

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ
ΜΗΧΑΝΙΚΩΝ ΚΑΙ

ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Υλοποίηση και βελτιστοποίηση συνδυαστικού γραφοθεωρητικού
αλγορίθμου για προσομοίωση πολύ μεγάλης κλίμακας γραμμικών

κυκλωμάτων σε μαζικά παράλληλες αρχιτεκτονικές

Development and Optimization of a combinatorial multigrid
algorithm for large scale circuit simulation

on massively parallel architectures

Μεταπτυχιακή Διατριβή

Δημήτριος Κ. Γαρυφάλλου

 Επιβλέποντες Καθηγητές: Νέστωρ Ευμορφόπουλος
 Επίκουρος Καθηγητής

 Γεώργιος Σταμούλης

 Καθηγητής

 Παναγιώτα Τσομπανοπούλου

 Επίκουρος Καθηγήτρια

Βόλος, Οκτώβριος 2015

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ

ΜΗΧΑΝΙΚΩΝ
ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Υλοποίηση και βελτιστοποίηση συνδυαστικού γραφοθεωρητικού
αλγορίθμου για προσομοίωση πολύ μεγάλης κλίμακας γραμμικών

κυκλωμάτων σε μαζικά παράλληλες αρχιτεκτονικές

Μεταπτυχιακή Διατριβή

Δημήτριος Κ. Γαρυφάλλου

 Επιβλέποντες : Νέστωρ Ευμορφόπουλος
 Επίκουρος Καθηγητής

 Γεώργιος Σταμούλης

 Καθηγητής

 Παναγιώτα Τσομπανοπούλου

 Επίκουρος Καθηγήτρια

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 7η Οκτωβρίου 2015

............................
Ν. Ευμορφόπουλος Γ. Σταμούλης Π. Τσομπανοπούλου
Επίκουρος Καθηγητής Καθηγητής Επίκουρος Καθηγήτρια

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

Μεταπτυχιακή Διατριβή για την απόκτηση του Μεταπτυχιακού διπλώματος
Ειδίκευσης «Επιστήμη και Τεχνολογία Υπολογιστών, Τηλεπικοινωνιών και
Δικτύων», στα πλαίσια του Προγράμματος Μεταπτυχιακών Σπουδών του
Τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών του
Πανεπιστημίου Θεσσαλίας.

..

Δημήτριος Γαρυφάλλου

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών
Πανεπιστημίου Θεσσαλίας

Copyright © Dimitrios Garyfallou, 2015

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας μεταπτυχιακής
διατριβής, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η
ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής
ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και
να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της διατριβής
για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

i

To my family and my friends

Στην οικογένειά μου και στους φίλους μου

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

iii

Ευχαριστίες

Με την περάτωση της παρούσας μεταπτυχιακής διατριβής, θα ήθελα να ευχαριστήσω
θερμά τους επιβλέποντές μου κ. Νέστορα Ευμορφόπουλο, κ. Γεώργιο Σταμούλη και κα
Παναγιώτα Τσομπανοπούλου για την εμπιστοσύνη που επέδειξαν στο πρόσωπό μου με
την ανάθεση του συγκεκριμένου θέματος, την άριστη συνεργασία και την συνεχή
καθοδήγηση, η οποία διευκόλυνε την εκπόνηση της μεταπτυχιακής διατριβής μου.

Επίσης, θα ήθελα να ευχαριστήσω τους φίλους και συνεργάτες μου του Εργαστηρίου Ε5
για την υποστήριξη και την δημιουργία ενός ευχάριστου και δημιουργικού κλίματος και
ιδιαίτερα τον Dr. Κωνσταντή Νταλούκα για τις εύστοχες υποδείξεις και την συνεχή
στήριξή του.

Τέλος, οφείλω ένα μεγάλο ευχαριστώ στην οικογένειά μου και στους φίλους μου για την
αμέριστη υποστήριξη και την ανεκτίμητη βοήθεια που μου παρείχαν τόσο κατά την
διάρκεια των σπουδών μου όσο και κατά την εκπόνηση της μεταπτυχιακής μου διατριβής.

Δημήτριος Γαρυφάλλου

 Βόλος, 2015

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

iv

Contents

List of Tables .. vi

List of Figures .. vii

List of Acronyms ... viii

Περίληψη .. x

Abstract ... xi

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Thesis Contribution ... 1

1.3 Outline .. 1

2 Linear System Solution Methods ... 3

2.1 Introduction .. 3

2.1.1 Sparsity Overview .. 3

2.2 Overview of the Methods .. 4

2.3 Stationary Methods .. 5

2.3.1 The Jacobi Method ... 5

2.3.2 The Gauss-Seidel Method .. 6

2.3.3 The Successive Overrelaxation Method (SOR) .. 7

2.4 Nonstationary Methods .. 8

2.4.1 Generalized Minimal Residual (GMRES) .. 8

2.4.2 Conjugate Gradient (CG) ... 9

2.4.3 BiConjugate Gradient (BiCG) ... 10

2.5 Computational Aspects of the Methods ... 11

2.6 Multigrid Methods ... 12

3 Introduction to Preconditioners ... 13

3.1 Introduction .. 13

3.2 Jacobi Preconditioner .. 14

3.3 SSOR Preconditioner ... 14

3.4 Incomplete Factorization Preconditioners .. 14

4 A Multigrid-Like SDD solver .. 17

4.1 Support Theory for Preconditioning .. 17

4.1.1 Electric Networks as Graphs – Support Basics .. 17

4.1.2 Steiner Preconditioners ... 18

4.1.3 Predicting the performance of solvers ... 19

4.2 The Combinatorial Multigrid Solver .. 20

4.2.1 Related work on SDD solvers ... 20

4.2.2 SDD linear systems as graphs ... 21

4.2.3 A graph decomposition algorithm ... 22

4.2.4 The Multigrid algorithm .. 22

5 GPU Architecture and the CUDA Programming Model.. 25

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

Contents v

5.1 Introduction .. 25

5.2 Hardware Implementation ... 26

5.2.1 SIMT Architecture .. 26

5.3 Device Memory Model .. 27

5.3.1 Global Memory .. 27

5.3.2 Local Memory ... 28

5.3.3 Shared Memory ... 28

5.3.4 Constant Memory ... 28

5.3.5 Texture Memory ... 29

5.4 The CUDA Programming Model ... 29

5.5 NVIDIA® TESLA™ C2075 .. 30

5.5.1 Engine Specifications ... 31

5.5.2 Memory Specifications ... 31

6 Improving CMG solver performance ... 33

6.1 Introduction .. 33

6.2 System Specifications and Benchmarks .. 33

6.3 Implementation and Results... 34

7 Conclusion ... 39

7.1 Future Work ... 39

References .. 41

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

vi

List of Tables

2.1 Summary of Operations for Iteration i: ”𝑎/𝑏” means ”𝛼” multiplications with the
matrix and ”𝑏”with its transpose, and storage requirements for the methods in iteration
i: n denotes the order of the matrix. ... 11

6.1 Test platform specifications ... 33
6.2 IBM Power Grid Benchmarks for DC Analysis .. 33
6.3 Matrix size and non-zero elements of the MNA arrays ... 34
6.4 ISPD 2005/2006 Placement Benchmarks ... 34
6.5 CMG preconditioner-solve step runtime speedup.. 37
6.6 PCG runtime speedup ... 37

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

vii

List of Figures

2.1 The Jacobi Method ... 6
2.2 The Gauss-Seidel Method ... 7
2.3 The SOR Method .. 8
2.4 The Preconditioned GMRES(m) Method .. 9
2.5 The Preconditioned Conjugate Gradient Method .. 10
2.6 The Preconditioned BiConjugate Gradient Method ... 11

4.1 A graph and its spanning tree - obtained by deleting the dashed edges 18
4.2 A graph and its Steiner preconditioner. ... 19
4.3 A bad clustering. .. 20
4.4 Decompose Graph Algorithm ... 22
4.5 Two-level Combinatorial Multigrid .. 23
4.6 Full Combinatorial Multigrid .. 23

5.1 How GPU Acceleration Works .. 25
5.2 CPU vs GPU Architecture .. 26
5.3 Memory Hierarchy ... 27
5.4 2D Grid of Thread Blocks .. 30
5.5 Fermi SM .. 31

6.1 CMG recursive flow .. 35
6.2 CMG iterative flow ... 36

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

viii

List of Acronyms

AMG Algebraic Multigrid

BiCG BiConjugate Gradient

CCS Compressed Column Storage

CG Conjugate Gradient

CMG Combinatorial Multigrid

COO Coordinate

CPU Central Processing Unit

CSR Compressed Row Storage

CUDA Compute Unified Device Architecture

DC Direct Current

DIA Diagonal Format

DRAM Dynamic Random-Access Memory

ECC Error Checking & Correction

EDA Electronic Design Automation

ELL ELLPACK

FLOPs Floating-Point Operations Per second

GCC GNU Compiler Collection

GMG Geometric Multigrid

GMRES Generalized Minimal Residual

GPGPU General Purpose Graphics Processing Unit

GPU Graphics Processing Unit

HPC High Performance Computing

HYB Hybrid

ICC Intel C++ Compiler

IBM International Business Machines Corporation

IC Integrated Circuit

MG Multigrid

MNA Modified Nodal Analysis

OP Operating System

NVCC Nvidia CUDA Compiler

PKT Packet

PCG Preconditioned Conjugate Gradient

SDD Symmetric Diagonally Dominant

segSpMV Segmented Sparse Matrix Vector Multiplication

SIMD Single Instruction, Multiple Data

SIMT Single-Instruction Multiple-Thread

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

ix List of Acronyms

SM Streaming Multiprocessor

SpMV Sparse Matrix Vector Multiplication

SOR Successive Overrelaxation

SSOR Symmetric Successive Overrelaxation

SPD Symmetric Positive Definite

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

x

Περίληψη

Η επίλυση γραμμικών συστημάτων της μορφής Ax = b, για συμμετρικούς
πίνακες με κυρίαρχη διαγώνιο αποτελεί πρόβλημα θεμελιώδους θεωρητικής
σημασίας καθώς επίσης χρησιμοποιείται σε αμέτρητες εφαρμογές στην
αριθμητική ανάλυση, τη μηχανική και τις επιστήμες. Ο πρώτος αξιόπιστα
αποδοτικός επιλυτής τέτοιων συστημάτων για γενικές και αυθαίρετα
σταθμισμένες τοπολογίες, προτάθηκε μόλις πριν λίγα χρόνια και. Ο επιλυτής
αυτός στηρίζεται στις αρχές της θεωρίας γράφων και επιτυγχάνει εξαιρετικά
αποτελέσματα ενώ παράλληλα παρέχει ισχυρές εγγυήσεις για την ταχύτητα
σύγκλισης.

Σκοπός μας είναι η επιτάχυνση της απόδοσης του συγκεκριμένου επιλυτή
για συστήματα τα οποία εμφανίζονται στην προσομοίωση κυκλωμάτων πολύ
μεγάλης κλίμακας. Οι πίνακες που εμφανίζονται σε αυτά τα μεγάλα
συστήματα έχουν αραιή δομή με αποτέλεσμα οι μέθοδοι για τον αποδοτικό
χειρισμό τους να είναι συχνά κρίσιμες για την επίδοση πολλών εφαρμογών
συμπεριλαμβανομένης και της προσομοίωσης κυκλωμάτων. Ο
συγκεκριμένος επιλυτής είναι βασισμένος σε μια από τις επαναληπτικές
μεθόδους επίλυσης, η επιτάχυνσή των οποίων παραμένει πρόκληση για την
επιστημονική κοινότητα. Στην παρούσα διατριβή μελετάμε τις επιπτώσεις
υλοποίησης του γραφοθεωρητικού επιλυτή CMG σε μαζικά παράλληλες
αρχιτεκτονικές (GPUs).

Λέξεις Κλειδιά:
Γραμμικά συστήματα, Προρυθμιστές, Μέθοδοι επίλυσης, Κάρτα Γραφικών,
Προγραμματισμός Υψηλών Επιδόσεων

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

xi

Abstract

The solution of linear systems in the form Ax = b, on symmetric diagonal
dominant matrices (SDDs) is a problem of fundamental theoretical
importance but also one with a myriad of applications in numerical
mathematics, engineering and science. The first reliably efficient SDD
solver for general and arbitrary weighted topologies was first proposed in
recent years. The solver is based on support theory principles and it
achieves state of the art empirical results while providing robust
guarantees on the speed of convergence.

