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Analytical and Numerical methodologies for the analysis 

and design of pipelines crossing seismic faults 

 

 

Gregory Sarvanis 
University of Thessaly, Department of Mechanical Engineering 

 

 

Supervisor: Prof. Spyros A. Karamanos 

 

Abstract 

 
Buried pipelines often cross geohazard areas such as seismic faults and liquefied 

areas. In the present work analytical and numerical methodologies are investigated 

and compared. Two analytical methodologies are analyzed, proposed by Kennedy et 

al. (1977) and by Vazouras et al. (2012) while a new methodology for analyzing 

buried pipelines which cross seismic faults is proposed and compared with results 

from finite element analysis, commercial codes and methodologies from the literature. 

Moreover the pipe-soil interaction is investigated through the numerical simulation of 

several experimental tests, which have been conducted in the framework of a 

European research program (GIPIPE). The experiments are concern pipes embedded 

in soil, subjected to loading in the axial and the transverse direction as well as a 

complex scenario of loading simulating the conditions during a severe lateral loading 

of a pipeline due to strike-slip fault of a landslide. All these tests have been conducted 

at CSM facilities in Sardinia. 
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Αναλυτικές και αριθµητικές µέθοδοι για την ανάλυση και 
τον σχεδιασµό υπόγειων χαλύβδινων αγωγών οι οποίοι 

διέρχονται απο σεισµικά ρήγµατα. 
 

 

 

Σαρβάνης γρηγόρης 
Πανεπιστήµιο Θεσσαλίας, Τµήµα Μηχανολόγων Μηχανικών 

 

 

Επιβλέπων: Καθ. Σπύρος Α. Καραµάνος 

 

Περίληψη 

 
Οι υπόγειοι αγωγοί συχνά διέρχονται από περιοχές αυξηµένων σεισµικών κινδύνων 

όπως τα σεισµικά ρήγµατα, οι ρευστοποιήσιµες περιοχές καθώς και οι περιοχές 

κατολισθήσεων. Στην παρούσα εργασία εξετάσθηκαν δύο αναλυτικές µέθοδοι για την 

ανάλυση υπόγειων αγωγών, η µεθοδολογία των Kennedy et al. (1977) και 

των Vazouras et al. (2012), ενώ αναπτύχθηκε µια νέα απλοποιηµένη µεθοδολογία για 

την ανάλυση υπόγειων χαλύβδινων αγωγών οι οποίοι διασταυρώνονται από σεισµικά 

ρήγµατα. Επίσης µελετήθηκε η αλληλεπίδραση αγωγού-εδάφους µέσα από την 

προσοµοίωση πειραµάτων τα οποία πραγµατοποιήθηκαν στα πλαίσια 

του ερευνητικού προγράµµατος (GIPIPE). Τα πειράµατα αφορούν θαµµένους 

αγωγούς οι οποίοι υποβάλλονται σε αξονική και εγκάρσια φόρτιση καθώς και σε µια 

συνδυασµένη φόρτιση η οποία προσοµοιώνει συνθήκες κατολίσθησης. Το σύνολο 

των πειραµάτων πραγµατοποιήθηκε στις εγκαταστάσεις του CSM, στην Σαρδηνία. 
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1. Introduction	  

1.1 Description	  of	  physical	  problem	  

An earthquake is characterized by ground shaking often caused by an abrupt shift of 

rock along a fracture in the Earth, called a fault. The tectonic plates make up the slow-

moving outer shield of Earth and often stick due to friction. As pressure builds up 

from trying to move, the stress increases. When the stress overcomes the friction at 

the interface, i.e. the fault surface, an earthquake occurs; the plates quickly move 

relatively and because the friction energy is released into the crust. The energy 

released is transmitted through the ground and causes shaking associated with an 

earthquake. Figure 1 demonstrates rupture expansion during a severe earthquake. The  

images in Figure 1 depict the sequence of events along a fault plane as the rupture 

expands and seismic waves are radiated when an earthquake occurs. The friction 

across the surface of the fault holds the rocks together so that they tend to slip when 

pushed. Eventually enough stress builds up and brittle failure caused the rocks to slip 

suddenly, releasing energy in the form of seismic waves that propagate along the 

entire length of the fault until the earthquake stops. The hypocenter, defined as the 

point on the fault plane where the earthquake begins, is located usually at a certain 

depth beneath the fault, while the epicenter is the point directly above the hypocenter, 

on the fault surface. The "focus" in the Figure 1 is the hypocenter, the epicenter would 

be the point directly about the "focus" but on the fault surface. 

	  
Figure 1. Fault rupture expansion during a large earthquake (www.scec.usc.edu). 
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Based on the above, faults can be considered essentially as cracks in layers of rock, 

along with the relative displacement of the fault. The relative displacement of the two 

parts of the ground is called fault slip. After a fault has slipped, due to the release of 

stress, it locks up again. The steady movement of the rocks on either side of the fault 

causes the stresses to begin to rise again, and the cycle repeats. The length of a fault 

can range anywhere from a few millimeters to thousands of kilometers. The fault 

surface can be vertical, horizontal, or at some angle with respect to ground surface. 

They can extend well into the Earth and may also extend to the surface. They can be 

categorized into four different fault types: Normal, Reverse, Strike-Slip, and Oblique 

as shown on Figure 2. Normal faults are characterized by the foot-wall moving up in 

relation to the hanging-wall, as shown in Figure 2. Reverse faults have an “opposite” 

configuration of normal faults. They occur when the hanging-wall move up in relation 

to the foot-wall. Sometimes, reverse faults are also referred to as “Thrust faults”. 

Strike-slip faults can be divided in two categories the left-lateral strike-slips faults and 

the right-lateral strike slips faults. Left-lateral strike-slip faults occur when the two 

side move parallel to one another. There is no vertical displacement, only horizontal. 

In order to identify whether a fault is left-lateral, when standing on one side and 

looking to the fault, the other side of the fault has apparent displacement to the left. 

Right-lateral strike-slip faults have the same motion as left-lateral, however, if 

standing on one side of the fault and looking to the fault, the other side appears to 

have moved to the right. The most famous fault in California, the San Andreas fault, 

is a right-lateral strike-slip fault. 

	  
Figure 2. Different fault types, (a) Normal fault, (b) Reverse fault, (c) Oblique fault, (d) 

Strike-slip fault (www.scec.usc.edu). 
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Buried pipelines often cross tectonically active areas such as Greece, North Turkey, 

Nepal or California and may cross active faults capable of producing large 

earthquakes and large ground deformations. Avoiding crossing with seismic faults is 

the safer design option but this is not always possible. In Figure 3 the faults density 

along a buffer zone of width 2 kilometers in the area of Evros, North-East Greece, is 

shown. If a pipeline alignment falls within this buffer zone, then it will cross most of 

these faults. In such a case the pipeline must be designed, taking into account the 

extra stress and deformation induced by the pipe due to fault movement. In Figure 4 

the pipeline deformation due to the movement	  of different types of seismic faults is 

shown. In the case of a normal fault, the pipeline is under tension and bending while 

in the case of a reverse fault the pipeline is under compression and bending which is 

most critical for local buckling failure. The crossing angle in the case of a strike-slip 

fault dictates whether the pipeline is under tension or compression. Therefore the 

choice of the crossing angle is a design parameter to be considered. 

In the present work analytical and numerical methodologies are investigated and 

compared. In particular two analytical methodologies are analyzed in chapter 2, 

proposed by Kennedy et al. (1977) and by Vazouras et al. (2012). Also a new 

methodology for analyzing buried pipelines which cross seismic faults is proposed 

and compared with results from finite element analysis, commercial codes and 

methodologies from the literature. Moreover the pipe-soil interaction is investigated 

through the numerical simulation of several experimental tests, which have been 

conducted in the framework of a European research program (GIPIPE). The 

experiments are concern pipes embedded in soil, subjected to loading in the axial and 

the transverse direction as well as a complex scenario of loading simulating the 

conditions during a severe lateral loading of a pipeline due to strike-slip fault of a 

landslide. All these tests have been conducted at CSM facilities in Sardinia. 
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Figure 3.  Fault density along a buffer zone of 2 kilometers width, around a pipeline in the 

area of Evros. 

 

	  
Figure 4. Pipeline deformation due to the movement of different types of seismic faults 

(GIPIPE).	  

