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Abstract 

Video processing and analysis applications are part of Artificial Intelligence. 

Camera calibration is a necessary step in 3D computer vision in order to extract 

metric information from 2D images. It has been studied extensively in computer 

vision and photogrammetry, and even recently new techniques have been 

proposed. In this work, we first review thoroughly two techniques of perspective 

calibration [1], [2] within a consistent mathematical framework, using both linear 

and non-linear estimation of the cameras’ projection matrices. Further, we propose 

some mathematical variations on these approaches. The calibration of perspective 

camera has been implemented using Matlab. Then, two computer vision 

applications were selected to be implemented and tested, by utilizing the 

calibration results of a number of available cameras: real-time position estimation, 

as well as volumetric reconstruction from silhouettes.  

Results are obtained for an experimental setup of three very low cost projective IP 

cameras. Camera calibration results are presented for both linear and non-linear 

methods, measuring the accuracy of re-projection of salient points with known 

positions. Applications’ results are presented in reconstructing or estimating the 

position of synthetic 3D human models, as well as real human subjects. The 

accuracy of position estimation was measured for points on the floor, as well as 

small objects and humans. Finally the accuracy of volumetric reconstruction was 

measured using a simple object with known geometry. The effect of calibration 

error on the accuracy of volumetric reconstruction is also quantified. 
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1. Introduction 

1.1. Calibration and Projective Geometry 

The formal definition of calibration by the International Bureau of Weights and 

Measures is the following: "Operation that, under specified conditions, in a first 

step, establishes a relation between the quantity values with measurement 

uncertainties provided by measurement standards and corresponding indications 

with associated measurement uncertainties (of the calibrated instrument or 

secondary standard) and, in a second step, uses this information to establish a 

relation for obtaining a measurement result from an indication." 

Calibration, in general, is the process of finding a relationship between two 

quantities that are unknown (when the measurable quantities are not given a 

particular value for the amount considered or found a standard for the quantity). 

When one quantity is known, which is made or set with one device, another 

measurement is made as similar way as possible with the first device using a 

second device. The measurable quantities may differ in two devices which are 

equivalent. The device with the known or assigned correctness is called the 

standard. The second device is the unit under test, test instrument, or any of several 

other names for the device being calibrated. 

Calibration of an instrument is the process of finding a relationship between the 

measurements of this instrument and the measurements of a standard instrument of 

the same type, whose measurements are supposed to be correct. For instance, 

thermometer may be calibrated so that its reading corresponds to the correct 

temperature (eg. in Celsius). A fundamental way of performing that could be by 

marking the reading when in melting ice and in boiling water (by definition at 0 

and 100 Celcius respectively). The range in-between these two readings is divided 

into 100 steps, each corresponding to 1 degree Celsius. Alternatively, the 

thermometer can be calibrated against another, already calibrated thermometer. 

In computer vision, camera calibration is defined as the recovery of the 

transformation between points in real world and image pixels. The transformations 

needed are derived from projective geometry, using known positions of convenient 

points or geometric patterns. These transformations include geometric 

transformations between the real world and the camera coordinate system, as well 

as between the camera sensor and the pixel coordinate system. 

The study of projective geometry was initiated by the painters of the Italian 

Renaissance, who wanted to produce a convincing illusion of 3D depth in their 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 00:46:51 EEST - 18.224.179.84



13 

  

 

architectural paintings [3]. They made considerable use of vanishing points and 

derived several practically useful geometric constructions, for example to split a 

projected square into four equal sub-squares, or to find the projection of a 

parallelogram when the projections of the two of its sides are known. 

 

Figure 1. Simple painting using projective geometry. 

The edges of the road of Fig.1 are parallel lines in 3D space, but in the image they 

appear to converge as they recede towards the horizon. The line of the horizon is 

formed by the “infinitely distant points” or vanishing directions of the ground 

plane. Any pair of parallel, horizontal lines appears to meet at the point of the 

horizon corresponding to their common direction. This is true even if they lie at 

different heights above the ground plane. Moreover, any two horizontal planes 

appear to come together in the distance, and intersect in the horizon line or “line at 

infinity”. All of these “intersections at infinity” stay constant as the observer 

moves. The road always seems to disappear at the same point (direction) on the 

horizon, and the stars stay fixed as you walk along: lines of sight to infinitely 

distant points are always parallel, because they “(only) meet at infinity”. These 

simple examples show the effect of central projection image formation model and 

can be used in camera calibration. 
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1.2. The Perspective Projection Camera Model 

The perspective camera model consists of the charged-coupled device (CCD) 

image sensor, which is perpendicular to the optical axis of the camera, which by 

convention is assumed to be the Z axis. The center of the sensor is called the 

principle point. The distance between the sensor and the center of projection is 

called principle distance or focal length of the camera. The details of the camera 

model are shown in Fig.2. 

The perspective projection camera model is based on central projection and the 

center of projection is the origin of the camera coordinate system. Thus, a point P 

of the real world (scene) will be projected at the position where the line segment 

between the point P and the center of projection intersects the sensor (Pc) – without 

taking into account image distortion. 

 

Figure 2. The perspective projection camera model. The principle distance f, the center of 

projection and a point P of the scene are plotted in the coordinate system of the camera. The 

coordinates of the principal point (u0, v0) and the projection Pc of point P are plotted on the 

image plane of the camera sensor. 

Basic camera calibration is the recovery of the principle distance f (the focal length 

of the camera) and the principle point (u0,v0) (the center of the camera sensor) in 

the image plane – image coordinate system. This is referred to as interior 

orientation in photogrammetry and the focal length and the center of the camera 

sensor as intrinsic parameters. 

A calibration target can be imaged to provide correspondences between points in 

the image and points in space. The relationship between the target coordinate 

system and the camera coordinate system typically needs to be recovered from the 

correspondences. This is referred to as exterior orientation in photogrammetry. 
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Exterior Orientation (external camera parameters) is the relationship between a 

scene-centered coordinate system and a camera-centered coordinate system. 

External camera parameters define the transformation (M) from scene to camera 

consists of a rotation (R) and a translation (T), where:  
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The inverse transformation 111   RTM  is shown in Fig.3. The rotation matrix R 

can be written using trigonometric functions with only three degrees of freedom 

(dof). However, when using Minimum Linear Least Squares optimization to 

recover the calibration parameters, the formalism of Eq.(1) is used, which leads to 

9 dof (not independent though). Translation matrix T has 3 degrees of freedom, 

irrespectively of the optimization method used. Therefore, transformation M may 

have 12 dof, nine for rotation and three for translation.  

 

Figure 3. The transformation from a scene coordinate system to a camera-centered 

coordinate system and vice versa. The transformation matrix M from scene to camera 

XS

Zs

Ys

Xc

Zc

Yc

M-1=T-1R-1=T-1RT
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consists of rotation (R) translation (T). The opposite transformation is the inverse matrix   

M
-1

. 

The scene coordinate system can be any system convenient for the particular 

experimental setup. In the case of a planar target, the Z axis is usually chosen 

perpendicular to the plane, with Z = 0 in the target plane. 
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1.3. Computer Vision Applications 

The field of automated human activity recognition utilizing fixed cameras of 

indoor environments has gained significant interest during the last years. It finds a 

variety of applications in diverse areas, such as assistive environments, smart 

homes, support for the elderly or the chronic ill, surveillance and security, traffic 

control, industrial processes, etc. Automatic estimation of the position of an object 

in video sequences, or recovery of the volumetric representation of a real object by 

utilizing silhouettes from multiple cameras (silhouette to shape algorithm) are 

essential application steps for the aforementioned goals. 

 Position Estimation 1.3.1.

The proposed algorithm is able to estimate the position of the human silhouette, by 

the knowledge of both intrinsic and extrinsic parameters of the cameras, since they 

are previously calibrated. The position of the object can be estimated every time a 

single camera captures it. Moreover, the concurrent use of multiple cameras 

improves the accuracy of the estimation.  

 Silhouette to Shape 1.3.2.

Using silhouettes to get shapes is an active topic in computer vision. Recovering 

3D structure (shape) from multiple binary (2D) silhouettes (silhouette to shape – 

S2S, commonly referred as shape from silhouette -SfS) by projective cameras is a 

well-known technique [4]. In [5] the concept of visual hull, as the maximal volume 

that would produce the available 2D silhouettes, is studied. Space carving is a 

technique of constructing the visual hall by volume elements of the real 3D space 

that are projected inside all available 2D silhouettes. An alternative technique for 

visual hull formation in the form of a triangulated surface is the “Marching 

intersections”, is described in [6].  