Our purpose is to accelerate the performance of this solver for systems
that occur in very large scale circuit simulation. Matrices that arise in those
very large systems are sparse matrices, and as a result, methods for
efficiently manipulating them are often crucial to the performance of
many applications including circuit simulation. This solver is based on one
of the iterative solution methods, which have proven to be of particular
importance in computational science. This master thesis studies the
implications of a CMG implementation on massively parallel architectures
(GPUs).

Keywords:
Linear Systems, Preconditioners, Solution Methods, Graphics Processing Unit,
High Performance Computing

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

1

Chapter 1

Introduction

1.1 Motivation

Circuit simulation is a technique where a computer software is used to simulate the behavior
of an electronic circuit or system, using mathematical models. New designs can be tested,
evaluated and diagnosed without actually constructing the circuit or device. It is used across a
wide spectrum of applications, ranging from integrated circuits(IC) and microelectronics to
electrical power distribution networks and power electronics. Simulating a circuit’s behavior
before actually building it can greatly improve design efficiency by making faulty designs
known as such, and providing insight into the behavior of electronics circuit designs. In
particular, for integrated circuits, the tooling is expensive, breadboards are impractical, and
probing the behavior of internal signals is extremely difficult. Therefore almost all integrated
circuits design relies heavily on simulation.

1.2 Thesis Contribution
The core of circuit simulation is based on the solution of linear systems in the form 𝐴𝑥 = 𝑏
.Those systems arise after the Modified Nodal Analysis. In Electrical Engineering, Modified
Nodal Analysis or MNA is an extension of nodal analysis which not only determines the
circuit's node voltages (as in classical nodal analysis), but also some branch currents [1]. Several
algorithms are based on solving such sort of linear systems. The contribution of this thesis is
the acceleration of the CMG solver for SDD systems that arise in circuit simulation.

Starting from a C implementation [2] of the algorithm, we ported the most time consuming
part on a GPU with a view to improve the performance of the solution phase of the CMG
solver. The current implementation is also based on the work have been done in my diploma
thesis where we implemented a GPU kernel called segSpMV to accelerate CMG solver [3] [4].
The evaluation results showed that using our GPU implementation we can achieve CMG and
PCG execution time speedups up to 10x and 5.7x over the sequential versions respectively.

For the implementation we have used the Compute Unified Device Architecture (CUDA) [5],
which is an open-source programming and interfacing tool provided by NVIDIA. The GPU
device used for the benchmarking is the NVIDIA® TESLA™ C2075 with 448 CUDA cores.

1.3 Outline

In chapter 2 we give background material on the existing solution methods of linear systems.
We begin with a review of what sparsity means and we describe the most useful sparse matrix
storage. Then, we refer to stationary, nonstationary and multigrid methods.

In chapter 3 we review some basic notions of preconditioner matrices. We discuss about the
importance of the preconditioning, how it is used and how it improves the convergence of the
methods.

Chapter 4 provides some background material on support theory for graphs and describes the
Steiner preconditioner. In the second section we give some background material on solvers
and we present CMG.

In chapter 5 we present the GPU architecture and the CUDA programming model. Also, we
mention the basic specifications of the NVIDIA® TESLA™ C2075.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

1. INTRODUCTION

————————————————————————————————————

2

In chapter 6 we present our attempt to improve the performance of CMG. Firstly, we make a
brief introduction, we describe our workstation and we present our benchmarks. In the last
section, we describe our implementation and we present the experimental evaluation results.

Finally, chapter 7 concludes the thesis and gives some future directions.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

3

Chapter 2

Linear System Solution Methods

2.1 Introduction

There are two broad categories of methods for solving linear equations of the form 𝐴𝑥 = 𝑏

when A is large and sparse: direct and iterative. While for some techniques such as direct
solvers, we only provide brief descriptions, for iterative solvers, we go into more depth to
describe the algorithms, since they are of interest to us here.

A direct method for solving the system of equations 𝐴𝑥 = 𝑏 is any method that produces the
solution x after a finite number of operations. An example of a direct method is using Gaussian

elimination to factor A into matrices L and U where L is lower triangular and U is upper
triangular, then solving the triangular systems by forward and back substitution. Direct
methods are typically preferred for dense linear systems. The problem with direct methods for
sparse systems is that the amount of computational effort and storage required can be
prohibitive [6] .

An alternative to direct methods of solution are iterative methods, which involve the

construction of a sequence {𝑥(𝑖)} of approximations to the solution 𝑥, for which 𝑥(𝑖)→𝑥.
Iterative methods for solving general, large sparse linear systems have been gaining popularity
in many areas of scientific computing. Until recently, direct solution methods were often
preferred to iterative methods in real applications because of their robustness and predictable
behavior. However, a number of efficient iterative solvers were discovered and the increased
need for solving very large linear systems triggered a noticeable and rapid shift toward iterative
techniques in many applications [7]

In this master thesis we are interested only in iterative methods on sparse matrices. But before
we analyze some of the most well-known, let’s see what the term sparse refers to.

2.1.1 Sparsity Overview

Consider the solution of linear systems of the form

𝐴𝑥 = 𝑏, (2.1)

where A is an 𝑛x 𝑛 matrix, and both 𝑥 and 𝑏 are 𝑛x1 vectors. Of special interest is the case

where A is large and sparse. The term sparse above refers to the relative number of non-zeros

in the matrix A. An 𝑛x 𝑛 matrix A is considered to be sparse if A has only O(𝑛) non-zero
entries. In this case, the majority of the entries in the matrix are zeros, which do not have to

be explicitly stored. An 𝑛x 𝑛 dense matrix has Ω(𝑛2) non-zeros. There are many ways of
storing a sparse matrix. Whichever method is chosen, some form of compact data is required
that avoids storing the numerically zero entries in the matrix. It needs to be simple and flexible
so that it can be used in a wide range of matrix operations. This need is met by the primary
data structure in CSparse1, a compressed-column matrix [8]. Some basic operations that
operate on this data structure are matrix-vector multiplication, matrix-matrix multiplication,
matrix addition, and transpose.

The simplest sparse matrix data structure is a list of the nonzero entries in arbitrary order. The

list consists of two integer arrays 𝑖 and 𝑗 and one real array x of length equal to the number of
entries in the matrix.

————————————
1CSparse is a C library which implements a number of direct methods for sparse linear systems.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

2. LINEAR SYSTEM SOLUTION METHODS

————————————————————————————————————

4

For example, the matrix [9]

A = [

4.5 0 3.2 0
3.1 2.9 0 0.9
0
3.5

1.7
0.4

3.0 0
0 1.0

] (2.2)

is presented in zero-based triplet form below. A zero-based data structure for an m-by-n
matrix contains row and column indices in the range 0 to m-1 and n-1, respectively.

 𝑖 = {2, 1, 3, 0, 1, 3, 3, 1, 0, 2}

 𝑗 = {2, 0, 3, 2, 1, 0, 1, 3, 0, 2}

 𝑥 = {2, 1, 3, 0, 1, 3, 3, 1, 0, 2}

The triplet form is simple to create but difficult to use in most sparse matrix algorithms. The
compressed-column storage (CCS) is more useful and is used in almost all functions in

CSparse. An m-by-n sparse matrix that can contain up to 𝑛𝑧𝑚𝑎𝑥 entries is represented with

an integer array 𝑝 of length 𝑛 + 1, an integer array 𝑖 of length 𝑛𝑧𝑚𝑎𝑥, and a real array 𝑥 of

length 𝑛𝑧𝑚𝑎𝑥. Row indices of entries in column 𝑗 are stored in 𝑖[𝑝[𝑗]] through

𝑖[𝑝[𝑗 + 1] − 1], and the corresponding numerical values are stored in the same locations in

𝑥. The first entry 𝑝[0] is always zero, and 𝑝[𝑛] ≤ 𝑛𝑧𝑚𝑎𝑥 is the number of actual entries in
the matrix. The example matrix (2.2) is represented as

𝑝 = { 0, 3, 6, 8, 10}

𝑖 = { 0, 1, 3, 1, 2, 3, 0, 2, 1, 3}

𝑥 = {4.5, 3.1, 3.5, 2.9, 1.7, 0.4, 3.2, 3.0, 0.9, 1.0}

One of the goals of dealing with sparse matrices is to make efficient use of the sparsity in order
to minimize storage throughout the computations, as well as to minimize the required number
of operations. Sparse linear systems are often solved using different computational techniques
than those employed to solve dense systems.

There are many sparse matrices formats such as DIA, ELL, CSR, HYB, PKT and COO for
both structure and unstructured matrices [28]. The Combinatorial Multigrid Solver is based
on Compressed Column Storage (CCS) and as it is designed for symmetric matrices, we focus
on the CSR format. It is easy to see that CSR is equal to CCS for symmetric matrices with the
difference that we use row major storing-access.

2.2 Overview of the Methods

Below are short descriptions of each of the methods to be discussed, along with brief notes
on the classification of the methods in terms of the class of matrices for which they are most
appropriate. In later sections of this chapter more detailed descriptions of these methods are
given [10].

• Stationary Methods

– Jacobi.
The Jacobi method is based on solving for every variable locally with respect
to the other variables; one iteration of the method corresponds to solving for
every variable once. The resulting method is easy to understand and
implement, but convergence is slow.

– Gauss-Seidel
The Gauss-Seidel method is like the Jacobi method, except that it uses updated
values as soon as they are available. In general, if the Jacobi method converges,
the Gauss-Seidel method will converge faster than the Jacobi method, though
still relatively slowly.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

 2.2 Overview of the Methods

————————————————————————————————————

5

– SOR
Successive Overrelaxation (SOR) can be derived from the Gauss-Seidel
method by introducing an extrapolation parameter ω. For the optimal choice
of ω, SOR may converge faster than Gauss-Seidel by an order of magnitude.

• Nonstationary Methods

– Conjugate Gradient (CG).
The conjugate gradient method derives its name from the fact that it generates
a sequence of conjugate (or orthogonal) vectors. These vectors are the
residuals of the iterations. They are also the gradients of a quadratic functional,
the minimization of which is equivalent to solving the linear system. Conjugate
gradient (CG) is an extremely effective method when the coefficient matrix is
symmetric positive definite (SPD), since storage for only a limited number of
vectors is required.

– Generalized Minimal Residual (GMRES).
The Generalized Minimal Residual method computes a sequence of
orthogonal vectors, and combines these through a least-squares solve and
update. However, it requires storing the whole sequence, so that a large
amount of storage is needed. For this reason, restarted versions of this method
are used. In restarted versions, computation and storage costs are limited by
specifying a fixed number of vectors to be generated. This method is useful
for general nonsymmetric matrices.

– BiConjugate Gradient (BiCG).
The biconjugate gradient (BiCG) method generates two CG-like sequences of

vectors, one based on a system with the original coefficient matrix A, and one

on AT. Instead of orthogonalizing each sequence, they are made mutually
orthogonal, or “bi-orthogonal”. This method, like CG, uses limited storage. It
is useful when the matrix is nonsymmetric and nonsingular; however,
convergence may be irregular, and there is a possibility that the method will
break down. BiCG requires a multiplication with the coefficient matrix and
with its transpose at each iteration.

2.3 Stationary Methods

Iterative methods that can be expressed in the simple form

 𝑥(𝑘) = 𝐵𝑥(𝑘−1) + 𝑐, (2.3)

(where neither 𝐵 nor 𝑐 depend upon the iteration count 𝑘) are called stationary iterative
methods. In this section, we present the three main stationary iterative methods: the Jacobi
method, the Gauss-Seidel method and the Successive Overrelaxation (SOR) method.

2.3.1 The Jacobi Method

The Jacobi method is easily derived by examining each of the n equations in the linear system

𝐴𝑥 = 𝑏 in isolation. If in the 𝑖𝑡ℎ equation

∑ 𝛼𝑖,𝑗
𝑛
𝑗=1 𝑥𝑗 = 𝑏𝑖,

we solve for the value of x𝑖 while assuming the other entries of x remain fixed, we obtain

𝑥𝑖 = (𝑏𝑖 − ∑ 𝛼𝑖,𝑗𝑗≠𝑖 𝑥𝑗) 𝛼𝑖,𝑖⁄ . (2.4)

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

2. LINEAR SYSTEM SOLUTION METHODS

————————————————————————————————————

6

This suggests an iterative method defined by

 𝑥𝑖
(𝑘) = (𝑏𝑖 − ∑ 𝛼𝑖,𝑗𝑗≠𝑖 𝑥𝑗

(𝑘−1)) 𝛼𝑖,𝑖⁄ (2.5)

which is the Jacobi method. Note that the order in which the equations are examined is
irrelevant, since the Jacobi method treats them independently. For this reason, the Jacobi
method is also known as the method of simultaneous displacements, since the updates
could in principle be done simultaneously.