1.2 Pipeline	  accidents	  due	  to	  earthquake	  action	  

	  

There are various examples of earthquakes that have caused severe damage to buried 

pipelines, such as the earthquakes of San Fernando 1971, Managua 1972, Haicheng 

1975, Tang-shan 1976, Miyagiken-Oki 1978, Northridge 1994, Kobe 1995, Chi-Chi 

1999, Kocaeli 1999 and more recently Chile 2010, Christchurch 2010-2011, and 
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Japan 2011. Table 1 shows a list of various North American earthquakes for which 

pipeline damage have been documented by O’ Rourk and McCaffrey. In most 

instances, pipeline damage has been attributed to permanent ground movements. 

Table 1.	  Summary of North American earthquakes with significant reported pipeline damage.  

Earthquake Magnitude Permanent Ground 
Movement 

Damages 

1906 San Francisco 8.3 Strike-slip faulting with 
max disp. 6.4 m, 
extensive slope stability 
problems, lateral spread 
and flow failures 

Water pipelines rapture at 
9 locations along San 
Andreas fault, extensive 
damage to water and gas 
pipelines due to 
liquefaction- induced 
movements 

1931 Managua Not reported One main zone of 
faulting, landslides along 
steep natural slopes 

Principal water main  for 
Managua ruptured at 
fault. Steel pipeline 
ruptured by landslide 

1933 Long Beach 6.3 Ground cracks with 
seeping water, sand boils 
and local subsidence 

Over 500 pipelines 
breaks, greatest 
concentration of pipelines 
failure near bays, rivers 
and flood control 
channels. 

1952 Kern Country 7.7 Reverse oblique surface 
faulting. Many landslides. 

Oil pipelines rupture 
along western extension 
of surface faulting, gas 
transmission line 
deformed but no rupture 
at fault crossing 

1964 Alaska 8.4 Two reverse faults. 
Extensive landslides and 
submarine slope failures. 
Lateral spreads and flow 
failures 

Over 200 breaks in gas 
and 100 breaks in water 
pipelines in Anchorage. 

1971 San Fernando 6.4 Reverse oblique surface 
faulting. Over 1000 
landslides and lateral 
spreads. 

Over 2400 breaks in 
water, gas and sewage 
pipelines. Majority 
failures at faults and 
lateral spreads. 

1972 Managua 5.6 Four main surface fault 
with max strike slip disp. 
of  0.4 m. Landslides 
along steep natural slopes. 

Extensive damage to 
water distribution system. 
Many pipelines rupture at 
fault crossing 
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1.3 Literature	  review	  

	  

 The publication of Newmark and Hall (1975) has been pioneering in this area 

introducing an analytical model for assessing the integrity of a buried pipeline 

crossing a ruptured fault. Their model was based on the assumption of a single fault 

plane by considering soil masses on both fault sides as rigid bodies. They introduced 

the concept of “anchor point” situated at a certain distance from the fault, beyond 

which the pipeline and the surrounding soil have relative displacement equal to zero. 

Continuing the work of Newmark and Hall (1975), Kennedy et al. (1977) developed 

an analytical model, considering a non-uniform friction interface between the pipe 

and the soil, which was assumed to be cohesionless. This methodology is analyzed in 

detail in chapter 2.4 and compared with other methodologies. Wang and Yeh (1985) 

improved this methodology accounting for pipeline bending stiffness. This 

methodology considers a division of the pipe into four segments, as shown in Figure 

5. The two pipe segments at the two ends behave as beams on elastic foundation, 

whereas the two inner segments have a constant curvature. 

 
Figure 5. Model proposed by Wang and Yeh (1985). 
 

Wang and Wang (1995) studied the problem considering the pipe as a beam on elastic 

foundation, whereas Takada et al. (2001) presented a new simplified method for 

evaluating the critical strain of the fault crossing steel pipes using relation between 

pipe longitudinal deformation and cross-sectional deformation. Karamitros et al. 
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improved analytical methodologies for strike-slip and normal faults by combining the 

theory of beam-on-elastic-foundation and the elastic-beam theory to calculate the 

bending moments. Trifonov et al. (2010 and 2012) improved the pipeline stress 

analysis using a semi-analytical approach. Vazouras et al. (2010 and 2012) studied the 

problem throw a rigorous numerical model which employ four-node reduced 

integration shell elements (type S4R) for the modeling of cylindrical pipeline segment 

and eight-node reduced-integration “brick” elements (C3D8R) for the simulation of 

the surrounding soil. The mechanical behavior of soil material is described through 

the Mohr-Coulomb model. In Figure 6 the mesh and the dimensions of the model are 

illustrated for a case of a 36-in-diameter pipe (diameter equal to 914.4 mm) for the 

case where, the pipeline is perpendicular to the fault plane. Vazouras et al. (2012) also 

proposed an analytical model for strike-slip faults, this methodology is analyzed in 

chapter 2.5.  

 

Figure 6. Finite element model as developed by Vazouras et al. 

As far as pipe-soil interaction there are limited experimental tests in the literature. The 

work of Trautmann and O’Rourke (1985) has been pioneering in this type of 

experimental testing. In that paper the effects of pipe depth, soil density, pipe 

diameter and pipe roughness on the lateral force-displacement response of buried 

pipelines has been examined. Other experiments related to this subject were 

performed by Paulin et al. (1998) and Anderson et al. (2004). More lately, Karimian 
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(2006) reported the performance of experimental testing for axial and transverse 

response of buried pipelines. Very recently, in the framework of the GIPIPE project, a 

series of tests had been performed by CSM with the aim at examining experimentally 

soil-pipeline interaction under ground-induced actions. In particular, three pull-out 

and three transversal tests conducted in order to identify pipe-soil interaction in the 

axial and the transversal direction, respectively. Those tests have been performed 

mainly with the purpose of calibrating numerical finite element models. Moreover 

four large-scale landslide/fault tests have been performed in order to investigate the 

complex pipe soil interaction in a more realistic scenario. In Table 1, details on the 

experimental testing parameters are presented for the axial, transversal and landslide 

tests. In all cases, the diameter of pipe specimens is equal to 219.6 mm (8-inch-

diameter pipes), the wall thickness is equal to 5.56 mm and the steel grade is API5L 

X65. 

 

Table 2.	  Information about experimental testing conducted by CSM. 

Test Compaction 

Level Dr (%) 

Mass 

density 

(Kg/m3) 

Water 

conten

t (%) 

Coating Internal 

pressure 

(MPa) 

Axial 1 40 1629 5.7 Bare 0 

Axial 2 20 1602 7.8 Bare 0 

Axial 3 40 1613 5.8 Coated 0 

Transversal 1 20 1601 7.6 Bare 0 

Transversal 2 40 1640 6.1 Bare 0 

Transversal 3 40 1645 7.3 Coated 0 

Landslide 1 40 1600 8.0 Bare 0 

Landslide 2 40 1688 - Bare 11.4 

Landslide 3 20 1600 - Bare 0 

Landslide 4 20 1600 - Bare 11.4 
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2. Simplified	  Models	  and	  Analytical	  Methodologies	  

2.1 Introduction	  

	  

Simplified analytical equations and methodologies are presented for describing buried 

pipeline deformation under severe permanent ground-induced actions. Some 

methodologies have been proposed elsewhere, whereas an analytical methodology for 

strike-slip fault crossing has been developed in the course of GIPIPE. Those 

methodologies have been the only tool for the analysing buried pipelined under 

permanent ground-induced actions in the 70’s and 80’s, but they are also used 

presently in a more enhanced form. In their original form they are based on elastic 

beam or cable theory and are capable at estimating the stresses and strains that 

develop in the pipeline as well as the deformation state of the pipeline.   

The design approach that uses analytical equations/methodologies is basically 

employed for a preliminary design stage. With this approach, a first understanding of 

various parameters can be obtained. In any case, a more rigorous approach with Finite 

Elements (either with beam-type element and soil springs, or in very specific cases, 

with three dimensional shell and solid elements) should be adopted for the detailed 

stress analysis and design of the pipeline.  

	  

2.2 Commercial	  design	  standards	  and	  recommendations	  for	  buried	  

pipelines	  

	  

The	  following	  standards	  and	  publications	  are	  relevant	  to	  the	  response	  of	  buried	  

pipelines	   in	   permanent ground-induced actions	   such	   as	   seismic	   faults	   and	  

landslides	  due	  to	  liquefaction	  or	  slope	  instability.	  	  

