential 

equation model for gonorrhea. They estimated the parameters and projected the prevalence for males 

and females, both with and without terms modeling control procedures. The drawback of this model 

is that, due to linearity, the prevalence can grow exponentially without saturating the populations. 

Bailey (1975) showed how Susceptible-Infected-Susceptible (SIS) models developed for other 

diseases can be used for gonorrhea.  

Lajmanovich and Yorke (1976) formulated and investigated the asymptotic stability properties of a 

gonorrhea model with an arbitrary number of interesting groups. Aronsson and Mellander (1980) 

modified Lajmanovich and Yorke model including seasonal variation in the contact and removal rates. 

They showed that in the endemic case there is a nontrivial solution which is global asymptotically 

stable. Nallaswamy and Shukla (1982) modified Lajmanovich and Yorke model including spatial 

diffusion and analyzed the stability of the endemic equilibrium state. Thieme (1982) modified 

Lajmanovich and Yorke model assuming short periods of incubation or immunity and showed that the 

same global stability results still hold for this case. Finally, Hirsch (1984) investigated the global 

stability of a more general version of Lajmanovich and Yorke model.  

Moreover, Hethcote and Yorke (1984) monograph is an excellent work in the context of gonorrhea 

transmission dynamics and control. They used nonlinear differential equations to model the 

transmission dynamics of gonorrhea in a heterosexually-active population with two distinct levels of 

sexual activity. Mushayabasa (2012) formulated a deterministic model of non-linear differential 
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equations in order to analyze the epidemiological consequences of chlamydia and gonorrhea co-

infection. In this section we study a discrete-time version of Hethcote and Yorke (1984) gonorrhea 

model using discrete time steps based on the duration of the serial interval of gonorrhea infection. In 

Subsection 3.1.2 we present the basic continuous-time gonorrhea model (Hethcote and Yorke, 1984) 

and in Subsection 3.1.3 we discretize their model. The local stability properties of the fixed points of 

our discrete-time gonorrhea model are investigated in Subsection 3.1.4, while in Subsection 3.1.5 we 

use various numerical simulation tools to study the complex dynamics of our system. In Subsection 

3.1.6 we proceed to chaos control applying the G.M. method (Güémez and Matias, 1993) in order to 

obtain regular behavior. Finally (Subsection 3.1.7), we conclude with some remarks and discussion 

about the consequences of our results. 

3.1.2 The basic gonorrhea model 

Any gonorrhea model must incorporate the following three characteristics due to three strictly 

epidemiological characteristics of the disease: (a) it cannot include a removed class since recovery 

from gonorrhea does not give permanent immunity41, so that individuals that are cured are immediately 

susceptible to the disease again; (b) it is not necessary to include an exposed class (E) due to the short42 

latent period of gonorrhea; (c) constant parameter values should be incorporated since gonorrhea 

incidence do not vary seasonally43. As a result, any gonorrhea model considers only susceptible and 

infective individuals. 

Hethcote and Yorke (1984) studied a continuous-time dynamical system for the spread of gonorrhea. 

They divided population into two groups, females at risk  fN  and males at risk  mN ; and each 

group into two subgroups, susceptible females  f fN S  & and infective females  f fN I  and 

susceptible males  m mN S  & infective males  m mN I .  

They modeled the dynamics of the spread of gonorrhea by the 4-dimensional system: 

                                                 
41 Gonococcal infection does not confer protective immunity, and this particular characteristic is what makes gonorrhea 

very different from other diseases such as measles, mumps, rubella, chickenpox, poliomyelitis, diphtheria, whooping 

cough, and tetanus (Hethcote and Yorke, 1984). 
42 Individuals who acquire gonorrhea become infectious within a day or two, so that the latent period is very short compared 

to the latent period of about 12 days for measles, 15 days for chickenpox, and 18 days for mumps (Hethcote and Yorke, 

1984). 
43 The seasonal oscillations in gonorrhea incidence are very small (less than 10%). In contrast, the incidences of diseases 

such as influenza, measles, mumps and chickenpox often vary seasonally by factors of 5 to 50 or more (Hethcote and 

Yorke, 1984). 
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f f f f m m f f f
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m m m m f f m m m
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   
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   

                                         (13) 

The sexually active population fN  and 
mN  is constant and equals the number of susceptible plus the 

number of infective individuals ( f f fN S I   and 
m m mN S I  ); f  and 

m  indicate the 

transmission rate of infection of susceptible females and males respectively; fd  and md  indicate the 

average duration of infection for females and males respectively. 

Since the population is constant, the system (Equation (13)) reduces to the 2-dimensional dynamical 

system:  
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where, 1f fS I   and 1m mS I   since the total population size remains constant and f mr N N . 

The limiting system (Equation (14)) has 2 equilibrium points, a trivial and a nontrivial: 
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d r d d d d r d

  

     

 
 
  
 

 

If the trivial equilibrium point exists it is asymptotically stable and gonorrhea dies out. If the trivial 

equilibrium point does not exist, then the nontrivial equilibrium point is asymptotically stable and 

gonorrhea remains endemic. 

3.1.3 Modification of the basic model by taking into account the serial interval 

Once again, we use the Euler’s algorithm (Subsection 1.1.1) to discretize the Hethcote and Yorke 

(1984) model; we discretize the differential equations of the basic dynamical system (Equation (14)) 

by replacing ,f mdI dt dI dt  with the difference quotients    1 1,f f m m

n n n nI I I I     . Time is 
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measured in generations and we obtain a deterministic discrete-time gonorrhea model defined by the 

2D map as follows:  

 

 

1

1

1

1

f
ff f f m n

n n n n

f

m
m m m f n
n n m n n

m

I
I I I I

r d

I
I I r I I

d




 





  
      

  


 
    

 

                              (15) 

  is the length of each discrete-time step where the number of infective individuals grow by the 

addition of the newly infective individuals; ,f m

n nI I  is the number of infective females and males in one 

time step; 1 1,f m

n nI I   is the number of infective females and males at the next time step; the infection 

rates of susceptible males and females  ,f m   indicate the average number of individuals with whom 

an infectious individual makes adequate contact44 during a unit time interval (Hethcote, 1976; Allen 

et al., 1991). The discrete time step   corresponds to the generation time of gonorrhea, that is, the 

time from the moment one person becomes infected until that person infects another person (Scalia et 

al., 2010). This time interval is well-known as the serial interval45; i.e. the time period between 

successive clinical cases (Fine, 2003).  

3.1.4 Fold and Flip bifurcations 

The map (Equation (15)) has the following two fixed points, which are the same as the equilibrium 

points of the analogous continuous model (Equation (14)), a disease-free equilibrium 1E  and an 

endemic equilibrium 
2E : 

   * *

1 : , 0,0f mE I I   

 
 

* *

2

11
: , ,

f m f mf m f m

f m

m m f m f m f m f m f f

d d rd d
E I I

d r d d d d r d

  

     

 
 
  
 

 

The Jacobian matrix at any point  ,f m

n nI I  is:  

                                                 
44 Adequate contact is a direct or indirect contact that is sufficient for transmission of infection if the individual contacted 

is susceptible. The concept of a sufficient contact is necessary since transmission of infection sometimes does not occur 

during sexual intercourse between an infective and a susceptible (Hethcote and Yorke, 1984). 
45 The serial interval is important in the interpretation of infectious disease surveillance and trend data, in the identification 

of outbreaks, and in the optimization of quarantine and contact tracing (Fine, 2003). 
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 

 

 

1 1

1 1

11
1

,

1
1 1

fmf f
f nf nn n

f m

fn nf m

n n m m

n n m f
f m m n m n

n n m

III I

r d rI I
J I I

I I
r I rI

I I d

 


   

 

 

    
                                  

 

The determinant of the Jacobian matrix is:  

  21 1
1 1 1 1

m

f nf f m

m n f m n n

m f

I
detJ rI I I

d r d


     

    
                       

 

Once again, in order to study the local behavior around each of the two fixed points we calculate the 

Jacobian matrix at 1 2,E E : 

 

   

   

* * * *

1 1

* *

* * * *

1 1

, ,

,
, ,

f f

n f m n f m

f m

n n

f m m m

n f m n f m

f m

n n

I I I I I I

I I
J I I

I I I I I I

I I

 

 

  
 

  
  

  
   

 

Calculating the determinant and the trace of the Jacobian, each fixed point is asymptotically stable if 

1 2trJ detJ    (Equation (3)). 

Local stability of the disease-free fixed point 

The Jacobian matrix at    * *

1 : , 0,0f mE I I   is:  

 1

1

1

f

f

m

m

d r
J E

r
d

 


 

 
 

 
 

  
 

 

with eigenvalues  

 

   

   

2 2 2

1

2 2 2

2

4 1 2 2

2

4 1 2 2

2

f m f m f m f m f f m

f m

f m f m f m f m f f m

f m

d d d d d d d d d

d d

d d d d d d d d d

d d

   


   


     
 

      

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determinant   2

1 1 1 f m

f m

detJ E
d d

 
  

   
        

  

 and trace  1 2
m f

trJ E
d d

 
    . 

Using the three stability conditions (Equation (3)) and let 
  

1 2

2 2f m

m f m

d d
F

d d

 

 

 
  and 

 2 2 2

2

4 1 2

1

f m f m f m f m f

f m f m

d d d d d d d
F

d d

 

 

    



: 

1. If 
1

f

m f md d



  the trivial fixed point 1E  is a stable node; both eigenvalues lie inside the unit 

circle  1 21, 1    . 

2. If 1

1
f

m f m

F
d d




   and 
2F   the trivial fixed point 1E  is a saddle; one eigenvalue lies outside 

the unit circle and the other inside  1 21, 1    . 

3. If 1f F   and 
2F   the trivial fixed point 1E  is an unstable node; both eigenvalues lie outside 

the unit circle  1 21, 1    . 

4. If 
1

f

m f md d



  the trivial fixed point 1E  is non-hyperbolic  1 1  ; this parameter value is 

associated with the stability condition 1trJ detJ   (Equation (3)) and a real eigenvalue crossing 

the unit circle at +1. So this is a bifurcation point at which the system undergoes a Fold bifurcation 

at 1E . 

Local stability of the endemic fixed point 

The Jacobian matrix at  
 

 
 

* *

2

11
: , ,

1

f m f mf m f m

f m

f f m mm m f f

d d rd d
E I I

d d rd r d

  

  

 
 
 
 

 is:  

 

 
 

 

 

 

 

 

2

2 1
1

1

1
1

1

m m f f f m m

f m m m m f f

f f f f m m

m

f f m m m f f

d d r d r

d d r r d r d
J E

d r d d r
r

d d r d r d

    


  

  
  

  

    
   

   
 

 
    
             
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with determinant  
 

 
 
 

2

2

1
1 1

1

m m f ff f m m

f m m f mm f f

d d rd d r
detJ E

d d r d dd r d

     



   
       
   
   

 

and trace  
 

 

 

 2

1
2

1

m m f f f f m m

f m m m f f

d d r d d r
trJ E

d d r d r d

   


 

  
    
  
 

 

Using the three stability conditions (Equation (3)) we obtain the following (see Appendix): 

1. If 

3

1
f

m f m

f

d d

F










 

 and 
4 5F F   the nontrivial fixed point 

2E  is a saddle; one eigenvalue lies 

outside the unit circle and the other inside 
 

 
1 2

1 2

1, 1

1, 1

 

 

  

 
. 

2. If 3

1
f

m f m

F
d d




   and 
4F   the nontrivial fixed point 

2E  is a stable node; both eigenvalues 

lie inside the unit circle  1 21, 1   . 

3. If 
5F   the nontrivial fixed point 

2E  is an unstable node; both eigenvalues lie outside the unit 

circle  1 21, 1   . 

4. If 
1

f

m f md d



  the nontrivial fixed point 

2E  is non-hyperbolic  2 1  ; this parameter value is 

associated with the stability condition 1trJ detJ   (Equation (3)) and a real eigenvalue crossing 

the unit circle at +1. So this is a bifurcation point at which the system undergoes a Fold bifurcation 

at 
2E . 

5. If 3f F   and 
4F   the nontrivial fixed point 

2E  is non-hyperbolic  1 1   ; these parameter 

values are associated with the first stability condition 1trJ detJ    (Equation (3)) and one real 

eigenvalue crossing the unit circle at -1. Hence, these are bifurcation points at which the system 

undergoes a Flip bifurcation at 
2E  with stable periodic two points bifurcating from the fixed point. 

3.1.5 Gonorrhea outbreaks: Routes to chaos and strange attractor 

Once again, a series of numerical simulations (Section 1.3) are introduced so that to illustrate the results 

of the analytical stability analysis (Subsection 3.1.4) and for finding some new qualitative dynamics 

of the discrete-time model (Equation (15)) as the parameters vary. 
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The rates of infection 
m  and f  should be different because transmission efficiency is gender 

dependent. The average probability of transmission of gonococcal infection during a single sexual 

exposure (a) from an infectious woman to a susceptible man in estimated to be about 0.2 – 0.3, while 

(b) from an infectious man to a susceptible woman is about 0.5 – 0.7 (Wiesner and Thompson, 1980). 

Hence, we use the following values for the rate of infection parameters: 0.6f   and 0.25m  . 

However, the probability of transmission of gonococcal infection is increased for individuals who have 

ever had gonorrhea or other STI, for individuals who are street-involved youth, and for individuals 

having sex with many partners, with sex workers, or with a partner coming from a country where 

gonorrhea is frequent (Government of New Brunswick, 2010). 

The average durations of infection md  and fd  have also to be different because: (a) 90% of all the 

men who have gonococcal infection notice symptoms within a few days after exposure and promptly 

seek medical treatment, while (b) up to 75% of women with gonorrhea fail to have symptoms and 

remain untreated for some time (National Institute of Allergy and Infectious Diseases, 1980). In 

particular, when symptoms occur in men, they usually occur 3-5 days after sexual contact with an 

infected individual; while women who develop symptoms usually experience them within 10 days of 

sexual contact with an infected individual (Wisconsin Division of Public Health, 2015). So we fix the 

average duration of infection for females and males at 10fd   and 3md   respectively.  

Gonorrhea affects males and females almost equally46. So we assume that the number of males and 

females at risk   ,m fN N  is equal with ratio 1r  . We also assume that the initial number of infective 

individuals is the same both for males and females. Therefore we use for initial conditions the values 

   0 0, 0.5,0.5f mI I  . 

Finally, in order to describe accurate the gonorrhea transmission dynamics, the size of the discrete time 

step should match the epidemiology of the disease (Trottier and Philippe, 2001); that is, whether the 

dynamic of infection is a matter of days or hours. The serial interval (i.e. the time period between 

successive clinical cases) is the average time between the observation of symptoms of gonorrhea in 

one person and the observation of symptoms in another person that has been infected from the first 

(Figure 18). Furthermore, the symptoms of gonorrhea usually appear two to five days after infection 

(i.e. incubation period) (Marrazzo et al., 2010). Thus, since an infected individual remain infectious 

                                                 
46 Global estimated incidence of gonorrhea, occurred in 1999, is 62.35 million infected people annually. Particularly 

gonorrhea affected 33.65 women and 28.70 men (WHO, 2001). 
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until he/she receives treatment, we assume that infections occur during the infectious period (Figure 

18). Moreover, although a range of values for the serial interval is possible, the average serial interval 

can be estimated as: average incubation period + half the average infectious period, assuming that the 

maximum infectiousness occurs at the middle of the infectious period (Shil et al., 2011). So the serial 

interval could be estimated by the incubation period. Therefore we define the length of the discrete 

time step between infection and subsequent transmission as 2 5   days. 

 

Figure 18 Time course of a single gonorrhea infection. Individual A becomes infected, transmits the 

infection to individual B and receives treatment. 

Using these values for parameters we observe that the dynamics of the basic model (Equation (14)) 

alter significantly in discrete time for time interval length between successive clinical cases 

 2 4   days, as the rate of infection of susceptible females increases (Figure 19). 

 For small values of the infection rate parameter  0 0.4f   the solutions converge either to a 

disease-free fixed point or to an endemic fixed point (light-blue area) for every value of time 

interval between clinical cases. 

 For average values of the infection rate parameter  0.4 1.46f   as f  increases the light-blue 

area is being replaced with the dark-blue area and the solutions converge to an attracting cycle of 

period 2. Moreover, for specific step size values  2.25 3  , further increase in the infection 

rate parameter f  gives rise to non-periodic behavior (white area). 
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 For large values of the infection rate parameter  1.85f   as the value of f  increases any 

periodic and non-periodic behavior is being replaced with divergence to infinity (black area). This 

abrupt behavior is not meaningful but it could be taken as some kind of catastrophe causing the 

extinction of the infected population. 

 

Figure 19 The basins of attraction diagram for the parameter values δ ϵ [2, 4] and λf ϵ [0, 2.25].  

Thus, for sufficiently low infection rate of susceptible females the behavior of solutions of the discrete-

time model is qualitatively the same with the basic model. However, as the infection rate increases the 

discrete-time model exhibits the same behavior as the continuous-time model only for certain short 

time interval between successive clinical cases of gonorrhea  2.25  . 

Fixing the time period between clinical cases at the value 2.65   ( 2 4   days) and let the rate of 

infection of susceptible females parameter increasing in the interval  0,1.59f   we observe 

bifurcations occur in the system (Figure 20). The value 0.1333f   is a bifurcation point at which a 

Fold bifurcation occurs: 
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1. For exceptionally small values of the varying parameter  0.1333f   the disease-free fixed point 

 1 : 0,0E  is locally asymptotically stable (stable node) and the endemic (negative) fixed point 

 * *

2 : ,f mE I I  is unstable (saddle). Some solutions converge to the attracting disease-free fixed point; 

there are no infective individuals and gonorrhea dies out. Hence, the initial infective population sizes 

   0 0, 0.5,0.5f mI I   lead to the extinction of the disease due to the low probability of infection. 

 

Figure 20 The bifurcation diagrams  *,f fI  and  *,f mI  for step size value δ = 2.65 as λf increases 

in the interval λf ϵ [0, 1.59]. 

2. Near the value 0.1333f   both fixed points  1 : 0,0E  and  2 : 0.0001, 0.0001E    undergo a Fold 

bifurcation and become non-hyperbolic with eigenvalues of the Jacobian matrix 

 1 20.1483, 0.9999 1       and  1 20.1483, 1.0001 1       respectively. Hence, for this 

critical value, the system has only one non-hyperbolic fixed point  1 2 : 0,0E E . 

3. For 0.1333 1.1035f   the system has again two fixed points, the trivial and a non-trivial positive 

fixed point. The fixed points have exchange their stability, so that, the disease-free fixed point 1E  is 

now unstable (saddle) while the endemic fixed point 
2E  is locally asymptotically stable (stable node). 

The initial infective population sizes    0 0, 0.5,0.5f mI I   converge to the attracting endemic fixed 

point where both infected males and females are fixed in time. Moreover, the number of infective 

females is larger than the number of infective males  * *

f mI I  likely due to the fact that the infection 

rate of females is larger than the infection rate of males  f m   and the duration of infection is 
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larger in females than in males  f md d . As the parameter f  increases in this interval the number 

of infective individuals  * *,f mI I  increases continuously and gonorrhea remains endemic. 

Near the value 1.1035f   the saddle disease-free fixed point  1 : 0,0E  becomes non-hyperbolic 

 1 20.9999, 1.8516     and for 1.1035f   it is an unstable node. The value 1.2961f   is a 

bifurcation point at which a Flip bifurcation occurs: 

1. At 1.2961f   the endemic fixed point  2 : 0.8329,0.3845E  undergoes a Flip bifurcation and 

becomes non-hyperbolic with eigenvalues of the Jacobian matrix 

 1 20.9999 1, 0.0207       . 

