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ABSTRACT OF THE DISSERTATION

Service Differentiation in Virtual Service-Based Network Architectures
by

Kostas S. Katsalis

Doctor of Philosophy, Post Graduate Program in Electrical and Computer Engineering,
University of Thessaly, Greece.

June 2015

An end-to-end architecture that adopts the SDN paradigm, across all technology domains, for

network virtualization, management and control, is absolutely essential towards the vision of building

a complete cloud ecosystem. An end-to-end infrastructure facilitates the interconnection of data

centers with fixed and mobile end users, through heterogeneous multi-domain networks, seamlessly

integrating optical metro and wireless access network technologies. Given the emergence of cloud

computing technologies as well as the diverse QoS needs of future cloud and mobile cloud services,

new end-to-end architectures are required, that are able to facilitate network programmability and

control. In addition, the relevant management and control mechanisms that are able to provide service

guarantees to every virtual network, have not been adequately addressed, yet they are absolutely

essential for the relevant network operations and crucial for the SDN paradigm to succeed.

The main goal of this dissertation is to investigate and develop key network management functions

for differentiating services between classes of customers, in virtual end-to-end environments. In

principle and using the classical terminology, a differentiated service doesn’t give service guarantees

per tenant network, rather differentiates traffic and allows a preferential treatment of one traffic class

over the other. Due to multi-tenancy effects in the new virtualized environment and the presence of

time varying workload conditions, the application of stochastic control theory is required in order to

rigorously analyze the performance of policies that are able to achieve differentiation objectives. Due

to the allure of the virtual world, there is always the danger of getting caught up in frameworks that

lack the implementability perspective. Towards this direction, another goal of this dissertation is to

come up with the design of a realistic end-to-end, multi-domain SDN architecture, that spans from

the wireless access network up to the virtualized data-center that can serve as the ground-floor over

which the service differentiation problems are investigated.

We begin by presenting the design of this multi-domain SDN architecture, that spans from the

wireless access network up to the virtualized data-center. We present the general concept, according

to which our research work targets the wireless domain of the architecture. We then proceed to the

development and analysis of closed loop, feedback-based scheduling and en-queueing algorithms,
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that can be used to provide guaranteed service differentiation per customer class. The framework

developed is applicable in various control points on the architecture (e.g http routers, wireless driver

queues, server systems) and various problems where guarantee service is required. Stochastic analysis

is the tool that we used to prove a number of properties from the class of policies defined, like steady

state analysis and speed of convergence. The proposed policies were evaluated both theoretically and

by simulations, while also the implementation of the policies was made in a testbed environment.

Furthermore, our research also involves the development of a mathematical framework, to construct

efficient content distribution networks over the virtualized multi-domain environments that we study.

The relevant optimization approach is presented.
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Chapter 1

Introduction

1.1 Motivation

Up until recently, choosing between vertical and horizontal scalability was the only way around the

spiraling demands for computational and network resources. With the emergence of cloud computing

technologies, physical resources can be virtualized, efficiently shared among different users and effec-

tively exploited, by eliminating idle time operations and under-utilization. On the network segment,

with the propensity to ubiquitous Software Defined Networking (SDN)[1] in every network domain,

an immersive virtual networking environment promises to debunk all the challenges encountered in

network configuration and management and provide enhanced cloud network efficiency.

However, as a consequence of the millions of additional services that are now provided to commu-

nities, such as those of mobile users, the computational and network resources seem to be insufficient

for once more. Although cloud and SDN technologies promise to leapfrog an entire generation of

technology, the truth is that there are still many challenges to be solved, in order to apply the cloud

computing paradigm to end-to-end solutions. Towards the move to a cloud ecosystem, along with the

advertised advantages, cloud technologies bring strong challenges to the designers of the cloud envi-

ronments. Such challenges are orchestrating the presence of multiple tenants in the same virtualized

infrastructure, providing QoS guarantees, and savings on the operating cost.

In this thesis, we focus on the service differentiation design challenge, that refers to the problem

of defining provisioning resources among competing users or classes of users, in virtual end-to-end

environments. In principle, service differentiation refers to the problem of providing to different user

classes, the service levels for which they contracted, in Service Level Agreements (SLAs). SLAs

usually describe Service Level Objectives (SLOs) with key performance indicators (KPIs). In our

modeling framework, users or classes of users may be different tenants in a datacenter, different

virtual network providers or different applications of the same enterprise; resources may be defined

as CPU cycles in a server, as wireless network capacity or combinations; while the service offered

may be quantified via metrics such as delay, CPU cycles or throughput.
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1.2 Problem Description and Contributions

Efficient end-to-end, multi-domain, SDN-based network architectures, together with efficient control

mechanisms, are key enablers to deliver guaranteed service differentiation to cloud based environ-

ments. The network architecture must be agile, able to provide the necessary abstractions, as well

as to support the necessary programmability features that will enable the application of multifaceted

sophisticated control. It is the application of control and resource allocation mechanisms, along with

new advanced cloud computing techniques, that is expected to offer maximum harness of SDN/NFV

and cloud computing technologies.

More specifically, in this thesis we address the problem of providing guarantee differentiating

services, among classes of customers, in virtual end-to-end environments. In the devised approach,

we analyze the high level challenge into the following research problems:

1. Design of an end-to-end, multi-domain SDN architecture, that spans from the wireless access

network up to the virtualized data-center. This end-to-end architecture serves as the ground-

floor over which the service differentiation problems are investigated.

2. Dynamic resource provisioning, in cloud based environments. This involves the development of

dynamic scheduling algorithms, that can be used to provide service differentiation guarantees.

In addition, the dynamic resource provisioning problem involves the modeling of applications,

where multiple virtual operators utilize shared physical infrastructures, with the objective to

maximize the service provider profit.

Although, cloud technologies unleash the potential for extreme scalability and unlimited re-

sources, multi-provider operations are expected to constrain each other and sometimes clash. Tra-

ditional problems, like scheduling for CPU or network resources, need to be set in a different context,

the one of the new virtual world. Meeting these needs is absolutely essential for the success of SD-

N/NFV and cloud computing technologies, offering to the community a clean-slate. Thus we strongly

believe that there is an urgent need to create new control and management policies, while also adapt

well-known mechanisms, according to the new needs imposed by cloud operations, to all network

segments.

1.2.1 Contributions

As far as the design of an end-to-end SDN architecture is concerned, we assisted the design of an open

architecture that is able to provide multi-domain virtualization, facilitating not only network virtual-

ization but also network management and control. Our work was made in the context of the CON-

TENT SDN solution [2], that we presented in a series of papers such as [3],[4],[5],[6] and required

to exemplify all the fictions the research community encounters and debunks regarding multi-domain

SDN control. The design of this novel SDN architecture, aligns with the Open Networking Foun-

dation ONF [1] guidelines, while the research work presented in this thesis is related to the wireless

access domain of the architecture and is presented in Chapter 2. The proposed solution allows Virtual
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Network Operators (VNOs) to independently control and manage their end-to-end virtual networks.

For example, as can be observed in Fig.1.1 in an ideal setting of an end-to-end virtual network archi-

tecture, multiple independent VNOs can own and control their own virtual infrastructure. The idea is

to handle the network in a similar way with the one we treat Virtual Machine ownership, management

and control using cloud systems like OpenStack [7]. This will allow the network segment to be kept

abreast of current events in cloud evolution.

Data Centers 

Virtual Network  

Operators 

VNO 1 
VNO 2 VNO 3 

Wireless Domain Optical Domain 

SDN - Backhaul network 

Physical Infrastructure 

Virtual Infrastructures 

Figure 1.1: Virtual end-to-end network architecture

Cloud technology has driven changes which are inevitable and we believe that a multifaceted

analysis is required in order to come up with a framework that is robust, agile and scalable while it is

able to provide multi-domain virtualization by following the SDN paradigm. The proposed solution

serves not only as the necessary, but also as the ideal ground-floor to apply new policies that we devise

for guaranteed service delivery of different virtual traffic flows.

The other research activity in this thesis is related to dynamic resource provisioning problems,

in cloud based environments. The contributions in this field are also the main contributions of this

thesis. We develop and analyze new dynamic scheduling algorithms, that are able to satisfy specific

differentiation objectives among competing customer classes. Different customer classes utilize net-

work and processing resources (virtual or physical) that span end-to-end, from the wireless access up

to the data-center. Due to multi-tenancy effects and the presence of time varying workload conditions,

the application of stochastic control and queueing theory are required, in order to rigorously analyze

the performance of policies that are able to achieve the differentiation objectives. Considering the

modeling of applications where multiple virtual operators utilize shared physical infrastructures, we

address the emerging content replication problem a service provider needs to consider, when deploy-

ing its network over virtual, multi-domain, heterogeneous environments. In our proposed framework,

the benefit that the provider enjoys may be different per network operator for the same request, while

our model takes into account the replication cost to every domain, as well as the user mobility, besides

physical storage limitations.

More specifically, we propose and analyze a class Π of negative-drift Dynamic Weighted Round

Robin (DWRR) policies that can be used to meet specific differentiation objectives. A general math-
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ematical framework is developed that can be applied to a broad family of scheduling problems,

where differentiation of resources must be provided, like in OS thread/process scheduling or multi-

processing systems. The decomposition of DWRR policies was introduced in [8] and [9], where we

presented the theoretical analysis of convergence to the goal in the Cauchy sense, under saturated

arrival conditions, while we investigated various properties related with speed of convergence and

overhead reduction. We also extended this mathematical framework to include the general case of

stochastic arrival/stochastic service per customer class. In [10] we present the proof of convergence

for the non-work-conserving mode of operation, feasibility space analysis and dependence on the

service redistribution algorithm on final performance. The analysis of DWRR policies is the subject

of Chapter 3. An example SLA that the DWRR class of policies can be used to satisfy, could be cast

along the following lines: “without any knowledge of statistics regarding the arrival and the service

process in a cluster of servers, guarantee 20% of CPU power to requests of class A, 30% of CPU

power to requests of class B and 50% of CPU power to requests of class C, in the long run.

The following theoretical results can be collectively deduced from our analysis, of a class Π of

negative drift DWRR policies. Let p̃i denote the maximum resource utilization a domain can enjoy,

assuming no competition and let pi to denote the resource share objective. Then for every policy

π ∈Π :

1. In the case of saturated arrivals, every policy π ∈ Π converges with probability 1 (w.p. 1) to

the goal percentage, pi.

2. In the case of stochastic arrivals, when operating in non-work conserving mode, steady state

exists for any policy π ∈ Π . Any policy converges with probability 1 (w.p 1) to the minimum

between the goal percentage and the maximum utilization service.

3. Assuming steady state, the feasibility space for any policy π ∈ Π , in the case of stochastic

arrivals and all modes of operation, can be clearly defined.

4. In the case of stochastic arrivals, under work conserving mode of operation:

a. For any policy π ∈Π when p̃i ≤ pi, domain i utilization convergences to p̃i.
b. For any policy π ∈ Π when p̃i > pi the convergence point depends on the service redistri-

bution algorithm.

Besides the development and analysis of negative-drift DWRR policies, we also present new

stochastic enqueueing techniques and prediction algorithms, that are able to provide differentiat-

ing services among competing customer classes. These techniques are related to the contributions

presented in Chapter 4. The devised enqueueing algorithms were presented in [11], [12], while a

prediction-based methodology was presented in [13]. For both the enqueueing and prediction tech-

niques, no steady state analysis is provided; nevertheless through extensive simulations, we present

that these are acceptable approximations to the differentiation objectives. In the stochastic enqueueing

approach, we present an approach to provide guaranteed service delivery to each customer class by

selecting the queue to store incoming requests. This scheme is evaluated in two application scenarios:

a) in server systems, where guarantees are provided on CPU usage, and b) in 802.11 Access Points,
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where the technique can provide guaranteed throughput to individual customer classes, without sta-

tistical knowledge of the channel conditions or the arrival process. In the predictions based approach,

contrary to existing works where estimation and prediction techniques are used to estimate average

values, we propose an opportunistic scheduling scheme, where we adjust scheduling probabilities,

based on system dynamics and deviation from the goal.

Concerning the contribution of this thesis, related to applications over the proposed network vir-

tualization and control system, a mathematical framework for efficient content placement in multi-

domain environments is proposed. This work was presented in the series of papers [14] and [15]

and is the subject of Chapter 5 of this thesis. The services we focus are content distribution services

provided over a cloud system that exploits the virtualized, multi-provider CONTENT architecture.

The model takes into account the probability distribution of users belonging to one access network or

another, while the network providers that the users are associated with, have different business rela-

tionships with both the physical providers and the content distribution providers. The proposed model

also considers the content placement cost in every domain, besides physical storage size limitations,

while the objective is to maximize the benefit that the provider enjoys.

In the following we present an introduction for the problems studied in this thesis, with the nec-

essary references to related work.

1.3 Related Work

1.3.1 Multi-domain Network Virtualization and Control

The goal of multi-domain virtualization is to build end-to-end paths from the access network up

to the virtualized data center and allow for seamless orchestrated on-demand service provisioning.

The idea is to follow the successful model of Infrastructure as a service (IaaS), used for resource

sharing in data-center operations, combined with the Mobile Virtual Network Operators (MVNOs)

model, mobile operators lease wireless capacity from pre-existing mobile service providers, in end-

to-end fashion. Multi-domain cloud networks are expected to bring substantial benefits and extend

the business models of the involved stakeholders, in the ever-growing cloud landscape.

Although MVNOs operational models [16] are out for many years now, a sign of strain and drastic

decrease appeared in the end of the previous decade [17]. The main reason for this decrease was that

the MVNO signed contracts with Telecom Providers, which acquired mobile radio spectrum rights

and which owned the mobile base stations and the network equipment, but the level of control a

MVNO had over his network was minimal. The charges where just a matter of OSS functionalities in

the provider’s systems, without giving to the MVNO the ability to actually control his network. With

the emergence of Cloud computing, SDN/NFV technologies, new VNO business models have ap-

peared, where every VNO can actually own, manage and control a virtual slice of network resources.

Virtualization and network control across multi-technology domains has gained significant at-

tention over the last few years and several solutions already exist [18], [19], [20]. The CONTENT

project [4][3] tries to meet the requirements set by an end-to-end SDN solution, by building the
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necessary abstraction mechanisms and the control and management interfaces among Wi-Fi/LTE,

Optical-metro networks and the data center infrastructure, while taking into account the different vir-

tualization models of resource and service based virtualization [21]. Similar research efforts have

focused on embedding virtual infrastructures over converged optical data center networks [22],[23],

[24], [25] or across multiple substrate networks [18],[26]. Other concepts relevant to end-to-end cloud

based approaches, are mechanisms to support live WAN migration of Virtual Machines [27]; these

schemes utilize cloud computing platforms connected over VPN-based network connections. On the

data-center side, significant research activity exists regarding network virtualization and control. This

type of control has become a necessity in order to keep up pace with the new virtual environment cre-

ated by the advances in hypervisor technologies and servers/systems virtualization. For example, in

PortLand [28] pseudo MAC addressing of the VMs for L2 routing is used, CloudNaas [29] relies on

OpenFlow[1] style forwarding, Oktopus [30] is able to satisfy bandwidth guarantees and in [31], the

Pulsar system is presented that is used to create virtual data-centers. Furthermore, recent advances in

network virtualization in the wireless [12], [32], [33], [34] and optical domains [25] aligned with the

application of the SDN paradigm, empower the creation of virtual networks that span end-to-end.

In the SDN landscape, currently, many open-source SDN controllers exists, like POX/NOX,

FloodLight, Contrail [35], ONOS [36] OpenDaylight [37], etc. and many research paradigms on

applying SDN have been proposed. Note that, in applying SDN methodologies, of most concern is

the realization that the SDN paradigm is not bind to a specific protocol. According to ONF, four

planes are described and three types of functional interfaces [1]: The Data Plane, related to Infras-

tructure Layer where the network elements reside; the Control Plane for translating the requirements

from the SDN applications and providing an abstract view of the network; an Application Plane where

the application logic resides; and a Management Plane used to provide management functions and

establish policies. Regarding the functional interfaces, these are the D-CPI (Southbound interface),

between the Data Plane and Control planes; A-CPI (Northbound interface), between applications and

the SDN controller; and a management interface. Each network domain, such as access/backhaul net-

work, metro/core IP/MPLS and data center interconnect, may have dedicated controllers in logically

centralized, physically distributed designs [38], [39].

By means of interface modeling, in modern SDN controllers like OpenDaylight [37], the inter-

faces are defined by an information model and the way to exploit them is essentially the same; it is

irrelevant if the plugin that implements the required functionality serves a northbound or southbound

service. Modeling languages like the YANG language[40] are used for the definition and seman-

tics of interfaces and network element configurations. Regarding the southbound protocols, from the

industry perspective, protocols like OpenFlow and SNMP are used and solutions where the XMPP

protocol is utilized for the interaction between the network elements and the SDN controller has been

proposed, like in the Contrail controller [35]. In the Contrail architecture, the control plane interacts

with its peer control planes using industry-standard BGP. Regarding the northbound protocols there

are no available standards; the most common approach is to use a REST or a XML-RPC API exposed

to the application layer.
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Up to a certain extent, the above considerations and research activities constitute the core ideas

and the current landscape in end-to-end SDN control. Note that an efficient SDN end-to-end system

must be designed and developed to meet a series of system and functional requirements related to

data-plane and control-plane convergence. What is more, the reliability and effectiveness of such a

complex system depends on the reliability and effectiveness of the individual components at every

distinct domain.

1.3.2 Dynamic Provisioning for Service Differentiation

Needless to say, that resource allocation and provisioning are very well investigated topics (e.g.,

in OS operations and thread schedulers [41], hypervisor operations [42], queueing systems [43]).

Nevertheless, the importance of dynamic control schemes that are able to guarantee CPU/Network

performance/provisioning, has emerged again since computational resources are still not unlimitedly

abundant and because of the increased complexities in today’s virtualized cloud-based environments.

In this context, we believe that our work will help cloud architects in the definition of meaningful,

controllable SLAs and the exploitation of new resource allocation algorithms, that are either proven to

meet SLA objectives or are acceptable approximations. The key elements of our architecture model

are that we have multiple resources (e.g CPU servers), spread over service tiers; we have multiple

control points (servers, routers, dedicated controllers); and we have classes of customers (the service

domains) that utilize physical or virtual resources.

In this thesis, our goal is to provide service differentiation between competing customer classes,

in highly non-linear systems that do not obey a number of rules and can simplify our analysis, like

the superposition principle. In the systems that we examine, there is no proportional relationship

(in fact in the systems we examine there is no relationship with non-stochastic terms), that can be

accurately calculated, between the input and the output of the system. The analysis of non-linear

systems is very challenging and requires advanced stochastic techniques, since mathematical tools,

like Z-Transforms, Laplace Transforms, pole placement etc. to derive for example stability conditions

that can be applied in linear differential equations [44], cannot be applied. Furthermore, open-loop

control cannot be used to provide absolute guarantees in performance for dynamic systems. In open-

loop (or feed forward) control, there are no measurements of the system output that will assist the

control decision (e.g. Admission control, Leaky Bucket,Token Bucket Traffic Shapers)[45][46]. For

example in token buckets, tokens are generated periodically at a constant rate and are stored in a

token bucket. If the token bucket is full, arriving tokens are discarded. A packet from the buffer can

be taken out only if a token in the token bucket can be drawn. If the token bucket is empty, arriving

packets have to wait in the packet buffer. Thus, we can think of a token as a permit to send a packet.

Although WFQ/Token bucket [47] approaches can be used to perform traffic shaping efficiently, to

regulate for example transmission rate, adaptive schemes are required in order to perform stability

analysis under unknown arrival and service process statistics [48].

In order to investigate policies’ performance and provide analytical expressions, we exploit stochas-

tic control theory tools and queueing theory results [43], [49], [50]. Closed-loop control relies on
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feedback information to regulate the input in order to minimize the error between the output and a

reference input value. See [51], [52], [53] for a detailed analysis of linear and non-linear systems,

adaptive control theory. We focus on adaptive feedback-based schemes, in order to apply control

mechanism and guarantee specific differentiation objectives, among competing customer classes. In

more detail, we propose and analyze negative-drift dynamic policies in order to satisfy the differenti-

ation objectives; negative drift has been applied in multiple fields; for example it is used in adaptive

control theory, where the goal is to minimize the cost related to the error, by moving in the direction of

the negative gradient [52]. Note that feedback based controllers, like Proportional-Integral-Derivative

(PID)[44] are also not appropriate when there are stochastic parameters in the difference equation that

defines a relationship between the input and the output.

In the case of stochastic control theory, techniques like Gain Scheduling [54], Self-tuning reg-

ulators [44], fluid flow analysis [47], fuzzy control [55] and Lyapunov stability[56], [57] have been

extensively exploited in stochastic systems analysis. Proposals to change priorities dynamically, us-

ing feedback-based stochastic control are presented in multiple works like [58] and [59]; the authors

of these works use a similar approach to ours but focus on rate control through scheduling. Service

differentiation based on feedback control is also investigated in [60], while in [61] feedback con-

trol together with rate predictions are used to provide service differentiation. In the series of works

[62], [63], [64] a QoS framework is proposed to perform service isolation and service differentia-

tion. On-line measurements with prediction and resource allocation techniques is examined in [65]

and prediction based techniques are presented in [44]. Related analysis regarding stochastic analy-

sis tools (namely Lyapunov analysis in systems where negative drift is applied to change priorities)

were used in numerous works like [56], [66], [67], [68] and [69]. Relevant work has also been pre-

sented in works like [70] and [70], where the Lyapunov optimization technique is performed. In [62]

and [63] aggregated packet rate guarantees to individual clients is combined with negative drift and

measurement-based admission control techniques. In addition to the related work presented in this

introductory section, in Chapters 3 and 4 we present the related work specific to our analysis.

1.4 Thesis Outline

The contributions of this thesis are related to meeting a number of challenges imposed, towards

building the future cloud-based Internet ecosystem. More specifically, we contributed in the design of

multi-domain SDN architectures and the development of algorithms used to provide dynamic resource

allocation among competing users or classes of users, in virtual end-to-end environments.

In Chapter 2 we present the design of an end-to-end, multi-domain SDN architecture, that spans

from the wireless access network up to the virtualized data-center. We present the general concept,

where our research work targets the wireless domain of the architecture.

In Chapter 3 we develop and analyze Dynamic Weighted Round Robin scheduling algorithms,

used for guaranteed service differentiation. The framework developed is applicable in various control

points of the architecture (e.g http routers, wireless driver queues, server systems) and various prob-
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lems where guarantee service is required per customer class. Stochastic analysis is the tool that we

used to prove a number of properties from the class of policies defined, like steady state analysis and

speed of convergence.

In Chapter 4 we present stochastic enqueueing polices and prediction techniques for service

guarantees in various applications scenarios. In the stochastic enqueueing approach, we are able to

provide guaranteed service delivery to each customer class by selecting the queue to store incoming

requests. In the predictions based approach we adapt scheduling probabilities according to system

dynamics and deviation from the goal vector. In both Chapters 3 and 4, the mathematical principles

and the framework developed are generic and can be applied to a broad family of scheduling problems

where differentiation of resources must be provided.

In Chapter 5 we focus on the application layer of the SDN architecture and we present a math-

ematical framework for efficient content placement in multi-domain environments, together with the

relevant optimization approach.

Finally, in Chapter 6 we conclude our study, summarize the main findings of our work, while a

discussion is made for possible future directions.
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Chapter 2

End-to-End Virtual Infrastructures

Network architectures that are compliant with the Software Defined Networking (SDN) design paradigm,

are expected to provide extreme flexibility for service orientation and allow for efficient use of both

network and computational resources of cloud systems. Nevertheless, radical reconsidering and re-

moval of boundaries set out when studying per-domain communications are required, in order to

unleash the hidden potential of SDN and provide a “holistic” network view.

In this chapter we present the design of an open end-to-end SDN architecture, while focusing

on the necessary abstractions and virtualization techniques to integrate virtual wireless and optical

resources. We especially shed some light in the field of wireless network virtualization, from an

end-to-end perspective. Our work was made in the context of the CONTENT SDN solution, that we

presented in a series of papers like [3],[4],[5],[6]. As we will present the proposed system is open and

completely aligned with the Open Networking Foundation ONF [1] guidelines1.

In this thesis, we are particularly interested in the service differentiation design challenge, in

virtual end-to-end environments, such as the one studied in this chapter. Users may be different

tenants in a datacenter, different virtual network providers, or different cloud applications; resources

may be defined as CPU cycles in a server or as wireless network capacity or combinations, while the

service offered may be quantified via metrics such as delay, CPU cycles or throughput. The design of

an end-to-end SDN architecture is the subject of this chapter, while service differentiation techniques

that are able to provide guaranteed service to each customer class, are presented in the chapters that

follow.

2.1 Introduction

To address the requirements of future virtual network operators, a combination of knowledge obtained

by the recent advances in virtualization, Software Defined Networking (SDN) technology and Net-

work Function Virtualization (NFV), must be investigated. Furthermore, in order to build and deploy

1The Open Networking Foundation (ONF) is a nonprofit organization, founded by Deutsche Telekom, Facebook,
Google, etc. to improve networking through software-defined networking (SDN) and standardizing the OpenFlow pro-
tocol and related technologies

11

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:21:38 EEST - 3.142.196.98



efficient cloud based services, we must depart from models that consider intangible multi-domain

end-to-end settings.

The solution we study in this thesis, concerns interconnecting geographically distributed com-

putational resources through ubiquitous converged virtual network infrastructures. Our goal is to

deliver a novel SDN-enabled, inter-domain cloud networking platform, engineered with a bottom up

approach, to meet the requirements of modern end-to-end cloud computing environments. Thanks to

the approach devised, the successful Mobile Virtual Network Operator (MVNO) model [16] that is

used to provide wireless services over the physical network provider, can be extended to a Mobile-

Optical Virtual Network Operator (MOVNO) model. In this model a virtual operator, besides the

wireless provider “sliced” resources, will be able to use virtualized resources on the optical metro

network, to seamlessly interface with virtualized resources in the data center.

In more detail, in this chapter, we describe a hybrid LTE/Wi-Fi network [71][72], virtualized

and interconnected with optical TSON metro networks [25][73], that supports frame-based sub-

wavelength switching granularity, in the light of the CONTENT technical approach. We focus on the

wireless domain and we present how traditional resource allocation and management frameworks of

a wireless network are exploited in order to support a virtualization system. Furthermore, we present

how a set of virtualization services can interact with the control plane of the architecture, regarding

virtual resources specification, management and operation. A note also is provided on implementa-

tion issues regarding the infrastructure topology, as a realization of the proposed layered architectural

model. As we will present, the proposed layered architecture adopts the SDN paradigm, since the

control functions are separated from the physical devices and operate on top of programmable net-

work elements, through open interfaces.

This chapter is organized as follows. In section 2.2 we present the motivation for end-to-end SDN

solutions and related work. In section 2.3 the end-to-end virtualization architecture is presented. In

section 2.4 we provide details on the wireless network virtualization approach and implementation

considerations. In section 2.5 we present an analysis for providing end-to-end QoS over the pro-

posed system. Section 2.6 concludes this work and presents our future plans regarding multi-domain

SDN/NFV network designs.

2.2 SDN Architectures and the ONF Guidelines

The key motivation behind the proposed solution, is that multi-domain and multi-technology prob-

lems are not sufficiently investigated. Active research is striving to consolidate frameworks that, with

respect to SDN philosophy, will be able to provide performance guarantees, not per segment but end-

to-end. Great research activity exists in the field [18], [19], [20], new protocols and frameworks, like

OpenFlow [1] and OpenContrail [35], OpenDaylight [37] and new SDN/NFV architectures are pro-

posed [74]. A note on multi-domain virtualization and the landscape in related work was presented in

Chapter 1. All these are emerging solutions, which seem promising to address these issues. However,

global standards for inter-plane communications over diverse technologies are still missing. There
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Figure 2.1: Layers of a SDN Architecture, according to the ONF guidelines.

are no standards available for the northbound interfaces, while the technology to support QoS and

perform service guarantees in SDN networks is still in an immature state. A main component of the

proposed solution is the communication framework that bridges the data and control planes, residing

in different technology domains. More specifically, it investigates how TSON (Time Shared Optical

Network) virtualized optical networks [25], that utilize GMPLS Control Plane mechanics, will be able

to communicate with virtualized converged Wi-Fi/LTE networks, in such a way that traffic isolation

between the virtual wireless networks is preserved and QoS guarantees are provided end-to-end.