	  

EN 1594: Gas supply sytems-Pipelines for maximum operating pressure over 16 bar 

EN1998-4 (Eurocode 8): Design of structures for Earthquake resistance - Part 4: 

Silos, Tanks and Pipelines 

EN 14161: Petroleum and natural gas industries- Pipeline transportation systems 

ALA (2001): American Lifelines Alliance: Guidelines for the design of buried steel 

pipe, 2001. 
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ALA (2005): American Lifelines Alliance: Seismic Guidelines for Water Pipelines, 

2005. 

NEN 3650-1:  Requirements for Pipeline systems, part 1  

NEN 3650-2: Requirements for Pipeline systems, part 2 

ASME B31.4: Pipeline transportation systems for liquid Hydrocarbons & other 

liquids 

ASME B 31.8: Gas transmission and distribution piping systems 

 

The	  methodologies	  and	  formulae	  for	  the	  response	  of	  buried	  pipelines	  according	  

to	  ALA	  (2001)	  are	  presented	   for	  all	   types	  of	  permanent	   soil	  displacement.	  The	  

response	   of	   a	   buried	   pipe	   to	   longitudinal	   and	   transversal	   permanent	   ground	  

displacement	   as	   well	   as	   the	   pipe	   response	   in	   the	   case	   of	   a	   fault	   crossing	   are	  

analyzed	  below.	  

 

Liquefaction or Landslides  

 

Ø Buried Pipe Response to Longitudinal PGD  

 

There are cases where the PGD, caused by a liquefaction or landslide, occurs in the 

longitudinal direction of the pipeline as shown in Figure 7. In those cases, a soil mass 

of length Ls is moving and applies axial force to the pipe as it moves in the 

longitudinal direction. 

 
Figure 7.  Schematic representation of ground action and pipe loading due to longitudinal 

PGD (ALA 2001). 
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For continuous buried pipes subjected to longitudinal permanent ground deformation, 

the axial forces F1 and F2 should be computed, representing upper-bound estimates of 

the axial force transmitted in the pipe by the moving soil. In particular F1 is the force 

computed assuming that the pipe is elastic and fully compliant with the soil and F2 is 

the ultimate force that the soil can transfer to the pipe due to the strength of the 

soil/pipe frictional interface. 

F1 = AEtuδ                 Eq. 1	  

F2 =
tuLs
2

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Eq. 2 

In the above expression, tu is the maximum soil resistance to the pipe axial direction 

per unit length of pipe and δ is the expected value of the PGD under consideration. 

The force for designing the buried pipe should be taken as the smaller of forces F1 and 

F2. 

 

Ø Buried Pipe Response to Transverse PGD 

 

Permanent ground deformation due to landslide or liquefaction can also occur in the 

transverse (horizontal) direction of the pipeline. In this case, a soil mass of length W 

moves in the transverse direction of the pipeline as shown in Figure 8. 

 

 
Figure 8. Schematic representation of ground action and pipe loading due to to transverse 

PGD (ALA 2001) 
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Estimates of the ground-induced bending strains in the case of a buried pipeline 

subjected to transverse PGD (due to landslide or lateral spreading) can be obtained 

using a formulation similar to the one employed for the strike-slip faults, to be 

discussed in paragraph 2.6, with the value of crossing angle β equal to zero. This 

methodology is valid for the case where the size of moving soil mass W, illustrated in 

Figure 8, is large enough so that it exceeds the length L calculated from equation (#). 

In the case where the size W of the moving soil mass is comparable to the value of 

length L, an estimate of bending strain can be obtained with Eq. 3.  

εb = ± πDδ
W 2                                                                 Eq. 3 

Ø Analysis for Fault Crossing  

A continuous pipe will experience plastic deformations in most actual fault crossing 

situations. Therefore, the pipe must be ductile and resilient and the joints capable of 

developing the required ground-induced deformation without loss of containment. 

The average pipe strain may be estimated (in a non-rigorous manner) as follows if the 

fault offset results in net tension in the pipe:  

ε pipe = 2
δ
2La

cosβ + 1
2

δ
2La

sinβ
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

        Eq. 4 

where, β is the acute angle  between the pipe run and line of ground rupture, and La is 

the effective unanchored pipe length, defined as the distance between the fault trace 

and an anchor point, as shown in Figure 9.  

 
Figure 9. Plan View of Pipeline  
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In the absence of bends, tie-ins or other constraints near the fault, the axial resistance 

is provided by the soil-pipe friction and the effective unanchored pipe length can be 

estimated as follows. 

Lα = P
tu

                             Eq. 5 

where, P is actual tensile force in the pipe at the fault crossing and  tu is the maximum 

soil resistance to the pipe axial direction per unit length of pipe. The value of P is not 

well-defined a priori and its calculation requires an iteration procedure. 

2.3 Beam	  type	  model	  for	  simulation	  of	  buried	  pipelines	  

	  

As a more rigorous alternative to design analytical equations, it is possible to employ 

the finite element method to model the effects of ground-induced actions on a buried 

pipeline. This analysis requires some computational effort and expertise, but offers an 

advanced tool for determining stresses and strains within the pipeline wall with 

significantly increased accuracy with respect to the analytical formulae described 

above. There exist two levels of finite element modeling. The first level is adequate 

for regular design purposes, whereas the second level, which employs a 3D 

continuum approach, is used only in special cases, where increased accuracy is 

necessary. In the following, a short description of the first level approach is offered.  

 
 

Figure 10. Simplified finite element model; pipe (beam-type) finite elements and soil springs 

attached to pipeline nodes in the three principal directions. 

 

pipeline

axk
axk

Hk
Hk

Vk

Vk
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Ø Finite element analysis using beam-type elements 

 

In this type of analysis, the pipe is modelled with beam-type one-dimensional finite 

elements. Both transient and permanent actions on a buried pipeline can be modelled 

through finite element analysis. Nevertheless, this numerical methodology has been 

mainly employed for simulating permanent ground-induced actions on pipelines, such 

as faults, landslides and lateral spreading. The finite element mesh near 

discontinuities (e.g. fault plane) should be fine enough, so that gradients of stress and 

strains are accurately simulated.  

Type of finite elements: The use of regular beam elements for the pipeline model is 

not recommended, given the fact that they cannot account for pressure loading. 

Instead, “pipe elements” are preferable, which account for the presence of hoop stress 

and strain due to pressure. Furthermore, the use of “pipe elements” with the capability 

of describing cross-sectional ovalization, sometimes referred to as “elbow elements”, 

can further improve the accuracy of the finite element model, especially at pipe bends. 

Instead, if the pipe elements assume a circular cross-section throughout the analysis, 

ovalization effects at pipe bends can be taken into account through appropriate 

flexibility factors, and stress intensity factors. 

Pipe and soil modelling: The finite element model should take into account both 

material and geometric nonlinearities. The pipe material should be modelled as 

elastic-plastic, considering also strain hardening effects. Furthermore, the ground 

surrounding the pipeline should be modelled by appropriate springs (Figure 9), 

attached on the pipe nodes and directed in the transverse directions (denoted as kv and 

kh for the vertical and lateral direction respectively) and the axial direction (kax). The 

nonlinear “law” of the soil springs in all directions should represent the nonlinear 

load-deformation of the soil, including possible slip of the pipe through the soil.  

Thus, the load-deflection curves of the soil spring should be nonlinear. Expressions 

for the axial and the transverse springs are offered in ALA (2001) Guidelines, based 

on the type of soil. Alternative equations for those springs are offered in NEN 3650 

standard. In any case, the design engineer may modify the proposed equations for the 

springs, if more detailed information on the actual field conditions is available, either 

from test data, or his engineering judgment. 
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Analysis procedure and output: To conduct pipeline analysis subjected to permanent 

ground deformation, appropriate displacements should be applied to the ends of the 

soil springs. The analysis should be conducted in three consecutive steps: (a) gravity 

loading, (b) operational loading (pressure and temperature) and (c) application of 

PGD. The analysis output consists of stress resultants in pipeline cross-sections, as 

well as the stresses and strains in the longitudinal direction. The user should be 

cautioned that if the finite elements are not capable of describing accurately cross-

sectional distortion these stresses and strains may be quite different than the real 

stresses and strains in the pipeline wall. These differences are very significant when 

the pipe wall begins to wrinkle due to local buckling. Consideration of local stresses 

due to pipe wall wrinkling locations requires a more detailed analysis, with the use of 

shell elements for modelling the pipe. 
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2.4 Kennedy	  et	  al.	  (1977)	  method	  for	  fault	  crossing	  analysis	  

An analytical method for estimating stresses and strains in a buried pipeline crossing a 

fault and subjected to large fault displacements has been proposed by Kennedy et. al. 

