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Abstract

Video processing and analysis applications are part of Artificial Intelligence.
Camera calibration is a necessary step in 3D computer vision in order to extract
metric information from 2D images. It has been studied extensively in computer
vision and photogrammetry, and even recently new techniques have been
proposed. In this work, we first review thoroughly two techniques of perspective
calibration [1], [2] within a consistent mathematical framework, using both linear
and non-linear estimation of the cameras’ projection matrices. Further, we propose
some mathematical variations on these approaches. The calibration of perspective
camera has been implemented using Matlab. Then, two computer vision
applications were selected to be implemented and tested, by utilizing the
calibration results of a number of available cameras: real-time position estimation,
as well as volumetric reconstruction from silhouettes.

Results are obtained for an experimental setup of three very low cost projective IP
cameras. Camera calibration results are presented for both linear and non-linear
methods, measuring the accuracy of re-projection of salient points with known
positions. Applications’ results are presented in reconstructing or estimating the
position of synthetic 3D human models, as well as real human subjects. The
accuracy of position estimation was measured for points on the floor, as well as
small objects and humans. Finally the accuracy of volumetric reconstruction was
measured using a simple object with known geometry. The effect of calibration
error on the accuracy of volumetric reconstruction is also quantified.
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1.Introduction

1.1.  Calibration and Projective Geometry

The formal definition of calibration by the International Bureau of Weights and
Measures is the following: "Operation that, under specified conditions, in a first
step, establishes a relation between the quantity values with measurement
uncertainties provided by measurement standards and corresponding indications
with associated measurement uncertainties (of the calibrated instrument or
secondary standard) and, in a second step, uses this information to establish a
relation for obtaining a measurement result from an indication."

Calibration, in general, is the process of finding a relationship between two
quantities that are unknown (when the measurable quantities are not given a
particular value for the amount considered or found a standard for the quantity).
When one quantity is known, which is made or set with one device, another
measurement is made as similar way as possible with the first device using a
second device. The measurable quantities may differ in two devices which are
equivalent. The device with the known or assigned correctness is called the
standard. The second device is the unit under test, test instrument, or any of several
other names for the device being calibrated.

Calibration of an instrument is the process of finding a relationship between the
measurements of this instrument and the measurements of a standard instrument of
the same type, whose measurements are supposed to be correct. For instance,
thermometer may be calibrated so that its reading corresponds to the correct
temperature (eg. in Celsius). A fundamental way of performing that could be by
marking the reading when in melting ice and in boiling water (by definition at 0
and 100 Celcius respectively). The range in-between these two readings is divided
into 100 steps, each corresponding to 1 degree Celsius. Alternatively, the
thermometer can be calibrated against another, already calibrated thermometer.

In computer vision, camera calibration is defined as the recovery of the
transformation between points in real world and image pixels. The transformations
needed are derived from projective geometry, using known positions of convenient
points or geometric patterns. These transformations include geometric
transformations between the real world and the camera coordinate system, as well
as between the camera sensor and the pixel coordinate system.

The study of projective geometry was initiated by the painters of the Italian
Renaissance, who wanted to produce a convincing illusion of 3D depth in their
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architectural paintings [3]. They made considerable use of vanishing points and
derived several practically useful geometric constructions, for example to split a
projected square into four equal sub-squares, or to find the projection of a
parallelogram when the projections of the two of its sides are known.

M e

Figure 1. Simple painting using projective geometry.

The edges of the road of Fig.1 are parallel lines in 3D space, but in the image they
appear to converge as they recede towards the horizon. The line of the horizon is
formed by the “infinitely distant points” or vanishing directions of the ground
plane. Any pair of parallel, horizontal lines appears to meet at the point of the
horizon corresponding to their common direction. This is true even if they lie at
different heights above the ground plane. Moreover, any two horizontal planes
appear to come together in the distance, and intersect in the horizon line or “line at
infinity”. All of these “intersections at infinity” stay constant as the observer
moves. The road always seems to disappear at the same point (direction) on the
horizon, and the stars stay fixed as you walk along: lines of sight to infinitely
distant points are always parallel, because they “(only) meet at infinity”. These
simple examples show the effect of central projection image formation model and
can be used in camera calibration.

13
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1.2.  The Perspective Projection Camera Model

The perspective camera model consists of the charged-coupled device (CCD)
image sensor, which is perpendicular to the optical axis of the camera, which by
convention is assumed to be the Z axis. The center of the sensor is called the
principle point. The distance between the sensor and the center of projection is
called principle distance or focal length of the camera. The details of the camera
model are shown in Fig.2.

The perspective projection camera model is based on central projection and the
center of projection is the origin of the camera coordinate system. Thus, a point P
of the real world (scene) will be projected at the position where the line segment
between the point P and the center of projection intersects the sensor (P.) — without
taking into account image distortion.

Y, 4§
P(XC ’yC ’ZC)
‘,,l
P, (u,v) ’
+cCP~
st
g (Ug Vo)
- - >
enter of / 7
Projection c

Image Plane

X (Camera CCD)

c

Figure 2. The perspective projection camera model. The principle distance f, the center of
projection and a point P of the scene are plotted in the coordinate system of the camera. The
coordinates of the principal point (ug, Vo) and the projection P, of point P are plotted on the

image plane of the camera sensor.

Basic camera calibration is the recovery of the principle distance f (the focal length
of the camera) and the principle point (u,,V,) (the center of the camera sensor) in
the image plane — image coordinate system. This is referred to as interior
orientation in photogrammetry and the focal length and the center of the camera
sensor as intrinsic parameters.

A calibration target can be imaged to provide correspondences between points in
the image and points in space. The relationship between the target coordinate
system and the camera coordinate system typically needs to be recovered from the
correspondences. This is referred to as exterior orientation in photogrammetry.

14
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Exterior Orientation (external camera parameters) is the relationship between a
scene-centered coordinate system and a camera-centered coordinate system.
External camera parameters define the transformation (M) from scene to camera
consists of a rotation (R) and a translation (T), where:

fy o N3
fyy oy T

R—| 1 T2 T

33 T3 I3

= O O O

o O O -

o O ~» O

o » O O
—

The inverse transformation M~ =T.R™ is shown in Fig.3. The rotation matrix R
can be written using trigonometric functions with only three degrees of freedom
(dof). However, when using Minimum Linear Least Squares optimization to
recover the calibration parameters, the formalism of Eq.(1) is used, which leads to
9 dof (not independent though). Translation matrix T has 3 degrees of freedom,
irrespectively of the optimization method used. Therefore, transformation M may
have 12 dof, nine for rotation and three for translation.

M-1=T1R1=T-1RT

MR

Figure 3. The transformation from a scene coordinate system to a camera-centered
coordinate system and vice versa. The transformation matrix M from scene to camera

15
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consists of rotation (R) translation (T). The opposite transformation is the inverse matrix
M

The scene coordinate system can be any system convenient for the particular
experimental setup. In the case of a planar target, the Z axis is usually chosen
perpendicular to the plane, with Z = 0 in the target plane.

16
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1.3.  Computer Vision Applications

The field of automated human activity recognition utilizing fixed cameras of
indoor environments has gained significant interest during the last years. It finds a
variety of applications in diverse areas, such as assistive environments, smart
homes, support for the elderly or the chronic ill, surveillance and security, traffic
control, industrial processes, etc. Automatic estimation of the position of an object
in video sequences, or recovery of the volumetric representation of a real object by
utilizing silhouettes from multiple cameras (silhouette to shape algorithm) are
essential application steps for the aforementioned goals.

1.3.1. Position Estimation

The proposed algorithm is able to estimate the position of the human silhouette, by
the knowledge of both intrinsic and extrinsic parameters of the cameras, since they
are previously calibrated. The position of the object can be estimated every time a
single camera captures it. Moreover, the concurrent use of multiple cameras
improves the accuracy of the estimation.

1.3.2.  Silhouette to Shape

Using silhouettes to get shapes is an active topic in computer vision. Recovering
3D structure (shape) from multiple binary (2D) silhouettes (silhouette to shape —
S2S, commonly referred as shape from silhouette -SfS) by projective cameras is a
well-known technique [4]. In [5] the concept of visual hull, as the maximal volume
that would produce the available 2D silhouettes, is studied. Space carving is a
technique of constructing the visual hall by volume elements of the real 3D space
that are projected inside all available 2D silhouettes. An alternative technique for
visual hull formation in the form of a triangulated surface is the “Marching
intersections”, is described in [6].

In the space carving algorithm, a single silhouette image of an object that can be
acquired by a single camera frame would be combined with the camera parameters
of the calibration and may, then, be used to back-project the silhouette area. It is
known that the 3D object lies inside the volume generated by this back-projection.
With multiple views of the same object, we can intersect the generalized cones
generated by each image, to build a volume which is guaranteed to contain the
object. The limiting smallest volume obtainable in this way is known as the visual
or optic hull of the object.