2.2.1 The ONF guidelines

According to Open Networking Foundation (ONF) [1], four planes are described and three types of

functional interfaces:

• The Data Plane: related with Infrastructure Layer where the network elements reside.

• The Control Plane: for translating the requirements from the SDN applications and providing

an abstract view of the network.

• The Application Plane: where the application logic resides; and

• The Management Plane: used to provide management functions and establish policies.

A graphical representation of the architecture can be observed in Fig. 2.1. Regarding the func-

tional interfaces, these are the D-CPI (Southbound interface) between the Data Plane and Control

planes; A-CPI (Northbound interface) between applications and the SDN controller; and a manage-

ment interface.

2.3 The Proposed Layered Architecture

The proposed layered architecture can be used to build end-to-end programmable networks, while

supporting the Mobile-Optical Virtual network Operator (MOVNO) concept. The underlying physical

infrastructure spans from convergent LTE and 802.11 wireless access networks, up to the virtualized

data-center, through optical TSON backbone metro networks, Fig.1.1. In order to provide end-to-end
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network virtualization and programmability capabilities, agnostic to the underlying technological

dependencies, the following layering approach is proposed, a visual representation of which can be

seen in Fig. 2.2.

• Heterogeneous Physical Infrastructure Layer. This is related to ONF’s Infrastructure Layer.

The initial focus in our study, is upon a hybrid LTE/Wi-Fi access network, an optical metro

domain that explores (TSON) technology, supporting frame-based sub-wavelength switching

granularity and Data Center infrastructures.

• Infrastructure Management Layer (IML) & Virtual Infrastructure Control Layer (VICL). These

layers are related to ONF’s Control Layer. The IML is responsible for the creation and manage-

ment of virtual network infrastructures, over the underlying physical resources. The VICL is

responsible for IT provisioning and connectivity services, across the different network domains

and expose functionalities to manipulate the network connectivity to the Application layer. In

systems that support our architecture, the control is made over the IML resources.

• Service Orchestration & Application Layer. This is related to ONF’s Application Layer. The

Orchestration Layer is responsible for orchestrating network-based applications and coordinat-

ing the combined delivery of cloud and virtual network resources. The application layer is the

layer where the application and business logic resides.

To start with, consider that the architecture is not related to a specific network element, controller

technology, southbound/northbound protocols or any control framework specific to the network de-

ployed. This protocol independence, allows the proposed CONTENT architecture to be adopted by

various wireless and optical network providers, that are interested in tender and build the underlay

infrastructures for Virtual Network Operators.

For the data-center virtualization, we rely on available tools and virtualization systems like hy-

pervisor technologies and OpenStack. Note that the virtualization layer, either type 1 or type 2, is a

key enabler for building IaaS clouds. There are multiple virtualization techniques, such as Operating

System Level (e.g., Linux LXC) or Hardware Assisted Virtualization provided by Intel VT-x (e.g.,

XEN, Linux KVM, eSXi) allowing various execution requirements. Regarding the interconnection

of the virtualized data center with the optical domain, many solutions can be utilized like the one

presented in [23]. Regarding the optical segment, TSON is used as the enabling technology at the

physical layer. TSON offers multi-facaded resource virtualization based on FPGA technology, with

guaranteed bandwidth shares per MOVNO, by scheduling both wavelengths and time-slots. More

information on optical routers and switches and network virtualization using TSON technology can

be found in [25], [73] and [75].

A main innovation in the proposed architecture, is that the control plane (VICL) will not com-

municate directly with the physical resources; the set of every management, control, configuration

actions, including also the reservation of the resources, is mediated through the IML and performed

over virtual resources. A better understanding of the architecture and the services it provides, along
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Figure 2.2: The proposed SDN-based layered architecture.

with every architectural component, will be available through the example of the wireless virtualiza-

tion subsystem, presented in the following section.

2.4 The Wireless Network Virtualization Approach

We start by describing the Heterogeneous Physical Infrastructure Layer components of the wireless

domain. We underline that during the course of this thesis, the NITOS wireless testbed [76], [77]

was used to evaluate the efficiency of the developed approach, in the wireless domain. In the NI-

TOS testbed great effort is given in order to use open standards and open protocols in all the network

segments of the wireless network, as well as the control and management frameworks used. Thus

the importance of the following analysis is similar for both wireless testbed infrastructure owners

and commercial wireless providers. The basic components of a wireless network, related to the pro-

posed solution are the following: a) 802.11 Access Network: An 802.11 access network with multiple

nodes, carrying multiple wireless interfaces. Compatibility with the 802.11 family of standards is

promoted. b) LTE Access Network: The NITOS testbed exploits the installation of two LT E245

eNodeB units (Access Points) and a commercial EPC (S-GW, P-GW, MME, HSS) provided by SIR-

RAN [78]. c) Back-haul Network: A wired network with OpenFlow enabled switches. Used as the

back-haul network between the 802.11/LTE Access Networks and a Gateway system. All the egress

and ingress traffic between the wireless and optical networks, passes through the wireless gateway

system. Furthermore, two widely used frameworks are utilized for the control and management of
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the wireless network elements. These are the cOntrol and Management Framework (OMF), regarding

nodes management and control and Slice Federation Architecture (SFA), regarding resource abstrac-

tion and reservation. Detailed information regarding the OMF/SFA frameworks can be studied under

the project Fed4FIRE [79].

2.4.1 Wireless Network Virtualization Models

In principle, virtualization and slicing technologies of the wireless medium, are based on [80] FDMA,

TDMA, Frequency Hopping (FH), CDMA, or Space Division Multiple Access (SDMA). Note that

the proposed architecture, is not bound to a specific virtualization or “slicing” technique, as long as

the virtual counterpart is properly defined in the IML. Furthermore, on a basic level, virtualization of a

remote access system can occur not only in the physical layer, but also in the MAC layer, the network

layer or even the application layer. In this thesis, we focus on the first three layers and the exploitation

of two models of virtualization is discussed: resource based and service based virtualization [18]. In

the former model we actually virtualize a physical resource, (similar to a hypervisor that schedules

CPU cycles to vCPUs), where in the latter we virtualize services (for example network services, using

L3VPN). When virtualizing wireless access networks, both approaches are valid and the decision

clearly depends on the requirements set by the virtual and physical infrastructure owners and of

course from what the technology can support. For example, if a node carries multiple interfaces

or/and multiple antennas, we are able to share spectrum usage by using multi-user beamforming or

assign different channels of operation to different interfaces. Then, we are talking about resource-

based virtualization in the frequency domain. If we want to virtualize a single 802.11 Access Point

(AP), then Multi-SSID technologies can be applied in order to assign users to different virtual APs.

In this case we use service based virtualization, since the same physical resources (frequencies, time

domain) are seamlessly controlled and the virtualization takes place in a logical layer. If we examine

the case according to which multi-SSID technologies are used as in [12], [32] or [33], where every

virtual AP can be indecently controlled, while its configuration affects the spectrum usage of other

virtual APs, then we are discussing again the case of resource virtualization. In 3G/4G networks, the

current MVNO models available, follow the service based virtualization approach.

In the wired world, not only virtualization of the network resources, but also the way to achieve

service guarantees and QoS are more or less straightforward. In contrast, in the wireless domain there

are many limitations imposed by the stochastic nature of the wireless channel and in 802.11 networks,

caused by the CSMA operation. Recent research works in 802.11 virtualization rely on the Beacon

messages to adjust per-station minimum contention windows and transmit limits to affect the airtime

usage to different group of users[32]. We can use VLAN to distinguish the flows, but actually there

exists a sharing in the time domain of airtime usage. In virtualizing 802.11 networks, the single-link

and multi-station enhancements supported by protocols like 802.11ac can be also utilized. A more

detailed discussion about QoS in the end-to-end architecture is made in subsection 2.5.
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2.4.2 Provisioning of Virtual Resources

The main idea: Depending on the virtualization technique used in every network element of the wire-

less domain (L2/L3 switches, LTE network, 802.11 APs), every physical resource maps to one or

multiple virtual resources in the IML. In addition, the VICL manages and controls the virtual re-

sources, rather than the physical resources. The IML is responsible for hiding the underlying specific

wireless and optical network particularities. Furthermore, every MOVNO is able to provision its

network directly utilizing IML services. In the NITOS case, the physical wireless resources are ab-

stracted to virtual network elements in the IML, using two virtualization services, namely a Brokering

Service and a Management Service.

Regarding data-plane operations, the actual data flows per MOVNO can be distinguished in the

data-plane, using VLAN identification, that functions as the end-to-end identity of the flow2. It is

important that VLANs are supported in both the wired backhaul and the LTE/802.11 access net-

works. A nice alternative would be to use GRE tunnels. In the case of 802.11 APs, programmable

data-plane technologies, like software routers (e.g. Click Modular Router) and virtual switches like

OpenVSwitch (OVS), are used to perform the necessary traffic shaping and tagging/un-tagging mech-

anisms. These are required in order to guarantee services and isolation per virtual flow. In LTE

networks, QCIs identifiers are standardized and dedicated bearers can be configured with guarantee

quality per flow. There are some native service guarantees available, that can be provided to each

MOVNO (mapping different VLANs to different APNs-subscriber group and set the desired flow

characteristics per VLAN). In the wired backhaul network, we rely once more on programmable

data-plane technologies and OpenFlow enabled switches, in order to perform forwarding operations,

from/to the access networks to/from the Gateway system, to the optical side.

Every MOVNO will be able to provision and manage its virtual resources in all the domains

(wireless, optical, data-center), without relying on domain specific interfaces and without affecting

the operational state of other MOVNOs virtual resources. For example in an 802.11 AP, the IML is

the layer a) on which all Virtual APs (VAPs)3 reside, b) that provides the necessary interfaces to the

MOVNO and the VICL in order to perform virtual resource reservation and c) receive management

and control commands by the VICL for some VAP.

Regarding network element virtualization and provisioning, SDN controllers like OpenDaylight,

have already identified the need for resource virtualization. This would enable applications like:

Virtual Tenant Networks (VTN) that perform virtual resource provisioning over a logical abstraction

plane; Dynamic Resource Reservation for the reservation and scheduling features; or OpenDOVE

that provides isolated multi-tenant networks on any IP network. Clearly, IML is part of the SDN

control plane and depending on the architecture of the SDN controller in effect, can be an integrated

part 4.

2QnQ service is used to identify flows over the GEANT network that interconnects the wireless testbed in Greece and a
TSON testbed in UK. Thus, every packet carries two VLAN tags, when traversing the GEANT network; one that identifies
the MOVNO and one used by the GEANT VLAN.

3we use VAP to note the virtual Access Point in the IML
4In the CONTENT solution, the initial IML implementation is based on the open source, under LGPLv3 license, Open-
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In the context of the proposed solution, we decided to separate IML from the SDN controller and

the reason is composed of three parts. Firstly, the complexities that arise when abstracting network

elements and reserving virtual resources, do not only occur in the wired network, but also in wireless

and optical domains. In a simple setup, where only L2/L3 wired network elements constitute the

actual physical network, things are more or less straightforward. A limited set of resources, like

ports and queues, are physical entities that are exposed as virtual and a limited set of functions,

such as VLAN mapping, are necessary. When we include wireless resources like 802.11 access

points, LTE networks and FPGA-based optical switches into the picture, the construction of the virtual

network is very complex. Secondly, is to keep the architecture open to accept any SDN controller and

not bind to a specific technology. As long as open interfaces, like REST, are exploited to facilitate

the communication between the VICL and the IML, it is irrelevant the way the VAP was created.

Similarly, it is irrelevant which SDN controller (Python based, Java based etc), will put into effect the

VICL functionalities. The third reason is related to protocols’ standardization. OpenFlow facilitates

the management of forwarding operations in L2/L3 switches and protocols like NetConf, or OF-

Config focus on the management of the switches. However, there are no available standards for

the management, configuration and control of the wireless resources. In addition, we need to take

into account, that every MOVNO does not have access neither to the physical resources nor to its

virtual ones. Configuring information like SSIDs, channel, authentication/authorization information

etc, requires a robust and extensible resource and service virtualization system, between the Control

layer and the physical infrastructure. Our goal is that every MOVNO has to manage, control and be

aware of its virtual resources, be aware of their capabilities and interfaces, but it should not either

be aware of the underlying hardware and or maintain any information about the status of the other

MOVNOs’ networks. IML is responsible for providing this functionality.

2.4.3 Virtualization Services

In this subsection, we present all the enhancements made in the NITOS control and management

frameworks in order to be CONTENT-enabled. These enhancements are the Broker Service and the

Manager Service and are reported as Virtualization Services in Fig.2.2.

The Broker

The Broker5 is responsible for the resource advertising and the resource reservation, while it is the

component that controls the slicing of the resources and guarantees slices isolation. It is the com-

ponent that directly interacts with the IML (OpenNaaS) in order to build the resource descriptors.

In more detail, it keeps an inventory with information regarding the available resources and their

virtualization capabilities, which are then exposed through a REST interface. Through the same in-

NaaS framework [81]. In OpenNaaS resources are created by providing a resource descriptor to OpenNaaS ResourceMan-
ager. OpenNaaS expose services to the VICL using a REST API. More details on the OpenNaaS architecture can be found
in [81]

5NITOS Broker is the successor of the NITOS scheduler that is now embedded in OMF Control Framework v6.
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terface, it accepts requests for resource reservations, thus keeping each time the availability and the

ownership status of every wireless resources. In addition, the Broker exposes a Slice Isolation and

Control Service (SICS) to the Manager services, to deduce if the requested actions to the physical

resources should be authorized or not. The Broker’ s Scheduler component is in charge of resolving

any conflicting reservation requests that arrive and acts also as a policy enforcement point, concern-

ing resource usage prioritization. It is important to mention that the REST API is working side by

side with a SFA interface. SFA is the de-facto framework for testbed federation, used for example in

Fed4FIRE. This is achieved by having integrated these interfaces to the Broker and sharing a common

inventory in the back-end.

The Manager

The Manager component exposes a secured REST interface (x509 certificates and HTTPS) to the IML

and is responsible for the management, configuration and operation services of the physical nodes. An

alternative design, without the Manager, would require direct access to the physical resources by the

IML. With the Manager component the control of the actual resources is performed by a local testbed

service, it is not bound to a specific IML technology implementation, while existing frameworks like

the OMF can be utilized to perform actions like “image load” on 802.11 APs. This functionality now

is exposed by the Manager’s REST interface. The Manager operation relies on ssh-based access to

the nodes or the OMF Aggregate Manager and remote commands execution, where the SICS service

exposed by the Broker, guarantees that the caller of the management or operation activity is authorized

to perform the requested actions. For example the REST interface can be used to turn a physical node

OFF.

If the VICL sends a configuration command to some virtual resource on the IML, there exists

affine functions that can cause inevitable ambiguity on the action that is actually performed on the

physical node. We present how the Manager handles these cases of ambiguity, through an example

scenario depicted in Fig.2.3. First consider that a physical resource can have one-to-one or one-

to-many relationship with the virtual resources. This depends on the existence of a virtualization

system and the abstractions provided by the Broker. For example in Fig.2.3 there are 3 MOVNOs,

where each one owns a single VAP and every MOVNO issues a turn VAP OFF command. Note that

the control of the VAPs can be made in the application layer, by using a single SDN controller for

multiple MOVNOs or every MOVNO can utilize its own controller. Physical AP 1 maps to a single

VAP, owned by MOVNO 1 (there is no virtualization scheme in frequency,time etc) and physical AP

2 maps to two VAPs, one owned by MOVNO 2 and owned by MOVNO 3. For example, assume

that AP2 is able to perform Multi-SSID configuration and so VAP 2 and VAP 3 can have dedicated

configuration regarding SSID information, encryption used, VLAN information etc. In all the cases,

the action triggered by the MOVNO application to close the VAP will change the operational status of

the VAP to OFF. Nevertheless, only in the case of MOVNO 1 (message path 1 in the figure), the action

can safely instruct the Manager to power off the physical AP. In the case where two VAPs operate

on the same underlying hardware, a more complex procedure must be followed in order to protect
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Figure 2.3: The Manager Service. A scenario where 3 MOVNOs send a command to turn off their
VAP. VAP 1 is mapped to one physical resource where VAP 2 and 3 are mapped to the same physical
resource.

the operational state (message path 2 in the figure). In every cases, it is the Broker’s responsibility

to advertise the capabilities, services and access rights on physical devices to the IML. This provides

us with the extreme flexibility of integrating different types of hardware/software systems, using the

same abstraction mechanism.

The second important point to exemplify, is the case where in the VICL a standard protocol like

OpenFlow or SNMP is used in the Southbound interface. In the case of an OpenFlow enabled node

(e.g. an 802.11 AP with an OVS used for VLAN tagging) or a native OpenFlow switch, the Manager

is responsible to perform management operations (e.g. configuration of the SDN controller IP). Nev-

ertheless, for the forwarding operations we make no OpenFlow commands-to-local translations (e.g.

Manager’s REST interface) and vice-versa. The raw commands are forwarded to program the data

plane as it is; the IML transparently handles the OpenFlow messaging from the VICL (message path

3 in the figure). We should remind that OpenNaaS system is used as the IML implementation and

the procedure of translating REST to OpenFlow besides tedious is error-prone. Note that because the

proposed architecture is open, different systems can be used to implement the IML that already have

available REST-to-OpenFlow plugins. In this case, a different design of the management system can

be adopted, regarding the actual control and configuration of the underlying physical infrastructure.
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2.4.4 Virtual Infrastructure Control Layer

The VICL is responsible for the control and management of the virtual resources. In our VICL imple-

mentation, we utilize the OpenDaylight SDN controller [37], which has been extended to implement

the VICL. At the southbound, the controller implements dedicated plugins to interact with the virtual

resources that are exposed by the IML. The services offered at the plugins level, allow to manip-

ulate the single virtual resources, with the highest level of details offered by the IML, following a

protocol-independent approach. In fact, the structure and the semantics of configuration commands

and resource capabilities available, are expressed in a vendor-neutral format by abstracting the spe-

cific protocol messages. This is achieved through a common data modeling language, like YANG

[40]. The services offered by the plugins can be used by other controllers’ internal modules to im-

plement basic functions over each domain, for example edge-to-edge connection provisioning and

topology or statistics services, and thus providing a further level of resource abstraction. The details

of the D-CPI interfaces, in terms of compliance with specific protocols (e.g. OpenFlow, NETCONF,

XMPP), is handled internally by the plugin itself and reflected at the corresponding service model in

terms of a) high-level resource characteristics and b) available actions expressed through the common

modeling language. It is a task of the plugin implementation to guarantee the consistent mapping

between the configuration actions or notifications exposed to the internal services in OpenDaylight

and the specific protocol messages exchanged with the devices.

2.5 Service differentiation and QoS in End-to-End Infrastructures

As we described in the previous sections, the proposed end-to-end solution, can be used to build and

support virtual network infrastructures, with isolated networks per Virtual Network Operator (VNO).

The high level goal of every VNO, is to carry mission-critical and non-mission-critical traffic of its

subscribers, from the access network, up to the data center and vice versa. In a holistic solution,

VNO can cooperate with IaaS providers, that provide processing resources in the data-center. In

our envisioned cloud ecosystem, a cloud infrastructure provider builds its infrastructure, by utilizing

resources from VNOs and IaaS providers. A cloud provider is able to support not only the deployment

of services and applications, but also to enforce a level of control in the path from the end user device

up to the server machines (virtual or not), in the data center. The motivation for this thesis and a

major growing trend, is to adapt already known QoS and service differentiation techniques, as well as

to develop new ones which are able to differentiate traffic in a cloud system, while at the same time

mission-critical applications receive higher priority.

We begin our analysis, by following a top-down approach; we begin from the QoS contracts and

service guarantees a cloud infrastructure provider usually signs for, in current cloud environments.

Then, we proceed to each layer of control where QoS mechanisms can be applied. Note that in the

multi-domain virtualized infrastructure that we examine, there are multiple control points in various

network or processing elements, that affect the end-to-end performance. It seems out of scope of this

thesis to provide a totalitarian listing of these points. Nevertheless, this step will assist us to identify
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Figure 2.4: QoS considerations in end-to-end clouds.

the segments in the complex end-to-end architecture, where dynamic provisioning of resources is re-

quired. In the model that we consider, every cloud infrastructure provider utilizes (through ownership

or leasing):

• Network resources. These resources, virtual or not, are exposed in the IML layer and controlled

by using SDN control.

• Processing resources. In cloud environments, usually the terms processing resources and server

systems are used interchangeably, to mean the combination of processing, storage, caching,

memory etc. resources. Again, processing resources can be virtual infrastructures, that can be

shared among different tenants.

Thus, in an end-to-end cloud system, using the proposed virtualization solution, a VNO can pro-

vide the necessary network infrastructure, while a cloud IaaS provider can provide the processing,

storage etc. resources. Then, every cloud operator, can create virtual flows from the wireless access,

up to the virtual or physical server machines in the data-center. Over this end-to-end cloud system,

after convergence is achieved in both the data-planes and control planes of the architecture, what we

are really interested in, is the service delivery guarantees we are able to provide. Generally speak-

ing, SLAs with QoS guarantees required by cloud customers, typically include functional and non-

functional requirements. Functional requirements include: response time, percentiles, throughput

guarantees, error rate, server capacity etc. Non functional requirements include time-lines, scalabil-

ity, availability, adaptability etc. Both of these lists can be quite extended, depending on the context.

Note that virtual network overlays have become a very hot topic alongside SDN, in such a degree

that many people think SDN and network virtualization are synonymous. Nevertheless, there is a

clear and distinct relationship between SDN and network virtualization. Applying the SDN paradigm

is about facilitating network management and control, separation between the control and data-plane

operations by using open interfaces, while network virtualization is about network flow isolation,

in multiple layers of the protocol stack (e.g. VLAN, MPLS, VPN etc.). Virtual switches can be

22

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:21:38 EEST - 3.142.196.98



AP2

Data Center

optical metro 
networks

MOVNO A

MOVNO B AP1

BA vAPvAP 22 ,

BA vAPvAP 11 ,

-41dBm,2m
-33dBm,9.5m

-38dBm,2m

-65dBm,9m

-4
8dBm

,2
.5

m

-32dBm,2.5m

1

21 2

Figure 2.5: Evaluation scenario.

considered as the connecting link between these two meanings, since they enable SDN functionality,

while they are able to build virtual network infrastructures.

As we described, the proposed solution offers the enabling technology to virtual network pro-

visioning, control and management, by exploiting available network virtualization techniques and

modern SDN designs. The questioning and reasoning behind our research are the following. In such

a complex system how an end-to-end service differentiation among various traffic flows can be pro-

vided? Which elements of the architecture and which mechanisms do we have to leverage and possibly

extend, in order to perform control and reinforce end-to-end service differentiation operations?

2.5.1 Evaluation of the Virtualization Approach

In this section, we demonstrate the CONTENT wireless virtualization system efficiency, by means of

system utilization and throughput performance. The NITOS wireless testbed [76], is used to perform

the following experiments. Our goal is to demonstrate that the use of virtualization techniques, can

offer increased system utilization and fairness between MOVNO’s flows, without sacrificing end

user’s QoE.

The experiment setup is presented in Fig. 2.5. We assume that there is a system with two

MOVNOs, A and B, each having two associated users, subscriber 1 and 2, all in the same geo-

graphical area. (S1:) In the first setup, two 802.11n Access Points (AP) operate without virtualization

capabilities; AP1 serves A’s users, and AP2 serves B’s users (for both APs, subscriber 1: ∼ 2m distance

and subscriber 2: ∼ 9m). (S2:) In the second setup, both the 802.11n APs operate with virtualization

capabilities and each AP is able to serve both the A, B users. In this case, the association with some

AP, is made on a signal strength/distance basis (we associate the second user with the closest AP).

(S3:) In the third setup, a single 802.11n AP (AP1), operates with virtualization capabilities, servicing

all the users from both the MOVNOs.

In every experiment, Icarus indoor testbed nodes (APs) were used, each equipped with i7-2600

processor, 8M cache, at 3.40 GHz, 4G DDR3 RAM, Atheros 802.11a/b/g/n (MIMO) wireless inter-

faces, 1 Gbps Ethernet interfaces, while we operated the system in 2.4Ghz band. The virtualization

scheme, was on a flow basis, without violating the DCF operations. We note that in all the experi-
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Figure 2.6: Algorithm performance in different scenarios
ments, the APs were tuned for operation in a different channel, while all the experiments were con-

tacted under heavy interfering conditions (other experiments were running in parallel in the testbed

environment).

In Fig.2.6(a), we present the throughput performance, for all setups described, for a single flow:

the aggregated throughput for MOVNO A’s subscribers. In all cases max TCP traffic was generated

using iperf tool. As we can see, in the case of virtualization, where we use two 2 vAPs, there is a

slight decrease in performance (∼ 20Mbps). When we use a single AP for both flows and all the

subscribers, this reduction is even larger (∼ 45 Mbps on average, since in this case 4 users share

the channel). Nevertheless, even in this simple set of experiments, there is a great reduction on the

throughput difference between the aggregated MOVNOs’ flows. This phenomenon can be seen in

Fig.2.6(b), where the results of iperf tests are presented for TCP traffic and in Fig.2.6(c), where the

results of iperf tests are presented, for UDP traffic. In the Y-axis the throughput difference is presented

for flows A and B. Even if MOVNO A, experiences a small reduction on the total throughput his

subscribers enjoy, this “extra” throughput is utilized by MOVNO’s B subscribers, in a way where two

MOVNOs flows are more balanced.

In cluster environments, because of the stochastics on the wireless medium and the great channel

quality variations, it is very common that in a single-AP, single-provider scheme, the traffic from a

single provider may dominate. Furthermore, the actual throughput per flow is not guaranteed. The

idea is that wireless network virtualization, together with SDN control on the wired/optical networks

can offer to cloud architects the mechanics to provide balanced throughput performance and service

differentiation between different provider flows.

2.5.2 End-to-End QoS analysis

We begin by calling the attention to the fact that even in such a complex system as the one we describe,

with multiple operational layers both vertically and horizontally, a convergent, packet-based Internet

Protocol (IP) network offers the foundation, over which all virtual networks operate. In the network

architecture described in Fig. 2.4, essentially IP packets traverse the path from server machines

up to the end users, connected to wireless Access Points. In all the network elements, forwarding

instructions are based on the notion of flow, which consists of all the packets sharing a common

set of characteristics. The potential possible criteria used to define a flow, include the switch port
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where the packet arrived, the source/destination MAC address, source/destination IP address, VLAN

tagging, or other packet characteristics. In the backbone network, all the research activities focus

on the limitations imposed by FIFO scheduling in the routers. Techniques like WFQ [47],[82] and

WRED[83], have been effectively used to provide differentiated services in the backbone and are

supported by all the network vendors.

In the multi-domain SDN model that we consider, every flow is associated with a VNO. Thus all

the traffic from all the subscribers associated with a VNO, constitutes the VNO’s end-to-end flow. For

every subscriber (a subscriber can be a single client, an enterprise and so on), the traffic carried by

each flow, originates ( terminates) from(to) end users applications or end stations in the data-center.

Every application has different performance requirements by means of service needs in bandwidth,

packet loss, delay, jitter etc.