(1977). This analytical methodology enhances the methodology proposed by 

Newmark and Hall (1975) and is based on the consideration of the pipeline as a cable, 

ignoring pipeline bending stiffness. Figure 1 shows the pipeline crossing a right 

lateral fault at an angle β with respect to the direction of movement. The pipe is 

assumed to be anchored at distance L1 and L2 on two far ends. This method is limited 

to crossing angles that result in pipe elongation a common case in pipeline 

applications. The steps of this analytical methodology are stated below. 

 
Figure 11. Schematic diagram of Shallow buried pipe movement resulting from horizontal 

fault displacement. 
 

(a) Estimate maximum axial stress σM and force axial FM in the pipe at fault. 

 

(b) Approximate the lateral and vertical radii of curvature from Eq 6 below, 

substituting FM for Fx and pu and qu for Plx and Pux respectively. The value of pu is the 

maximum soil resistance per unit pipe length in the transverse (horizontal) direction, 

while qu is the maximum soil resistance per unit pipe length in the vertical downward 

direction. 

RcL =
1
κ h

= Fx
Plx

    ,   Rcv =
1
κ v

= Fx
Pux

                             Eq. 6 
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(c) Determine the value of lengths LcL, Lcv over which lateral and vertical 

displacement occurs due to curvature kh=1/RcL and kv=1/Rcv, respectively from Eq. 7 

and the total pipe elongation ΔLrequired from Eq. 8. 

LcL = RcLδ h sinβ    ,  Lcv = 2Rcvδ v                                            Eq. 7 

ΔLrequired = δ h cosβ +
δ h sinβ( )2
3LcL

+ 2δ v
2

3Lcv
                                      Eq. 8 

(d) Determine the total elongation ΔLavailable of the pipeline as the sum of the 

elongations in the straight and curved zones from Eq. 9. 

ΔLavailable = ΔLs1 + ΔLs2 + 2ΔLc                                                             Eq. 9 

where the values of ΔLs1, ΔLs2, ΔLc are calculated from Eq. 10 to Eq. 12 written 

below. 

ΔLc = ε y LcL
BM + BS
2

⎛
⎝⎜

⎞
⎠⎟ +

C
hc(r + 2)

(BM )
r+2 − (Bs )

r+2⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

      Eq. 10 

ΔLs1 = ε y LcL1
BL1 + BS
2

⎛
⎝⎜

⎞
⎠⎟ +

C
hs (r + 2)

(Bs )
r+2 − (BL1)

r+2⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

    Eq. 11 

ΔLs2 = ε y LcL2
BL2 + BS
2

⎛
⎝⎜

⎞
⎠⎟ +

C
hs (r + 2)

(Bs )
r+2 − (BL2 )

r+2⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

   Eq. 12 

where 

LcL1 = L1 − LcL   , LcL2 = L2 − LcL                                                           Eq. 13 

BM = σΜ

σ y

   ,   Bs = BM − hcLcL                                                               Eq. 14 

BL1 = Bs − hsLsL1    ,    BL2 = Bs − hsLsL2                                              Eq. 15 

and 

hc =
fc

Apσ y

   ,   hs =
fs

Apσ y

                                                                        Eq. 16 

In the above equations, fs and fc are the longitudinal friction at straight and curved 

sections, respectively, fs is the maximum soil resistance in axial direction per unit 

length of pipe, while the ratio of curved pipe zone to straight pipe zone friction factors 

raging from 2.4 for Hc/D equal to 1, to 3.3 for Hc/D equal to 3. Finally Ap is the cross 

sectional area, σy the yield stress of the pipe material whereas and L1 and L2 are the 

estimated unanchored lengths on each side of the fault. 
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(e) If  the value of ΔLrequired is not equal to ΔLavailable then the initial estimates of axial 

stress σM and force FM is revised and steps (a)-(d) are repeated until the values of 

ΔLrequired and ΔLavailable become equal. 

 

(f) Upon convergence of the method, as described above, the axial strain εx are 

determained from the stress-strain curve of Eq. 17 (Ramberg–Osgood curve). 

ε x =
σ x

E
1+ a

r +1
⎛
⎝⎜

⎞
⎠⎟

σ x

σ y

⎛

⎝⎜
⎞

⎠⎟

r⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

        Eq. 17 

In the above expressions parameters a, r are the Ramberg-Osgood coefficients for 

steel pipe material, σy is the yield stress of the material, δh and δv are the fault 

displacements in the parallel and vertical direction with respect to fault axis, 

respectively. Due to its complexity and its repetitive form, the application of the 

above methodology requires a computer programming.  
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2.5 Vazouras	  et	  al.	  (2012)	  method	  for	  strike-‐slip	  faults	  

	  

 
Figure 10. Schematical representation of fault-induced deformation of pipeline axis. 

 

A simplified analytical formulation has been proposed in a series of publications by 

Vazouras et al. (2010, 2012 and 2015) for describing pipeline deformation under 

strike-slip fault action, using an assumed-shape function for the deformed shape of the 

pipeline. The methodology is based on an assumed shape for the transverse pipeline 

deformation in an S-shaped “shearing type” configuration, within a segment of length 

L, as shown in Figure 10 the pipeline outside this segment of length L is assumed to 

be under pure tension only.  A shape function for the transverse displacement u(x) of 

the pipeline is considered in the following form: 

u(x) = d
2
cosβ 1− cosπ x

L
⎛
⎝⎜

⎞
⎠⎟          Eq. 18 

where x=0 and x=L are the two ends of the S-shape pipe segment. In addition, the 

axial displacement v(x) of the pipeline within this segment due to longitudinal 

stretching is assumed to be linearly distributed along the pipeline: 

v(x) = d sinβ
L

x                                     Eq. 19 

In Eq. 18 and Eq. 19 the d is the fault displacement, β and L is the crossing angle and 

the length of S-shape as shown in Figure 10, respectively. Having estimated the 

maximum bending curvature, k, due to the imposed deformation d and neglecting 

cross-sectional distortion, the corresponding bending stain εb is 

β

d

L
d

cosd β d

TL

sind β
deformed	  
pipeline	  
axis

fault	  
plane

A
BC D

D′ B′

x

y
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εb =
kD
2

= π 2

4
d cosβ
L

⎛
⎝⎜

⎞
⎠⎟

D
L

⎛
⎝⎜

⎞
⎠⎟                          Eq. 20 

while the axial membrane strain εm can be computed from Eq. 21 equation reference 

goes here, where the first term is due to axial stretching due to bending and the second 

term is due to elongation due to the fault displacement component in the direction of 

pipeline axis.  

εm = d 2π 2 cos2 β
16L2

+ d sinβ
L

⎛
⎝⎜

⎞
⎠⎟

ω
ω +1

⎛
⎝⎜

⎞
⎠⎟           Eq. 21 

where the parameters ω, λ and  𝛫!   are given from Eq. 22, Eq. 23 and Eq. 24, 

respectively.  

ω = Κ t L
2EsA                                                                   

Eq. 22
 

λ = πDks
EsA                                               

 Eq. 23 

Ks = λΕ sA                                                  Eq. 24 

 

In the above equations, Es is the Young’s modulus of steel pipe material and A is the 

cross sectional area of the pipe. Furthermore, parameter ks is given from Eq. 25 where 

the tu is the maximum soil resistance per pipe unit length in the pipe axial direction. 

ks =
tu
πD                                                    

 Eq. 25 

 
An important parameter for this methodology is the length L of the S-shape of the 

pipeline. A formulation for the prediction of this length is presented in the following 

paragraph 2.6, while a comparison of this method with finite elements is presented in 

paragraph 2.7. 
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2.6 New	  methodology	  for	  analyzing	  fault	  crossing	  cases	  

	  

As	   descripted	   in	   the	   previous	   paragraph	   Vazouras	   et.	   al	   (2010, 2012 and 2015)	  

proposed	  a	   simplified	  method	   for	   analyzing	  pipelines	  which	   crosses	   strike-‐slip	  

faults.	  An	  important	  missing	  parameter	  of	  this	  methodology	  is	  the	  length	  L	  of	  the	  

deformed	   S-‐shape	   of	   the	   pipeline	   as	   shown	   in	   Figure	   10.	   	   In	   Figure	   11	   an	  

equivalent	  static	  model	  for	  the	  calculation	  of	  the	  length	  L	  of	  deformed	  S-‐shape	  of	  

the	   pipeline	   is	   shown.	   The	   moment	   diagram	   (a)	   is	   the	   result	   of	   the	   support	  

movement	  while	  the	  moment	  diagram	  (b)	  is	  the	  result	  of	  the	  distributed	  loading.	  