2. For 1.2961 1.59f   the endemic fixed point 
2E  becomes unstable (saddle) and a stable cycle 

of period 2 appears in the system. Both infective males and females now converge to different 2-

period cycles, while both periodic cycles become wider as the parameter increases at this particular 

interval. 

For higher values of the rate of infection of susceptible females  1.59,1.72f   we come across the 

phenomenon of intermittency route to chaos which according to Manneville and Pomeau (1980) is 

characterized by regular (laminar) phases alternating with irregular bursts. In particular, as the varying 

parameter increases the endemic fixed point remains unstable (saddle), while periodic behavior of high 

periods, cascades of period-doubling bifurcations and deterministic chaos appear eventually in both 

infected males and females (Figure 21). 

 For 1.59 1.6402f   the Lyapunov exponents vary among negative and exceptionally small 

positive values 0.001i
   and the behavior of solutions appears to be slightly chaotic. 

 For 1.6402 1.6544f   the map exhibits the familiar infinite sequence of period-doubling 

bifurcations  32 2n : (32-period cycle, 64-period cycle, 128-period cycle, etc.) followed by 

chaotic oscillations where the Lyapunov exponents take higher positive values 0.05i
  . 

 At 1.6544f   a second series of period-doubling bifurcations  10 2n : (10-period cycle, 20-

period cycle, 40-period cycle, etc.) route to chaos once again, while the Lyapunov exponents at 

this parameter interval  1.6544 1.6763f   vary among larger positive values 0.1i
  . 
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Figure 21 The bifurcation diagrams  *,f fI ,  *,f mI  and the Lyapunov exponent diagram  ,f   

as the varying parameter increases in the interval  1.59,1.72f   for step size value 2.65  . 

 At 1.6763f   another series of period-doubling bifurcations  12 2n : (12-period cycle, 24-

period cycle, 48-period cycle, etc.) lead to even more chaotic behavior where the oscillations in 

the density of infected individuals can be hard to predict. The Lyapunov exponents take even larger 

positive values and reach the maximum value max 0.1849   for the parameter value 1.7172f   

for which the variations in the number of gonorrhea cases are the less predictable (fully developed 

chaos). At this point, the exceptionally high infection rate of susceptible females leads the number 

of infected individuals sometimes close to extinction and other times close to overgrowth (i.e. 

gonorrhea outbreaks). 
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Furthermore, as the rate of infection of susceptible females increases in the interval  1.59,1.72f   

for the same time interval between clinical cases  2.65  , the system goes through quasi-periodicity 

and a strange attractor appears in the system (Figure 22). 

 The stable period-two orbit (Figure 22(a)) near the value 1.59f   loses stability via a 

supercritical Neimark-Sacker bifurcation giving rise to two attracting closed invariant curves 

(Figure 22(b)). At this point the number of infected males and females oscillates between all the 

states of the two invariant curves. The invariant curves grow in size (i.e. the amplitudes of 

oscillations in the number of infected individuals are increasing), interact with the saddle non-

trivial fixed point    * *, 0.86,0.39f mI I   and near the value 1.6375f   become noticeably kinked 

(Figure 22(c)).  

(a)  (b)  

(c)  (d)  

Figure 22 (Continued.) 
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(e)  (f)

(g)  (h)  

Figure 22 The phase plot (If , Im) for δ = 2.65  as λf increases in the interval λf ϵ [1.59, 1.72]. (a) 

Solutions converge to attracting 2-period cycle (λf = 1.5743), (b) The birth of two closed invariant 

curves (λf = 1.5916), (c) The invariant curves become kinked (λf = 1.6375), (d) The invariant curves 

split in a 64-period cycle (λf = 1.6446), (e) The invariant curves reappear slightly deformed (λf = 

1.6525), (f) Invariant curves break into a 10-period motion (λf = 1.66748), (g) Invariant curves evolve 

into contiguous bands (λf = 1.69), (h) Solutions converge to a strange attractor (λf = 1.717). 

 The kinked curves have a split, lock into a stable periodic orbit (Figure 22(d)) due to the first 

sequence of period-doubling occurring in the system  32 2n  and reappear slightly deformed 

(Figure 22(e)). They have another split due to the second series of period-doubling  10 2n  which 

gives rise to a motion of period 10 (Figure 22(f)). 

 The motion of period 10 forms into two weakly chaotic contiguous bands (Figure 22(g)), while 

successive enlargements of the attractor can show its fine structure which looks identical in all 

scales (i.e. self-similarity). The chaotic contiguous bands become more and more complicated 

merging to form a strange attractor (Figure 22(h)) for a value of the varying parameter 
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 1.717f   in the chaotic domain (Figure 21). For higher values of the infection rate parameter 

the successive iterates diverge to infinity (i.e. both infected males and females become extinct 

through some kind of catastrophe) and the attractor disappears. 

So we observe that the behavior of the discrete-time gonorrhea model (Equation (15)) differs 

significantly from its continuous counterpart (Equation (14)). Particularly, a time period 2 4   

days between successive clinical cases of gonorrhea and a sufficiently large infection rate of 

susceptible females allow for infinite sequences of period-doubling and chaotic behavior in the density 

of infected individuals.  

3.1.6 Control of chaotic dynamics: Male latex condom 

Nevertheless, chaos may be undesirable as the chaotic oscillations in the density of infected individuals 

can make the disease uncontrollable and, consequently, harmful to the people’s health throughout the 

world. Therefore, the number of infected individuals needs to be under control. We use the method of 

controlling chaos proposed by Güémez and Matias (1993), known as the G.M. algorithm, which 

performs changes in the system variables allowing the stabilization of chaotic behavior. As mentioned 

above (Subsection 1.2.2), we apply the G.M. control algorithm to the discrete map (Equation (15)) by 

modifying the system variables ,f m

n nI I  in the following form: 

 

 

1

2

1

1

f f

n n

m m

n n

I I

I I





 

 
                     (16) 

Hence, our discrete-time gonorrhea model (Equation (15)) becomes: 

      
 
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r d

I
I I r I I

d

 
   


    





  
         

  


 
       

 

               (17) 

1 2,   represent the strength of the feedback for ,f mI I . 

For sexually active persons, male latex condoms are the most commonly used contraceptive method 

to prevent47 sexually transmitted infections (Centers for Disease Control and Prevention, 2002). So 

                                                 
47 In vitro studies indicate that latex condoms provide an effective mechanical barrier to passage of infectious agents 

comparable in size to or smaller than STI pathogens (Carey et al., 1992; Carey et al., 1999).  
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from a practical point of view, the modification in the system variables could be interpreted as the use 

of male latex condoms during each sexual intercourse. Hence, the new terms 1 2,f m

n nI I   are associated 

with condom use during sexual intercourse protecting males and females from gonorrhea transmission 

and reducing the number of infected individuals  1 21 , 0    , while the terms ,f m

n nI I  are associated 

with sexual intercourse without condom use. Furthermore, for the sake of simplicity, we assume that 

the protection from gonorrhea transmission by condom use from female to male and vice versa is the 

same  1 2    . The condition 1    corresponds to an ideal situation where all sexually-active 

individuals use latex condoms during sexual intercourse consistently and correctly. 

 

Figure 23 The bifurcation diagrams  *, fI ,  *, mI  as the varying parameter decreases in the interval 

 0.6,0   , for step size value 2.65   and infection rate of susceptible females 1.717f  . 

Thus, in order to see how the condom use affects the incidence of gonorrhea, we apply the G.M. 

method for the parameter values 2.65   and 1.717f   (the other parameters remain unchanged) 

for which the system’s behavior is chaotic (Figure 22(h)) and let the control parameter    vary. We 

illustrate the results by plotting the bifurcation diagram (Figure 23) along with the time series before 

 0   and after  0   the action of chaos control algorithm (Figure 24).  

Without condom use during sexual intercourse  0   the number of infective males and females 

appears irregular oscillations (Figure 24). As the intensity of pulses increases (i.e. condom use 

increases), the control parameter    is taking smaller and smaller negative values, some part of fI  

or mI  is injected from the map depending on the value of 
f

nI  or 
m

nI  at that moment and through 
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sequences of reverse period-doubling bifurcations the chaotic domains give rise to regular behavior 

(Figure 23) where the oscillations in the density of infected individuals become predictable. 

Particularly, near the value 0.066    the behavior of solutions becomes periodic (cycle of period 2). 

In the parameter interval 0.5432 0.2091     solutions converge to endemic equilibrium (Figure 

24). Finally, the decline in the number of infective individuals leads to the end of the disease 

(gonorrhea-free equilibrium) for 1 0.5432     (Figure 23). 

 

Figure 24 The time series48  , fn I ,  , mn I  for the parameter values 0   (without control) and 

0.3    (with control), for step size value 2.65   and infection rate of susceptible females 

1.717.f   

Hence, for exceptionally high infection rate of susceptible females and time interval between clinical 

cases 2 4   days, as the condom use during sexual intercourse increases slowly among individuals, 

the oscillations in the number of infective males and females decrease rapidly, leading to the reduction 

of gonorrhea incidence and the control of disease. So we observe that, condom use just by a fraction 

                                                 
48 We plot the time series for the first  0,500n  iterations. 

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 06:16:52 EEST - 13.58.69.9



106 

of the population 50% can reduce substantially the risk of gonorrhea transmission even for 

exceptionally high infection rates. 

3.1.7 Gonorrhea outbreaks: Real-world fluctuations in gonorrhea cases and male 

latex condom 

In this section we have discretize the gonorrhea model of Hethcote and Yorke (1984) and studied its 

dynamical characteristics using as a discrete-time step the interval between successive clinical cases 

(i.e. serial interval). We showed that the discrete-time model can result in a much richer set of patterns 

than the corresponding continuous-time model. The analytical stability analysis and the numerical 

simulation results showed that the discrete-time model undergoes: Fold, Flip bifurcations and the 

number of infective males and females can behave chaotically. In particular we showed that: (a) for 

low rate of infection of susceptible females gonorrhea remains endemic or dies out, while (b) for high 

rate of infection of susceptible females chaotic oscillations and gonorrhea outbreaks appear in the 

system. 

The results of our study reflect the real-world large fluctuations which appear in the number of 

gonorrhea cases throughout the years. For instance, in Sweden from 2007 to 2011 the number of 

gonorrhea cases increased by 48% (from 642 to 951 cases) (Velicko and Unemo, 2012). The factors 

that might have been contributed to this increase in gonorrhea incidence seem to be: (a) the increased 

number of sexual partners over time, (b) the increased number of new casual sexual partners, and (c) 

the low level of condom use with casual sexual partners (Tikkanen et al., 2011). Moreover, Alaska’s 

outbreak of Neisseria gonorrhoeae infection (GC) began in 2008 and peaked in 2010 with a total 1,273 

GC cases reported to Alaska Section of Epidemiology (State of Alaska Epidemiology, 2012). The 2009 

case rate demonstrated a 69% increase from the 2008 rate, representing the greatest single-year 

increase in reported GC infection in Alaska since the 1970s; the rate increased in both sexes, among 

all races, in all age groups and in nearly all regions of the state (State of Alaska Epidemiology, 2010). 

Another example is the variations in the number of gonorrhea cases in the Onondaga County for the 

period 2006 – 2011. According to the Onondaga County Health Department (OCHD) annual reports, 

the number of gonorrhea cases each year for the period 2006 – 2011 are shown below.  

Year Gonorrhea cases Year Gonorrhea cases Year Gonorrhea cases 

2006 670 2008 357 2010 395 

2007 502 2009 377 2011 427 

Source: Onondaga County Health Department (2009, 2011). 
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Moreover, according to the OCHD the number of cases of gonorrhea more than doubled in the county 

between 2011 and 2012. There were 602 cases in the first nine months up from 253 cases for the same 

period of 2011 (Syracuse, 2012). Hence, the proposed discrete-time model seems to be more effective 

in practice and gonorrhea, despite the fact that it is a non-fatal disease, is likely to have a strong 

negative effect on life history evolution. Moreover, the results of our study show that the time interval 

between successive clinical cases is important in case of gonorrhea emergency situations.  

Finally, we have stabilized the unstable periodic orbits existing within the strange attractor and the 

unstable steady states (both endemic and disease-free) using a series of proportional feedbacks on the 

system’s variables. The chaos control results could be definitely regarded as those which are obtained 

with male latex condom use during sexual intercourse. Our chaos control results show that condom 

use reduces the risk of gonorrhea transmission to a point where the number of infected individuals 

remains stable and is significantly small or zero. This reflects what many studies have shown, such as 

Barlow’s study (1977) which showed that a 71% reduction in gonorrhea was associated with consistent 

and correct condom use. Which means that for every 100 cases of gonorrhea infection that would 

happen without condom use, only 29 would happen when condoms are used consistently.  

However, one of the paradoxes in modeling infectious diseases is that, despite their quantitative nature, 

the best that we can often expect is qualitative insights (Garnett, 2002). Quantifying the relation 

between the number of condoms used and the incidence of gonorrhea is often difficult. For instance, 

Warner et al. (2006) reviewed studies published 1966 – 2004 to assess risk reduction for gonorrhea 

associated with male condom use. They found that, although most studies showed that condom use 

was associated with reduced risk for gonorrhea among men and women, however the exact magnitude 

of risk reduction is difficult to quantify because of limitations and variations in the methods and design 

of these studies. 
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Chapter 4 

Solar Magnetic Activity 

The Sun is a “second generation” star nearly 4.5 billion years old. It is a main-sequence star of spectral 

type GV2 composed of 92.1% hydrogen, 7.8% helium gas, and 0.1% of oxygen carbon, nitrogen, 

silicon, magnesium, neon, iron, sulfur, etc. The energy produced near the center of the Sun, creates a 

central temperature of about 15 million degrees Kelvin (°K) transported in the surface layers (i.e. 

photosphere) at 5780 °K. Dynamo processes (solar motions from rotation to turbulent convection) in 

the outer layers of the Sun, or convection zone, create a magnetic field (Hoyt and Schatten, 1997). The 

magnetic field of the Sun appears concentrated in flux tubes or ropes that appear on the surface of the 

photosphere as sunspots, pores, plages, and surface networks (Pustil’nik and Din, 2004). The 

generation of the magnetic field has a cyclical character; this cycle changes over periods varying from 

8 to 17 years. Τhe value of the best known parameter of the solar cycle – known as the sunspot number 

– varies during the cycle from 0 to 100 – 200 (Pustil’nik and Din, 2004).  

Sunspots, by themselves, do not emit radiation or particles that could interact in some way with the 

Earth, but sunspots are markers of the Centres of Activity (de Jager, 2005). Hence, the variation of the 

sunspot number shows the activity level of the Sun. Sunspots are magnetized and normally occur in 

pairs (one corresponding to the North Pole and the other to the South Pole). During one cycle North 

spots lead and the South spots follow – the leading sunspots in the northern hemisphere will be 

magnetic north and those in the southern will be magnetic south; the polarity of the leading spot 

reverses in successive 11-year cycles – in the next cycle all the leading sunspots in the northern 

hemisphere will be magnetic south. (Kutner, 2003). In particular, the sunspots are transient features in 

the photosphere. They have vertically directed magnetic fields of the order of 1000 to about 4000 

Gauss (de Jager, 2005). Some basic characteristics of the sunspots according to de Jager (2005) are the 

following: 

1. At the location of the fields the convective motions are inhibited; hence less energy is carried 

upward than elsewhere in the photosphere. This results in the darker appearance of the spots. Yet 

the spots are not dark; their effective temperature is still as high as 4200K. 

2. The majority of the spots do not live longer than 2 days. The average lifetime is 6 days. Large 

spots may live for weeks and in rare cases even for months. 
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3. Typically spot diameters range from 2,000km to more than 40,000km. While motions are 

practically totally inhibited inside spots, there is a complicated velocity field under and around 

them. 

The apothecary Schwabe (confirmed in 1851), after 17 years of sunspot observations, found that the 

solar activity, measured by the number of sunspots, varies in time and shows an 11-year periodicity 

(de Jager, 2005); this quasi-periodic 11-year cycle is known as the “Schwabe cycle” (Schwabe, 1844). 

The sunspot number (SSN) is one of the oldest measured indexes of solar activity forming a continuous 

record that covers more than 300 years. Predicting solar activity through the sunspot number began 

when the “Schwabe cycle” was first noticed. In the first two sections of this chapter we analyze the 

monthly and yearly sunspot-number data and we perform future monthly and yearly predictions trying 

to forecast the solar activity from July 2013 to June 2014 and from 2013 to 2102, respectively. The 

monthly and yearly SSN data were taken from the Solar Influences Data Analysis Center (SIDC: 

WDC-SILSO, Royal Observatory of Belgium, Brussels; Available at 

http://www.sidc.be/silso/versionarchive), in Belgium, which keeps the main database of sunspot 

numbers from a number of sources worldwide. The standard dataset provided by the SIDC is the 

International SSN known as the Zürich Sunspot Number [Rz] derived by Rudolf Wolf in the 19th 

century, based upon telescopic observation of sunspots. The Zürich Sunspot Number [Rz] is a very 

useful indicator of the level of solar activity defined by the following equation (Hoyt and Schatten, 

1992): 

 10ZR k g n    

g is the number of sunspots groups; n is the number of individual sunspots; k is the constant correction 

factor which brings each observer to a common scale. 

As a predictive tool we use the software package GMDH Shell (GS: Available at 

https://www.gmdhshell.com/). GS is a modeling tool that produces mathematical models and 

predictions. As a model-selection criterion we define the Root-Mean-Square Error, which selects 

models with the lowest difference between values predicted by a model and the values actually 

observed. We also select ranking variables according to their ability to predict testing data (variables 

ranking by error). A widely used technique in sunspot-number predictions is based on neural networks. 

Hence, as a core algorithm we define the polynomial neural networks. Neural-network forecasts are 

derived from nonlinear statistical algorithms that determine and model complex relationships between 

inputs and outputs to find patterns in the data that can be extrapolated (Pesnell, 2012). A core algorithm 

generates models from simple to complex ones until the testing accuracy increases. The GMDH-type 
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neural-network algorithm iteratively creates layers of neurons with two or more inputs. Every neuron 

in the network applies to a transfer function that allows exhaustive combinatorial search. Thus, the 

transfer function is suitably chosen that can predict testing data most accurately. We use two input 

variables and a linear transfer function for neurons. 

Moreover, we are taking into account the Mean Absolute Error (MAE; i.e. the average over the 

verification sample of the absolute values of the differences between forecast and the corresponding 

observation) and the Root Mean Square Error (RMSE; i.e. the difference between forecast and 

corresponding observed values each squared and then averaged over the sample – the square root of 

the average is taken) obtained by comparing the predicted to the observed values in order to reduce the 

drop in the accuracy of our predictions. Finally, we perform several post-facto predictions comparing 

them with the actual sunspot-number values in order to evaluate the accuracy of our proposed 

predictive method. 