If perfect calibration and segmentation is available, infinite views of an object will
result to shape reconstruction identical with the real object, as long as it is convex.

17
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2. Methodology

In this work, the algorithm for calibration of a perspective camera is analyzed. A
linear, as well as a non-linear optimization is applied for the estimation of the
cameras’ projection matrices. Both algorithms are applied on three identical
projective cameras, installed on the walls of our laboratory. Moreover, applications
of estimation of subject’s real world position and volumetric shape reconstruction
are implemented, using images acquired by the three calibrated cameras.

More specifically, the steps of the work are the following (Fig.4). Firstly, the three
identical pinhole (projective) cameras are calibrated. The intrinsic parameters are
obtained from the manufacturer. Since the cameras are fixed on the walls of the
laboratory, their position has been measured manually and assumed known for the
calibration process. Then, frames containing an object/person are acquired by the
three projective cameras. The frames undertake segmentation (by background
subtraction). Using the segmented frames that contain the binary silhouette and the
calibration of each camera, the real world position of the object is estimated and an
implementation of the space carving algorithm (S2S algorithm), is applied to
generate a volumetric model of the object.

Camera position measurement
Calibration

Position
Estimation

S2S space carving

_
Acquisition of Frames with
initial frames segmented .
silhouettes Generation of

volumetric model

Figure 4. The steps of this work.
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2.1. Homogeneous Coordinates

Every point in an image represents a possible line of sight of an incoming light ray:
any 3D point along the ray is projected on the same image point, so only the
direction of the ray is of interest, whereas the distance of the point along it cannot
be recovered from mono-ocular view. In computer vision we need to represent this
“virtual sphere” of incoming ray directions. This is commonly done by using
“homogeneous” coordinates, defined as following: if the plane of projection lies at
z=1, then any point (x;,y;) on this plane is the projection of (x;,y1,1). The third
homogeneous coordinate is chosen to be 1 for simplicity. In reality all points in 3D
with (ax;,ay;,a) are projected on the same point. Thus, points in 2D plane are
represented by their homogeneous triplet coordinates, whereas points (x,y,z) in 3D
space are represented as (x,y,z,1). This seems inefficient, but it has the significant
advantage of making the image projection, as well as affine transformation process
much easier to deal with. More specifically, it enables us to use matrix
multiplication to express geometric transformation, even when they include
translations. Therefore, all the matrices used in this work, unless otherwise stated,
correspond to homogeneous coordinates.
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2.2. Calibration Model

As it can be derived from the geometry of Fig.5, the camera calibration matrix that
maps 3D point ps to 2D point (u,v) can be found by using similar triangles as:

f_uv_v
ZC XC yC
v, 4
pC(XC ’yC ’ZC)
Yo ; 9
(u) |
oy 1
Yo
z,
Center of Zc 7
Projection f oU ¢

Figure 5. The geometry of the perspective projection camera model used for calibration. The
principle distance f, the center of projection and a point P of the scene are plotted in the
coordinate system of the camera. The coordinates of the projection P of point P are plotted
on the image plane of the camera sensor. The similar triangles are the (small) triangle
formed by points C,(0,0,f), (u,v) and the triangle formed by points C, (0,0,z), pe.

In [1], the relationship between the coordinates of a real world (scene) point (ps) in
the camera frame of reference p. =(x.y..z.) and the sensor coordinates are

calculated using the perspective projection equations:

where f is the focal length of the camera (Fig.5) and (u,v) are the coordinates of

the projection of p. on the image sensor measured in units of length. By solving
Eq.(3) for (u,v) we obtain:

This is the equation of projection and can be expressed in matrix form by using
homogeneous coordinates as:
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! f 0 0 0)(x
0 f 0O
V= | e 5
o 0 0 0 0}z
0 0101
X - foye - f

from where the point (u,v, o):( .

: ,1} is generated.

Cc ZC

A complicating factor in the calibration of many modern electronic cameras is that
the discrete nature of image sampling is not preserved in the signal. This unknown
horizontal scale factor (s,), as mentioned in [1], can be recovered as part of the
camera calibration process via modifying Eq.(4) as following:

In this work we assume that s, is equal to 1.

2.2.1. Intrinsic camera parameters

Interior Orientation is the relationship between sensor coordinates and image
coordinates. The camera coordinate system has its origin at the center of
projection, its Z axis along the optical axis, and its X and Y axes parallel to the X
and Y axes of the image, as shown in Fig.5.

The problem in determining intrinsic camera parameters is the recovery of the
principle point (uo,Vo) and the principle distance f (Intrinsic Parameters). This is the
basic task of camera calibration. However, in practice we also need to recover the
position and attitude of the calibration target in the camera coordinate system.

In this work, the known parameters are only the size of the sensor (Xcco and Yeep),
as they are indicated in Fig.5, and the number of rows and columns of the
generated image ([L N, ] at X axis and [, N,,,.] at the Y axis). The recovery of the

focal length will be discussed in the coplanar Section for salient world points
Pk =X Vi z [ k=12,...,N that are on the same plane. However, the affine

transformation can be acquired even with the field of view (FoV) of the cameras
being an unknown parameter.

Affine transformation is the mapping between the image plane and the image
frame. The affine transformation from real image coordinates (u, v) to frame buffer
(pixel) image coordinates (j, i) is the following pair of equations:

j=au+c
i=bv+c,

21
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Factors a and c; can be found by the knowledge that the first and last column of the
image frame coordinates correspond to the extremes of the X axis of the real image

[—Xcﬂ,@} , since the size of the CCD and of the image are known parameters:

2 2
a= Ncol -1
Xceb 8
Neo +1
T

Whereas factors b and c, can be found by the knowledge that the first and last line
of the frame image coordinates correspond to the extremes of the Y axis of the

sensor {—yC—ZCDyc—ZCD} , as following:

Finally, using Eq.(8) and Eq.(9), the affine transformation of Eq.(7) becomes:

_ NcoI _1~U+ Ncol +1

X 2
CCD 10
i= NIine _1~V+ NIine +1
Ycep 2

2.2.2.  Extrinsic camera parameters

Extrinsic parameters are the rotation (R) and the translation (T) of the
transformation (M) from scene to camera coordinate system. Figure 3 depicts the
forward and inverse transformation between the two coordinate systems. Let
ps=[xy.z[ and p.=[x..v..z.]| be the column vectors of a point in real world

(scene) and camera coordinate system, respectively. p, and p, are related by an
orthonormal rotation matrix R and a translation matrix Tz[tx,ty,tZ]T. The

relationship between the camera and the scene coordinate systems is given as:
P. = R- Ps +T 11

The aforementioned equation rewritten in matrix form becomes:

Xe 1 ho Nz (X ty
Ye [=|Ta1 T2 Taa || Y|*+|1y 12
Z; 33 I3 I33) \Z t,

The above equation can be written in homogeneous coordinates, using Eq.(1), as:
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Xe i Mo fs 0)(x) [ty
0 t
Ye | _|Tor T2z Tos 1YY 13
Zc 31 T T3 0|2 |1,
1 0O 0 0 1)\1 1
Equivalently, using also Eq.(2), equation Eq.(13) becomes:
Xc 1 00 t,)(nry Ry g 0)(X
Ye | |0 1 0ty 1iry Ip Ny 01y 14
Z, 0 0 1 t,||ry I3y Iy 0]z
000 1 0O 0 0 1)1

The orthonormal rotation matrix R might be decomposed into Euler angles [7] or
into a matrix of rotation around the vector of the camera optical axis v.

Euler Angles

The rotation around Euler angles are defined as matrices around X, Y and Z axis in
a sequential manner:

R=R,-R,-R, 15

The rotation matrices for each axis are (without using homogeneous coordinate

notation):
cos@, -—sing, 0 1 0 0 cosd, 0 -sing,
R, =|sing, cosd, O, R, =0 cosd, -sinb,|,R,=| O 1 0 , 16
0 0 1 0 sing, cosé, sing, 0 cosd,

where ¢,, 6,6, are the angles of rotation around the corresponding axis.
However, representing 3D rotations using Euler angles has disadvantages such as
dependence on the sequence of application of the rotations [8] and gimbal lock [9].

A sequence of rotations around Euler angles is implemented as the non-
commutative matrix multiplication [10]. Thus, change of sequence of the rotation
matrices affects respectively the result of the final rotation in the 3D space. This
dependence renders successive rotations inefficient for 3D transformations, as well
as counter-intuitive.