The	  fault	  movement	   induces	  a	  moment	   in	  the	   length	  L,	  which	  can	  be	  described	  

by	  the	  moment	  diagram	  (c)	  of	  Figure	  11.	  

	  
Figure 11. Equivalent static model for the calculation of the length L of the deformed S-

shape of the pipeline in a case of a strike-slipe fault. 

	  

The elastic beam theory is employed in order to calculate the length L of the 

deformed shape of pipeline. In particular, the two loading conditions of Figure 11, are 

combined in order to simulate the loading conditions of the pipe due to fault 

movement. The support movement is employed in order to take account the fault 

displacement while the distributed loading in order to take account of the soil 

resistance pu (maximum soil resistance to the pipe transverse direction per unit length 

of the pipe). The length L results by solving the system of Eq. 26 and Eq. 27. The 
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solution of the system of Eq. 26 and Eq. 27 gives the length L at which the 

combination of loadings of Figure 11 gives zero moment in the supports and yield 

moment of the pipe cross section intermediate of the deformed length of the pipe.  

According to this procedure the length L is given by Eq. 28 where the My is the yield 

moment of the pipe cross section and pu is the maximum soil resistance to the pipe 

transverse direction per unit length of the pipe. 

MA + ′MA = 0⇒ 0.03125L4 pu − 6dEJ = 0         Eq. 26 

0.01562L4 pu −MyL
2 + 3EJd = 0 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Eq. 27 

L = 29
5

My

pu
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Eq. 28 

In	  the	  above	  equations	  the	  E	  is	  the	  Young’s	  Modulus,	  J	  the	  inertia	  moment	  of	  the	  

pipe	  cross	  section	  while	  d	  is	  the	  fault	  displacement.	  The	  length	  L	  of	  the	  deformed	  

S-‐shape	   of	   the	   pipe	   from	   Eq.	   28	   can	   be	   used	   directly	   in	   Vazouras	   et.	   al	  

methodology	  which	  is	  	  described	  in	  the	  previous	  paragraph.	  	  

This	  methodology	  is	  applicable	  only	  for	  strike-‐slip	  faults,	  otherwise	  in	  a	  case	  of	  

normal	   or	   oblique	   faults	   some	   alterations	   must	   be	   done.	   	   The	   maximum	   soil	  

resistance	   in	   the	   vertical	   direction	   is	   different	   for	   the	   downwards	   and	   the	  

upwards	  direction.	  This	  difference	  is	  taken	  into	  account	  through	  some	  alteration	  

in	  the	  equivalent	  static	  model	  as	  shown	  in	  Figure	  12.	  

 
Figure 12. Equivalent static model for the calculation of lengths L1 and L2 of the deformed S-

shape of the pipeline in a case of normal or oblique fault. 
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The reaction moments of diagram (b) of Figure 12 can be computed from Eq. 29 to 

Eq. 31 and the vertical reaction of support (A) VA can be computed by Eq. 32. The 

reaction moment of diagram (a) can be computed by Eq. 33. The solution of the 

system of Eq. 34 and Eq. 35 gives the lengths L1 and L2 at which the combination of 

loadings of Figure 12 gives zero moment in the supports for different values of d. A 

simplified way to solve this problem is to use the Eq. 36 which is the difference 

between Eq. 34 and Eq. 35. 

γ 1 =
L1

L1 + L2
                                       γ 2 =

L2
L1 + L2

                                                      Eq. 29 

l1 = − 1
3
qu1L1

2γ 1(1− 0.75γ 1)               l2 = − 1
3
qu2L2

2γ 2 (1− 0.75γ 2 )                               Eq. 30 

′MA =
1
3
r1 + l2 − 2l1 − 2r2[ ]                ′MB =

1
3
r2 + l1 − 2l2 − 2r1[ ]                                  Eq. 31 

VA =
1

L1 + L2
′MA − ′MB − qu1

L1
2

2
+ qu2L2 L1 +

L2
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

                                                  Eq. 32 

ΜΑ = − 6EJd
(L1 + L2 )

2                ΜB =
6EJd

(L1 + L2 )
2                                                               Eq. 33 

ΜΑ + ′ΜΑ = 0⇒  

27.8L1
4qu1 +111L1

3L2qu1 + L1
2L2

2 (−167qu1 + 333qu2 )+111L1L2
3qu2 + 27.8L2

4qu2 = 6000dEJ 	  	  	  	  	  	  	  

Eq. 34 

ΜΒ + ′ΜΒ = 0⇒ 	  
27.8L1

4qu1 +111L1
3L2qu1 + L1

2L2
2 (−167qu2 + 333qu1)+111L1L2

3qu2 + 27.8L2
4qu2 = −6000dEJ 	  

Eq. 35	  

L1 =
1
L2

24EJd
(qu1 − qu2 ) 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

Eq. 36 

My = ′MA +
V 2

A

qu1
+ 2MA

L1 + L2
L1 + L2
2

− VA
qu1

⎛
⎝⎜

⎞
⎠⎟
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Eq. 37 

The	  desired	  set	  of	  L1,	  L2	  and	  d	  is	  the	  one	  that	  verifies	  the	  Eq.	  37	  which	  concerns	  

the	  maximum	  moment	  of	  diagram	  (c)	  of	  Figure	  12.	  The	   steps	  of	   this	  analytical	  

methodology	  are	  stated	  below.	  

(a) Calculation	  of	  L1	  using	  Eq.	  34	  and	  Eq.	  36	  for	  different	  values	  of	  d.	  
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(b) Calculation	  of	  L2	  using	  Eq.	  35	  for	  different	  values	  of	  d.	  

(c) Check	  which	  set	  of	  L1,	  L2	  and	  d	  verifies	  the	  Eq.	  37.	  

In	   order	   to	   calculate	   the	   strains	   in	   a	   case	   of	   normal	   or	   oblique	   faults	   the	  

methodology	  of	  Vazouras	  et.	  al	  can	  be	  used	  on	  the	  condition	  of	  a	  slight	  change	  of	  

the	  initial	  assumed	  shape	  of	  the	  deformed	  pipe.	  The axial displacement v(x) of the 

pipeline within this segment due to longitudinal stretching, which is assumed to be 

linearly distributed along the pipeline, remains the same, while the shape function for 

the transverse displacement u(x) of the pipeline is considered only for the part with 

the larger soil resistance qu. This assumption is based on the fact that the maximum 

moment occurs within the segment with the larger soil resistance. The shape function 

and therefore the maximum bending strain will be computed for a segment with 

length equal to 2Li, where i is the part with the larger soil resistance. 

u(x) = d
2
cosβ 1− cos π x

2Li

⎛
⎝⎜

⎞
⎠⎟
,0 ≤ x ≤ Li          Eq. 38 

v(x) = d sinβ
L1 + L2

x                                                          Eq. 39 

According	  to	  the	  above	  alterations	  the	  Eq.	  20,	  Eq.	  21	  and	  Eq.	  22	  are	  changed	  to	  
Eq.	  40,	  Eq.	  41	  and	  Eq.42,	  respectively.	  
	  