4.1 Monthly Sunspot Numbers and Cycle-24 Future Predictions49 

The solar cycles have been numbered since 1755 starting with Cycle 1 (1755 – 1766). The last recorded 

solar cycle lasted 12.6 years (1996 – 2008). In that order the current cycle that began with the 2008 

solar minimum is Cycle 24. During the last few years, numerous studies have tried to predict the 

behavior of the present Cycle 24; some of them indicated that Cycle 24 is expected to be a quiet solar 

cycle. Badalyan et al. (2001) used cyclic variations of the coronal-green-line intensities to predict peak 

sunspot levels of 50. De Meyer (2003) used a semi-empirical transfer function model of solar cycles 

to predict the peak sunspot number for Cycle 24 of 95 – 125. Schatten (2003) used a solar dynamo 

amplitude method to predict a peak sunspot number of about 100 for Cycle 24. Svalgaard et al. (2005) 

used the strength of large-scale solar dynamo polar fields in Cycle 23 to predict Cycle 24 as 75 ± 8 at 

the peak.  

In Figure 25 we visualize the plot of the monthly sunspot number (SSN) data for the last 24 sunspot 

cycles (January 1749 – June 2013). The 11-year periodicity rule is not strict; as we observe in Figure 

25 there are short and long cycles, weak and strong ones. Moreover we observe that the most active 

SSN cycle since 1749 is the cycle 19; its maximum value deviates the most. Furthermore, we observe 

that the data trend supports Waldmeier (1961) hypothesis that lower activity cycles rise to peak latter 

                                                 
49 This section is based on the publication “Sunspot numbers: data analysis, predictions and economic impacts” (Gkana, 

A., Zachilas, L.: 2015c, Sunspot numbers: data analysis, predictions and economic impacts, Journal of Engineering Science 

and Technology Review 8(1), 79-85.). 
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in time. Observing the 10 prior cycles (14 – 23) the observed timelines fall into 2 categories (Ahluwalia 

and Jackiewicz, 2012): (i) the Cycles 14, 15, 17, 20 and 23 are slow risers like the cycle 24, (ii) the 

Cycles 16, 18, 19, 21 and 22 rise relatively steeply and exhibit above average activity. 

 

Figure 25 Time series plot of the monthly sunspot numbers for the last 24 solar cycles (January 1749 

– June 2013). 

Further, Gnevyshev and Ohl (1948) found that there exists good correlation between the properties of 

the even and the next following odd cycle, and not the preceding odd one. Beginning with Cycle 10, 

Gnevyshev and Ohl (1948) noted that there is a pattern such that even cycles of the even-odd pairing 

are less active; this pattern disappears after Cycle 21 (the even-odd symmetry in SSN cycles broke 

down with Cycle 22). The physical cause for this pattern is unknown. They might reappear in the 

future. 

4.1.1 Data analysis of monthly RZ numbers 

The behavior of solar activity dynamics has been investigated by many researchers. The daily sunspot 

numbers, the monthly means and yearly means may be from a stochastic process (Siscoe, 1976) or 

from a deterministic chaotic process (Feynman and Gabriel, 1990). Morfill et al. (1991) analyzed the 

sunspot record over time scales of weeks or months. They consider a stochastic model, a heuristic 

model and a Lorenz model to represent the data. They showed that the deterministic chaos model 
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(Lorenz) provides the best fit of the data. Mundt et al. (1991) studied the variable solar activity over 

the time period from January 1749 to May 1990 using 2897 monthly sunspot numbers. They showed 

that the attractor does not fill the space and is a sheet much like the Rössler and Lorenz attractors with 

a dimension ≈ 2.3. The solar dynamo can be expressed with three differential equations identical to 

the Lorenz equations. Thus the solar cycle appears to be chaotic of low dimension and can only be 

predicted for a short term. Zhang (1996) performed a nonlinear analysis of the smoothed monthly 

sunspot numbers to obtain nonlinear parameters to predict the numbers. The analysis of the monthly 

smoothed numbers from January 1850 to May 1992 indicates the numbers are chaotic and of low 

dimension described by three to seven parameters. 

Ostryakov and Usokin (1990) examined the structural character and inherent stochastic behavior of 

the monthly mean sunspot numbers. They calculated that the fractal dimension for the periods 1749 – 

1771, 1792 – 1828 and 1848 – 1859 is 4.3, 3.0 and 4.0 respectively. Zhang (1994, 1995) calculated 

the fractal dimension 2.8 0.1D    and the largest Lyapunov exponent 
max 0.023 0.004    

bits/month, for the monthly mean sunspot numbers for the period January 1850 to May 1992 using the 

methods given by Grassberger and Procaccia (1983b) and Wolf et al. (1985). 

In this subsection we analyze the sunspot record over time scales of months using 3174 monthly 

sunspot numbers (January 1749 – June 2013). As mentioned above (Section 1.4), our data analysis is 

based on the method developed by Takens and Ruelle (1971) that shows how to reconstruct the phase 

space of a dynamical system from a single-variable observed times series. Thus, in order to investigate 

the dynamics of our system in a space defined by delayed vectors of dimension [m], we have to estimate 

the embedding parameters (i.e. the time delay and the embedding dimension). 

Embedding parameters  

In order to find the suitable time delay [ ] for the embedding, we use the Average Mutual Information 

suggested by Fraser and Swinney (1986) as a function of the time delay  I I T  (Figure 26). As 

mentioned above (Subsection 1.4.1), the lag at which the first minimum of the AMI function occurs is 

29mT   and it is chosen as a delay time 29  . 

In order to find the suitable dimension [m], we use the False Nearest Neighbors method, which has 

been first introduced by Kennel et al. (1992) as a convenient method to determine the minimal 

sufficient embedding dimension (Subsection 1.4.1). Figure 27 illustrates the FNN as a function of the 

embedding dimension m. The suitable embedding dimension should not be smaller than the first 

dimension at which the number of false nearest neighbors drops to zero. Thus, the suitable embedding 

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 06:16:52 EEST - 13.58.69.9



113 

dimension to unfold dynamics is estimated to be about 7,8m   (i.e. at an embedding of 7 to 8 

dimensions the attractor of the sunspot series is unfolded). 

 

Figure 26 The Average Mutual Information as a function of the time delay  I I T  for 0,1,...,50.T   

 

Figure 27 The False Nearest Neighbors as a function of the embedding dimension  FNN FNN m  

for 1,2,...,10m   embedding steps. 
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Dimension of the monthly SSN data attractor 

As mentioned above (Subsection 1.4.2), the correlation dimension has been introduced by Grassberger 

and Procaccia (1983a, 1983b) as a fractal dimension measurement of an attractor. According to this 

method, we first calculate the logarithm of the correlation integral 
   ln
m

C r  with increasing values 

of the logarithm of the distance in phase space ln r for various embedding dimensions [m] (Figure 28). 

By finding the slope of this graph we estimate the correlation dimension [Dc (m)] for every embedding 

dimension [m]. We calculate the correlation dimension as a function of the embedding dimension 

 c cD D m  in order to determine the fractal dimension of the attractor of the monthly sunspot 

numbers (Figure 29). By increasing m, the correlation dimension  cD m  will eventually converge to 

its true value cD .  

 

Figure 28 The graph of 
   ln
m

C r  for increasing values of ln r  for 1,2,...,10m   embedding 

dimensions. 

In Figure 29, we observe that, when the embedding dimension exceeds 7cm   the correlation 

dimension converges to the value 3.8cD  . The embedding dimension value at which the convergence 

begins is about twice the attractor dimension 2c cm D . Thus, the dimension of the attractor is 

estimated to be about 3.8cD   (low dimensional). The attractor’s dimension defines the number of 
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variables of the system. Therefore, the time series of the monthly sunspot numbers can be described 

by 4v   independent variables. 

The convergence of the correlation dimension  cD m  with increasing values of the embedding 

dimension m  to its true value cD  is an indication of chaotic behavior. A correlation dimension that 

does not converge corresponds to a white noise signal. 

 

Figure 29 The Correlation dimension as a function of the embedding dimension  c cD D m  for 

1,2,...,10m   embedding steps. 

Predictive power 

In order to determine the presence of a deterministic chaos in the time series, we calculate the largest 

Lyapunov exponent  max  by using the Kantz algorithm (Subsection 1.2.1). The largest Lyapunov 

exponent is max 0.0195 0  ; the positive value of the largest Lyapunov exponent indicates the 

presence of chaos in solar activity dynamics. In this case we have the so-called exponential instability 

where two arbitrary close trajectories will diverge apart exponentially; that is the hallmark of chaos 

(Bershadskii, 2009). The small largest Lyapunov exponent value indicates that the chaos for the 

monthly sunspot numbers is weak. Moreover, as mentioned above (Subsection 1.2.1), the predictive 

power can be estimated by pr max1T  . So the upper limit of the theoretical time scale on which the 

monthly sunspot number can be used to make deterministic predictions is pr max1 1 0.0195 51T     
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months. We observe that long-term predictions are not possible most likely due to the fact that the 

chaotic nature of the system results a high sensitive dependence on initial conditions for the monthly 

sunspot numbers. 

Recurrence quantification analysis 

We plot the RP (Figure 30) and use the RQA (Section 1.5) to study the recurrent patterns that exist 

within the time series of the monthly SSN data. Table 3 summarizes the RQA results. The high values 

of DET, Lmax and ENTR indicate the deterministic chaotic behavior of our system. In particular, the 

high value of Determinism ( 98.31%DET  ) indicates that most of the recurrent points are found in 

deterministic structures. The high value of the variable Maxline (Lmax = 247) is consistent with the 

small value of the largest Lyapunov exponent ( max 0.0195 ) indicating that the signal of the system’s 

attractor is only slightly chaotic and the system is more stable. Moreover, the value of Trend (TREND 

= –1.99) does not deviate significantly from zero, indicating the system’s stationarity. The large value 

of Entropy (ENTR = 4.8694) indicates the high complexity of the deterministic structure in the 

recurrence plot. Finally, the small value of Recurrence rate (REC = 21.76%) indicates that the monthly 

SSN data exhibit aperiodic dynamics. 

 

Figure 30 The Recurrence Plot for the monthly sunspot-number data (January 1749 – June 2013). 
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Table 3 Recurrence Quantitative Analysis results for the monthly sunspot-number data (January 

1749 – June 2013). 

Series Epoch DIS RR DET ENTR Lmax TREND 

1 
Entire 

Series 
135.478656 0.217594 0.983094 4.869374 247 -1.990353 

Thus the results of our data analysis indicate that the monthly sunspot numbers for the period January 

1749 to June 2013 is a system of low dimensional deterministic chaos. Although chaotic systems are 

theoretically unpredictable in the long term, their underlying deterministic nature allows accurate 

short-term predictions (Mundt et al., 1991). 

4.1.2 Cycle-24 sunspot-number predictions 

In this subsection we try to forecast the peak Cycle-24 activity. Zheng (1993) used the leap-step 

threshold autoregressive model and technique in nonlinear time series to obtain predictions from 1 

month to 12 months ahead. De Meyer (2003) attempted to forecast the values of sunspot numbers [RZ] 

on the basis of his model of the solar cycle consisting of a sequence of independent overlapping events. 

He predicted that the 24th cycle would start in 2007 to reach in 2011 a peak height in the range 95 – 

125. Predicting solar activity is quite challenging, but there are indications that solar activity may 

decrease in coming decades. Clilverd et al. (2003) suggested a nearly constant level of solar activity 

till about 2050 and a slow decrease thereafter. However, this approach was criticized by Tobias et al. 

(2004): “The future of such a chaotic system is intrinsically unpredictable”.  

Ex-post sunspot-number predictions 

We perform ex-post predictions of 6 steps (months) back in time (January 2013 – June 2013) and we 

compare them with the observed values (Figure 31) and the corresponding predictions given by the 

Solar Influences Data Analysis Center50 (SIDC) (Figure 32). In Figure 31 we observe that the 

differences between the predicted and observed values (residuals) are quite small. So the ex-post 

predictions of the proposed neural network model fit the values of the actual data quite well. Moreover, 

in Figure 32 we observe that the values of MAE and RMSE for the post-processed predictions of the 

proposed neural network model (MAE = 11.22 and RMSE = 12.26) are consistent with those of the 

predictions published by SIDC (MAE = 11.5 and RMSE = 13.38).  

                                                 
50 We are using the predictions of the monthly SSN published by the Solar Influences Data Analysis Center (SIDC) based 

on the Combined Method (CM); a regression technique combining a geomagnetic precursor (aa index) with a least-square 

fit to the actual profiles of the past 24 solar cycles (Available at: http://sidc.oma.be/sunspot-data/). 
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Figure 31 Ex-post predictions of 6 steps (months) back in time (January 2013 – June 2013); the grey 

curve corresponds to the actual monthly sunspot-number data; the blue curve corresponds to the 

proposed neural network model; the red curve corresponds to the ex-post forecasts. 

However, the oscillations in the observed SSN values seem to be predicted better by the proposed 

neural network model than the method used by SIDC (Figure 32); i.e. the time series of our neural 

network model predictions (red curve) fits better the actual sunspot data (blue curve) than the SIDC 

predictions (green curve). Furthermore, we observe that the maximum observed value from January 

2013 to June 2013 was 78.7 in May 2013. Although the SIDC predicted maximum was in May 2013, 

the predicted value was 66.1, while the predicted maximum of our neural network model was 75.46 

(much closer to the observed value 78.7) in March 2013. Thus our proposed neural network model 

seems to predict better the maximum SSN value (with a deviation of ±2 months) than the method used 

by SIDC.  

Future sunspot-number predictions 

Finally, we perform future predictions in order to forecast the maximum sunspot number value during 

the next 12 months. The predictions of 12 time steps (months) ahead, for the period from July 2013 to 

June 2014, are illustrated in Figure 33. The proposed neural network model of the 12-months-ahead 

prediction is: 
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     

     

     

     

3.03787 0.319168 1428 1.3856 116

116 1.13723 0.613612 154 0.41996 264

154 4.40757 0.294369 273 0.157676 2098

264 1.11764 0.18513 771 0.584038 1154

Z Z

Z Z

Z Z

R t R t N

N N N

N R t R t

N R t R t

     

     

       

       

               (18) 

RZ (t) is the predicted value of the monthly sunspot numbers at time period t (for t = 3175, 3176, 

3177,… in units of months); e.g. RZ (3175) refers to the predicted sunspot-number value in July 2013 

(t = 3175 corresponds to July 2013). The terms RZ (t  1428), RZ (t  273), RZ (t  2098), RZ (t  771) 

and RZ (t  1154) are the observed values of the monthly sunspot numbers 1428, 273, 2098, 771 and 

1154 steps (months) back in time, before the time period t, respectively (e.g. for the next period, t = 

3175: July 2013, the RZ (t  1428) = RZ (3175  1428) = RZ (1747) corresponds to the actual monthly 

sunspot-number value recorded in July 1894). 

 

Figure 32 Time series of the actual sunspot-number data (blue curve), predictions of the proposed 

neural network model (red curve) and predictions published by SIDC (green curve) from January 2013 

to June 2013. 

According to the predictions of the proposed neural network model (Equation (18)), the predicted 

maximum value of SSN for the next 12 months for Cycle 24 is expected to be 92.4 in November 2013 

(± 2 months). Moreover, the MAE and the RMSE are relatively small (MAE = 4.898 and RMSE = 
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6.753) indicating the high predictive accuracy of our neural network model. Thus the sunspot number 

Cycle 24 is yet to peak. 

 

Figure 33 Future predictions of 12 time steps (months) ahead (July 2013 – June 2014); the grey curve 

corresponds to the actual monthly sunspot-number data; the blue curve corresponds to the proposed 

neural network model; the red curve corresponds to the future forecasts. 

4.1.3 Maximum solar activity and Sun-Earth connection 

In this section we analyzed the monthly sunspot-number data from January 1749 to June 2013 and 

performed solar activity predictions during the next few months (July 2013 – June 2014). The 

knowledge of the level of solar activity ahead in time is important to Earth. Edmund Halley, following 

the spectacular auroral display in Europe in March 1716, made the first step of understanding the Sun-

Earth connection. He suggested that charged particles moving along the Earth’s magnetic field lines 

are the cause of the aurora (Halley, 1692). The radiation environment of the Earth’s atmosphere is very 

dynamic and consists of several components of ionizing radiation: galactic cosmic rays, solar energetic 

particles and radiation belt particles. Galactic cosmic rays reach their maximum intensity when the 

Sun is least active and are at a minimum intensity during solar maximum. In contrast, during maximum 

solar activity an increased number of Coronal Mass Ejections (CMEs) and solar flares produce high-

energy solar particles (O’Sullivan, 2007). Beyond the protective shield of the Earth’s atmosphere and 
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magnetosphere, there are sources of radiation that can be a serious hazard to humans and electronic 

equipment.  

Space weather has severe impacts on satellites (Hastings and Garrett, 1996) and GPS/navigation 

(Wellenhof et al., 2001). During solar events and geomagnetic storms the system may give navigators 

information that is inaccurate by as much as several km (Filjar, 2008). The problems of 

geomagnetically induced currents in power lines and flowing in high voltage transformers have been 

recognized at least since the early 1970s (Albertson et al., 1974), but were brought into serious 

consideration by the widespread failure of the Hydro-Quebec power grid (Canada) resulting from 

severe geomagnetic storm on March 13-14, 1989 (Blais and Metsa, 1993).  

The first observations of space weather effects on technological systems were made in telegraph 

equipment more than 150 years ago (Barlow, 1849). Many times since then, systems have suffered 

from peak overvoltages, interruptions in the operations and even fires caused by Geomagnetically 

Induced Currents (GICs) flowing through the equipment (Boteler et al., 1998). During a magnetic 

storm in July 1982, such an effect made traffic lights turn red without any train coming, in Sweden 

(Wallerius, 1982). Submarine telephone cables lying on the ocean floors form a special category of 

systems affected by geomagnetic disturbances (Root, 1979). 

Another consequence of space weather is its effect on humans and biological systems in space and on 

aircraft (Baker et al., 2007). Solar proton events (SPEs) can knock electrons from cell molecules and 

damage them, especially from the skin, eye and blood-forming organs. These damaged cells are 

unrepairable (Crosby et al., 2006). If DNA (deoxyribo nucleic acid) is damaged, then cell reproduction 

is hampered and even the effect could be passed to the next generations. Biological effects can also be 

in the form of severe burns, sterilization, cancer and damage to other organs.  

These effects can have severe negative economic impacts on our society. Therefore, trying to predict 

the maximum of solar cycles becomes more and more of an urge, since it can minimize economic 

losses and help society save hundreds of millions of money each year. 
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4.2 Yearly Sunspot Numbers: Maunder Minimum Reconstruction and 

Future Predictions Up to 210051  

Long-term predictions of sunspot number can be quite challenging due to the chaotic nature of the 

system that produces them. However, several studies indicate that solar activity may decrease in 

coming decades. Clilverd et al. (2003) suggested that Cycle 24 would be similar to previous cycles in 

amplitude, with low activity levels not being reached until 2100. In particular, they suggested a nearly 

constant level of solar activity until about 2050 and a slow decrease thereafter. This was mainly 

because of a 420-year repetition of the low-activity conditions following the Maunder Minimum of 

1700.  

The Maunder Minimum is the well-known 70-year period of the prolonged sunspot minima from 1645 

to 1715. This period has been recognized and confirmed by Spörer (1887), Maunder (1922), and Eddy 

(1976) as a period with exceedingly scarce sunspots. The entire records of those 70 years, combined 

together would scarcely supply sufficient observations of sunspots to equal one average year of an 

ordinary minimum (Maunder, 1922). Muscheler et al. (2004) drew attention to the four great activity 

minima of the last millennium, which are spaced at intervals of about 200 years. An easy way of 

forecasting would therefore be to use the De Vries period by extrapolating over the past five large 

minima (Oort, Wolf, Spörer, Maunder, Dalton). Thus one would “predict” another Maunder Minimum 

around 2050. In contrast, Usoskin et al. (2003) suggested that we are in a prolonged period of 

exceptionally high solar activity with little suggestion of lower activity levels to come. 