In the space carving algorithm, a single silhouette image of an object that can be 

acquired by a single camera frame would be combined with the camera parameters 

of the calibration and may, then, be used to back-project the silhouette area. It is 

known that the 3D object lies inside the volume generated by this back-projection. 

With multiple views of the same object, we can intersect the generalized cones 

generated by each image, to build a volume which is guaranteed to contain the 

object. The limiting smallest volume obtainable in this way is known as the visual 

or optic hull of the object.  

If perfect calibration and segmentation is available, infinite views of an object will 

result to shape reconstruction identical with the real object, as long as it is convex.  
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2. Methodology 

In this work, the algorithm for calibration of a perspective camera is analyzed. A 

linear, as well as a non-linear optimization is applied for the estimation of the 

cameras’ projection matrices. Both algorithms are applied on three identical 

projective cameras, installed on the walls of our laboratory. Moreover, applications 

of estimation of subject’s real world position and volumetric shape reconstruction 

are implemented, using images acquired by the three calibrated cameras. 

More specifically, the steps of the work are the following (Fig.4). Firstly, the three 

identical pinhole (projective) cameras are calibrated. The intrinsic parameters are 

obtained from the manufacturer. Since the cameras are fixed on the walls of the 

laboratory, their position has been measured manually and assumed known for the 

calibration process. Then, frames containing an object/person are acquired by the 

three projective cameras. The frames undertake segmentation (by background 

subtraction). Using the segmented frames that contain the binary silhouette and the 

calibration of each camera, the real world position of the object is estimated and an 

implementation of the space carving algorithm (S2S algorithm), is applied to 

generate a volumetric model of the object.  

 

Figure 4. The steps of this work. 
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2.1. Homogeneous Coordinates 

Every point in an image represents a possible line of sight of an incoming light ray: 

any 3D point along the ray is projected on the same image point, so only the 

direction of the ray is of interest, whereas the distance of the point along it cannot 

be recovered from mono-ocular view. In computer vision we need to represent this 

“virtual sphere” of incoming ray directions. This is commonly done by using 

“homogeneous” coordinates, defined as following: if the plane of projection lies at 

z=1, then any point (x1,y1) on this plane is the projection of (x1,y1,1). The third 

homogeneous coordinate is chosen to be 1 for simplicity. In reality all points in 3D 

with (ax1,ay1,a) are projected on the same point. Thus, points in 2D plane are 

represented by their homogeneous triplet coordinates, whereas points (x,y,z) in 3D 

space are represented as (x,y,z,1). This seems inefficient, but it has the significant 

advantage of making the image projection, as well as affine transformation process 

much easier to deal with. More specifically, it enables us to use matrix 

multiplication to express geometric transformation, even when they include 

translations. Therefore, all the matrices used in this work, unless otherwise stated, 

correspond to homogeneous coordinates. 
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2.2. Calibration Model 

As it can be derived from the geometry of Fig.5, the camera calibration matrix that 

maps 3D point ps to 2D point  vu,  can be found by using similar triangles as: 

ccc y

v

x

u

z

f
  

 

Figure 5. The geometry of the perspective projection camera model used for calibration. The 

principle distance f, the center of projection and a point P of the scene are plotted in the 

coordinate system of the camera. The coordinates of the projection Pc of point P are plotted 

on the image plane of the camera sensor. The similar triangles are the (small) triangle 

formed by points C,(0,0,f), (u,v) and the triangle formed by points C, (0,0,zc), pc. 

In [1], the relationship between the coordinates of a real world (scene) point (ps) in 

the camera frame of reference  cccc zyx ,,p  and the sensor coordinates are 

calculated using the perspective projection equations: 

c

c

c

c

z

y

f

v

z

x

f

u
 ,      3  

where f is the focal length of the camera (Fig.5) and  vu,  are the coordinates of 

the projection of pc on the image sensor measured in units of length. By solving 

Eq.(3) for  vu,  we obtain: 

c

c

c

c

z
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v

z

fx
u





 ,     4 

This is the equation of projection and can be expressed in matrix form by using 

homogeneous coordinates as: 
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ovu is generated. 

A complicating factor in the calibration of many modern electronic cameras is that 

the discrete nature of image sampling is not preserved in the signal. This unknown 

horizontal scale factor ( us ), as mentioned in [1], can be recovered as part of the 

camera calibration process via modifying Eq.(4) as following: 

c

c

c

c
u

z

fy
v

z

fx
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



 ,     6 

In this work we assume that su is equal to 1. 

 Intrinsic camera parameters  2.2.1.

Interior Orientation is the relationship between sensor coordinates and image 

coordinates. The camera coordinate system has its origin at the center of 

projection, its Z axis along the optical axis, and its X and Y axes parallel to the X 

and Y axes of the image, as shown in Fig.5.  

The problem in determining intrinsic camera parameters is the recovery of the 

principle point (u0,v0) and the principle distance f (Intrinsic Parameters). This is the 

basic task of camera calibration. However, in practice we also need to recover the 

position and attitude of the calibration target in the camera coordinate system. 

In this work, the known parameters are only the size of the sensor (xCCD and yCCD), 

as they are indicated in Fig.5, and the number of rows and columns of the 

generated image (  colN,1  at X axis and  lineN,1  at the Y axis). The recovery of the 

focal length will be discussed in the coplanar Section for salient world points 

  Nkzyx
T

kkkks ,...,2,1,,,, p  that are on the same plane. However, the affine 

transformation can be acquired even with the field of view (FoV) of the cameras 

being an unknown parameter. 

Affine transformation is the mapping between the image plane and the image 

frame. The affine transformation from real image coordinates (u, v) to frame buffer 

(pixel) image coordinates (j, i) is the following pair of equations: 

2

1

cbvi

cauj




      7 
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Factors a and c1 can be found by the knowledge that the first and last column of the 

image frame coordinates correspond to the extremes of the X axis of the real image 
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, since the size of the CCD and of the image are known parameters:  
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Whereas factors b and c2 can be found by the knowledge that the first and last line 

of the frame image coordinates correspond to the extremes of the Y axis of the 

sensor 









2
,

2

CCDCCD yy
 , as following: 
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Finally, using Eq.(8) and Eq.(9), the affine transformation of Eq.(7) becomes: 
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 Extrinsic camera parameters 2.2.2.

Extrinsic parameters are the rotation (R) and the translation (T) of the 

transformation (M) from scene to camera coordinate system. Figure 3 depicts the 

forward and inverse transformation between the two coordinate systems. Let 

 Tzyx ,,sp  and  Tccc zyx ,,cp  be the column vectors of a point in real world 

(scene) and camera coordinate system, respectively. sp  and cp  are related by an 

orthonormal rotation matrix R  and a translation matrix  Tzyx tttT ,, . The 

relationship between the camera and the scene coordinate systems is given as:  

TR  sc pp      11 

The aforementioned equation rewritten in matrix form becomes: 
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The above equation can be written in homogeneous coordinates, using Eq.(1), as: 
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Equivalently, using also Eq.(2), equation Eq.(13) becomes: 
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The orthonormal rotation matrix R  might be decomposed into Euler angles [7] or 

into a matrix of rotation around the vector of the camera optical   axis v . 

Euler Angles 

The rotation around Euler angles are defined as matrices around X, Y and Z axis in 

a sequential manner: 

yxz RRRR       15 

The rotation matrices for each axis are (without using homogeneous coordinate 

notation): 
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 , 16 

where z , x , y  are the angles of rotation around the corresponding axis.  

However, representing 3D rotations using Euler angles has disadvantages such as 

dependence on the sequence of application of the rotations [8] and gimbal lock [9].  

A sequence of rotations around Euler angles is implemented as the non-

commutative matrix multiplication [10]. Thus, change of sequence of the rotation 

matrices affects respectively the result of the final rotation in the 3D space. This 

dependence renders successive rotations inefficient for 3D transformations, as well 

as counter-intuitive. 