Let x represent a pure rotation around X axis, y represent a pure rotation around Y
axis and z represent a pure rotation around Z axis. The order of 3D rotations could
be represented as: xyz, yzx, zxy or reversing the order zyx, xzy, yxz — which gives 6
permutations. However, permutations may be more than six, because the angles are
not independent. For instance rotating 90° around X axis, followed by 90° around Y
axis and -90° around X axis, concludes to the same position as a single rotation of
90° around Z axis. Thus, any 3D rotation can be formed by combining rotations in
just 2 planes.
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More specifically, if a sequence of rotations is applied once in a specific order and
secondly in a changed order, then the result is different. For example, if we apply:

1. Rotation 90° around X axis
2. Rotation 90° around Y axis
3. Rotation -90° around X axis

the result is a 90 degrees rotation around Z axis. Whereas, if we apply:

1. Rotation 90° around X axis
2. Rotation -90° around X axis
3. Rotation 90° around Y axis

the result is a 90 degrees rotation around Y axis, since the first two rotations are
negated.

Furthermore, the second axis of which rotation takes place cannot reach 90 degrees
because that will cause the two other axes to align and the rotation around them
will have effect on the same plane. This is the effect of gimbal lock.

Rotation around the Vector of the Camera Optical Axis

The rotation around vector is commonly implemented using the Rodrigues
Rotation Formula [11], with the following rotation matrix (indicated without
homogenous coordinates for complexity reasons):

R=lg5+SiN0-W +(1—cos6)-W? | 17

where 155 is the 3x3 unit matrix and W is the following antisymmetric matrix:

0 -z vy
W=z 0 -x 18
-y x O

However, the Rodrigues Rotation Formula has the disadvantage of generating a
unit matrix in the case of rotating round a given vector by an angle equal to zero,
irrespectively of the given vector. In order to overcome the aforementioned
disadvantage, in this work, the rotation around vector is implemented as a
combination of a rotation matrix M that matches the unit vector c=(c,,c,,c,) of

the camera optical axis with the Z axis and a rotation matrix R, , around the Z axis:

R=R,-A 19

z

The R, matrix is identical to the Z axis rotation matrix of Euler angles Eq.(16) and
it can be proven that the matrix M is defined as following:
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[ —c,c
i —=2

A

A=|0 =

A

Cy Gy

where 4=,/c2+c?.
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2.3. Camera Calibration Methods

The calibration of perspective camera is analyzed using linear and non-linear
methods, as described in the following paragraphs. In the results section, the
methods are applied on three projective cameras, in order to estimate the real
position of images objects, or construct their volumetric models.

2.3.1.  Linear Estimation of the Camera Projection Matrix

The calculation of the extrinsic parameters of the camera, which are the elements
of the projection matrix (equivalently camera position, orientation) and the focal
length (f) is described in this Subsection. If we combine the equations for interior
and exterior orientation we obtain an equation that in matrix form can be solved
and give the unknown parameters of the calibration. This is the linear estimation of
the camera projection matrix.

Let pgy =[x, V. ze [ . k=12,....N be a set of N salient world points (landmarks)
and (jy.ix ) be pixel positions on the image. If we assume the intrinsic parameters
known, then their position on the sensor plane (u,,v,) can be easily extracted, as

described in Subsection 2.2.1. The corresponding sensor coordinates
(U, v ),k =12,...,N would be (using Eq.(10)):

Ncol +1 ik _ NIine +1
2 2

U,V )= , 21

(k k) Ncol -1 Nline_l

K~

Xcep Ycep

Given the sensor coordinates, the linear estimation of the camera projection matrix
in [2] is accomplished through matrix G, as shown in the following system:

‘N

‘N

XX Y1 zz 1 0 0 0 0 ux wy, Wz U :?3

0 0 0 0 % Yy z 1 wvx vy, vz Vv X

Xo Yo Z, 10 0 0 0 uyX, Uy, UyZ, U,
G-[RT]=0=|0 0 0 0 1 ovx, VX Vezp V|| L 22 |=0 20

X2 Yo 7

—h —h —h —h . —h —h —h
Ny
=

UnXy UnYn UnZy Uy

x
=z
<
p=4

N
=z

o

o

o

o

f31
0 0 0 Xy Yn Zn 1 VyXy YnYN YNZIN VN

32

33
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However, if we solve Eq.(22) we obtain:
U-Tag-Xg +U-Tap Yo +U-Tag-Zg +t, — F -5, -(ry-Xg +Fp- Vg +T3-25 +1,)=0 23
Velg-Xg+Velgy- Y +Volag-Zo +t, — f ~(r21-xs +ly - Ys + 13- Zg +ty)=0 24

These equations transformed in matrix form for N salient points
Pox =X Vi 2] k=12,...,N , (using s, = 1), become:

fon,

for,

fn,

-% -y -z -1 0 0 0 0 uXx Uy Wz ooy f 1

0 0 0 0 -x -y -z -1 v vy vz v f-rx

X, =Y, -z, -1 0 0 0 0 uX Uy, Uz, U f':l
0 0 0 0 =X =Y =2 =1 WX, VoXo VoZ, VY, |- 221-025

. . S : . . . . P

' ft

-Xy —-Yn —Zy -1 O 0 0 0 uyXy UyYn UnZy Uy . Y

0 0 0 0 —Xy —Yn —ZIy -1 VyXy VnYn VNIN VN r31

32

33

tZ

The solution to the system is the eigenvector g,;, of Y, associated with the
smallest eigenvalue A, , where:
Y=G'-G 26

The recovery of the exact solution vector will be discussed in the Section of
coplanar salient world points.
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2.3.1.1.  Coplanar Control Points
In the case of N salient coplanar world points pg, =[X, Yx. z ] . k=12....N, the

above method cannot be used, since Y =G'-G is singular, det(Y)=0. If we

assume the intrinsic parameters known, (known position on the sensor plane
(ug,v ), as described in Subsection 2.2.1), the extrinsic camera parameters can be

estimated as following.

With no restriction to generality, it can be assumed that Py lie on the XY plane,

thus, z, =0, for all k. In [2], it is proposed to add the right and left sides of

equations (23) and (24). The resulting equation is applied for each point and then
rewritten in matrix form, describing a homogeneous system of linear equations:

fon,
fn,
ft,
-x% - 1 -x -y 1 (Ul"'Vl)'Xl (U1+V1)'y1 (ul+vl) for
X =Y 1 o=Xp =¥y L (Upvy) X (UpHv) Y, (Upvy) ] f.ru —0<:>G-P—027
: : : : : : : : : 22 | & -
f-t
X —Yn 1 =Xy -y 1 (U1+V1)'XN (UN+VN)'YN (UN+VN) . Y
31
32
t

z

where GeRVE, peR®,

In [1], equations (23) and (24) are divided and written in matrix form as following:

f~r11
—Vi-X —Vi-Y1r Vi Up-Xg Up-y1 U for,
“VarXp VoY =V UpeXp o Up-Yp Up | ft, 0 G.-P=0 28
. ) . . . . for
21
“Vn XN TVNCYN VYN Un Xy Uy YN Uy fry,
f-t

where Ge RV, pen®.

However, in this work, the linear estimation of the camera projection matrix for
coplanar objects is performed by keeping both equations for each point Py, thus
producing a homogeneous linear system of equations, as following:
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for,
fn,

-x -y, -1 0 0 0 u-x u-y ul|
0 0 0 -x -y 1 wvi'xyq Vvi'y; v fry
-Xy —Yn 1 0 0 0 uy-Xy Uy-Yn Uy f-t,
0 0 0 —xy —yn 1 vy-Xy Vy-Yn Wy o
M32

1:Z

where G e RN, peR®.

By solving the above homogeneous system of equations using Eq.(26), the
unknown quantities in P are estimated using g, =[0; 9, -~ 9o with an
unknown multiplying factor s, since |jg,,,[=1. Thus the first 2 columns of the
rotation matrix can be estimated.

S'f'r21 S'f'rzz ’) 30

Equivalently, the elements of the full rigid transformation in homogeneous
coordinates that can be estimated directly by g, are shown below:

s-f-ry; s-f-rp, ? s-t 01 9, ? 0O

s-f-n s fp 7 s:ty| 194 5 7 O 31
S-T3; Sy 7 s-t, 97 O ? U
0 0 0 1 0O 0 0 1

Factor s is an arbitrary coefficient without physical meaning, induced by
homogeneity of the linear system of equations, whereas factor f is the focal length
of the camera that is considered unknown, even when the affine transformation
between (j,i) and (u,v) is known. Recovering f and s is described below.

Recovering focal length f through exhaustive search

As it can be seen in Eq.(6) and equations Eq.(23), Eq.(24), since in this work we
assume that s, =1, the coefficients of x; and ys are multiplied by the focal length

(f). Since [r,, 6,5, ] [ b1y ] are by definition orthonormal vectors, it is proposed

to exhaustively search the focal length by considering the two vectors w and g as
following:
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and testing their orthogonality. Specifically, the value of f is obtained by requiring
—|XVV|'|2|=0. An example of focal length recovery through the aforementioned

procedure is shown in Fig.6.