In matrix terms, the definition of the Jacobi method in (2.3) can be expressed as

 𝑥(𝑘) = 𝐷−1(𝐿 + 𝑈)𝑥(𝑘−1) + 𝐷−1𝑏, (2.6)

where the matrices D, −L and −U represent the diagonal, the strictly lower-triangular, and the

strictly upper-triangular parts of A, respectively.

The pseudocode for the Jacobi method is given in below in Figure 2.1. Note that an auxiliary

storage vector, 𝑥 is used in the algorithm. It is not possible to update the vector 𝑥 in place,

since values from 𝑥(𝑘−1)are needed throughout the computation of 𝑥(𝑘)

Figure 2.1: The Jacobi Method

2.3.2 The Gauss-Seidel Method

Consider again the linear equations (2.2). If we proceed as with the Jacobi Method, but now
assume that the equations are examined one at a time in sequence, and the previously
computed results are used as they are available, we obtain the Gauss-Seidel method

pseudocode in Figure 2.2.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

 2.3.2. The Gauss-Seidel Method

————————————————————————————————————

 7

Figure 2.2: The Gauss-Seidel Method

 𝑥𝑖
(𝑘) = (𝑏𝑖 − ∑ 𝛼𝑖,𝑗𝑖>𝑗 𝑥𝑗

(𝑘) − ∑ 𝛼𝑖,𝑗𝑗>𝑖 𝑥𝑗
(𝑘−1)) 𝛼𝑖,𝑖⁄ (2.7)

Two important facts about the Gauss-Seidel method should be noted. First, the computations
in (2.5) appear to be serial. Since each component of the new iterate depends upon all
previously computed components, the updates cannot be done simultaneously as in the Jacobi

method. Second, the new iterate 𝑥
(𝑘)

depends upon the order in which the equations are

examined. The Gauss-Seidel method is sometimes called the method of successive
displacements to indicate the dependence of the iterates on the ordering. If this ordering is
changed, the components of the new iterate (and not just their order) will also change.

These two points are important because if A is sparse, the dependency of each component of
the new iterate on previous components is not absolute. The presence of zeros in the matrix
may remove the influence of some of the previous components. Using a judicious ordering of
the equations, it may be possible to reduce such dependence, thus restoring the ability to make
updates to groups of components in parallel. However, reordering the equations can affect
the rate at which the Gauss-Seidel method converges. A poor choice of ordering can degrade
the rate of convergence; a good choice can enhance the rate of convergence.

In matrix terms, the definition of the Gauss-Seidel method in (2.5) can be expressed as

𝑥(𝑘) = (𝐷 − 𝐿)−1(𝑈𝑥(𝑘−1) + 𝑏) (2.8)

As before D, −L and −U represent the diagonal, lower-triangular, and upper-triangular parts

of A, respectively.

2.3.3 The Successive Overrelaxation Method (SOR)

The Successive Overrelaxation Method, or SOR, is devised by applying extrapolation to the
Gauss-Seidel method. This extrapolation takes the form of a weighted average between the
previous iterate and the computed Gauss-Seidel iterate successively for each component:

𝑥𝑖
(𝑘) = 𝜔𝑥𝑖

(𝑘)
+ (1 − 𝜔)𝑥𝑖

(𝑘−1)
.

(where 𝑥𝑖 denotes a Gauss-Seidel iterate, and 𝜔 is the extrapolation factor). The idea is to
choose a value for ω that will accelerate the rate of convergence of the iterates to the solution.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

2. LINEAR SYSTEM SOLUTION METHODS

————————————————————————————————————

 8

In matrix terms, the successive overrelaxation (SOR) algorithm can be written as follows:

𝑥(𝑘) = (𝐷 − 𝜔𝐿)−1(𝜔𝑈 + (1 − 𝜔)𝐷)𝑥(𝑘−1) + 𝜔(𝐷 − 𝜔𝐿)−1𝑏. (2.9)

The pseudocode for the SOR algorithm is given above above in Figure 2.3.

Figure 2.3: The SOR Method

2.4 Nonstationary Methods

Nonstationary methods differ from stationary methods in that the computations involve
information that changes at each iteration. Typically, constants are computed by taking inner
products of residuals or other vectors arising from the iterative method.

2.4.1 Generalized Minimal Residual (GMRES)

The GMRES method generates a sequence of orthogonal vectors, but in the absence of
symmetry this can no longer be done with short recurrences; instead, all previously computed
vectors in the orthogonal sequence have to be retained. For this reason are used restarted

versions of the method. GMRES algorithm has the property that residual norm ∥ 𝑏 − 𝐴𝑥𝑖 ∥
can be computed without the iterate having been formed. Thus, the expensive action of
forming the iterate can be postponed until the residual norm is deemed small enough. The
GMRES iterates are constructed as:

𝑥𝑖 = 𝑥0 + 𝑦1𝑢
1+. . . +𝑦𝑖𝑢

𝑖 , (2.10)

The GMRES method retains orthogonality of the residuals by using long recurrences, at the
cost of a larger storage demand.

The pseudocode for the restarted GMRES algorithm with preconditioner M is given in

Figure 2.4.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

 2.4.1. Generalized Minimal Residual (GMRES)

————————————————————————————————————

 9

Figure 2.4: The Preconditioned GMRES(m) Method

2.4.2 Conjugate Gradient (CG)

The Conjugate Gradient method is an effective method for symmetric positive definite
systems. It is the oldest and best known of the nonstationary methods discussed here. The
method proceeds by generating vector sequences of iterates (i.e., successive approximations
to the solution), residuals corresponding to the iterates, and search directions used in
updating the iterates and residuals. Although the length of these sequences can become large,
only a small number of vectors needs to be kept in memory. In every iteration of the method,
two inner products are performed in order to compute update scalars that are defined to make
the sequences satisfy certain orthogonality conditions. On a symmetric positive definite linear
system these conditions imply that the distance to the true solution is minimized in some
norm.

The pseudocode for the Preconditioned Conjugate Gradient (PCG) Method is given below in

Figure 2.5. It uses a preconditioner M; for M = I one obtains the unpreconditioned version
of the Conjugate Gradient Algorithm.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

2. LINEAR SYSTEM SOLUTION METSHODS

————————————————————————————————————

 10

Figure 2.5: The Preconditioned Conjugate Gradient Method

2.4.3 BiConjugate Gradient (BiCG)

The Conjugate Gradient method is not suitable for nonsymmetric systems because the residual
vectors cannot be made orthogonal with short recurrences. The GMRES method retains
orthogonality of the residuals by using long recurrences, at the cost of a larger storage demand.
The BiConjugate Gradient method takes another approach, replacing the orthogonal sequence
of residuals by two mutually orthogonal sequences, at the price of no longer providing a
minimization.

The update relations for residuals in the Conjugate Gradient method are augmented in the

BiConjugate Gradient method by relations that are similar but based on 𝐴𝑇 instead of A. The

pseudocode for the Preconditioned BiConjugate Gradient Method with preconditioner M is

given in the top of the next page in Figure 2.6.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

 2.4.3 BiConjugate Gradient (BiCG)

————————————————————————————————————

 11

Figure 2.6: The Preconditioned BiConjugate Gradient Method

2.5 Computational Aspects of the Methods

Efficient solution of a linear system includes the selection of the proper choice of iterative
method. However, to obtain good performance, consideration must also be given to the
computational kernels of the method and how efficient they can be executed on the target
architecture. The performance of direct methods, is largely that of the factorization of the
matrix. However, this lower efficiency of execution does not imply anything about the total
solution time for a given system. Furthermore, iterative methods are usually simpler to
implement than direct methods, and since no full factorization has to be stored, they can

handle much larger systems than direct methods. Table 2.1 lists the type of operations
performed per iteration and the storage required for each method (without preconditioning).

Method Inner

Product

SAXPY Matrix-Vector

Product

Precond

Solve

Storage

Requirements

JACOBI 1α Matrix + 3n

Gauss
Seidel

 1 1α

SOR 1 1α Matrix + 2n

GMRES i+1 i+1 1 1 Matrix + (i+5)n

CG 2 3 1 1 Matrix + 6n

BiCG 5 5 1/1 1/1 Matrix + 10n

Table 2.1: Summary of Operations for Iteration i: ”𝑎/𝑏” means ”𝛼” multiplications with

the matrix and ”𝑏”with its transpose, and storage requirements for the methods in

iteration i: n denotes the order of the matrix.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

2. LINEAR SYSTEM SOLUTION METSHODS

————————————————————————————————————

 12

2.6 Multigrid Methods

Before closing this chapter we would like to discuss about the multigrid (MG) methods. MG
methods in numerical analysis is defined as a group of algorithms for solving differential
equations using a hierarchy of discretizations. They are an example of a class of techniques
called multiresolution methods, very useful in problems exhibiting multiple scales of behavior.
For example, many basic relaxation methods exhibit different rates of convergence for short-
and long-wavelength components, suggesting these different scales be treated differently, as
in a Fourier analysis approach to multigrid. MG methods can be used as solvers as well as
preconditioners.

The main idea of MG is to accelerate the convergence of a basic iterative method by global
correction from time to time, accomplished by solving a coarse problem2. This principle is
similar to interpolation between coarser and finer grids. The typical application for multigrid
is in the numerical solution of elliptic partial differential equations in two or more dimensions.

Multigrid can be applied in combination with any of the common discretization
techniques.MG methods are among the fastest solution techniques known today. In contrast
to other methods, multigrid methods are general in that they can treat arbitrary regions and
boundary conditions. They do not depend on the separability of the equations or other special
properties of the equation.

————————————
2 Coarse problem is an auxiliary system of equations used in an iterative method for the
solution of a given larger system of equations. It is basically a version of the same problem at
a lower resolution, retaining its essential characteristics, but with fewer variables.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

13

Chapter 3

Introduction to Preconditioners

3.1 Introduction

In chapter 2 we discussed about many iterative methods. The convergence rate of iterative
methods depends on spectral properties of the coefficient matrix. Hence one may attempt to
transform the linear system into one that is equivalent in the sense that it has the same solution,
but that has more favorable spectral properties. A preconditioner is a matrix that effects
such a transformation. For SPD systems, the rate of convergence of the conjugate gradient

method depends on the distribution of the eigenvalues of A. The purpose of preconditioning
is that the transformed matrix in question will have a smaller spectral condition number,
and/or eigenvalues clustered around 1. For nonsymmetric problems the situation is more
complicated, and the eigen-values may not describe the convergence of nonsymmetric matrix
iterations like GMRES. On parallel machines there is a further tradeoff between the efficacy
of a preconditioner in the classical sense, and its parallel efficiency. Many of the traditional
preconditioners have a large sequential component.

If M is a nonsingular matrix that approximates A, then the linear system (3.1) has the same
solution as (2.1) but must be significantly easier to solve.

𝑀−1𝐴𝑥 = 𝑀−1𝑏 , (3.1)

 𝐴𝑀−1𝑦 = 𝑏, 𝑥 = 𝑀−1𝑦 (3.2)

 𝑀1
−1𝐴𝑀2

−1𝑦 = 𝑀1
−1𝑏, 𝑥 = 𝑀2

−1𝑦 (3.3)

The system (3.1) is preconditioned from the left, (3.2) is preconditioned from the right. At

(3.3) is performed split preconditioning where the preconditioner is 𝑀 = 𝑀1𝑀2.

Iterative algorithms such as the Conjugate Gradient method, converge to a solution using only

matrix-vector products with A. It is well known that iterative algorithms suffer from slow

convergence properties when the condition number of A, κ(A), which is defined as the ration

of the largest over the minimum eigenvalue of A, is large. What preconditioned iterative

methods attempt to do is to remedy the problem by changing the linear system to 𝑀−1𝐴𝑥 =
𝑀−1𝑏. In this case, the algorithms use matrix-vector products with A, and solve linear systems

of the form 𝑀𝑦 = 𝑧. So now the speed of convergence depends on the condition number

𝜅(𝐴,𝑀).