Let x represent a pure rotation around X axis, y represent a pure rotation around Y 

axis and z represent a pure rotation around Z axis. The order of 3D rotations could 

be represented as: xyz, yzx, zxy or reversing the order zyx, xzy, yxz – which gives 6 

permutations. However, permutations may be more than six, because the angles are 

not independent. For instance rotating 90° around X axis, followed by 90° around Y 

axis and -90° around X axis, concludes to the same position as a single rotation of 

90° around Z axis. Thus, any 3D rotation can be formed by combining rotations in 

just 2 planes. 
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More specifically, if a sequence of rotations is applied once in a specific order and 

secondly in a changed order, then the result is different. For example, if we apply:  

1. Rotation 90° around X axis 

2. Rotation 90° around Y axis 

3. Rotation -90° around X axis 

the result is a 90 degrees rotation around Z axis. Whereas, if we apply:  

1. Rotation 90° around X axis 

2. Rotation -90° around X axis 

3. Rotation 90° around Y axis 

the result is a 90 degrees rotation around Y axis, since the first two rotations are 

negated. 

Furthermore, the second axis of which rotation takes place cannot reach 90 degrees 

because that will cause the two other axes to align and the rotation around them 

will have effect on the same plane. This is the effect of gimbal lock. 

Rotation around the Vector of the Camera Optical Axis 

The rotation around vector is commonly implemented using the Rodrigues 

Rotation Formula [11], with the following rotation matrix (indicated without 

homogenous coordinates for complexity reasons): 

  2
33 cos1sin WWIR     ,   17 

where  33I  is the 3×3 unit matrix and W is the following antisymmetric matrix: 




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















0

0

0

xy

xz

yz

W      18 

However, the Rodrigues Rotation Formula has the disadvantage of generating a 

unit matrix in the case of rotating round a given vector by an angle equal to zero, 

irrespectively of the given vector. In order to overcome the aforementioned 

disadvantage, in this work, the rotation around vector is implemented as a 

combination of a rotation matrix M  that matches the unit vector  zyx ccc ,,c  of 

the camera optical axis with the Z axis and a rotation matrix zR , around the Z axis: 

ARR z        19 

The zR matrix is identical to the Z axis rotation matrix of Euler angles Eq.(16) and 

it can be proven that the matrix M is defined as following: 
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where 22
zy cc  . 
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2.3. Camera Calibration Methods 

The calibration of perspective camera is analyzed using linear and non-linear 

methods, as described in the following paragraphs. In the results section, the 

methods are applied on three projective cameras, in order to estimate the real 

position of images objects, or construct their volumetric models. 

 Linear Estimation of the Camera Projection Matrix 2.3.1.

The calculation of the extrinsic parameters of the camera, which are the elements 

of the projection matrix (equivalently camera position, orientation) and the focal 

length (f) is described in this Subsection. If we combine the equations for interior 

and exterior orientation we obtain an equation that in matrix form can be solved 

and give the unknown parameters of the calibration. This is the linear estimation of 

the camera projection matrix.  

Let   Nkzyx
T

kkkks ,...,2,1,,,, p  be a set of N salient world points (landmarks) 

and  kk ij ,  be pixel positions on the image. If we assume the intrinsic parameters 

known, then their position on the sensor plane  kk vu ,  can be easily extracted, as 

described in Subsection 2.2.1. The corresponding sensor coordinates 

  Nkvu kk ,...,2,1,,   would be (using Eq.(10)): 
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Given the sensor coordinates, the linear estimation of the camera projection matrix 

in [2] is accomplished through matrix G , as shown in the following system: 
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However, if we solve Eq.(22) we obtain: 

  0131211333231  xsssuzsss tzryrxrsftzruyruxru   23 

  0232221333231  yssszsss tzryrxrftzrvyrvxrv   24 

These equations transformed in matrix form for N salient points 

  Nkzyx
T

kkkks ,...,2,1,,,, p , (using su = 1), become: 
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25 

The solution to the system is the eigenvector ming  of Y , associated with the 

smallest eigenvalue min , where: 

GGY T        26 

The recovery of the exact solution vector will be discussed in the Section of 

coplanar salient world points. 
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2.3.1.1. Coplanar Control Points 

In the case of N salient coplanar world points   Nkzyx
T

kkkks ,...,2,1,,,, p , the 

above method cannot be used, since GGY T   is singular,   0det Y . If we 

assume the intrinsic parameters known, (known position on the sensor plane 

 kk vu , , as described in Subsection 2.2.1), the extrinsic camera parameters can be 

estimated as following. 

With no restriction to generality, it can be assumed that ks,p  lie on the XY plane, 

thus, 0kz , for all k. In [2], it is proposed to add the right and left sides of 

equations (23) and (24). The resulting equation is applied for each point and then 

rewritten in matrix form, describing a homogeneous system of linear equations: 
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where 6 NG , 16P .  

In [1], equations (23) and (24) are divided and written in matrix form as following: 
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where 6 NG , 16P .  

However, in this work, the linear estimation of the camera projection matrix for 

coplanar objects is performed by keeping both equations for each point ks,p , thus 

producing a homogeneous linear system of equations, as following: 
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where 9 NG , 19P .  

By solving the above homogeneous system of equations using Eq.(26), the 

unknown quantities in P are estimated using  Tggg 921min g  with an 

unknown multiplying factor s, since 1min g . Thus the first 2 columns of the 

rotation matrix can be estimated.  
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Equivalently, the elements of the full rigid transformation in homogeneous 

coordinates that can be estimated directly by ming are shown below:   
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Factor s is an arbitrary coefficient without physical meaning, induced by 

homogeneity of the linear system of equations, whereas factor f is the focal length 

of the camera that is considered unknown, even when the affine transformation 

between (j,i) and (u,v) is known. Recovering f and s is described below.  

Recovering focal length f through exhaustive search 
 

As it can be seen in Eq.(6) and equations Eq.(23), Eq.(24), since in this work we 

assume that 1us , the coefficients of xs and ys are multiplied by the focal length 

(f). Since    11 21 31 12 22 32, , , , ,
T T

r r r r r r  are by definition orthonormal vectors, it is proposed 

to exhaustively search the focal length by considering the two vectors w and q as 

following: 
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and testing their orthogonality. Specifically, the value of f is obtained by requiring 

0



w q

w q
. An example of focal length recovery through the aforementioned 

procedure is shown in Fig.6. 

 

Figure 6. The result of searching focal length (f) through exhaustive search, in the case of a 

random camera optical axis. As it can be observed through the orthogonality validity, it is 

assumed that f=0.1. 

Handling special cases: camera vector parallel to X, Y and Z scene axis 
 

Orthogonality of w, q is impossible to test when the vector of the camera optical 

axis v , is [0,1,0] or [1,0,0] and the inner product would always conclude to zero. 

In this case, the second consequence of the orthonormality property of the Rotation 

Matrix may be used, namely the equal length of the vectors of two first columns of 

the matrix. Thus, the value of f can be obtained by requiring qw   (Fig.7).  
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Figure 7. The result of searching focal length (f) through exhaustive search, in the case of a 

camera optical axis parallel to X axis (assumed f=0.1). 

In the case of camera being parallel to Z real world axis of the (Zs in Fig.3) focal 

length cannot be computed, because the axis Zs is perpendicular to image plane. 

Recovering the unknown factor s and estimating the exact solution of the 
transformation matrix 
 

If the value of the focal length has been estimated, then we can decouple it from 

the matrix in Eq.(31) and update it as following: 
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The resulting vector  Tggggggggg 9876
'

5
'

43
'

2
'

1min g (after the 

extraction of f from the corresponding elements) is multiple of the real solution 

with an unknown multiplying factor (s): 

ming ssol      34 

This factor (34) may be found by noting that the rotation matrix is orthonormal and 

concluding to a quadratic form [1]: 

    0
2
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Thus, factor s  is found through the roots of Eq.(35). Then, the first two rows of 

the rotation matrix are divided by s . Finally, the third row of the rotation matrix is 

found by the cross-product of the first two rows. 

However, in this work it is proposed to use normalization (divide each vector by its 

length) in order for the factor to be ignored as following: 

q

q
q

w

w
w





'

'

      36 

As far as the vector that holds the translation data is concerned (namely the 

 Tggg 1,,, 963e ), it may be divided by any of the two aforementioned norms since 

qw  . Specifically, the referential vector will become: 

q

e
e

w

e
e  ''      37 

As far as the sign of the three vectors ( ''' , eqw and ) is concerned, the translation at Z 

axis is an auxiliary landmark, since it is known that it should not surpass the level 

of the ceiling. In real world (scene) of the experimental setup of this work the level 

of the ceiling is set to zero and Z axis is positive towards the floor of the room, as 

shown in Fig.8. Therefore, tz should be a positive number, since the camera vector 

 zyx ccc ,,c  is equal to  zyx ttt  ,, , where  Tzyx ttt 1,,,  is the last column of the 

translation matrix T of Eq.(2). 