εb =
π 2

4
d cosβ
2Li

⎛
⎝⎜

⎞
⎠⎟

D
2Li

⎛
⎝⎜

⎞
⎠⎟

                                     Eq. 40 

εm = d 2π 2 cos2 β
16(L1 + L2 )

2 +
d sinβ
L1 + L2

⎛
⎝⎜

⎞
⎠⎟

ω
ω +1

⎛
⎝⎜

⎞
⎠⎟         Eq. 41 

ω = Κ t (L1 + L2 )
2EsA                                                         

Eq. 42
 

2.7 Comparison	  between	  simplified	  finite	  element	  model	  and	  analytical	  

methodologies	  

	  

Two case studies have been analyzed in the coarse of the present work in order to 

compare the above methodologies. Case study (a) compares the design equations 

according ALA (2001) for longitudinal soil displacement due to liquefaction with the 

simplified finite element model while the case study (b) compares the analytical 

methodology for strike-slip faults with the simplified finite element model.  
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A 42-inch-diameter, X60 steel pipeline with 0.562-inch thickness is considered in a 

geohazard area, with cohesionless soil conditions. A comparison between design 

equations and finite element analysis with beam-type pipe elements is offered in the 

present paragraph. Soil properties of the cohesionless (sand) soil, geometric 

parameters and the material of the pipe are presented in Table 1. The loading patterns 

under consideration are (a) longitudinal PGD due to liquefaction and (b) strike-slip 

fault crossing. 

 

Table 3.	  Soil parameters and geometric/mechanical properties. 

φ 34O 

ΚΟ 0.5 
γ (kg/m3) 1760 
Ηc (m) 0.9 
D (in) 42 
t (in) 0.562 

Material X60 
 

 

(a) Longitudinal PGD due to liquefaction 

In this case, the length of liquefied zone Ls (Figure 7) is assumed 100 m (from 

geotechnical investigation) and the displacement of moving soil mass δ is taken equal 

to 3 m. For the finite element analysis, pipe elements are adopted and the 

corresponding results indicate a value for the maximum axial stress equal to 24.7 

MPa. The distribution of axial stresses along the pipeline axis is presented in Figure 

13. The computed maximum stress based on the analytical design Eq. 1 and Eq. 2 is 

24.1 MPa. The results obtained from the finite element analysis and the analytical 

design equations are in very good agreement. 

 
Figure 13. Axial stresses with respect to pipeline axis. 
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(b) Fault crossing analysis 

In this case a strike-slip fault has been considered with two different fault crossing 

angles β, namely 0ο and 10o degrees.  The analysis is performed for fault displacement 

equal to 1, 2 and 3 meters for each angle β. The results from the finite element 

analysis and the results from the analytical design equations of the methodology 

presented by Vazouras et al. (2015) are presented in Tables 2 and 3 for the two values 

of crossing angle β, 0o and 10o degrees, respectively. The length L of the curved pipe 

segment is computed from Eq. 28 equal to 28.42 m and the comparison with the 

deformed shape of the pipe from FE analysis is depicted to Figure 14. The 

comparison of maximum axial strains and length L between FE analysis and design 

equations indicates a fairly good agreement. 

 
Figure 14. Comparison between length L from equation 1 with the deformed shape of 

pipeline from FE analysis with pipe elements. 

 

Table 4.	  Comparison between Design Equation and FEM results for angle β equal to 0o. 

 Max tensile strain % Max compressive strain % 
δ (m) Design Eq. FEM Design Eq. FEM 

1 0.35 0.34 0.31 0.26 
2 0.73 0.94 0.59 0.67 
3 1.15 1.24 0.83 0.73 

 
 

Table 5.	  Comparison between Design Equation and FEM results for angle β equal to 10o. 

 Max tensile strain % Max compressive strain % 
δ (m) Design Eq. FEM Design Eq. FEM 

1 0.48 0.44 0.16 0.18 
2 1.00 1.01 0.29 0.26 
3 1.56 1.31 0.39 0.24 
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3. Pipe-‐Soil	  Interaction	  	  

3.1 Introduction	  

	  

In the framework of a European Research project, the GIPIPE project, a series of tests 

had been performed by CSM, in Sardinia, with the aim at examining experimentally 

soil-pipeline interaction under ground-induced actions. In particular, three pull-out 

and three transversal tests conducted in order to verify the pipe soil interaction in the 

axial and the transversal direction, respectively. Moreover four full-scale 

landslide/fault tests have been performed in order to investigate the complex pipe soil 

interaction in a realistic scenario. In Table 6, the details on the experimental testing 

parameters are illustrated for axial, transversal and landslide tests. In all cases, the 

diameter of pipe specimens is equal to 219.6 mm, the wall thickness is equal to 5.56 

mm and the steel grade is API5L X65. 

 

Table 6.	  Information about experimental testing conducted by CSM. 

Test Compaction 

Level Dr (%) 

Mass 

density 

(Kg/m3) 

Water 

conten

t (%) 

Coating Internal 

pressure 

(MPa) 

Axial 1 40 1629 5.7 Bare 0 

Axial 2 20 1602 7.8 Bare 0 

Axial 3 40 1613 5.8 Coated 0 

Transversal 1 20 1601 7.6 Bare 0 

Transversal 2 40 1640 6.1 Bare 0 

Transversal 3 40 1645 7.3 Coated 0 

Landslide 1 40 1600 8.0 Bare 0 

Landslide 2 40 1688 - Bare 11.4 

Landslide 3 20 1600 - Bare 0 

Landslide 4 20 1600 - Bare 11.4 

 

In order to define the material parameters for the soil surrounding the pipeline, NTUA 

performed direct shear tests in samples of sand provided by CSM. In Figures 15 and 

16 the variation of internal angle of friction of sand with respect to horizontal 
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displacement is illustrated for compaction level equal to 20 and 40 %, respectively as 

obtained by the above tests. 

 
Figure 15. Variation of internal friction angle with respect to horizontal displacement for a 

sand with Dr = 40 %, based on results from direct shear test conducted by NTUA for vertical 

applied stress equal to σv=17 kPa. 

 
Figure 16. Variation of internal friction angle with respect to horizontal displacement for a 

sand with Dr = 20 %, based on results from direct shear test conducted by NTUA for vertical 

applied stress equal to σv=17 kPa. 

 

A finite element model has also been developed in order to simulate the experimental 

testing conducted by CSM. In this model four-node reduced integration shell elements 

(type S4R) are employed for modeling the cylindrical pipeline segment and eight-

node reduced-integration “brick” elements (C3D8R) are employed to simulate the 

surrounding soil. The mechanical behavior of soil material is described through a 

modified Mohr-Coulomb model (Anastasopoulos et. al. 2007) in order to account for 

the softening behavior of the sand. 
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3.2 Transverse	  Pipe-‐Soil	  Interaction	  

	  

Pipe-soil interaction in the transverse direction of a buried pipeline is a significant 

parameter for the deformation of the pipe in the case of permanent ground 

deformations. Several transverse tests have been performed e.g. (O’Rourke et. al. 

(1985) and Karimian (2006))  in order to understand and quantify the transverse pipe-

soil interaction mechanism. Three new transverse tests have been conducted by CSM 

in the course of the GIPIPE project. The experimental setup is illustrated in Figures 

17 and 18. In those tests the pipe has been restricted in the vertical direction. 

 

 
Figure 17. Experimental setup of transverse tests conducted by CSM. 

 

 
Figure 18. Deformed shape of the soil free surface at the end of the test. 
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The results of the three tests are shown in Figure 19 in terms of the load displacement 

diagram. The value of force is calculated from the measurements of the contact 

pressure sensor wrapper around the pipe, the contact pressure sensor is shown in 

Figure 20. In general, it is observed that all three tests indicate a similar response, 

especially for displacement values larger than 400 mm. The small difference of the 

compaction level between test 1 (Dr = 22%) and tests 2 and 3 (Dr =35%) is reflected 

to a small difference in the contact pressure for displacements lower than 200 mm. 

 
Figure 19. Pressure-sensor force versus stroke for the three transverse tests conducted by 

CSM. 

 
Figure 20. Pressure-sensor wrapper around the pipe. 

 

A finite element model has been developed, which simulates the transverse tests. The 

model is shown in Figure 21 and 22. In order to reduce the computational effort only 

a slice of width 0.1m is modeled; this width corresponds to 1 element. The analysis 

proceeds moving the pipeline in the direction of x axis, as shown in Figure 22, while 

the displacements in direction of z axis are restricted. A comparison between 

experimental results and the finite element model described above as shown in 

Figures 23, 24 for transverse tests 1, 2 and 3, respectively. The predictions of pipe-

soil interaction obtained from the finite element model seems to be quite satisfactory.  
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Figure 21. General configuration (solid model) of the CSM transverse test simulation. 

 

 
Figure 22. Deformed shape of the finite element model of transverse test corresponding to a 

value of pipe displacement equal to 250 mm (1.14 pipe diameters). 