Figure 6. The result of searching focal length (f) through exhaustive search, in the case of a
random camera optical axis. As it can be observed through the orthogonality validity, it is
assumed that =0.1.

Handling special cases: camera vector parallel to X, Y and Z scene axis

Orthogonality of w, g is impossible to test when the vector of the camera optical
axis v, is [0,1,0] or [1,0,0] and the inner product would always conclude to zero.

In this case, the second consequence of the orthonormality property of the Rotation
Matrix may be used, namely the equal length of the vectors of two first columns of
the matrix. Thus, the value of f can be obtained by requiring |w|=|q| (Fig.7).
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Figure 7. The result of searching focal length (f) through exhaustive search, in the case of a
camera optical axis parallel to X axis (assumed f=0.1).

In the case of camera being parallel to Z real world axis of the (Zs in Fig.3) focal
length cannot be computed, because the axis Zs is perpendicular to image plane.

Recovering the unknown factor s and estimating the exact solution of the
transformation matrix

If the value of the focal length has been estimated, then we can decouple it from
the matrix in Eqg.(31) and update it as following:

S'f~l’11 S~f~l’12 " S.t

f f X STy Sfp ? Sty 9, 9, ? O3
s fory S oo ]St ST 7Sty | 9, 95 ? Og 23
f f y S-r3y S-rgp ? s- g, Jg ? o
SN Sr 7 s, 0 0 0 1 0 0 0 1
0 0 0 1

The resulting wvector g, =[g1' U, U3 9, 95 O 97 Ug ggr (after the
extraction of f from the corresponding elements) is multiple of the real solution
with an unknown multiplying factor (s):

sol =S-9in 34

This factor (34) may be found by noting that the rotation matrix is orthonormal and
concluding to a quadratic form [1]:

s — sz(rf1 S+ + r222)+ (rllr22 - r12r21)2 =0 35
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Thus, factor s is found through the roots of EQ.(35). Then, the first two rows of
the rotation matrix are divided by s. Finally, the third row of the rotation matrix is
found by the cross-product of the first two rows.

However, in this work it is proposed to use normalization (divide each vector by its
length) in order for the factor to be ignored as following:

w=2

I(IqWII .
q _-—

lal

As far as the vector that holds the translation data is concerned (namely the
e=[9s.96.99.1]" ), it may be divided by any of the two aforementioned norms since
| =|ld] - Specifically, the referential vector will become:

37

e e

-

o
As far as the sign of the three vectors (w',q ande’) is concerned, the translation at Z
axis is an auxiliary landmark, since it is known that it should not surpass the level
of the ceiling. In real world (scene) of the experimental setup of this work the level

of the ceiling is set to zero and Z axis is positive towards the floor of the room, as
shown in Fig.8. Therefore, t, should be a positive number, since the camera vector

=
[

c=(c..cy.c,) is equal to (-t,,-t,-t,), where [tx,ty,tz,l]T is the last column of the
translation matrix T of Eq.(2).

Figure 8. Simulation of real room experimental setup of this work, along with its coordinate
system and the positions of the three projective cameras calibrated and used in the
applications of calibration.

After the application of Eq.(36) and (37), the elements of the full rigid
transformation of Eq.(33) are updated as following:
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. o ? t 9 9, ? 0;

r r ? 0t ' Co9 ‘ Co :

21 T2 y | _ 94, 95‘ ' 96, =[w,q,?,e] 38
1 T2 ? 4 97 95 ? 9o

0 0 0 1 0 0 0 1

The third row of the rotation matrix (d) may be found by exploiting the property of
orthogonality. Thus, the computation of the cross-product of the first two rows of
the full rigid transformation matrix concludes exactly to the third column we are
looking for:

d=w xq 39
Finally, the exact solution vector is:
Own =01 G5 05 O 05 G5 O O Go) 40
and the full rigid transformation matrix is:

1 My hs b

ly Fop Fhy Do .

21 22 23 y :[W,q,d,e] 41
3y I3 f33 1,

0 0 0 1

Therefore, the rotation R and translation T matrices of Eq.(11) are finally known.
Recovering the camera position and camera axis

The position of each camera in the scene coordinate system {(Xeam: Yeam: Zeam ) | 1S
given by T, =R’ [—tx,—ty,—tz]T , where RT =R™* is the inverse rotation matrix (R)

— of Eq.(1). Moreover, the optical axis of the camera is obtained by R™ multiplied
by the camera Z axis, as following:

V:Rfl. 42

 k O O

The Z axis rotation matrix of Euler angles (R,) of the Eqg.(19), is obtained by the
inverse matrix of rotation of the vector v of the camera optical axis with the Z axis
multiplied by the rotation matrix R of the exact solution vector (Subsection
2.3.1.1-3). The angle of the vector of the camera optical axis is obtained by the
inverse cosinus of the first element of the Z axis rotation matrix of Euler angles

(R,).
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2.3.2. Nonlinear Calibration Method

The Tsai camera model [12] was partially utilized, while using the known intrinsic
parameters of the cameras (sensor size and focal length). The definition of the
extrinsic parameters was slightly modified, as following: since the cameras were
firmly installed on the Laboratory’s walls, their positions {(Xem, Yeam: Zeam), | WeTe
measured and used for subsequent calculations (c=1, 2, 3 denotes the available

projective cameras). The orientation of the cameras was defined by the directions
of view N, and the rotation of the sensor round N, by angle 6.

The extrinsic parameters (N, ;) were derived using the following process. A set
of Ny=24 points were marked on the floor (Fig.9) and their real world coordinates
{(xﬁea,,yﬁea,,zﬁeal)}, (g=1,2, ...,Np) as well as their position in the frame of each
projective camera ¢ {c,.r,).j were manually measured. Moreover, the frame of
reference was transformed through translation and rotation, where the sequence
was translation followed by rotation, instead of rotation followed by translation
that was applied in the proposed linear method. Thus, the matrix form of the
multiplication of the set of the N, points was R-T , where R as in Eq.(1), however

1 00 —Xg,
. . . . . 10 ~Yeam

camera coordinates are contained directly in T, since T = 00 1 -z
cam

000 1

Figure 9. Frames from the tree projective cameras, all including the 24 marked on the floor
points.

Furthermore, the functions of projecting the points on the camera system (by using
the projection matrix of Tsai [12]) and applying the affine transformations were
applied for the three cameras. Thus, the expected frame positions {Ec,, Er, ) | were

calculated for each camera c.

The extrinsic parameters for each camera were obtained by using the Matlab
implementation of the Nelder-Mead Simplex Method [13], by minimizing the
NP

1
mean error error =—
N

(64.%), — (Ecq. Erg),|. The error is modified to penalize

points imaged outside the CCD (image sensor) of each camera.
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2.4. Computer Vision Applications

After the calibration of the three identical projective cameras is applied, frames
containing an object/person are acquired by them. The frames get segmented by a
background subtraction segmentation method. The position of the object may be
estimated in real time through the segmented frames and based on the calibration
of each camera. Moreover, the digital shape of the object can be generated by
having the segmented frames that contain the binary silhouette and the calibration
of each camera and applying an S2S algorithm.

2.4.1. Segmentation method - Foreground detection

A simple foreground segmentation algorithm is used, which detects foreground
objects based on changes between the current and a reference frame. Background
images (Fig.10,a) and images containing the object of interest (Fig.10,b) are
acquired within few minutes, to exclude variations of lighting conditions.
Thresholding is applied on the grayscale images derived from background
subtraction, in order to create the segmented images. A typical original and the
corresponding segmented frame containing the silhouette, along with noisy white
pixels and shadow, are shown in Fig.10, (b) and (c), respectively. In general, noise
and shadows confound scene interpretation. However, the proposed S2S algorithm
remains unaffected.

(@) (b) (©

Figure 10. Two typical original frames acquired by one of the three projective cameras: a
background image (a) and an image containing the object/human model (b). The
corresponding segmented frame is shown in (c).

2.4.2. Position Estimation from mono-ocular video

The real world position of an object, also in the case of a human subject, may be
estimated from a single camera view (mono-ocular) under the following
conditions:

e The intrinsic and extrinsic parameters of the cameras are known, through
the calibration

e The segmentation of the silhouette is accurate

e The object touches the ground and the area of its base is small

e The shape of the ground surface is known.

35

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 00:46:51 EEST - 18.224.179.84



More specifically, let the non-zero pixels of the segmented silhouette, of each
camera c=123 frame, be (jp,ip)c,pzl,z,...,Mc, where M. is the number of

segmented silhouette pixels. For any pixel of the silhouette, we can obtain its
position, as if the pixel were lying on the floor (assuming known room floor), as
following.