 

Figure 8. Simulation of real room experimental setup of this work, along with its coordinate 

system and the positions of the three projective cameras calibrated and used in the 

applications of calibration. 

After the application of Eq.(36) and (37), the elements of the full rigid 

transformation of Eq.(33) are updated as following: 
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The third row of the rotation matrix (d) may be found by exploiting the property of 

orthogonality. Thus, the computation of the cross-product of the first two rows of 

the full rigid transformation matrix concludes exactly to the third column we are 

looking for: 

''
qwd        39 

Finally, the exact solution vector is: 
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and the full rigid transformation matrix is: 
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Therefore, the rotation R and translation T matrices of Eq.(11) are finally known. 

Recovering the camera position and camera axis 
 

The position of each camera in the scene coordinate system   
ccamcamcam zyx ,,  is 

given by  Tzyx
T

cam tttRT  ,,  , where 1 RRT  is the inverse rotation matrix ( R ) 

– of Eq.(1). Moreover, the optical axis of the camera is obtained by 1R  multiplied 

by the camera Z axis, as following:  
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1
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The Z axis rotation matrix of Euler angles ( zR ) of the Eq.(19), is obtained by the 

inverse matrix of rotation of the vector v  of the camera optical axis with the Z axis 

multiplied by the rotation matrix R  of the exact solution vector (Subsection 

2.3.1.1-3). The angle of the vector of the camera optical axis is obtained by the 

inverse cosinus of the first element of the Z axis rotation matrix of Euler angles  

( zR ). 
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 Nonlinear Calibration Method 2.3.2.

The Tsai camera model [12] was partially utilized, while using the known intrinsic 

parameters of the cameras (sensor size and focal length). The definition of the 

extrinsic parameters was slightly modified, as following: since the cameras were 

firmly installed on the Laboratory’s walls, their positions   
ccamcamcam zyx ,,  were 

measured and used for subsequent calculations (c=1, 2, 3 denotes the available 

projective cameras). The orientation of the cameras was defined by the directions 

of view Nc and the rotation of the sensor round Nc by angle θc.  

The extrinsic parameters (Nc, θc) were derived using the following process. A set 

of Np=24 points were marked on the floor (Fig.9) and their real world coordinates 

  q
real

q
real

q
real zyx ,, , (q=1,2, …,Np) as well as their position in the frame of each 

projective camera c   
cqq rc ,  were manually measured. Moreover, the frame of 

reference was transformed through translation and rotation, where the sequence 

was translation followed by rotation, instead of rotation followed by translation 

that was applied in the proposed linear method. Thus, the matrix form of the 

multiplication of the set of the Np points was TR  , where R as in Eq.(1), however 

camera coordinates are contained directly in T, since 

1 0 0

0 1 0

0 0 1

0 0 0 1

cam

cam

cam

x

y
T

z

 
 


 
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 
 

. 

 

Figure 9. Frames from the tree projective cameras, all including the 24 marked on the floor 

points. 

Furthermore, the functions of projecting the points on the camera system (by using 

the projection matrix of Tsai [12]) and applying the affine transformations were 

applied for the three cameras. Thus, the expected frame positions   
cqq ErEc ,  were 

calculated for each camera c.  

The extrinsic parameters for each camera were obtained by using the Matlab 

implementation of the Nelder-Mead Simplex Method [13], by minimizing the 

mean error    




pN

q
cqqcqq

p

ErEcrc
N

error

1

,,
1

. The error is modified to penalize 

points imaged outside the CCD (image sensor) of each camera.   
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2.4. Computer Vision Applications 

After the calibration of the three identical projective cameras is applied, frames 

containing an object/person are acquired by them. The frames get segmented by a 

background subtraction segmentation method. The position of the object may be 

estimated in real time through the segmented frames and based on the calibration 

of each camera. Moreover, the digital shape of the object can be generated by 

having the segmented frames that contain the binary silhouette and the calibration 

of each camera and applying an S2S algorithm. 

 Segmentation method - Foreground detection 2.4.1.

A simple foreground segmentation algorithm is used, which detects foreground 

objects based on changes between the current and a reference frame. Background 

images (Fig.10,a) and images containing the object of interest (Fig.10,b) are 

acquired within few minutes, to exclude variations of lighting conditions. 

Thresholding is applied on the grayscale images derived from background 

subtraction, in order to create the segmented images. A typical original and the 

corresponding segmented frame containing the silhouette, along with noisy white 

pixels and shadow, are shown in Fig.10, (b) and (c), respectively. In general, noise 

and shadows confound scene interpretation. However, the proposed S2S algorithm 

remains unaffected. 

   

(a) (b) (c) 

Figure 10. Two typical original frames acquired by one of the three projective cameras: a 

background image (a) and an image containing the object/human model (b). The 

corresponding segmented frame is shown in (c). 

 Position Estimation from mono-ocular video 2.4.2.

The real world position of an object, also in the case of a human subject, may be 

estimated from a single camera view (mono-ocular) under the following 

conditions:  

 The intrinsic and extrinsic parameters of the cameras are known, through 

the calibration  

 The segmentation of the silhouette is accurate  

 The object touches the ground and the area of its base is small 

 The shape of the ground surface is known.   
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More specifically, let the non-zero pixels of the segmented silhouette, of each 

camera 3,2,1c  frame, be   ccpp Mpij ,...,2,1,,  , where Mc is the number of 

segmented silhouette pixels.  For any pixel of the silhouette, we can obtain its 

position, as if the pixel were lying on the floor (assuming known room floor), as 

following. 

The corresponding sensor coordinates   
cpp vu ,  ( 3,2,1c  denotes the available 

projective cameras) are easily obtained from the equations of the affine 

transformations Eq.(7), as following: 
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     43 

Then, real world coordinates of each point  ssss zyx ,,p  of the model/object that 

can be viewed by each camera would be found through the sensor coordinates (up, 

vp) of each camera c.  

Let ck  be the vectors of each camera that points to (up, vp) of each camera –  

  
cpp vu , . For a sample camera c, vector k will be the following: 














 1,,

f

v

f

u pp
k      44 

where f is the principle distance of the sample camera, as analyzed in Subsection 

2.3.1.1. The coordinates of ck  in scene (real world) system of reference will be: 

  c
T

cc Rbbb kb  321 ,,     45 

where 
T

cR  is the transpose of the rotation matrix of Eq.(1) for each camera c, 

found through the calibration (Eq.(41)) of each camera. Finally, for a sample 

camera, the real world points  ssss zyx ,,p  that are imaged on the same pixel are 

given by the following relations:  
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where  000 ,, zyx  is the camera position and τ>0 the parameter of the line that 

emanates from the camera center of projection and passes through the 

corresponding pixel.  

In the frame of reference of the real world (scene) of the experimental setup of this 

work, the plane of the ceiling is set to zero and Z axis is positive towards the floor, 
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as shown in Fig.8. Therefore, parameter τ, for 3b  and the real world coordinates of 

the position on the floor, becomes: 

3

0max

b

zz 
      47 

If τ is replaced in Eq.(46), then real world coordinates of the equation correspond 

to the real world coordinates of the position of the human model or object on the 

floor, as it is viewed by the sample camera.  

The real position of the silhouette is approximated more closely, if we select the 

image pixel with the maximum of the Z axis ( maxz ) coordinate of cb , since the 

coordinates of cb  that correspond to maxz  resembles the vectors that points to the 

lower point of the segmented silhouette, which is identical to its position on the 

floor. 

The same procedure would be followed for each available camera, in order to find 

the real world coordinates of the position of the model on the floor as it is viewed 

by each one of the available cameras. Finally, the average of the resulting real 

world coordinates for the view and data of each one of the available cameras 

would conclude to three coordinates that will approach the exact real position of 

the model while the number of the cameras increases. 

 Silhouette to Shape Algorithm 2.4.3.

The first requirement of Silhouette to shape method (S2S, commonly referred as 

shape from silhouette -SfS), in order to reconstruct the object of interest, is the set 

of frames, acquired by one or more cameras, that contain the object. Then, the 

silhouette of these images must be segmented. The algorithm used in this work is 

the space carving algorithm.  

