
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Χωροθέτηση Ολοκληρωμένων Κυκλωμάτων με τη

Μέθοδο Gordian

Διπλωματική Εργασία

Στρουσίδου Ν. Τατιάνα

Επιβλέποντες Καθηγητές: Σταμούλης Γεώργιος

 Καθηγητής

 Ευμορφόπουλος Νέστωρ

 Επίκουρος Καθηγητής

University of Thessaly
DEPARTMENT OF COMPUTER AND

COMPUTER ENGINEERING

IC Replacement using Gordian

Thesis
Strousidou N. Τatiana

Supervising Professors: George Stamoulis

 Professor

 Nestor Evmorfopoulos

 Assistant Professor

Approved by the two-member inquiry committee at 26 February 2015

……………………………..

……………………………..

 George Stamoulis Nestor Evmorfopoulos

 Professor Assistant Professor

Διπλωματική Εργασία για την απόκτηση του Διπλώματος του Ηλεκτρολόγου
Μηχανικού και Μηχανικού Υπολογιστών, του Πανεπιστημίου Θεσσαλίας, στα
πλαίσια του Προγράμματος Προπτυχιακών Σπουδών του Τμήματος
Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών του Πανεπιστημίου
Θεσσαλίας.

..

Τατιάνα Στρουσίδου

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών

Πανεπιστημίου Θεσσαλίας

Copyright © Tatiana N. Strousidou, 2015

All rights reserved

 To my family and friends

 Στην οικογένειά μου και στους φίλους μου

ix

Acknowledgements

I would like to express my wholehearted gratitude to my supervisor, Dr.
George Stamoulis, who trusted me in dealing with this thesis. His patience,
expertise and advising, contributed to my graduate experience and finally
this thesis’s completion. I strongly appreciate his in-depth knowledge and
skills.

Furthermore, I would like to thank Dr. Nestor Evmorfopoulos and
Charalampos Antoniadis for their assistance and support they provided at
all levels of this thesis.

Finally, I have to thank my friends and especially my parents, my brother
and my sister for their endless and invaluable moral support that offered
me all those academic years.

 Tatiana N. Strousidou

 Volos, 2015

x

Abstract

IC Replacement using Gordian

Tatiana N. Strousidou

The University of Thessaly at Volos, 2015

Supervisors: George Stamoulis

 Nestor Evmorfopoulos

Placement is considered a fundamental physical design problem in electronic design
automation. It has been around so long that it is commonly viewed as a solved
problem. Placement quality is at the heart of design quality in terms of timing closure,
routability, area, power and most importantly, time-to-market. Additionally, the
increasing scale of placement instances affects the algorithms of choice for high-
performance tools. In this thesis we present the GORDIAN algorithm for global
placement as well as an optimization of it with which we managed to define each cell’s
placement applying an alternative method.

xi

Table of Contents

Acknowledgements ... ix

Abstract ...x

Abbreviations .. xiii

MAJOR SECTION ...1

1. Introduction ...1

2. Introduction to Placement ...2

2.1 Placement problem formulation ..2

2.2 Placement within the EDA design flow ..2

3. Gordian Overview ...3

3.1 Quick Overview ..5

 Global Optimization Step ..5

 Top-down Partitioning ... 6-7

 Final Placement ..7

4. Linear Constraints Elimination ...7

4.1 Conjugate Gradient (CG) ..7

4.2 Linear System Solvers ..8

4.3 Solution Method Description .. 8-9

4.4 Computation of Null space of A ... 9-10

4.5 Results ...10

5. The density of CZZ .. 10-11

6. Preconditioning ...11

Definition of Preconditioner ...11

Preconditioning for linear systems..11

The Combinatorial Multigrid solver (CMG) ..11

Related work on SDD solvers ...12

SDD linear systems as graphs ... 12-13

xii

7. Least Squares Method ...14

8. The inverse of ZTZ .. 15-16

9. Conclusion ..16

10. Future Work ..17

11. References .. 17-18-19

xiii

Abbreviations

EDA Electronic Design Automation
HPWL Half Perimeter Wire Length
SPD Symmetric Positive Definite
CG Conjugate Gradients
QP Quadratic Programmin