The condition number is defined as:

𝜅(𝐴,𝑀) = 𝑚𝑎𝑥𝑥
𝑋𝑇𝐴𝑥

𝑋𝑇𝑀𝑥
∙ 𝑚𝑎𝑥𝑥

𝑋𝑇𝑀𝑥

𝑋𝑇𝐴𝑥
. (3.4)

where 𝑥 is taken to be outside the null space of A. There are two contradictory goals one has

to deal in constructing a preconditioner M: (i) The linear systems in M must be easier than

those in A to solve, (ii) The condition number must be small so it will minimize the number
of iterations.

Historically, preconditioners were natural parts of the matrix A. We analyze some of the most
well-known preconditioners below.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

3. INTRODUCTION TO PRECONDITIONERS

————————————————————————————————————

14

3.2 Jacobi Preconditioner

The simplest preconditioner consists of just the diagonal of the matrix

 𝑚𝑖,𝑗 = {
𝛼𝑖,𝑖,

0,
𝑖𝑓 𝑖 = 𝑗
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

This is known as the (point) Jacobi preconditioner.

For the model problem, 𝜅(𝐵−1𝐴) = 𝑂(𝑛) = 𝜅(𝐴), so the asymptotic rate of convergence is
not improved with diagonal scaling. B in this case does not need to be factored. The storage

required for the preconditioner is 𝑂(𝑛) since it is a sparse matrix. And, the preconditioner
system is very easy to solve, since it simply requires dividing each vector entry by the

corresponding diagonal entry of B.

Even through the asymptotic rate of convergence is not improved, diagonal scaling can
sometimes make the difference between convergence and non-convergence for an ill-

conditioned matrix 𝐴. Moreover, diagonal scaling generally achieves some reduction in the
number of iterations, and is so cheap to apply that it might as well be done.

3.3 SSOR Preconditioner

Another example of a preconditioner is the SSOR preconditioner which like the Jacobi
preconditioner, can be easily derived from the coefficient matrix without any work.

Assume we have a symmetric matrix A. If this matrix is decomposed as

𝐴 = 𝐷 + 𝐿 + 𝐿𝑇

in its diagonal, lower, and upper triangular part, the SSOR matrix is defined as

𝑀 = (𝐷 + 𝐿)𝐷−1(𝐷 + 𝐿)𝑇

or, parametrized by ω

 𝑀(𝜔) =
1

2−𝜔
(
1

𝜔
𝐷 + 𝐿) (

1

𝜔
𝐷)

−1

(
1

𝜔
𝐷 + 𝐿)

𝑇

.

The SSOR matrix is given in factored form, so this preconditioner shares many properties of
other factorization-based methods. For example, its suitability for vector processors or parallel
architectures depends strongly on the ordering of the variables.

3.4 Incomplete Factorization Preconditioners

A broad class of preconditioners is based on incomplete factorizations of the coefficient
matrix. We call a factorization incomplete if during the factorization process certain fill
elements, nonzero elements in the factorization in positions where the original matrix had a

zero, have been ignored. Such a preconditioner is then given in factored form 𝑀 + 𝐿𝑈 with L

lower and U upper triangular. The efficacy of the preconditioner depends on how well 𝑀−1

approximates A−1 .

When a sparse matrix is factored by Gaussian elimination, fill-in usually takes place. In that

case, sparsity-preserving pivoting techniques can be used to reduce it. The triangular factors L

and U of the coefficient matrix A are considerably less sparse than A.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

 3.4. Incomplete Factorization Preconditioners

————————————————————————————————————

15

Sparse direct methods are not considered viable for solving very large linear systems due to
time and space limitations, however, by discarding part of the fill-in in the course of the

factorization process, simple but powerful preconditioners can be obtained in the form M =
LU where L and U are the incomplete (approximate) LU factors.

Summarizing, it can be said that existing solutions to the problem for incomplete factorization
preconditioners for general SPD matrices follow one of two cases: simple inexpensive fixes
that result in low quality preconditioners in terms of convergence rating, or sophisticated,
expensive strategies that produce high quality preconditioners.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

17

Chapter 4

A Multigrid-Like SDD solver

In this chapter we give some background material on support theory of preconditioning

and we describe the CMG, the solver that we studied and tried to optimize. The CMG

solver was proposed by I. Koutis and Gary Miller and is characterized by the form of the

preconditioner [11] [12]. The first implementation was in MATLAB [13] and later it

transformed into C code. The basis of our implementation is the C code of the CMG solver

[2] [3].

4.1 Support Theory for Preconditioning

The main goal of the support theory is to provide techniques to bound the generalized

eigenvalues and condition number for a matrix pencil (A, B) where B is a preconditioner for

A. In this section we review fragments of support theory that are relevant to the design of the
CMG. We refer the reader to [14] for an extensive explosion of support theory.

4.1.1 Electric Networks as Graphs – Support Basics

The cornerstone of combinatorial preconditioners is the following intuitive yet paradigm-
shifting idea explicitly proposed by Vaidya [15]: A preconditioner for the Laplacian of a
graph A should be the Laplacian of a simpler graph B, derived in a principled fashion
from A.

There is a fairly well known analogy between graph Laplacians and resistive networks [16]. If

G is seen as an electrical network with the resistance between nodes 𝑖 and 𝑗 being 1 𝑤𝑖,𝑗⁄ ,

then in the equation 𝐴𝑣 = 𝑖, if vis the vector of voltages at the node, 𝑖 is the vector of currents.

Also, the quadratic form 𝑣𝑇𝐴𝑣 = ∑ 𝑤𝑖,𝑗𝑖,𝑗 (𝑣𝑖 − 𝑣𝑗)
2
 expresses the power dissipation on

G, given the node voltages 𝑣. In view of this, the construction of a good preconditioner B
amounts to the construction of a simpler resistive network (for example by deleting some

resistances) with an energy profile close to that of 𝐴.

The support of 𝐴 by 𝐵, defined as 𝜎(𝐴 𝐵⁄) = 𝑚𝑎𝑥𝑣
𝑣𝑇𝐴𝑣

𝑣𝑇𝐵𝑣
 is the number of copies of 𝐵 that

are needed to support the power dissipation in 𝐴, for all settings of voltages. The principal
reason behind the introduction of the notion of support, is to express its local nature, captured
by the Splitting Lemma.

Lemma 4.1 (Splitting Lemma) If 𝐴 = ∑ 𝐴𝑖
𝑚
𝑖=1 and 𝐵 = ∑ 𝐵𝑖

𝑚
𝑖=1 where 𝐴𝑖, 𝐵𝑖 are

Laplacians, then 𝜎(𝐴, 𝐵) ≤ 𝑚𝑎𝑥𝑖𝜎(𝐴𝑖, 𝐵𝑖)

The Splitting Lemma allows us to bound the support of A by B, by splitting the power

dissipation in A into small local pieces, and “supporting” them by also local pieces in B.

For example, in his work Vaidya proposed to take B as the maximal weight spanning tree of

A. Then, it is easy to show that 𝜎(𝐵, 𝐴) ≤ 1, intuitively because more resistances always

dissipate more power. In order to bound 𝜎(𝐴, 𝐵), the basic idea to let the 𝐴𝑖be edges on A(the

ones not existing in B), and let 𝐵𝑖 be the unique path in the tree that connects the two end-

points of 𝐴𝑖 . Then one can bound separately each 𝜎(𝐴𝑖, 𝐵𝑖). In fact, it can be shown that any

edge in A that doesn’t exist in B, can be supported only by the path 𝐵𝑖.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

4. A MULTIGRID-LIKE SDD SOLVER

————————————————————————————————————

18

As an example, consider the example in Figure 4.1 of the two (dashed) edges A1, A2 and their

two paths in the spanning tree (solid) that share one edge “e”.

In this example, the dilation of the mapping is equal to 3, i.e. the length of the longest of two

paths. Also, as “e” is uses two times, we say that the congestion of the mapping is equal to 2.
A core Lemma in Support Theory [14] [17] is that the support can be upper bounded by the

product congestion ∗ dilation.

Figure 4.1: A graph and its spanning tree - obtained by deleting the dashed edges

4.1.2 Steiner Preconditioners

Steiner preconditioners, introduced in [18] and extended [19] introduce external nodes into

preconditioners. The proposed preconditioner is based on a partitioning of the n vertices in

V into m vertex disjoint clusters 𝑉𝑖 For each 𝑉𝑖, the preconditioner contains a star graph

𝑆𝑖with leaves corresponding to the vertices in 𝑉𝑖 rooted at a vertex 𝑟𝑖. The roots 𝑟𝑖 are

connected and form the quotient graph Q. This general setting is illustrated in Figure 4.2 at
next page.

Let D′ be the total degree of the leaves in the Steiner preconditioner S. Let the restriction R

be an 𝑛 ×𝑚 matrix, where 𝑅(𝑖, 𝑗) = 1 if vertex 𝑖 is in cluster 𝑗 and 0 otherwise. Then, the

Laplacian of S has 𝑛 +𝑚 vertices, and the algebraic form

𝑆 = (
𝐷′ −𝐷′𝑅

−𝑅𝑇𝐷′ 𝑄 + 𝑅𝑇𝐷′𝑅
). (4.1)

A troublesome feature of the Steiner preconditioner S is the extra number of
dimensions/vertices. Gremban and Miller [18] proposed that every time a system of the form

𝐵𝑧 = 𝑦 is solved in a usual preconditioned method, the system

𝑆 (
𝑧
𝑧′
) = (

𝑦
0
)

should be solved instead, for a set of don't care variables 𝑧′. They also showed that the
operation is equivalent to preconditioning with the dense matrix

𝐵 = 𝐷′ − 𝑉(𝑄 + 𝐷𝑄)
−1
𝑉𝑇 (4.2)

where 𝑉 = 𝐷′𝑅 and 𝐷𝑄 = 𝑅
𝑇𝐷′𝑅. The matrix B is called the Schur complement of S with

respect to the elimination of the roots 𝑟𝑖. It is a well-known fact that B is also a Laplacian.

The analysis of the support 𝜎(𝐴 𝑆⁄), is identical to that for the case of subgraph

preconditioners. For example, going back to Figure 4.2 the edge (v1, v4) can only be

supported by the path (v1, r1, v4), and the edge (v4, v7) only by the path (v4, r1, r2, v7).

Similarly we can see the mappings from edges in A to paths in S for every edge in A. In the
example, the dilation of the mapping is 3, and it can be seen that to minimize the congestion

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

 4.1.2. Steiner Preconditioners

————————————————————————————————————

19

on every edge of S (i.e. make it equal to 1), we need to take D′ = D, where D are the total

degrees of the nodes in A, and 𝑤(𝑟1, 𝑟2) = 𝑤(𝑣3, 𝑣5) + 𝑤(𝑣4, 𝑣7). More generally, for two

roots 𝑟𝑖,𝑟𝑗 we should have

𝑤(𝑟𝑖, 𝑟𝑗) = ∑ 𝑤𝑖,𝑗𝑖′∈𝑉𝑖,𝑗
′∈𝑉𝑗

.

Under this construction, the algebraic form of the quotient Q can be seen to be 𝑄 = 𝑅𝑇𝐴𝑅.

In [19] it was shown that the support 𝜎(𝑆 𝐴⁄) reduces to bounding the support 𝜎(𝑆𝑖, 𝐴[𝑉𝑖]),
for all 𝑖, where 𝐴[𝑉𝑖] denotes the graph induced in A by the vertices 𝑉𝑖. The key behind

bounding 𝜎(𝑆𝑖, 𝐴[𝑉𝑖]) is called conductance. Let us give the definition of conductance.

Definition 4.1 The conductance 𝛷(𝛢) of a graph 𝐴 = (𝑉, 𝐸, 𝑤) is defined as

𝛷(𝛢) = 𝑚𝑖𝑛𝑆⊆𝑉
𝑤(𝑆, 𝑉 − 𝑆)

𝑚𝑖𝑛 (𝑤(𝑆), 𝑤(𝑉 − 𝑆))

where w(S, V − S) denotes the total weight connecting the sets S and V − S, and where w(S)

denotes the total weight incident to the vertices in S.

The main result of [19] is captured by the following Theorem.