Trying to predict the monthly sunspot numbers in the future as we did in the previous Section 4.1, can 

be very useful regarding the short-term oscillations in solar activity. Long-term sunspot-number 

predictions are exceptionally important as well; however, the monthly data are apparently not suitable 

for such predictions. The yearly sunspot-number data are likely more suitable for long-term 

predictions; they can give us insights about the possible minima of the solar activity in the future. Thus, 

in this section we use the yearly mean sunspot number to investigate the likely variation of solar 

activity in the next 90 years.  

 

                                                 
51 This section is based on the publication “On the verge of a grand solar minimum: A second Maunder Minimum?” 

(Zachilas, L., Gkana, A.: 2015d, On the verge of a grand solar minimum: A second Maunder Minimum?, Solar Physics 

290(5),1457-1477.). 
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4.2.1 Data analysis of yearly RZ numbers 

In this subsection we analyze the yearly mean sunspot numbers (Figure 34) for the last 313 years (1700 

– 2012). Once again, we investigate whether the yearly sunspot number come from a stochastic or a 

deterministic chaotic process, by analyzing the data using the method developed by Takens and Ruelle 

(1971) (Section 1.4). Thus, we first have to estimate the embedding parameters; i.e. the suitable time 

delay [τ] and the embedding dimension [m]. 

 

Figure 34 The time series of the yearly Zürich sunspot numbers [Rz] for the last 313 years (1700 – 

2012). 

Embedding parameters  

Once again, in order to find the suitable time delay, we use the Average Mutual Information introduced 

by Fraser and Swinney (1986) as a method to determine a reasonable delay for nonlinear systems 

(Subsection 1.4.1). We calculate the AMI as a function of the time delay I = I (T) for T = 0, 1, …, 20 

lags (Figure 35). We observe that by increasing the values of time delay, the lag at which the first 

minimum of the AMI function occurs, is Tm = 4. Hence, this value is chosen as the suitable time delay 

τ = 4.  
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Figure 35 The AMI as a function of the time delay I = I (T) for T = 0, 1, …, 20. 

 

Figure 36 The FNN as a function of the embedding dimension FNN = FNN(m) for m = 1, 2, …, 8. 
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In order to find the suitable embedding dimension, we use the False Nearest Neighbors, which has 

been introduced by Kennel et al. (1992) as a convenient method to determine the minimal sufficient 

embedding dimension (Subsection 1.4.1). We calculate the FNN as a function of the embedding 

dimension FNN = FNN(m) for m = 1, 2, …, 8 (Figure 36). We observe that by increasing the values 

of the embedding parameter, the first dimension, at which the number of FNN drops to zero, occurs 

around the value five. Taking into account that the suitable embedding dimension should not be smaller 

than this value, the embedding dimension is chosen to be m ≈ 5. Moreover, the suitable embedding 

dimension indicates that at an embedding of five dimensions the attractor of the yearly SSN series is 

unfolded. 

 

Figure 37 The graph of 
( )ln ( )mC r  for increasing values of ln r  for 1,2,...,8m   embedding 

dimensions. 

Dimension of the yearly SSN data attractor 

Once again, in order to find the dimension of the attractor of our system, we use the correlation 

dimension, which has been introduced by Grassberger and Procaccia (1983a, 1983b) as a suitable 

method to compute the fractal dimension of an attractor (Subsection 1.4.2). First we calculate the 

logarithm of the correlation integral 
( )ln ( )mC r  with increasing values of the logarithm of the distance 

in phase space ln r for various embedding dimensions [m] (Figure 37). By finding the slope of this 
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graph we estimate the correlation dimension [Dc (m)] for every embedding dimension [m]. By 

calculating the correlation dimension as a function of the embedding dimension Dc = Dc (m) for m = 

1, 2, …, 8 embedding steps (Figure 38), we are able to determine the fractal dimension of the attractor 

of the yearly SSN data. For increasing values of the embedding parameter, we observe that once the 

embedding dimension exceeds the value mc ≈ 5 the correlation dimension Dc (m) converges to the 

value ν = Dc ≈ 2.87. Moreover, the embedding dimension value, at which the convergence begins, is 

about twice the attractor dimension mc ≈ 2Dc. Hence, the dimension of our system’s attractor is 

estimated to be Dc ≈ 2.87; this value indicates that the attractor of the yearly SSN data is low 

dimensional, and the system can be described by ν = 3 independent variables. Once again, the 

convergence of the correlation dimension as [m] increases to its true value ν = Dc is a strong indication 

of chaos, since a correlation dimension that does not converge, corresponds to a white noise signal. 

Predictive power 

Another way to investigate the presence of chaos in the yearly SSN data is by calculating the largest 

Lyapunov exponent [λmax]. As mentioned above (Subsection 1.2.1), Rosenstein et al. (1993) and Kantz 

(1994) developed two methods for calculating the largest Lyapunov exponent. Our yearly SSN time 

series is considered to be a small data set (313 observations). Thus, in this section we use the 

Rosenstein algorithm since it applies better to small data sets than the Kantz algorithm. By using the 

Rosenstein algorithm, the largest Lyapunov exponent is estimated to be λmax = 0.0207. Its positive 

value indicates the presence of chaotic behavior in solar-activity dynamics, while its small value 

indicates that the presence of chaos is weak. Further, as already mentioned above (Subsection 1.2.1), 

by using the largest Lyapunov exponent we can estimate the upper limit on the period over which the 

yearly SSN data can be used to make deterministic predictions. This time limit is given by the inverse 

of the largest Lyapunov exponent and is estimated to be 

pr

max

1 1
48 years

0.0207
T


     

The predictive maximum interval extent of the yearly mean SSN data is 48 years providing a 

reasonable basis for solar activity predictions of long range. Thus, considering the weak chaotic nature 

of our yearly mean sunspot-number data, we conclude that long-term predictions are quite possible 

due to the system’s low sensitivity to initial conditions. In conclusion, the results of our analysis 

indicate that the yearly mean SSN data (1700 – 2012) is a low-dimensional deterministic chaotic 

system. 
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Figure 38 The correlation dimension as a function of the embedding dimension Dc = Dc (m) for  

m = 1, 2, …, 8 embedding steps. 

4.2.2 Post-facto and future solar activity predictions 

Considering the results of our data analysis, in this subsection we perform short-term and long-term 

predictions, trying to forecast the yearly mean sunspot numbers during the following years.  

Short-term future sunspot-number predictions 

We perform short-term future predictions in order to forecast the evolution of the present sunspot 

Cycle 24 during the next few years. In particular, we perform future predictions during the next five 

years, from 2013 to 2017. The proposed neural network model that predicts the testing data most 

accurately is the following: 
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                                 (19) 
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RZ (t) is the predicted value of the yearly SSN at time period t (for t = 314, 315, 316,…); RZ (t – 163), 

RZ (t – 293), RZ (t – 180), RZ (t – 188), RZ (t – 259), RZ (t – 32) and RZ (t – 213) are the observed values 

of the yearly SSN at 163, 293, 180, 188, 259, 32, and 213 steps back in time, before the time period t 

(e.g. for the next period, t = 314, year 2013, the value RZ (t – 163) = RZ (314 – 163) = RZ (151) 

corresponds to the observed yearly SSN value in 1850).  

The five-years-ahead predictions of the proposed neural network model (Equation (19)) for the period 

2013 – 2017 are illustrated in Figure 39. We observe that the MAE and the RMSE of the post-processed 

learning predictions are quite small, MAE = 1.333 and RMSE = 1.599, indicating the high predictive 

accuracy of our neural network model (Equation (19)). We predicted that the peak sunspot number for 

the present Cycle 24 would be significantly smaller than Cycle 23, with peak sunspot number of 54 in 

2013, which is equivalent to the solar activity levels during the Dalton Minimum in 1804 (peak sunspot 

number of 47.5). Thus, the current Cycle 24 was expected to be a low-peak cycle; in fact, the weakest 

sunspots cycle over the last 100 years (the last small minimum in solar activity took place at the 

beginning of 1900s (Clilverd et al., 2003)). 

 

Figure 39 Future yearly sunspot-number predictions 5-steps-ahead (2013 – 2017). The grey curve 

corresponds to the actual sunspot-number data; the blue curve corresponds to the post-processed 

learning of the proposed neural network model; the red curve corresponds to the future predictions. 
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Further, we predict that the yearly mean SSN during the next 5 years will decrease continuously until 

2016 – 2017, where it drops to zero. Thus, we expect that the solar activity during the present cycle is 

likely to resemble that in Dalton Minimum, rather than increasing, as has occurred during the previous 

100 years. The expected peak sunspot number, which our model predicts (i.e. 54 for 2013) is quite 

close to the corresponding actual value 64.9 (the observed yearly mean SSN for the year 2013 has been 

announced by the Solar Influenced Data Analysis Center (SIDC) on 1 January 2014).  

Testing predictive skill of the proposed method 

In order to test the predictive skill of our proposed method we perform predictions of the sunspot 

number Cycles 19 – 23. We try to forecast each cycle separately (19, 20, 21, 22, 23) if only data up to 

the previous cycle were available (18, 19, 20, 21, 22 – respectively) and we compare them with the 

corresponding observed values. In particular, we conduct predictions of: the Cycle 19 (1955 – 1964) 

using the full database from 1700 up to Cycle 18 (1700 – 1954), the Cycle 20 (1965 – 1976) using the 

full database from 1700 up to Cycle 19 (1700 – 1964), etc. The predictions of each cycle are illustrated 

in Figure 40. We observe that the differences between the predicted and observed values (residuals) 

are quite small; the predictions of the proposed neural network model corresponding to each Cycle 19, 

20, …, 23 fit the values of the actual data exceptionally well. Moreover, we observe that the values of 

the MAE and the RMSE of the post-processed learning predictions are quite small (5.63 ≤ MAE, 

RMSE ≤ 9.87), indicating the high predictive accuracy of each neural network model. 

Furthermore, Waldmeier (1935) showed that there is an anti-correlation between the rise-time of a 

cycle and its peak sunspot number; i.e. strong cycles are expected to have shorter rise-time, while 

cycles with weaker peak rise more slowly. Ahluwalia (2003) using data for Cycles 17 – 23 concluded 

that the “Waldmeier effect” is still present; he showed that the active cycles evolved faster and the 

moderate cycles attained their maximum an average of five months later. We observe that our method 

seems to predict the peak sunspot number of each cycle remarkably well and its ascending phase (rise-

time) as well; even for the case of the strongest Cycle 19 with a maximum observed value of 190, our 

method predicted a maximum of about 186.5. The only exception is the Cycle 21 with a predicted 

maximum sunspot number of about 111.8 (1982) three years after the observed value 155.4 (1979). 

The cause of this prediction error is unknown; however, it could be due to the limited ability of our 

method to describe precisely the nonlinear features of the SSN time series. Hence, despite this error, 

we conclude that our method predicts quite precisely the Cycles 19 – 23 despite the presence of the 

“Waldmeier effect”.  
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Long-term post-facto predictions  

We perform long-term past reconstruction of 90 steps (years) back in time (1610 – 1699) in order to 

see whether our neural network model (Equation (19)) is able to predict the Maunder Minimum period 

(1615 – 1715). The Zürich SSN data (RZ numbers) define the solar activity from 1700 onwards 

including only the Dalton Minimum period (1790 – 1830); Wolf missed some observers, such as 

Hevelius’s observations from 1642 to 1684 and Flamsteed’s observations from 1676 to 1719 which 

provide a good coverage of the Maunder Minimum period, and had incorrect tabulations of several 

observers (Hoyt and Schatten, 1995a; 1995b). Thus, in order to compare our post-facto predictions 

with the actual sunspot-number data before the year 1700, we further need to include the actual SSN 

series for the period of the Maunder Minimum. The Group Sunspot Number [RG] series appears to be 

the best choice, since it includes observation sunspot-number values during the last grand minimum – 

the Maunder Minimum era (Hoyt and Schatten, 1998). Therefore, just for the sake of comparison, we 

use the solar-activity reconstruction (RG time series) made by Hoyt and Schatten (1998) for the time 

period 1610 – 1699 as the actual sunspot-number observations during the Maunder Minimum period. 

The solar activity reconstruction made by Hoyt and Schatten (1998) uses the Sunspot Group Number 

[RG], rather than the Zürich Sunspot Number [RZ]. The Sunspot Group Number [RG] is much easier to 

reconstruct from early observations. It is defined as 

12.08
G i iR k G

N
   

Gi is the number of sunspot groups recorded by the ith observer, ki
' is the ith observer's correction factor, 

N is the number of observers used to form the daily value, and 12.08 is a normalization factor chosen 

to make the mean of the RGs identical with the mean of the RZ for 1874 through 1976. 

Faria et al. (2004) compared the characteristics of the RG and RZ time series concluding that the well-

known periodicities (the Gleissberg cycle ≈ 90 – 100 years, the Schwabe cycle ≈ 11 years, and the 

second solar harmonic ≈ 5 years) and the main spectral characteristics of both indices are very similar. 

The differences between the sunspot number during the Maunder Minimum and our post-facto 

predictions are shown in Figure 41, where we compare our post-facto predictions with the Sunspot 

Group Number for the time period 1610 – 1699. We observe that a few years before the Maunder 

Minimum the difference between the predicted and observed sunspot number is somewhat large (>50); 

particularly, our model underestimates the solar activity during the years 1610 – 1614 where the 

predicted SSN values are 0, 0, 0, 0, and 11.3 respectively, while the corresponding actual SSN values 

are 72, 54.7, 92.1, 92.3 and 109.7 respectively. This also occurs during the years 1638 and 1639 where 
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the predicted values are 11 and 13.2 respectively, while the actual values are 69.2 and 76.7 

respectively. Despite these seven somewhat large differences among the predicted and observed SSN 

values, during the remaining 25 years before Maunder Minimum (1615 – 1637 and 1640 – 1644), we 

observe only small overestimates and underestimates in general. 

 

Figure 41 Post-facto yearly sunspot-number predictions of 90 steps back in time (1610 – 1699). The 

blue curve corresponds to the actual yearly mean sunspot-number data (1700 – 2012) of the Wolf’s 

reconstruction [RZ]; the purple curve corresponds to the post-facto predictions of our neural network 

model; the green curve corresponds to the actual yearly mean sunspot-number data (1610 – 1699) of 

the Hoyt and Schatten’s reconstruction [RG]. 

Concerning the Maunder Minimum, we observe something impressive. Our post-facto predictions fit 

the actual sunspot-number data during the Maunder Minimum period (1645 – 1669) almost perfectly 

(Table 4); extremely long intervals without sunspots occurred, while the average difference between 

the observed and the predicted SSN values is only ± 0.7. Thus, despite the fact that long-term 

predictions are almost never quite accurate, our neural network model seems to predict the Maunder 

Minimum period remarkably well. In conclusion, our neural network model is exceptionally successful 
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in predicting the solar activity 90 years back in time (from 1610 to 1699). These post-facto predictions 

encouraged us to use our model in order to try to predict the solar activity 90 years in the future. 

Table 4 Comparison of the yearly mean sunspot number between our post-facto predictions and the 

RG-numbers during the Maunder Minimum period (1644 – 1699). 

Year 
Post-facto 

predictionsa 
RG

b Year 
Post-facto 

predictionsa 
RG

b Year 
Post-facto 

predictionsa 
RG

b 

1644 21.1 12 1663 0 0 1682 0 0 

1645 17 0 1664 0 0 1683 4.7 0 

1646 4.1 0 1665 0 0 1684 0 1.4 

1647 4.3 0 1666 0 0 1685 0 0 

1648 9.7 0 1667 0 0 1686 0 0.6 

1649 10.7 0 1668 0 0 1687 0 0.1 

1650 1.7 0 1669 0 0 1688 0 0.5 

1651 0 0 1670 0 0 1689 0 0.2 

1652 0 2 1671 0 1 1690 0 0 

1653 0 0.8 1672 0 0.4 1691 0 0 

1654 0 0.7 1673 0 0 1692 0 0 

1655 0 0.5 1674 0 0.2 1693 0 0 

1656 0 0.5 1675 0 0 1694 0 0 

1657 0 0.2 1676 0 1.7 1695 0 0.1 

1658 0 0 1677 0 0.3 1696 0 0 

1659 0 0 1678 0 0.2 1697 0 0 

1660 0 2 1679 0 0 1698 0 0 

1661 0 0.8 1680 0 0.8 1699 0 0 

1662 0 0 1681 0 0    

a Post-facto predictions = the yearly mean sunspot number of our long-term past predictions using our 

neural network model. 
b RG = the yearly mean Sunspot Group Number of Hoyt and Schatten solar activity reconstruction. 

Long-term future predictions 

We perform long-term future predictions in order to investigate the likely variation of solar activity in 

future cycles. In particular, we try to forecast the yearly mean sunspot numbers during the next 90 
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years from 2013 to 2102 (Figure 42). The predicted yearly mean sunspot numbers indicates that the 

future cycles up to 2102 are expected to be smaller than the Dalton Minimum in 1805. In particular, 

according to our predictions (Table 5), we observe that the peak sunspot numbers of Cycles 25, 26, 27, 

28, and 29 are expected to continuously decrease; i.e. peak sunspot numbers are predicted to be 39, 

29.8, 22, 17, and 12.8 respectively. However, our model predicts a recovery to higher levels during 

the following Cycles 30, 31, and 32; i.e. peak sunspot numbers are predicted to be 22.2, 31.4, and 40.3 

respectively. Moreover, we expect exceptionally extended periods of minima with unusually low solar 

activity among the cycles; i.e. long periods without sunspots lasting from five to ten years are expected 

to occur as minima between the cycles. Thus, we predict that solar activity will not increase in the 

same way as it has in the last 100 years. Our predictions suggest that we are heading into an extended 

period with significant decrease in solar activity lasting up to the year ≈ 2100. 

 

Figure 42 Future yearly sunspot-number predictions 90 steps ahead (2013 – 2102). The blue curve 

corresponds to the actual yearly mean sunspot-number data (1700 – 2012) of Wolf’s reconstruction 

[RZ numbers]; the green curve corresponds to the future predictions of our neural network model. 
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Table 5 Future yearly mean sunspot-number predictions of 90 steps ahead (2013 – 2102). 

Year 
Future 

forecasta 
Year 

Future 

forecasta 
Year 

Future 

forecasta 
Year 

Future 

forecasta 
Year 

Future 

forecasta 

2013 54 2031 0 2049 5.2 2067 12.8 2085 0 

2014 43.1 2032 6.7 2050 0 2068 13 2086 0 

2015 8.3 2033 29.8 2051 0 2069 0 2087 0 

2016 0 2034 24.4 2052 0 2070 0 2088 7 

2017 0 2035 8.5 2053 0 2071 0 2089 19.2 

2018 0 2036 0 2054 0 2072 0 2090 31.4 

2019 0 2037 2.6 2055 17 2073 0 2091 25.6 

2020 0 2038 0 2056 0.7 2074 0 2092 10.9 

2021 17.9 2039 0 2057 0 2075 0 2093 0 

2022 39 2040 0 2058 0 2076 7.8 2094 0.4 

2023 35.5 2041 0 2059 0 2077 22.2 2095 0 

2024 0 2042 0 2060 0 2078 20.4 2096 0 

2025 0 2043 4.3 2061 0 2079 0 2097 0 

2026 0 2044 22 2062 0 2080 0 2098 0 

2027 0 2045 22 2063 0 2081 0 2099 17.5 

2028 0 2046 19.3 2064 0 2082 0 2100 40.3 

2029 0 2047 5.3 2065 0 2083 0 2101 37.5 

2030 0 2048 1.1 2066 12.5 2084 0 2102 31.9 

a Future forecast = the yearly mean sunspot number of our long-term predictions using our neural 

network model. 