1

1. Introduction

In this thesis we deal with GORDIAN algorithm [1], a method for global placement of standard-cell based
circuit designs. More specifically, we present in detail each step of the algorithm focusing on the solution
which uses the null space of a matrix. In the framework of this thesis, we developed an alternative
solution method, which is based on the least squares’ method, the algorithm and examples of which are
thoroughly presented later.

The rest of this thesis is organized as following: Section 2 provides an overview of the placement
problem. Section 3 introduces the GORDIAN algorithm. Section 4 describes the alternative solution
method as well as some results of it. Section 5 gives information about the negative result of this method.
Finally, in section 7 least squares’ method is explained.

2

2. Introduction to Placement

2.1. Placement problem formulation

Placement [26] is an essential step in electronic design automation - the portion of the physical design

flow that assigns exact locations for various circuit components within the chip’s core area. An inferior

placement assignment will not only affect the chip's performance but might also make it

nonmanufacturable by producing excessive wire length, which is beyond available routing resources.

Consequently, a placer must perform the assignment while optimizing a number of objectives to

ensure that a circuit meets its performance demands. Typical placement objectives include:

 Total wire length: Minimizing the total wire length, or the sum of the length of all the wires in the

design, is the primary objective of most existing placers. This not only helps minimize chip size, and

hence cost, but also minimizes power and delay, which are proportional to the wire length (This

assumes long wires have additional buffering inserted; all modern design flows do this.)

 Timing: The clock cycle of a chip is determined by the delay of its longest path, usually referred to

as the critical path. Given a performance specification, a placer must ensure that no path exists

with delay exceeding the maximum specified delay.

 Congestion: While it is necessary to minimize the total wire length to meet the total routing

resources, it is also necessary to meet the routing resources within various local regions of the

chip’s core area. A congested region might lead to excessive routing detours, or make it impossible

to complete all routes.

 Power: Power minimization typically involves distributing the locations of cell components so as to

reduce the overall power consumption, alleviate hot spots, and smooth temperature gradients.

 A secondary objective is placement runtime minimization.

2.2. Placement within the EDA design flow

A placer takes a given synthesized circuit netlist together with a technology library and produces a valid
placement layout. The layout is optimized according to the aforementioned objectives and ready for
cell resizing and buffering - a step essential for timing and signal integrity satisfaction. Clock-tree
synthesis and routing follow, completing the physical design process. In many cases, parts of, or the
entire, physical design flow are iterated a number of times until design closure is achieved.

http://en.wikipedia.org/wiki/Routing_(electronic_design_automation)

3

3. Gordian Overview

A. GORDIAN [7] is one of the most successful Global placement algorithms. With GORDIAN, the
placement problem is formulated as a sequence of quadratic programming problems [29] derived from
the entire connectivity information of the circuit. A set of constraints is imposed and as a result the
reduction of the amount of overlap among the cells is achieved in a gradual way.

B. GORDIAN focuses on row oriented standard-cell placement. A standard cell represents the physical
space occupied by a logical gate. In standard-cell placement all cells must be of the same height, as
shown in picture 2.

C. GORDIAN does not use partitioning to reduce the problem size, but to restrict the freedom of
movement of the modules

D. GORDIAN [5] uses a combination of the Analytical and Minimum cut approaches. Initially, the first step
is applied globally without taking into consideration any library constraints (cell overlaps, cell outside
core area, etc.) additional to minimizing the total wire length. A top-down partitioning strategy follows.
Top-down partitioning-based placement algorithms seek to decompose a given placement instance
into smaller instances by sub-dividing the placement region, assigning modules to subregions and
cutting the netlist hypergraph. By recursively dividing the core area and assigning circuit elements to
every partition, the overlaps are reduced to a point where a simple legalization algorithm can produce
a legal solution.