As described in [84] the networks’ capability to deliver services is categorized in three service

levels: best effort, differentiated services and guaranteed service. We still focus on differentiated

services and guaranteed services. Actually, packet forwarding is not the problem in today’s networks,

even in multi-domain end-to-end setups. Legacy networking techniques are still extremely good at

moving packets from the source to the destination. In addition, multiple techniques are available to

provide QoS in Layer 2 and Layer 3 in all the domains of the architecture. For example, In Layer

2 IEEE 802.1p offers the functionalities to enable service differentiation (using a 3-bit Priority Code

Point (PCP) field, also known as class of service (CoS), within an Ethernet frame header when using

VLAN tagged frames), 802.1e is used for QoS in 802.11 networks, or for guaranteed services Subnet

Bandwidth Manager (SBM), ATM Constant Bit Rate (CBR) are used. In Layer 3 when applying

diffServ the IP DS field, Differentiated Services Code Point (DSCP) field is used to define priori-

ties. CoS Committed Access Rate (CAR), Weighted Fair Queuing (WFQ), Weighted Random Early

Detection (WRED) are used for differentiated services and Resource Reservation Protocol (RSVP)

is the signaling protocol to establish end-to-end paths with guaranteed services. In metro networks,

MPLS QoS techniques are utilized which actually facilitate IP QoS or TSON scheduling functions,

like the one proposed in CONTENT TSON-based optical networks [25]. We also report SDN Open-

Flow techniques that are able to provide QoS and service differentiation, by using HTB scheduling

and Linux TC functions[1] (both Layer 2 and Layer 3 mechanism). Note that since in multi-domain

internet based environments, diverse Layer 2 technologies are used, end-to-end QoS can be delivered

only on the network layer protocol and inter-working with Layer 2 techniques is also required.

In this thesis, we rely on existing service differentiation techniques for the backbone network and

we identify two segments where new forms of control have to come into effect, in order to provide

end-to-end guaranteed differentiated services:

• The wireless access domain: Due to the stochastic nature of the wireless channel, interfer-

ence and multiple access on the wireless domain, every VNO flow actually receives no true

guarantees.

• Data-center server operations: Similarly, on the data-center due to multi-tenancy effects, a
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stochastic parameter is introduced and again there are no accurate guarantees that can be pro-

vided.

Indeed although the application type can be used to differentiate traffic efficiently in an end-to-

end fashion through available technologies, service differentiation has not efficiently addressed the

edge of the multi-domain architecture, in the server machines and the wireless access. The reason

is that both of these domains, are highly affected by stochastic disturbances, that are very difficult

to control efficiently and in an accurate way. These disturbances can lead to unpredictable service

delivery degradations. This realization leads to the need of re-evaluation of existing mechanisms and

a different approach in applying QoS control at both edges of the architecture. For example, in the

wireless domain, since channel capacity may greatly vary with time and because of the DCF oper-

ations in 802.11 networks [85], no service delivery contracts can be actually guaranteed for every

virtual network flow, without the application of stochastic control. On the other edge of the archi-

tecture, on the data-center segment and more specifically in server operations, dynamic control is

required in order to perform guaranteed service delivery between different flows. Although packets

may arrive in a server system with some guaranteed prioritization, under stochastic workloads with

unknown statistical knowledge of the distributions regarding the arrival and service process, is hard

to provide guaranteed service differentiation among different flows.

In the analysis that follows in the next chapters, we present new stochastic closed-loop control

policies that are able to alleviate the problem of differentiating services, according to SLAs between

cloud providers and cloud users. By utilizing queueing theory and stochastic control theory, in both

edges of the architecture and by assuming a guaranteed path from one edge of the architecture (the

wireless domain) to the other edge (the data-center), we can actually engrave the trails so that end-

to-end service guarantees between different flows come into effect. A service defines some metrics,

such as throughput, delay, jitter, and packet loss that are used to quantify the QoS while in addition, a

service can be characterized in terms of relative priority of access to network or processing resources.

Another reason for service delivery degradations, is related to a problematic policy and operational

layers on top of traditional networking. These facts cause problems and slow down the operations, but

their study is out of scope of this thesis. All the approaches that we develop in chapters 3 and 4 can

be applied towards this goal, while their generality can be applied in various application scenarios.

In Chapter 5, we evaluate the proposed end-to-end architecture from the application perspective, in

the case where multiple cloud operators build content distribution services, over the multi-domain

virtualization system.

2.6 Chapter Conclusions

In this chapter we presented the design of a novel SND network architecture that attempts to overcome

the challenges imposed by virtualizing and integrating wireless, optical and data-center networks, in

both the data and control planes, in a vendor and protocol independent way. The proposed CONTENT

solution functions as the ideal ground-floor to apply policies that are able to offer guaranteed service
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delivery to different virtual traffic flows. The solution is aligned with the ONF-SDN approach, where

control plane functions operate on top of programmable devices, which in our case are represented

by the virtual network resources. The virtualization layer in the proposed architecture: a) generates

isolated virtual infrastructures, b) provides an abstracted view of the different domains, c) hides the

vendor-dependent details while exposing the full technology capabilities through a unified interface.

At the control plane level, on top of the virtual infrastructures, the wireless, the TSON and the

data-center virtual domains are managed through dedicated lower-layer control frameworks: the wire-

less and the TSON Control Planes. These are customized to deal with the specific technology con-

straints (e.g. management of 802.11 Access Points, server systems) and implement a set of basic

intra-domain mechanisms, like connectivity setup and monitoring. With reference to SDN archi-

tectures, the local control planes act as a sort of macro SDN controllers, responsible for the basic

network functions in each segment. On the other hand, all the end-to-end enhanced functionalities

for on-demand provisioning, maintenance, resiliency, monitoring and dynamic re-configuration of

network connectivity in support of mobile cloud services are delegated to upper layer network appli-

cations.

Regarding our current research activity, the necessary data structures are being defined, describing

the wireless virtualized resources, in terms of capabilities and availability in the corresponding mod-

els. Besides the necessary data-types and the operations that can be performed in both the wireless

and wired resources, a notification modeling system is required to build the necessary interfaces for

events like lost connectivity etc. A similar procedure is followed for the management of the LTE net-

work, in order to provide the connectivity services. In addition, and towards 5G’s holistic approach,

network abstraction and virtualization will serve as key enabling technologies, for delivering consis-

tent and enhanced end-user Quality of Experience in a highly heterogeneous environment. Our efforts

are also placed towards enhancing the system with advanced data-plane/control-plane functionalities

and Network Functions Virtualization services, used for example for building NFV-radio heads.
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Chapter 3

Dynamic Weighted Round Robin
Analysis for Service Differentiation

In this chapter, we present a class of Dynamic Weighted Round Robin (DWRR) scheduling algo-

rithms, that is able to provide guaranteed service differentiation, among competing customer classes.

The framework we develop is applicable in various control points of the multi-domain architecture

presented in Chapter 2 (e.g http routers, wireless driver queues, server systems) and various problems

where guarantee service is required per customer class. Stochastic analysis and queueing theory are

the tools that we use to prove a number of theorems and lemmas, regarding steady state analysis and

properties like speed of convergence.

Although the framework we develop is generic, the analysis we present focuses on the CPU power

of server systems, as the resource of interest. The reason is that, contrary to metrics like delay, CPU

utilization is a metric that is easily observable, even in virtualized environments and CPU power is

the dominant resource that determines the server/system performance. Therefore we believe that our

study is important for many applications and systems.

3.1 Introduction

In complex systems, like the one presented in chapter 2, the infrastructure provider can agree with

the clients to offer a different service quality level depending on the system load. The main idea

is that under load stress, the system cannot effectively guarantee the same level of performance as

the normal load metrics describe. Although it is quite challenging to offer guaranteed end-to-end

delay performance to each customer class, in practice delay is not a metric that an administrator can

guarantee. In principle, in such a highly dynamic environment, fine-tuned metrics like delay, response

time or availability, are subject to uncontrollable parameters like overall (physical and virtual) server

load, multi-tenancy effects, output and input traffic in queueing services or general network issues.

An SLA with alternative metrics of performance must be clearly chosen.

In this work, we propose an SLA with guarantees on CPU sharing provided to the users or classes
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of users. An example SLA could be shown along the following lines: “without any knowledge of

statistics regarding the arrival and the service process in a cluster of servers, guarantee 20% of CPU

power to requests of class A, 30% of CPU power to requests of class B and 50% of CPU power to

requests of class C in the long run. Also assume that no statistical knowledge is available regarding

the correlation between the request size and the service time”.

The main motivation behind this work and the selected SLA, is that in many applications scenar-

ios, (like in VM scheduling, web servers operations, scheduling in the access tier of a CONTENT

architecture, or Mobile Cloud Computing (MCC) operations), it is not easy to correlate actual pro-

cessing time with the type of request or with the request/packet size. In addition, statistics about

the inter-arrival and service time for a customer’s requests are, in general, unknown in practice and

may not be easily estimated or correlated to metrics that are easily observable in a service processing

environment. For example, parsing and processing a small XML file may need more CPU cycles than

a huge XML file, depending on the service requested and the iterations needed [86] [87]. Another

example is VM scheduling in the hypervisor, where we want to guarantee a specific percentage of

CPU power to each VM in the long run, without having a priori knowledge of the workload density,

related to VM activity.

Although CPU provisioning is a very well investigated topic (e.g., in OS operations and thread

schedulers [41], hypervisor operations [88], [89], [42], [90], queueing systems [43]) the importance

of dynamic control schemes that are able to guarantee CPU performance/provisioning, has emerged

again because of the increased complexities in today’s virtualized cloud-based environments. With

empirical data about the service time, when estimating the moments from the sample, we can derive

a good estimate for the mean, but the estimates for variance and higher moments are not accurate

[91]. As we will present, with the use of feedback-based stochastic control, we avoid dependencies

on prediction errors on the service process evolution [61] and large dependencies on the history of

the system.

Note that a “desirable” scheduling policy has several properties:

a. It achieves the technical SLA (T-SLA), meaning that it guarantees specific CPU utilization ratios.

b. It is agnostic to the arrival and service statistics.

c. It converges to the T-SLA fast, and

d. Requires a small number of calculations per time unit.

Apart from (a) which is obvious, the knowledge of service statistics (b) and the decision load (d)

are both related to the communication overhead and CPU costs and are very important considerations

for practical systems. Also (c) is crucial for achieving the target within short periods. To the best of

our knowledge, no single scheduling policy exists that is superior in all these properties; we investi-

gate policies that excel in some of the above criteria and give the designer the ability to trade off in

order to satisfy the rest.

In this chapter, we define a class of “bound round-fair (negative drift)” Dynamic Weighted Round

Robin policies, that can be used to provision not approximate but exact CPU cycle percentages among
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competing users in overload, while they fulfill a number of design criteria. In more detail, we prove

that under some statistical assumptions, all the algorithms of this class have properties (a) and (b) and

are able to trade off for (c) and (d). Furthermore, they can be used in a system operating both under

“normal load” and overload conditions.

In the following text, with saturated arrivals we mean the special case where, at each control in-

stant, requests are pending for service by all the domains and so there is no idle time in the system

(infinite queues). In addition, following the classical terminology, a work-conserving policy is a pol-

icy that does not depend on the service time distribution and when some queue has available requests

the server does not stay idle, regardless of the runtime statistics and other statistical knowledge [90].

In practical systems, the distinction between work-conserving and non work-conserving modes of

operation is of paramount importance. The reason is that the actual performance is largely affected

by the way service-capacity redistribution is made in run time. For example, in hypervisor technolo-

gies the selection of the mode can be made by tuning configuration parameters (e.g setting the “cap”

in the XEN hypervisor, when using Credit scheduling [90]).

The contributions of the present work are the following, regarding the analysis of “bound round-

negative drift” Dynamic Weighted Round Robin policies:

• In the general case of arbitrary arrival and service time distributions, under non work-conserving

mode of operation, we prove that under the class of DWRR policies existence, the system not

only regulates, but in the long run convergences to the goal.

• We define the feasibility space of the class of algorithms, for both work-conserving and non

work-conserving modes of operation.

• Under work-conserving mode of operation, we prove that the same class of DWRR policies

can satisfy a minimum guaranteed service.

• We evaluate the dependence on the service redistribution mechanism under various perfor-

mance metrics.

• We show that minor variations of the policies can be used in order to reduce overhead, without

sacrificing convergence to the goal, but trade-off with slower speed of convergence.

• In the special case of saturated arrivals we prove that all policies experience Cauchy conver-

gence, the system experience no oscillations in the long run and also can be used to guarantee

an exact CPU share for each domain.

• In the saturated arrivals case, we establish theoretically their sub-linear rate of convergence.

Currently, under stochastic workloads and bursty load, the analysis of the repercussions in perfor-

mance of the service redistribution mechanisms are unknown, depending on multiple factors like I/O

dependencies. Percentages are not actually guaranteed and usually there is a minimum performance

threshold satisfaction, that is verified only by simulations [90]. The analysis we present, can exert a
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measure of control in it and also other concepts where dynamic prioritization is required. The sys-

tem model we examine is generic and thus it can be applied, with some necessary modifications, in

multiple application scenarios. We formalize this problem in the following section, using an abstract

system model.

The rest of the chapter is organized as follows. In section 3.2 we present the related work. In

section 3.3, we describe the system model, the detailed provisioning objectives and the corresponding

mathematical model. In section 3.4, we define a class of DWRR scheduling policies and in section 3.5,

we provide the theoretical framework regarding convergence and the optimality of the defined class.

In section 3.6 we present results regarding implementation considerations like speed of convergence.

In section 3.7, we evaluate the performance of the proposed policies. We conclude our study and

present future research directions in section 3.8.

3.2 Related Work

At a first glance, this type of SLAs may seem trivial to satisfy. In principle, however, when we cannot

use knowledge about the arrival/service process, static algorithms are not suitable. Note that our study

focuses on overloaded environments. In the case of underloaded systems (with total utilization less

than 1), in a work-conserving system the utilization every class will receive, is equal to λi ·E[Si],

where E[Si] is the mean service time of class i and λi its arrival rate, independently of the goal vector.

Then let, for simplicity, m = 1 be the number of servers in an overloaded system and D the set of

classes. It is well known that under a Weighted Round Robin (WRR) policy employing weights wi,

the utilization UWRR
i of a given class, will converge to the constant UWRR

i = wi·E[Si]
∑

j∈D
w j·E[S j]

1. Then, in

order to achieve the goal under WRR (or similar policies), one needs to set the weights wi such as

UWRR
i equals the goal utilization and solve a system of linear equations to find the weights. In the

case where we have no statistical knowledge of the arrival and service process statistics, this approach

cannot be applied.

First note that the closed-loop system we examine is nonlinear, with stochastic terms that define

the input-output relationship. We explain this point in detail in the following analysis. In order to

establish convergence conditions, results from ergodic theory and martingale theory have been applied

in the past [52]. For example, the martingale theory has been used to prove convergence in adaptive,

self-tuning systems, based on stochastic approximation estimations, where the random disturbances

affect the state equation. The martingale theory is related to betting strategies and fair games [92],

[93] (e.g a gambler doubles his bet after every loss), where in the case of super-martingales the

current observation of the utilization is an upper or lower bound on the conditional expectation (i.e,

a discrete-time super-martingale satisfies E[Un+1|U1, . . . ,Un] ≤Un). Results exist which state that a

bounded super-martingale convergences.

In addition to the related work referenced in the introduction, our analysis is also related to the

large family of GPS/WFQ scheduling principle [47], [65], [94] and Deficit/Weighted Round Robin

1According to the Strong Law of Large Numbers.
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schemes [95], [96], [97] and [98]. For example, in [98] fair scheduling is applied and a weight is

assigned to each thread based on its priority, where fairness seek to restrict the positive and negative

processing time lags. The token bucket shaper and weighted fair-queueing are used to guarantee

that the packet delay across a network can be guaranteed to be less than a given value. Weighted

Round Robin [99] and approximations of the proportional-share GPS/WFQ [82] in which weights

are assigned statically, in the case where the statistics of job service time are unknown, are not able

to provide the required differentiation and the same conclusion holds true for probabilistic/mixing

policies [43], [100], that need to characterize the performance space first. Furthermore, static open-

loop schemes can only reach arbitrary defined targets, on condition that the arrival and service process

are known in advance; this is not the case in complex service-based end-to-end architectures that we

examine. Also, an approach based on service time predictions according to system macro behavior,

rather than the micro behavior, is subject to prediction errors [61] and usually is unable to provide

predictable services.

All the negative drift policies use the same concept of dynamic weight allocation in DWRR [98].

In [98], the authors update the threads round slice, based on new weights, according to the deviation

that the lag (processing time) had from the WFQ goal. We use ideas similar to WFQ and DRR

with “queue skipping” based on some current metric. However contrary to max packet length our

“skipping” criterion is different, the goal is to achieve a different objective (CPU cycles share not

throughput) and we also use a different notion of round. Moreover we provide not only one algorithm

but a class of algorithms that can be used to guarantee CPU shares. We show that the weight assigned

can be an arbitrary, finite number greater than one, meaning a round can have multiple requests served

per queue, without any calculations required for example for Quantoms [95] to quantify how far we

are from the goal.

Studies in the area of guaranteed CPU performance through scheduling, have been extensively

applied in cloud computing environments, by hypervisor technologies [88], [89], [42], [90], [101].

For example, the Xen platform uses Credit scheduling, which is the successor of BVT and SEDF[101]

schedulers [42], [90] and VMware ESX server operates with a custom scheduling mechanism that

uses the concept of reservations and shares [88]. In the VMWare approach, a “reservations” parameter

specifies the guaranteed minimum and maximum CPU allocation and a “shares” parameter measures

the current configured amount of shares of the VM (a MHzPerShare metric based on the current

utilization of the virtual machine). Note that none of these techniques, although widely deployed,

are based on a rigorous analysis regarding the proof of convergence to the goal. Because of the

system dynamics, it can be very hard to produce well-defined policies to achieve the differentiation

goals [90]. In addition, the actual performance in such systems, is heavily depended on I/O priorities

and preemptive operation of the OS thread scheduler. Proportional differentiation guarantees by

means of slowdown, are investigated in [61] where a feedback based mechanism is required to adjust

processing rate using integral control; online measurements with prediction and resource allocation

techniques are examined in [65], where a model that dynamically relates the resource requirements

of each application to its workload characteristics is presented, only for response time satisfaction
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per customer. Related work in CPU power management policies for service based applications can be

found in [102] and [103]. In [102] priority scheduling is proposed, with a penalty function that is used

to adjust throughput per client; in [103], the authors propose a method for estimating CPU demand

of service requests, based on linear regression between the observed request throughput and resource

utilization level. Our work is also related to the emerging virtual network embedding problems [104],

[105] and the resource allocation problems that arise due to physical limitations on CPU, network

capacity etc. when sharing resources among virtual tenants.

3.3 System model & Problem Statement

3.3.1 System model

We assume the system model depicted in Fig. 3.1. The system comprises a set of service domains,D,

indexed by i= {1, . . . ,D} and a set of servers,M, indexed by m= {1, . . . ,M}. Each service domain is

associated with a given class, which specifies a percentage pi of aggregate CPU resources to be com-

mitted for serving domain requests over an infinite time horizon. A router/controller with one FIFO

queue per domain, distributes service requests from the domains to the cluster of servers, seeking to

uphold the domain SLAs in the process. The controller has no priori knowledge of the execution

time of the requests. This parameter is provided as feedback a posteriori, in order to schedule future

service requests more effectively. It is clarified that a service request is modeled as a non-preemptive

process that will occupy a server for a given, non-infinite amount of time.

The following modeling assumptions are adopted, without loss of generality:
• We assume that the servers have no queueing capabilities. This task is handled exclusively by

the controller.

• Whenever a server dispatches a given service request, it signals to the controller for a new

request/packet. The controller then assigns a new request to the server. This communication

is instantaneous. In other words, the communication overhead between the controller and the

servers is assumed to be a part of the requests.

• If every domain queue is empty, a server is fed with interruptible null-requests from a null-

domain (Fig. 3.1). The null-domain is an artificial structure, employed as a means of facilitating

the mathematical analysis only.

• Every domain can be served by any server.

Every domain i has a finite, aggregate arrival rate of requests, λi, which follows an unknown

distribution with bounded inter-arrival times. Regarding the service process, we assume a non-i.i.d

model, where the service time distribution can vary, depending on the domain identifier, i. The service

time of a request belonging to domain i, is described by a random variable Si that follows some general

distribution with mean E[Si] and finite variance, that we assume to have an upper bound. Therefore,

there exists some finite Smax
i such that:

0 < Si ≤ Smax
i < ∞ (3.1)
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We note that the upper bound on the inter-arrival times and the service times, are the only requirements

for the proposed mathematical framework. We define the CPU utilization, Uπ
i (t), of domain i up to

time t, under a request-to-server assignment policy π as:

Uπ
i (t),

total service time up to t
M · t

(3.2)

When the following limit exists, the system is said to have reached a steady state, and the allotted

percent of CPU capacity to domain i is then defined as:

Ũi(π), lim
t→∞

Uπ
i (t) (3.3)

The maximum achievable utilization for domain i, obtained when all of its requests can be served

in the cluster for t→ ∞ is:

p̃i =
λi ·E[Si]

M
< 1 (3.4)

This can be regarded as the utilization obtained if there was a single domain in the system, utilizing

all the resources. We note that servicing all the requests, does not mean that the queue will be empty

from one point and on, but rather that the probability of noticing queue sizes bigger than zero is

negligible (convergence in probability).

Furthermore, let ln denote the idle time between round n and round n+ 1. Idle time can occur

because there are no available requests in the system, or the system operates in non work-conserving

mode and the available requests are not served because of the policy rules. We consider only systems

for which

ln < l < ∞,a.s., (3.5)

where l ∈R+ denotes the maximum observable idle time (or maximum observable inter-arrival time).

Finally, we denote as pi the steady state percentage utilization goal, and the corresponding goal

vector as p = (pi), where
|D|
∑
i

pi = 1. The goal vector simply defines the requested percentage share of

the aggregate CPU time per domain, eg. p = (20%,30%,50%), assuming steady state.

3.3.2 Objectives

Our objective in this study, is to define control policies π that fulfill a number of criteria. We investi-

gate policies that uphold the SLO for every domain i, under the assumptions of stochastic arrivals and

unknown service time distribution. No workload prediction/estimation is assumed. The reason is that

we want the mathematical framework to be general and depending on the context of the application,

predictions may be difficult to be derived (e.g., in web server applications, when thousands of services

are deployed with completely different semantics). In the following, we provide the following:

a. Analysis of the conditions for the existence of a steady state (i.e. that the limit in eq. (3.3) exists).

b. Analysis of the feasibility space of the class of policies defined and the analysis of the redistri-

bution mechanism of the residual CPU service time required in order to achieve any custom but
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Figure 3.1: Overview of the system model, comprising a set of SLA-specific service domains and a
set of servers. A controller enforces the SLAs using the reported processing times as feedback.

allowed steady state p∗i . It will be shown that the redistribution mechanism greatly affects the

actual percentage achieved.

Taking into account the redistribution process, the objective (SLO) can be expressed as equations

of the form:

Ũi(π) =

p̃i , if p̃i ≤ pi

p∗i , if p̃i > pi, p∗i ∈ [pi, p̃i]
(3.6)

An exemplary SLO can be described as follows: “without any knowledge of statistics regarding

the arrival and the service process in a cluster of servers, guarantee 20% of CPU power to requests

of class A, 30% of CPU power to requests of class B and 50% of CPU power to requests of class

C in the long run. Also assume that no statistical knowledge is available regarding the correlation

between the request size and the service time”.

Note that in the above definition, there is no distinction between environments where mixed work-

loads are present and environments where the system is always saturated, meaning that there are al-

ways available requests by all the domains in the controller queues. In the case of dynamic arrivals,

it is up to the policy to decide how to redistribute service, in the case where a high priority domain

must be served but has no available requests.

We will show that a class of policies Π exists such as that every π ∈ Π achieves steady state in

the saturated case and in the non work-conserving mode and upholds the domain SLOs, since the

limit in equation eq. (3.3) exists and the differentiation objective in eq. (3.6) is satisfied. We also

study the role of the redistribution mechanism in convergence of the policies in the work-conserving

mode. In addition, we present a thorough analysis on the feasibility space of the policies, deducing

the achievable service percentages, p∗i , for every domain.
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3.4 The Proposed, Domain-Serving Policies

We propose a class of Dynamic Weighted Round Robin policies, where the idea of a round is used

again, but the number of times each domain is served is controlled in a dynamic way; a decision is

made round by round as follows. At the beginning of a new round, a list of domains accompanied

by weights wn
i for every domain i is selected by the controller. Then, all the domains in the list are

scheduled for service as many times as the weight indicates. When the round is over, a new list as

well as new weights are calculated. We investigate Weighted Round Robin policies due to their nice

speed in convergence properties contrary to probabilistic solutions [106].

3.4.1 Class Π of Dynamic Weighted Round Robin (DWRR) policies

We define the class Π of DWRR policies, which operates at rounds, with no loss of generality. In

order to enable the work-conserving property, we decompose Π into two algorithmic components,

that we denote as f and h respectively. Any policy π ∈ Π obeys the following rules regarding f,

while any arbitrary h algorithm can be used to enable the work-conserving property and support the

redistribution mechanism.

At the beginning of round n, at time instant tn ∈R+, let Xi(tn) denote the queue size for domain i.

We define:

Class Π =

If ∃i : Ui(tn)< pi,Xi(tn)> 0→ Algorithm f

If ∀i : Ui(tn)< pi,Xi(tn) = 0→ Algorithm h
(3.7)

The algorithm f (negative drift), calculates the weights wn
i as follows:

wn
i =

0, if Ui(tn)> pi or Xi(tn) = 0.

min{k(tn,π),Xi(tn)}, if Ui(tn)≤ pi,Xi(tn)> 0
(3.8)

In other words, wn
i job requests are scheduled for domain i, where k(tn,π)≤ K and K is an arbitrary

finite positive integer.

The algorithm h (work-conserving) is used whenever Xi(tn) = 0,∀i : Ui(tn)< pi, in order to enable

work conservation. In case where there are no available requests from all under-served (“suffering”)

domains, the class of policies Π can utilize any arbitrary scheduling decision, as long as there are

available requests to do so. For example, the algorithm can choose one domain j at random from the

domains for which X j(tn)> 0 and serve it for a finite number of times.

This algorithmic decomposition defines a class of policies for two reasons. Firstly, regarding

the general operation of the policies (Algorithm f ) there is no restriction on the number of requests

served per round, as long as over-satisfied domains are blocked when there are no available requests

from a suffering domain. The only requirement is imposed by the artificial limit K, used to avoid the

case of assigning an infinite number of requests to some domain. Secondly, there is no limitation, on

the operation of the h-algorithm, used for enforcing work conservation via redistribution of residual

service slots. In general, the f -algorithm of the scheduling class is used to guarantee the objective
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defined in eq. (3.6) and define the feasibility space, while the h-algorithm defines the actual state

achieved within the feasibility space.

3.5 Theoretical Analysis of DWRR

Under any policy π ∈ Π (either work-conserving or non work-conserving), the CPU utilization

evolves in time according to the following recursive formula:

Ui(tn+1) = an ·Ui(tn)+bn
i (3.9)

where an = tn
tn+1

, bn
i =

Sn
i

tn+1
and Sn

i denotes the aggregate service time that domain i received during

round n, expressed as a sum of service time random variables. This recursion is aligned with the

classical feedback ARX models [44], where in this case both terms an, bn
i are stochastic and thus

utilization is also a random variable. In fact, this is the reason that stochastic analysis tools are

required to effectively control the system, when the arrival and service process are unknown. Term an

defines the way the history affects the system and bn is related to the control input. Note that because

of the bounded service-time and idle time assumptions, any round duration has also an upper bound.

In addition, for any domain, the increase (or decrease) in utilization is also bounded according to the

following lemma.