 

 

 
Figure 23. Comparison between Transverse Test 1 results and the results of finite element 

model. 
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Figure 24. Comparison between Transverse Test 2 and 3 results and the results of the finite 

element model. 

 

3.3 Axial Pipe-Soil interaction 

 

The pipe-soil interaction in the axial direction may be important for the deformation 

of the pipe in the case of permanent ground deformations, as well as in the case of 

seismic wave loading. Several pull out tests have been performed elsewhere, and 

reported in the previous publications (Scarpelli et. al. (2003), Karimian (2006)) during 

the last years, in order to determine the axial pipe-soil interaction mechanism. Three 

new pull out tests have been conducted by CSM in the course of the GIPIPE project. 

The experimental setup is illustrated in Figure 25 and 26. The results of the three tests 

are presented briefly in the following Figure 27. The three tests show similarities with 

the results of a direct shear tests performed on sand samples by NTUA to evaluate the 

soil friction angle. In both cases, a peak shear resistance is observed, followed by a 

decay of resistance value towards an asymptotic residual value. 
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Figure 25. Experimental setup of axial tests conducted by CSM. 

 

 
Figure 26. Setup of the pull-out tests before at the beginning of testing.  

 

 
Figure 27. Pull-out load versus stroke for the three axial tests conducted by CSM. 
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The maximum soil resistance tu against pipe movement in the axial direction (tu is 

force per unit pipe length) according to ASCE guidelines (1984) and ALA guidelines 

(2001) can be calculated from Eq. 43:  

tu = πD
σν +σ h

2
⎛
⎝⎜

⎞
⎠⎟ tanδϕ                     Eq. 43 

where the σv and σh the vertical and the lateral pressure in pipe depth, respectively, φ 

is the internal friction angle of sand and δ is the pipe-soil interface coefficient. Eq. 43 

describes a classical Coulomb friction law. The friction coefficient µ is constant and 

equal to tan 𝛿𝜑 while the normal force to the interface is equal to the perimeter of the 

pipe, multiplied by the average of vertical and lateral earth pressure as shown in 

following Figure 28. 

 
Figure 28.  Vertical and lateral earth pressure in the pipe cross section. 

 

In the case of a soil without dilatancy, Eq.43 can describe pipe-soil interaction in the 

axial direction with very good accuracy. On the other hand, in the case of a soil with 

dilatancy, Eq. 43 cannot describe satisfactory the pipe-soil interaction. These two 

cases are analyzed below. 

 

Ø Soil without dilatancy 

Karimian et. al. (2006) performed several pull out tests, one test was with sand 

without dilatancy. The experimental setup is illustrated in Figure 29. The outer 

diameter of the steel pipe was equal to 457 mm while pipe thickness was 12.7 mm. 

This test was performed with the embedment of loose sand with a compaction level 

(Dr) of approximately 20% and an average density equal to 1450 kg/m3. The depth to 

H σv 

σh 

D 

surface 
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diameter H/D ratio for this test was equal to 2.7, and the length of the soil box equal 

to 3.8 m. The comparison between experiment, the provisions of ASCE guidelines 

(1984) and the finite element analysis is presented in Figure 31. In that figure, the 

axial soil resistance is shown in terms of pipe displacement. The 𝐹′! is the normalized 

value of axial force, with respect to the vertical effective stress from soil overburden 

at the centerline of the pipe as calculated from Eq. 44. The model simulates the axial 

test (pull out test) conducted by UBC (Karimian, 2006) is shown in Figure 30. The 

pipeline is pulled outwards at the near end, whereas the far end of the pipe remains 

free.  The prediction of axial soil resistance for both ASCE guidelines (Eq. 43) and 

the finite element analysis is very satisfactory.  

′FA =
F

′γ HπDL
                Eq. 44 

 

 

 
Figure 29. Experimental setup of axial test performed by Karimian (2006). 
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Figure 30. Finite Element Model used for simulating the pull-out test of  CSM and the one 

conducted by Karimian (2006). 

 

 
Figure 31. Comparison between the experimental data, the ASCE guidelines (1984) and the 

results from the finite element analysis. 

 

Ø Soil with dilatancy 

In the case of a sand with dilatancy, Eq. 43 cannot predict satisfactory the pipe-soil 

interaction in axial direction. It is obvious from Figure 32 and from other experiments 

available in the literature as reported by Scarpelli et. al (2003) and by Karimian 

(2006)) that the friction in the interface of pipe and sand cannot be descripted 

adequately by a Coulomb friction. In Figure 32 a comparison between Axial Test 1 

conducted by CSM and the provision of ASCE (1984) is depicted for sand with 
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dilatancy. The prediction of ASCE guidelines is significantly lower than experimental 

results. This difference is attributed to the fact that the Eq. 43 does not take into 

account the dilatancy of the sand.  

 

 
Figure 32. Comparison of axial soil resistance between the experimental results of Axial Test 

1 conducted by CSM and the provision of ASCE guidelines (1984). 

 

A schematic representation of shear zone around the pipe caused by axial differential 

movement between the pipe and the soil is presented in Figure 33. As plastic shear 

deformation develops in the sand around the pipe, an extra stress Δσ also develops at 

the pipe-soil interface. This stress Δσ is caused by the fact that the sand under 

confined shear conditions cannot expand freely.  

 
Figure 33. Schematic representation of shear zone around the pipe caused by axial 

differential movement between pipe and soil (vertical section). 
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Equations (3) describe a modified law for pipe-soil interaction in the axial direction. 

An exponential decay law has been introduced to describe the friction coefficient as 

decreasing function of the relative displacement d between the soil and the pipe µ(d), 

as well as the extra stress due to sand dilatancy  Δσ(d).  

 
Figure 34. Typical variation of internal friction angle φ and vertical displacement δy with 

respect to horizontal displacement δx in a direct shear test. 

tu (d ') =
πD σν +σ h

2
+ Δσ peak

⎡
⎣⎢

⎤
⎦⎥
tan(δϕ peak ), ′d = 0

πD σν +σ h

2
+ Δσ ( ′d )⎡

⎣⎢
⎤
⎦⎥
µ( ′d ), ′d > dcrit

	  	  	  	  	  Eq. 45 

In Eq. 45 Δσ(d) and µ(d) are given by Eq.46 and Eq.47, where dcrit is the maximum 

displacement at which maximum soil resistance occurs. According to ALA guidelines 

(2001) dcrit is equal to 0.1 – 0.2 inch for dense to loose sand and 𝑑! is the difference 

between d and dcrit, (𝑑! = 𝑑 − 𝑑!"#$). 

Δσ ( ′d ) = (Δσ res − (Δσ res − Δσ peak )e
−a ′d 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Eq. 46 

µ( ′d ) = (tanδϕres − (tanδϕres − tanδϕ peak )e
−a ′d 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Eq. 47 

In Eq. 47, φpeak and φres are the peak and constant volume internal angle of friction of 

the sand, respectively (Figure 34) and constant α is given by the empirical Eq. 48. The 

value of α controls the decay law of the friction coefficient. 

a = 1
f (δ x −δ xpeak )

ln ϕ −ϕres

ϕ peak −ϕres

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Eq. 48 
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In Eq. 48, φ is a random value of internal friction between φpeak and φres and δx the 

corresponding horizontal displacement.  Eq. 48 describes the rate of decay of internal 

friction with respect to the horizontal displacement at the direct shear test divided by a 

factor f, due to the difference of the shear zone width between the direct shear test and 

the actual problem. Factor f is taken equal to 100 or more for a small diameter pipe 

while can be equal to 1 for very large diameters, a methodology for the calculation of 

the factor f is still under investigation. 

 

 
Figure 35. Idealized simple shear conditions: (a) finite-element computed shear strain; (b) 

shear strain along the shear band (Anastasopoulos et al. (2007)) 

 

The extra stress Δσpeak and Δσres can be easily computed by one-element test analysis. 

Anastasopoulos et al. (2007) proposed such a methodology for calibrating the Mohr-

Coulomb model, using a direct shear stress (Figure 35). According to this method, the 

plastic shear strain γpeak corresponds to φpeak and the γres corresponds to φres can be 

computed by Eq. 49 and Eq. 50 respectively. 