4

 Picture 2: standard-cell placement

Gordian Algorithm Pseudocode

5

3.1 Quick overview

Global optimization step

Before applying the global optimization step, an undirected weighted graph is constructed from the
input circuit. Each net of size k in the netlist forms a k-clique, and all the edges in the
clique receives a weight of 2/k, as shown on Picture 3 and Picture 4. The movable cells and fixed pins
constitute the nodes of the graph [7][5].

Using the weight information, the following matrices are formed:

 Adjacency matrix 𝐴𝑛𝑥𝑛, where 𝐴𝑖,𝑗 = 𝑊𝑐𝑖,𝑗

 Pin Connection Matrix 𝑃𝑛𝑥𝑚, where 𝑃𝑖,𝑗 = 𝑊𝑝𝑖,𝑗

 Degree Matrix 𝐷𝑛𝑥𝑛, where 𝐷𝑖,𝑗 = {
∑ 𝐴𝑖,𝑗 + ∑ 𝑃𝑖,𝑗 , 𝑖 = 𝑗𝑚

𝑗=0
𝑛
𝑗=0

 0 , 𝑖 ≠ 𝑗

 Fixed Pin Vectors 𝑑𝑥𝑚𝑥1
 and 𝑑𝑦𝑚𝑥1

, where 𝑑𝑥𝑖
= −∑ 𝑃𝑖,𝑗𝑗 𝑥𝑗 and 𝑑𝑦𝑖

= −∑ 𝑃𝑖,𝑗𝑦𝑗𝑗

Where:

 n is the number of cells

 m is the number of pins

 𝑊𝑐𝑖,𝑗
 is the weight of the edge connecting cell i and cell j

 𝑊𝑝𝑖,𝑗
 is the weight of the edge connecting cell i and pin j

 𝑥𝑗 is the x-coordinate of pin j

 𝑦𝑗 is the y-coordinate of pin j

The following quadratic programming problem is stemmed from the first global step of the placement
algorithm:

𝜑(𝑥) =
1

2
𝑥𝑇𝐶𝑥 + 𝑑𝑥𝑇 𝑥

and:

 𝜑(𝑦) =
1

2
𝑦𝑇𝐶𝑦 + 𝑑𝑦𝑇 𝑦

Where 𝑑𝑥 and 𝑑𝑦 are the Fixed Pin vectors and C is the Laplacian matrix.

6

Top-down partitioning

Firstly, the placement region is partitioned into two subregions, using either vertical or horizontal cutline,
each containing a subset of movable cells. The following steps follow the same procedure resulting to
additional cutline being applied in the subregions. At the ith level of optimization, the placement area is
divided up into at most q ≤ 2i regions.

The vectors that contain the center location of these sub-partitions are computed by the
equations below:

 𝐴𝑖𝑥 = 𝑢
And

 𝐴𝑖𝑦 = 𝑢

Where i is the number of partitioning step.

Subsequently, the constraints matrix 𝐴𝑞𝑥𝑚 has to be computed whose contents are:

 𝐴𝑖,𝑗 = {
1, 𝑐𝑒𝑙𝑙 𝑗 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The linearly constrained quadratic programming problems that have to be solved are the following:

𝜑(𝑥) = {
1

2
𝑥𝑇𝐶𝑥 + 𝑑𝑥𝑇 𝑥|𝐴𝑖𝑥 = 𝑢}

7

and

𝜑(𝑦) = {
1
2

𝑦𝑇𝐶𝑦 + 𝑑𝑦𝑇 𝑦|𝐴𝑖𝑦 = 𝑢}

where A is the constraints matrix, C is the Laplacian matrix and 𝑢 are the x and y coordinates of the
partitions respectively.