Theorem 4.1 The support 𝜎(𝑆 𝐴⁄) is bounded by a constant c independent from n, if and

only if for all 𝑖 the conductance of the graph 𝐴0[𝑉𝑖] induced by the nodes in 𝑉𝑖 augmented by

the edges leaving 𝑉𝑖 is bounded by a constant c′.

Figure 4.2: A graph and its Steiner preconditioner.

4.1.3 Predicting the performance of solvers

Theorem 4.1 doesn’t give a way to pick clusters, but it does provide a way to avoid bad
clustering. In recent work [20], Grady proposed a multigrid method where the construction
of the “coarse” grid follows exactly the construction of the quotient graph in the previous
section. Specifically, Grady’s algorithm proposes a clustering such that every cluster contains
exactly one pre-specified ‘coarse’ nodes. It then defines the restriction matrix R and he lets the

coarse grid be Q = RTAR, identically to the construction of the previous Section. The
algorithm is iterated to construct a hierarchy of grids. The question then is whether the
proposed clustering provides the guarantees that by Theorem 4.1 are necessary for the
construction of a good Steiner preconditioner. The following Figure, is the Figure 2 of [20],
with a choice of weights that force the depicted clustering.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

4. A MULTIGRID-LIKE SDD SOLVER

————————————————————————————————————

20

Figure 4.3: A bad clustering.

Every cluster in Figure 4.3 contains exactly one black/coarse node. The problem with the

clustering is that the top left cluster, has a very low conductance when M ≫ 1. In general, in
order to satisfy the requirement of the previous Theorem, there are cases where the clustering
has to contain clusters with no coarse nodes in them. As we will discuss in later the behavior
of the multigrid algorithm proposed in [20] is closely related to the quality of the Steiner
preconditioner induced by the clustering. This implies that the multigrid of [20] can suffer bad
convergence.

The canonical clustering in Grady’s algorithm is very suitable for GPU implementations, when
other solvers may be less suitable. This gives to it an advantage on this type of hardware. Even
in the presence of a number of relatively bad clusters, it can be faster relative to a solver that
uses better clusters. However the advantage is lost when the computed clusters cross a negative
threshold in quality, a threshold that depends on several hardware-dependent factors. The
value of Support Theory is evident in this case. Grady’s algorithm can be instrumented with a
very fast routine that measures the quality of the formed clusters and predicts its performance,
and reverts to another solver when needed. One can also imagine hybrid clustering algorithms
where the majority clusters are formed using the algorithm [20] and the ‘sensitive’ parts of the
system are treated separately.

4.2 The Combinatorial Multigrid Solver

The present chapter describes the Combinatorial Multigrid Solver (CMG).At the beginning, we

give a short review of multigrid solvers and then we describe the basic components of CMG.

4.2.1 Related work on SDD solvers

Multigrid was originally conceived as a method to solve linear systems that are generated by
the discretization of the Laplace (Poisson) equation over relatively nice domains [21]. The

underlying geometry of the domain leads to a hierarchy of grids 𝐴 = 𝐴0, . . . , 𝐴𝑑 that look
similar at different levels of detail; the picture that the word multigrid often invokes to mind

is that of a tower of 2D grids, with sizes 2𝑑−𝑖 × 2𝑑−𝑖 for 𝑖 = 0, . . . , d. Its provably
asymptotically optimal behavior for certain classes of problems soon lead to an effort, known
as Algebraic Multigrid (AMG), to generalize its principles to arbitrary matrices. In contrast to
classical Geometric Multigrid (GMG) where the hierarchy of grids is generated by the
discretization process, AMG constructs the hierarchy of “coarse” grids/matrices based only
on the algebraic information contained in the matrix. Various flavors of AMG, based on
different heuristic coarsening strategies, have been proposed in the literature. AMG has been
proven successful in solving more problems than GMG, though sometimes at the expense of
robustness, a by-product of the limited theoretical understanding.

A solver with provable properties for arbitrary SDD matrices, perhaps the “holy grail” of the
multigrid community, was discovered only recently. The path to it was Support Theory [14], a
set of mathematical tools developed for the study of combinatorial subgraph preconditioners,
originally introduced by Vaidya [15] [22].It has been at the heart of the seminal work of
Spielman and Teng [23] who proved that SDD systems can be solved in nearly-linear time.
Koutis and Miller [24] proved that SDD matrices with planar connection topologies (e.g. 4-

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

4.2.1. Related work on SDD solvers

————————————————————————————————————

21

connectivity in the image plane) can be solved asymptotically optimally, in 𝑂(𝑛) time for n-
dimensional matrices. The complexity of the Spielman and Teng solver was recently

significantly improved by Koutis, Miller and Peng [25] [26], who described an O(𝑚𝑙𝑜𝑔𝑛)
algorithm for the solution of general SDD systems with m non-zero entries.

It is fair to say that these theoretically described solvers are still impractical due to the large
hidden constants, and the complicated nature of the underlying algorithms. Combinatorial
Multigrid (CMG) [11] is a variant of multigrid that reconciles theory with practice. Similarly to
AMG, CMG builds a hierarchy of matrices/graphs. The essential difference from AMG is that
the hierarchy is constructed by viewing the matrix as a graph, and using the discrete geometry
of the graph, for example notions like graph separators and expansion. It is, in a way, a hybrid
of GMG and AMG, or a discrete-geometric MG. The re-introduction of geometry into the
problem allows us to prove sufficient and necessary conditions for the construction of a good
hierarchy and claim strong convergence guarantees for symmetric diagonally dominant (SDD)
matrices based on recent progress in Steiner preconditioning [18] [19] [22].

4.2.2 SDD linear systems as graphs

In this subsection we discuss how SDD linear systems can be viewed entirely as graphs.
Combinatorial preconditioning advocates a principled approach to the solution of linear
systems. The core of CMG and all other solvers designed in the context of combinatorial
preconditioning is in fact a solver for a special class of matrices, graph Laplacians. The

Laplacian A of a graph 𝐺 = (𝑉, 𝐸, 𝑤) with positive weights, is defined by:

𝐴𝑖,𝑗 = 𝐴𝑗,𝑖 = −𝑤𝑖,𝑗 ∧ 𝐴𝑖,𝑖 = −∑𝐴𝑖,𝑗
𝑖≠𝑗

More general systems are solved via light-weight transformations to Laplacians. Consider for
example the case where the matrix A has a number of positive off-diagonal entries, and the

property 𝐴𝑖,𝑖 = ∑ |𝐴𝑖, 𝑗|𝑖≠𝑗 . Positive off-diagonal entries have been a source of confusion for

AMG solvers, and various heuristics have been proposed. Instead, CMG uses a reduction

known as double-cover [18]. Let A = 𝐴𝑝 + 𝐴𝑛 + 𝐷, where D is the diagonal of 𝐴 and 𝐴𝑝 is

the matrix consisting only of the positive off-diagonal entries of 𝐴. It is easy to verify that

𝐴𝑥 = 𝑏 ⟺ (
𝐷 + 𝐴𝑛 −𝐴𝑝
 −𝐴𝑝 𝐷 + 𝐴𝑛

) (
 𝑥
−𝑥
) = (

 𝑏
−𝑏
)

In this way, the original system is reduced to a Laplacian system, while at most doubling the
size. In practice it is possible to exploit the obvious symmetries of the new system, to solve it
with an even smaller space and time overhead.

Matrices of the form 𝐴 + 𝐷𝑒 , where A is a Laplacian and 𝐷𝑒 is a positive diagonal matrix have
also been addressed in various ways by different AMG implementations. In CMG, we again

reduce the system to a Laplacian. If 𝑑𝑒 is the vector of the diagonal elements of D, we have

𝐴𝑥 = 𝑏 ⟺

(

 𝐴 + 𝐷𝑒 0 −𝑑𝑒

0
−𝑑𝑒

𝑇

 𝐴 + 𝐷𝑒 −𝑑𝑒

 −𝑑𝑒
𝑇 ∑𝑑𝑒(𝑖)

𝑖

)

(
 𝑥
−𝑥
 0
) = (

 𝑏
−𝑏
 0
)

Again it’s possible to implement the reduction in a way that exploits the symmetry of the new
system, and with a small space and time overhead work only implicitly with the new system.

A symmetric matrix A is called diagonally dominant (SDD), if 𝐴𝑖,𝑖 ≥ ∑ |𝐴𝑖, 𝑗|𝑖≠𝑗 . The two

reductions above can reduce any SDD linear system to a Laplacian system. Symmetric positive
definite matrices (SPD) with non-positive off-diagonals are known as M-matrices. It is well

known that if A is an M-matrix, there is a positive diagonal matrix D such that A = DLD where

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

4. A MULTIGRID-LIKE SDD SOLVER

————————————————————————————————————

22

L is a Laplacian. Assuming D is known, an M -system can also be reduced to a Laplacian

system via a simple change of variables. In many application D is given, or it can be recovered
with some additional work [23].

There is a one-to-one correspondence between Laplacians and graphs, so we will be often
using the terms interchangeably.

4.2.3 A graph decomposition algorithm

The crucial step for the construction of a good Steiner preconditioner is the computation of
a group decomposition that satisfies, as best as possible, the requirements of Theorem 4.1.
Before the presentation of the Decompose-Graph algorithm, that extends the ideas of [19],

we need to introduce a couple of definitions. Let 𝑣𝑜𝑙𝐺(𝑣) denote the total weight incident to

node 𝑣 in graph G. The 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑑𝑒𝑔𝑟𝑒𝑒 of a vertex v is defined as the ratio

𝑤𝑑(𝑣) =
𝑣𝑜𝑙(𝑣)

𝑚𝑎𝑥𝑢∈𝑁(𝑣)𝑤(𝑢, 𝑣)

The average weighted degree of the graph is defines as

 𝑎𝑤𝑑(𝐺) = (
1

𝑛
)∑ 𝑤𝑑(𝑣)𝑦∈𝑁 .

Figure 4.4: Decompose Graph Algorithm

It is not very difficult to prove that the algorithm Decompose-Graph presented in Figure

4.4 produces a partitioning where the conductance of each cluster depends only on 𝑎𝑤𝑑(𝐴)
and the constant 𝜅. In fairly general sparse topologies that allow high degree nodes, 𝑎𝑤𝑑(𝐴)
is constant and the number of clusters m returned by the algorithm is such that 𝑛 𝑚⁄ > 2
(and in practice larger than 3 or 4).

4.2.4 The Multigrid algorithm

In this subsection we outline the intuition behind Steiner preconditioners and multigrid.
Details and proofs can be found in [22]. Algebraically, any of the classic preconditioned

iterative methods, such as the Jacobi and Gauss-Seidel iteration, is nothing but a matrix S,

which gets applied implicitly to the current error vector 𝑒, to produce a new error vector 𝑒′ =
𝑆𝑒. For example, in the Jacobi iteration we have 𝑆 = (𝐼 − 𝐷−1𝐴). This has the effect that it
reduces effectively only part of the error in a given iterate, namely the components that lie in

the low eigenspaces of S (usually referred to as high frequencies of A). The main idea behind

a two-level multigrid is that the current smooth residual error 𝑟 = 𝑏 − 𝐴𝑥, can be used to

calculate a correction 𝑅𝑇𝑄−1𝑅𝑟, where Q is a smaller graph and R is an m×n restriction

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

4.2.4. The Multigrid algorithm

————————————————————————————————————

23

operator. The correction is then added to the iterate 𝑥. The hope here is that for smooth

residuals, the low-rank matrix 𝑅𝑇𝑄−1𝑅𝑟 is a good approximation of 𝐴−1. Algebraically, this

correction is the application of the operator 𝑇 = (𝐼 − 𝑅𝑇𝑄−1𝑅𝐴) to the error vector e. The

choice of Q is most often not independent from that of R, as the Galerkin condition is
employed:

𝑄 = 𝑅𝐴𝑅𝑇

The Galerkin condition ensures that T is a projection operator with respect to the A-inner
product. Two level convergence proofs are then based on bounds on the angle between the

subspace Null(P) and the high frequency subspace of S.

At a high level, the key idea behind CMG is that the provably small condition number 𝜅(𝐴, 𝐵)

where B is given in expression 4.2, is equal to the condition number 𝜅(�̂�, �̂�) where �̂� =

𝐷−1 2⁄ 𝐴𝐷−1 2⁄ and �̂� = 𝐷−1 2⁄ 𝐵𝐷−1 2⁄ . This in turn implies a bound on the angle between

the low frequency of �̂� and the high frequency of �̂� [19]. The latter subspace is Null(𝑅𝑇𝐷1 2⁄).