The corresponding sensor coordinates {u,,v,) { (c=123 denotes the available

projective cameras) are easily obtained from the equations of the affine
transformations Eq.(7), as following:

. 43
i,—cC

_p 2

v, = :

Then, real world coordinates of each point p, =(x,,y,,z,) of the model/object that

can be viewed by each camera would be found through the sensor coordinates (up,
Vp) of each camera c.

Let k. be the vectors of each camera that points to (up, V) of each camera —
{u,.v, ). j. For a sample camera c, vector k will be the following:

u Vv
k:{T",T",lJ 44

where f is the principle distance of the sample camera, as analyzed in Subsection
2.3.1.1. The coordinates of k. in scene (real world) system of reference will be:

bc :(b1’b21b3)=RcT 'kc 45

where R." is the transpose of the rotation matrix of Eq.(1) for each camera c,

found through the calibration (Eq.(41)) of each camera. Finally, for a sample
camera, the real world points p, =(x,, y,,z,) that are imaged on the same pixel are

given by the following relations:

Xs =Xo + 07
Ys = Yo + byt 46
ZS = ZO +b3T

where (x,,0,2,) is the camera position and >0 the parameter of the line that

emanates from the camera center of projection and passes through the
corresponding pixel.

In the frame of reference of the real world (scene) of the experimental setup of this
work, the plane of the ceiling is set to zero and Z axis is positive towards the floor,
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as shown in Fig.8. Therefore, parameter z, for b, and the real world coordinates of
the position on the floor, becomes:

Zmax — 20
—Zmax "0 47
T b3
If 7 is replaced in Eq.(46), then real world coordinates of the equation correspond
to the real world coordinates of the position of the human model or object on the

floor, as it is viewed by the sample camera.

The real position of the silhouette is approximated more closely, if we select the
image pixel with the maximum of the Z axis (z,,) coordinate of b, since the

coordinates of b, that correspond to z,, resembles the vectors that points to the

lower point of the segmented silhouette, which is identical to its position on the
floor.

The same procedure would be followed for each available camera, in order to find
the real world coordinates of the position of the model on the floor as it is viewed
by each one of the available cameras. Finally, the average of the resulting real
world coordinates for the view and data of each one of the available cameras
would conclude to three coordinates that will approach the exact real position of
the model while the number of the cameras increases.

2.4.3. Silhouette to Shape Algorithm

The first requirement of Silhouette to shape method (S2S, commonly referred as
shape from silhouette -SfS), in order to reconstruct the object of interest, is the set
of frames, acquired by one or more cameras, that contain the object. Then, the
silhouette of these images must be segmented. The algorithm used in this work is
the space carving algorithm.

The methodology of S2S would be easily explained through a graphical 2D
example: Let the red rectangle of Fig.11 be the object of interest that will be
reconstructed and that lies in the blue VOI. Four cameras of different extrinsic and
intrinsic parameters can view the object, as shown in Fig.11. The intrinsic
parameters of camera 1 (the image sensor in gray line, the focal spot in double
arrow with dashed line, the center of projection as a blue star and the vector of the
camera optical axis as a green arrow), as well as the position of the projection of
the object on the image sensor of the camera are also depicted. Furthermore, it is
shown that any real world point along each line (yellow circles on a sample line),
which focuses on the center of projection, corresponds to the same position (yellow
circle on magenta line of projected object) on image sensor.
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Cam. 3 Cam. 2

Cam. 4

Image sensor
s S

Vi 1 ffocal length

N
Cam.1

Figure 11. A graphic representation of S2S algorithm in 2D. The four cameras and their
optical axis are shown in blue stars and green arrows. The object of interest is shown in red
color and the VOI in blue. Concerning camera 1, the image sensor (gray line), the focal spot

(double arrow with dashed line), the center of projection (blue star) and the vector of the

camera optical axis (green arrow) are depicted. The projection of the object on the image
sensor is shown in magenta line. The yellow circle on the magenta line indicates that any real

world point (yellow circles) along this line corresponds to the same position of CCD.

The generalized cone of the view of camera 1 is shown in green on the left diagram
of Fig.12, superimposed with the VOI and the real 2D object to show that the 2D
object lies inside the volume generated by back-projecting the silhouette area of
only one camera view. The intersection of the generalized cone with the VOI
generates the initial optic hull of the object. This limiting smallest volume is shown
from an upper view, as a 2D polyhedron in blue lines, at the right side of Fig.12.

0.4

0.3

0.1f

-0.11
-02F

-0.31

-04r

-05F

L L : : : L :
-0.6 -0.4 -0.2 o 0.2 0.4 0.6

Figure 12. On the left diagram, the four cameras (blue stars) of the setup of the example and
the vectors of each one’s optical axis (green arrows) are depicted. Moreover, the generalized
cone of the view of camera 1 (green) is shown superimposed with the VOI (blue) and the real
2D object (red). On the right diagram, the visual hull, as a 2D polyhedron (blue lines), and
the real object (black rectangle) are shown from an upper 2D view.
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The generalized cone of the view of camera 2 is shown in green on the left plot of
Fig.13, superimposed with the VOI and the real 2D object to show that the 2D
object lies inside the volume generated by back-projecting the silhouette area of
each camera view. The intersection of the generalized cone of this camera with the
one of camera 1 and the VOI generates a new optic hull of the object. This optic
hull is shown from an upper view, as a 2D polyhedron in blue lines, at the right
side of Fig.13.

0.5F"
04t

0.3

0.2

0.1

-0.1F

-0.2

-0.3

-0.4

-05 Ce I L I I I I
0.6 04 -0.2 0 0.2 04 06

Figure 13. Reconstructing shape from 2 views. On the left diagram, the new generalized cone
(green) of the view of camera 2 appears. On the right diagram, the new visual hull of the
intersection of the two cones with the VOI is shown as a 2D polyhedron (blue lines) from an
upper 2D view.

The same steps are followed for the other two views of the other two cameras, as
shown in Fig.14 and Fig.15. The final reconstructed volume from the intersections
of the generalized cones of four cameras views is shown on the right of Fig.15.

0.5F

0.4

0.3

0.2

0.1

0
-0.1r
-0.21-

-0.3r

-04t

-05&

: : :
-0.4 -0.2 0 0.2 0.4 0.6

Figure 14. Reconstructing shape from 3 views. On the left diagram, the new generalized cone
(green) of the view of camera 3 appears. On the right diagram, the new visual hull of the
intersection of the 3 cones with the VOI is shown as a 2D polyhedron (blue lines) from an

upper 2D view.
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-0.4 -0.2 0 0.2 0.4 0.6

Figure 15. Reconstructing shape from 4 views. On the left diagram, the new generalized cone
(green) of the view of camera 4 appears. The final reconstructed volume from the 4 cameras
view is shown on the right as a 2D polyhedron (blue lines) from a 2D upper view.

The steps of the S2S algorithm in this work are the following. As a first generic
step, the generalized cone of each camera that contains the imaged object in 3D
space is generated using the corresponding images. A volume of interest (VOI) that
includes the object in 3D space is considered (V). VOI is tessellated into
elementary volumes 6V=6l x ol x ¢l. Each oV is projected on the frame acquired
by each camera, by using the calibration of each camera. Finally, the volumetric
model is constructed through the §¥s that are considered to belong to the object.

A 6V belongs to the object when its projection lies on white pixels on all
silhouette-frames. The set of /s that project in non-zeros pixels in all available
silhouette frames construct the smallest volume obtainable that contains the object
in 3D. They are the discrete intersections of the optic hulls from each camera, so
they construct a volume that approaches the 3D representation of the object. These
steps are figured in the block diagram of Fig.16.

/

l

\

Intersection of optic
hulls and generation of

Calculation of optic X
volumetric model

hull from each
camera

Acquisition of initial Frames with segmented
frames silhouettes

Figure 16. The steps of the S2S algorithm in a real data example.
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For the proposed application, let B, be the binary frame containing the silhouette
imaged by camera ¢ and F, the calibration function that maps a real world point

Xreat = (Xrea» Yrea Zreat ) 10 iMage coordinates of frame B, . Furthermore, a cube C,

large enough to include the common field of view (FoV), is initialized as the VOI
(Fig.17) and divided into elementary volumes 6V of dimensions d/xdlxdl. Typical
value of 46l is 1 cm, although this depends on memory, as well as accuracy
requirements. The employed silhouette to shape algorithm returns a binary volume
V, which is the discretized cube C and contains the optic hull.

Figure 17. Rendered synthetic model frame of a projective camera. The cube C used to
produce the binary volume V is indicated in green, whereas the synthetic 3D model is also
rendered.