The methodology of S2S would be easily explained through a graphical 2D 

example: Let the red rectangle of Fig.11 be the object of interest that will be 

reconstructed and that lies in the blue VOI. Four cameras of different extrinsic and 

intrinsic parameters can view the object, as shown in Fig.11. The intrinsic 

parameters of camera 1 (the image sensor in gray line, the focal spot in double 

arrow with dashed line, the center of projection as a blue star and the vector of the 

camera optical axis as a green arrow), as well as the position of the projection of 

the object on the image sensor of the camera are also depicted. Furthermore, it is 

shown that any real world point along each line (yellow circles on a sample line), 

which focuses on the center of projection, corresponds to the same position (yellow 

circle on magenta line of projected object) on image sensor. 
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Figure 11. A graphic representation of S2S algorithm in 2D. The four cameras and their 

optical axis are shown in blue stars and green arrows. The object of interest is shown in red 

color and the VOI in blue. Concerning camera 1, the image sensor (gray line), the focal spot 

(double arrow with dashed line), the center of projection (blue star) and the vector of the 

camera optical axis (green arrow) are depicted. The projection of the object on the image 

sensor is shown in magenta line. The yellow circle on the magenta line indicates that any real 

world point (yellow circles) along this line corresponds to the same position of CCD. 

 

The generalized cone of the view of camera 1 is shown in green on the left diagram 

of Fig.12, superimposed with the VOI and the real 2D object to show that the 2D 

object lies inside the volume generated by back-projecting the silhouette area of 

only one camera view. The intersection of the generalized cone with the VOI 

generates the initial optic hull of the object. This limiting smallest volume is shown 

from an upper view, as a 2D polyhedron in blue lines, at the right side of Fig.12.  

 

 

Figure 12. On the left diagram, the four cameras (blue stars) of the setup of the example and 

the vectors of each one’s optical axis (green arrows) are depicted. Moreover, the generalized 

cone of the view of camera 1 (green) is shown superimposed with the VOI (blue) and the real 

2D object (red). On the right diagram, the visual hull, as a 2D polyhedron (blue lines), and 

the real object (black rectangle) are shown from an upper 2D view. 
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The generalized cone of the view of camera 2 is shown in green on the left plot of 

Fig.13, superimposed with the VOI and the real 2D object to show that the 2D 

object lies inside the volume generated by back-projecting the silhouette area of 

each camera view. The intersection of the generalized cone of this camera with the 

one of camera 1 and the VOI generates a new optic hull of the object. This optic 

hull is shown from an upper view, as a 2D polyhedron in blue lines, at the right 

side of Fig.13.  

 

Figure 13. Reconstructing shape from 2 views. On the left diagram, the new generalized cone 

(green) of the view of camera 2 appears. On the right diagram, the new visual hull of the 

intersection of the two cones with the VOI is shown as a 2D polyhedron (blue lines) from an 

upper 2D view. 

The same steps are followed for the other two views of the other two cameras, as 

shown in Fig.14 and Fig.15. The final reconstructed volume from the intersections 

of the generalized cones of four cameras views is shown on the right of Fig.15. 

 

Figure 14. Reconstructing shape from 3 views. On the left diagram, the new generalized cone 

(green) of the view of camera 3 appears. On the right diagram, the new visual hull of the 

intersection of the 3 cones with the VOI is shown as a 2D polyhedron (blue lines) from an 

upper 2D view. 
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Figure 15. Reconstructing shape from 4 views. On the left diagram, the new generalized cone 

(green) of the view of camera 4 appears. The final reconstructed volume from the 4 cameras 

view is shown on the right as a 2D polyhedron (blue lines) from a 2D upper view. 

The steps of the S2S algorithm in this work are the following. As a first generic 

step, the generalized cone of each camera that contains the imaged object in 3D 

space is generated using the corresponding images. A volume of interest (VOI) that 

includes the object in 3D space is considered (V). VOI is tessellated into 

elementary volumes δV=δl × δl × δl. Each δV is projected on the frame acquired 

by each camera, by using the calibration of each camera. Finally, the volumetric 

model is constructed through the δVs that are considered to belong to the object.  

A δV belongs to the object when its projection lies on white pixels on all 

silhouette-frames. The set of δVs that project in non-zeros pixels in all available 

silhouette frames construct the smallest volume obtainable that contains the object 

in 3D. They are the discrete intersections of the optic hulls from each camera, so 

they construct a volume that approaches the 3D representation of the object. These 

steps are figured in the block diagram of Fig.16.  

 

Figure 16. The steps of the S2S algorithm in a real data example. 
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For the proposed application, let cB  be the binary frame containing the silhouette 

imaged by camera c and cF  the calibration function that maps a real world point 

 , ,real real realx y z
real

x  to image coordinates of frame cB . Furthermore, a cube C, 

large enough to include the common field of view (FoV), is initialized as the VOI 

(Fig.17) and divided into elementary volumes δV of dimensions δl×δl×δl. Typical 

value of δl is 1 cm, although this depends on memory, as well as accuracy 

requirements. The employed silhouette to shape algorithm returns a binary volume 

V, which is the discretized cube C and contains the optic hull. 

 

Figure 17. Rendered synthetic model frame of a projective camera. The cube C used to 

produce the binary volume V is indicated in green, whereas the synthetic 3D model is also 

rendered. 

The employed S2S algorithm is described in the following pseudocode: 

Initialize VOI as the cube C, enclosing the object 

FOR each projective camera c 

   FOR each δV in C 

     IF    1c cB F V  , for c=1,2,3  

    THEN 

   Obtain indices (i,j,k) of δV with respect to VOI 

         Set  , , 1c

i j kV   

     END 
   END 

   IF c==1 c c fV V V  ELSE 1c c cV V V    

END 
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3. Results 

Quantitative and qualitative results for camera calibration methods, S2S and 

position estimation method using three projective cameras are presented in this 

section, using both synthetic and real data. Three projective cameras (D-Link DCS-

930/L) were used, placed at known positions in the room in order to share a 

common portion of real world space as their FoV. A virtual representation of the 

real room is presented in Fig.8. The pixilation of each frame is 480x640.  

3.1. Calibration Results 

The nonlinear calibration method, as described in Subsection 2.3.2, was applied to 

all 3 cameras. The positions (    3,2,1,,, 000 czyx
c ) and the intrinsic parameters 

(sensor size and focal length) of all 3 cameras were known. A number of Np=24 

points were marked on the floor and their real world coordinates were manually 

measured. The Matlab programming environment was used for the implementation 

of the described algorithms, with CCD dimensions restrictions on projecting 

points, and outputted the extrinsic parameters (optical axis Nc and angle θc round 

Nc) for each camera c.   

In Fig.18(a), the initial step of the optimization algorithm is shown for one of the 

three cameras. The ground truth of the Np=24 points on the floor, as the camera 

views them, is depicted as magenta stars. The re-projected points of the initialized 

parameters that the optimization algorithm should match with the ground truth 

points are depicted as yellow stars. In the beginning, the parameters of the 

initialization differentiate from the real extrinsic parameters of the camera. 

Consequently, the initial synthetic points are being re-projected far from the points 

of the ground truth (Fig.18,a). However, after several steps of the optimization 

algorithm, with the aforementioned known parameters and restrictions, the values 

of the resulting extrinsic parameters are very close to the real extrinsic parameters 

of the camera. Thus, the points that are re-projected with the resulting parameters 

are approximately identical to the real world points on the floor, as shown in 

Fig.18(b). 
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(a) 

 
(b) 

Figure 18. The initial and final step of the Nelder-Mead Simplex Method for the non-linear 

calibration method. The real points are shown in magenta dots and the re-projected points, 

using the calibration data, are shown in yellow dots. 

The results of the nonlinear calibration method for all the three projective cameras 

are shown through the re-projection of the points, by using the calibration data of 

each camera, as magenta stars, along with the real 24 points marked on the floor 

(blue dots), on the frames of real world of the room (Fig.19) where the projective 

cameras are mounted. 
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Figure 19. Frames from the tree projective cameras, all including the 24 marked on the floor 

points (blue dots) superimposed by the results (magenta stars) of the non-linear calibration 

method. 

Results of both linear and nonlinear method are shown on the diagram of Fig.20 

that resembles the charged-coupled device image sensor of one of the three 

cameras. 

 

Figure 20. Results of both linear and nonlinear calibration method for one of the three 

projective cameras plotted on its image sensor. For the set of 24 caps (ground truth positions 

– GT ) are shown in blue dots, the re-projection of the results of the nonlinear and of the 

linear method are shown in red cycles and cyan stars, respectively. 
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3.2. Results for Computer Vision Applications  

Results of the computer vision applications – of position estimation and S2S 

methods – are both quantitative and qualitative, since they are presented using both 

synthetic and real data for both applications. 