This fact suggests to choose 𝑅𝑇𝐷1 2⁄ as the projection operator while performing relaxation

with (𝐼 − �̂�) on the system �̂�𝑦 = 𝐷−1 2⁄ 𝑏, with 𝑦 = 𝐷1 2⁄ 𝑥. Combining everything, we get

the following two-level algorithm in Figure 4.5.

Figure 4.5: Two-level Combinatorial Multigrid

The two-level algorithm can naturally be extended into a full multigrid algorithm, by

recursively calling the algorithm when the solution to the system with Q is requested. This

produces a hierarchy of graphs 𝐴 = 𝐴0, . . . , 𝐴𝑑 . The full multigrid algorithm we use, after

simplifications in the algebra of the two-level scheme is as follows in Figure 4.6.

Figure 4.6: Full Combinatorial Multigrid

If 𝑛𝑛𝑧(𝐴) denotes the number of non-zero entries in matrix 𝐴, we pick

𝑡𝑖 = 𝑚ax { ⌈
𝑛𝑛𝑧(𝐴𝑖)

𝑛𝑛𝑧(𝐴𝑖+1)
− 1⌉,1}

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

4. A MULTIGRID-LIKE SDD SOLVER

————————————————————————————————————

24

This choice for the number of recursive calls, combined with the fast geometric decrease of
the matrix sizes, targets a geometric decrease in the total work per level, while optimizing the
condition number.

As we can see at the above Figure 4.6, the operation of sparse matrix-vector multiplication
(SpMV) occurs in steps 3, 7 and 11 of the CMG algorithm. Those multiplications are the
bottleneck in CMG solver and my diploma thesis [3] was only focused on solving those
bottlenecks accelerating the time required for SpMV operations. The full Combinatorial

Multigrid is executed in PCG method every time we have to solve 𝑀𝑧𝑖−1 = 𝑟𝑖−1 in
preconditioner solve step. In this thesis we accelerate both the PCG and CMG solver by
porting them on an Nvidia GPU. Details are given in Chapter 6.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

25

Chapter 5

GPU Architecture and the CUDA

Programming Model

5.1 Introduction

General-Purpose Graphics Processing Unit (GPGPU) Computing only became practical and
popular after ca. 2001, with the advent of both programmable shaders and floating point
support on graphics processors. GPGPU computing is the use of a GPU together with a CPU
to accelerate scientific, analytics, engineering, consumer, and enterprise applications.

GPU-accelerated computing offers unprecedented application performance by offloading
compute-intensive portions of the application to the GPU, while the remainder of the code

still runs on the CPU as illustrated by Figure 5.1. From a user's perspective, applications
simply run significantly faster.

Figure 5.1: How GPU Acceleration Works

A simple way to understand the difference between a CPU and GPU is to compare how they
process tasks. A CPU consists of a few cores optimized for sequential serial processing while
a GPU has a massively parallel architecture consisting of thousands of smaller, more efficient

cores designed for handling multiple tasks simultaneously as shown by Figure 5.2 at the top
of following page.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

5. GPU ARCHITECTURE AND THE CUDA PROGRAMMING MODEL

————————————————————————————————————

26

Figure 5.2: CPU vs GPU Architecture

5.2 Hardware Implementation

The NVIDIA GPU architecture is built around a scalable array of multithreaded Streaming
Multiprocessors (SMs). When a program on the host CPU invokes a kernel grid, the blocks of
the grid are enumerated and distributed to multiprocessors with available execution capacity.
The threads of a thread block execute concurrently on one multiprocessor, and multiple thread
blocks can execute concurrently on one multiprocessor. As thread blocks terminate, new
blocks are launched on the vacated multiprocessors.

A multiprocessor is designed to execute hundreds of threads concurrently. To manage such a
large amount of threads, it employs a unique architecture called SIMT (Single-Instruction,
Multiple-Thread). The instructions are pipelined to leverage instruction-level parallelism
within a single thread, as well as thread-level parallelism extensively through simultaneous
hardware multithreading as detailed in Hardware Multithreading. Unlike CPU cores they are
issued in order however and there is no branch prediction and no speculative execution.

5.2.1 SIMT Architecture

The multiprocessor creates, manages, schedules, and executes threads in groups of 32 parallel
threads called warps. Individual threads composing a warp start together at the same program
address, but they have their own instruction address counter and register state and are
therefore free to branch and execute independently. The term warp originates from weaving,
the first parallel thread technology. A half-warp is either the first or second half of a warp.
A quarter-warp is either the first, second, third, or fourth quarter of a warp.

When a multiprocessor is given one or more thread blocks to execute, it partitions them into
warps and each warp gets scheduled by a warp scheduler for execution. The way a block is
partitioned into warps is always the same; each warp contains threads of consecutive,
increasing thread IDs with the first warp containing thread 0. Thread hierarchy, which
describes how thread IDs relate to thread indices in the block, is described in a later section.

A warp executes one common instruction at a time, so full efficiency is realized when all 32
threads of a warp agree on their execution path. If threads of a warp diverge via a data-
dependent conditional branch, the warp serially executes each branch path taken, disabling
threads that are not on that path, and when all paths complete, the threads converge back to
the same execution path. Branch divergence occurs only within a warp; different warps execute
independently regardless of whether they are executing common or disjoint code paths.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#simt-architecture
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#simt-architecture
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#simt-architecture
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#hardware-multithreading
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#hardware-multithreading
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#thread-hierarchy
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#thread-hierarchy

 5.2.1. SIMT Architecture

————————————————————————————————————

27

The SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector
organizations in that a single instruction controls multiple processing elements. A key
difference is that SIMD vector organizations expose the SIMD width to the software, whereas
SIMT instructions specify the execution and branching behavior of a single thread. In contrast
with SIMD vector machines, SIMT enables programmers to write thread-level parallel code
for independent, scalar threads, as well as data-parallel code for coordinated threads. For the
purposes of correctness, the programmer can essentially ignore the SIMT behavior; however,
substantial performance improvements can be realized by taking care that the code seldom
requires threads in a warp to diverge. In practice, this is analogous to the role of cache lines in
traditional code: Cache line size can be safely ignored when designing for correctness but must
be considered in the code structure when designing for peak performance. Vector
architectures, on the other hand, require the software to coalesce loads into vectors and
manage divergence manually.

5.3 Device Memory Model

Threads may access data from multiple memory spaces during their execution as illustrated

by Figure 5.3. Each thread has private local memory. Each thread block has shared memory
visible to all threads of the block and with the same lifetime as the block. All threads have
access to the same global memory.

There are also two additional read-only memory spaces accessible by all threads: the constant
and texture memory spaces. The global, constant, and texture memory spaces are optimized
for different memory usages. Those memory spaces are persistent across kernel launches by
the same application. Texture memory also offers different addressing modes, as well as data
filtering, for some specific data formats.

An instruction that accesses addressable memory (i.e., global, local, shared, constant, or texture
memory) might need to be re-issued multiple times depending on the distribution of the
memory addresses across the threads within the warp. How the distribution affects the
instruction throughput this way is specific to each type of memory and described in the
following sections. For example, for global memory, as a general rule, the more scattered the
addresses are, the more reduced the throughput is.

Figure 5.3: Memory Hierarchy

5.3.1 Global Memory

Global memory resides in device memory and device memory is accessed via 32-, 64-, or 128-
byte memory transactions. These memory transactions must be naturally aligned: Only the 32-
, 64-, or 128-byte segments of device memory that are aligned to their size (i.e., whose first
address is a multiple of their size) can be read or written by memory transactions.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

5. GPU ARCHITECTURE AND THE CUDA PROGRAMMING MODEL

————————————————————————————————————

28

When a warp executes an instruction that accesses global memory, it coalesces the memory
accesses of the threads within the warp into one or more of these memory transactions
depending on the size of the word accessed by each thread and the distribution of the memory
addresses across the threads. In general, the more transactions are necessary, the more unused
words are transferred in addition to the words accessed by the threads, reducing the instruction
throughput accordingly. For example, if a 32-byte memory transaction is generated for each
thread’s 4-byte access, throughput is divided by 8.

How many transactions are necessary and how much throughput is ultimately affected varies
with the compute capability of the device. For devices of compute capability 1.1, the
requirements on the distribution of the addresses across the threads to get any coalescing at
all are very strict. For devices of compute capability 2.x, like the Tesla C2075 we use, and
higher, the memory transactions are cached, so data locality is exploited to reduce impact on
throughput.

To maximize global memory throughput, it is therefore important to maximize coalescing by:

 Following the most optimal access patterns based on the Compute Capability of the
device being used

 Using data types that meet the size and alignment requirement

 Padding data in some cases, for example, when accessing a two-dimensional array

5.3.2 Local Memory

Local memory accesses only occur for some automatic variables. Automatic variables that the
compiler is likely to place in local memory are:

 Arrays for which it cannot determine that they are indexed with constant quantities

 Large structures or arrays that would consume too much register space

 Any variable if the kernel uses more registers than available (this is also known as
register spilling)

The local memory space resides in device memory, so local memory accesses have same high
latency and low bandwidth as global memory accesses. Local memory is however organized
such that consecutive 32-bit words are accessed by consecutive thread IDs. Accesses are
therefore fully coalesced as long as all threads in a warp access the same relative address (e.g.,

same index in an array variable, same member in a structure variable).

5.3.3 Shared Memory

Because it is on-chip, shared memory has much higher bandwidth and much lower latency
than local or global memory.

To achieve high bandwidth, shared memory is divided into equally-sized memory modules,
called banks, which can be accessed simultaneously. Any memory read or write request made
of n addresses that fall in n distinct memory banks can therefore be serviced simultaneously,
yielding an overall bandwidth that is n times as high as the bandwidth of a single module.

However, if two addresses of a memory request fall in the same memory bank, there is a bank
conflict and the access has to be serialized. The hardware splits a memory request with bank
conflicts into as many separate conflict-free requests as necessary, decreasing throughput by a
factor equal to the number of separate memory requests. If the number of separate memory
requests is n, the initial memory request is said to cause n-way bank conflicts.

5.3.4 Constant Memory

The constant memory space resides in device memory and is cached in the constant cache. A
constant memory fetch costs one memory read from the device memory only on a cache miss,
otherwise it costs one read from the constant cache. The memory bandwidth is best utilized
when all instructions that are executed in parallel access the same address of the constant
memory.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

 5.3.4. Constant Memory

————————————————————————————————————

29

5.3.5 Texture Memory

The texture memory space reside in device memory and is cached in texture cache, so a texture
fetch costs one memory read from device memory only on a cache miss, otherwise it just costs
one read from texture cache. The texture cache is optimized for 2D spatial locality, so threads
of the same warp that read texture addresses that are close together in 2D will achieve best
performance. Also, it is designed for streaming fetches with a constant latency; a cache hit
reduces DRAM bandwidth demand but not fetch latency.

Reading device memory through texture fetching present some benefits that can make it an
advantageous alternative to reading device memory from global or constant memory:

 If the memory reads do not follow the access patterns that global or constant memory
reads must follow to get good performance, higher bandwidth can be achieved
providing that there is locality in the texture fetches

 Addressing calculations are performed outside the kernel by dedicated units

 Packed data may be broadcast to separate variables in a single operation

 8-bit and 16-bit integer input data may be optionally converted to 32 bit floating-point
values in the range [0.0, 1.0] or [-1.0, 1.0]

5.4 The CUDA Programming Model

This chapter introduces the main concepts behind the CUDA programming model by
outlining how they are exposed in C.

CUDA stands for Compute Unified Device Architecture. It is a parallel programming
paradigm released in 2007 by NVIDIA. It is used to develop software for graphics processors
and is used to develop a variety of general purpose applications for GPUs that are highly
parallel in nature and run on hundreds of GPU’s processor cores.

CUDA C extends C by allowing the programmer to define C functions, called kernels, that,
when called, are executed N times in parallel by N different CUDA threads, as opposed to
only once like regular C functions. A kernel is defined using the global declaration specifier
and the number of CUDA threads that execute that kernel for a given kernel call is specified
using a new <<< … >>> execution configuration syntax (see C Language Extensions). Each
thread that executes the kernel is given a unique thread ID that is accessible within the kernel
through the built-in threadIdx variable.