Furthermore, we observe that our predicted picture of low solar activity up to 2102 somewhat 

resembles the solar activity during the last prolonged sunspot minimum, that is, the Maunder Minimum 

(1645 – 1715); i.e. exceptionally low number of sunspots and long intervals without sunspots at all are 

expected to occur between the cycles, while even the peak sunspot number will be smaller than the 

Dalton Minimum period (Figure 43). Thus, the likely expected minimum by 2102 represents the 

quietest solar-activity conditions during the last 400 years. Predicting a small minimum about 400 

years after the Maunder Minimum is also consistent with the fundamental 420-year oscillatory mode 

of the Sun’s convective zone (Stuiver and Braziunas, 1989). Our prediction lends some support to the 
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prediction of low solar activity in 2100 made by Clilverd et al. (2003). Rigozo et al. (2010) obtained a 

prevision of ten year average sunspot-number time series by using a sum of sine waves derived from 

applying spectral analysis to the sunspot-number data; they found four solar activity minimum and one 

maximum epochs during the next 1000 years.   

 

Figure 43 Time series of our post-facto yearly sunspot-number predictions from 1610 to 1699 (purple 

curve) along with our future predictions from 2013 to 2102 (orange curve). The blue curve corresponds 

to the actual yearly mean sunspot-number data (RZ numbers); the green curve corresponds to the actual 

yearly mean sunspot-number data (1610 – 1699) of the Hoyt and Schatten’s reconstruction (RG 

numbers). 

They showed that the next solar minimum epoch (2076 – 2146) is expected to be similar to the Dalton 

Minimum; they found that it presents solar wind parameters identical to that of the Dalton Minimum 

(Table 6). Our predictions seem to be consistent with the next solar minimum they found (2076 – 

2146); i.e. a period of low solar activity but not as low as the Maunder Minimum. In particular, the 

Dalton-like next solar minimum they predicted coincides with the period of solar activity recovery to 

higher levels (Solar Cycles 30, 31, and 32) that we predicted (Table 6). However, they found that the 

next Maunder-like minimum epoch is expected to occur from 2306 to 2366. On the contrary, according 

to our predictions, periods of minima without sunspots lasting from five to ten years are expected to 
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occur between the Cycles 25 – 32, resembling the solar activity during the Maunder minimum (Table 

6). 

Table 6 Comparison of the next solar minima between our long-term future predictions (2013 – 

2102) using the technique of neural networks and Rigozo et al. (2010) predictions (1016 – 3006) 

using wavelet analysis. 

Predictive method Next solar-activity minimum 

Wavelet analysis  

(Rigozo et al., 2010) 

2076 – 2146 and 2306 – 2366: Weak solar minimum; Dalton-like 

minimum solar wind parameters. 

2416 – 2636 and 2646 – 2746: Great solar minimum – Maunder-like 

minimum solar wind parameters. 

Neural networksa 2013 – 2102: Cycles 25, 26, 27, 28 and 29 – continuously reduced 

solar activity; Cycles 30, 31 and 32 – recovery of solar activity to 

higher levels; intervals among the cycles – periods of minima without 

sunspots lasting from five to ten years. 

a Neural networks = our predictive method. 

4.2.3 Concluding remarks 

In conclusion, we analyzed the yearly mean SSN data (1700 – 2012), indicating that it is a low-

dimensional deterministic chaotic system. We have performed future predictions trying to forecast the 

solar activity during the next five years (2013 – 2017). We tested and proved that our model is able to 

predict the Maunder Minimum period (1645 – 1715), performing long-term post-facto predictions and 

comparing them with the observed SSN values. Finally, we performed long-term future predictions 

trying to forecast the solar activity up to 2102. We predicted that the level of solar activity is likely to 

be reduced significantly during the next decades leading us to another prolonged sunspot minimum 

(since the era of Maunder Minimum) lasting up to the year ≈ 2100. We observe that the picture of our 

predicted prolonged sunspot minimum up to the year ≈ 2100 seems to be consistent with the conditions 

during the Maunder Minimum.  
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4.3 Sunspot Number Version 2.0: Re-evaluation of the Proposed 

Predictive Models in Light of New Data52 

On 1 July 2015 after a 4-year study, the original version of the sunspot number – the only direct record 

of the evolution of solar activity – has been revised, for the first time since its creation in 1849, by an 

entirely new series. Since 2011 a group of 40 solar astronomers – led by Ed Cliver (National Solar 

Observatory, USA), Frédéric Clette, Director of the World Data Centre (WDC-SILSO, Royal 

Observatory of Belgium) and Leif Svalgaard (Stanford University, USA) – undertook a full revision 

of the two available solar activity indices: the Zürich Sunspot Number, [RZ], initiated by Rudolf Wolf 

in 1849 and the Group Sunspot Number, [RG], constructed by Hoyt and Schatten (1998). They tried to 

eliminate the discrepancies hinting at strong inhomogeneities between the two historical records; the 

two series indicated significantly different levels of solar activity in 1880 – 1915 for the Group Sunspot 

Number and in 1947 and 1980 – 2014 for the Zürich Sunspot Number (Clette et al., 2014).  

The new corrected series, called the Sunspot Number Version 2.0 [V2.0] provide a homogenous record 

of solar activity over the last 400 years. The most notable correction is that the new record [V2.0] has 

no significant rising trend in solar activity after the Maunder Minimum, as was previously indicated 

(Sunspot Number Version 1.0 [V1.0]); by the mid-18th century, solar activity had already returned to 

levels equivalent to those observed in recent solar cycles in the 20th century (Clette et al., 2014). 

Hence, solar activity appears to have remained relatively stable over the past few centuries without 

any significant upward trend since the 1700s. 

In the two previous Sections 4.1 and 4.2 we proposed two neural network models that predict the solar 

activity using the original monthly and yearly mean Zürich Sunspot Number [V1.0] as input data. 

Given the revised record of solar activity [V2.0] existing solar activity models need to be re-evaluated. 

Hence, the purpose of this study is to re-evaluate the performance of our previously proposed models 

for predicting solar activity in the light of the new sunspot-number data. We perform new predictions 

using the Zürich Sunspot Number Version 2.053 as input data and we compare them with our original 

predictions (using the V1.0 series as input data). We compare the residuals and the values of the Mean 

Absolute Error and Root Mean Squared Error for the two different input-data cases (V1.0 and V2.0 

series). We quantify the differences between our original and new predictions by measuring the relative 

                                                 
52 This section is based on the publication “Sunspot Number Version 2.0: Re-evaluation of the Proposed Predictive Solar 

Activity Models in Light of New Data” (Gkana, A., Zachilas, L.: 2016, Re-evaluation of Predictive Models in Light of 

New Data: Sunspot Number Version 2.0, Solar Physics 291(8), 2457-2472.). 
53 The monthly and yearly V2.0 data are taken from the Solar Influences Data Analysis Center (SIDC: WDC-SILSO, Royal 

Observatory of Belgium, Brussels, and are available at http://www.sidc.be/silso/datafiles). 

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 06:16:52 EEST - 13.58.69.9

http://www.sidc.be/silso/datafiles


143 

changes in the predictive errors, calculating the percentage errors of our predictions, and comparing 

the distributions of the percentage errors based on the mean and the standard deviations. In order to 

evaluate the predictive accuracy of our previously proposed models, we compare the percentage errors 

with the corresponding standard errors of the actual sunspot-number data.  

 

Figure 44 The time series of the monthly mean total Zürich [RZ] Sunspot Number Version 1.0 (blue 

curve) and Version 2.0 (red curve) for the last 24 sunspot cycles (January 1749 – August 2015). 

4.3.1 Re-evaluation of the monthly solar activity predictive model  

Figure 44 demonstrates the original and the revised monthly mean total sunspot-number data (i.e. V1.0 

and V2.0) from January 1749 to August 2015. As mentioned above (Subsection 1.2.1), an important 

factor in performing accurate predictions is the upper limit of predictability. In Section 4.1 we showed 

that the upper limit of predictability for the monthly sunspot numbers V1.0 is pr 51T   months. 

Following the same technique for the V2.0 series, we calculate the largest Lyapunov exponent using 

the Kantz algorithm which is estimated to be 
max 0.02  .  

Thus, the upper limit of predictability for the V2.0 series is pr max1 50T   months; i.e. the maximum 

time length on which predictions are effective is 50 months. Hence, we perform monthly predictions 

of 26 steps (months) ahead in time (i.e. within the predictability time Tpr ≈ 50) from July 2013 to 

August 2015 (Figure 45) using our previously proposed model (Equation (18)). As input data we use: 

(i) the monthly Sunspot Number Version 1.0 and (ii) the revised series V2.0 ( 3174T  records – from 

January 1749 to June 2013). In fact, regarding the predictions using the V1.0 series as input data, we 

extend our original 12-months-ahead monthly predictions (July 2013 – June 2014) from our previous 

work, 14 months into the future. 
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Figure 45 The future monthly sunspot-number predictions of 26 steps ahead (July 2013 – August 

2015). In the upper part of the diagram, the blue curve corresponds to the actual sunspot-number V1.0 

series; the red curve corresponds to the actual sunspot-number V2.0 series; the orange curve 

corresponds to our predictions using the V1.0 series as input data; the grey curve corresponds to our 

predictions using the V2.0 series as input data. In the lower part of the diagram, the green curve 

indicates the difference between the actual V1.0 series and the corresponding predictions, while the 

purple curve indicates the difference between the actual V2.0 series and the corresponding predictions. 

As expected, the sunspot revision yields to predictions with higher counts (Figure 45). However, using 

the V2.0 series as input data produces predictions with predictive errors different from those of our 

original predictions. The MAE and RMSE values of our original and new predictions are 

1.0 14.64VMAE  , 
1.0 17.69VRMSE   and 

2.0 20.59VMAE  , 
2.0 24.45VRMSE  , respectively. In order 

to quantify the change in these errors we use the percentage change54 which measures the relative 

change in a variable by calculating the difference between the old value and the new value. The 

percentage change for the MAE values is 40.6%, while for the RMSE values is 38.2%. We observe 

that the predictive errors using the V2.0 series as input data have increased by 40 percent.  

                                                 
54 The percentage change is calculated by   2 1 1%Change 100x x x   , where x2 is the new value of the variable x and 

x1 is the original value of the variable x. 
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In order to investigate the difference between our original and new predictions in more detail, we 

calculate and compare the distributions of the percentage errors55  [%Error] based on the mean and the 

standard deviations (Tables 7 and 8).  

Table 7 Comparison between the percentage errors of our monthly predictions and the 

corresponding standard errors of the actual monthly sunspot numbers Version 2.0 for the time period 

(July 2013 – August 2015). 

Month 
2.0V

ZR * σ § Ν † SE ‡ 
2.0ˆV

ZR ₴ % Error ± 

Jul-13 86.2 6.7 575 0.279 94.1 0.091 

Aug-13 91.8 6.6 563 0.278 106.0 0.155 

Sep-13 54.5 5.3 446 0.251 115.0 1.111 

Oct-13 114.4 8.2 421 0.400 130.4 0.140 

Nov-13 113.9 8.2 321 0.458 142.8 0.254 

Dec-13 124.2 9.1 402 0.454 100.4 -0.192 

Jan-14 117 8.2 398 0.411 104.9 -0.103 

Feb-14 146.1 10.7 384 0.546 112.0 -0.233 

Mar-14 128.7 8.6 493 0.387 105.2 -0.183 

Apr-14 112.5 6.9 486 0.313 80.9 -0.281 

May-14 112.5 7.5 493 0.338 95.8 -0.149 

Jun-14 102.9 7.7 469 0.356 93.0 -0.096 

Jul-14 100.2 7.4 477 0.339 111.4 0.111 

Aug-14 106.9 7.6 486 0.345 70.5 -0.341 

Sep-14 130 8.7 419 0.425 108.7 -0.164 

Oct-14 90 6.9 440 0.329 96.3 0.070 

Nov-14 103.6 8.5 397 0.427 106.1 0.024 

Dec-14 112.9 7.4 331 0.407 72.8 -0.355 

Jan-15 93 7.5 546 0.321 89.0 -0.044 

Feb-15 66.7 5.3 442 0.252 46.7 -0.300 

Mar-15 54.5 4.8 628 0.192 45.1 -0.173 

                                                 
55 The percentage errors were calculated as follows: 

Z Z Z
ˆ%Error ( ) 100R R R   , where 

ZR  is the actual sunspot-number 

value and ZR̂  is the corresponding predicted sunspot-number value. 
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Apr-15 75.3 8.2 847 0.282 67.4 -0.105 

May-15 88.8 8.6 895 0.287 65.7 -0.260 

Jun-15 66.5 6.3 826 0.219 45.3 -0.319 

Jul-15 65.8 5.7 977 0.182 87.1 0.324 

Aug-15 64.4 5.2 892 0.174 106.8 0.659 

* The monthly mean total Zürich [RZ] Sunspot Number Version 2.0. 
§ The monthly mean standard deviation of the input sunspot numbers from individual stations. 
† Number of observations used to compute the monthly mean total sunspot number. 

‡ The standard error on the monthly mean values computed by SE   . 
₴ Our monthly sunspot-number predictions using the V2.0 series as input data. 

± The percentage error calculated by  2.0 2.0 2.0

Z Z Z
ˆ%Error 100V V VR R R   . 

A negative (positive) %Error indicates that the predicted sunspot-number value ˆ
ZR  is smaller (larger) 

than the corresponding actual value ZR . Concerning the %Error of our original predictions shown in 

Table 8, the mean and the standard deviation of the percentage errors are 0.111x    and 0.278s  , 

respectively. The percentage errors range from –0.567 to +0.965 with 7 overestimations and 19 

underestimations of the actual sunspot numbers; 23 percentage errors (88.5%) lie within 1 standard 

deviation of the mean value  : 0.389,0.167x s  , 25 values (96.2%) lie within 2 standard deviations 

of the mean  2 : 0.667,0.445x s  , and 1 outlier – the percentage error 0.965 – lies within 4 standard 

deviations of the mean  4 : 1.223,1.001x s  .   

Table 8 Comparison between the percentage errors of our original and new monthly predictions for 

the time period (July 2013 – August 2015). 

Month 
1.0V

ZR * 1.0ˆV

ZR § V1.0 %Error ± V2.0 % Error † 

Jul-13 57 64.1 0.125 0.091 

Aug-13 66 70.2 0.063 0.155 

Sep-13 37 72.7 0.965 1.111 

Oct-13 85.6 84.0 -0.019 0.140 

Nov-13 77.6 92.4 0.191 0.254 

Dec-13 90.3 67.4 -0.254 -0.192 

Jan-14 81.8 69.3 -0.153 -0.103 

Feb-14 102.3 73.7 -0.280 -0.233 
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Mar-14 91.9 72.6 -0.210 -0.183 

Apr-14 84.7 56.5 -0.334 -0.281 

May-14 75.2 65.8 -0.125 -0.149 

Jun-14 71 62.4 -0.122 -0.096 

Jul-14 72.4 73.9 0.021 0.111 

Aug-14 74.6 46.0 -0.384 -0.341 

Sep-14 87.6 69.6 -0.206 -0.164 

Oct-14 60.6 65.8 0.086 0.070 

Nov-14 70.2 69.5 -0.009 0.024 

Dec-14 76.7 47.4 -0.382 -0.355 

Jan-15 67 56.8 -0.152 -0.044 

Feb-15 44.8 32.1 -0.284 -0.300 

Mar-15 38.4 28.2 -0.265 -0.173 

Apr-15 54.4 44.5 -0.182 -0.105 

May-15 58.8 41.6 -0.293 -0.260 

Jun-15 66.5 28.8 -0.567 -0.319 

Jul-15 65.8 54.8 -0.168 0.324 

Aug-15 64.4 68.2 0.059 0.659 

* The monthly mean total Zürich [RZ] Sunspot Number Version 1.0. 
§ Our monthly sunspot-number predictions using the V1.0 series as input data. 
± The percentage errors of our original predictions (using the monthly sunspot numbers Version 1 as 

input data). 
† The percentage errors of our new predictions (using the monthly sunspot numbers Version 2 as input 

data). 

Regarding the percentage errors of our new predictions (Table 8), the mean and the standard deviation 

are 0.014x    and 0.323s  , respectively. The percentage errors range from –0.355 to +1.111 with 

10 overestimations and 16 underestimations of the actual sunspot numbers; 21 percentage errors 

(80.8%) lie within 1 standard deviation of the mean value  : 0.337,0.309x s  , 24 values (92.3%) 

lie within 2 standard deviations of the mean  2 : 0.66,0.632x s  , and 2 outliers – the percentage 

errors 0.659 and 1.111 – lie within 3 and 4 standard deviations of the mean (  3 : 0.983,0.955x s   

and  4 : 1.306,1.278x s  ,  respectively). Overall, these results indicate that the percentage errors of 
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our new predictions are close to those of our original predictions. In particular, for 18 out of 26 months 

the percentage errors of our new predictions are smaller than those of our original predictions (Table 

7); the mean percentage error of our new predictions (–0.014) is smaller than the mean percentage 

error of our original predictions (–0.111). 

Further, by dividing the listed standard deviation [σ] with the square root of the total number of 

observations in the month [N] we calculate the standard error (SE) of the actual monthly sunspot 

numbers V2.0 (Table 7). The standard error determines the uncertainty of the actual monthly mean 

sunspot-number estimation; hence, the percentage errors of our new predictions should be roughly the 

size of the corresponding standard errors. As shown in Table 7, 21 out of 26 percentage errors (in 

absolute values) are smaller than the corresponding standard errors; only the percentage errors for Sep-

13, Feb-15, Jun-15, Jul-15, and Aug-15 are larger than the corresponding standard errors (i.e. 

13 13 15 15 15%Error 1.111 0.251, %Error 0.300 0.252, %Error 0.319Sep Sep Feb Feb JunSE SE            

15 0.219JunSE   , 
15 15%Error 0.324 0.182Jul JulSE    , 15 15%Error 0.659 0.174Aug AugSE    ). 

The mean percentage error –0.014 or –1.4% is significantly smaller in absolute value than the mean 

standard error 0.333 or 33.3%.  

Finally, our model predicts the second peak of the present cycle; that is, the maximum of Cycle 24 (i.e. 

the Cycle 24 had a double peak with the second peak higher than the first). The actual sunspot-number 

maximum for the current 11-year solar cycle was 1.0

Zmax 102.3VR   in February 2014, while according to 

our original predictions the maximum was expected to be 92.4 in November 2013 (± 2 months) with 

percentage error of about – 0.097. Our model (Equation (18)) now predicts a higher maximum sunspot 

number V2.0. Our predicted peak leaped up to 142.8 in the same month (November 2013); it is still 

quite close to the new actual maximum of about 2.0

Zmax 146.1VR   in February 2014. The percentage error 

of our new predicted maximum is 
max

2.0

ˆ 142.8
% 0.022

Z

V

R
Error


  ; it is smaller in absolute value than the 

standard error of the new actual maximum 14 0.546FebSE    (Table 7) and close to the percentage error 

of our original predictions 
max

1.0

ˆ 92.4
% 0.097

Z

V

R
Error


  .  