γ peak =
δ xpeak −δ xy

D
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Eq. 49	  

γ res = γ peak +
δ xres −δ xpeak

dFE
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Eq. 50	  

In Eq. 49 and Eq. 50, D is the initial depth of the soil sample and dFE the height of 

one-element test as shown in Figure 35a. A correction of peak angle of friction must 

be considered because of plane strain conditions as suggested by Jewell (1989) 

according to equation (9). 

sin(ϕ peak
PS ) =

tan(ϕ peak )
cos(ψ )+ sin(ψ ) tan(ϕ peak )

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Eq. 51 

where the 𝜑!"#$!"  is peak friction angle under the plane-strain conditions and ψ is the 

dilation angle, which is equal to φpeak – φres. 
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Figure 36. Schematic representation of one element model with restrict of the vertical 

deformation (δy=0) in order to compute the extra stress Δσ due to dilatancy of the sand. 

 

In order to compute the extra stress Δσ, a restriction in the vertical movement of the 

one element model must be applied, as shown in Figure 36. From this procedure, the 

value of Δσpeak and the value of Δσres can be obtained. This methodology was applied 

for axial tests conducted by CSM. The values of Δσpeak and Δσres have been calculated 

equal to 12.5 kPa and 8.12 kPa for axial test 1 and 4.5 kPa and 0 kPa for axial test 2, 

respectively. A comparison between experimental results and the value of maximum 

soil resistance in the axial direction from Eq. 45 is illustrated in Figure 37 and Figure 

38 for axial test 1 and axial test 2, respectively. The prediction of pipe-soil interaction 

using Eq. 45 provides very satisfactory results. 

 

 
Figure 37. Comparison between Axial Test 1 conducted by CSM and the value of tu by 

equation (3). 
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Figure 38. Comparison between Axial Test 2 conducted by CSM and the value of tu by 

equation (3). 

 

The finite element model that simulates the axial test (pull-out test) conducted by 

CSM is shown in Figure 39. The pipeline is pulled outwards at the near end, whereas 

the far end remains free. A contact algorithm has been developed in order to describe 

the pipe soil interaction using the user subroutine FRIC. The friction law described by 

equation (3) has been implemented in the FRIC subroutine in order to account for 

dilatancy of the sand.  

 
Figure 39. Finite Element model of pull out test contacted by CSM. 

 

A comparison between experimental results and those from the finite element model 

described above is shown in Figure 40 and Figure 41 for axial test 1 and 2, 

respectively. The prediction of pipe-soil interaction as obtained from the finite 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 05:16:52 EEST - 3.145.155.214



42	  

	  

element model is very good. The conditions for axial test 3 are quite similar to those 

for test 1 except for the coating of the pipe. Figure 27 shows that the decay law from 

axial test 3 is different than the one in test 1 but the peak and residual values are quite 

similar. According to the above methodology the peak and the residual value can be 

predicted for axial test 3 with good accuracy but the decay rate cannot be predicted 

accurately. 

 

 
Figure 40. Comparison between the results of axial test 1 and the finite element predictions. 

 

 

 
Figure 41. Comparison between the results of axial test 2 and the finite element predictions. 
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3.4 Simulation of landslide/fault test 

	  
Landslide tests have been performed by CSM in order to investigate the complex 

behavior of pipe-soil interaction in a special “landslide/fault” device. The 

experimental setup is shown in Figure 42 to Figure 45. The setup is composed by two 

fixed concrete boxes and one sliding box in-between as shown in Figure 42. The two 

ends of the pipe are free to move in the longitudinal direction during the test. The 

longitudinal strains measured by strain gauges for various displacement values of the 

middle box. A schematic representation of the deformed shape of the pipeline is 

shown in Figure 46. 

 
Figure 42. Schematic representation of experimental setup of tests in a landslide/fault device 

conducted by CSM. 

 

 
Figure 43. Experimental setup of “landslide/fault” tests conducted by CSM. 
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Figure 44. Internal box dimensions – lateral view. 

	  

Figure 45. Internal box dimensions – plan view. 

	  

Figure 46. Sliding box and pipe-end displacements. 

 

A finite element model has been developed, which simulates the “landslide/fault” 

tests. The model is shown in Figure 47. The middle box slides along the x axis as 

shown in Figure 47 while the two far boxes remain foxed. In Figure 48 and Figure 49 

the deformed shape of pipe specimen from the first “landslide/fault” test is illustrated 

for box displacement equal to 229 mm (1.04 pipe diameters). The comparison 

between the experimental results and the finite element analysis results is shown in 

Figure 50, Figure 51 and Figure 52 for box displacement equal to 200, 400 and 600 

mm, which is equal to 0.91, 1.82 and 2.74 pipe diameters, respectively. In Figure 50, 

Figure 51 and Figure 52 the longitudinal strains at the extrados with respect to the 
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pipe axis are shown along the half specimen. A difference in the position of the 

maximum strain was observed between numerical and experimental results. This 

difference is probably to the coarse mesh, which employed in order to reduce the 

computational effort. In any case more simulation will follow with a denser mesh not 

only for the landslide test 1, but also for the tests 2, 3 and 4 according to Table 6. 

 
Figure 47. General configuration (solid model) of the simulation of CSM landslide/fault test. 

 

 

 

 
Figure 48. Deformed shape of the finite element model simulating “landslide/fault” test 1 

corresponding to a value of box displacement equal to 229 mm (equal to1.05 pipe diameters).                                                                                                                                                                                                                                                                                                                                                                                                                                     
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Figure 49. Deformed shape of the finite element model for the simulation of “landslide/fault” 

test 1 corresponding to a value of box displacement equal to 229 mm (equal to 1.05 pipe 

diameters). 

 

 

 
Figure 50. Comparison between landslide/fault test 1 results and finite element analysis in 

terms of the longitudinal strains along the pipe axis, for box displacement equal to 200 mm 

(equal to 0.91 pipe diameters). 
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Figure 51. Comparison between landslide\fault test 1 results and finite element analysis in 

terms of the longitudinal strains along the pipe axis, for box displacement equal to 400 mm 

(equal to 1.82 pipe diameters). 

 

 
Figure 52. Comparison between landslide\fault test 1 results and finite element analysis in 

terms of the longitudinal strains along the pipe axis, for box displacement equal to 600 mm 

(equal to 2.74 pipe diameters). 
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4. Conclusions	  
Analytical	   and	   numerical	   methodologies	   for	   analyzing	   buried	   steel	   pipelines	  

subjected	   to	   permanent	   seismic	   fault	  movement	   have	   been	   investigated.	  More	  

specifically	   two	   analytical	   methodologies	   from	   the	   literature	   have	   been	  

investigated	  while	   a	   new	  methodology	   for	   the	   calculation	   of	   the	   length	   of	   the	  

deformed	   S-‐shape	   of	   the	   pipe	   has	   been	   developed	   and	   compared	   with	   finite	  

element	   analysis.	   Moreover	   the	   pipe-‐soil	   interaction	  was	   investigated	   through	  

the	  simulation	  of	  experimental	  tests,	  which	  conducted	  by	  CSM,	  in	  Sardinia.	  	  

	  

The	  main	  conclusions	  derived	  from	  this	  study	  can	  be	  summarized	  as	  follows:	  

	  

Ø  A new analytical methodology for the calculation of the Length of the 

deformed S-shape of the pipeline for all types of faults was developed and 

compared to finite elements analysis. The results of the comparison were quite 

satisfactory. 

Ø  The calculation of the deformed Length of the pipeline was used in Vazouras 

et. al method in order to compute the strains of the pipeline in a case of a 

strike-slip fault. The results were compared with finite element analysis and 

the comparison was quite satisfactory. 

Ø  The Vazouras et. al method can be extended also for normal and oblique faults 

by using the methodology for the prediction of the Length of the deformed S-

shape of the pipeline.   

Ø  The axial pipe-soil interaction was investigated: 

• In the case of a soil without dilatancy both the finite element model 

and the formula from the codes are in good agreement with the 

experimental results. 

• In the case of a soil with dilatancy the extra stress Δσ due to dilatancy 

must be taken into account. 

Ø  A new axial spring was developed which takes into consideration the dilatancy 

and the softening of the soil. 

Ø  A contact algorithm was developed, using the subroutine FRIC of software 

Abaqus for 3D finite elements models, in order to take account of the extra 

stress Δσ due to dilatancy of the soil. 
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Ø  The transversal pipe-soil interaction was also investigated, the results from the 

finite element analysis are in good agreement with the experimental results. 

Ø The pipe-soil interaction was investigated in a complex loading condition 

through the landslide test.  
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