As a result, the following linear systems must be solved:

 [𝐶 𝐴𝑇

𝐴 0
] [

𝑥
𝜆
] = [

−𝑑𝑥
𝑢𝑥

]

and

 [𝐶 𝐴𝑇

𝐴 0
] [

𝑦
𝜆
] = [

−𝑑𝑦
𝑢𝑦

]

Final Placement

• GORDIAN terminates after an enough number of cutlines are added so that the size of the
partitions is small enough, i.e., it is used for global placement. A final placement is the last, but
possibly most important, step in the GORDIAN Algorithm

• After the main body of the GORDIAN [1][7] algorithm finishes, which is the alternating global
optimization and partitioning steps, each of the blocks containing k or less modules needs to be
optimized.

• For the Standard Cell Design the modules are collected in rows, for the macro-cell design an area
optimization is performed, packing the modules in a compact slicing structure.

4. Linear Constraints Elimination

4.1 Conjugate gradient (CG)

The conjugate gradient method [27] derives its name from the fact that it generates a sequence of
conjugate (or orthogonal) vectors. These vectors are the residuals of the iterations. They are also the
gradients of a quadratic functional, the minimization of which is equivalent to solving the linear
system. Conjugate gradient (CG) is an extremely effective method when the coefficient matrix is
symmetric positive definite (SPD) [30], since storage for only a limited number of vectors is required.

8

4.2 Linear System Solvers

The iterative methods are more efficient to use for solving the generated linear systems than the direct
ones for reasons of time complexity. In comparison to direct solvers that usually have a time
complexity of O(N2), iterative solvers have nearly linear to the size of the system time complexity.

More specifically the methods used are:

 The Conjugate Gradient (CG) method [27] for solving the linear system generated during the
global optimization step.

 The Bi-Conjugate Gradient (Bi-CG) method [31] for solving the linear systems generated during
the top-down partitioning procedure.

Unlike Bi-CG, the CG method can only be implemented for Symmetric Positive Definite (SPD) matrices.
The matrix generated during global optimization step is SPD as long as the whole circuit is connected to
the I/O pins. However, the matrices generated during the partitioning steps are not positive definite
(and thus non-SPD) due to the zero elements on the diagonal introduced by the constraints matrix.

4.3 Solution method description

The iterative method used to solve the generated linear systems is Conjugate Gradient (CG) method
[6]. A variety of algorithms for linearly and nonlinearly constrained optimization use the Conjugate
Gradient (CG) method to solve subproblems of the form

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥 𝑞(𝑥) =
1

2
𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥

 subject to 𝐴𝑥 = 𝑏

We will assume here that A is an 𝑚 × 𝑛 matrix, with 𝑚 < 𝑛, and that A has full row rank so that the
constraints 𝐴𝑥 = 𝑏 constitute 𝑚 linearly independent equations. Generally, constraints force cells to

move towards the center of their partition. But, on the other hand, this quadratic program can be solved

by computing a basis for the null space of A, using this basis to eliminate the constraints, and then

applying the CG method to the reduced problem. More specifically, consider that Z is an 𝑛 × (𝑛 − 𝑚)

matrix spanning the null space of A. Then 𝐴𝑍 = 0, the columns of 𝐴𝑇 together with the columns of 𝑍
span 𝑹𝑛, and any solution 𝑥∗ of the linear equations 𝐴𝑥 = 𝑏 can be written as

𝑥∗ = 𝐴𝑇𝑥𝐴

∗ + 𝑍𝑥𝑍
∗ ,

where

𝐴𝐴𝑇𝑥𝐴

∗ = 𝑏,

9

and

𝐶𝑍𝑍𝑥𝑍 = −𝑐𝑍 , 𝐶𝑍𝑍 = 𝑍𝑇𝐶𝑍, 𝑐𝑍 = 𝑍𝑇(𝐶𝐴𝑇𝑥𝐴

∗ + 𝑐)

Z is a matrix spanning the null space of A, b is the gravity center of x and y-axis respectively and c is the
fixed pin vector for X and Y direction respectively.