For convenience, threadIdx is a 3-component vector, so that threads can be identified using a
one-dimensional, two-dimensional, or three-dimensional thread index, forming a one
dimensional, two-dimensional, or three-dimensional thread block. This provides a natural way
to invoke computation across the elements in a domain such as a vector, matrix, or volume.
The index of a thread and its thread ID relate to each other in a straightforward way: For a

one-dimensional block, they are the same; for a two-dimensional block of size (𝐷𝑥, 𝐷𝑦), the

thread ID of a thread of index (𝑥, 𝑦) is (𝑥 + 𝑦 ∗ 𝐷𝑥); for a three-dimensional block of size

(𝐷𝑥, 𝐷𝑦, 𝐷𝑧), the thread ID of a thread of index (𝑥, 𝑦, 𝑧) is (𝑥 + 𝑦 ∗ 𝐷𝑥 + 𝑧 ∗ 𝐷𝑥 ∗ 𝐷𝑦).

There is a limit to the number of threads per block, since all threads of a block are expected
to reside on the same processor core and must share the limited memory resources of that
core. On current GPUs, a thread block may contain up to 1024 threads. However, a kernel
can be executed by multiple equally-shaped thread blocks, so that the total number of threads
is equal to the number of threads per block times the number of blocks. Blocks are organized
into a one-dimensional, two-dimensional, or three-dimensional grid of thread blocks as

illustrated by Figure 5.4 given in next page.

The number of thread blocks in a grid is usually dictated by the size of the data being processed
or the number of processors in the system, which it can greatly exceed. The number of threads
per block and the number of blocks per grid specified in the <<< ... >>> syntax can be of

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

5. GPU ARCHITECTURE AND THE CUDA PROGRAMMING MODEL

————————————————————————————————————

30

type int or dim3. Two-dimensional blocks or grids can be specified as in the example above.
Each block within the grid can be identified by a one-dimensional, two-dimensional, or three-
dimensional index accessible within the kernel through the built-in blockIdx variable. The
dimension of the thread block is accessible within the kernel through the built-in blockDim
variable.

A thread block size of 16x16 (256 threads), although arbitrary in this case, is a common choice.
The grid is created with enough blocks to have one thread per matrix element as before. For
simplicity, this example assumes that the number of threads per grid in each dimension is
evenly divisible by the number of threads per block in that dimension, although that need not
be the case.

Thread blocks are required to execute independently: It must be possible to execute them in
any order, in parallel or in series. This independence requirement allows thread blocks to be
scheduled in any order across any number of cores, enabling programmers to write code that
scales with the number of cores.

Threads within a block can cooperate by sharing data through some shared memory and by
synchronizing their execution to coordinate memory accesses. More precisely, one can specify

synchronization points in the kernel by calling the syncthreads() intrinsic function;

syncthreads() acts as a barrier at which all threads in the block must wait before any is
allowed to proceed.

For efficient cooperation, the shared memory is expected to be a low-latency memory near

each processor core (much like an L1 cache) and syncthreads() is expected to be lightweight.

Figure 5.4: 2D Grid of Thread Blocks

5.5 NVIDIA® TESLA™ C2075

Based on the NVIDIA Fermi architecture, the TESLA™ C2075 computing processor has
been engineered from the ground up for High Performance Computing, as is capable of
reaching 1.03 TFLOPs and 515 GFLOPs peak performance for single and double precision
floating-point operations respectively. This was a good reason for us to choose this GPU card
for our implementation because our algorithms are based on double precision arithmetic
operations.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

 5.5. NVIDIA® TESLA™ C2075

————————————————————————————————————

31

5.5.1 Engine Specifications

The TESLA™ C2075 has 14 Multiprocessors with 32 CUDA cores each, which means 448
CUDA cores with 1.15 GHz clock rate per core. It has compute capability 2.0. The warp size
is 32 and it can support up to 1536 threads per multiprocessor and 1024 threads per block.
The maximum sizes of each dimension of a block and grid are 1024 x 1024 x 64 and 65535 x
65535 x 65535 respectively. Also it can support concurrent copy and kernel execution.

5.5.2 Memory Specifications

The total amount of global memory for this device is 6.144GB and with ECC support enabled
the user available memory is 5.376GB. The total amount of constant memory is 65KB. Each
block has available 49KB of shared memory and 32768 registers. The memory clock rate is
1.57GHz. TESLA™ C2075 has available caching. The on-chip memory per multiprocessor is
used for both L1 and shared memory, and how much of it is dedicated to L1 versus shared
memory is configurable for each kernel call. Additionally, is has a unified L2 cache for all of
the processor cores of 786KB. The maximum texture dimension size for 1D is (65536), for
2D is (65536, 65535) and for 3D is (2048, 2048, 2048).

Figure 5.5 shows the architecture of Fermi Streaming Multiprocessor. TESLA™ C2075 is
consists of 14 such SMs.

Figure 5.5: Fermi SM

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

33

Chapter 6

Improving CMG solver performance

6.1 Introduction

The solve phase of CMG algorithm is an extension of the preconditioned conjugate gradient
method (PCG), described in subsection 2.4.2. Therefore, its core is the solution of the

preconditioner solve step 𝑀𝑧𝑖−1 = 𝑟𝑖−1, where M is the Steiner preconditioner. The PCG
iterations until the solution is satisfactory, in combination with the multigrid nature of CMG,
lead to many matrix-vector multiplications which are the bottleneck of CMG solver. This
bottleneck appeared also at the results of the performance profiling we done using Intel®

VTuneTM Amplifier. In this section we present our effort and experimental results on
accelerating the CMG solver using an Nvidia GPU.

6.2 System Specifications and Benchmarks

Hardware and software specifications of our system are included in Table 6.1. The host code
is been compiled with Intel ICC compiler for better performance. For the compilation of our
implementation which includes CUDA source code, we use the NVCC compiler which makes
use of the GCC compiler to compile the host code together with the device code.

CPU 6 core Intel(R) Xeon(R) E5645 @2.40GHz

GPU Nvidia® Tesla™ C2075

MEMORY 24GB DDR3

OS Kubuntu 14.10 (Linux 3.16.0-31)

CUDA CUDA 7.0

INTEL COMPILER ICC 15.0.2

GNU COMPILER GCC 4.9.1

NVIDIA COMPILER NVCC 6.0

Table 6.1: Test platform specifications

All the power grid benchmarks presented in this section are drawn from real designs, and vary
over a reasonable range of size and difficulty. Those netlists are generated in Spice format. For

more information for such Benchmarks we refer the reader to [27] [28]. Table 6.2 shows the
IBM Power Grid Benchmarks we used for the DC Analysis.

Benchmark #i #n #r #s #v #l

ibmpg1 10.774 30.638 30.027 14.208 14.308 2

ibmpg2 37.926 127.238 208.325 1.298 330 5

ibmpg3 201.054 851.584 1.401.572 461 955 5

ibmpg4 276.976 953.583 1.560.645 11.682 962 6

ibmpgnew2 357.930 1.461.039 1.422.830 929.722 930.216 NA

Table 6.2: IBM Power Grid Benchmarks for DC Analysis

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

 6.2. System Specifications and Benchmarks

————————————————————————————————————

34

 i for current source

 n for nodes (total number, does not take shorts into account)

 r for resistors (include shorts)

 s for shorts (zero value resistors and voltage sources)

 v for voltage sources (include shorts)

 l for metal layers

For the MNA analysis of IBM netlists we used a software we had already implemented. This

software parses the netlist file and creates the corresponding sparse MNA array “A” and right-

hand side vector “ 𝑏”, which will be used later for solving the system 𝐴𝑥 = 𝑏. Table 6.3 shows
the dimensions and the number of non-zero elements of the MNA arrays corresponding to
each IBM netlist.

Benchmark Dimensions Non-zeros

ibmpg1 44.943 × 44.943 147.315

ibmpg2 127.565 × 127.565 544.545

ibmpg3 852.536 × 852.536 3.656.107

ibmpg4 954.542 × 954.542 4.058.866

ibmpgnew2 1.461.993 × 1.461.993 6.167.130

Table 6.3: Matrix size and non-zero elements of the MNA arrays

Additionally, our implementation is evaluated on real designs included on a benchmark suite

for the ISPD Placement contest of 2005/2006 [29]. Table 6.4 presents their dimensions and
number of non-zero elements.

Benchmark Dimensions Non-zeros

ad1 210.904 × 210.904 2.112.590

ad3 450.927 × 450.927 4.191.415

bb2 534.782 × 534.782 4.407.059

bb4 2.169.183 × 2.169.183 19.437.167

nb6 1.248.150 × 1.248.150 11.591.932

nb7 2.481.272 × 2.481.272 21.370.078

Table 6.4: ISPD 2005/2006 Placement Benchmarks

6.3 Implementation and Results

The running time of the CMG setup phase is negligible comparing to the actual MG iteration,
so in this master thesis we decided to implement and optimize the second one. The reader can
find more details in [12].

As is clearly shown in Figure 4.6, the full CMG solve phase algorithm is recursive. Although
the recursion is supported since Fermi architectures, it is not efficiently implemented yet. Also,
there is a limit to the recursion levels supported. Therefore, before we ported the entire MG
iteration-algorithm on the GPU, we had transformed it into an iterative algorithm to avoid

those constraints and have an improved performance. Figure 6.1 presents the recursive CMG

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

6. IMPROVING CMG SOLVER PERFORMANCE

————————————————————————————————————

35

implementation describing all the including operations for each hierarchy level. The first call

to CMG is for level 0 of the hierarchy (𝑥 = 𝐶𝑀𝐺(𝐴0, 𝑏0)), where 𝑥, 𝑏0 are identical to 𝑧, 𝑟
of the preconditioner-solve step 𝑀𝑧 = 𝑟 respectively and 𝐴0 is the matrix corresponding to

the coarser hierarchy level. Each hierarchy level calls the lower(child) level for 𝑀𝑎𝑥𝐼𝑡𝑙𝑒𝑣𝑒𝑙
times until it returns its result to the upper(parent) level which adds a correction to its solution
vector. The last level’s system is solved using Cholesky factorization because it is dense and
small enough.

START

Is the last level YES
xlevel = ldl_solve(A_chollevel , blevel)

(Cholesky Factorization)
END

(Return xlevel)

NO

xlevel = 0
iter = 1

iter == 1xlevel -= invDlevel * (Alevel * xlevel - blevel) YES xlevel = invDlevel * blevel

blevel+1 = RT * (blevel - Alevel * xlevel)
z = CMG(Alevel+1, blevel+1)

xlevel += xlevel + RT * z
xlevel -= invDlevel *(Alevel * xlevel - blevel)

iter ++

iter > MaxItlevel

END
(Return xlevel)

YES

NO

NO

Figure 6.1: CMG recursive flow

In Figure 6.2 we can observe the CMG flow after unrolling the recursion and transforming
the algorithm into an iterative one. For this implementation, we have added some extra control
flow to determine if the current level has already called once the lower level (if the recursion
for this level has started), so we can choose between the corresponding operations. Every time
a hierarchy level has to return its result to the upper level (return from the recursion), we
reinitialize the level’s information and we compute the upper level’s solution vector or we
return the solution to PCG when CMG algorithm is terminated. Also, we have to mention
that the Cholesky factorization for the finest hierarchy level is implemented more efficiently
on the CPU side because the system is small and dense.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

 6.3. Implementation and Results

————————————————————————————————————

36

START

level = 0

Is the last level YES
xlevel = ldl_solve(A_chollevel, blevel)
(Cholesky factorization on CPU)

NO

xlevel = 0

1st recursive
 call

NOxlevel -= invDlevel * (Alevel * xlevel - blevel) YES
recursionStartedlevel = 1

xlevel = invDlevel * blevel

blevel+1 = RT * (blevel - Alevel * xlevel)
itersLeftlevel --

level ++

recursionStartedlevel

NO

level == 0itersLeftlevel != 0

YES

recursionStartedlevel = 1
itersLeftlevel = MaxItlevel

(Reinitialize level’s information)

END
(Return x0)

YES

NO

xlevel-1 += RT * xlevel-1

xlevel-1 -= invDlevel-1 * (Alevel-1 * xlevel-1 - blevel-1)
(Update upper level’s solution vector)

level --

YES

NO

Figure 6.2: CMG iterative flow

Our implementation ported the entire CG iterative method (Figure 2.5) and the

preconditioner solve step (Figure 4.6) on the GPU. This eliminates the need for additional
memory transfers between the host and the GPU and reduces the communication overhead,
provided that the GPU has sufficient memory to accommodate the algorithm’s working set

(especially the system matrix A and the preconditioner hierarchy in sparse form). The only
part of our algorithm that is implemented on the CPU side is the preconditioner’s
construction. Once the preconditioner hierarchy has been created, the host side is responsible

to allocate and copy the system matrix A, the right-hand side vector 𝑏, the initial guess 𝑥(0),
the preconditioner hierarchy and some other helper vectors required by the PCG and the
CMG algorithms, on the GPU. After some iterations and when the result is satisfactory, the

solution 𝑥 of the linear system 𝐴𝑥 = 𝑏 is copied back to the CPU side.