The employed S2S algorithm is described in the following pseudocode:

Initialize VOI as the cube C, enclosing the object
FOR each projective camera C

FOR eachoVinC
IF Bc(Fc(é\/))zl, forc=1,2,3

THEN
Obtain indices (i,J,k) of 0V with respect to VOI
Set Vi'chk =1
END
END
IFC==1V°=V°NV'ELSE V*=V°nV**
END
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3. Results

Quantitative and qualitative results for camera calibration methods, S2S and
position estimation method using three projective cameras are presented in this
section, using both synthetic and real data. Three projective cameras (D-Link DCS-
930/L) were used, placed at known positions in the room in order to share a
common portion of real world space as their FoV. A virtual representation of the
real room is presented in Fig.8. The pixilation of each frame is 480x640.

3.1. Calibration Results

The nonlinear calibration method, as described in Subsection 2.3.2, was applied to
all 3 cameras. The positions ({(xo,yo,zo)c}, c=123) and the intrinsic parameters

(sensor size and focal length) of all 3 cameras were known. A number of Ny,=24
points were marked on the floor and their real world coordinates were manually
measured. The Matlab programming environment was used for the implementation
of the described algorithms, with CCD dimensions restrictions on projecting
points, and outputted the extrinsic parameters (optical axis N and angle 6. round
N) for each camera c.

In Fig.18(a), the initial step of the optimization algorithm is shown for one of the
three cameras. The ground truth of the N,=24 points on the floor, as the camera
views them, is depicted as magenta stars. The re-projected points of the initialized
parameters that the optimization algorithm should match with the ground truth
points are depicted as yellow stars. In the beginning, the parameters of the
initialization differentiate from the real extrinsic parameters of the camera.
Consequently, the initial synthetic points are being re-projected far from the points
of the ground truth (Fig.18,a). However, after several steps of the optimization
algorithm, with the aforementioned known parameters and restrictions, the values
of the resulting extrinsic parameters are very close to the real extrinsic parameters
of the camera. Thus, the points that are re-projected with the resulting parameters
are approximately identical to the real world points on the floor, as shown in
Fig.18(b).
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(@)

(b)
Figure 18. The initial and final step of the Nelder-Mead Simplex Method for the non-linear
calibration method. The real points are shown in magenta dots and the re-projected points,
using the calibration data, are shown in yellow dots.

The results of the nonlinear calibration method for all the three projective cameras
are shown through the re-projection of the points, by using the calibration data of
each camera, as magenta stars, along with the real 24 points marked on the floor
(blue dots), on the frames of real world of the room (Fig.19) where the projective
cameras are mounted.
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Figure 19. Frames from the tree projective cameras, all including the 24 marked on the floor
points (blue dots) superimposed by the results (magenta stars) of the non-linear calibration
method.

Results of both linear and nonlinear method are shown on the diagram of Fig.20

that resembles the charged-coupled device image sensor of one of the three
cameras.

Figure 20. Results of both linear and nonlinear calibration method for one of the three
projective cameras plotted on its image sensor. For the set of 24 caps (ground truth positions
— GT) are shown in blue dots, the re-projection of the results of the nonlinear and of the
linear method are shown in red cycles and cyan stars, respectively.
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3.2.  Results for Computer Vision Applications

Results of the computer vision applications — of position estimation and S2S
methods — are both quantitative and qualitative, since they are presented using both
synthetic and real data for both applications.

3.2.1. Real-Position Estimation

Both synthetic and real models were rendered or captured, respectively, by the
three projective cameras (the placement of which was specific in order to share
common portion of real world space as their FoV). The exact position of each
camera is shown in a virtual representation of the real room in Fig.8. The cameras’
calibration was used in order to estimate the model’s position.

3.2.1.1.  Synthetic Data
Synthetic data are used in this work to quantify the error of the position estimation

method, since the exact position of the model is predefined by the user and the
process is not affected by segmentation and calibration. Two 3D models (Fig.21)
obtained from [14], [15] were utilized. These models are in the form of
triangulated surfaces. However, only the coordinates of the vertices are used for
rendering the binary silhouette frames

(a) (b)

Figure 21. The 3D human models used this work: model i (a) and model ii (b).

The 3D human models, with known real world points, are virtually placed in room
at a certain position within the FoV of all the projective cameras (Fig.22).
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Figure 22. 3D representation of the room with the three projective cameras (with orientation

indicated by normal vectors) and the synthetic 3D human model i placed at a certain-known
position in the room.

Each real world point (vertex) of the 3D human model is rendered according to

calibration. More specifically, the corresponding binary frames B, (Fig.23,a-c),

that contain the silhouette are generated using functions F. (see Subsection 2.4.3).

The model of Fig. 21(a) is placed at a certain position with real world coordinates:
(x_real, y_real) =(-0.4,-0.1). The proposed position estimation method of
Subsection 2.4.2 is applied and the estimated value of the position (real world
coordinates) is re-projected on each segmented frame as a red-filled star, as shown
in Fig.23, in order to be visually tested. The real world coordinates of the position
of the synthetic human model on the floor were estimated using the view of each
one of the available cameras. Each position estimation value is indicated at the
corresponding binary frame (Fig.23,a-c). The average of the estimated real world
positions of the available cameras approaches the exact real position of the model —
the Z axis coordinate has always the value on which the floor is. The final position
is plotted as a red star in a sample frame B, in Fig.23(d).

(@) (b)
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(c) (d)
Figure 23. Position estimation result for synthetic data of model i plotted as red-filled stars
on the corresponding rendered frame of each camera (a-c). The average of the three
different position estimations indicated in randomly one of the three rendered frames.

The clipping of the model that is observed at the upper part of the hands in two of
the projective silhouettes is due to the placement of the model at a position to
which the entire model is not within the FoV of all the projective cameras.
However, this issue does not affect the algorithm of position estimation.

Moreover, the final estimated position of another model placed in the same
position as the previous model is also indicated through a red star in Fig.24.

Figure 24. Final position estimation result for synthetic model ii plotted as red-filled stars on
a randomly selected frame of the three rendered frames.
Both models were also placed in a different position (x_real, y_real) = (0,0) and their

position was estimated again. In Fig. 25(a-c), each position estimation value is
indicated at the corresponding binary frame for model of Fig.21(b). The final

position is plotted as a red star in a sample frame B, in Fig.25(d). The final

estimated position of the model of Fig.21(a), which is also placed in this position,
is indicated by a red star in Fig.26.

47

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 00:46:51 EEST - 18.224.179.84



(a) (b)

(© (d)
Figure 25. Position estimation result for synthetic model ii plotted as red-filled stars on the
corresponding rendered frame of each camera (a-c). The average of the three different
position estimations indicated in randomly one of the three rendered frames.

Figure 26. Final position estimation result for synthetic data of model i plotted as red-filled
stars on a randomly selected frame of the three rendered frames.

Furthermore, numeric results with the values of the positions on X and Y axis (the
Z axis coordinate has always the value on which the floor is) are indicated in Table
| for the two determined positions (x_real, y_real) of the synthetic human models

and the estimated positions (X_est,y_est) by the proposed method of position
estimation.
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Table |

Comparison of the determined position and the estimated by the proposed method of
position estimation for the two synthetic human models.

Model 1 Model 2
Position 1: (-0.4,-0.1) (-0.5530, -0.2171) | (-0.4701, -0.2173)
Position 2: (0,0) (-0.1479, -0.1121) | (-0.0642, -0.1235)

The use of synthetic data allows the accurate quantification of the error in position
estimation. The error (err_pstn) is computed as the Euclidian distance between the
expected position and the estimated one, as following:

err_pstn = \/ (x_real —x_est)? +(y_real —y_est)? 48

where (x_real, y_real) is the correct position of the synthetic human model and
(x_est, y_est) the estimated one, by the proposed method.

The error derived is expressed in units of meters in this work. Table Il shows the
error of the position estimation for each combination of models with positions 1
and 2.

Table 11

The error of the position estimation for the two models at the two positions 1 and 2.

Error | Position 1:(-0.4,-0.1) | Position 2: (0,0)

Model i 0.1927 0.1856
Model ii 0.1366 0.1392

3.2.1.2.  Real Data
Results from real data are presented using two different types of simple geometric

objects (bottle caps and a box) and a human subject.

Simple Geometric Objects
The 24 points that were marked on the floor for the estimation of the calibration

parameters were round bottle caps with diameter equal to 3.4 cm. The real world
coordinates of the caps were manually measured. The positions of these simple
objects were also manually identified on the frame of each camera, (because of
their small size). The resulting position of each one of the 24 caps estimated using
the calibration of each camera was re-projected on the corresponding frames. Thus,
results are superimposed on the real frames of the three projective cameras in
Fig.27.
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(b)
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©)
Figure 27. Position estimation result plotted as red stars on the corresponding frames of the
3 projective cameras (a-c).
The resulting (estimated) real positions are plotted, along with the virtual
representation of the real caps at their manually measured real positions, on an X-Y
axis diagram (the Z axis is omitted) shown in Fig.28.

Figure 28. The resulting positions (red stars), along with the virtual representation of the
real positions of the caps (blue triangles), on an X-Y axis diagram.