Lemma 1 (Utilization difference). The utilization difference between the beginning and the end each

round for every domain is bounded according to

|Ui(tn+1)−Ui(tn)| ≤
l +K ·Smax

i + ∑
j∈D

K ·Smax
j

tn+1
(3.10)

Proof of lemma 1. By definition Sn
i denotes the service time received for domain i within the time

interval [tn, tn+1]. Then using eq. (3.9)

Ui(t) =
tn

tn+1
·Ui(tn)+

Sn
i

tn+1

and hence

|Ui(tn+1)−Ui(tn)|=
∣∣∣∣( tn+1− tn

tn+1

)
·Ui(tn)+

Sn
i

tn+1

∣∣∣∣ (3.11)

38

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:21:38 EEST - 3.142.196.98



Then

|Ui(t)−Ui(tk)|=
∣∣∣∣( tn+1− tn

tn+1

)
·Ui(tn)+

Sn
i

tn+1

∣∣∣∣ (3.12)

≤
∣∣∣∣ tn+1− tn

tn+1

∣∣∣∣ ·Ui(tn)+
∣∣∣∣K ·Smax

i
t

∣∣∣∣
≤

∣∣∣∣∣∣∣
∑

j∈D
K ·Smax

j

tn+1

∣∣∣∣∣∣∣+
∣∣∣∣K ·Smax

i
tn+1

∣∣∣∣
=

K ·Smax
i + ∑

j∈D
K ·Smax

j

tn+1

In eq.(3.10) we additionally included the term l (an upper bound for all ln), since idle time may

be experienced due to lack of available requests from all the domains. In this case it holds that

tn+1 − tn = ln + ∑
i:wn

i≥1
Sn

i , where ln denotes the sum of “null requests” duration in all the servers,

between round n and n+1.

A standard way of proving the convergence of a work-conserving policy is to show that eq. (3.9)

converges in the general case. This essentially means that the limit of eq. (3.3) exists and that the

system will reach a steady state. The form of eq. (3.9) may predispose for convergence, since the

control action has waning effect on utilization as time progresses (bn
i → 0 and an → 1 for t → ∞).

Before we proceed with the analysis, note that although the utilization evolution in transient state

heavily depends on the time evolution and the past control actions, time evolution has no actual effect

on convergence. It is the combination of the selected π = (f,h) policies that is responsible for the

long-run behavior. As we mentioned in the related work section, results from ergodic theory and

martingale theory have been applied in the past [52]. Concerning the system we study, we tried to

exploit sufficient conditions for almost sure convergence to a limiting random variable. The reason

is that a martingale in the limit converges, according to the analysis and proofs presented in [107].

Nevertheless, for this classic approach to yield convergence, when trying to apply it in our system,

if we do not take into account the negative-drift characteristics of the policies, the error is a sum of

terms whose individual limit to infinite is zero. This sum reassembles the properties of harmonic

series (with terms that tend to zero) and the sequence actually diverges, since it tends to infinity.

In conclusion, in a work-conserving system following the f negative drift principles, although as

the time progresses the control actions have waning effects, it is up to the redistribution policy h if

convergence can be achieved in the Cauchy sense [52]. In the analysis presented in the following

sections, we take a simpler approach and we exploit results from stochastic analysis in order to prove

convergence.
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3.5.1 Convergence and Feasibility Space Analysis

In the general case of unknown arrival process, p̃i (the maximum utilization percentage achieved in

steady state according to eq. (3.4), may be higher, equal or lower than the percentage goal requested.

A number of lemmas and theorems establishes the feasibility (“capacity”) region formally, for every

policy π ∈Π .

Non Work-Conserving Mode: Convergence w.p1

As the following theorem presents, under non work-conserving mode, every negative drift DWRR

policy reaches steady state. In addition, the capacity region is a vector.

Theorem 1 (Convergence when non work-conserving). In non work-conserving mode of operation,

under any policy π ∈ Π , the limit in eq. (3.3) exists ∀i ∈ D. Moreover the objective defined in eq.

(3.6) is satisfied. Thus:

Ũi(π) = min{p̃i, pi} (3.13)

In the non work-conserving mode, the policies operate according to the negative drift rules of

algorithm f (i.e., we have π = f) and no service redistribution is allowed. If there are no available

requests from all the domains that are below their goal, the system goes to idle state. Essentially, the

class only requires to block over-satisfied domains at the control instances and serve one or more of

the under-utilized domains. In addition, it imposes no restriction on the number of requests that are

served during a round.

The proof of convergence is based on the following observation. Because of the negative drift

given to the over-satisfied domains at every control instant, in transient state, the utilization trajectory

for any domain oscillates around its goal percentage pi. Since the utilization difference between any

two successive rounds is bounded, the oscillation is continuously decreasing and there exists some

point in time when the system converges in the Cauchy sense. In the case where p̃i < pi then we

prove that the trajectory approaches p̃i.

To proceed with the proof, we introduce the null-domain concept of Fig. 3.1. Basically, we model

the idle time as a null-domain, and treat the system state as a saturated case variation.

Initially, since limsup
k→∞

l+K·Smax
i

tk
= 0, we can write that:

limsup
k→∞

pi + limsup
k→∞

l +K ·Smax
i

tk
= pi (3.14)

In addition, the following lemma holds:

Lemma 2 (Utilization upper bound). For any domain i and round k, the utilization is upper bounded

by

Ui(tk)≤ pi +
K ·Smax

i
tk

. (3.15)
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This bound derives from eq. (3.12) and holds for the general case of stochastic arrivals (non-work

and work-conserving mode of operation). The reason is that all over-served domains are blocked by

the policy (even if a number K of its requests were served during the last round).

Proof of lemma 2. First consider a round n for which the utilization is smaller than the goal. Then we

readily get

Ui(tn)≤ pi < pi +
K ·Smax

i
tn

. (3.16)

Then, we study a number of consecutive rounds k1, . . . ,kξ for which the utilization of domain i is

above the goal. Observe that domain i does not receive service within rounds k2, · · · ,kξ since its

utilization exceeds the goal (see policy definition). Therefore we can readily conclude that U(tkξ
) <

U(tkξ−1) < · · · < U(tk2) < U(tk1). Therefore it suffices to prove an upper bound only for rounds that

succeed a round where the utilization was below goal. For these specific rounds we perform the

following analysis.

Suppose k is a round for which Ui(tk)> pi and Ui(tk−1)< pi. Let t̃i,k be the largest instant within

round k such as that Ui(t̃i,k) = pi, clearly such an instance must exist. Also, let S̃k
i,i be the remaining

service time of domain i in round k, after the time instance t̃i,k. Then using eq. (3.9) for tk < t ≤ tk+1

we derive

Ui(t)− pi ≤
t̃i,k
t

Ui(t̃i,k)+
S̃k

i,i

t
− pi (3.17)

=
t̃i,k
t

pi +
S̃k

i,i

t
− pi =

S̃k
i,i

t
−

t− t̃i,k
t
· pi ≤

S̃k
i,i

t

Since K ·Smax
i is a universal upper bound of service within a round, we have S̃k

i,i ≤ K ·Smax
i and so

Ui(t)≤ pi +
S̃k

i,i

tk
≤ pi +

K ·Smax
i

tk
. (3.18)

Then, since all over-served domains are blocked by the policy (even if a number K of its requests

were served during the last round), we can write that:

limsup
k→∞

Ui(tk)
eq.(3.10,3.14)
≤ min{p̃i, pi} a.s (3.19)

where p̃i is the maximum achievable utilization for domain i. This quantity is related to the maximum-

overshoot in classic control theory [44].

Proof of Theorem 1. We introduce the notion of a virtual queue holding null requests. The queueing

structure of the controller, now becomes one queue per domain, plus one virtual queue for null re-

quests (see Fig.3.1). A null request can be thought of as a series of nop assembly commands. This
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is an artificial technicality, to model idle time in the system. Moreover, we assume that null requests

always exists in the virtual queue.

In order to examine the case of idle state, consider that at the end of some round there are no avail-

able requests from any of the domains (Xi(tn) = 0,∀i ∈ D). Then the scheduler selects a null request

from the virtual queue and sends it to the requesting server. We assume that the server preemptively

replaces null requests. If a null request is in service and some domain’s request arrives to the system,

the controller sends the request to the idle server. Thus the null requests can be treated essentially as

an additional domain in the system.

For the ease of presentation we define the following partition of the domains set:
• D1: includes all the domains for which p̃i < pi.

• D2: includes all the domains for which p̃i ≥ pi. Then D2 =D−D1.

• D3: a singleton set with the null requests domain.

• F : F =D1∪D2∪D3.

Now consider that the idle domain receives all the service time that cannot be utilized due to lack

of requests from the “suffering” domains in D1. Let C(tn) denote the utilization of the null domain,

then we can write:

limsup
k→∞

C(tn) = ∑
i∈D1

(pi− p̃i) (3.20)

which is the upper bound for the null requests domain utilization. Then, the following is true:

liminf
k→∞

Ui(tk+1) = liminf
k→∞

(1− ∑
j∈F\{i}

U j(tk+1)) (3.21)

≥ 1+ liminf
k→∞

(− ∑
j∈F\{i}

U j(tk+1))

= 1− limsup
k→∞

∑
j∈F\{i}

U j(tk+1)

≥ 1− ∑
j∈F\{i}

limsup
k→∞

U j(tk+1)

≥ 1− [ ∑
j∈D1\{i}

p̃ j + ∑
j∈D2\{i}

p j + limsup
k→∞

C(tn)]

Case 1: i ∈ D1

liminf
k→∞

Ui(tk+1) (3.22)

≥ 1− [ ∑
j∈D1\{i}

p̃ j + ∑
j∈D2

p j + ∑
j∈D1

(p j− p̃ j)]

= 1− [( ∑
j∈D1

p̃ j)− p̃i + ∑
j∈D2

p j + ∑
j∈D1

(p j− p̃ j)]

= 1− [ ∑
D1∪D2

p j− p̃i] = p̃i
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Case 2: i ∈ D2

liminf
k→∞

Ui(tk+1) (3.23)

≥ 1− [ ∑
j∈D1

p̃ j + ∑
j∈D2\{i}

p j + ∑
j∈D1

(p j− p̃ j)]

= 1− [ ∑
j∈D1

p j + ∑
j∈D2\{i}

p j] = pi

According to these equations,

liminf
k→∞

Ui(tk+1)≥min{pi, p̃i}= limsup
k→∞

Ui(tk+1)

But, axiomatically, liminf
k→∞

Ui(tk+1)≤ limsup
k→∞

Ui(tk+1) and therefore we conclude that liminf
k→∞

Ui(tk+1)=

limsup
k→∞

Ui(tk+1) and so the limit exists in any case.

We proceed to study the feasibility space for all DWRR policies in terms of achievable domain

service vectors, with the focus being on work-conserving modes of operation.

Work-Conserving Mode

Contrary to the non work-conserving mode, under work-conserving mode, the capacity region is a

hyperplane, as stated by the following theorem. Note that we restrict our attention to the policies

π ∈ Π that reach steady state, since the convergence depends not only on the f -algorithm, but to the

h-algorithm also. Thus convergence analysis is specific to every π = (f,h) pair.

Theorem 2 (Feasibility Region in work-conserving mode). The feasibility space is a hyperplane

defined by the intersection of hyperplanes defined by the following constraints:

|D|

∑
i

Ũi(π)≤ 1 (3.24)

Ũi(π)≤ p̃i

and

Ũi(π) = p̃i, if p̃i < pi (3.25)

Ũi(π)≥ pi, if p̃i ≥ pi

Proof of Theorem 2. The constraints defined in eq. (3.24) are irrelevant to the goal vector, while the

constraints in eq. (3.25) derive from the relationships between the goal vector p= (pi) and p̃= (p̃i).
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The first two constraints in eq. (3.24) state that the utilization achieved in steady state cannot exceed

the physical maximum utilization of the system (which equals one) and the third constraint simply

states that a domain cannot exceed the maximum utilization (Definition 3.2).

In contrast to the previous case of non work-conserving mode of operation, where the system

may experience idle time even when there are available requests for service, in the work-conserving

mode of operation, service redistribution takes place and is up to policy h to achieve convergence.

As we present, the feasibility space of the class is actually defined by the f-algorithm and the final

performance depends on h-algorithm selection. Constraints in eq. (3.25) are proven in the two lemmas

that follow.

Lemma 3 (Domains that cannot reach their goals). In the case where for some domain i, p̃i < pi (the

percentage goal pi was ambitious), under any policy π ∈ Π , steady state exists and the achievable

percentage Ũi(π) equals p̃i.

The proof of this lemma is analogous to case 1, presented in the non work-conserving mode of

operation and thus is omitted. The difference in the work-conserving case is that there is no “null”

domain and we simply don’t know how the extra service C(tn) is redistributed in domains that can

utilize extra service.

Lemma 4 (Domains that are able to reach their goals). In the case where for some domain i, p̃i ≥ pi

(the goal is feasible), under any policy π ∈Π , Ũi ≥ pi is true.

Proof of lemma 4. Assume that there exists some domain i ∈ D2 (includes all the domains for which

p̃i ≥ pi) and consider some very large round n0, for which Ui(tn) < pi is true ∀n > n0. This means

that the policy can serve less than expected, but also less than it could have received. According to

the policy definition, this means that for any successive round n > n0, the policy will set constantly

wn
i = 1 (independently of which other domains will also participate in all or to a subset of the new

rounds). The reason is that there will be unserved requests of this domain that can participate in the

following rounds. This makes ln = 0 for all successive rounds. With the same reasoning, all the

domains that will participate in the following rounds and on will be served constantly. Assume that

we define as B ⊆D2 as the set in which all these domains belong.

But this means that all the other domains that do not belong in this “special” set B cannot exceed

their targets (and receive the “lost” service from domains in B), since whenever they do so they get

blocked by the policy. Then, summing up the utilizations of all the domains, we get that for any

t > tn0 :

∑
i∈B(t)

Ui(tn)< ∑
i∈B(t)

p̃i < ∑
i∈B(t)

pi

∑
i/∈B(t)

Ui(tn)≤ ∑
i/∈B(t)

pi,
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and thus:

D

∑
i=1

Ui(tn) = ∑
i∈B

Ui(tn)+ ∑
i/∈B

Ui(tn)< 1

But this means that there must be idling, which is a contradiction. Thus, it must be true that for any

domain i ∈ D2 : Ũi(π)≥ p̃i.

Note that in this case we cannot guarantee that the output utilization actually reaches steady

state, or convergences to some point, since this depends on the selected h-algorithm. The above

proof, nevertheless, guarantees that the utilization trajectory will move above pi independently of the

selected h-algorithm.

The following theorem is a direct consequence of lemmas 3 and 4 and states that all the policies

that belong in class Π can be used to satisfy the objective in eq. (3.6).

Theorem 3. All the policies that belong to class Π can be used to satisfy the objective in eq. (3.6).

For example, as shown in Fig. 3.2, in both cases of non work-conserving and work-conserving

mode, in the case of these two domains, the goal lies over the line that joins points (0,1) and (1,0) and

the feasibility region is a single point. The point lies over the line in the case that the available load

can support the maximum utilization sum that equals one. In the case where a very high goal was set

for both domains, then the performance point would be a point that lies below the line that is defined

by ∑
i∈D

Ũi(π) = 1.

For any policy π ∈Π under non work-conserving mode a domain i receives exactly the min{pi, p̃i}
as can be seen in Fig.3.2(a). The feasibility region, in the general case of stochastic arrivals, is de-

fined by equations (3.24) and (3.25). For instance, the shaded region in Fig. 3.2(b) is defined by

the inequalities of eq.(3.24). Under work-conserving operation a domain cannot receive less than

the min{pi, p̃i} as we can see in examples presented in Figs. 3.2(c) and 3.2(d) where different rela-

tionship exists between p̃i and pi. In all cases, the presented class Π of policies guarantees that the

objective in eq.(3.6) is satisfied.

Details on the Load Redistribution Mechanism

In the work-conserving mode, for policies π ∈ Π , π = (f,h) the normal operation is performed ac-

cording to algorithm f and the service redistribution is performed according to algorithm h. While

the operation of algorithm f guarantees the validity of the constraints in eq. (3.25) and the definition

of the feasibility space, the algorithm h is responsible for the convergence properties and the exact

points p∗i achievable by the policy in effect.

The total CPU cycles that can be redistributed, are offered by domains i ∈ D1 to domains j ∈ D2

and (as analyzed in section 3.5.1) equals ∑
i∈D1

(pi− p̃i). Since we consider only work-conserving

policies, the service that is not utilized by some domains will be redistributed to other domains.

According to the previous analysis, the actual performance is the following:
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Ũi = p̃i , if i ∈ D1 (lemma 3)

Ũi = pi +Ci , if i ∈ D2 (lemma 4)

Note that that as the feasibility space was clearly defined, the total extra service that will be

redistributed depends only on vectors p = (pi) and p̃ = (p̃i) and is irrelevant to the actual weight

(value k(tn)) selected by algorithm f and algorithm h. It is the extra service Ci received by each

domain, that depends on algorithm h. The independence between f and h algorithms can be expressed

by the following lemma.

Lemma 5 (Service redistribution). Under any policy in class Π and ∀i /∈ B̃, Ci(tn) redistribution

depends only on the scheduling algorithm h and is irrelevant to algorithm’s f k(tn) selection.

Proof of lemma 5. In order to prove the above lemma, we will show that the service redistribution

Ci(tn) does not depend on the number k(tn) selected at each control instant at the end of round tn by

algorithm f. Assume a system with two domains and two policies π1(f1,h1),π2(f2,h2) such as that

h1 = h2. Both h1,h2 choose the other domain if it has requests, while k2(tn) = k1(tn)+ k, where k is

any integer that can be supported by the queueing dynamics. The same reasoning can be followed

for D domains. Also assume that p̃1 < p1 and ṽ2 > p2 so that service redistribution will occur,

since domain 1 has not sufficient load to support the goal percentage. However, in both policies,

lemma 1 guarantees that Ũ1(π1) = Ũ1(π2) = p̃1, thus in both cases Cπ1
2 = Cπ2

2 = p1 − p̃1 and so

Ũ2(π1) = Ũ2(π2) = p2 +min{C2, ṽ2− p2}. The fact that, under policy π2, at every round, domain

1 was given more CPU cycles, plays no role in the long run. The minimum in this equality simply

states that domain 2 cannot receive extra service that cannot be supported by its load.

In Fig. 3.3, a visual representation of the feasibility space is given, in the case where three domains

are competing for service using f rules. In this example, domain 3 can utilize all the capacity, p̃3 = 1,

for domain 1, p̃1 > p1, while for domain 2, ṽ2 < p2. According to the class of policies definition,

theorem 2 and lemmas 3 and 4, load redistribution will take place while the feasibility space of the

class of policies is defined as the intersection of the following hyperplanes: hyperplane 1 defined by

points (1a,1b,1c,1d) that presents the utilization area domain 1 can exploit, hyperplane 2 defined

by the line defined by restriction ṽ2 and hyperplane 3 (triangle) defined by points (3a,3b,3c) that

presents the utilization area domain 3 can exploit. This intersection is the line that joins points A and

B in the figure.

Depending on the service redistribution algorithm, the long run performance and steady state (if

it can be achieved), clearly depends on the selected h-algorithm. For example, if domain 1 utilizes all

the extra service, the long run utilization point is point B (where domain 3 receives no extra service),

while the long run utilization point is point A, where domain 3 receives all extra service. Intermediate

points can be obtained, if the appropriate redistribution algorithm is selected. Nevertheless, as this

study supposes the absence of statistical knowledge regarding the arrival and service process, it is
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Figure 3.2: For any policy π ∈ Π under non work-conserving mode a domain i receives exactly the
min{pi, p̃i} (3.2(a)). The feasibility region, in the general case of stochastic arrivals, is defined by
equations (3.24) and (3.25). For example the shaded region in 3.2(b) is defined by the inequalities
of eq.(3.24). Under work-conserving operation a domain cannot receive less than the min{pi, p̃i}
(examples 3.2(c) and 3.2(d)).

not easy to find such a policy. Note that a second DWRR can be also deployed in order to allocate

precisely this extra service as follows. If a long time has elapsed andD1 is not empty, set ∑
i∈D1

pi− p̃i >

0. Then we can create a second DWRR list of weights with only D2 domains, define new goals

regarding the extra service and redistribute service according to the policy’s negative drift rules.

3.5.2 Notes on Ideally Overloaded Conditions

A special case of the above general analysis is the case where the system is in an overload situation

and at each time there are always available requests to schedule, for all the domains.

Refinement of the T-SLA: In the overload case, the T-SLA now becomes “allocate an exact percent

pi of the CPU capacity in the server tier to service domain i, using an appropriate domain scheduling

policy π at the controller”. More, formally the T-SLA now becomes:

Ũi(π), lim
t→∞

Uπ
i (t) = pi (3.26)

For all the non-idling policies operating in rounds, there exists at least one domain i with wn
i > 0

participates in each round. In overload conditions, by following the analysis in the proof of Theorem

1 and letting ln = 0, we can verify that the limit of Ui(t) as t → ∞ of every bounded-round policy

exists almost surely. Also, for the case of work-conserving policies with overloaded queues, it is easy
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Figure 3.3: A three domains scenario, where ṽ2 < p2 and redistribution must take place. The final
performance depends on algorithm h rules.

to see that a fair policy is a non-idling policy. For all the bounded round-fair policies the following is

true:

Theorem 4. The utilization of every domain, under a bounded round-fair policy is a fundamental (or

Cauchy) sequence and satisfies the T-SLA in equation 3.26 with probability one.

The case of saturated conditions is a special case of the non work-conserving case and analysis

presented for the proof of Theorem 1. In the case of saturated conditions, only the “suffering domains”

are served at each round, while p̃i > pi,∀i ∈ D. In this case, for every domain Ũi = pi w.p. 1. Two

example policies that belong to the class of overloaded bounded-round fair policies, are described

below. We study their properties extensively, in subsequent sections.

Overloaded Only Below Goal Participates (OOBG)

Under the Overloaded Only Below Goal Participates (OOBG) policy, in round n (that starts at time

tn), set wn
i = 1 for all the domains where USOBG

i (tn)≤ pi; for the rest set zero weights. In other words,

at every round only the domains that have allotted CPU time less than or equal to their T-SLA target

are given one slot; the rest are given none.

Overloaded Only The Most Suffering (OOMS)

Under the Overloaded Only The Most Suffering (OOMS) policy, each round is composed of only one

domain which is served once. The selected domain is the one with the largest amount of missing

service. More precisely, at a decision instant tn when the n round begins, we set wn
i = 0, i 6= j and

w j(tn) = 1 where j = argmink∈D{UOOMS
k (tn)− pk}. OOMS resembles the family of maximum weight
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policies [56],[108]; that are well-known optimal policies and can be thought of as a degenerate case

of the Round Robin scheduling policies.

3.5.3 Summary of Results Regarding DWRRR Analysis

The following theoretical results can be collectively deduced regarding the analysis of negative drift

DWRR policies, under unknown service time and arrival process statistics:

1. In the case of saturated arrivals, ∀π ∈ Π converges with probability 1 (w.p. 1) to the goal

percentage, pi.

2. In the case of stochastic arrivals, when operating in non work-conserving mode, steady state

exists for any policy π ∈Π . Any policy converges with probability 1 (w.p 1) to the minimum

between the goal percentage and the maximum utilization service.

3. Assuming steady state, the feasibility space for any policy π ∈ Π , in the case of stochastic

arrivals and all modes of operation, can be clearly defined.

4. In the case of stochastic arrivals, under work-conserving mode of operation:

a. any policy π ∈Π : p̃i ≤ pi convergences to p̃i.

b. for any policy π ∈ Π : p̃i > pi convergence point depends on the service redistribution

algorithm h.

Regarding point (1) an overloaded server system, ideally saturated, is clearly related to the way

we define busy periods. In queueing theory, a busy period is the time between the arrival of a customer

to an idle server and the first time the server is idle again. In the ideally saturated case, we assume an

infinite busy period where we extend this concept and furthermore we assume at any control instant tn,

Xi(tn)> 0,∀i∈D (there is an available request by every domain waiting for service), without however

taking into account any load variations, burst sizes or arrival process and service time distribution

details. In order to prove (2) we introduced a novel approach for proving convergence for the non

work-conserving mode of operation, via the concept of null-domains. For point (3) we examined the

feasibility space of the DWRR policies using a series of lemmas. We proved (4a) and we provided a

detailed analysis regarding point (4b).

3.6 Implementation Considerations

In practical considerations, we are interested not only in the convergence of the sequence, but also

in how fast the sequence convergences to its target. In principle, similar to stochastic approximation

for dynamic systems, a trade off exists between rate of convergence and convergence to the goal

[67]. Under saturated conditions operation, the following analysis is holds regarding the rate of
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convergence, the time and round of convergence estimation.

3.6.1 Rate of convergence analysis

The following theorem states, that under saturated arrivals’ conditions, DWRR converge to the objec-

tive sub-linearly.

Theorem 5 (rate of convergence). In ideally saturated conditions, all the policies in class Π experi-

ence sub-linear convergence to the target utilizations.

Note that there exist standard techniques in the literature that can accelerate convergence [109].

Proof of Theorem 5. The rate of convergence of Ui(tn) sequence can be found by lim
n→∞

Ri(tn) , where

Ri(tn) is defined according to eq. 3.27(this limit exists by Theorem 1).

Ri(tn) =
|Ui(tn+1)− pi|
|Ui(tn)− pi|

(3.27)

According to eqs. (3.9) and (3.27), we have that

Ri(tn) =
| tn

tn+1
Ui(tn)+

Sn
i

tn+1
− pi|

| tn−1
tn

Ui(tn−1)+
Sn−1

i
tn
− pi|

(3.28)

The numerator of the right part of the equation is equal to∣∣∣∣ tn
tn+1

Ui(tn)+
Sn

i
tn+1
− pi

∣∣∣∣= ∣∣∣∣ tn−1

tn+1
Ui(tn−1)+

Sn−1
i

tn+1
+

Sn
i

tn+1
− pi

∣∣∣∣ (3.29)

After we replace eq. (3.29) in eq. (3.28) and perform some arithmetic operations, we have that:

Ri(tn) =
tn

tn+1
·
∣∣∣∣1+ Sn

i −Ln · pi

tn−1Ui(tn−1)+Sn−1
i − tn · pi

∣∣∣∣ (3.30)

where we used the fact that tn+1 = tn +Ln. Let

g(tn) =
Ni(n)
Di(n)

=
Sn

i −Ln · pi

tn−1Ui(tn−1)+Sn−1
i − tn · pi

(3.31)

=
Sn

i −Ln · pi

tn−1Ui(tn−1)+Sn−1
i − (tn−1 +Ln−1) · pi

=
Sn

i −Ln · pi

tn−1[Ui(tn−1)− pi]+Sn−1
i −Ln−1 · pi

where Ni(n) denotes the numerator and Di(n) denotes the denominator. We want to show that

lim
n→∞

g(tn) = 0. A minor technical difficulty arises from the presence of the term tn−1[Ui(tn−1)− pi] in

the denominator, which leads to an ∞ ·0 term in the limit.

To overcome this technicality, we define then two random sequences vn(tn) and hn(tn) as follows:
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Ni(n) Di(n) un
i hn

i

≥ 0 > 0 un
i > 0 −Di(n)

tn−1
< hn

i < 0

≥ 0 < 0 0 < un
i <

|Di(n)|
tn−1

hn
i < 0

< 0 > 0 −Di(n)
tn−1

< un
i < 0 hn

i > 0

< 0 < 0 un
i < 0 0 < hn

i <
|Di(n)|

tn−1

vn(tn) =
Sn

i −Ln · pi

tn−1[Ui(tn−1)− pi +un
i ]+Sn−1

i −Ln−1 · pi

hn(tn) =
Sn

i −Ln · pi

tn−1[Ui(tn−1)− pi +hn
i ]+Sn−1

i −Ln−1 · pi

where vn
i ,hn

i are random sequences chosen to make the bracketed terms nonzero and in addition they

obey the following rules:

These rules guarantee that we can find an upper bound g(tn) as follows:

vn(tn)< g(tn)< hn(tn), ∀n.