 Real-Position Estimation  3.2.1.

Both synthetic and real models were rendered or captured, respectively, by the 

three projective cameras (the placement of which was specific in order to share 

common portion of real world space as their FoV). The exact position of each 

camera is shown in a virtual representation of the real room in Fig.8. The cameras’ 

calibration was used in order  to estimate the model’s position. 

3.2.1.1. Synthetic Data 
Synthetic data are used in this work to quantify the error of the position estimation 

method, since the exact position of the model is predefined by the user and the 

process is not affected by segmentation and calibration. Two 3D models (Fig.21) 

obtained from [14], [15] were utilized. These models are in the form of 

triangulated surfaces. However, only the coordinates of the vertices are used for 

rendering the binary silhouette frames 

  
(a) (b) 

Figure 21. The 3D human models used this work: model i (a) and model ii (b). 

The 3D human models, with known real world points, are virtually placed in room 

at a certain position within the FoV of all the projective cameras (Fig.22).  
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Figure 22. 3D representation of the room with the three projective cameras (with orientation 

indicated by normal vectors) and the synthetic 3D human model i placed at a certain-known 

position in the room. 

Each real world point (vertex) of the 3D human model is rendered according to 

calibration. More specifically, the corresponding binary frames cB  (Fig.23,a-c), 

that contain the silhouette are generated using functions cF  (see Subsection 2.4.3). 

The model of Fig. 21(a) is placed at a certain position with real world coordinates: 

)(-0.4,-0.1=y_real)(x_real, . The proposed position estimation method of 

Subsection 2.4.2 is applied and the estimated value of the position (real world 

coordinates) is re-projected on each segmented frame as a red-filled star, as shown 

in Fig.23, in order to be visually tested. The real world coordinates of the position 

of the synthetic human model on the floor were estimated using the view of each 

one of the available cameras. Each position estimation value is indicated at the 

corresponding binary frame (Fig.23,a-c). The average of the estimated real world 

positions of the available cameras approaches the exact real position of the model – 

the Z axis coordinate has always the value on which the floor is. The final position 

is plotted as a red star in a sample frame cB  in Fig.23(d).  

  
(a) (b) 
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(c) (d) 

Figure 23. Position estimation result for synthetic data of model i plotted as red-filled stars 

on the corresponding rendered frame of each camera (a-c). The average of the three 

different position estimations indicated in randomly one of the three rendered frames. 

The clipping of the model that is observed at the upper part of the hands in two of 

the projective silhouettes is due to the placement of the model at a position to 

which the entire model is not within the FoV of all the projective cameras. 

However, this issue does not affect the algorithm of position estimation.  

Moreover, the final estimated position of another model placed in the same 

position as the previous model is also indicated through a red star in Fig.24. 

 

Figure 24. Final position estimation result for synthetic model ii plotted as red-filled stars on 

a randomly selected frame of the three rendered frames. 

Both models were also placed in a different position (0,0)=y_real)(x_real, and their 

position was estimated again. In Fig. 25(a-c), each position estimation value is 

indicated at the corresponding binary frame for model of Fig.21(b). The final 

position is plotted as a red star in a sample frame cB  in Fig.25(d). The final 

estimated position of the model of Fig.21(a), which is also placed in this position, 

is indicated by a red star in Fig.26. 
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(a) (b) 

  
(c) (d) 

Figure 25. Position estimation result for synthetic model ii plotted as red-filled stars on the 

corresponding rendered frame of each camera (a-c). The average of the three different 

position estimations indicated in randomly one of the three rendered frames. 

 

Figure 26. Final position estimation result for synthetic data of model i plotted as red-filled 

stars on a randomly selected frame of the three rendered frames. 

Furthermore, numeric results with the values of the positions on X and Y axis (the 

Z axis coordinate has always the value on which the floor is) are indicated in Table 

I for the two determined positions y_real)(x_real,  of the synthetic human models 

and the estimated positions y_est)(x_est,  by the proposed method of position 

estimation. 
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Table I  

Comparison of the determined position and the estimated by the proposed method of 

position estimation for the two synthetic human models. 

 Model 1 Model 2 

Position 1: )(-0.4,-0.1  (-0.5530, -0.2171) (-0.4701, -0.2173) 

Position 2: (0,0)  (-0.1479, -0.1121) (-0.0642, -0.1235) 

 

The use of synthetic data allows the accurate quantification of the error in position 

estimation. The error (err_pstn) is computed as the Euclidian distance between the 

expected position and the estimated one, as following: 

   22
____err_pstn estyrealyestxrealx     48 

where y_real)(x_real, is the correct position of the synthetic human model and 

y_est)(x_est,  the estimated one, by the proposed method. 

The error derived is expressed in units of meters in this work. Table II shows the 

error of the position estimation for each combination of models with positions 1 

and 2. 

Table II  

The error of the position estimation for the two models at the two positions 1 and 2. 

Error Position 1: )(-0.4,-0.1  Position 2: (0,0)  

Model i 0.1927 0.1856 

Model ii 0.1366 0.1392 

 

3.2.1.2. Real Data 
Results from real data are presented using two different types of simple geometric 

objects (bottle caps and a box) and a human subject. 

Simple Geometric Objects 
The 24 points that were marked on the floor for the estimation of the calibration 

parameters were round bottle caps with diameter equal to 3.4 cm. The real world 

coordinates of the caps were manually measured. The positions of these simple 

objects were also manually identified on the frame of each camera, (because of 

their small size). The resulting position of each one of the 24 caps estimated using 

the calibration of each camera was re-projected on the corresponding frames. Thus, 

results are superimposed on the real frames of the three projective cameras in 

Fig.27. 
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(a) 

 
(b) 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 00:46:51 EEST - 18.224.179.84



51 

  

 

 
(c) 

Figure 27. Position estimation result plotted as red stars on the corresponding frames of the 

3 projective cameras (a-c).  

The resulting (estimated) real positions are plotted, along with the virtual 

representation of the real caps at their manually measured real positions, on an X-Y 

axis diagram (the Z axis is omitted) shown in Fig.28. 

 

Figure 28. The resulting positions (red stars), along with the virtual representation of the 

real positions of the caps (blue triangles), on an X-Y axis diagram.  

The plotted positions of the above diagram are also presented numerically in the 

following Table, along with the error of position estimation for each cap (Table 
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III). The values of this Table were used in the calculation of the average error of 

the position estimation. 

Table III  

The X-Y axis coordinates of the estimated and of the real positions of the caps (two first 

columns – left and right columns respectively) and the error of the real position estimation 

for each cap (last column) measured in meters. 

Estimated positions (m) Real positions (m) 
Position Error (m) 

X coord. Y coord. X coord. Y coord. 

0.8352 

0.8498 

0.8510 

0.8501 

0.8515 

0.8517 

0.2239 

0.2214 

0.2232 

0.2335 

0.2204 

0.2250 

-0.4112 

-0.4093 

-0.4127 

-0.4102 

-0.4106 

-0.4057 

-1.0742 

-1.0663 

-1.0561 

-1.0458 

-1.0677 

-1.0446 

0.9492 

0.7569 

0.4447 

0.1377 

-0.1897 

-0.4979 

1.0737 

0.7607 

0.4432 

0.1233 

-0.1854 

-0.4876 

1.0826 

0.7624 

0.4439 

0.1484 

-0.1857 

-0.4928 

1.1138 

0.7855 

0.4540 

0.1381 

-0.1799 

-0.5056 

0.8130 

0.8130 

0.8130 

0.8130 

0.8130 

0.8130 

0.2100 

0.2100 

0.2100 

0.2100 

0.2100 

0.2100 

-0.3870 

-0.3870 

-0.3870 

-0.3870 

-0.3870 

-0.3870 

-0.9870 

-0.9870 

-0.9870 

-0.9870 

-0.9870 

-0.9870 

1.0320 

0.7320 

0.4380 

0.1360 

-0.1550 

-0.4590 

1.0320 

0.7320 

0.4380 

0.1360 

-0.1550 

-0.4590 

1.0320 

0.7320 

0.4380 

0.1360 

-0.1550 

-0.4590 

1.0320 

0.7320 

0.4380 

0.1360 

-0.1550 

-0.4590 

0.0857 

0.0444 

0.0385 

0.0371 

0.0518 

0.0549 

0.0439 

0.0309 

0.0142 

0.0267 

0.0322 

0.0323 

0.0561 

0.0377 

0.0263 

0.0263 

0.0387 

0.0387 

0.1196 

0.0956 

0.0709 

0.0588 

0.0844 

0.0741 

 

The average error of the position estimation of the 24 caps is calculated as 

following: 

   




24

1

22
____

24

1

i

iiii estyrealyestxrealx    49 

where  realyrealx _,_ are the real world coordinates of the set of the caps and 

)_,_( estyestx  the coordinates of the estimated positions of theirs by the proposed 

method. The average error for the position estimation of the 24 caps is equal to 

0.0508 meters. 
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Furthermore, the proposed algorithm was applied to another simple geometric 

object of the shape of a box. Due to the small size of the object, the segmentation 

was performed manually. The original frames, of the available projective cameras 

viewing the object, and the corresponding segmented ones are shown in Fig. 29 

(upper and lower row respectively).  