We have taken advantage of Intel Math Kernel Library (MKL) [30] for implementing the CPU
version of the CMG algorithm and CUDA cuSPARSE and cuBLAS libraries [31] [32] for the
mapping on the GPU. We note that both MKL and CUDA libraries contain implementations
of BLAS-1, BLAS-2 and BLAS-3 kernels for handling vector operations and sparse matrices,
all especially optimized for execution on multi-core and GPU architectures respectively. Also,
it was necessary to implement some simple and optimized GPU kernels that are not part of
the cuBLAS library. Those operations are vector-vector elementwise multiplication, projection
operation and projection transpose operation. For those kernels we decided to use linear grids
and blocks with 256 threads because resulted to the best performance.

Furthermore, we have to mention that in our GPU implementation, although the system

matrix A is symmetric, we decided to store the full matrix instead of storing the lower/upper
part. We choose this implementation because the symmetric property does not show up any
performance gain and cuSPARSE SPMV method is much slower. On the other hand, the

CMG CPU algorithm stores only the upper part of A, because our experiments showed up a

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

6. IMPROVING CMG SOLVER PERFORMANCE

————————————————————————————————————

37

slightly better SPMV performance in comparison with the implementation storing the full
matrix.

The experimental evaluation was made on the workstation described in Table 6.1, using the
optimization flags that resulted to the lowest execution time on CPU and GPU
implementation respectively. We have employed double-precision arithmetic for the
benchmarks, while the iterative solvers were terminated when the solution residual was below

10−6.

Table 6.5 presents CMG preconditioner-solve step execution time speedups achieved using
our implementation for the IBM and ISPD benchmarks. We can observe that the GPU MG

algorithm is up to 10x faster than its CPU implementation. In Table 6.6 we give the runtime
speedup of the PCG iterative method including the CMG preconditioner-solve step. The
performance speedup for the hole CMG solve phase is up to 5.71x, and if we exclude the time
required for the GPU memory copies, we can achieve up to 7.35x execution time speedup.

Benchmark

CMG
Preconditioner
Solve Step on

CPU (sec)

CMG
Preconditioner
Solve Step on

GPU(sec)

Speedup

ibmpg1 3,79 1,82 2,08x

ibmpg2 0,58 0,21 2,76x

ibmpg3 5,98 1,23 4,86x

ibmpg4 3,78 0,74 5,10x

ibmpgnew2 9,60 1,91 5,02x

ad1 0,42 0,09 4,66x

ad3 0,99 0,12 8,25x

bb2 1,06 0,13 8,15x

bb4 11,49 1,15 10,00x

nb6 3,41 0,36 9,47x

nb7 7,55 0,77 9,81x

Table 6.5: CMG preconditioner-solve step runtime speedup

Benchmark PCG on
CPU (sec)

PCG on
GPU(sec)

Speedup Speedup(w/o
memory copies)

ibmpg1 4,80 2,40 1,66x 2,00x

ibmpg2 0,73 0,28 0,96x 2,60x

ibmpg3 7,52 1,66 3,47x 4,53x

ibmpg4 4,74 1,04 3,08x 4,56x

ibmpgnew2 11,61 3,46 2,90x 3,36x

ad1 0,56 0,10 0,93x 5,60x

ad3 1,30 0,21 1,97x 6,20x

bb2 1,40 0,23 1,91x 6,08x

bb4 14,85 2,02 5,71x 7,35x

nb6 4,50 0,62 3,81x 7,25x

nb7 9,82 1,34 5,17x 7,33x

Table 6.6: PCG runtime speedup

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

39

Chapter 7

Conclusion

In conclusion, given the key role of circuit simulation in the design process, there has been a
significant interest in accelerating the heart of simulation which is the solution of a very large
system. This master thesis reports our efforts to accelerate the performance of a linear system
multigrid-like solver called CMG using modern Nvidia GPUs.

Specifically, we focused on the solution phase of CMG and the acceleration of PCG iterative
method and the full CMG algorithm. We have shown maximum speedups of 5.71x and 10x
for PCG and CMG preconditioning respectively.

7.1 Future Work

In the future, we plan to extend the research presented in this master thesis towards the
following directions:

 The SpMV operations including in CMG algorithm are so many and are still the
bottleneck of our solver. However, this implementation can be extended by using an
improved SpMV CUDA kernel like segSpMV [4] [3] or LightSpMV [33] which are
proposed to be superior to cuSPARSE and would give a further acceleration for the
CMG solver.

 Mapping onto heterogeneous systems: Owing to the diverse nature of parallel
computing architectures (such as multi-core processors, GPUs, or even Field
Programmable Gate Arrays (FPGAs)), it is very appealing to have heterogeneous
systems that comprise dissimilar processors, each one incorporating its own parallel
capabilities. We plan to investigate efficient ways for mapping the CMG solver on
heterogeneous architectures using a variety of programming models and languages.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

41

References

[1] F. N. Najim, Circuit Simulation, Wiley,IEEE, 2010.

[2] D. Ntioudis, Development and Optimization of a combinatorial multigrid algorithm

for large scale circuit simulation, Diploma Thesis, University of Thessaly, 2013.

[3] D. Garyfallou, Simulation of large-scale circuits with Steiner node preconditioners

on parallel architectures, Diploma Thesis, University of Thessaly, 2014.

[4] K. He, S. X.-D. Tan, E. Tlelo-Cuautle, H. Wang and H. Tang, A new segmentation-

based GPU-accelerated sparse matrix-vector multiplication, IEEE 57th

International Midwest Symposium on Circuits and Systems (MWSCAS), 2014.

[5] NVIDIA CUDA C Programming Guide.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

[6] C. M. U. C. S. D. a. K. Gremban, Combinatorial Preconditioners for Sparse,

Symmetric, Diagonally Dominant Linear Systems. Research paper. School of

Computer Science, Carnegie Mellon University, 1996.

[7] Y. Saad, Iterative Methods for Sparse Linear Systems. Society for Industrial and

Applied Mathematics, 2003.

[8] T. Davis, CSPARSE: a concise sparse matrix package.

[9] T. Davis, Direct Methods for Sparse Linear Systems.Fundamentals of

Algorithms.Society for Industrial and Applied Mathematics, 2006.

[10] R. Barrett, Templates for the Solution of Linear Systems: Building Blocks for

Iterative Methods. Miscellaneous Titles in Applied Mathematics Series No 43.

Society for Industrial and Applied Mathematics, 1994.

[11] I. Koutis and G. Miler, The Combinatorial multigrid solver, in : Conference

Talk,March, 2009.

[12] I. Koutis, G. L. Miller and D. Tolliver, Combinatorial Preconditioners and

Multilevel Solvers for problems in computer vision and image processing.

Computer Vision and Image Understanding, 115(12):1638–1646, 2011.

[13] I. Koutis, Matlab implementation of the combinatorial multigrid algorithm

http://www.cs.cmu.edu/~jkoutis/cmg.html

[14] E. G. Boman and B. Hendrickson, Support theory for preconditioning,SIAM J.

Matrix Anal. Appl. 25 (3) (2003) 694-717.

[15] P. M. Vaidya, Solving linear equations with symmetric diagonally dominant

matrices by constructing good preconditioners. A talk based on this manuscript was

presented at the IMA Workshop on Graph Theory and Sparse Matrix Computation,

October 1991.

[16] P. G. Doyle and J. L. Snell, Peter G. Doyle and J. Laurie Snell. Random Walks and

Electric Networks, January 2000.

[17] M. Bern, J. R. Gilbert, B. Hendrickson, N. Nguyen and S. Toledo, Support-graph

preconditioners. SIAM J. Matrix Anal. Appl., 27:930–951, 2005.

[18] K. Gremban, Combinatorial Preconditioners for Sparse, Symmetric, Diagonally

Dominant Linear Systems. PhD thesis, Carnegie Mellon University, Pittsburgh,

October 1996. CMU CS Tech Report CMU-CS-96-123.

[19] I. Koutis and G. L. Miller, Graph partitioning into isolated, high conductance

clusters: theory, computation and applications to preconditioning. In Proceedings of

the twentieth annual symposium on Parallelism in algorithms and architectures,

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

mailto:https://docs.nvidia.com/cuda/cuda-c-programming-guide/
mailto:http://www.cs.cmu.edu/~jkoutis/cmg.html

42

SPAA ’08, pages 137–145, New York, NY, USA, 2008. ACM.

[20] L. Grady, A lattice-preserving multigrid method for solving the inhomogeneous

poisson equaequations used in image analysis. ECCV, 5303:252–264, 2008.

[21] U. Trottenberg, A. Schuller and C. Oosterlee, Multigrid. Academic Press, 1st

edition, 2000.

[22] I. Koutis, Combinatorial and algebraic tools for optimal multilevel algorithms.PhD

thesis, Carnegie Mellon University, Pittsburgh, May 2007. CMU CS Tech Report

CMU-CS-07-131, 2007.

[23] D. A. Spielman and S. I. Daitch, Faster approximate lossy generalized flow via

interior point algorithms. In Proceedings of the 40th Annual ACM Symposium on

Theory of Computing, May 2008.

[24] I. Koutis and G. L. Miller, A linear work, O(n1/6) time parallel algorithm for

solving planar Laplacians. In Proceedings of the eighteenth annual ACM-SIAM

symposium on Discrete algorithms, SODA ’07, pages 1002–1011, Philadelphia,

PA, USA, Society for Industrial and Applied Mathematics, 2007.

[25] I. Koutis and G. L. Miller, Approaching optimality for solving, August 2010.

[26] I. Koutis, G. L. Miller και R. Peng, Solving sdd linear systems in time

O(mlognlog(1/ε)), April 2011.

[27] S. Nassif, Power Grid Analysis Benchmarks, Asia and South Pacific Design

Automation Conference, pp 376-381, 2008.

[28] IBM Power Grid Benchmarks.

http://dropzone.tamu.edu/~pli/PGBench/

[29] ISPD 2005/2006 Placement Benchmarks.

http://archive.sigda.org/ispd2005/contest.htm

[30] Intel Math Kernel Library.

https://software.intel.com/en-us/intel-mkl

[31] NVIDIA cuBLAS Library.

http://docs.nvidia.com/cuda/cublas/

[32] NVIDIA cuSPARSE library.

http://docs.nvidia.com/cuda/cusparse/

[33] LightSpMV: Faster CSR-based sparse matrix-vector multiplication on CUDA-

enabled GPUs, 2015 IEEE 26th International Conference on Application-specific

Systems, Architectures and Processors (ASAP), 2015.

[34] A. Joshi, Topics in optimization and sparse linear systems. PhD thesis, Champaign,

IL, USA, 1997. UMI Order No. GAX97-17289.

[35] D. A. Spielman and S.-H. Teng, Nearly-Linear Time Algorithms for

Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems,

May 2007.

[36] Y. Deng, B. Wang and S. Mu, Taming Irregular EDA Applications on GPUs.

Computer-Aided Design - Digest of Technical Papers, 2009. ICCAD 2009.

IEEE/ACM International Conference on, pp. 539–546, 2009.

[37] N. Bell and M. Garland, Efficient sparse matrix-vector multiplication on CUDA,

NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, Dec. 2008.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 16:09:42 EEST - 3.145.174.42

mailto:http://dropzone.tamu.edu/~pli/PGBench/
mailto:http://archive.sigda.org/ispd2005/contest.htm
mailto:https://software.intel.com/en-us/intel-mkl
mailto:http://docs.nvidia.com/cuda/cublas/
mailto:http://docs.nvidia.com/cuda/cusparse/

	Master_Thesis_FrontCover
	Garifallou_Dimitrios_master_nocover