We can easily see, however, that lim
n→∞

vn(tn) = 0 and lim
n→∞

hn(tn) = 0. (Both limits go to zero since by

definition ∀n, Sn
i < K · Smax

i < ∞, Ln = ∑
i:wn

i≥1
Sn

i ≤
|D|
∑

i=1
K · Smax

i < ∞). By the squeezing principle, it

follows that lim
n→∞

g(tn) = 0 and thus we can calculate the limit in eq. (3.30):

lim
n→∞

Ri(tn) = 1 · |1+0|= 1 (3.32)

The utilization approaches the target sub-linearly although variable speed may be observed during

every sample path.

3.6.2 Time and Round of Convergence Estimation

We have seen that convergence to the desired targets can be slow (theoretically, sub-linear according

to Theorem 5). Quite often, sub-linearly convergent sequences approach their limit fairly fast and then

take a long time to achieve the theoretical value. From a practical standpoint, it may be satisfactory

to know that “with high probability, we have come close to the target”. In this section, we investigate

heuristically the time and the number of rounds that is required to enter a “sphere of convergence

around the target”. We will try to find n0 so that, with high probability,

gi(tn) = |Ui(tn+1)−Ui(tn)| ≤ ε,∀n > n0 (3.33)
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We begin by writing the following expression, based on eq. (3.12) and the analysis in the proof of

convergence:

gi(tn) = |Ui(tn+1)−Ui(tn)| ≤

D
∑
j

K ·Smax
j +K ·Smax

i

tn
(3.34)

where we remind that K · Smax
i notes the maximum observable service time for all the requests of

domain i and in all sample paths. If now we want |Ui(tn+1)−Ui(tn)|< ε ∀i∈D, then from eq. (3.34),

we can write

(D+1) ·maxi∈D{K ·Smax
i }

tn
≤ ε

∃n0−−→ (3.35)

tn0 ≥
(D+1) ·maxi∈D{K ·Smax

i }
ε

The time tn0 is an estimation for the convergence time of all the domains to converge in a sphere of

deviation ε .

Round of convergence n0 estimation

Furthermore, an estimation on the round of convergence can be also made. If we know that the time

of convergence is lower bounded when Ln is maximized, then the round of convergence is upper

bounded when every round has the minimum duration (largest possible time of convergence with the

maximum number of rounds). This happens when only one domain participates in the round and with

the minimum service time. According to this, in the worst case scenario, the round of convergence n0

in a sphere of deviation ε is equal to

n0 ≤
tn0

min
i∈D,over all n

{Sn
i }

(3.36)

3.7 Evaluation

In this section we present the evaluation of the DWRR policies using an extensive set of simulations.

The goal of this section is to verify the theoretical results obtained in previous sections and they

give to the administrators interested in applying DWRR a better representation of the actual DWRR

performance. A custom, JAVA-based simulator was build to perform the following experiments.

A large number of system (e.g., number of servers) and statistical (e.g., service time distribution)

parameters are tunable and affect the performance of DWRR. We begin by focusing on the stochastic

arrivals case. A single domain is selected at random when redistribution should be performed (we

refer to this policy as OBG (serve Only Below Goal)). We present an indicative set of simulations

regarding the following:
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1. convergence of the policies in a non work-conserving mode of operation and comparison with

other schemes.

2. verification of the feasibility space analysis, by providing points outside the feasibility space

and presenting the points where the system converges.

3. understanding of the h-policy effects on final performance, using the goals that fall outside the

feasibility space, under different h algorithms.

3.7.1 Convergence of the Policies in Work-Conserving Mode of Operation and Com-
parison with Other Schemes

In both saturated systems and systems with stochastic arrivals, DWRR can be used to satisfy the dif-

ferentiation objectives. The only requirement to reach a predefined goal is that the goal is feasible.

Figs. 3.4(a) and 3.4(b) are used to verify the DWRR performance in the following simulation scenar-

ios, where the OBG is selected as the member policy from the DWRR class defined (in OBG when

domain i is selected then wi = 1).

In Fig.3.4(a) the goal vector defines equal CPU shares for three domains {33%,33%,33%}where

in Fig. 3.4(b) the goal vector was set equal to {50%,30%,20%}. In both scenarios, poisson arrival

rates were used for all domains, with mean rate vector equal to {0.5,0.4,0.3} and exponential service

time distribution with means {3.0,2.0,1.0}. Note that the reason for this selection was to use different

workload characteristics per domain. As we can see in both cases, DWRR are able to differentiate

according to the requested goal vector since the policies adapt in real time to workload variations and

the stochastics of the system.

In Fig. 3.4(c) a comparison is presented among DWRR (OBG), WRR [99], Random scheduling

and Credit Scheduling [42], with the workload and the goal was set,to {50%,30%,20%}. In this

figure, the total absolute deviation is presented
D
∑

i=1
|Ui(tn)− pi|. WRR is a static policy where the

scheduling weights are defined according to the goal vector, so at each round, 5 requests were served

by domain 1, 3 from domain 2 and 2 from domain 3 (if they were available); in Random scheduling

a domain is selected at random; where we use a variation of the Credit scheduling policy (because

in the XEN hypervisor it adapts weights every 30ms) to compare it with OBG. As we can see, WRR

scheduling completely fails to align with the objective, since the service time per domain is differ-

ent. In fact, in this example random scheduling performs even better. Adaptive policies like OBG

and Credit can be used to satisfy the objective. DWRR may be more accurate when bursty traffic

phenomena and ON/OFF periods are experienced. In smoother workload variations, OBG and Credit

scheduler exhibit similar performance. Nevertheless, this increased accuracy comes at the expense

of increased overhead. In addition, when the application environment requires for I/O handling and

preemptive operations, a different approach must be considered.

In Fig. 3.4(d) the effects of increasing the domains in the system are presented. We present

the case where we want to perform load balancing, we increase the number of domains and the

53

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:21:38 EEST - 3.142.196.98



C
P

U
 U

ti
liz

at
io

n

0.1

0.2

0.3

0.4

0.5

Time

0 500.0 1.0k 1.5k 2.0k

Goal Vector (33%-33%-33%)

domain 1
domain 2
domain 3

(a)
C

P
U

 U
ti

liz
at

io
n

0.1

0.2

0.3

0.4

0.5

0.6

Time

0 500.0 1.0k 1.5k 2.0k

Goal Vector (50%-30%-20%)

domain 1
domain 2
domain 3

(b)

A
b

so
lu

te
 D

ev
ia

ti
o

n

0

0.1

0.2

0.3

0.4

0.5

0.6

Time

0 500.0 1.0k 1.5k 2.0k 2.5k 3.0k

Policies Comparison

WRR
OBG
Random
Credit

(c)

A
b

so
lu

te
 D

ev
ia

ti
o

n

0.1

0.2

0.3

Time

0 1.0k 2.0k 3.0k

Number of Domains effects

2 domains (50%-%50%)
4 domains (25%-25%-25%-25%)
8 domains (12.5%-...-12.5%)

(d)

C
P

U
 U

ti
liz

at
io

n

0

0.2

0.4

0.6

0.8

Time

0 500.0 1.0k 1.5k 2.0k 2.5k 3.0k

Goal Vector (50%-30%-20%)

domain 1
domain 2
domain 3

weight=queue Size

(e)

A
b

so
lu

te
 D

ev
ia

ti
o

n

0.1

0.2

0.3

0.4

0.5

0.6

Time

0 10.0k 20.0k 30.0k 40.0k 50.0k

Policies Comparison

OBG
OBG-K

With random ON-OFF periods

(f)

Figure 3.4: DWRR Performance

goal is feasible in all cases. As we can see, increasing the number of domains results in increased

convergence time; increasing the number of domains, results in less scheduling opportunities per

round per domain.

According to the class of policies definition, algorithm f sets no restriction on the number of
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Figure 3.5

requests actually served per round when a “suffering” domain is selected. In Fig. 3.4(e) we can see

the effect of setting the weight of a suffering domain equal to the queue size of this domain. (E.g.,

if a domain is below its goal and has 5 requests in queue at the control instant tn, then we set its

scheduling weight equal to 5 for round n). The setup of the experiment is the same as in Fig. 3.4(b).

As we observe, this affects greatly the convergence period. The reason is that by giving increased gain

at each control instant, we violently change the trajectory giving a different tendency to the system.

Since the gain cannot be controlled by classic methods (proportional control, integrators etc. [44]),

increasing the gain indirectly by large weights, leads to increased convergence times. In Fig. 3.4(f)

we compare the OBG policy with the case where the maximum weight can be allocated according to

policy f definition (OBG-K). Furthermore, in order to stress the algorithms we create random ON-

OFF [110] periods that essentially emulate bursts of requests. Evidently, the convergence properties

of delayed decision making results in slow convergence.

In the following sections, we investigate by experience the accuracy of the results in section 3.6.2.

In Fig. 3.5 we demonstrate the number of rounds that are needed to satisfy two different SLAs, and

also contrast it to the lower bound that eq. 3.36 provides. We present the average number of rounds n0

required until |Ui(tn0)− pi| < 0.01 holds for every domain i. The averages are calculated over 1,000

samples per configuration and plotted versus the number of domains. In any scenario, we use one

CPU and service times with mean E[Si] = 1 for all the domains. The first T-SLA requires equal share

between the domains, while in the second T-SLA one domain receives 20% and the rest share the rest

80% of CPU power. We plot the lower bound of eq. 3.36 for Smax
i = SMin

i . In this case, the service

times are constant. From an extended set of simulations conducted and as we can see in this figure

also, different SLAs require different number of rounds to converge but the upper bound that eq. 3.36

is still satisfied.

Remark: From a practical perspective, a major concern when applying DWRR policies, is the

increased overhead requirements. The reason is that the policy requires to track the CPU usage per

domain at the the end of every round, and update statistics accordingly, in order to take the control

action for the next round. Selecting different weights is a way to track only the context switching

instances (when we start to serve the other domains) and thus reduce overhead. Nevertheless, this
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(a) Convergence trajectory in the case of three domains.
Domain 3 has insufficient load to meet its SLA, resulting
into a different converged state. The trail starting from
the origin /0 and ending at the final state show domain
utilization measurements as time advances.

(b) Feasibility space and converged states in a scenario similar
to Fig. 3.6(a). The system always converges to the analytically
projected spaced (dashed line). The exact point of convergence is
defined by the employed h-algorithm.

Figure 3.6: DWRR Performance under various service redistribution policies.

comes at increased convergence periods.

3.7.2 Feasibility Spaces

As already analyzed theoretically, whenever a goal is feasible, DWRR class of policies guarantees

that in the long run the objective is satisfied. Nevertheless, if for some domain i the goal is outside

the feasibility region, then under DWRR the maximum achievable percentage p̃i is achieved and

the difference pi− p̃i will be utilized by some other domain according to the rules set by policy

h. We can see this behavior in Fig. 3.6(a) where the goal is on purpose set outside the feasibility

region. In this experiment, a very high goal was set (the top bullet point in the figure) that defines

the vector (10%−20%−70%). The arrival and service process were such that could not satisfy this

objective. As expected theoretically, by theorem 2, the feasibility space is the dashed line defined by

the intersection of hyperplanes set by equations (3.24) and (3.25). Note that the actual percentage

achieved depends on the redistribution algorithm h (in this case was OBG algorithm that serves 1

request per domain when below goal, one domain at random when there are no available requests in

the system from domains below the goal). DWRR scheduling guarantees that even when workload

variations exists, ON/OFF periods or random disturbances, the feasibility space will be always given

by equations 3.24 and 3.25 and so a minimum service is guaranteed per class.

3.7.3 Load Redistribution Mechanism

In Fig. 3.6(b) we present the effect of using different redistribution policies, in the case of unfeasible

vector goal. The goal vector was set equal to (70%− 30%− 20%) and is denoted with the leftmost
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Figure 3.7: The selected h-algorithm affects the way the system converges to the final state.

dot in the figure that still is outside the feasibility region. As in the previous case, the goal was set

on purpose outside the feasibility region in order to perform redistribution of service. We compare

DWRR in the case of four redistribution algorithms. Whenever an over-satisfied domain is served in

order to be work-conserving: a) choose one at random; b) choose the one with the minimum queue

size; c) choose the one with the maximum queue size. As we can see, the feasibility space is the one

defined according to theorem 2 and is irrelevant to the redistribution algorithm. The application of h

is responsible for the actual percentage obtained.

An interesting observation can be made regarding the load redistribution mechanism. As hinted

by Fig. 3.6(b) the “minQueue” redistribution algorithm exhibits a wider variation in terms of con-

verged state placement over the feasibility space. To study this issue further, we study the form of the

trail produced by “minQueue”, “maxQueue” and “random” over 100 simulation runs with the same

configuration as Fig. 3.6(b). For every run/ h-algorithm, we record the average distances of the trail

points from the line defined by the points /0 and converged state. The results over the 100 runs form

the boxplot of Fig. 3.7. In fact, the employed distance metric expresses the “wandering” rate of the

system’s trail towards convergence. Ideally, a perfect f /h algorithm combination would yield a linear

trail from the point /0 to the final converged state. The “maxQueue” and “Random” h-algorithms yield

approximately the same degree of divergence from linearity. However, the “minQueue” approach ex-

hibits a considerably higher point of divergence. As shown in Fig. 3.6(b), the “minQueue” approach

is more exploratory in terms of convergence point within the feasibility space. By taking more subtle

scheduling decisions (choosing the smaller queues), “minQueue” is able to achieve a wider set of

final converged states. On the other hand, “maxQueue” and “random” take more crude scheduling

decisions, resulting into smaller divergence in terms of converged states within the feasibility space.

In other words, the h-algorithms also regulate the feasibility space “exploration” rate of the system.

3.7.4 Evaluation using real traces

The available traces at our disposal come from a mobile computing services company, where three

customer classes are competing for a single service deployed in a server machine. Our goal is to

provide guaranteed service by means of CPU power to three customer classes.
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Figure 3.8: Incoming traffic from three carriers are depicted in a real mobile promotion campaign.

We use a custom service mediation application that can be used to emulate actual server oper-

ations. The goal of the following analysis is to demonstrate the performance of OBG algorithm in

realistic conditions emulating an operational environment. Three service domains (clients) generate

http/soap traffic (XML-RPC requests over http) and send it to an http controller (Java Servlet). The

http controller is used to a) accept this traffic in a queue per domain, b) perform scheduling decisions

and send traffic to the service mediation application in the custom ESB. The service mediator is re-

sponsible to: process the requests, forward them to an endpoint service and return to the client the

response from the service. The trajectory of the total daily traffic is shown in Fig. 3.8(a) and the

traffic pattern per domain is depicted in Fig. 3.8(b). In our effort to emulate the conditions of the ac-

tual application, we use a custom mediation service with an average service time of 20ms per request

(which was the one also reported in real conditions). Furthermore, we consider the same type/size of

request per domain.

Implementation details: In practice, the scheduler could be implemented inside the mediation

application, or outside by registering domains and assigning traffic per domain, where in this demon-

stration we follow the latter approach and we implement the scheduler inside the controller. This is

similar to request schedulers that are interposed [111] where the resource control is applied externally

and the server is treated as a black box. The http controller is a custom multi-threaded Java Servlet

deployed in Glassfish 3.1.2 Application Server. The receiving process is separated from the schedul-

ing process at the thread level. By this way, while one thread puts requests in the queues the other

is able to pull asynchronously. In principle, assigning different thread pools to different operations

may lead to unpredictable behavior, since these operations rely on the way the OS performs thread

scheduling [41]. The servers are hosted in guest VMs that reside in a single i5 - 3.2GHz, 8G memory

Ubuntu server machine. The Servlet(scheduler), the mediation application and the endpoint service

are hosted in a single guest VM to avoid communication overhead, while the clients are hosted in

different VM machines (one per client), also hosted in the same physical machine.

Evaluation scenarios: We benchmark the OBG algorithm against Equal share and Unequal share

scenarios:

Equal share scenario: In this scenario, we want all the carriers (domains) to receive equal share

from the CPU of the server hosting the mediation service. Also, according to the SLA defined, when

the total traffic is less than the throughput capacity, every domain will use the maximum achievable
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Figure 3.9: Study of stochastic arrivals using traces. The CPU utilization goal vector is set equal to
33%,33%,33%.
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Figure 3.10: Study of stochastic arrivals using traces. The CPU utilization goal vector is set equal to
50%,30%,20%.

CPU cycling share. The backlog evolution per domain for that interval is presented in Fig. 3.9(a) and

in Fig. 3.9(b) the allotted utilization is presented. As we can conclude by these figures, for the period

when all the domains have available requests in queues, domain 3 requests that tend to dominate the

system, are held back. When the backlog is close to zero for domains 1 and 2 (at approximately

11:54), the utilization is proportional to the arrival rate of every domain and thus domain 3 starts to

receive more utilization. In this scenario, OBG can be used to offer overload protection and load

balancing functionality, while it converges fast (in less than 1 minute).

Unequal share T-SLA (50%-30%-20%) Scenario: In the second scenario, we want each do-

main to receive a predefined percentage {50%,30%,20%} from the server CPU cycles. As we can see

in Fig.3.10(a), where the backlog evolution is presented and Fig. 3.10(b) where the allotted utilization

is presented, the algorithm again blocks domain 3 and differentiates according to the T-SLA.

For both scenarios, a comparison is also presented among OBG , WRR, the probabilistic algorithm

based on predictions, presented in [13] and a Credit Scheduling, using the workload traces. As we can

see, in both cases where the goal was set equal to {33%,33%,33%} Fig.3.9(c) and {50%,30%,20%},
Fig.3.10(c) respectively, the only algorithm that fails to meet the objective is the WRR. The reason

is that is not able to adapt to the workload variations and satisfy the objectives. The remaining

algorithms, although in a short time scale, are able to provide the required differentiation under heavy
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load. Note that in the comparison presented in Fig. 3.10, Credit scheduling and prediction techniques

were able to differentiate traffic according to the objective, but they are not able to control to the

optimal the allocation accuracy and the relative error, due to arbitrary ON/OFF periods for all the

domains. In contrast, in the traces’ experiment a single domain dominates the system (domain 3),

while the other two domains have low arrival rate. In this case of smooth workload changes, both

Credit scheduling and prediction techniques experience almost identical performance with OBG. In

conclusion, static WRR policies fail to meet the objective under dynamic workloads; in the case of

complex workloads for multiple domains, Credit schedulers must be tuned for optimal performance,

while prediction techniques and DWRR can handle the dynamics of the system better and provide

increased accuracy, at the expense of increased overhead.

3.8 Chapter Conclusions

In this chapter we studied a class of negative drift Dynamic Weighted Round Robin policies, that are

able to guarantee specific CPU shares in server systems, among competing domains. We provided a

generic mathematical framework, where the class of policies requires no statistical knowledge regard-

ing the arrival and service process and can be used in multiple application scenarios. The following

conclusions hold for the proposed class of negative drift DWRR policies: In the case of saturated ar-

rivals, any DWRR policy converges with probability 1 to the goal percentage. In the case of stochastic

arrivals, when operating in non work-conserving mode, any policy converges with probability 1 to

the minimum between the goal percentage and the maximum utilization service. The feasibility space

for any DWRR policy, in the case of stochastic arrivals and all modes of operation, can be clearly

defined. Finally, in the case of stochastic arrivals, under work-conserving mode of operation, the

differentiation objective is still satisfied, although the final performance depends on the redistribution

mechanism.

Our future plans include comparison between DWRR and commercial schedulers in hypervisor

systems; implementation of DWRR in web server operations, I/O handling enhancements and per-

formance investigation under preemptive operation. Queueing analysis of the backlog evolution is

also planned for future work. The main axis on which our efforts are placed, is towards reducing the

increased policy overhead. Our future plans also include the implementation of the DWRR policies

in various points of the end-to-end architecture described in Chapter 2, where control must be applied

in order to differentiate services between competing customer classes.
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Chapter 4

Stochastic Enqueueing and Predictions
Techniques for Guaranteed Service
Delivery

The objective we consider in this chapter, is related to service differentiation guarantees, like in the

case of the previous chapter. Nevertheless, the approach we consider focuses on stochastic enqueue-

ing techniques and prediction algorithms, that are able to provide differentiating services among com-

peting customer classes, rather than scheduling. In the stochastic enqueueing approach, we present a

scheme where guaranteed service delivery can be provided to each customer class, by selecting the

queue to store incoming requests. This scheme is evaluated in two application scenarios: a) In server

systems, where guarantees are provided on CPU usage, and b) in 802.11 Access Points, where the

technique is used to provide guarantee throughput to individual customer classes. In the predictions

based approach, in contrast to existing work where estimation and prediction techniques are used to

estimate average values, we adjust scheduling probabilities based on system dynamics. For both the

enqueueing and prediction techniques no steady state analysis is provided, although through extensive

simulations we present that are acceptable approximations to the differentiation objectives.

4.1 Bucket Queue System (BQS): a Stochastic Enqueueing Framework

4.1.1 Introduction

In modern cloud environments,like the one presented in Chapter 2, a virtualized infrastructure hosts

several applications/services and the traffic entering the provider network (in the data center or the

edge network), is naturally classified into classes - called Service Domains (SD). How processing time

is allocated to these domains clearly affects the performance seen by the application requests. As we

also noted in the previous chapter, in typical SLAs, various metrics regarding this performance (eg.

delay, cpu utilization, throughput etc.) are included and expressed in various ways. In this chapter,

we focus on CPU utilization and throughput.
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Figure 4.1: End-to-End Multitier Architecture, with multiple control points.

For simplicity and clarity of presentation, we first consider CPU utilization of the servers in

the processing tier only. As an example, an SLA with CPU utilization metrics can be described as

follows: guarantee 20% of total (preprocessing tier) CPU power to domain A and 80% to domain

B. in the multi-domain, end-to-end network architecture that we investigate, a domain could be for

example a large Virtual Network Provider. In Fig. 4.1, a typical multi-tier architecture is presented.

Core router/switches accept external traffic through the Internet or a VPN and they route this traffic

through the fabric to one of several servers. This is the place where the “main business logic” is

executed.

Three elements have an effect on how CPU time is allocated to requests of a domain and thus

can determine whether the SLA can be honored or not; an administrator can control them in order to

provide service differentiation to the various domains:

• Routing: First, an arriving request must be routed through the fabric to one of the servers; we

call this the load balancing control.

• Enqueueing: Once it is sent to a server, a request must be enqueued in a buffer; we call the

design of the buffering scheme the enqueueing policy. This is the second control at the disposal

of the administrator.

• Scheduling: The third control is the CPU scheduling inside the servers, i.e., deciding from

which queue to forward a request for processing.

Note that the controls are distributed: two controls are implemented in the server (but we have

many of them in the tier) and one is implemented in the switch fabric (at one or more tiers therein).

Clearly all three controls have an effect on what percentage of the CPU time in the cluster of servers a

given domain can have. In this chapter, we consider fixed load balancing and scheduling policies and

focus on the effect of the enqueueing part of the triplet. Our contribution is twofold (a) we propose a

simple design for the enqueueing policy that is geared towards distributed implementation: it has low

communication and processing overhead, and, (b) we provide “rules of thumb” for when the design

can achieve the SLA. We base these rules on both analysis and simulation.

The proposed scheme is similar to Stochastic Fair Queueing [112], in the sense that different

number of queues are required per active flow, multiple sessions might end up in the same queue

and queues are serviced in a Round Robin fashion. we present a buffering policy that guarantees
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transmitted bytes ratios without relying on complex scheduling policies or admission control or/and

differential dropping [113].

4.1.2 System model, assumptions and Problem Statement

The system model is presented in Fig. 4.2. We begin by omitting the server tier and collapsing the

network fabric into a load balancer function. Modeling the routing through the switch fabric as a

single load balancer is sufficient, since we focus on the enqueueing policies; in which switch(es) that

were responsible for forwarding the traffic to a preprocessing tier server are irrelevant.

The load balancer is responsible for distributing incoming traffic from a set D = {1, ...,d} of

service domains into a cluster of N = {1, ...,n} servers, each with a CPU of capacity µ . Every server

is modeled as Multiclass-multiqueue system (MCMQS), withM= {1, ...,m} the set of queues that is

same for all the servers. We assume that m < d, i.e., there are not enough queues available to separate

traffic belonging to different service domains. This is a reasonable assumption in data centers that

offer SaaS, IaaS or PaaS services.

Finally, we assume that the incoming traffic for domain i follows a general arrival and service

process with (unknown) arrival rates λi and service rates 1/ESi, where ESi is the mean service time

of domain i. In addition, we assume non preemptive service for the CPU operation. We also assume

that signaling and feedback across the servers take negligible time. However we note that the design

of our control system is tailored to minimize these effects.

Control policy definition

A control policy π is a rule according to which control actions are taken at time t. We identify different

control policies regarding different control points inside the network.

1. Load balancing policy πr that defines a forwarding action r(tr). Say tr is the time instant that

the load balancer must forward an incoming request to the cluster of dedicated servers. The

action space is the set N = {1, ...,n} of all the servers and r(tr) = i ∈ N at time tr if server i is

selected.

2. Enqueueing policy πq that defines Enqueueing Action q(tq). Say tq is the time instant that a

server accepts a request from the load balancer. An enqueueing action determines the queue to

which the request is forwarded. The action space is the set M = {1, ...,m} of all the available

queues and q(tq) = i ∈M at time tq if queue i is selected.

3. Scheduling policy πs that defines Scheduling Action a(ts). Say ts is the time instant that a server

CPU finishes request execution and is ready to accept a new request for service. The action

space is the set M = {1, ...,m} of all the available queues and so a(ts) = i ∈ M at time ts if

queue i is selected.

The vector (πr,πq,πs) is collectively referred to as the control policy π .
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Figure 4.2: System Model for BQS.

For server j, we define the function Fi(t) as the amount of time in [0, t) that the server CPU was

allocated to domain i, under policy π . Then for the total CPU power of the cluster of servers, we

define the total utilization for domain i under policy π as:

ui(π)
∆
= liminf

t→∞

∑
n
j=1 Fi(t)
n · t

(4.1)

In the above definition we use liminf since we don’t know a priori that the policy will reach steady

state.

Problem Statement

The formal definition of the objective we study is the following. Let 0 ≤ pi ≤ 1 be CPU utilization

percentages defined in the SLA for every domain i. Design a policy π that will achieve the following

objective:

ui(π) = min{λi ·ESi, pi},∀i ∈ D (4.2)

Roughly speaking, this is the same objective as the one studied in Chapter 3. The SLA in Equation

4.2 states that each domain must be given a predetermined CPU time percentage over a large time

period, unless the request rate is sufficient for this, in which case it is enough to serve all the requested

traffic from that domain.

4.1.3 Proposed Policy

First note that because of the joint control definition, the three control actions depend greatly on each

other. For example the performance space of a dynamic Weighted Round Robin scheme used as the

scheduling policy πs is in correlation with the queueing dynamics that are dictated by the enqueueing

policy πq. In addition, there is a large set of system configurable parameters like the number of

queues, or the number of service domains that greatly affect the performance space.

For these reasons, we focus only on the enqueueing policy πq. We investigate the single server

case (n = 1) and we gain the insights into the queueing dynamics effects in the system performance.

The accompanying scheduling policy will be plain Round Robin. The aim is to avoid feedback sig-
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nals analysis among different tiers in the data center and feedback signals for centralized control of

the cluster of servers. In addition, with a simple scheduling we avoid designing scheduling algo-

rithms that require knowledge of traffic statistics and we also avoid the correlation analysis between

enqueueing and scheduling decisions.

The Bucket Queue System (BQS)

Queueing configuration: The server is configured to accept traffic from all domains, in a set ofM
queues. Set for all queues i : 2 < i < m a queue limit qc. We will use this threshold to limit the

corresponding queue sizes, while queue i = 1 is allowed to grow without constraints. We call this

queue the bucket queue (B queue); the configuration can be seen in Figure 4.3.

Operation: In the case where an incoming request from domain i must be enqueued, because the

CPU is busy upon its arrival, the following actions take place: If the domain is underutilized and the

minimum queue size does not exceed the limit qc, the policy forwards the request to the queue with

the minimum queue size. In all the other cases, the request is forwarded to the bucket queue. The

algorithm operation is formally described as Algorithm 1.