   

   
Figure 29. The original (upper) and the corresponding segmented (lower) frames containing 

the object of interest. 

The proposed position estimation algorithm can be also applied in the case of an 

object that covers relatively large area on the floor, although with less accurate 

results if only one camera is used. The maximum Z axis coordinates of the scene 

vector cb  (as defined in Eq.(45)) resembles the vector that points to the lower point 

of the segmented silhouette as each camera views it. Thus, this pixel can be used to 

estimate the object’s position on the floor. However, each camera views the object 

from a different angle, so applying the position estimation algorithm independently 

from each silhouette (viewed by the cameras) will produce different position 

estimation. The average of these estimations results in a more accurate position 

estimation of the center of mass of the object, especially if the cameras view the 

object from significantly different angles. In Fig. 30, each resulting position, 

estimated from the view of each one of the available cameras, is superimposed on 

the corresponding frame of the segmented silhouette of the object. The binary 

frames are cropped around the segmented silhouette in order to illustrate a detailed 

view of the position estimation, since the object covers a small area of the frame. 

The average of the three different position estimations is superimposed on a real 

world frame of the object, acquired by one of the three cameras. 
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(a) (b) 

  
(c) (d) 

Figure 30. Position estimation from the view of each one of the available cameras plotted as 

red stars on the corresponding segmented frame (a-c), cropped around the segmented 

silhouette, since the object covers a small area of the frame. The average of the three 

different position estimations indicated in a real world frame of the object, acquired by one 

of the three cameras. 

The values of the real position of the box y_real)(x_real, on X and Y axis (the Z 

axis coordinate has always the value on which the floor is) are indicated in Table 

IV  along with the estimated position coordinates y_est)(x_est,  resulted by the 

proposed method of position estimation. 

Table IV  

Comparison of the real world and of the estimated by the proposed method position of the 

box. 

 X coord. (m) Y coord. (m) 

Real position -0.1730 -0.0190 

Estimated position -0.2201  -0.0751 

 

The error for the position estimation of the real box is equal to 0.0733 meters.  
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Human Model  
The position estimation was also applied on real data of human model and 

specifically on the frames of the subject of Fig.40(a). The estimated real world 

position, using each available camera, was re-projected on the corresponding 

binary frame cB  as a red-filled star (Fig.31,a-c), in order to be visually tested. The 

average of the estimated real world position of each one of the available cameras is 

plotted as a red star in a real world frame of the human model, acquired by one of 

the three cameras, in Fig.31(d). 

  
(a) (b) 

  
(c) (d) 

Figure 31. Position estimation result plotted as red-filled stars on the corresponding 

segmented frame (a-c). The average of the three different position estimations indicated in 

randomly one of the three binary frames. 
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 Application of S2S 3.2.2.

The first requirement of Silhouette to shape method (S2S, commonly referred as 

shape from silhouette – SfS), in order to reconstruct the object of interest, is the set 

of frames that contain the object and are acquired by one or more cameras. In this 

work, both synthetic and real models were rendered or captured, respectively, and 

three projective cameras were mounted at specific positions in the room in order to 

share a common portion of real world space as their FoV. The exact position of 

each camera is shown in a virtual representation of the real room in Fig.8. The 

pixilation of each frame is 480x640. The D-Link DCS-930/L was selected as the 

three projective cameras. 

3.2.2.1. Synthetic Data 
Synthetic data are used to quantify the error of the achieved shape reconstruction, 

while isolating the effects of segmentation and calibration. A 3D human model, 

with known real world points, as explained in Subsection 3.2.1.1, is virtually 

placed in room at a certain position within the FoV of all the projective cameras 

(Fig.32). These models are in the form of triangulated surfaces. However, only the 

coordinates of the vertices are used for rendering the binary silhouette frames.  

 

Figure 32. 3D representation of the room with the three projective cameras (with orientation 

indicated by normal vectors) and the synthetic 3D human model placed at a certain position 

in the room. 

Each real world point (vertex) of the 3D human model is rendered according to 

calibration. More specifically, the corresponding binary frames cB  (Fig.33), that 

contain the silhouette are generated using functions cF  (explained in Subsection 

2.4.3). Using the S2S algorithm analyzed in Subsection 2.4.3, volume V is 

obtained. These steps, along with an extra example of the reconstruction of 

synthetic model, are figured in the block diagram of Fig. 34. 
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Figure 33. The rendered binary frames of the projective cameras ( cB ) in the case of 

synthetic data. 

 

Figure 34. The steps for the volumetric reconstruction of synthetic data followed in this 

work. 

In the case of synthetic data, the visually assessed error of the reconstructed model 

is only due to the S2S method. More specifically, as explained in Subsection 1.3.2, 

infinite views of the model may conclude to a reconstruction identical with the real 

model, where it is convex. However, the discrepancy between the reconstructed 

shape and the 3D model at the upper part of the hands is caused by the clipping of 

the model in two of the projective silhouettes as shown in the two upper rendered 

frames of Fig.34 (left side, third column) – silhouettes are more clearly illustrated 

in Fig.(23). 

Calculation of Reconstruction Error 
The use of synthetic data allows the accurate quantification of the error in volume 

reconstruction. The resulting optic hull is generated in the form of a volumetric 

model V. A simple linear transformation from cloud space to voxel space is applied 

to the points of the 3D human model in order to calulate the displacement error 

with respect to the 3D human model, which is in the form of point cloud. Thus, 

volume V1 is generated using voxel size of δl0=1 cm. Subsequently, the 

Synthetic 3D 

model

Virtual 

placement of 3D 

model in room

Generation of virtual rendered binary 

frames

Calculation 

of optic hull 

from each 

camera

Intersection of 

optic hulls and 

generation of 

volumetric 
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S2S space carving
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reconstructed volume V is resized using nearest neighbour interpolarion to obtain 

equal dimensions to V1. Finally, the Euclidean distance transform (DT) of V1 is 

computed in 3 dimensions. The average error (err) is computed as the average 

distance of the non-zero voxels of V from the non-zero voxels of V1 as following: 

    0:,,#,
1

,,

1   ijk

kji

ijk
VkjiNVDT

N
err    50 

The error derived is expressed in units of δl0 (which is set equal to 1 cm for the 

results presented in this work). Table V shows the average error of the 

reconstructed volume, for different combinations of the participating projective 

cameras (1 indicates camera participation).  

Table V 

Comparison of the average error, for different combinations of the participating projective 

cameras. 

P1 P2 P3 Average Error (cm) 

1 1 0 4.669 

1 0 1 3.796 

0 1 1 3.558 

1 1 1 2.961 

 

Fig.35 illustrates the reconstructed volume V with the ground truth model 

superimposed. The accuracy of the reconstruction can be visually assessed. 

  
Figure 35. The final reconstructed model using all available cameras and the ground truth 

model, shown in blue and magenda respectively. En-face (left) and top-down view (right). 
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3.2.2.2. Real Data 
Results from real data are presented using a simple geometric object and several 

human subjects, using the three aforementioned projective cameras, calibrated as 

described in Subsection 2.3. 

Simple Geometric Object 
The proposed algorithm is applied to reconstruct the shape of a simple object (box) 

that is placed at a certain position on the floor. The box was imaged by the three 

available projective cameras. The original frames and the corresponding 

segmented ones are shown in Fig. 29. Due to the small size of the object and to 

isolate the results from the effects of possible segmentation inaccuracies, the 

segmentation was performed manually. The segmented frames along with the cube 

C, which is large enough to include the whole object (explained in Subsection 

2.4.3), are shown for each camera in Fig.36. 