Overall, with a mean percentage error close to zero, 21 out of 26 percentage errors lie within 1 standard 

deviation of the mean, and 88.5% of the percentage errors are smaller than the corresponding standard 

errors, our model (Equation (18)) using the monthly sunspot numbers V2.0 as input data seems to 

produce unbiased predictions, despite the full revision of the monthly RZ record. Hence, we extend our 

new monthly predictions (using V2.0 as input data) 50 steps (months) ahead in future – the maximum 
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temporal extent for performing deterministic predictions – from September 2015 to October 2019 

(Figure 46).  

 

Figure 46 Extension of our monthly sunspot-number V2.0 predictions 50 steps ahead (September 2015 

– October 2019). The blue curve corresponds to the actual sunspot-number V2.0 series; the red curve 

corresponds to our predictions using the V2.0 series as input data. 

We are currently nearly 7 years into Cycle 24 (the present solar cycle began in September 2009) and 

according to our predictions we are 4 years away from the minimum; we estimate that the significant 

decrease in sunspot numbers (less than 40 sunspots per month) will start during 2016 (June 2016) 

peaking to as low as zero sunspots in July 2019 (the same as the previous Cycle 23, which ended in 

August 2009 with the sunspot numbers going through a minimum of zero). Solar Cycle 24 is predicted 

to have a length of about 119 months, which is considered to be a short-period cycle; Wilson (1987) 

estimated that short-period cycles average about 122 ± 4 months and long-period cycles average about 

140 ± 5 months. Kane (2008) showed that the total length of a cycle and the next cycle’s peak seems 

to be anti-correlated; hence, we expect that the solar maximum during the next Cycle 25 will be larger 

than the peak of present cycle.  

However, this is not consistent with our yearly sunspot-number predictions (Subsection 4.2.2) 

according to which the yearly mean sunspot-number peak for Cycle 25 is expected to be lower 

1.0

Zmax( 39)VR   than the peak of the present Cycle 24 (
1.0

Zmax 54VR  ). But this inconsistency has also been 

observed in the long-period Cycle 20 (144 months – from August 1964 to July 1976) followed by 

Cycle 21 with maximum sunspot number 
1.0

Zmax 188.4VR   in September 1979 – one of the largest on 

record. Hence, according to our forecasts, the exceptionally low solar maximum of the present Cycle 

24 – despite its expected short total length (which could be just another outlier such as the long-period 

Cycle 20) – indicates the possibility that we are heading into a period of dramatic low solar activity.  
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4.3.2 Re-evaluation of the yearly solar activity predictive model  

Figure 47 demonstrates the original and the revised yearly mean total sunspot-number records (i.e. 

Sunspot Number Versions 1.0 and 2.0) from 1700 to 2012. In the previous Section 4.2 we performed 

post-facto predictions using the Zürich Sunspot Number V1.0 as input data in order to reconstruct the 

solar activity 90 years back in time (before the year 1700) during the Maunder Minimum (1610 – 

1715). We compared our predictions with the Group Sunspot Numbers Version 1.0 (Hoyt and 

Schatten, 1998) for the time period 1610 – 1699 and showed that our proposed neural network model 

(Equation (19)) is successful in reconstructing the Maunder Minimum period. In order to re-evaluate 

the performance of our previous model (Equation (19)) we perform post-facto predictions from 1610 

to 1699 using the Zürich V2.0 series as input data (Figure 48).  

 

Figure 47 The time series of the yearly mean total Zürich [RZ] Sunspot Number Version 1.0 (blue 

curve) and Version 2.0 (red curve) for the past 313 years (1700 – 2014). 

However, in this section we do not use the revised version of the Group Sunspot Numbers [V2.0] to 

compare our new post-facto predictions with the actual sunspot numbers from 1610 to 1699, because 

the new numbers [V2.0] are scaled to raw group counts without any normalization factor. The Group 

Sunspot Number [RG] in order to be comparable with the Zürich Sunspot Number [RZ] needs to be 

scaled by a suitable scale factor. The original Group Sunspot Number [V1.0] was defined by Hoyt and 

Schatten (1998), using the constant 12.08 as a normalization factor to bring the RG series to the same 

scale as the RZ series. Therefore, we use the original RG time series [V1.0] reported by Hoyt and 

Schatten (1998) for the time period 1610 – 1699 as the actual sunspot-number observations during the 

Maunder Minimum period. 

Our two post-facto yearly sunspot-number reconstructions disagree slightly before the Maunder 

Minimum; the two series present different levels of solar activity mainly from about 1624 to 1650 

(Figure 48).  
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Figure 48 The post-facto yearly sunspot-number reconstruction of 90 steps back in time (1610 – 1699). 

In the upper part of the diagram, the grey curve corresponds to our post-facto predictions using the 

V2.0 series as input data; the purple curve corresponds to our post-facto predictions using the V1.0 

series as input data; the green curve corresponds to the original actual yearly mean sunspot-number 

data (1610 – 1699) of the Hoyt and Schatten reconstruction [RG] Version 1.0. In the lower part of the 

diagram, the blue curve indicates the residuals corresponding to the predictions using the V1.0 series 

as input data, while the red curve indicates the residuals corresponding to the predictions using the 

V2.0 series as input data. 

During the following nineteen years: 1616, 1624 – 1631, 1633 – 1635, 1642 and 1644 – 1649, the 

differences between our new post-facto predictions (using the V2.0 series as input data) and the actual 

values are larger than those of our original predictions (using the V1.0 series as input data). In 

particular, the differences between the predicted and actual yearly sunspot-number values have 

increased on average by 4.3 sunspots ranging from 0.6 to 9.1 sunspots, except for the years 1625 – 

1628 and 1633 – 1635 where the differences have increased on average by 19.2 sunspots ranging from 

16.4 to 22.1 sunspots (Figure 48, lower diagram). However, during the following nine years: 1614, 

1615, 1632, 1638 – 1640, 1643, 1650 and 1683, the residuals are smaller comparing to those of our 

original reconstruction; i.e. the differences between the predicted and actual sunspot numbers have 

decreased on average by 2.7 sunspots ranging from 0.8 to 5.3 sunspots (Figure 48, lower diagram). 

Regarding the remaining fifty-nine years: 1610 – 1613, 1617 – 1623, 1651 – 1682 and 1684 – 1699, 
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there are no differences at all between our original and new post-facto reconstruction. Finally, the 

MAE and the RMSE of our new post-facto reconstruction (
2.0 13.92VMAE  , 

2.0 27.95VRMSE  ) are 

quite similar to these of our original reconstruction (
1.0 11.72VMAE  , 

1.0 25.28VRMSE  ). The 

percentage change for the MAE values is 18.8%, while for the RMSE values it is 10.6%; i.e. the 

predictive errors using the V2.0 series as input data have increased by less than 20 percent.  

Overall, from 1610 to 1699 we observe the following: (i) for 12 years the differences between our 

original and new post-facto reconstruction are less than 10 sunspot-number counts, (ii) for 59 years 

there are no differences at all, (iii) for 9 years our new post-facto predictions are closer to the actual 

sunspot-number values than our original post-facto predictions, (iv) for 7 years the differences between 

the two post-facto reconstructions are somewhat larger (up to 22.1 sunspot-number counts), and (v) 

the relative change in the predictive errors is small (increased by less than 20%). These results indicate 

that our model (Equation (19)) is able to reconstruct remarkably well the solar activity 90 time-steps 

(years) back in time before the year 1700 despite the revision of the yearly RZ series. This suggests 

that our previously proposed model is still able to produce accurate long-range future solar-activity 

predictions. Hence, we further perform long-term future predictions trying to forecast the solar activity 

up to 2102 using the V2.0 series as input data and we compare them with the original predictions 

(using the V1.0 series as input data) from the previous Section 4.2. 

 

Figure 49 The future yearly sunspot-number predictions of 90 steps ahead (2013 – 2102). The light 

blue curve corresponds to our future predictions using the V2.0 series as input data; the orange curve 

corresponds to our future predictions using the V1.0 series as input data. 

Figure 49 illustrates the level of disagreement between our original and new long-term future 

predictions using the V1.0 and V2.0 time series as input data, respectively. The present Cycle 24 is 

still expected to be the first entering into a period of successive weak solar cycles with exceptionally 

low sunspot maximums; in all cycles from 25 to 29 covering the period 2020 – 2075 each cycle’s peak 

will be lower than the preceding one. However, our model (Equation (19)) using the V2.0 series as 
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input data predicts that the peaks of the nine following cycles will be higher than that of our original 

predictions. The solar activity is predicted to decrease further during the Cycle 25, which is predicted 

to peak in 2022 with a maximum of about 54.4. All future cycles (25 – 32) are expected to be double 

peaked with the first peak in sunspot number larger than the second, except for the single peaked Cycle 

28 with a maximum of about 19.6 in 2055 and the Cycle 29 in which the second peak (15.7 in 2068) 

will be slightly larger than the first (14.5 in 2066). The recovery of solar activity to higher levels during 

the following cycles covering the period 2075 – 2102, will be stronger according to our new 

predictions; the Cycles 30, 31, and 32 are predicted to have higher maximums of about 30.7, 46.1, and 

59.3 in 2077, 2090, and 2100, respectively.   

Hence, the most obvious change is that the sunspot counts have increased across the next 90-year 

sunspot timeline. In particular, during the years 2015, 2021, 2032 – 2035, 2037, 2043 – 2049, 2055 – 

2056, 2066 – 2068, 2076 – 2078, 2088 – 2089, 2092, 2094, and 2099 the differences between our 

original and new long-term yearly predictions have increased on average by 3.2 sunspots ranging from 

0.4 to 8.4 sunspots, while for the years 2013 – 2014, 2022 – 2023, 2090 – 2091, and 2100 – 2102 the 

differences have increased on average by 17.3 sunspots ranging from 10.4 to 25.1 sunspots (Figure 

49). Besides having higher sunspot counts during these years, there is no difference between the two 

predictions for the remaining years. Each cycle is still followed by extended periods of calm (zero 

sunspot counts); between the cycles (2016 – 2020, 2024 – 2032, 2036 – 2043, 2047 – 2054, 2056 – 

2065, 2069 – 2075, 2079 – 2087, 2093 – 2098) solar activity will fall significantly to levels last seen 

during the Maunder Minimum. The lengths of the minima between the cycles are still the same. Hence, 

we observe that despite the full revision of the Zürich Sunspot Numbers, our new future long-term 

predictions endorse our previous claim that a prolonged solar activity minimum is expected to occur 

lasting up to the year ≈ 2100. Finally, the differences between our original and new predictions 90 

years ahead in time are consistent with the differences between our original and new post-facto 

reconstruction 90 years back in time; i.e. the differences between our original and new long-term yearly 

predictions are less than 10 sunspot-number counts, except for 9 years only where there are differences 

of up to 25.1 sunspot-number counts. 

4.3.3 Concluding remarks 

In this section we re-evaluated our previous models for predicting solar activity in the light of the 

revised sunspot-number dataset [V2.0]. In order to monitor each model’s accuracy and performance 

over time, we performed predictions using the revised records of the monthly and the yearly sunspot 

numbers as input data. We compared our models’ predictions using the old [V1.0] and the new [V2.0] 
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datasets, and found that there is no significant degradation in the performance of our models. We 

observe that despite the full revision of the Zürich Sunspot Number, the new data [V2.0] fit well to our 

models’ original training; i.e. our proposed models produce unbiased predictions using the monthly 

and yearly V2.0 series as input data despite the full revision of the sunspot numbers. Hence, it is 

unnecessary to retrain our models to meet the new data; that is, we do not have to propose new models 

for performing monthly and yearly sunspot-number predictions. 
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Chapter 5 

Solar-Terrestrial Phenomena 

In this chapter we investigate the possible existence of solar activity impacts on Earth. In particular, 

this last part connects all the topics studied in the previous chapters; we start with a literature review 

on the relationship between solar activity and population dynamics with emphasis on the prey 

populations (pest insects) studied in this thesis. We continue with a summary of the existing literature 

on the solar activity link with economy ending this chapter with a study on the solar-agricultural 

connection.  

Τhe impacts of solar activity on climate is still under discussion; however, several studies show that 

the sunspot cycles seem to be correlated with the global temperature variation (Lean and Rind, 2008; 

Mann et al., 2009; de Jager and Usoskin, 2006). Eddy (1976) described the relationship between the 

Sun and terrestrial climate considering the coincidence of Maunder’s prolonged solar minimum with 

the coldest excursion of the Little Ice Age; he pointed out that long term relations between solar activity 

and global climate might be caused by changes in the solar irradiance. Reid (1987) showed that the 

time series of the globally averaged sea-surface temperature and the Zürich sunspot number, although 

not identical, had several features in common. Friis-Christensen and Lassen (1991) presented a set of 

data supporting the idea that long-term variations in Earth’s temperature are closely associated with 

variations in the solar-cycle length. Hence, an exceptional extended period of unusually low solar 

activity over the next 90 years or so (that we predicted in Chapter 4), could lead to a significant 

decrease in solar radiation and activity having most likely wide impacts on our planet’s climate.  

5.1 Heliobiology and Helioeconomy 

5.1.1 Pest outbreaks, vector-borne diseases and solar activity 

Early studies have suggested that pest population outbreaks are related somehow with solar activity. 

Insect populations are sensitive to climate change; i.e. insects can tolerate only narrow ranges of 

temperature or precipitation. If meteorological variables alter that range, a new species of insect will 

replace the old. Insects occupy one of the lower levels of the food chain. Hence, fluctuations in their 

population may cause corresponding fluctuations in their predators (e.g. birds or spiders) (Hoyt and 
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Schatten, 1997). Hence, studying the relationship between insect-population dynamics and solar 

activity could help in the identification of pest population outbreaks.  

MacLagen (1940) made one of the most thorough studies on the relation between solar activity and 

insect populations. Using accounts in newspapers, agricultural tracts, and almanacs of outbreaks of 

mosquitoes, antler moths, diamond back moths, leather-jackets, flea-beetles, and cutworms in Britain 

from the 1600s to the 1900s, found an 11-year cycle. He found that insect population outbreaks tend 

to occur a few years before sunspot maximum, speculating that these population outbreaks are caused 

by two factors: (i) increased warmth and precipitation, and (ii) increased ultraviolet radiation. The 

results of his study were consistent with other previous studies (Hahn, 1877; Archibald, 1878; Criddle, 

1932). Hahn (1877) observed that locusts appear in temperate regions only during unusually hot and 

dry years suggesting that solar activity influences locust populations. He showed that European locusts 

appear mostly between the years of sunspot minimums up to the next sunspot maximum, an average 

of about 4 years. For the 7 years from the sunspot maximum to the next sunspot minimum, locusts are 

scarcer. Archibald (1878) showed that locusts appeared in Europe in 1613, 1690, and 1748 – 1749; 

these dates occur 1 to 3 years after a sunspot minimum. Later, Criddle (1932) with additional 

information of grasshoppers reported that in Manitoba they followed an 11-year cycle. Swinton (1883) 

submitted inconclusive evidence that grasshopper outbreaks tend to occur during periods of sunspot 

minima. Similarly, DeLury (1930) found correlations of grasshopper and grouse maxima with the 

sunspot minima.  

Riley et al. (1880) calculated that the interval from the years of the great locust invasions reported for 

central Europe (1333, 1650, 1693, 1748, and 1825), Spain (1495, 1542, 1619, and 1682), Algiers and 

adjoining regions (1799, 1845, 1866, and 1878), and America (1820, 1855, 1866, and 1874 – 1876) in 

each case was approximately a multiple of 11 years. Pasquier (1942) studied locust plagues from 98 

years of observations at Algiers; during this span there were eight periods of presence and eight of 

absence of locusts. The cycles of abundance and scarcity varied between 9 and 15 years in length, 

whereas the sunspot cycle was 9 – 14 years. Moreover, between 1843 and 1942 there were 9 solar 

cycles and 9 locust cycles in North Africa, with the latter almost always beginning near the minimum 

of a sunspot-number period and with a zero to five year lapse after North-West India locust outbreaks 

(Spinage, 2012). In contrast to these studies, Eidmann (1931) studied population outbreaks of forest 

insects and concluded that they are correlated with sunspot maxima.  

Several studies have examined how the climate-biological relationships affect the transmission of 

vector-borne diseases. In particular, there is evidence indicating that epidemics of vector-borne 
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diseases are associated with temperature, rainfall, humidity, etc. Descloux et al. (2012) analyzed the 

epidemiology of dengue in Noumea (New Caledonia) from 1971 to 2010 and its relationships with 

local and remote climate conditions; they showed that the occurrence of outbreaks in Noumea was 

strongly influenced by climate (temperature) during the last forty years. Hales et al. (2002) studied the 

potential effects of global climate change (rainfall) on the transmission of dengue fever; with 

population and climate change projections for 2085, they estimated that about 5 – 6 billion people 

would be at risk of dengue transmission, compared with 3.5 billion people, if climate change did not 

happen. Chakravarti and Kumaria (2005) studied the relationship of dengue infection with climatic 

factors such as rainfall, temperature and relative humidity during the dengue fever epidemic in the year 

2003. They found that dengue outbreaks coincided mainly with the post monsoon period of subnormal 

rainfall.  

Further, studies on the impact of solar activity on infectious diseases have suggested that epidemics of 

mosquito-borne diseases also show strong correspondence with the variations of solar cycle. Dutroulau 

(1868) found that epidemics of malaria in the Lesser Antilles (Caribbean) exhibited a periodicity of 

either 6 or 10 years. In particular, malaria epidemics appeared to occur at times of minimum solar 

activity; Gill (1936) showed that malaria pandemics since 1800 were associated with variations of the 

sunspot cycle occurring at periods of sunspot minima (major epidemics occurred during sunspot 

minima, while minor epidemics occurred during sunspot maxima). Similarly, the epidemics of yellow 

fever that occurred in Africa since 1800 coincided with periods of sunspot minima; i.e. from 1825 to 

1935 eight out of a total eleven sunspot minima have been associated with yellow fever outbreaks in 

the Gambia (West Africa) (Findlay and Davey, 1936).  

These studies provide evidence for the existence of an interrelationship between solar activity and pest 

population outbreaks. However, further research is required to see whether or not locust outbreaks and 

the epidemics of vector-borne diseases are interconnected with the variations of solar cycles. Revealing 

such a correlation could help significantly in the prediction, prevention and control outbreaks of pest 

and vector-borne diseases in future. 

5.1.2 Economy and solar activity fluctuations 

Studies over the years have tried to answer whether solar activity has any direct or indirect economic 

effects. Herschel (1801) was first considered that solar activity may be related with the economy. His 

studies covered six periods (1650 – 1670, 1676 – 1684, 1686 – 1688, 1695 – 1700, 1710 – 1713, 1714 

– 1717) showing a relationship between sunspot activity and the wheat price; he found that the wheat 

prices were higher when sunspots were scarce. Carrington (1863) charted the variations in frequency 
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of sunspots and the imperial average wheat-price from 1750 to 1860. Comparing the two curves he 

noted the general but imperfect correspondence among them but warned that this correspondence was 

insufficient upon which to base any conclusions. However, he noted that they powerfully stimulate 

further inquiry with a view of ascertaining whether the discrepancy may admit of future explanation. 