Focus on the server CPU operation and let tk denote the time instant that the CPU finishes ser-

vicing a request and that the next request it will receive service, belongs to domain i. We define

ui(tk,BQS) to be the CPU utilization domain i received up to time tk under policy BQS. Between the

two successive service events tk and tk+1, the following is true: tk+1 = Lk + Zk
i + tk, where Lk ∈ R

is a random variable denoting the CPU idle time between the service events. Also Zk
i denotes a

random variable of the service time the request of domain i received within this interval, while

Zk
j 6=i = 0. The CPU utilization performance can be expressed with the following closed recurrent

form: ui(tk+1,BQS) = tk
tk+1

ui(tk,BQS) + Zk
i

tk+1
, ∀i ∈ D. Clearly BQS policy and the accompanying

scheduling policy that will be adopted (Round Robin in our case), at any instant tk affects the Zk
i rv as

well as the utilization every domain will receive.

Intuition: When the system operates in conditions of overload, when ∑
d
i=1 λi/µ ≥ 1, the B queue

is unstable, while the remaining m− 1 queues remain stable. By this way, traffic injected to the

stable queues, receives guaranteed throughput while traffic injected to the B queue only receives

a proportion of throughput in relation to what is injected. This policy is using a simple control

mechanism to improve the utilization of domains that left behind their goals, while penalizing those

that have received more service than agreed.
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Algorithm 1 BQS Algorithm

tk : enqueueing decision instance
Q j(tk) : the queue size o f queue j in time.
Calculate ui(tk,BQS)< pi,Q j(tk)
if ui(tk,BQS)< pi,Q j(tk)≤ qc then

q(tk) = argmin j Q j(tk)
else

q(tk) = 1
end if

4.1.4 Policy Evaluation

With respect to simplicity of implementation, we examine the control policy triplet {−,BQS,RR} i.e.,

single server, enqueueing is BQS and CPU scheduling in the server is Round Robin.

Theoretical Considerations

We will consider a single server with m queues served by a CPU of capacity µ in a round robin

fashion, such that each queue receives service with rate µ/m. The m−1 queues are bounded (a job is

routed to them only if their backlog is below the threshold qc) and one is unbounded. We will study

the case of two service domains, in order to derive the conditions to achieve the SLA, i.e. the set of

(p1, p2) targets for which the SLA is achievable under given conditions (µ,λ1,λ2). Generalizations

to many domains and many servers are left for future work.

Let u1, u2 denote the utilizations and T1, T2 the throughputs, which are related in the following

way ui =
Ti
µ

. Also, let a1,a2 ∈ [0,1] be the long-term average traffic splits of the arrivals, i.e. a1λ1

is the traffic directed to the B queue and (1− a1)λ1 the traffic directed to the m− 1 queues for the

service domain 1. In what follows, we will attempt a fluid analysis omitting the details regarding the

arrival processes and avoiding the complications of a discrete time analysis.

We derive necessary and sufficient conditions for the feasibility of the SLA target, under the

condition that the queues are configured as explained above. However, we do not show that the

algorithm indeed converges to the proper routing coefficients. The fact that the algorithm can achieve

this feasibility region, will be shown by simulations. We have two cases that consider the comparison

λ1 +λ2 ≶ µ .

When the system is stable (i.e. λ1 +λ2 ≤ µ), the SLAs are always achieved, since the throughput

of each user equals what is injected into the system, thus the first term of the minimum function in

eq. (2) is always achieved.

When the system is unstable, (i.e. λ1 + λ2 > µ), the B queue is unstable, but the m− 1 queues

remain stable. We will inspect two further cases, a) when both domains request more traffic than their

corresponding target λi > µ pi and b) when one of the two requests more, but the other less. We also

omit c) the symmetric to b and d) the case where none requires more than the target, which contradicts

the instability condition.
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Figure 4.4: BQS performance for domain requesting 0.7-0.3 of CPU Utilization - µ = 200 requests

Case a: Assume λ1 > µ p1 and λ2 > µ p2. Note that the flow is conserved in the m− 1 queues,

which gives

(1−a1)λ1 +(1−a2)λ2 =
m−1

m
µ. (4.3)

The service in B queue is proportionally allocated to the two domains:

µ1 =
a1λ1

a1λ1 +a2λ2
, µ2 =

a2λ2

a1λ1 +a2λ2

and the utilization of domain i should be

ui =
(1−ai)λi +

aiλi
a1λ1+a2λ2

µ

m

µ

(4.3)
=

(1−ai)λi(λ1 +λ2−µ)+λi
µ

m

µ(λ1 +λ2− m−1
m µ)

, i = 1,2. (4.4)

The following are a set of necessary and sufficient conditions for the SLA to be satisfied under
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Figure 4.5: Number of Domains effect (µ = 200 requests)

the stated conditions (instability and both users providing sufficient arrivals):
p1 = u1

p2 = u2

(4.3)

Dividing the first two, and using (4.4) and p2 = 1− p1

p2

p1
=

µ(λ1 +λ2− m−1
m µ)

(1−a1)λ1(λ1 +λ2−µ)+λ1
µ

m
−1, a1 ∈ [0,1].

Denote M .
= maxa1∈[0,1]

p2
p1

. Clearly this is achieved by a1 = 1, in which case

M =
µ +m(λ1 +λ2−µ)

λ1
. (4.5)

Note that M is the maximum achievable ratio of target utilizations under the conditions above and

can be achieved by an omniscient randomized enqueueing policy which selects properly a1,a2.

Case b: W.l.o.g. assume λ1 < µ p1 and λ2 > µ p2, thus an SLA-satisfying enqueueing solution
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will yield (u1,u2) = (λ1/µ, p2). Note, that if non-negligible fluid from domain 1 is routed to the

bucket, then the throughput of domain 1 will be less than what was sent, in that case the SLA has

failed. Thus, a1 = 0 and we obtain a first condition:

λ1 ≤
m−1

m
µ.

The domain 2 will receive the remaining CPU allocation, thus the SLA is satisfied if p2 ≤ µ−λ1
µ

, from

which we conclude
p2

p1
≤

1− λ1
µ

λ1
µ

=
µ−λ1

λ1
= M (4.6)

which does not depend on m.

Verification of Theoretical Considerations

In Fig. 4.16 we present the maximum ratio of p1/p2, for which the SLA is satisfied, in the following

scenario: a single server receives traffic from two domains. The service rate of the server CPU is set

equal to µ = 200 requests per time unit (we assume that time is a quantity without any dimensions).

The criterion we apply in order to note SLA success, is ui(π)≥ 0.95min{λi/µ, pi},∀i ∈ D, which is

the objective defined in eq. 4.2 plus a ±0.05% tolerance interval.

In Figs. 4.4(a), 4.4(b) and 4.4(c), we present how the SLA success region is affected by increasing

the number of queues. The main outcome is that when m, the number of queues is sufficiently large,

the algorithm is able to achieve the SLA even for extreme CPU differentiation goals (e.g., 90-10%).

The value of m that guarantees extreme targets depends also on the relation between λi and µ , when

the system is unstable. When the system is stable, the targets are always achieved.

For example, as we can see in Fig. 4.4(a), with 3 queues, the SLA is achieved for a ratio 1/6,

meaning that an SLA pi = {0.86,0.14} can be satisfied, while with 9 queues this ratio is 1/25 meaning

pi = {0.96,0.04} can be satisfied.

Fig. 4.4(d) clearly validates the theoretical considerations of the previous section. We present

the ratio a1/a2 for the two domains in the case where λ1 = 150 and λ2 = 300 requests per time unit

(scenario of Figure 4.4(c)). As we can see, domain 1 takes the maximum CPU share it can receive

and the maximum ratio is achieved, when domain 2 forwards all its traffic in the B queue. All the

above observations are summarized as a Rule of Thumb 1 in Section 4.1.5.

Increasing the number of domains: A key advantage of BQS policy is that for a large number

of domains, a small number of queues is sufficient in order to meet the objective of eq. 4.2. We

present simulation evaluation for two scenarios that a service administrator faces when the system is

in overload conditions:

Scenario A: An increasing number of domains request server resources. Service domain 1 is

the most prominent client and the administrator wants to guarantee that during overload periods it

receives 20% CPU share while the rest divide the remaining 80% equally.

Configuration: λi = 40 and µ = 200 for every domain i, while m = 5 is the number of queues
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(including the B queue). In Figure 4.5(a) we increase the number of domains and in Figure 4.5(b) we

present in more detail the case where d = 10. In both figures we can see that BQS clearly meets the

objective. Since we are in overload, regardless of the relationship between arrival and service rates

and also regardless of the range of desired percentiles, the enqueueing algorithm satisfies the SLAs,

i.e., domain 1 always receives the requested 20% while the remaining domains take their equal share.

In Figure 4.5(d) we can see that in scenario A (black bullets), a1 factor of domain 1 is approxi-

mately equal to zero, while for the rest of domains it is almost equal to 0.9. This means that B queue

serves about 10% of domain 1 traffic and the majority of other domains traffic.

Scenario B: Again an increasing number of domains request server resources. The administra-

tor wants to guarantee fair allocation of CPU power to all the domains, despite any arrival rate

diversifications.

In Figure 4.5(c) BQS policy also meets the objective and fair allocation is provided in the scenario

where the arrival rate of every domain is different. The simulation configuration is λi = 20+ i∗5 and

µ = 200 domain while again there are m = 5 queues. As we can see in figure 4.5(d) for the B scenario

case (red crosses), the mechanism to achieve the SLA is again the operation of the B queue. If the

traffic from a domain is higher than the others, a higher percentage of its requests is served by the B

queue to keep allocating CPU cycles fairly.

Concluding remark: Besides the above paradigms, an extended set of simulations was performed,

for various scenarios with increasing number of domains, number of servers and arrival and service

rate variations. The main outcome of the simulation procedure is that a small number of queues is

sufficient for the simple proposed control mechanism to be effective, in the sense that the majority of

SLA configurations can be achieved. In the above theoretical and practical considerations analysis,

we presented the performance of the algorithm for the case where the number of servers is n = 1.

Thorough theoretical investigation for the case where the BQS is applied in a cluster of servers will

be presented in future work.

4.1.5 Practical Considerations

Due to the large number of parameters that affect the algorithm performance and the large number of

trade offs existing, we summarize the evaluation procedure in the following rules of thumb, that can

be used by a system administrator. Say d is the number of domains, λi is the expected arrival rate of

domain i and µ is the service rate of the CPU:

Rule 1: What is the maximum ratio we can achieve and how many queues are needed? The

answer comes directly from equations 4.5 and 4.6. An administrator can make a priori an arrival and

service rate estimation of the expected traffic and apply these equations. These equations will prove

if the desired utilizations, defined in the SLA contract, will be satisfied. If the estimations are wrong,

real time corrections with adding/removing of queues can fix the ratio M to the desired value. In the

case where d > 2, the generalization of eq. 4.5 yields that the utilization domain i will receive under

overload is:
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ui =
(1−ai)λi +

aiλi

∑λi−m−1
mµ

µ

mµ
(4.7)

This is an upper bound that an administrator can use to jointly design the SLA for all the domains.

This way our formula depends only on ai which is better, but not conclusive. The administrator can

use it as a parameter to bound ui by setting ai = 1 or ai = 0.

Rule 2: What queue limit to set? In saturated conditions, if we don’t use the queue limit qc, all

queues would be unstable and thus no speeding up could be applied for the underutilized customers.

The queue limit qc can be set to any “small” value an administrator chooses to avoid idle time.

With the above rules, a system administrator is able to provide predefined CPU percentages, to

every customer in cases of overload, without any scheduling or load balancing concerns and without

knowing a priori (or posteriori) any arrival or service statistics. The main advantages of our approach

are that no requests are dropped and that a limited number of queues is sufficient to provide the utiliza-

tion defined in the SLA. The only necessary tool applied is CPU monitoring. Furthermore, in actual

systems with injective allocation of domain/queue, BQS algorithm could be easily implemented, if B

queue was added as a new software component, without disrupting the overall queue structure.
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4.2 BQS: Throughput guarantees in Virtual Wireless Networks

In this section, we present how software routers can be used in native 802.11 APs, without requiring

any modifications on the driver and the client side in order to handle VNet flows. In addition, we

present how the Bucket Queue System (BQS), can be used to guarantee transmitted bytes ratios,

without relying on complex scheduling policies or admission control or/and differential dropping

[113].

Note that depending on the virtualization approach, there exists a technology to create 802.11

virtual wireless networks. Nevertheless, due to the varying channel conditions, the unpredictable

behavior of the wireless medium and limitations in the access technology, it is very difficult to provide

real time guarantees by means of delay, throughput etc., while at the same time differentiate services

effectively among competing virtual networks.

As presented in chapter 2, the CONTENT [8] solution focuses on converged virtual wireless net-

works, that explore multi-domain virtualization. The goal of multi-domain virtualization is to build

end-to-end paths from the access network up to the virtualized data center and to allow seamless

orchestrated on-demand service provisioning. The motivation for this work comes from such envi-

ronments, where the end-to-end virtual path terminates not in the backhaul ethernet network, but in

the virtualized wireless 802.11 APs.

In order to build 802.11 virtual wireless networks, spatial or temporal sharing of the wireless

channel, with the use of beamforming techniques in 802.11n MIMO systems [114] or tuning tech-

niques of contention window size parameters and transmission opportunity limits in 802.11e [32],

have been proposed. In the MAC layer, Multi-SSID virtualization is investigated in works like [115]

and [33], to group users by assigning them to different Virtual APs (VAPs), where each VAP uses

different SSID. By mapping each VNet to a different VAP, different handling per VNet is feasible

(eg. authentication, encryption etc). Although this mechanism is widely used, it is prone to increased

channel utilization, due to overhead caused by beacon frames that advertise the multiple SSIDs. In

addition, regarding of the objectives we study, the previous approaches do not take into account the

dynamics of the wireless channel. This means that the actual throughput achieved per VNet, can

significantly vary from the actual goal. To face these limitations, we consider a feedback based ap-

proach that adapts the system according to runtime performance. We explain this in more detail in the

following. Similarly to [33], where the SplitAP architecture is proposed, we utilize software routers

[116] to program forwarding operations. However, we focus on operations between MAC and IP

layers, our focus stays on the downlink and our objective is not to allocate fairly the airtime usage to

every VNet, but to provide specific throughput ratios by means of transmitted bytes.

We distinguish the traffic between different VNets, based on the VLAN identification. In a native

802.11 AP all the VNet flows must enter, prior to transmission, the single FIFO queue implemented

in the driver and so be served in a “First come First served” fashion. A software router, like the Click

router [116], can be used to implement user-defined queueing structures and sophisticated buffering

and scheduling policies, as shown in Fig.4.6. The Click router is extremely extensible and can be

used to perform actions like packet scheduling, traffic shaping, filtering, packet dropping and header
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Figure 4.6: Software Routers for Virtual Access Points

rewriting. All these capabilities are valuable tools we explore in order to build the mechanism to

handle each VNet differently.

4.2.1 System Model & Problem statement

A single 802.11 Access Point, is logically divided into a number of virtual networks V = {1,2, · · · ,V}
and is equipped with a single 802.11 wireless interface. Let Ui = {1,2, · · · ,Ui} denote the set of users

that are associated with each VNet i. The aggregated traffic from all the users in some VNet, defines

the corresponding VNet flow. With respect to practical considerations, we assume that the total

number of users does not violate the limits that are set by the AP administrator. The packet arrivals

for every virtual flow have a general distribution with unknown mean. Furthermore, we assume

operation in a completely stochastic environment where interference, collisions and congestions are

difficult to model and so the corresponding parameters that could affect our model are considered

unknown.

Let B j
i (t) denote the number of bytes transmitted to user j associated with VNet i. Then, the

aggregated downlink traffic Bi(t) of VNet i up to time t is equal to Bi(t) =
|Ui|
∑
j=1

B j
i (t). We also define

B(t) =
|V|
∑

i=1
Bi(t) as the total bytes transmitted by all users and by all VNets until time t and weight wi

as the proportion of B(t) we wish VNet i to receive in the long run, such that
|V|
∑
i

wi = 1. The problem

under examination is to find a policy that in the long run (sufficiently large t) guarantees that every

VNet i will have wi ·B(t) bytes transmitted. For example, in the case of two VNets and a single

AP, if 10 GB were transmitted until time t, w1 = 0.2 and w2 = 0.8, the policy guarantees that 2 GB

have been transmitted for VNet 1 clients and 8 GB for clients of VNet 2, without being affected by

the channel conditions or arrival rate variations. In the following, the BQS policy presented in the

previous section will be evaluated towards this goal.

4.2.2 The Proposed Queueing Structure and Solution

A software router is used to implement the following queueing structure in the AP, without affecting

the driver. There is a number of queues accessible by all the VNets, where an artificial bound L is set
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to their size. In addition, we add one more queue, that all the VNets can also have access, that we

refer to it as the bucket queue and that we allow to grow to infinity (practically the excess load will be

dropped if it violates the system limitations). It is up to the policy to decide in which queue to store an

incoming packet; in a limited size queue or the bucket queue. All queues are served in Round Robin

fashion and the first packet of every queue is forwarded to the single FIFO queue implementation of

the driver. The queueing structure is depicted in Fig.4.6.

Bucket queue with Limited Size Queues (BLSQ): For every incoming packet of VNet flow i

that must be enqueued is that: If the number of transmitted bytes for VNet i is less than wi ·B(t) (it

is below its goal) then the policy uses Join the Shortest Queue (JSQ) [117], between the limited size

queues that have not reached the queue limit; in all the other cases the packet is forwarded to the

bucket queue. The algorithm is outlined in Algorithm 2.

What will occur after the packet enters the driver’s FIFO queue, is based on factors like inter-

ference, collisions and congestions that practically are difficult to model. In contrast to complex

scheduler implementations (that require change of the weights of a weighted round robin scheduler

or change of the probabilities of a probabilistic scheduler, or application of admission control and

drop of such packets (e.g [118], [113]), by using the proposed scheme with a simple Round Robin

scheduler, the required ratio is preserved per flow. Although this comes with the effect of packet

re-ordering, that is not an issue in practical deployments, since (up to some point) it can be taken care

by higher layer protocols.

The ratio is preserved by indirectly speeding up the VNet clients in the limited size queues and

by holding back in the bucket queue the VNet flows, the packets of which contribute in a ratio higher

than the one defined in the SLA. This control decision is agnostic to the number of users per VNet,

it only requires knowledge of the aggregated traffic served per VNet. We also point that although

the decision is made per packet, this decision is agnostic to the packet size distribution, since it only

requires knowledge of the bytes transmitted. If a packet arrives from a “suffering” VNet, we enqueue

it in the limited size queues, independently of its size.

4.2.3 Benchmarking in a Wireless Testbed Environment

A large set of experiments were conducted in order to present the algorithm’s efficiency and demon-

strate how system and statistical parameters affect the algorithm performance. We present an in-

dicative set of experiments using a single AP; extensions for distributed/centralized operation in a

clustered environment are left for future work.

The environment

A prototype solution was implemented in a Commell node in the NITOS outdoor wireless testbed

[76]. The outdoor NITOS wireless testbed (50 wireless nodes) was selected to demonstrate the algo-

rithms efficiency in realistic conditions, since the testbed operates in an urban area and additionally,

multiple experiments run concurrently from other experimenters. Thus, all our experiments faced
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Algorithm 2 BLSQ - Algorithm Description
wi : transmitted bytes percentage goal for VNet i
t : enqueueing instant
L : a queue limit
X j(t) : the queue size of queue j at time t ( j not the bucket)
U pdate Bi(t) (the measured throughput percentage)
if Bi(t)< wi ·B(t),∃ j : X j(t)≤ L then

JSQ between the limited size queues
else

enqueue in the bucket queue
end if

uncontrollable collisions and interfering conditions from neighbor APs and users. As we show in the

following, interference was also created on purpose to further stress the algorithm.

The Commell node selected is equipped with Core 2 Duo 2.26 GHz CPU, 2G DDR3 RAM,

two Gigabit network interfaces, Atheros 802.11a/b/g/n wireless interfaces, multi-band 5dbi and

operates both on 2.4Ghz and 5Ghz antennas. The setup we present in the following, uses a single

interface (802.11a in the 5Ghz band), while the queueing structure as long as the buffering control

mechanism were implemented using the Click Modular Router [116]. The BLSQ enabled AP was

used to send traffic to users that were logically associated with different VNets, using VLANs. The

experimentation model is depicted in Fig.4.7.

Experiments Parameterization: In every experiment, specific percentage goals were set for every

VNet. The arrival process was created with iperf (UDP traffic) and the measurements were collected

using the OML library. The payload was set 1470 bytes for every packet and the AP was tuned to

transmit in a physical rate of 12 Mbps (similar results were obtained when auto-rate adaptation was

used). In all the experiments we wanted to stress the BLSQ algorithm in heavy load conditions, so

that the arrival rate for every user was set equal to 7 Mbps.

In order to investigate how the system and statistical parameters affect the algorithm performance,

we used a basic scenario and each time we varied a parameter to investigate its effects on performance.

The basic scenario is the following.

Basic scenario parameters: We used a single AP and we defined 3 VNets; VNet 1 (1 user),

VNet 2 (2 users) and VNet 3 (1 user). The VNet goal vector was set (20%,30%,50%), while we

made statistics updates whenever a packet was send successfully (ACK received). In the software

router we used 3 queues in total (the bucket queue plus 2 limited size queues). In all the experiments

presented, the bucket queue size was set to the maximum available (1,000,000 packets) and the limit

for the limited size queues L was set equal to 100. This number was selected after experiments that

presented good performance, but actually the rule of thumb is to select a number that will keep the

limited size queues short, in order to be able to speed up the VNet we want.
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Figure 4.7: Experimentation model

Basic scenario

Fig.4.8(a) - This is the basic scenario experiment, where the VNet goal vector was set (20%,30%,50%).

Fig.4.8(a) is used to demonstrate that the algorithm provides the requested ratio of transmitted bytes

per virtual flow, without requiring knowledge of the channel conditions or a priori knowledge of the

arrival process. It is interesting to note that VNet 2 serves two users. Since the mechanism only

checks the total number of transmitted bytes per VNet, in order to adapt its control decision, each

individual user will receive a percentage proportional of the load transmitted to him, to the load trans-

mitted to all the other users in the same VNet. The number of users per VNet and their transmitting

rates, plays no role in convergence as long as their aggregated rate can satisfy a feasible goal. As we

present in the following, for eg. a goal vector like 98%,1%,1% may not be feasible.

Varying the Arrival Rate

Fig.4.8(b) - In Fig.4.8(b) the total deviation from the goal is depicted (
|V|
∑

i=1
|Bi(t)

B(t) −wi|). We remind B(t)

is the total transmitted bytes and Bi(t) is the ratio VNet i achieved until time t. In this experiment,

we used the basic configuration, where we varied the arrival rate of the traffic destined to the user of

VNet 1, from 0.5 to 10. As we can see in Fig.4.8(b) the algorithm operation is insensitive to arrival

rates variations, as long as the goal is feasible. When the sending rate to user/VNet 1 is very low (eg.

0.5 or 1 Mbps), the goal of 20% is infeasible. Nevertheless, in all other cases the goals are achieved.

Similarly, if packet sizes significantly vary, because of the feedback control, the algorithm operation

guarantees the requested transmitted bytes ratio.

Varying the number of VNets

Fig.4.8(c) - In this setup we varied the number of VNets from 3 to 5 (one user per VNet), where

the goal was to provide a fair allocation for every VNET. The number of queues in both cases was

set equal to 2, where again we present the total absolute deviation. One of the main features of

the algorithm is that is able to differentiate, using a number of queues significantly less than the

number of VNets. As we can see in this example, we can perform load balancing between the VNets

using only 2 queues (plus the bucket queue). We also stressed the algorithm in different setups with

multiple VNets with different goals defined and fewer queues. Again we report that the feedback

76

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:21:38 EEST - 3.142.196.98



Tr
an

s.
 B

yt
es

 R
at

io
 (%

)

0

10

20

30

40

50

60

70

80

time (sec)

50 100 150 200 250

VNet 1
VNet 2
VNet 3

(a) Example scenario

To
ta

l D
ev

ia
ti

o
n

0

20

40

60

80

time (sec)

50 100 150 200 250

10 Mbps
7 Mbps
4 Mbps
1 Mbps
0.5 Mbps

 VNet 1 cannot reach goal

(b) Arrival Rate effect

To
ta

l D
ev

ia
ti

o
n

0

20

40

60

80

time (sec)

50 100 150 200 250

5 VNets
3 VNets

(c) Number of VNets effect

To
ta

l D
ev

ia
ti

o
n

0

20

40

60

80

time (sec)

50 100 150 200 250

2 queues
3 queues
4 queues
5 queues

(d) Number of queues effect

Tr
an

s.
 B

yt
es

 R
at

io
 (%

)

0

10

20

30

40

50

60

70

80

time (sec)

50 100 150 200 250

VNet 1
VNet 2
VNet 3

(e) Interference effect

To
ta

l D
ev

ia
ti

o
n

0

10

20

30

40

50

60

70

80

time (sec)

50 100 150 200 250

10
100
500
1000

sampling period (skipped packets)

(f) Sampling effect

Figure 4.8: Algorithm performance in different scenarios

mechanics of the algorithm took into account the dynamics of the system and adapted transmitting

rates accordingly.
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Varying the number of Queues

Fig.4.8(d) - As already discussed, the only requirement for the policy to work is to have a feasible

goal defined. For e.g. a goal vector (98%−1%−1%) may not be feasible for the policy; this depends

both on the queue structure and the system dynamics. One simple way to increase the feasibility space

(succeed more disperse goals), is to increase the number of limited size queues. The bucket queue

policy, gives more opportunities to adjust the “suffering” VNet percentage to a higher value, when

increasing the number of the limited size queues. In Fig.4.8(d) the SLA throughput goal vector was

set equal to {15%,15%,70%} and we varied the number of the limited queues. As we can see, for a

small number of queues, the policy fails to meet the objective, even though as the number of limited

size queues increases, the total deviation decreases. The reason is that by increasing the number of the

limited size queues, we give more opportunities to the “suffering” VNets to increase their percentages

in each round.

Increasing interference

Fig.4.8(e) - Increasing the number of users, results in increased congestions, increased interference

and increased number of collisions. In such environment, in the same time window more retransmis-

sions (MAC originating) take place. We observed these phenomena, by using the same configuration

as the basic setup with the three VNets, while adding an additional interfering AP on the same fre-

quency channel, transmitting to a single interfering node in the maximum rate (using Rate adaptation

and downlink sending rate 50 Mbps). As we can see, the feedback mechanics of the algorithm takes

this into the account and adapts transmitting rates accordingly. In Fig.4.8(e) we see that increased in-

terference results in “slightly” slower convergence, but does not affect convergence itself. This is very

important since interference may not have a similar, uniform effect in all users/VNets transmissions.

The dynamic feedback-based operation of the algorithm is the one that stabilizes the percentages

achieved by each VNet around the desired value.

Increasing the statistics update period

In order to avoid updating the statistics based on all the transmitted packets information, using a

sampling technique, we updated the statistics according to a sampled ACKed packet we select pe-

riodically, Fig.4.8(f) presents the effects of increasing the sampling period (in number of skipped

packets). This directly correlates with how updated is the information that is used by the mechanism,

the time instants a buffering decision is made. As we can see, and is also expected intuitively, there

exists a trade-off between the signaling overhead required and the convergence speed.

Delay performance

Fig.4.9 - In Fig.4.9 we use the basic configuration to present the delay performance of every VNet,

when the BLSQ is used and we compare it with the case where all the requests from all VNets,

are entering directly the single FIFO queue of the driver. As expected, different VNets experience
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Figure 4.9: Delay

different delay. Note that the delay in Fig.4.9 is increasing staggeringly, since the total arrival rate

(28Mbps) over-exceeds the sending rate (12Mbps, in practice∼ 10Mbps). Nevertheless, these values

are not representative for a system that operates in stability region. Using BLSQ the delay for VNet

1 (requesting 20% throughput) is increased, in contrast with the native single queue implementation,

while the delay for VNet 3 (requesting 50% throughput) is reduced. The reason is that most of the

packets from VNet 1 are sent from the bucket queue to the driver queue, while traffic to VNet 3 is

mostly using the limited size queues, thus on average the delay will be better.