With this method we managed to transform the initial constrained problem into an unconstrained one.

However, we are still facing a significant problem with the 𝐶𝑍𝑍 matrix which remains significantly full,
which increases the total runtime and memory requirements. At this point, it is necessary to explain
the exact method of the computation of the null space of A.

4.4 Computing the Null Space of Linear Constraints Matrix A

Due to the special format of the constraints matrix A, its null space N(A) can be found easily. The
special format of A resides on the fact that:

1) The non-zero elements existing in a row is the same number.
2) The non-zero elements appear in different columns.

Below we provide the algorithm of finding the Null Space of matrices which have the same structure
with A:

a) Generally, we fill the columns of Z by elaborating the rows of the constraints’ matrix A.
b) If there are only two non-zero elements in an elaborating row, only one column of Z can be computed.

So, by processing the first row of A, we can construct the first column of Z etc. As a result, -1 is
inserted in this position of the under construction column of Z where the first non-zero element in the
elaborating row of A is located. Equally, 1 is placed in Z in the same position with the following non-
zero element of A matrix.

c) Generalizing this procedure, if the elaborating row has N non-zero elements, N-1 columns of Z can be
reckoned by filling them with -1, 1 or 0 in the appropriate positions.

d) For example, the existence of three non-zero elements in a row of A means that two consecutive
columns of Z can be constructed. The method is the same with this one explained above. As mentioned
before, in both columns of Z that are expected to be constructed, there is -1 in the same position with
the first appearance of the non-zero element in the specific row of A. On this occasion, the first column
of Z has 1 in the row where the next non-zero element of A can be found and there is also 1 in the
second column of Z in this place where the last non-zero element is located in the examining row of A.

In order to get a better understanding of the algorithm we previously described, we provide an
example of null space computation.

10

Suppose we have the following matrix A:

𝐴 =

[

 0 0 1 2⁄ 1 2⁄ 0 0 0 0 0 0

1
3⁄ 1 3⁄ 0 0 1 3⁄ 0 0 0 0 0

0 0 0 0 0 0 1 2⁄ 0 0 1 2⁄

0 0 0 0 0 1 3⁄ 0 1 3⁄ 1 3⁄ 0]

Beginning from the first row we notice that there are only two non-zero elements, specifically in the 3rd

and 4th
 place. So, -1 is inserted in the 3rd position of the first column of Z and 1 in the 4t

h. The remaining
positions are filled with zeros. Subsequently, in the second row of A exist three non-zero elements, in
the 1st, 2nd and 5th position respectively, so we can construct the following two columns of Z.
Therefore, the second column of Z has -1 in the 1st place and 1 in the 2nd one while the third column of
Z has also -1 in the 1st row and 1 in the 5th one. The remaining columns of Z can be similarly
constructed.

4.5 Results

This particular method of computing the null space of the constraints’ matrix A, which was described
and explained above, is much advantageous. Indeed, by making use of the special format of A matrix,
we managed to construct the null space Z of A without any cost in a very simple way. In addition, Ζ is a
sparse matrix, which is a very useful and special property because the majority of computations
including such a matrix become really simple and fast. Another important reason why a sparse matrix
is more practical than a dense one is that in the case of a sparse matrix, substantial memory
requirement reductions can be realized by storing only the non-zero entries. Finally, the inversion of a
sparse matrix is not a time-consuming procedure, which under different circumstances could be.