   
Figure 36. The segmented frames along with the cube C. The cube C is indicated on the red 

channel of the frame. 

The steps of the real box reconstruction are shown in Fig.37. Firstly, the virtual 

representation of the real object is shown in real world coordinates within cube C. 

In the experimental setup of this work, the level of the ceiling is set to zero and Z 

axis is positive towards the floor of the room. Therefore, the lower side of the box 

lies on the plane defined by 0z =3.5 m (equal to room height). Then, the 

generalized cones (visual hull of each camera) that are generated by the images of 

Fig.36 are projected inside the VOI (Fig.37, b, c and d). The cB  frames that 

contribute to the creation of each visual hull are also shown (on the right side of 

(b)-(d) frames of Fig.37). Finally, the intersection of the visual hulls is shown in 

real world coordinates superimposed on the real object that represents the ground 

truth (Fig.37,d). 
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(a) (b) 

  
(c) (d) 
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(e) 

Figure 37. The virtual representation of the real object (yellow box) and the cube C, in real 

world coordinates (a), the generalized cones along with corresponding cB  frames (b - d) and 

the resulting reconstructed shape (black) superimposed on the real object (e). The real world 

axes are also indicated. 

The intersection of the visual hulls concludes to the 3D reconstruction of the 

viewed object. A better view of the resulting volumetric reconstructed object (blue) 

superimposed on the real object (magenta) is plotted in Fig.38. The discrepancy 

between the reconstructed volume and the 3D real object because of the clipping of 

the reconstructed shape at the right-viewed part of the box is caused by the 

imperfection of the calibration. The effect of the calibration on the reconstruction 

is analyzed in the next Subsection. 

 

Figure 38. The resulting volumetric reconstructed object (blue) superimposed on the real 

object-box (magenta). 
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The reconstruction error of the specific simple geometric object (box) can be 

calculated since its dimensions are easily measured. Table VI shows the average 

error of the reconstructed volume, for different combinations of the participating 

projective cameras (1 indicates camera participation).  

Table VI 

Comparison of the average error for real data, for different combinations of the 

participating projective cameras. 

P1 P2 P3 Average Error (cm) 

1 1 0 5.270 

1 0 1 6.328 

0 1 1 5.285 

1 1 1 4.836 

The effect of calibration on reconstruction error 

In order to test the effect of the calibration on the reconstruction, a synthetic 

geometric object of the same shape and dimensions with the real box was 

constructed. The S2S algorithm was separately applied to the frames of the real 

box and the rendered frames of the synthetic box. The resulting reconstructed 

shapes of the two aforementioned cases are depicted in Fig.39.  

 
 

(a) (b) 
Figure 39. . The reconstructed shapes of the real (a) and the synthetic (b) box of the same 

dimensions. Blue dots indicate the reconstructed box, whereas magenta dots indicate the 

ground truth box. 

The difference in the accuracy of reconstruction is evident. In the case of synthetic 

box (Fig.39,b), the reconstructed object correctly encloses the box and does not 

intersect with it, whereas its volume is not exceedingly large. On the other hand, 

the reconstructed volume using the real box (thus suffering camera calibration 

errors) is of lower quality: it does not enclose the whole box and its volume is 

clearly larger than the one in the synthetic case. The average reconstruction error 

validates this visual assessment. Table VII shows the average error of the two 

reconstructed volumes of the case of real and synthetic data of Fig.39. 
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Table VII  

Comparison of the average error for real and synthetic data of the same object. 

Input Data Average Error (cm) 

Real Box 6.15 

Synthetic Box 2.11 

 

Therefore, calibration greatly affects the reconstruction of volumetric objects 

through S2S algorithm. 

Human Model  
Two human subjects were asked to stand in the room in three different postures 

and at certain positions within the FoV of all the projective cameras. Images were 

acquired from all the cameras before and after the placement of the subjects. 

Afterwards, the corresponding binary frames cB  (Fig.40), that contain the 

silhouette, where produced by a simple segmentation method, as explained in 

Subsection 2.4.1. Manual segmentation was employed for the second subject (Fig. 

40,e and f) due to poor light conditions.  

   

(a) 

   

(b) 

   

(c) 
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(d)  

   
(e)  

   
(f) 

Figure 40. The original frames (a,c,e) and the corresponding segmented frames (b,d,f) for 

two different persons, in three different postures (a, c and e), acquired by the three 

projective cameras. The frames of the second person (e) have been manually segmented. 

The volumetric models V of the human subjects were produced for each posture 

using the S2S algorithm of Subsection 2.4.3. The generalized cones produced by 

the corresponding camera’s binary silhouette is plotted in different color in cube C 

of Fig. 41(a) for the first pose of the first subject of Fig.40(a). The sequence that 

the projections took place was by color: red, green and lastly the magenta. The 

initial visual hull of the subject (which is identical to the generalized cone of the 

first projective camera – the red cone), is shown in Fig.41(b). The intersection of 

the red cone with the green cone resulted in the visual hull of Fig.41(c). The final 

reconstructed volume, created by the intersection of the two visual hulls of (b) and 

(c), is depicted in Fig.41(d). 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 00:46:51 EEST - 18.224.179.84



65 

  

 

 
(a) 

   
(b) (c) (d) 

Figure 41. The three generalized cones of the three projective cameras shown in the cube C 

of (a). The progression of the resulting volumetric model of the subject of Fig. 40(a).  
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Furthermore, Fig.42 and Fig.43 show the progression of the resulting volumetric 

models of the subjects of Fig 40(c) and (e), respectively, using (a) the two 

projective cameras and (b) all the available projective cameras. 

  

(a) (b) 

Figure 42. Volumetric model of the second posture of the first person (of Fig.40,c), generated 

using: (a) the frames of two projective cameras and (b) including additionally the frame of 

the third projective camera.  

  

(a) (b) 

Figure 43. Volumetric model of the second person (of Fig.40,e), generated using: (a) the 

frames of two projective cameras and (b) including additionally the frame of the third 

projective camera. 
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4. Conclusion and Further Work 

Two techniques of perspective calibration [1], [2] are reviewed using linear and 

non-linear estimation of the cameras’ projection matrices, while several 

mathematical variations on them are proposed. Calibration results are utilized for 

the implementation of two computer vision applications: real-time position 

estimation and volumetric reconstruction from silhouettes.  

The required initial step of segmentation of objects of interest has been discussed. 

The proposed position estimation algorithm works efficiently for both simple 

geometric object’s and human model’s position estimation. The algorithm can also 

be applied in the case of an object that covers relatively large area on the floor, 

although with more accurate results if more than one camera is used. Results are 

presented for the case of three cameras view and the calculated error of the method 

is significantly low. 

Moreover, an algorithm is described for the reconstruction of shape from multiple 

silhouettes, acquired from three projective cameras. Initial results from 

reconstructing shapes of real human subjects are assessed visually and appear 

promising. The proposed algorithm is robust enough to work successfully, despite 

the quality of the segmentation. However, the calibration method affects strongly 

our method. The effect of calibration in reconstruction error is examined and 

analyzed. In order for the results to be ameliorated, the accuracy of the calibration 

method should be improved.  

The calibration of perspective camera, as well as the applications of computer 

vision have been implemented using Matlab. Reconstruction time for the 

reconstruction algorithm was less than 1 second, for 3 projective using a volume of 

1.5×1.5×2.2 meters as VOI, with an elementary cube element δV of 1×1×1 cm and 

executed on an Intel(R) Core i5-2430 CPU @ 2.40 GHz Laptop with 4 GB Ram, 

under Windows 7 Home Premium. The experimental setup of the work consists of 

three, mounted at specific positions, projective cameras D-Link DCS-930/L. The 

pixilation of each frame is 480x640. 

Future work includes extending the position estimation and volume reconstruction 

using views from multiple fisheye cameras, or heterogeneous network of cameras. 

Using more accurate camera calibration algorithm can also be investigated. 

Moreover, methods for reducing the dependence of the S2S algorithm from the 

accuracy of the calibration can be considered. Furthermore, the feasibility of 

continuous shape reconstruction, at different positions and times along any 

trajectory is a useful and ambitious task. The exploitation of these algorithms, also 

require the use of shape descriptors in 3D in order to identify posture. Finally the 

possibility of volume reconstruction from objects under different poses needs be 

investigated, perhaps using more information than the binary silhouettes. 
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