We also note that because of the algorithm’s logic, in all cases and for all the VNets, we experience

increased jitter. A factor that affects jitter and the order of delivered packets is the queue limit we

set to the limited size queues. In this direction, we plan to enhance the BLSQ algorithm with a

packet dropping scheme and congestion marking schemes, as well as schemes that can safely drop

over-delayed packets (in UDP traffic there are no retransmissions, but in TCP traffic when some of

the packets in the sequence are over-delayed, these packets will be discarded and retransmissions

will take place). We also plan to investigate the optimal limit size, that will allow a smooth jitter

distribution, while still providing the ability to differentiate traffic.

79

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:21:38 EEST - 3.142.196.98



4.3 Prediction Techniques for Guaranteed Service Delivery

Like in the first case presented in this chapter, we consider a system that serves D service domains

that competes for service resources. In this section, a minor variation of the SLA is studied. The

SLA problem we study is the following: allocate a given percentile Pu
i of the CPU resources in the

appliance server tier to domain i, when the system is in underload mode; the percentile changes to Po
i ,

when the system is in overload mode. In this section, we examine prediction based techniques in order

to satisfy the high level objective. Prediction techniques are very well investigated, like in [119],[44].

In [119] the NWS system is presented with a collection of one-step-ahead prediction strategies, to time

series and chooses the strategy used for the next prediction dynamically, according to which accuracy

has been reached over recent measurements. The prediction strategies used by NWS currently include

running average, sliding window average, last measurement, adaptive window average, media filter,

adaptive window media, α-trimmed mean, stochastic gradient, and autoregressive. From [44], it is

examined how to estimate model parameters, once data has been collected, using a commonly-used

method called least squares regression. In contrast to existing work, where estimation and prediction

techniques are used to estimate average values, we adjust scheduling probabilities based on system

dynamics, in runtime while we try to control the system behavior through ports ON/OFF operations,

affecting this way the scheduling probabilities for every domain.

The architecture of the system we study can be seen in figure 4.10. Multilayer switches (or http

routers) are used to spread traffic from various domains or service classes, in a cluster of appliances

that is responsible for preprocessing. After preprocessing is done, web requests are sent to a cluster

of application servers to handle final processing. Server tier is not examined in this paper and we are

only interested in the interaction between the appliance tier and the multilayer switches. Of course

the appliance tier is also a server tier, and the same algorithmic approach can be exploited in every

processing tier. We just note the processing tier to point the fact in multi-domain architectures, like

the ones presented in Chapter 2, multiple tiers of service exist in order to facilitate efficient delivery

of services.

4.3.1 Design Requirements

In order to set properly the model on which the controller will operate, several requirements must be

met by the appliance operation.

• Each appliance is capable of managing which domain to serve and accepting configuration

changes in runtime.

• Each appliance has no knowledge of the state of the other appliances and the domains the other

appliances are servicing.

• When a request enters the appliance, the CPU service time required is unknown.

• We model each appliance as a G/G/1 queueing system, served by a FIFO CPU scheduler.
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Figure 4.10: System Architecture for the Predictions Scheme.

• No admission control is assumed; all arriving requests for all service domains must be served.

• No preemption is employed when serving requests at an appliance CPU. Whatever the deviation

from the SLA goal might be, processing a request cannot be stopped.

The FIFO assumption is realistic in computing centers that serve thousands or even millions

of domains. Even in less-demanding situations, the FIFO scheduling assumption is a good system

approximation for appliances that server more service domains than the internal queues the appliance

supports. From a more practical perspective, since we cannot rely on a CPU scheduler to allocate CPU

time to competing service domains, the (only) alternative we have is to control the rate at which traffic

enters an appliance. We propose a feedback-based control mechanism that is used to spread traffic

from the router tier into the appliance cluster; the feedback is based on appliance CPU utilization. In

a nutshell, this feedback is used at the router/controller to increase/decrease the rate of traffic from a

specific domain sent to an appliance. This action is known in the literature as a router-to-appliance

“open or close port operation”.

4.3.2 Controller Design

In our model the controller takes a decision periodically every Td seconds and every time a triggered

change occurs between underload and overload mode. At the time of decision td , the controller

gathers runtime statistics through feedback from all the appliances in the cluster and then performs

calculations to make a prediction of the CPU utilization vector the cluster must work from this time

on. CPU utilization and queue state in each appliance are the statistics of interest, while the prediction

is made for an interval of tp seconds. The output of this calculations is the utilization vector UPR.

Since we don’t know when the next mode change will occur, the tp interval for our prediction can

be short (e.g., on the order of one Td interval) or long (e.g., on the order of the entire SLA observation

period). Te is the interval from the beginning of the observation to the time at which we make the

prediction.

The controller design is depicted in Fig. 4.12. CPU utilization vectors are calculated in UtilizationMatrix

block, while running queue state of each appliance is stored in VitrualQueueblock every time StateInvestigatorblock

81

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:21:38 EEST - 3.142.196.98



Figure 4.11: Time model. In moment B the controller makes a decision because period expires. The
prediction it makes is for moment E. In time C the controller detects that the system is in overload
mode and makes a prediction decision for time F.

decides that the controller must take a decision. UPR vector is calculated in BlockA and port allocation

is done in BlockB. Virtual queue will be explained in the following section.

After the utilization vector UPR is calculated, we examine how we will spread the load in each

appliance per domain. Load is spread probabilistically according to an instantiation matrix created

by a Port Allocation Heuristic Algorithm. Also, due to the fact that the system is distributed, each

router in the system can be connected to a different appliances set. For this purpose each router

holds a software agent, that locally adapts the controller instantiation matrix independently from

other routers, based on the appliances set that it is connected and the domains that is servicing.

4.3.3 Controller Operation Algorithm

1. The system is continuously monitored for mode change or controller decision period expired

events. When such events occur, the controller detects the mode of operation (underload/over-

load) and collects runtime statistics from the appliance tier.

2. The utilization vectors Uu
j (Uo

j if overload) are calculated for all the domains. Uu
j is the CPU

utilization domain j received until that moment for underload operation.

3. Let qi j denote the number of requests in the FIFO queue of appliance i for service domain j. In

this step, we calculate the number of all the domain requests that are queued in all the appliance

queues: ∑
i=0

∑
j=0

qi j and the number of requests for service domain j in the virtual queue: ∑
i=0

qi j.

4. Then the desired utilization for domain j is calculated according to the following:

Uu
PR j =

Te

tp
∗Pu

j −
Te− tp

tp
∗
(
Uu

j +Uu
q j
)

(4.8)

5. The output UPR vector is used to produce an instantiation matrix with all appliance/domain

pairs. In this step the controller “translates” the percentages to ports that routers must open for

every appliance/domain pair.
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Figure 4.12: Controller Design

Why and How we Use the Queue term

In eq.(4.8), the controller’s prediction of the utilization is not based solely on the utilization vector

at the moment of decision td . The term Uu
q j is an estimate of and accounts for utilization a domain

receives due to already queued requests.

Uu
q j = a∗

max

b,
∑

i=0
qi j

∑
i=0

∑
j=0

qi j


∗Uu

j (4.9)

In the above formula, a and b are two variables that are evaluated by extensive simulations. In

this work we present results for a = 1 and b = 0.5, while in future work we will present evaluation of

a and b based on more complex and formal model.

The intuition behind this estimation term can be explained as follows: suppose that we have a

large number of requests in the cluster queues and all requests belong to domain 1; suppose further

that at the moment of decision we are “in” target for this domain, then we must intuitively use this

“future” cpu cycles usage as already taken to perform our prediction calculations. Uu
q j doesn’t depend

on average service time measurements, but only on straightforward queue state measurements. In Eq.

4.9, the first term is used to control how important we consider the queue state at decision time, as an

additional percentage to utilization Uu
j (or Uo

j ).

How we calculate CPU utilization in the cluster

In Eq. 4.8, Pu
j is the target underload percentage for service domain j; in order to calculate the CPU

utilization every domain got until the time of decision we use the formula:

Uu
j (td) = a∗

(
Uu

1 j +Uu
2 j + ...+Uu

i j
)
/N +(1−a)∗Uu

j (td−1) (4.10)
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Table 4.1: Instantiation Matrix

domain 1 domain 2 ... domain M
App 1 p11 p12 ... p1M

App 2 p21 p22 ... p2M

... ... ... ... ...
App N pN1 pN2 ... pNM

In Eq. 4.10, Uu
j (td) is the utilization that domain j achieved during underload periods (until time

td); similarly, Uo
j (td) is the utilization achieved during overload periods. td−1 is the time the previous

decision was made and variable a is the percentage of the total time the system worked for this mode.

For example for underload: a = last underload period
total underload period . Finally, i = 1, . . . ,N, where N is the total number

of appliances in the cluster.

Instantiation matrix creation

Instantiation matrix is created by translating the utilization vector UPR, to number of ports that must

be open per appliance and per domain. For each domain the following calculation is performed:

p j = R ∗UPR j where p j is the number of ports the router will open for domain j. The creation of

the instantiation matrix is based on an iterative heuristic, where we try to hold the same allocation

as possible as in the previous step, in order to have the minimum port open/close operations. Also

heuristic tries to have same number of open ports in all the appliances in order to eliminate the idle

state.

Agents operation

After the controller computes a global instantiation matrix for all the service domain-appliance pairs,

all local agents in each router are updated with this information. These agents manipulate the “global”

matrix locally and independently from other routers. Then this agent in each router is used to perform

two operations, Scheduling and Routing.

Scheduling Algorithm used: The router will probabilistically select domain j to schedule traffic to

an appliance in the cluster with probability Ps
i j =

∑
i

pi j

R where R is the total number of ports the router

can handle and ∑
i

pi j is the number of the ports allocated for domain j.

Routing Algorithm used: A request will be sent to appliance i with probability Pi j calculated as:

Ps
i j =

∑
j

pi j

R . In doing so, we also provide a form of load balancing because traffic is probabilistically

distributed among the appliances.

4.3.4 Simulations

We investigate through simulations the following:
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(a) Pu = {50%,30%,20%} (b) Po = {33%,33%,33%}

Figure 4.13: Prediction Based Performance

1. (Q1) whether our proposed mechanism meets the CPU utilization goals in both underload and

overload occasions.

2. Q2 we compare it with the static port allocation approach.

3. Q3 we present how controller’s parameters such as decision or prediction period etc affect our

controller performance.

For our simulation purposes, we built a custom, discrete-event simulator in C# language. For

the sake of simplicity, incoming traffic to service domain i is modeled as a Poisson process with

arrival rate Îi. In order to avoid side effects as resource starvation, in all simulations presented, we

use a minimum number of ports for every domain, no matter what the instantiation matrix is in each

cycle of measurements. In our simulations, this percentage is set equal to 10%. The rest of the ports

are distributed according to the controller operation described above. Also we consider that there is

always enough traffic for each domain and that the SLA defined is feasible, meaning that the traffic

for all domains is enough to meet the target CPU utilization.

One switch is connected to 3 appliances that form the cluster we investigate. The traffic arrived

in router comes from 3 different domains while the SLA defines the underload CPU utilization goal

as Pu = {50%,30%,20%} and overload CPU utilization goal as Po = {33%,33%,33%}. In order to

properly evaluate the mechanism in a stressful environment, we decided to choose different service

rates and different arrival rates for each domain while the instantiation matrix is initialized with equal

number of ports for all the service classes and all equally shared to all the appliances. The total

number of ports is set to 1000 while the prediction period in this set of simulations is equal to the

controller’s decision period Td .

In Figs. 4.13(a)-4.14(b), we provide an answer to questions Q1 and Q2. The static allocation we

simulated is different for the underload and overload modes. This means, for example, that, when the

system is in underload mode, 1000∗0.5 = 500 ports are open for SD1 and 1000∗0.333 = 333 ports

are open when the system is in overload mode.
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(a) Static allocation: Pu = {50%,30%,20%} (b) Static allocation: Po = {33%,33%,33%}

Figure 4.14: Static Allocation Performance

(a) Ports per Service Domain allocation (b) Ports per appliance allocation

Figure 4.15: Ports Allocation

As we can see in Figs. 4.13(a) and 4.13(b), the SLA target is clearly met while the system is in

underload and in overload mode. Also in comparison to the static allocation shown in Figures 4.14(a)

and 4.14(b), our mechanism clearly performs better. In fact, our mechanism is even sensitive and

adaptable to arrival rates that change in time while the static allocation solution seems to work better

only in one occasion, where arrival rates are equal and service rates are equal for all classes of traffic.

Static allocation fails to keep up with the fact that SLA defined for overload conditions is different

from that in underload, it takes no history of CPU utilization under consideration and its performance

depends on the arrival and service rates of the domains.

Two very interesting observations can be deduced by Fig.4.15(a) and Fig.4.15(b) where we can

see the port allocation done in the instantiation matrix per domain and per appliance. As we can see,

the number of open ports for each domain changes each time the controller has to take a decision.

Because of the 10% portion of ports that all classes share, we can see that there is always a minimum

of ports open to deliver requests for every domain. The iterative heuristic used for the Instantiation
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(a) Controller: Pu = {50%,30%,20%} (b) Controller: Pu = {50%,30%,20%}

Figure 4.16: Prediction period and multiple routers

Matrix creation tries to share equal number of requests to each appliance and this load balancing

behavior can be seen in Fig.4.15(b).

Figure 4.16(a) is used to answer question Q3, and in particular to show how the prediction period

affects the controller performance. Our simulations showed that controller meets the goal when pre-

dictions are made for medium to short prediction periods while by reducing the decision period by a

factor of 4 the controller converges faster to the desired goal.

In Fig. 4.16(b), we study a distributed environment where two routers are connected to two

different sets of three appliances each, all servicing requests for three domains. Again, different

arrival and service rates were selected for each domain. Here the underload mode is presented but the

goal is reached also in overload conditions.

4.4 Chapter Conclusions

In this Chapter, we proposed stochastic enqueueing and predictions techniques for guaranteed service

delivery. In the stochastic enqueueing approach, we presented an approach to provide guaranteed ser-

vice delivery to each customer class, by selecting the queue to store incoming requests. This scheme

was evaluated in two application scenarios. In server systems, where guarantees are provided on

CPU usage, and in 802.11 Access Points, where the stochastic enqueueing technique is used to pro-

vide guarantee throughput to individual customer classes. Future plans include study of the algorithm

behavior in an environment with multiple Access Points (or multiple servers) and its performance

under distributed and centralized control. The proposed scheme is not able to guarantee throughput

optimality or QoS, so extensions are planned on these directions also. Delay bounds investigation and

better performance regarding jitter will also be part of our future research. In the predictions based

approach, in contrast to existing work where estimation and prediction techniques are used to esti-

mate average values, we adjust scheduling probabilities based on system dynamics and a prediction

for the future system evolution. For both the enqueueing and prediction techniques no steady state
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analysis is provided, nevertheless, through extensive simulations we presented that are acceptable

approximations to the differentiation objectives.
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Chapter 5

Applications of Service Differentiation in
Heterogeneous Virtual Networks

Cloud computing technologies offer the necessary infrastructures to rapidly deploy large distributed

systems and applications. Together with the recent advances in the way wireless access technologies

evolve to provide ubiquitous wireless access, a technological breakthrough is on the go. The potential

for collaboration between cloud/virtualization technologies and ubiquitous wireless access networks

is enormous and this coupling constitutes a true paradigm shift, over which services can be built. The

services we focus on the last part of this thesis are content distribution services, provided over a cloud

system that exploits the virtualized multi-domain, multi-provider SDN architecture defined in the first

Chapter.

The model of resource sharing in data-center operations, combined with the successful model of

Mobile Virtual Network Operators (MVNOs)[16] can be exploited in end-to-end fashion and as a

result to extend the business models of the involved stakeholders. An efficient virtualization system

could hide all the complexities of the underlying infrastructures and layers and leave the MOVNO

focus on the services it provides. For example, a Content Delivery Network (CDN) provider could

deploy its network over multi-domain, MOVNO environments [3].

The idea is that a content distribution provider owns content that users from all the virtual opera-

tors can have access to, while the provider can establish various business relationships with a) every

physical storage provider regarding the placement cost of content and b) the operators. The problem

under consideration in this Chapter, is to weigh the trade-off between speed of content access and

increased user QoE, that we translate in higher revenue for the CDN provider. This comes at the cost

of content placement in every physical domain, in a way that will lead to profit maximization for

the provider. We focus on the analysis of the VNets/CDN scenario, since it is more generic and of

high importance to the building of end-to-end virtual networks. The concept of cloud CDN providers

[120] has emerged. In addition, inter-domain CDNs now rely on the interaction between ISPs and

CDNs, while they use cache management schemes over converged multi-domain environments [121]

and [122].
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Figure 5.1: System Model

5.1 Introduction

The services we focus on this chapter are CDN services provided over multiple provider networks, vir-

tual or not, where their access networks are deployed in wireless heterogeneous networks (HetNets).

We examine how such converged virtual infrastructures can be used to offer cloud based replication

services (CDN-like) and how known replication policies can be exploited by both the physical infras-

tructure provider and the virtual network operators. Recent works, e.g. [123], [121],[122] and [124],

show that a closer collaboration between CDN providers and ISPs, will have a proliferative positive

effect on the systems operation and end-user performance. Both can jointly take advantage of the

already deployed distributed multi-domain infrastructures and also benefit from the advancements in

virtualization technology.

In the model that we consider, every domain of the end-to-end path (wireless, optical, datacenter)

is virtualized by means of resource virtualization/isolation and in addition it is able to host replication

facilities, enabling this way replication actions. The replication facilities are accessed by users who

belong to virtual networks (VNets), that use different virtual communication paths with different

capacity/cost/network characteristics. Any user is logically associated to a VNet (owned by a Virtual

Network Operator), but physically served by a number of wireless access domains. We nurture the

concept of different costs per object request, per virtual operators and per domain. Our objective

is to minimize the end-to-end operation cost of the system and maximize the provider’s profit, by

exploiting the caching capabilities of the intermediate domains between the users and the datacenter.

The main motivation and questioning behind this work is the following: if all the various seg-

ments/domains of an end-to-end architecture are able to perform replication actions and all the mo-

bile end-users request objects from a common pool, but users belong to different virtual networks

(VNets) that have different SLAs with the physical infrastructure provider, which is the best replica-

tion policy, so that the utilization of the content provider is maximized?.

Our contributions are the following. Firstly, we develop a mathematical framework for efficient

content placement in multi-domain environments. The model takes into account the probability dis-
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tribution of users belonging to one access network or another, while the network providers (operators)

that the users are associated with, have different business relationships with the physical providers and

the CDN providers; these relationships affect the cost of content retrieval. The proposed model also

considers the content placement cost in every domain, besides physical storage size limitations. Then,

a greedy centralized approach and a distributed content placement/replacement scheme (low overhead

and easily implementable) are proposed and evaluated through extensive simulations. Note that be-

sides virtual end-to-end networking, the concept of cloud CDN providers [120] has also emerged.

This Chapter is organized as follows. In Section 5.2, we formulate the problem of content place-

ment in multi-domain environments, whereas in Section 5.3 we present the content placement poli-

cies. In Section 5.4 we evaluate through simulations the proposed policies, while we conclude the

paper and give pointers for future work in Section 5.5.

5.2 System model and Problem Statement

Let K= {1,2, · · · ,K} denote the set of all the available domains (e.g., optical A, optical B, WiFi, etc)

and L= {1,2, · · · ,L} denote the set of all the access domains (e.g., LTE A, LTE B, WiMAX, WiFi A,

etc), where L ⊆ K. Also let V = {1,2, · · · ,V} denote the set of all end-to-end virtual networks. We

assume that every mobile user is associated with a single VNet. We also assume that a single CDN

provider offers content services with M = {1,2, · · · ,M} objects. In our model, all the objects are

accessible by all users belonging in all VNets; however, the utility for an object i enjoyed by a CDN

user belonging in VNet j is different across VNets. This is reasonable in our end-to-end virtualized

model, since the physical providers and their business relationship with the CDN provider may be

also affected by the business relationship between them and the VNet operator. We use ui, j to denote

the willingness to pay (in cost units) of a user belonging in VNet j for accessing object i.

In the access domain, a lot of research has been done regarding the optimal access network se-

lection [125] and rate distribution in HetNets [126], while various mobility models exhibit the char-

acteristics of temporal dependency, spatial dependency and geographic constraint mobility [127].

Nevertheless, in this work in order to handle user mobility and also to be aligned with the HetNet

concept, we are only interested in the steady state probability of a user using a number of access net-

works. We adopt a simple Markov model for any user, where states represent the access networks that

a user/subscriber is physically served from. These steady state probabilities (of using one physical

access network or another) are then used, to “split” the user’s total request traffic to the various access

networks it enables.

Let ri, j denote the request rate for object i from all the users associated with VNet j. If we let π l
j

denote the steady state probability of any user that belongs to VNet j to be served by access network

l, then the request rate distribution is equal to rl
i, j = π l

j · ri, j, ∀l ∈ L. Also, we define di(k, l) as the

distance between the closest domain k ∈K where object i is placed and the access domain l ∈Lwhere

the request originates.

We also use the following notation: ck
i is the cost of placing object i in domain k (ck

i also includes
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Figure 5.2: System Model

the transfer cost that the CDN provider pays to the physical network provider(s) to transfer object i

in domain k), pk
i is the probability of finding object i in domain k (and is our control variable as we

show later), si is the size of object i and Sk is the storage capacity of domain k ∈K in bits accordingly.

Fig. 5.2 depicts the system model under consideration and Table 5.1 provides a notation summary.

5.2.1 Problem Statement

We define the utility U j(l) enjoyed by the CDN provider when the objects are accessed by users of

VNet j residing at the l ∈ L access network as

U j(l) =
|M|

∑
i=1

ui, j · rl
i, j · (1− f (Di(l))+∆

∗
i ) (5.1)

where Di(l) is the minimum distance between the domain k where object i is stored, and the requester

when the requester is served by access network l. We define this distance as

Di(l) = min
k:pk

i =1
di(k, l) (5.2)

where di(k, l) is the distance expressed by hop counts.

In Eq.(5.1) function f : R+→ [0,1] is used to normalize the distance values in a range between

[0,1]. The intuition behind Eq.(5.1) and Eq.(5.2) is that whenever a user retrieves content from an

access domain and the objects retrieved are also stored in this domain then f (Di(l)) = 0. In this case,

the maximum net benefit (i.e., utility minus cost) occurs for the CDN (content is retrieved as fast as

possible and thus user willingness to pay is maximized); therefore, CDN provider can make higher

profit and increase demand for CDN services. In the case where the requested content can be found

only in the data center, then f (Di(l)) = 1. In this case, we use ∆ ∗i to describe that a minimum gain

(satisfaction) is achieved even when the object is found in the data center.

The probability pk
i of finding object i in domain k is defined as

pk
i =

{
1, if k = 1 (the datacenter),

∈ {0,1}, otherwise.
(5.3)
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Table 5.1: Notation Summary
Not. Description
K set of domains (optical, WiFi etc)
L set of access domains (e.g LTE,WiFi), L ⊆K
V set of Virtual Network Operators (VNO)
M set of objects
ui, j willingness to pay of a user in VNet j for object i
ri, j request rate for object i by users associated to VNO j
π l

j steady state prob. of a user in VNet j to be served
by access network l

di(k, l) distance between domain k where object i
is placed and access domain l

ck
i cost of placing object i in domain k

pk
i probability of finding object i in domain k

si size of object i
Sk storage size of domain k
U j(l) Utility U j(l) the CDN provider enjoys from VNet j

when the objects are accessed by access network l

With the above definition we assume that domain k = 1 is the data center and that all objects are

stored in the data center, while is up to the used cache management algorithm to decide in which

other domain(s) to replicate the content (object i in this case). Note that pk
i = 0 means that the object

i is not available in domain k, while pk
i = 1 means that the object i is available in domain k. These

values are used to define the binary matrix P = [pk
i ] of size K×M, that is the control variable to the

following optimization problem

maximize
P

|L|

∑
l=1

|V|

∑
j=1

U j(l)−
|M|

∑
i=1

|K|

∑
k=1

pk
i · ck

i (4)

subject to
|M|

∑
i=1

pk
i · si ≤ Sk,∀k ∈ K (5.4a)

|K|

∑
k=2

pk
i ≤ |K|−1,∀i ∈M (5.4b)

where ck
i is the cost of placing object i in domain k. Note that we have also included the transfer

cost in ck
i . The physical interpretation of this inclusion is that in order to cache an object closer to

the requester and increase its QoE and the CDN’s profit, a higher transfer cost based on the business

relationships of the CDN provider with the network provider or the ISP would be observed. This

inclusion makes the model even more generic, since complex relationships can also be defined. The

first restriction Eq.(5.4a) is set in order to meet the capacity constraints in every domain, whereas the

second restriction Eq.(5.4b) means that any object i can be stored in up to |K|− 1 domains, besides

the data center where it is already stored. Eq.(5.4) provides the maximum net benefit of the CDN

provider.
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5.3 Content Placement Policies

Effective implementation of the vision for inter-domain cloud-based CDNs requires the formulation

of a robust methodology regarding the coordination among multiple providers (e.g. access, optical,

ISPs) and the integration of multiple cloud and virtualization technologies. Inter-domain CDNs rely

on the interaction between ISPs and CDNs and cache management schemes over this converged envi-

ronment are presented in [121] and [122], while replica-selection decisions coordination is presented

in [128] in a distributed environment, focusing in cloud services. Also, today caches use dedicated

hardware on a per-CDN provider and per-operator basis [129]. In the new virtualized environment, by

applying the NFV paradigm in order to utilize and deploy virtualized caches, the underlying hardware

resources could be consolidated and shared among multiple CDN providers, improving resources us-

age [130].

An autonomic cache management framework for future Internet was presented in [131], while a

work on cache management over converged end-to-end virtual networks was presented in [132]. In

our modeling, in contrast to [131]-[132] we consider different cost per end-to-end VNet and in addi-

tion, we consider user mobility, multiple access domains, while we take into account the placement

cost, besides physical storage limitations. Placement algorithms that use workload information, such

as distance from the storage points and request rates to make the placement decision, are investigated

in [133].

Even at steady state (e.g., static object access rates, fixed geographical distribution of users, fixed

storage costs, etc.) optimal placement of the objects at the caches of the various domains resembles

the multiple knapsack problem, which is NP-complete. Hence, we provide two approximate solutions

to the problem of object placement.

Centralized Approach - Greedy

In [134], a greedy approximation algorithm has been proposed, based on a cost metric related to the

distance of the object storage points to the end-users and the object request rates. According to [134],

the greedy algorithm has a median performance of (1.1−1.5) ·OPT and a worst case of 4 ·OPT .

We adapt the greedy approximation algorithm of [134] to our problem as follows. The greedy

algorithm works in rounds/iterations. At each round, for each object at the data center, the net benefit

gain of its replica placement at every feasible domain is calculated, given that the rest of the objects

are already cached at each domain. The object whose replication at a domain gives the highest

net benefit gain is selected to be replicated at that domain. The process is repeated for all objects

until all the available storage capacity of every possible domain is full. This algorithm requires

min{M,∑K
k=2 Sk/s̄} iterations, where s̄ is the mean object size.

The greedy approximation algorithm is a centralized and static approach that should be re-executed

for new objects, for objects whose request rates are significantly modified or whenever other signifi-

cant problem parameters are modified (e.g. cache storage/placement costs).
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Decentralized Approach - Holistic

In this approach, we assume a cache manager at each domain (other than the data center) that acts as

autonomous agent and takes decisions, so as to host the objects that maximize the overall net benefit.

Periodically, the cache manager of a domain may decide to fetch new objects from the data center or

remove cached objects according to the following process:

1. Calculate the net benefit decrease arising from the removal of an object stored at the domain.

Sort objects in ascending order of the net benefit decrease in list D.