5. The density of CZZ

The alternative solution method of the quadratic program that was thoroughly exposed in chapter [2],
reveals a crucial problem that needs to be solved. This problem is referred to the fact that CZZ matrix is
full, making the use and implementation of sparse matrices’ properties impossible. Thus, this particular
characteristic of CZZ matrix not only renders all computations remarkably time-consuming, but it also
leads to the extensive use of memory. However, there is a way, including some conceivable steps, with
which we can prevent the CZZ from being dense. We focus on the fact that we want to solve the

equation𝐶𝑍𝑍𝑥𝑍 = −𝑐𝑍. So, the steps for this solution are described in detail below:

First of all we have to solve the equation below:

𝐶𝑍𝑍𝑥𝑍 = −𝑐𝑍
Then we substitute with:

 𝐶𝑍𝑍 = 𝑍′ ∗ 𝐶 ∗ 𝑍,

11

So we have:

 𝑍′ ∗ 𝐶 ∗ 𝑍 ∗ 𝑥𝑍 = −𝑐𝑍
Afterwards we set

𝑍 ∗ 𝑥𝑍 = 𝑤
So, our system can be written in the way presented below:

𝑍′ ∗ 𝐶 ∗ 𝑤 = −𝑐𝑍 𝑎𝑛𝑑 𝑍 ∗ 𝑥𝑍 = 𝑤
Now we set

 𝐶 ∗ 𝑤 = 𝑤′
So the system can be written:

𝐴)𝑍′ ∗ 𝑤′ = −𝑐𝑍 𝐵)𝐶 ∗ 𝑤 = 𝑤′ 𝐶)𝑍 ∗ 𝑥𝑍 = 𝑤

Where C is the Laplacian matrix and Z’ is the transpose of Z.

As a result, we are supposed to solve these three linear systems described above in order to find

finally𝑥𝑍. The initial system 𝐶𝑍𝑍𝑥𝑍 = −𝑐𝑍 can be solved using CMG preconditioner. So, we focus on

the solution of linear systems with matrix Z and Z’, and we deal with the over-constrained and under-
constrained problem respectively which is solved by least squares method.

6. Preconditioning

Definition of preconditioner

In mathematics, preconditioning [28] is a procedure of an application of a transformation, called
the preconditioner, which conditions a given problem into a form that is more suitable for numerical
solving methods. Preconditioning is typically related to reducing a condition number of the problem.
The preconditioned problem is then usually solved by an iterative method.

Preconditioning for linear systems

Preconditioners are useful in iterative methods to solve a linear system for since the rate
of convergence for most iterative linear solvers increases as the condition number of a matrix
decreases as a result of preconditioning.

The Combinatorial Multigrid Solver (CMG)

The present subchapter describes the Combinatorial Multigrid Solver (CMG) [3].At the beginning, we
give a short review of multigrid solvers and then we describe the basic components of CMG [8].

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Condition_number
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Iterative_methods
http://en.wikipedia.org/wiki/Rate_of_convergence
http://en.wikipedia.org/wiki/Rate_of_convergence
http://en.wikipedia.org/wiki/Condition_number

12

Related work on SDD solvers

Multigrid [8] was originally conceived as a method to solve linear systems that are generated by the
discretization of the Laplace (Poisson) equation over relatively nice domains [14]. The underlying
geometry of the domain leads to a hierarchy of grids 𝐴 = 𝐴0, … , 𝐴𝑑that look similar at different levels
of detail; the picture that the word multigrid often invokes to mind is that of a tower of 2D grids, with

sizes 2𝑑−𝑖 × 2𝑑−𝑖for 𝑖 = 0,… , 𝑑Its provably asymptotically optimal behavior for certain classes of
problems soon lead to an effort, known as Algebraic Multigrid (AMG), to generalize its principles to
arbitrary matrices. In contrast to classical Geometric Multigrid (GMG) where the hierarchy of grids is
generated by the discretization process, AMG constructs the hierarchy of “coarse” grids/matrices
based only on the algebraic information contained in the matrix. Various flavors of AMG, based on
different heuristic coarsening strategies, have been proposed in the literature. AMG has been proven
successful in solving more problems than GMG, though some times at the expense of robustness, a
byproduct of the limited theoretical understanding.