The plotted positions of the above diagram are also presented numerically in the
following Table, along with the error of position estimation for each cap (Table
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I11). The values of this Table were used in the calculation of the average error of
the position estimation.

Table 111

The X-Y axis coordinates of the estimated and of the real positions of the caps (two first
columns — left and right columns respectively) and the error of the real position estimation
for each cap (last column) measured in meters.

Estimated positions (m) | Real positions (m .
X coord. i Ycoor(d.) Xcoofd. Ycoc()r(z. Position Error (m)
0.8352 0.9492 | 0.8130 1.0320 0.0857
0.8498 0.7569 | 0.8130 0.7320 0.0444
0.8510 0.4447 | 0.8130 0.4380 0.0385
0.8501 0.1377 | 0.8130 0.1360 0.0371
0.8515 -0.1897 | 0.8130 | -0.1550 0.0518
0.8517 -0.4979 | 0.8130 | -0.4590 0.0549
0.2239 1.0737 | 0.2100 1.0320 0.0439
0.2214 0.7607 | 0.2100 0.7320 0.0309
0.2232 0.4432 | 0.2100 0.4380 0.0142
0.2335 0.1233 | 0.2100 0.1360 0.0267
0.2204 -0.1854 | 0.2100 | -0.1550 0.0322
0.2250 -0.4876 | 0.2100 | -0.4590 0.0323
-0.4112 1.0826 | -0.3870 1.0320 0.0561
-0.4093 0.7624 | -0.3870 0.7320 0.0377
-0.4127 0.4439 | -0.3870 0.4380 0.0263
-0.4102 0.1484 | -0.3870 0.1360 0.0263
-0.4106 -0.1857 | -0.3870 | -0.1550 0.0387
-0.4057 -0.4928 | -0.3870 | -0.4590 0.0387
-1.0742 1.1138 | -0.9870 1.0320 0.1196
-1.0663 0.7855 | -0.9870 0.7320 0.0956
-1.0561 0.4540 | -0.9870 0.4380 0.0709
-1.0458 0.1381 | -0.9870 0.1360 0.0588
-1.0677 -0.1799 | -0.9870 | -0.1550 0.0844
-1.0446 -0.5056 | -0.9870 | -0.4590 0.0741

The average error of the position estimation of the 24 caps is calculated as
following:

1 24
ﬂz\/(x_reali—x_esti)2+(y_reali—y_esti)2 49
=

where (x_real,y_real)are the real world coordinates of the set of the caps and
(x_est,y_est) the coordinates of the estimated positions of theirs by the proposed

method. The average error for the position estimation of the 24 caps is equal to
0.0508 meters.
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Furthermore, the proposed algorithm was applied to another simple geometric
object of the shape of a box. Due to the small size of the object, the segmentation
was performed manually. The original frames, of the available projective cameras
viewing the object, and the corresponding segmented ones are shown in Fig. 29
(upper and lower row respectively).

Figure 29. The original (upper) and the corresponding segmented (lower) frames containing
the object of interest.

The proposed position estimation algorithm can be also applied in the case of an
object that covers relatively large area on the floor, although with less accurate
results if only one camera is used. The maximum Z axis coordinates of the scene
vector b, (as defined in Eq.(45)) resembles the vector that points to the lower point

of the segmented silhouette as each camera views it. Thus, this pixel can be used to
estimate the object’s position on the floor. However, each camera views the object
from a different angle, so applying the position estimation algorithm independently
from each silhouette (viewed by the cameras) will produce different position
estimation. The average of these estimations results in a more accurate position
estimation of the center of mass of the object, especially if the cameras view the
object from significantly different angles. In Fig. 30, each resulting position,
estimated from the view of each one of the available cameras, is superimposed on
the corresponding frame of the segmented silhouette of the object. The binary
frames are cropped around the segmented silhouette in order to illustrate a detailed
view of the position estimation, since the object covers a small area of the frame.
The average of the three different position estimations is superimposed on a real
world frame of the object, acquired by one of the three cameras.
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(a) (b)

(©) (d)

Figure 30. Position estimation from the view of each one of the available cameras plotted as
red stars on the corresponding segmented frame (a-c), cropped around the segmented
silhouette, since the object covers a small area of the frame. The average of the three

different position estimations indicated in a real world frame of the object, acquired by one

of the three cameras.

The values of the real position of the box (x_real, y_real) on X and Y axis (the Z

axis coordinate has always the value on which the floor is) are indicated in Table
IV along with the estimated position coordinates (x_est,y_est) resulted by the
proposed method of position estimation.

Table IV

Comparison of the real world and of the estimated by the proposed method position of the
box.

X coord. (m) | Y coord. (m)
Real position -0.1730 -0.0190
Estimated position -0.2201 -0.0751

The error for the position estimation of the real box is equal to 0.0733 meters.
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Human Model

The position estimation was also applied on real data of human model and
specifically on the frames of the subject of Fig.40(a). The estimated real world
position, using each available camera, was re-projected on the corresponding
binary frame B, as a red-filled star (Fig.31,a-c), in order to be visually tested. The

average of the estimated real world position of each one of the available cameras is
plotted as a red star in a real world frame of the human model, acquired by one of
the three cameras, in Fig.31(d).

(@) (b)

(©) (d)
Figure 31. Position estimation result plotted as red-filled stars on the corresponding
segmented frame (a-c). The average of the three different position estimations indicated in
randomly one of the three binary frames.
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3.2.2.  Application of S2S

The first requirement of Silhouette to shape method (S2S, commonly referred as
shape from silhouette — SfS), in order to reconstruct the object of interest, is the set
of frames that contain the object and are acquired by one or more cameras. In this
work, both synthetic and real models were rendered or captured, respectively, and
three projective cameras were mounted at specific positions in the room in order to
share a common portion of real world space as their FoV. The exact position of
each camera is shown in a virtual representation of the real room in Fig.8. The
pixilation of each frame is 480x640. The D-Link DCS-930/L was selected as the
three projective cameras.

3.2.2.1.  Synthetic Data
Synthetic data are used to quantify the error of the achieved shape reconstruction,

while isolating the effects of segmentation and calibration. A 3D human model,
with known real world points, as explained in Subsection 3.2.1.1, is virtually
placed in room at a certain position within the FoV of all the projective cameras
(Fig.32). These models are in the form of triangulated surfaces. However, only the
coordinates of the vertices are used for rendering the binary silhouette frames.

Figure 32. 3D representation of the room with the three projective cameras (with orientation
indicated by normal vectors) and the synthetic 3D human model placed at a certain position
in the room.

Each real world point (vertex) of the 3D human model is rendered according to
calibration. More specifically, the corresponding binary frames B. (Fig.33), that
contain the silhouette are generated using functions F. (explained in Subsection

2.4.3). Using the S2S algorithm analyzed in Subsection 2.4.3, volume V is
obtained. These steps, along with an extra example of the reconstruction of
synthetic model, are figured in the block diagram of Fig. 34.
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Figure 33. The rendered binary frames of the projective cameras ( B, ) in the case of
synthetic data.

- N ( )
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Figure 34. The steps for the volumetric reconstruction of synthetic data followed in this
work.

In the case of synthetic data, the visually assessed error of the reconstructed model
is only due to the S2S method. More specifically, as explained in Subsection 1.3.2,
infinite views of the model may conclude to a reconstruction identical with the real
model, where it is convex. However, the discrepancy between the reconstructed
shape and the 3D model at the upper part of the hands is caused by the clipping of
the model in two of the projective silhouettes as shown in the two upper rendered
frames of Fig.34 (left side, third column) — silhouettes are more clearly illustrated
in Fig.(23).

Calculation of Reconstruction Error
The use of synthetic data allows the accurate quantification of the error in volume

reconstruction. The resulting optic hull is generated in the form of a volumetric
model V. A simple linear transformation from cloud space to voxel space is applied
to the points of the 3D human model in order to calulate the displacement error
with respect to the 3D human model, which is in the form of point cloud. Thus,
volume V; is generated using voxel size of =1 cm. Subsequently, the
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reconstructed volume V is resized using nearest neighbour interpolarion to obtain
equal dimensions to V. Finally, the Euclidean distance transform (DT) of V; is
computed in 3 dimensions. The average error (err) is computed as the average
distance of the non-zero voxels of V from the non-zero voxels of V; as following:

1 ..
err :W”;DT(Vl)ijk N=#{i, J.K): Vige >0f 20

The error derived is expressed in units of 6/, (which is set equal to 1 cm for the
results presented in this work). Table V shows the average error of the
reconstructed volume, for different combinations of the participating projective
cameras (1 indicates camera participation).

Table V

Comparison of the average error, for different combinations of the participating projective

cameras.

P1| P2 | P3 Average Error (cm)
11110 4.669
1|01 3.796
0O(1 1 3.558
111 2.961

Fig.35 illustrates the reconstructed volume V with the ground truth model
superimposed. The accuracy of the reconstruction can be visually assessed.