2. Calculate the net benefit increase by caching a new object at the domain. Sort objects in de-

scending order of the net benefit increase in list I.

3. Select object o∗ with size so∗ at the top of list I, whose insertion results to the maximum net

benefit increase.

4. Starting from the beginning of list D, select d objects, so that their total size is greater or equal

than the size of object o∗, i.e., ∑
d
i=1 si ≥ so∗.

5. If the total net benefit decrease arising from the removal of d objects is lower than the net

benefit increase by the insertion of the new object o∗, then replace the d objects with object o∗.

6. If there is some extra storage space left at the domain by the removal of the d objects, i.e.,

∑
d
i=1 si− so∗ = e∗ > 0, then go through the list I and fetch every new object that fits and remove

its size from the extra space e∗, until no new object fits any more or the extra space is exhausted.

7. Repeat the above steps until no further object replacements can be made among domains and

increase the overall net benefit.

Only one domain (manager at each domain) is allowed to perform object replacements at each itera-

tion by means of a distributed consensus algorithm, i.e., Paxos [135], until a steady state is reached

where no further object replacements occur.

5.4 Performance Evaluation

In this section, we evaluate through simulations the performance of the two cache management al-

gorithms (Greedy and Holistic) and we compare them against a Myopic algorithm. In the Myopic

algorithm each domain caches objects with the objective to maximize the overall net benefit based

on the observed request pattern, without having any knowledge of the caching decisions of the other

domains, i.e. an intermediate domain does not know the caching strategy of the access domains that

are connected to it.

For the performance evaluation we assume that all domains have the same caching capacity Sk =

S, ∀k ∈K. We also consider the scenario of |M|= 106 different unit sized objects, where the request

rate for each object from each VNet j ∈ V is determined by its popularity. Here we approximate the

popularity of the objects by a Zipf law of exponent zpop (file popularity in the Internet follows Zipf

distribution [136]-[137]). The request rate of each object at each VNet varies from 0− 20 reqs/sec

according to its popularity and ranking.
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Figure 5.3: The performance of the cache management algorithms vs. the fraction (S/M) of the
objects that can be stored in each one of the domains.

For reasons of comparison, we depict the performance of the proposed algorithms both with the

spatial locality workload (noted as spatial in the figures), as well as when the VNets follow the same

popularity distribution and the same object ranking (noted as uniform in the figures). The reason is

that the popularity of each object may differ between different virtual networks, a phenomenon that

is referred to as locality of interest (spatial locality in [138]). In our experiments, the workload is

tuned from a localized subscription model, where at each virtual network (VNet) the popularity of

the requests follow the same Zipf law distribution of exponent zpop. Nevertheless, the ranking of

the objects within this distribution is different among the virtual networks. This means that an object

i∈M that is the most popular object in some VNet might not be the most popular in a different VNet,

where another object, may be the most popular. Thus in our evaluation model, all objects follow the

same zpop popularity distribution in the various VNets, but with different ranking.

In our system model we use a generic mathematical formulation where the request distribution

for every VNet depends on the steady state probability of users/subscribers using a specific access

domain. Due to page size limitations, we examine the performance of the proposed schemes, in the

case where a user is served by a single access domain (so depending on the VNet j, π l
j = 1 for a

single l and zero elsewhere). More specifically, in order to assign the VNets to the access domains
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Figure 5.4: The performance of the cache management algorithms vs. the number of domains K.

we assume a square area of 300 distance units, where the access domains are uniformly deployed.

Each access domain l ∈ L covers a circle area of 50 distance units. This means that every VNet that

is deployed within this area can be assigned to access domain l. Each VNet j can communicate with

a subset of access domains (at least one), and randomly chooses one of them to be assigned. We also

assume that each access domain l ∈L can use a random number of other domains to connect with the

data center. Finally, we assume that the utility ui, j that a user of VNet j enjoys for retrieving object i

from domain k, as well as the the cost ck
i of caching object i in domain k varies from 0−10 cost units.

For each proposed algorithm the following performance metrics are used to describe the algo-

rithm’s performance: 1) the Total Utility Gain at the stationary point and 2) the percentage difference

of the algorithms regarding

a) the number of iterations = (Iter-grd−Iter-hol)
Iter-grd

b) the number of replacements = (Repl-grd−Repl-hol)
Repl-grd .

The number of iterations is indicative of the difference of the algorithms regarding their running

time. Regarding the holistic algorithm, the number of object replacements is the number of object

fetches (from the data center) that have to be performed once the algorithm has converged, i.e. how

many objects have to be replaced in the caches compared to the initial cache assignment, whereas the

97

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:21:38 EEST - 3.142.196.98



2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
1 0 k
2 0 k
3 0 k
4 0 k
5 0 k
6 0 k
7 0 k
8 0 k  K = 6 0 ,  L = 5 0 ,  S / M = 0 . 2 ,  z p o p = 0 . 7    

 H o l i s t i c _ s p a t i a l
 G r e e d y _ s p a t i a l
 M y o p i c _ s p a t i a l
 H o l i s t i c _ u n i f o r m
 G r e e d y _ u n i f o r m
 M y o p i c _ u n i f o r m

 

 

To
tal

 Ut
ilit

y G
ain

V
(a) Total utility gain

2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 02
4
6
8

1 0
2 2
2 4
2 6
2 8
3 0

 I t e r _ s p a t i a l
 R e p l _ s p a t i a l
 I t e r _ u n i f o r m
 R e p l _ u n i f o r m

 K = 6 0 ,  L = 5 0 ,  S / M = 0 . 2 ,  z p o p = 0 . 7    

 

 

% 
dif

fer
enc

e (
gre

edy
 vs

. h
oli

stic
)

V
(b) Iterations and object exchanges relative gain

Figure 5.5: The performance of the cache management algorithms vs. the number of virtual networks
V .

greedy and the myopic algorithms always start from an empty cache and have to fetch every object

from the data center. Since the holistic algorithm assumes an initial cache assignment in the caches

of the domains, each point of the following figures is the mean value out of 100 executions starting

from different initial cache assignments.

Impact of domain’s caching capacity: In Fig. 5.3 we depict the impact of the cache capacity,

expressed as the fraction of the objects that can be stored at each domain k ∈ K, on the performance

of the examined algorithms. Regarding the Total Utility Gain, we observe that the the holistic algo-

rithm performs ≈ 2% better than the greedy one when the workload with the spatial locality is used,

and ≈ 5% better when uniform popularity is assumed. The holistic algorithm performs also better

than the myopic algorithm regarding the utility gain 8%− 15%. From Fig. 5.3 we also observe a

linear increase regarding their difference in the number of iterations and object fetches. As we relax

the storage capacity constraint and allow more objects to fit in the cache of each domain, the holistic

algorithm only needs to make small adjustments in the caches to maximize the utility gain, whereas

the greedy algorithm every time starts with an empty cache and its complexity is strongly coupled

with the size of the caches. In more details, in the holistic algorithm the number of object replace-

ments/fetches per domain decreases almost linearly as the capacity of the caches increase, since the
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Figure 5.6: The performance of the cache management algorithms vs. the popularity exponent zpop.

availability of more cache slots enables more objects to be stored and hence less replacements are

required to reach the selected assignment. Only for very small sizes of the caching capacity of each

domain the greedy algorithm requires less iterations than the holistic, which implies that terminates

faster, but in any case the holistic requires always fewer object fetches (less traffic in the system).

Impact of the number of domains: In Fig. 5.4, we depict the impact of the number of the

domains K, on the performance of the examined algorithms. We assume that the access domains L
are equal to |L| = |K|/1.2. Regarding the utility gain we observe an almost linear increase as we

increase the number of domains, since more domains means that each VNet has more choices of

access domains to be assigned to, which further implies that the total load could be distributed in a

more balanced way among the access domains. Also, more domains means more storage capacity

between the VNets and the data center. As in the previous figure the holistic algorithm requires

≈ 25% fewer object fetches than the greedy algorithm and 3%−15% fewer iterations regardless the

used workload setup (spatial or uniform).

Impact of the number of VNets: In Fig. 5.5, we depict the impact of the number of VNets V

in the performance of the examined algorithms. We notice that the total utility gain metric increases

linearly with the number of VNets. This means that the algorithms are not affected by the number

of the VNets in the system and they manage to accommodate the extra load within the domains,
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without having to request more objects from the data center. In more detail, the holistic algorithm

performs 1.5%− 5% better than the greedy algorithm depending on the used workload setup, and

requires almost 10% fewer iterations and ≈ 28% fewer object fetches from the data center. This

further implies that even if the usage of the holistic algorithm only provides marginal differences in

the utility gain compared to the greedy algorithm, its execution converges faster and produces less

overhead cost/traffic (object fetches).

Impact of the Zipf’s exponents value: In Fig. 5.6 we investigate the performance of the al-

gorithms as the popularity (exponent zpop) of the request pattern at each VNet change. As with the

previous figures we observe that the newly proposed holistic algorithm performs slightly better than

the greedy, but requires almost 10% fewer iterations and approximately 25% fewer object fetches at

the stationary point.

5.5 Chapter Conclusions

Cloud services related to content distribution are in the core of today’s research, due to the explosion

of the mobile usage of Internet and multimedia services. Although it is well known that cloud com-

puting technologies will play a significant role in content delivery, it is less understood how cloud

service provisioning will evolve on a global scale in the near future.

In this work we get into the insights of content replication strategies and we also capture the effects

of using them in an converged wireless-optical-datacenter virtual environment. Particularly, we com-

pared two different cache management algorithms with regards to their performance, complexity and

convergence time. Our numerical results provide evidence that well known distributed approaches

give significant performance benefits and reduce the time to convergence, when compared to cen-

tralized off-line policies. Our imminent future plans is to implement the proposed end-to-end cloud

based content replication framework, over the facilities (wireless, optical) of the CONTENT solution,

as well as to investigate new cache management algorithms that will also take into consideration topo-

logical constraints of the intermediate domains. We focused on a single CDN provider (virtual or not)

and the content placement problem (over physical or virtual infrastructures), since the CDN content

placement and provisioning is important to be understood and optimally controlled. Investigation of

scenarios with multiple CDN providers are left for future work.
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Chapter 6

Conclusions and Future Work

The high level goal for every virtual network operator is to carry mission-critical and non-mission-

critical traffic of its subscribers from the access network up to the data center and vice versa. Our

goal in this thesis was to add a δ , in evolving the SDN concepts, especially in the wireless domain

of multi-domain architectures and provide scientific solutions to the emerging problem of dynamic

provisioning, network management and control in cloud based systems. New mechanisms also lever-

age ways to apply known QoS and service differentiation techniques that are able to differentiate

traffic between operators, in the new virtualized environment of operation. We hope that hopefully

we reached both goals.

We truly believe that the SDN paradigm aims in radically rethinking the end-to-end virtualization

concepts, by removing the boundaries set when studying per-domain communications. At this stage

it has the necessary industry support for unleashing the hidden potential of cloud technologies, in

order to provide a holistic network view. Note that Software Defined Networks (SDN) and Network

Function Virtualization (NFV) technologies and methodologies will be in a constant state of mutation

the following years. Towards 5G communications, a multifaceted impact in the way that mobile

virtual networks are actually built and operate and the way cloud services are provided, is expected.

6.1 Summary of the Contributions

In this thesis we addressed the problem of differentiating services between classes of customers in

virtual end-to-end environments, by dissecting the high level challenge into the following research

problems:

1. Design of an end-to-end, multi-domain SDN architecture, that spans from the wireless access

network up to the virtualized data-center. This end-to-end architecture served as the ground-

floor over which the service differentiation problems were investigated.

2. Dynamic Provisioning in cloud based environments. We contributed with the development of

dynamic scheduling algorithms used for guaranteed service differentiation and secondly with
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modeling of applications, where multiple virtual operators utilize shared physical infrastruc-

tures, with the objective to maximize the service provider profit.

6.1.1 Multi-Domain SDN Architectures

Regarding the design of an end-to-end SDN architecture, we assisted in the design of an open archi-

tecture that is able to provide multi-domain virtualization, facilitating not only network virtualization

but also network management and control. Our work was made in the context of the CONTENT SDN

solution, that required to exemplify all the fictions the research community encounters and debunks

regarding multi-domain SDN control. The design of this novel SDN architecture, is aligned with

the Open Networking Foundation ONF guidelines, while the research work presented in this thesis

is related to the wireless access domain of the architecture and its integration with the optical metro

domain in both the Control and Data Planes of the architecture.

Cloud technology driven changes are inevitable and we believe that multifaceted analysis is re-

quired in order to come up with a framework that is robust, agile and scalable while is able to provide

multi-domain virtualization by following the SDN paradigm. Our goal in this thesis was to rely

on a convergent multi-domain SDN architecture that is able to provide differentiated services. The

proposed solution serves not only as the necessary, but also as the ideal ground-floor to apply new

policies that we devised that are able to offer guaranteed service delivery to different virtual traffic

flows.

6.1.2 Dynamic Resource Provisioning in cloud based environments

We developed and analyzed new dynamic scheduling algorithms, that are able to satisfy specific

differentiation objectives between competing customer classes. Different customer classes utilize

network and processing resources (virtual or physical) that span end-to-end from the wireless ac-

cess up to the data-center. Due to multi-tenancy effects and the presence of time varying workload

conditions, the application of stochastic control theory is required in order to rigorously analyze the

performance of policies that are able to achieve differentiation objectives. Considering the modeling

of applications, where multiple virtual operators utilize shared physical infrastructures, we addressed

the emerging content replication problem that a content provider needs to consider, when deploying

its network over virtual, multi-domain, heterogeneous environments. In our proposed solution, the

benefit that the provider enjoys may be different per network operator for the same request, while our

model takes into account the replication cost to every domain, as well as the user mobility, besides

physical storage limitations.

More specifically, we proposed and analyzed a class Π of negative-drift Dynamic Weighted

Round Robin (DWRR) policies that can be used to satisfy specific differentiation objectives. A

general mathematical framework is developed that can be applied to a broad family of scheduling

problems where differentiation of resources must be provided, like in OS thread/process scheduling

or multi-processing systems. We presented a theoretical analysis regarding saturated arrival condi-
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tions, using stochastic analysis, while we investigated various properties like speed of convergence.

We also extended this mathematical framework to include the stochastic arrivals case and we present

proof of convergence for the non-work-conserving mode of operation, feasibility space analysis and

dependence on the service redistribution algorithm on final performance, for the general case.

An example SLA that the DWRR classs of policies can be used to satisfy, could be cast along the

following lines: “without any knowledge of statistics regarding the arrival and the service process

in a cluster of servers, guarantee 20% of CPU power to requests of class A, 30% of CPU power to

requests of class B and 50% of CPU power to requests of class C in the long run.

The following theoretical results can be collectively deduced from our analysis of negative drift

DWRR policies π ∈ Π , under unknown service time and arrival process statistics. Let p̃i denote the

maximum utilization service a domain can enjoy, assuming no competition, and pi the resource share,

percentage objective. Then:

1. In the case of saturated arrivals, ∀π ∈ Π converges with probability 1 (w.p. 1) to the goal

percentage, pi.

2. In the case of stochastic arrivals, when operating in non-work conserving mode, steady state

exists for any policy π ∈Π . Any policy converges with probability 1 (w.p 1) to the minimum

between the goal percentage and the maximum utilization service.

3. Assuming steady state, the feasibility space for any policy π ∈ Π , in the case of stochastic

arrivals and all modes of operation, can be clearly defined.

4. In the case of stochastic arrivals, under work conserving mode of operation:

a. any policy π ∈Π : p̃i ≤ pi convergences to p̃i.

b. for any policy π ∈ Π : p̃i > pi convergence point depends on the service redistribution

algorithm.

Besides the development and analysis of negative-drift DWRR policies, we also developed new

stochastic en-queueing techniques and prediction algorithms that are able to provide differentiating

services between competing customer classes. For both the en-queueing and prediction techniques

no steady state analysis was provided, nevertheless through extensive simulations we present that

are acceptable approximations to the differentiation objectives. These techniques are related to the

contributions. In the stochastic enqueueing approach, we present an approach to provide guaran-

teed service delivery to each customer class by selecting the queue to store incoming requests. This

scheme is evaluated in two application scenarios. In server systems, where guarantees are provided

on CPU usage, and in 802.11 Access Points, where the stochastic en-queueing technique is proposed

to provide guarantee throughput to individual customer classes. In the predictions based approach,

in contrast to existing work where estimation and prediction techniques are used to estimate average

values, we adjust scheduling probabilities based on system dynamics.
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Regarding the contribution of this thesis related to applications over a convergent multi-domain

system, a mathematical framework for efficient content placement in multi-domain environments is

proposed. The services we focus are content distribution services provided over a cloud system that

exploits the virtualized multi-domain, multi-provider CONTENT architecture. The model takes into

account the probability distribution of users belonging to one access network or another, while the

network providers that the users are associated with, have different business relationships with the

physical providers and the content distribution providers. The proposed model also considers the

content placement cost in every domain, besides physical storage size limitations, while the objective

is to maximize the benefit that the provide enjoys.

6.2 Future Work

The core work presented in this thesis can be extended in many ways, such as optimizing different

objectives to serve different QoS metrics and SLAs among the network and the service providers. In

distributed computing cloud-based environments, reaching a high level goal is a very complicated pro-

cedure, because a very large number of intermediates, must cooperate in order to provide end-to- end

solutions. Network conditions and configurations, operating systems used, applications robustness,

server used in complicated operations, access networks operations etc. may experience unpredictable

failures or performance. In this context, it is very optimistic for an administrator to provide contin-

uous guaranteed support, without the help of vertical or horizontal scalability in the network tier, in

the access tier or the processing tier and without using advanced mathematical tools, regarding QoS

analysis and service differentiation analysis.

Thus a promising direction for future work, that is applicable to cloud environments, would be

along the lines of such end-to-end problems: the control policies in this scenario must take into

account interactions between multiple tiers. Furthermore, investigation of more complex SLAs that

take into account the relationship between various performance metrics and the dependencies between

services, are left for future work. The same goes for the study of metrics like completion time to

capture the effects that arise in the case of session based workloads. Further research must be also

made in order to meet implementation constraints in highly dynamic environments. Our future plans

also include comparison between DWRR and alternative schedulers in hypervisor systems (e.g Xen);

implementation of DWRR in web server operations, I/O handling enhancements and performance

investigation under preemptive operation.

Our future research includes the investigation on service differentiation and QoS problems in vir-

tual wireless, SDN/NFV based networks. Ongoing work includes scenarios where while guaranteed

service delivery by means of service differentiation, at the same time mission-critical applications

receive higher priority and QoS is applied. This is very important consideration especially in the

wireless domain.

In the application layer of the envisioned architecture, by means of service delivery, in this thesis

we addressed the emerging content replication problem a content provider needs to consider, when
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virtual network operators utilize both the content services and end-to-end virtualized infrastructures.

More complex business relationships between the various players (physical infrastructure providers,

content providers and virtual network operators) in more complex network architectures, with mul-

tiple content providers, will be investigated in the future. Moreover, content migration cost consid-

erations and thorough investigation of the utility function definition to reflect real market conditions,

will also be part of our future research, as well as cases of content delivery failure that can be caused

by the convergence of multiple domains.
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de Probabilités de Saint-Flour XIX1989, pages 1–66. Springer, 1991.

[93] G.A Edgar and L. Sucheston. Martingales in limit and amarts. Proceedings of the American
Mathematical Society, 67(2):315–320, 1977.

[94] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. Multi-resource fair queueing for packet
processing. SIGCOMM, ACM, 42(4):1–12, August 2012.

[95] M. Shreedhar and George Varghese. Efficient fair queueing using deficit round robin. SIG-
COMM Comput. Commun. Rev., 25(4):231–242, October 1995.

[96] N. Giroux, R. Liao, and M. Aissaoui. Fair queue servicing using dynamic weights (DWFQ),
2001. US Patent 6,317,416.

[97] Der-Chiang Li, Chihsen Wu, and Fengming M. Chang. Determination of the parameters in the
dynamic weighted Round-Robin method for network load balancing. Computers and Opera-
tions Research, 32(8):2129–2145, 2005.

[98] T. Li, D. Baumberger, and S. Hahn. Efficient and scalable multiprocessor fair scheduling using
distributed weighted round-robin. SIGPLAN, ACM, pages 65–74, 2009.

[99] J. B. Nagle. On packet switches with infinite storage. Trans. on Communications, IEEE,
35(4):435–438, 1987.

[100] A. Burns, G. Bernat, and I. Broster. A Probabilistic Framework for Schedulability Analysis.
Embedded Software, Lecture Notes in Computer Science, Springer, 2855:1–15, 2003.

[101] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin Vahdat. Enforcing perfor-
mance isolation across virtual machines in xen. In Maarten van Steen and Michi Henning,
editors, Middleware 2006, volume 4290 of Lecture Notes in Computer Science, pages 342–
362. Springer Berlin Heidelberg, 2006.

[102] A. Sharma, H. Adarkar, and S. Sengupta. Managing qos through prioritization in web services.
Web Information Systems Engineering Workshops, IEEE, pages 140–148, 2003.

[103] C. Zhang, R.N. Chang, C. Perng, E. So, C. Tang, and T. Tao. Leveraging Service Composition
Relationship to Improve CPU Demand Estimation in SOA Environments. SCC, IEEE, 1:317–
324, 2008.

[104] A. Fischer, J.F. Botero, M. Till Beck, H. de Meer, and X. Hesselbach. Virtual network embed-
ding: A survey. Communications Surveys Tutorials, IEEE, 15(4):1888–1906, Fourth 2013.

[105] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann. Vne-ac: Virtual network embedding
algorithm based on ant colony metaheuristic. In Communications (ICC), 2011 IEEE Interna-
tional Conference on, pages 1–6, June 2011.

[106] M. M. N. Aldeer. Performance comparison of packet-level multiplexing algorithms with bursty
traffic. Journal of Engineering Science and Technology, pages 46–52, 2010.

[107] A. Mucci. Limits for martingale-like sequences. Pacific J. Math., 48(1):197–202, 1973.

113

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:21:38 EEST - 3.142.196.98



[108] M.G. Markakis, E.H. Modiano, and J.N. Tsitsiklis. Max-weight scheduling in networks with
heavy-tailed traffic. INFOCOM Proceedings, IEEE, pages 2318–2326, 2012.

[109] Naoki Osada. The early history of convergence acceleration methods. Numerical Algorithms,
60(2):205–221, 2012.

[110] Dror G Feitelson. Workload modeling for computer systems performance evaluation. 2014.

[111] Jianyong Zhang, Anand Sivasubramaniam, Alma Riska, Qian Wang, and Erik Riedel. An
interposed 2-level i/o scheduling framework for performance virtualization. SIGMETRICS
Perform. Eval. Rev., 33(1):406–407, June 2005.

[112] P.E. McKenney. Stochastic fairness queueing. In Proceedings of IEEE INFOCOM, 1990.

[113] Feng Lu, G.M. Voelker, and A.C. Snoeren. Weighted fair queuing with differential dropping.
In INFOCOM, 2012 Proceedings IEEE, pages 2981–2985, 2012.

[114] Clayton Shepard, Hang Yu, Narendra Anand, Erran Li, Thomas Marzetta, Richard Yang, and
Lin Zhong. Argos: Practical many-antenna base stations. In Proceedings of the 18th annual
international conference on Mobile computing and networking, pages 53–64. ACM, 2012.

[115] Ghannam Aljabari and Evren Eren. Virtualization of wireless LAN infrastructures. In Intelli-
gent Data Acquisition and Advanced Computing Systems (IDAACS), 2011 IEEE 6th Interna-
tional Conference on, volume 2, pages 837–841. IEEE, 2011.

[116] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans Kaashoek. The click
modular router. ACM Transactions on Computer Systems (TOCS), 18(3):263–297, 2000.

[117] G. Foschini and J. Salz. A Basic Dynamic Routing Problem and Diffusion. Communications,
IEEE Transactions on, 26(3):320–327, 1978.

[118] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker. Approximate Fairness Through Differential
Dropping. In Proceedings of ACM SIGCOMM, 2003.

[119] R. Wolski, N. Spring, and J. Hayes. Predicting the cpu availability of time-shared unix systems
on the computational grid. In High Performance Distributed Computing, 1999. Proceedings.
The Eighth International Symposium on, pages 105–112, 1999.

[120] Onapp cdn. http://onapp.com/.

[121] Kideok Cho, Hakyung Jung, Munyoung Lee, Diko Ko, T.T. Kwon, and Yanghee Choi. How
can an isp merge with a cdn? Communications Magazine, IEEE, 49(10):156–162, 2011.

[122] Wenjie Jiang, Rui Zhang-Shen, Jennifer Rexford, and Mung Chiang. Cooperative content
distribution and traffic engineering in an isp network. SIGMETRICS Perform. Eval. Rev.,
37(1):239–250, 2009.

[123] M. Claeys, D. Tuncer, J. Famaey, M. Charalambides, S. Latre, G. Pavlou, and F. De Turck.
Proactive multi-tenant cache management for virtualized isp networks. In Network and Service
Management (CNSM), 2014 10th International Conference on, pages 82–90, Nov 2014.

[124] Benjamin Frank, Ingmar Poese, Yin Lin, Georgios Smaragdakis, Anja Feldmann, Bruce
Maggs, Jannis Rake, Steve Uhlig, and Rick Weber. Pushing cdn-isp collaboration to the limit.
ACM SIGCOMM Computer Communication Review, 43(3):34–44, 2013.

114

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:21:38 EEST - 3.142.196.98



[125] Lusheng Wang and G.-S.G.S. Kuo. Mathematical modeling for network selection in heteroge-
neous wireless networks; a tutorial. Communications Surveys Tutorials, IEEE, 15(1):271–292,
2013.

[126] S. Singh, H.S. Dhillon, and J.G. Andrews. Offloading in heterogeneous networks: Modeling,
analysis, and design insights. Wireless Communications, IEEE Transactions on, 12(5):2484–
2497, May 2013.

[127] Fan Bai and Ahmed Helmy. A survey of mobility models. Wireless Adhoc Networks. University
of Southern California, USA, 206, 2004.

[128] Patrick Wendell, Joe Wenjie Jiang, Michael J. Freedman, and Jennifer Rexford. Donar: de-
centralized server selection for cloud services. SIGCOMM Comput. Commun. Rev., 41(4),
2010.

[129] Akamai cdn. http://www.akamai.com.

[130] M. Chiosi et al. Network functions virtualisation. an introduction, benefits, enablers, chal-
lenges & call for action. SDN and OpenFlow World Congress, Darmstadt-Germany, 2012.

[131] V. Sourlas, L. Gkatzikis, P. Flegkas, and L. Tassiulas. Distributed cache management in
information-centric networks. Network and Service Management, IEEE Transactions on,
10(3):286–299, 2013.

[132] K. Katsalis, V. Sourlas, T. Korakis, and L. Tassiulas. Cloud-based content replication frame-
work over multi-domain environments. In International Conference on Communications
(ICC),IEEE, 2014.

[133] Lili Qiu, V.N. Padmanabhan, and G.M. Voelker. On the placement of web server replicas. In
INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communica-
tions Societies. Proceedings. IEEE, volume 3, pages 1587–1596, 2001.

[134] Jussi Kangasharju, James Roberts, and Keith W. Ross. Object replication strategies in content
distribution networks. Comput. Commun., 25(4):376–383, 2002.

[135] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16, 1998.

[136] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. Web caching and zipf-like distri-
butions: evidence and implications. In INFOCOM ’99. Eighteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings. IEEE, volume 1, pages
126–134, 1999.

[137] Lada A. Adamic and Bernardo A. Huberman. Zipf’s Law and the Internet. Glottometrics,
3:143–150, 2002.

[138] K.V. Katsaros, G. Xylomenos, and G.C. Polyzos. Globetraff: A traffic workload generator for
the performance evaluation of future internet architectures. In New Technologies, Mobility and
Security (NTMS), 2012 5th International Conference on, pages 1–5, 2012.

115

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 01:21:38 EEST - 3.142.196.98