 A solver with provable properties for arbitrary SDD matrices, perhaps the “holy grail” of the multigrid
community, was discovered only recently. The path to it was Support Theory [10], a set of
mathematical tools developed for the study of combinatorial subgraph preconditioners, originally
introduced by Vaidya [14] [12] .It has been at the heart of the seminal work of Spielman and Teng [13]
who proved that SDD systems can be solved in nearly-linear time. Koutis and Miller [15] proved that
SDD matrices with planar connection topologies (e.g. 4-connectivity in the image plane) can be solved
asymptotically optimally, in 𝑂 (𝑛) time for n-dimensional matrices. The complexity of the Spielman and
Teng solver was recently significantly improved by Koutis, Miller and Peng [16] [17], who described an
O (𝑚𝑙𝑜𝑔 𝑛) algorithm for the solution of general SDD systems with 𝑚 non-zero entries. It is fair to say
that these theoretically described solvers are still impractical due to the large hidden constants, and
the complicated nature of the underlying algorithms. Combinatorial Multigrid (CMG) [18] is a variant of
multigrid that reconciles theory with practice. Similarly to AMG, CMG builds a hierarchy of
matrices/graphs. The essential difference from AMG is that the hierarchy is constructed by viewing the
matrix as a graph, and using the discrete geometry of the graph, for example notions like graph
separators and expansion. It is, in a way, a hybrid of GMG and AMG, or a discrete-geometric MG. The
re-introduction of geometry into the problem allows us to prove sufficient and necessary conditions for
the construction of a good hierarchy and claim strong convergence guarantees for symmetric
diagonally dominant (SDD) matrices based on recent progress in Steiner preconditioning [19] [20] [21].

SDD linear systems as graphs

In this subsection we discuss how SDD linear systems can be viewed entirely as graphs. Combinatorial
preconditioning advocates a principled approach to the solution of linear systems. The core of CMG
and all other solvers designed in the context of combinatorial preconditioning is in fact a solver for a
special class of matrices, graph Laplacians. The Laplacian 𝐴 of a graph 𝐺 = (𝑉, 𝐸, 𝑤) with positive
weights, is defined by:

13

𝐴𝑖,𝑗 = 𝐴𝑗,𝑖 = −𝑤𝑖,𝑗 𝑎𝑛𝑑 𝐴𝑖,𝑖 = −∑𝐴𝑖,𝑖

𝑖≠𝑗

More general systems are solved via light-weight transformations to Laplacians. Consider for example
the case where the matrix 𝐴 has a number of positive off-diagonal entries, and the property 𝐴𝑖,𝑖 =
∑ 𝐴𝑖,𝑗 𝑖≠𝑗 . Positive off-diagonal entries have been a source of confusion for AMG solvers, and various

heuristics have been proposed. Instead, CMG uses a reduction known as double-cover [19]. Let 𝐴 =
𝐴𝑝 + 𝐴𝑛 + 𝐷, where D is the diagonal of 𝐴 and 𝐴𝑝 is the matrix consisting only of the positive off-

diagonal entries of 𝐴. It is easy to verify that

𝐴𝑥 = 𝑏

⇔ (
𝐷 + 𝐴𝑛 −𝐴𝑝

−𝐴𝑝 𝐷 + 𝐴𝑛
) (

𝑥
−𝑥

) = (
𝑏

−𝑏
)

In this way, the original system is reduced to a Laplacian system, while at most doubling the size. In
practice it is possible to exploit the obvious symmetries of the new system, to solve it with an even
smaller space and time overhead.

Matrices of the form 𝐴 + 𝐷𝑒 , where 𝐴 is a Laplacian and 𝐷𝑒 is a positive diagonal matrix have also been
addressed in various ways by different AMG implementations. In CMG, we again reduce the system to
a Laplacian. If 𝑑𝑒 is the vector of the diagonal elements of 𝐷, we have

𝐴𝑥 = 𝑏

⇔ (

𝐴 + 𝐷𝑒 0 −𝑑𝑒

0 𝐴 + 𝐷𝑒 −𝑑𝑒

−𝑑𝑒
𝑇 −𝑑𝑒

𝑇 ∑ 𝑑𝑒(𝑖)
𝑖

)(
𝑥

−𝑥
0

) = (
𝑏

−𝑏
0

)

 Again it’s possible to implement the reduction in a way that exploits the symmetry of the new system,
and with a small space and time overhead work only implicitly with the new system.