Figure 35. The final reconstructed model using all available cameras and the ground truth
model, shown in blue and magenda respectively. En-face (left) and top-down view (right).
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3.2.2.2. Real Data
Results from real data are presented using a simple geometric object and several

human subjects, using the three aforementioned projective cameras, calibrated as
described in Subsection 2.3.

Simple Geometric Object
The proposed algorithm is applied to reconstruct the shape of a simple object (box)

that is placed at a certain position on the floor. The box was imaged by the three
available projective cameras. The original frames and the corresponding
segmented ones are shown in Fig. 29. Due to the small size of the object and to
isolate the results from the effects of possible segmentation inaccuracies, the
segmentation was performed manually. The segmented frames along with the cube
C, which is large enough to include the whole object (explained in Subsection
2.4.3), are shown for each camera in Fig.36.

Figure 36. The segmented frames along with the cube C. The cube C is indicated on the red
channel of the frame.

The steps of the real box reconstruction are shown in Fig.37. Firstly, the virtual
representation of the real object is shown in real world coordinates within cube C.
In the experimental setup of this work, the level of the ceiling is set to zero and Z
axis is positive towards the floor of the room. Therefore, the lower side of the box
lies on the plane defined by z,=3.5 m (equal to room height). Then, the
generalized cones (visual hull of each camera) that are generated by the images of
Fig.36 are projected inside the VOI (Fig.37, b, ¢ and d). The B, frames that
contribute to the creation of each visual hull are also shown (on the right side of
(b)-(d) frames of Fig.37). Finally, the intersection of the visual hulls is shown in

real world coordinates superimposed on the real object that represents the ground
truth (Fig.37,d).
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(e)
Figure 37. The virtual representation of the real object (yellow box) and the cube C, in real
world coordinates (a), the generalized cones along with corresponding B, frames (b - d) and

the resulting reconstructed shape (black) superimposed on the real object (e). The real world
axes are also indicated.

The intersection of the visual hulls concludes to the 3D reconstruction of the
viewed object. A better view of the resulting volumetric reconstructed object (blue)
superimposed on the real object (magenta) is plotted in Fig.38. The discrepancy
between the reconstructed volume and the 3D real object because of the clipping of
the reconstructed shape at the right-viewed part of the box is caused by the
imperfection of the calibration. The effect of the calibration on the reconstruction
is analyzed in the next Subsection.

Figure 38. The resulting volumetric reconstructed object (blue) superimposed on the real
object-box (magenta).

61

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 00:46:51 EEST - 18.224.179.84



The reconstruction error of the specific simple geometric object (box) can be
calculated since its dimensions are easily measured. Table VI shows the average
error of the reconstructed volume, for different combinations of the participating
projective cameras (1 indicates camera participation).

Table VI

Comparison of the average error for real data, for different combinations of the
participating projective cameras.

P1| P2 | P3 Average Error (cm)
110 5.270
1|01 6.328
0O(1 1 5.285
1111 4.836

The effect of calibration on reconstruction error

In order to test the effect of the calibration on the reconstruction, a synthetic
geometric object of the same shape and dimensions with the real box was
constructed. The S2S algorithm was separately applied to the frames of the real
box and the rendered frames of the synthetic box. The resulting reconstructed
shapes of the two aforementioned cases are depicted in Fig.39.

(a) (b)
Figure 39. . The reconstructed shapes of the real (a) and the synthetic (b) box of the same
dimensions. Blue dots indicate the reconstructed box, whereas magenta dots indicate the
ground truth box.

The difference in the accuracy of reconstruction is evident. In the case of synthetic
box (Fig.39,b), the reconstructed object correctly encloses the box and does not
intersect with it, whereas its volume is not exceedingly large. On the other hand,
the reconstructed volume using the real box (thus suffering camera calibration
errors) is of lower quality: it does not enclose the whole box and its volume is
clearly larger than the one in the synthetic case. The average reconstruction error
validates this visual assessment. Table VII shows the average error of the two
reconstructed volumes of the case of real and synthetic data of Fig.39.
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Table VII

Comparison of the average error for real and synthetic data of the same object.

Input Data | Average Error (cm)
Real Box 6.15
Synthetic Box 2.11

Therefore, calibration greatly affects the reconstruction of volumetric objects
through S2S algorithm.

Human Model
Two human subjects were asked to stand in the room in three different postures

and at certain positions within the FoV of all the projective cameras. Images were
acquired from all the cameras before and after the placement of the subjects.

Afterwards, the corresponding binary frames B, (Fig.40), that contain the

silhouette, where produced by a simple segmentation method, as explained in
Subsection 2.4.1. Manual segmentation was employed for the second subject (Fig.
40,e and f) due to poor light conditions.

(@)

(b)

(©)
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(d)

(f)

Figure 40. The original frames (a,c,e) and the corresponding segmented frames (b,d,f) for
two different persons, in three different postures (a, ¢c and e), acquired by the three
projective cameras. The frames of the second person (e) have been manually segmented.

The volumetric models V of the human subjects were produced for each posture
using the S2S algorithm of Subsection 2.4.3. The generalized cones produced by
the corresponding camera’s binary silhouette is plotted in different color in cube C
of Fig. 41(a) for the first pose of the first subject of Fig.40(a). The sequence that
the projections took place was by color: red, green and lastly the magenta. The
initial visual hull of the subject (which is identical to the generalized cone of the
first projective camera — the red cone), is shown in Fig.41(b). The intersection of
the red cone with the green cone resulted in the visual hull of Fig.41(c). The final
reconstructed volume, created by the intersection of the two visual hulls of (b) and
(c), is depicted in Fig.41(d).
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(a)

(b) (© (d)
Figure 41. The three generalized cones of the three projective cameras shown in the cube C
of (a). The progression of the resulting volumetric model of the subject of Fig. 40(a).
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Furthermore, Fig.42 and Fig.43 show the progression of the resulting volumetric
models of the subjects of Fig 40(c) and (e), respectively, using (a) the two
projective cameras and (b) all the available projective cameras.

(a) (b)
Figure 42. Volumetric model of the second posture of the first person (of Fig.40,c), generated

using: (a) the frames of two projective cameras and (b) including additionally the frame of
the third projective camera.

(a) (b)
Figure 43. Volumetric model of the second person (of Fig.40,e), generated using: (a) the

frames of two projective cameras and (b) including additionally the frame of the third
projective camera.

66

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 00:46:51 EEST - 18.224.179.84



4, Conclusion and Further Work

Two techniques of perspective calibration [1], [2] are reviewed using linear and
non-linear estimation of the cameras’ projection matrices, while several
mathematical variations on them are proposed. Calibration results are utilized for
the implementation of two computer vision applications: real-time position
estimation and volumetric reconstruction from silhouettes.

The required initial step of segmentation of objects of interest has been discussed.
The proposed position estimation algorithm works efficiently for both simple
geometric object’s and human model’s position estimation. The algorithm can also
be applied in the case of an object that covers relatively large area on the floor,
although with more accurate results if more than one camera is used. Results are
presented for the case of three cameras view and the calculated error of the method
is significantly low.

Moreover, an algorithm is described for the reconstruction of shape from multiple
silhouettes, acquired from three projective cameras. Initial results from
reconstructing shapes of real human subjects are assessed visually and appear
promising. The proposed algorithm is robust enough to work successfully, despite
the quality of the segmentation. However, the calibration method affects strongly
our method. The effect of calibration in reconstruction error is examined and
analyzed. In order for the results to be ameliorated, the accuracy of the calibration
method should be improved.

The calibration of perspective camera, as well as the applications of computer
vision have been implemented using Matlab. Reconstruction time for the
reconstruction algorithm was less than 1 second, for 3 projective using a volume of
1.5%1.5%2.2 meters as VOI, with an elementary cube element 8V of 1x1x1 cm and
executed on an Intel(R) Core i5-2430 CPU @ 2.40 GHz Laptop with 4 GB Ram,
under Windows 7 Home Premium. The experimental setup of the work consists of
three, mounted at specific positions, projective cameras D-Link DCS-930/L. The
pixilation of each frame is 480x640.

Future work includes extending the position estimation and volume reconstruction
using views from multiple fisheye cameras, or heterogeneous network of cameras.
Using more accurate camera calibration algorithm can also be investigated.
Moreover, methods for reducing the dependence of the S2S algorithm from the
accuracy of the calibration can be considered. Furthermore, the feasibility of
continuous shape reconstruction, at different positions and times along any
trajectory is a useful and ambitious task. The exploitation of these algorithms, also
require the use of shape descriptors in 3D in order to identify posture. Finally the
possibility of volume reconstruction from objects under different poses needs be
investigated, perhaps using more information than the binary silhouettes.
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