Gloyne (1973) found an 11-year cycle in the length of the growing season in Scandinavia, while Currie 

(1988) found a 10.0-year cycle in Iowa crop yields, a 9.5-year cycle in Arkansas, and a 10.9-year cycle 

in Illinois; moreover, both the crop yields and the mammalian populations in Iowa and Arkansas 

exhibited 9.5-year and 10.0-year cycles. These results are consistent with Jevons’s (1875) study in 

1875. He also found a correlation between the length of the sunspot cycle – 11.11 years – and the 

fluctuation in the price of oats, wheat, barley, peas, beans, vetches, and rye (by arranging them as 

nearly as possible in 11.11 year arrays) for the time period 1259 – 1400; for each grain and for all 

grains combined he found maxima in the same year of his arbitrary arrangement. Later, Jevons (1879) 

identified 14 commercial crises in England with a well-marked 10.44-year periodicity. However, 7 of 

the 14 commercial crises occurred during years of minimum solar activity, 4 occurred during years of 

maximum solar activity, and 3 of them were not clearly associated with solar maxima or minima. 

Jevons claimed that if a solar-commercial cycle exists it is not a straightforward one.   

One of the most thorough studies on the terrestrial and extraterrestrial relationships was carried out in 

1915 by Tchijevsky (1971) who observed that important mass historical events correlated to sunspot 

cycles. In particular, he presented an Index of Mass Human Excitability (500 B.C. – A.D. 1922) 

showing a consistent pattern of 9 waves of excitability per century over the entire span of 2422 years. 

This index was compiled from detailed statistical researches in the histories of 72 countries of the 

world. Studying the social movements on these countries he noted that his index was characterized by 

11.1-year cycles and that the maxima of mass activity of all humanity (i.e. pandemics, revolutions, 

insurrections, expeditions, migrations, etc.) tended to correlate to the middle points of sunspot cycles. 

In particular, he found that the number of important mass historical events increases during the sunspot 

maximum; i.e. 80% of the most important events occurred during periods of maximum solar activity. 

The research showed that the Revolutions in Austria (1848 – 1849), the American Civil War occurred 

during 1858 – 1861, the World War I (1914 – 1918) along with the Russian Revolution of February 

and October 1917 and the Revolutions in Germany (1918 – 1919), and the peak of the Vietnam War 

occurred during 1967 – 1969 followed an exceptionally powerful rising of sunspots (Figure 50). For 

instance, in the middle of June 1915 a large group of sunspots crossed the central meridian of the sun, 

the aurora borealis were exceedingly powerful in North America and Northern Europe, and magnetic 

storms were exceptionally strong and interfered with telegraph work. At the time of these phenomena, 
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the hardest and bloodiest fights of the war were being fought by Germans, Russians, Austrians, 

Serbians, French, and English. In contrary, the number of important human military-political events 

decreased during periods of minimum solar activity giving way to creative activity in the sphere of 

state organizations, international relations, science and art, with a pronounced tendency towards 

absolutism in the governing powers and a disintegration of the masses. 

 

Figure 50 Comparison between the solar activity and the important peaks of mass historical events 

from 1843 to 1975. The blue curve corresponds to the yearly sunspot numbers Version 2.0.  

Huntington (1920) advanced the idea that variations in solar radiation had an effect upon human beings 

and thus in turn upon business conditions, instead of affecting business first and then human beings as 

was commonly believed. Garcia-Mata and Shaffner (1934) tried to prove that the idea of solar-

economic relationships was completely untenable. However, they found a very close correlation, 

indeed. In particular, they found a solar-manufactures correlation during the time period 1875 – 1931; 

i.e. manufacturing and production fluctuated with an 11-year cycle. However the peaks and troughs of 

the solar cycles came after the peaks and troughs of manufacturing and of total production. Not being 

able to explain this they only suggested that changes in psychological factors, caused by changes in 

the global electric field, may lead to long-term shifts in optimism and pessimism that show up in the 

manufacturing economy. Moreover they found little or no correlation with crops. In 1936, Andrews 

(1936) called attention to the apparent correlation over the preceding years between sunspot activity 

and wars, international crises, and economic distress. He conjectured that the cause of these and other 

solar-terrestrial correlations might be due to two solar phenomena associated with sunspot activity; 

either to the intensity of solar radiation or to emanations of ultraviolet light. Concerning the economic 

and sociological correlations he suggested that the variations in the ultraviolet light was the more 

reasonable of the two possible explanations.   
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Dewey (1960) made an investigation in depth of Tchijevsky’s work using dates of sunspot maxima 

derived by Shove (1956) from old Chinese manuscripts and other sources which were not available to 

Tchijevsky. He found that comparing all values of Tchijevsky’s Index of Mass Human Excitability 

with the years of sunspot maxima, the crests of the sunspot cycles follow the crests of the Index by 

about a year, on the average. He concluded that there is probably some response on the part of human 

beings to the sunspot cycle. However, this response would seem to be the cycle, not to the spots 

themselves, for the maximum of mass human excitability precedes the maximum number of spots. 

5.2 Investigation of Solar-Agricultural Connection: Sunspot Numbers 

and Wheat Prices in London and Southern England  

In the past, agricultural peaks and troughs could lead to poverty the entire economy. Moreover, low 

solar activity has been linked with poor crop production leading to famines; e.g. famines in India during 

1870s came at periods without sunspots – in 18 out of 22 world observatories of the world it had been 

shown that the minimum rainfall occured at times when there were no spots on the Sun (Hoyt and 

Schatten, 1997). We showed that a lot of research has been done on the relationship between solar 

activity and agricultural prices. However, the Maunder Minimum period (1645 – 1715) has not been 

included in any of these studies due to the rare and sporadic appearance of sunspots. Consequently, it 

is difficult to determine if solar cycles with any kind of periodicity were presented during this period. 

However, a number of studies have shown that the 11-year cycle may be presented during the Maunder 

Minimum (Waldmeier, 1961; Hoyt and Schatten, 1998; Usoskin et al., 2000, Beer et al., 1998); i.e. 

the years of solar-activity maxima obtained in these studies are quite close to each other and 

demonstrate an 11-year periodicity. Hence, in this section we examine the relationship between solar 

activity and crop prices from 1610 throughout the Maunder Minimum (1645 – 1715) and the Dalton 

Minimum (1790 – 1830) until 1914.  

In particular, we investigate the impacts of solar activity on wheat market by using the yearly mean 

sunspot numbers56 and the London & Southern England wheat prices. We use the wheat prices in Early 

Modern Britain as source data for economic comparison since England was largely self-sufficient in 

food from 1500 to 1750; English agriculture produced only food for humans by the 1860s, when this 

was at least 90% of English agricultural output (Clark, 2002). The wheat-price data are available from 

                                                 
56 The sunspot number series is likely the most suitable solar index to study the solar-agricultural oscillations since it is the 

longest direct series of solar activity; i.e. a 400-year-long series which depicts the dramatic contrast between the (almost 

spotless) Maunder minimum and the modern period of very high activity (Usoskin, 2013). 
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1259 till 1914; we compare the wheat prices with the sunspot numbers over the same span of time – 

from 1610 to 1914 – for which both datasets are available. The yearly wheat-price series (Figure 51, 

lower diagram) up to 1702 are taken from Rogers (1866 – 1892) and after 1703 are taken from Mitchell 

and Deane (1971). The original wheat-price data are given in two columns in shillings and pence; 

considering that until 1971 the pound was divided into 20 shillings or 240 pennies (Wood, 2002) we 

converted the wheat-price data in pounds. Concerning the yearly sunspot-number dataset (Figure 51, 

upper diagram), we use the RZ numbers (V2.0) from 1700 to 1914 and the RG numbers (V1.0) from 

1610 to 1699 – since the RZ numbers (V2.0) do not cover the Maunder Minimum period (1645 – 1715), 

as noted above (Subsection 4.3.2). 

 

Figure 51 The yearly mean sunspot numbers (upper diagram) and the yearly wheat prices (lower 

diagram) during the period 1610 – 1914.  

5.2.1 Wheat prices and sunspot numbers over the course of 305 years 

The sunspot-number and wheat-price data are measured on different scales; therefore, in order to 

illustrate the similarities and differences between price and solar activity oscillations, such as 

corresponding periods, peaks and troughs, time lags between minima and maxima, etc., we use unity-
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based normalization to scale both time series in the range [0,1] (Figure 52). The sunspot-number cycles 

from 1610 to 1914  peak at 1614, 1625, 1639, 1652, 1660, 1676, 1684, 1695, 1705, 1717, 1727, 1738, 

1750, 1761, 1769, 1778, 1787, 1804, 1816, 1830, 1837, 1848, 1860, 1871, 1883, 1893, and 1905. The 

cycles have ranged in length from 9 to 14 years with an average duration of about 11.27 years long. 

 

Figure 52 Normalized sunspot-number and wheat-price data between 0 and 1 from 1610 to 1914.  

Regarding the wheat prices, we observe that the series also fluctuate in cycles; there is an 11.15 

periodic cycle that is almost identical to the average length of the sunspot cycle. However, the length 

of the wheat-price cycles varies from 5 to 16 years. Moreover, the maxima and minima of the wheat-

price cycles mostly come before the maxima and minima of the corresponding sunspot cycles; hence, 

the sunspot and wheat-price cycles are not identical. In particular, the 27 cycles found in wheat prices 

from 1610 to 1914 peak at 1617, 1622, 1630, 1648, 1661, 1673, 1678, 1693, 1697, 1709, 1727, 1740, 

1751, 1756, 1766, 1774, 1789, 1800, 1811, 1816, 1825, 1839, 1855, 1867, 1877, 1891, and 1909, 

respectively. We observe that, the wheat-price maxima occured on average 3 ¾ years before the 

correspondent sunspot-number peaks (i.e. the lags between the wheat-price maxima and the nearest 

sunspot-number maxima are +3, -3, -9, -4, +1, -3, -6, -2, -8, -8, 0, +2, +1, -5, -3, -4, +2, -4, -5, -14,  

-12, -9, -5, -4, -6, -2, +4), and the wheat-price minima occured on average 4 years before the 

correspondent sunspot-number minima (i.e. the lags between the wheat-price minima and the nearest 

sunspot-number minima are +3, -3, -2, -4, -2, -3, -2, -5, -6, -5, -2, -1, -1, -5, -6, -5, -7, -7, -8, -11, -8,  

-5, -3, -3, 0, -7, -3).  

Further, the wheat prices around (± 2 years) each sunspot minimum were higher than the prices during 

maximum solar activity (Figure 53) – indicating a possible interrelationship between solar activity and 

wheat market. In particular, this occurs almost for all – in 25 out of 27 – sunspot minima during the 

period 1610 – 1914, except for those occurred in 1668 and 1823 where the correspondent wheat prices 
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were lower (i.e. P1668 = £ 1.89, P1825 = £ 3.43) than those during the sunspot maxima which occurred 

in 1660 and 1816 (i.e. P1662 = £ 2.29, P1815 = £ 3.45), respectively (Table 9).  

Table 9 Comparison between the yearly mean sunspot-number maxima and minima with the 

correspondent (plus/minus two years) London and Southern England wheat prices during the period 

(1610 – 1914). 

Year SSN Maxima Year 
Wheat Price 

(in £) 
Year SSN Minima Year 

Wheat Price 

(in £) 

1614 121 1615 1.71 1617 0.8 1617 2.25 

1625 42.4 1627 1.32 1630 0 1630 3.23 

1639 76.7 1639 1.76 1645 0 1647 3.13 

1652 2 1654 1.08 1658 0 1658 2.89 

1660 2 1662 2.29 1668 0 1668 1.89 

1676 1.7 1676 1.54 1679 0 1678 2.65 

1684 1.4 1685 1.41 1690 0 1692 2.49 

1695 0.1 1694 1.83 1699 0 1697 3.12 

1705 96.7 1705 1.11 1711 0 1709 3.48 

1717 105 1718 1.25 1723 18.3 1725 1.90 

1727 203.3 1726 1.48 1733 8.3 1735 1.66 

1738 185 1737 1.30 1744 8.3 1746 1.40 

1750 139 1749 1.34 1755 16 1756 2.50 

1761 143.2 1761 1.43 1766 19 1766 2.58 

1769 176.8 1769 1.75 1775 11.7 1774 2.82 

1778 257.3 1779 1.72 1784 17 1782 2.59 

1787 220 1786 1.97 1798 6.8 1800 7.43 

1804 79.2 1803 2.85 1810 0 1811 6.73 

1816 76.3 1815 3.45 1823 2.2 1825 3.43 

1830 117.4 1828 3.02 1833 13.4 1831 3.32 

1837 227.3 1835 1.97 1843 18.1 1841 3.22 

1848 208.3 1850 2.01 1856 8.2 1855 3.73 

1860 182.2 1859 2.19 1867 13.9 1867 3.22 

1871 185.3 1870 2.35 1878 5.7 1877 2.84 

1883 106.1 1885 1.64 1889 10.4 1891 1.85 

1893 142 1894 1.14 1901 4.6 1902 1.40 

1905 105.5 1903 1.34 1913 2.4 1914 1.75 
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Figure 53 Normalized data of the sunspot-number maxima and minima and the correspondent (±2 

years) London wheat prices during the time period 1610 – 1914. The tables below the time series plot 

indicate the sunspot-number maxima and minima for which the correspondent wheat price reaches its 

minimum and maximum value respectively. 

Moreover, we observe a coincidence between solar-activity peaks and wheat-price troughs. As shown 

in Figure 53, for 13 different wheat-price cycles the minima occurred ±2 years around the closest 

sunspot-number maxima – on average 2 years after the corresponding sunspot-number maxima (i.e. 

the lags between the wheat-price minima and the closest sunspot-number maxima are +6, +2, +4, +2, 

+6, 0, +4, -1, 0, +1, +4, +5, +4, 0, 0, +1, +4, -1, -1, -8, -2, +3, +4, +4, +6, +1, +5). In particular, during 

the cycles 1617 – 1629, 1645 – 1657, 1668 – 1678, 1690 – 1698, 1699 – 1710, 1711 – 1722, 1755 – 

1765, 1766 – 1744, 1775 – 1783, 1798 – 1809, 1810 – 1822, 1833 – 1842, and 1889 – 1900 as soon 

as the sunspot cycle reaches its peak value the wheat price falls to its minimum. On the contrary, over 

the course of 15 cycles (i.e. 1617 – 1629, 1630 – 1644, 1679 – 1689, 1699 – 1710, 1711 – 1722, 1755 

– 1765, 1766 – 1744, 1775 – 1783, 1798 – 1809, 1810 – 1822, 1823 – 1832, 1856 – 1866, 1867 – 

1877, 1878 – 1888, 1889 – 1900) once the sunspot cycle falls to the minimum the wheat price reaches 

its maximum value (Figure 53).  

Harrison (1976) studied the hypothesis that various crop yields including wheat might be related with 

the sunspot-number cycle. Using data from 1866 to 1973 he showed that wheat yields were influenced 

by solar activity; i.e. lower than average yields were associated with low sunspot activity and higher 

than average yields were associated with high sunspot activity. Moreover, Pustil’nik and Din (2004) 

suggested that a possible effect of solar activity on wheat-prices behavior can be multiplied by 

nonlinear links in the causal chain: solar activity – climate – wheat production – market prices. Hence, 

the coincidence we observe between sunspot-number maxima and wheat-price minima could possibly 
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be explained as follows: on periods with high solar activity (sunspot-number maxima) the wheat 

production increases due to climate change leading to lower wheat prices. 

 

Figure 54 Scatterplot of sunspot numbers (horizontal axis) versus wheat prices (vertical axis) during 

the period 1610 – 1914 in linear scale (upper diagram) and in logarithmic scale (lower diagram). 

Figure 54 illustrates the scatter plot of the sunspot numbers against the wheat prices. The upper 

diagram illustrates the data in linear scale while the lower diagram in logarithmic scale – for a better 

visualization since the data vary over several magnitudes. We observe that the pattern is neither rising 

nor falling indicating no correlation between the sunspot numbers and wheat prices. Moreover, the 

Pearson correlation coefficient57 of the sunspot numbers with the wheat prices from 1610 to 1914 is 

estimated to be 0.04r   ; that is, negative  0r  and far from –1.0  0r  . This indicates that the 

strength58 of the relationship between the sunspot numbers and wheat prices seems to be very weak 

and a negative one (i.e. when the sunspot numbers increase the wheat price decreases, and vice versa), 

making it difficult to support the existence of an interrelationship between the two series. However, 

                                                 
57 The Pearson correlation coefficient is a measure of strength of the association between two variables taking values in the 

range 1 1r    ; 1r    indicates a perfect positive correlation, 1r    indicates a perfect negative correlation, and 0r   

indicates no overall correlation (Myers et al., 2010). 
58 Evans (1996) suggested guidelines about the sizes of correlation according to which the absolute value of correlation 

coefficient of 0.00 – 0.19, 0.20 – 0.39, 0.40 – 0.59, 0.60 – 0.79, and 0.80 – 1.00 correspond to very weak, weak, moderate, 

strong, and very strong correlation between two variables, respectively. 
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the correlation coefficient only measures the strength of linear relationships; it provides no information 

about the existence of nonlinear relationships. Therefore, finding a correlation coefficient r close to 

zero or even zero does not necessarily imply that the variables are unrelated (Myers et al., 2010). 

Hence, it is possible that the relationship between the sunspot numbers and wheat prices is a strong 

nonlinear one.  

5.2.2 Wheat prices during Maunder and Dalton minima 

Earlier in this thesis, our long-term future yearly sunspot-number predictions suggested that the solar-

activity level is likely to be reduced significantly during the next decades leading us to another 

prolonged sunspot minimum (since the era of Maunder Minimum) lasting up to the year ≈ 2100. 

Considering that we are heading into a period with sunspot-number peaks lower than those during the 

Dalton Minimum but not as low as those during the Maunder Minimum, it would be interesting to 

study in more detail the wheat-price variations during the Maunder Minimum (1645 – 1715) and 

Dalton Minimum (1790 – 1830). 

 

Figure 55 Normalized yearly mean sunspot-number and wheat-price data between 0 and 1 during the 

periods 1645 – 1699 (upper diagram) and 1784 – 1843 (lower diagram). Comparison between the 

smallest and largest wheat-price and sunspot-number maxima and minima.     
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As shown in Figure 55, during the Maunder Minimum, the wheat-price cycles with the smallest and 

largest price minima (i.e. the cycles 1643 – 1653 and 1688 – 1693 with minima £ 1.08 and £ 1.83, 

respectively) have coincided with sunspot-number cycles with the largest and smallest maxima (i.e. 

the cycles 1645 – 1657 and 1690 – 1698 with maxima 2 and 0.1, respectively), respectively. Moreover 

(Figure 55, Table 10), during the Dalton Minimum (1790 – 1830), the sunspot-number cycles with the 

smallest maxima and minima (i.e. the cycles 1798 – 1809, 1810 – 1822 with maxima 79.2, 76.3 and 

minima 0, 2.2, respectively) have coincided with wheat-price cycles with the largest maxima and 

minima (i.e. the cycles 1791 – 1802, 1803 – 1814 with maxima £ 7.43, £ 6.73 and minima £ 2.85, 

£ 3.45, respectively). Finally, the wheat-price maximum £ 7.43 – the largest wheat-price peak reached 

at 1800 – coincided with the smallest sunspot-number minimum 0 occurred at 1810.  

Table 10 The average sunspot-number counts (per solar cycle) and the correspondent percent wheat-

price decline (per wheat-price cycle) along with the sunspot-number and wheat-price maxima and 

minima (per cycle) from 1699 to 1914. 

Solar 

Cycles 

Maximum 

SSN 

Minimum 

SSN 

Average 

SSN 

Wheat-Price 

Cycles 

Maximum 

Price (£) 

Minimum 

Price (£) 

Percent 

Price 

Decline 

1699 – 1710 96.7 0 30.41 1694 – 1704  3.12    1.11 64.3% 

1711 – 1722 105 18.3 45.13 1705 – 1717  3.48    1.25    64.0% 

1723 – 1732 203.3 8.3 90.16 1718 – 1730  2.22    1.14    48.7% 

1733 – 1743 185 8.3 85.92 1731 – 1742  2.51     0.91    63.9% 

1744 – 1754 139 16 66.77 1743 – 1753  1.75     1.30    25.7% 

1755 – 1765 143.2 19 70.64 1754 – 1760  2.50     1.43    42.7% 

1766 – 1774 176.8 11.7 99.88 1761 – 1768  2.58     1.75    32.2% 

1775 – 1783 257.3 17 113.67 1769 – 1778  2.82     1.72    39.0% 

1784 – 1797 220 6.8 100.76 1779 – 1790  2.82     2.11    25.2% 

1798 – 1809 79.2 0 39.72 1791 – 1802  7.43     2.85    61.6% 

1810 – 1822 76.3 2.2 29.91 1803 – 1814  6.73     3.45    48.7% 

1823 – 1832 117.4 13.4 65.09 1815 – 1821  6.10     2.23    63.5% 

1833 – 1842 227.3 18.1 105.95 1822 – 1834  3.43     1.97    42.6% 

1843 – 1855 208.3 8.2 95.82 1835 – 1850  3.53     1.93    45.5% 

1856 – 1866 182.2 13.9 94.22 1851 – 1863  3.73     2.01    46.2% 

1867 – 1877 185.3 5.7 94.48 1864 – 1874  3.22     2.26    29.9% 

1878 – 1888 106.1 10.4 57.8 1875 – 1888  2.84     1.49    47.6% 

1889 – 1900 142 4.6 64.63 1889 – 1893  1.85     1.14    38.3% 

1901 – 1912 105.5 2.4 51.91 1894 – 1909  1.85     1.58    14.2% 
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However, the wheat prices during the period 1645 – 1699 (i.e. the deepest phase of the Maunder 

Minimum when sunspots were scarce) were not significantly higher than the prices over the following 

years (when sunspots were significantly more abundant) taken as a whole (Figure 52). Moreover, as 

shown in Table 10, during the years after the Maunder Minimum (1700 – 1914) the wheat-price cycles 

with the largest percentage decline (i.e. the cycles 1694 – 1704, 1705 – 1717, 1791 – 1802, and 1815 

– 1821 with 64%, 64%, 62%, and 63% decline, respectively) have coincided with or followed the 

weakest sunspot-number cycles; that is, cycles with the smallest average yearly sunspot numbers – the 

average counts have not exceeded fifty – (i.e. the cycles 1699 – 1710, 1711 – 1722, 1798 – 1809, and 

1810 – 1822 with 30.41, 45.13, 39.72, and 29.91, respectively).  

But the solar cycles with the smallest average sunspot-number counts during the period 1700 – 1914 

were significantly stronger than the cycles during the Maunder Minimum when the average sunspot-

number counts were close to zero (i.e. the cycles 1645 – 1657, 1658 – 1667, 1668 – 1678, 1679 – 1689, 

and 1690 – 1698 with 0.63, 0.28, 0.35, 0.33, and 0.01, respectively); hence, we would expect that the 

percentage wheat-price declines of the correspondent cycles during the Maunder Minimum would be 

the largest ones. However, we observe that the percentage wheat-price declines during the Maunder 

Minimum were not only no larger but even smaller (i.e. the cycles 1643 – 1653, 1654 – 1665, 1666 – 

1675, 1676 – 1687, and 1688 – 1693 with 68%, 60%, 44%, 49%,and 42% decline, respectively) than 

those corresponding to the weakest solar cycles during the years 1700 – 1914 (i.e. 64%, 64%, 62%, 

and 63% decline, respectively).  

These two results are not consistent with each other; we would expect that the exceptionally low solar 

activity during Maunder Minimum would be associated with lower grain yields leading to even higher 

prices than those over the following years. This inconsistency could be due to the uncertainties in the 

observations during this period; the exact number of sunspots observed on a single day of the Maunder 

Minimum is not very reliable since the number of observers (with imprecise instrumentation) was 

small (Usoskin et al., 2000). However, Hoyt and Schatten (1996) made a thorough study of how well 

sunspots were observed during the Maunder Minimum supporting that this prolonged solar-activity 

minimum existed and was not an artifact of few observations; they estimated that 248 days59 per year 

were observed suggesting that the existence of the Maunder Minimum would not be threatened by the 

discovery of a few more sunspots in future research.  

                                                 
59 Of 358 days per year, 192 days per year were directly observed, 93 days per year were in gaps between observations 

lasting 6 days or less (it is unlikely that many sunspots were created and destroyed within these gaps), 72 days per year are 

covered by general statements, and 7 days per year were unobserved (Hoyt and Schatten, 1996). 
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But the Maunder Minimum coincided with the coldest phase of the Little Ice Age; radical climate 

change with a series of extremely dry and cold winters, weather extremes, changes in the average 

trends of temperature (lower than average temperatures) and precipitation along with recurrent long 

lasting and strong advection of continental air from the northeast towards western Russia and Europe 

(White, 2013; Luterbacher et al., 2001; Wanner et al., 1995; Pfister, 1994). During this period, 

agriculture in England faced abnormally severe winters and insufficient solar radiance during the grain 

growth period60 (Pustil’nik and Din, 2004). Moreover, the English Agricultural Revolution also took 

place during this period – the agricultural output increased; i.e. grain output did not increase 

significantly before 1650 (until 1640), while rapid technological change in the form of cropping 

innovations61 took place in the century after 1650 (Jones, 1974). Yield growth in Southern England 

from the early fourteenth to the late fifteenth centuries was significantly low62; while the period from 

1640 to 1740 is known as a long “agrarian depression” not because of the lack of wheat, but rather the 

opposite – the low price paid for grains in England by the middle of 17th century until the mid-18th 

century became a problem (Tello et al., 2015). Tello et al. (2015) suggested that the English farming 

innovations could have: (i) counteracted the effect of colder temperatures on agricultural yields 

through the decreasing N mineralization rate during the period 1645 – 169563, and (ii) reinforced the 

effect of temperature rise during the period 1696 – 173064.  

In conclusion, although the cause of the English Agricultural Revolution remains unclear, the rapid 

transformation in techniques that were taken during the Maunder Minimum leading to grain-output 

increase, could be a response to the radical climate change of the time (coldest phase of the Little Ice 

Age). Hence, this could be an explanation for the inconsistency we observe in the wheat prices between 

the Maunder and Dalton Minima. However, more research is needed on the causes of the increased 

grain output in England during the Maunder Minimum. 

 

                                                 
60 The length of the growing season was shortened lessening yields and jeopardizing the ability of certain grains to 

withstand this cooling period (Jones, 1965). 
61 A rise in the fertility of the soil through turnips and clover and their associated crop rotations led to increases in grain 

output per acre (Overton, 1986). 
62 The yields estimated net output per acre for Southern England in 1300-49 was the equivalent of 4.1 bushels per acre 

(Clark, 1991); the yields estimated net output per acre for 1500-39 was the equivalent of 3.5 bushels of wheat per acre 

(Clark, 2002). 
63 During the first Maunder Minimum period (1645 – 1695) the yearly average temperatures of Central and Southern 

England kept falling leading to reduced soil bacterial activity and N mineralization; the new farming practices that were 

also taken during this period were good enough to withstand the harsh climatic conditions (Tello et al., 2015). 
64 With rising temperature (after 1695 up to 1730) in Central and Southern England, bacterial activity increased fostering 

in turn N mineralization in the soil, and along with the farming investments made in the earlier period, a growing reward 

on yields followed (Tello et al., 2015). 
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5.2.3 Concluding remarks 

In this section we investigated the solar-agricultural connection by comparing the yearly mean sunspot 

numbers with the London and Southern England wheat prices during the period 1610 – 1914. We 

showed that the wheat-price oscillations present a cyclic behavior with almost the same period as the 

solar-activity oscillations; since the wheat-price minimum in 1610 the average lengths of the cycles 

have been 11.15 years for the wheat prices and 11.27 years for the sunspot numbers. Moreover, the 

wheat-price minima and the closest sunspot-number maxima were within 2 years of each other. 

However, the wheat-price cycle appears to be slightly more variable in length than the sunspot-number 

cycle. Further, by calculating the correlation coefficient between the two series we observe that if there 

is a relationship between the sunspot numbers and wheat prices, it is a very weak one. This alone 

indicates that the two series cannot be correlated. However, if the association between the two series 

is nonlinear, then it is even possible the relationship between the sunspot numbers and wheat prices to 

be a strong nonlinear one.  

Finally, an inconsistency is presented in the wheat prices between the Maunder and Dalton Minima; 

i.e. the wheat prices during the Maunder Minimum (scarce sunspots) were not higher than the prices 

during the Dalton Minimum (abundant sunspots comparing to Maunder Minimum). Regarding this 

inconsistency, we suggested that the rapid transformation in farming techniques that were taken during 

the Maunder Minimum leading to grain-output increase, could be a response to the radical climate 

change of the coldest phase of the Little Ice Age. Overall, the results of our study are consistent with 

the existing literature results, suggesting that there is connection between solar activity and wheat 

prices. However, this link might be coincidental. Further investigation is required to see if both time 

series are significantly related to each other.   
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Chapter 6 

Conclusions 

In this thesis we studied the complex population dynamics of predator-prey interactions, epidemics of 

infectious diseases and sunspot activity. In Section 2.1 we studied a predator-prey model with Holling 

type I functional response by incorporating prey refuge in the system. The stability properties of the 

fixed points were investigated through analytical stability analysis, while numerical simulation tools 

were used to study further the complex dynamics of our system. We showed that refuge does not 

always stabilize the predator-prey interactions; prey refuge in some cases produces even more chaotic, 

random-like dynamics than without refuge and prey population outbreaks appear. Following (Section 

2.2), we investigated the prey refuge effect on predator-prey interactions by using a predator-prey 

model suitable for species having no overlap between successive generations. We showed that our 

modified model exhibits a wider array of dynamics than its continuous counterpart. Adding an average 

refuge destabilizes the predator-prey interactions via a supercritical Neimark-Sacker bifurcation and 

several period-doubling bifurcations. The addition of a large refuge exhibits random-like dynamics 

leading to outbreaks in the prey population density. The findings of this study suggest that the 

reproduction in certain intervals should be taken into account since it could help in the identification 

of pest outbreaks. In Section 2.3 the economic impacts of the outbreaks and infectious disease 

epidemics corresponding to the prey populations studied in Sections 2.1 – 2.2 (locust plagues and 

vector-borne diseases) were examined as well. 

In Section 3.1 we investigated the spread of gonorrhea by taking into account the interval between 

successive clinical cases using a deterministic epidemic model; our analytical and numerical 

simulation results show a wider array of dynamics. We verified that there are phenomena of Fold and 

Flip bifurcations and we found some new qualitative dynamics. We came across the phenomenon 

“intermittency route to chaos”, while as the density of infected individuals goes through quasi-

periodicity, a strange attractor appears in the system. Moreover, we obtained chaos control in order to 

see how the male latex condom use during sexual intercourse affects the incidence of gonorrhea. Our 

results reflect what many studies on male latex condoms have shown; we showed that the male latex 

condom use stabilizes the chaotic vibrations of the system to a point where the number of infected 

individuals remains stable and is significantly small or zero, leading to the control of disease.   
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In Sections 4.1 – 4.2 we investigated the solar magnetic activity using the sunspot numbers. We 

analyzed the monthly and yearly sunspot-number data showing that they are both low-dimensional 

deterministic chaotic systems. In Section 4.1 we performed post-facto and future monthly solar activity 

predictions by using a neural network-type core algorithm and the actual monthly mean sunspot 

numbers from January 1749 to June 2013 as input data. We compared our post-facto predictions with 

the actual sunspot numbers and the predictions published by the Solar Influences Data Analysis Center 

showing that our technique is a better candidate for the prediction of the maximum monthly sunspot-

number value. We also performed future predictions from July 2013 to June 2014 showing that the 

present Cycle 24 was yet to peak; our future mean monthly SSN predictions are coming true so far. 

We achieved rather good predictions on the Cycle 24 activity. We predicted that the maximum monthly 

SSN for the present Cycle 24 was expected to be 92.4 in November 2013 (±2 months), while the actual 

peak SSN was 102.8 in February 2014 (announced by the Solar Influences Data Analysis Center on 1 

March 2014).  

Following (Section 4.2), we performed future predictions trying to forecast the solar activity during 

the next five years (2013 – 2017) by using the actual yearly mean sunspot numbers from 1700 to 2012 

as input data. We provided evidence that the yearly sunspot-number data can be used for long-term 

predictions. Moreover, in order to test and prove that our model is able to predict the Maunder 

Minimum period (1645 – 1715), we performed long-term post-facto predictions comparing them with 

the observed sunspot-number values. We also performed long-term future predictions trying to forecast 

the solar activity up to 2102. We achieved accurate predictions on the Cycle 24 activity; our predictions 

indicate that the present Cycle 24 is expected to be a low-peak-cycle. Regarding our long-term yearly 

forecasts, we predicted that the level of solar activity is likely to be reduced significantly during the 

next decades (90 years) leading to another prolonged sunspot minimum comparable to the Maunder 

Minimum.  

However, testing the predictive skill of our proposed models (Sections 4.1 and 4.2) is an ongoing 

process; we constantly monitor the accuracy of our models’ performance over time. Hence, in Section 

4.3, we re-evaluated the performance of our proposed models for predicting solar activity in the light 

of the recently revised data (Sunspot Number Version 2.0). We performed new monthly and yearly 

predictions using the Sunspot Number Version 2.0 as input data and we compared them with our 

original predictions (using the Sunspot Number Version 1.0 series as input data). We showed that our 

proposed models are still able to produce quite accurate solar-activity predictions despite the full 

revision of the Zürich Sunspot Number, indicating that there is no significant degradation in their 

performance. Extending our new monthly predictions (July 2013 – August 2015) by 50 steps ahead in 
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time (from September 2015 to October 2019) we provided evidence that we are heading into a period 

of dramatic low solar activity. Our new future long-term predictions endorse our previous claim 

(Section 4.2) that a prolonged solar activity minimum is expected to occur lasting up to the year ≈ 

2100.  

In Section 5.1 all the topics studied in this thesis were connected. We provided some background 

review of the existing literature and empirical results on terrestrial and extraterrestrial relationships; 

i.e. possible connection between solar activity, biological (pest population outbreaks and epidemics of 

vector-borne diseases) and economic phenomena. In Section 5.2, we attempted to find a correlation 

between solar activity and agricultural economy by studying the wheat prices in Early Modern Britain 

for 305 consecutive years for which both sunspot-number and wheat-price data are available. The 

results of our study suggested the existence of a link between solar activity and wheat market. A cyclic 

correspondence was found between the oscillations of the two series; a periodic cycle was found in 

wheat prices sufficiently close in length to the 11-year cycle of sunspot numbers. Several of the wheat-

price minima occurred close to the sunspot number maxima providing evidence of an association 

between the two series.  

As far as our long-term yearly sunspot-number predictions, we also examined the wheat-price 

variations during the Maunder Minimum and Dalton Minimum; an inconsistency was presented in the 

wheat prices between the two minima (i.e. the wheat prices and the percentage wheat-price declines 

during the Maunder Minimum were smaller than those during the Dalton Minimum). Regarding this 

inconsistency, we suggested that the rapid transformation in farming techniques that were taken during 

the Maunder Minimum leading to grain-output increase, could be a response to the radical climate 

change of the coldest phase of the Little Ice Age, resulting to low prices paid for wheat. The results of 

our study suggest that there is a connection between the wheat-price and sunspot-number fluctuations. 

However, they provide little evidences in support of the solar-agricultural connection. Further 

investigation is required to see if both time series are significantly related to each other.   

In conclusion, this thesis has gone some way towards enhancing our understanding of the complex 

population dynamics as follows: 

Predator-Prey Interactions and Gonorrhea Transmission 

1. The findings of the predator-prey studies have important implications for the identification of pest 

population outbreaks. They suggest that our modified proposed models under the new assumptions 

of prey refuge and non-overlapping generations, can be applied to dangerous pests like mosquitoes 

and desert locusts, which often show population outbreaks in real world. Clearly, our proposed 
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models have some limitations. Nevertheless, they seem to be more appropriate for describing the 

real world pest population outbreaks (such as locust plagues and mosquito outbreaks) than the 

original predator-prey models.  

2. Further, our modified epidemic model seems to be more effective in practice reflecting the real-

world fluctuations in gonorrhea cases. The findings of this study suggest that the time interval 

between successive clinical cases is important for policy makers and public health authorities and 

should be taken into account, since it could help in the identification of gonorrhea emergency 

situations. However, little is known about the clinical onset serial intervals of gonorrhea. Therefore, 

collected data on serial intervals of gonorrhea could provide some useful public health information 

to guide any public health action. 

Taken together the findings of these studies provide further evidence that the dynamical systems have 

the potential to describe the real-world population outbreaks and therefore can be used for their 

identification, prediction and control in order to reduce their disastrous effects on public health, food 

security and global economy. 

Solar Magnetic Activity, Heliobiology and Helioeconomy 

Turning now to the solar activity studies, our proposed model for predicting solar activity using the 

monthly mean sunspot numbers have been very promising so far. Moreover, our future long-term solar 

activity predictions are in good agreement with other studies supporting the concept of another 

expected prolonged sunspot minimum (since the era of Maunder Minimum) over the following 

decades, having most likely wide impacts on our planet’s climate. There is a rapidly growing literature 

focusing on the existence of terrestrial and extraterrestrial relationships. However, the arena of research 

on the impact of solar activity on biological and economic phenomena is still limited.  

1. Relatively few studies investigate the solar-agricultural connection, ignoring the solar activity 

during the Maunder Minimum (1645 – 1715). The last part of this thesis offers an innovative study 

on the possible link between solar activity and crop prices, by investigating the relationship 

between the yearly mean sunspot numbers and the London & Southern England wheat prices from 

1610 throughout the Maunder Minimum (1645 – 1715) and the Dalton Minimum (1790 – 1830) 

until 1914, as a way to stimulate research in the area of helioeconomy. Returning to the question 

posed at the beginning of this study, our findings do suggest that there is a connection between 

solar activity and wheat prices. However, considering the limitations of the methodology chosen 

for this investigation, the results need to be interpreted with caution since this link might be 
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coincidental. Thus, further investigation is required to see if both time series are significantly 

related to each other.  

2. Moreover, this study has raised many questions in need of further investigation. In particular, it 

provides the framework for a new way to predict the real-world pest population outbreaks. As 

stated in the literature review for the existence of an interrelationship between solar activity and 

pest outbreaks, revealing such a correlation could contribute significantly to the prevention and 

control of outbreaks of pest populations and vector-borne diseases in future. In such a case, our 

proposed models for predicting solar activity could be further used to predict outbreaks of 

dangerous pests like desert locusts and mosquitoes, in order to ensure global food security and 

reduce the considerable health burden and devastating socioeconomic breakdowns they inflict.  

The prospect of being able to predict biological and economic phenomena via solar activity variations, 

serves as a continuous stimulus for future research. Future studies on this topic are therefore required 

in order to verify the existence of solar-terrestrial interrelationships.  
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Appendix 

Local Stability of the Endemic Fixed Point (Subsection 3.1.4) 

Using the three stability conditions (Equation (3)) we let: 
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where, f m f mLD d d  , f mL    and f mD d d  
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