A symmetric matrix 𝐴 is called diagonally dominant (SDD), if 𝐴𝑖,𝑖 ≥ ∑ |𝐴𝑖,𝑗|𝑖≠𝑗 . The two reductions

above can reduce any SDD linear system to a Laplacian system. Symmetric positive definite matrices
(SPD) with non-positive off-diagonals are known as 𝑀-matrices. It is well known that if 𝐴 is an 𝑀 -

matrix, there is a positive diagonal matrix 𝐷 such that 𝐴 = 𝐷𝐿𝐷 where 𝐿 is a Laplacian. Assuming 𝐷 is
known, an 𝑀 -system can also be reduced to a Laplacian system via a simple change of variables. In
many application 𝐷 is given, or it can be recovered with some additional work [22].

There is a one-to-one correspondence between Laplacians and graphs, so we will be often using the
terms interchangeably.

14

7. Least squares method

The method of least squares [24] is a standard approach to the approximate solution of
overdetermined systems, sets of equations in which there are more equations than unknowns. "Least
squares" means that the overall solution minimizes the sum of the squares of the errors made in the
results of every single equation. Generally, the steps that are followed in order to find a least square
solution are described below:

Suppose that we want to find a solution for the linear system 𝑥 = 𝑅 ∗ 𝜃, where 𝜃 is the unknown
factor of the equation.

Multiply both parts of the equation with RT. So, we have

𝑅𝑇 ∗ 𝑥 = 𝑅𝑇 ∗ 𝑅 ∗ 𝜃

Rearrange the parentheses
𝑅𝑇 ∗ 𝑥 = (𝑅𝑇 ∗ 𝑅) ∗ 𝜃

 𝜃 = (𝑅𝑇𝑅)−1𝑅𝑇𝑥

In our case, only two of the three systems should be solved with least squares method,

𝑍′ ∗ 𝑤′ = −𝑐𝑍
and

𝑍 ∗ 𝑥𝑍 = 𝑤
,as they are the two over-constrained systems that appear. More specifically, the first system’s solution
procedure, according to the steps described above, is cited below:

𝑍𝑇 ∗ 𝑤′ = −𝑐𝑍
𝑍 ∗ 𝛧𝛵 ∗ 𝑤′ = −𝑍 ∗ 𝑐𝑍

(𝑍 ∗ 𝑍𝑇) ∗ 𝑤′ = −𝑍 ∗ 𝑐𝑍
𝑤′ = −(𝑍 ∗ 𝑍𝑇)−1 ∗ 𝑍 ∗ 𝑐𝑍

Similarly, the solution of the second system follows the same process:

𝑍𝑇 ∗ 𝑍 ∗ 𝑥𝑍 = 𝑍𝑇 ∗ 𝑤
(𝑍𝑇𝑍) ∗ 𝑥𝑍 = 𝑍𝑇 ∗ 𝑤

𝑥 = (𝑍𝑇 ∗ 𝑍)−1 ∗ 𝑍𝑇 ∗ 𝑤

If we examine carefully the steps that solve the two linear systems above, it is easily observed that the

only time-consuming factor could be the computation of the inverse of 𝑍𝑇𝑍. In the following chapter

we are going to explain why the procedure of this inversion does not require much time and how
simple the construction of this inverse is.

15

8. The inverse of 𝑍𝑇𝑍

The result of the multiplication ZT*Z is a matrix that has a special format and allows us to take
advantage of it in order to compute the inverse (ZT*Z)-1 with simple and applicable steps. Suppose we
have the matrix

𝐴 = [1/5 1/5 1/5 1/5 1/5 0 0 0 0 0

 0 0 0 0 0 1/5 1/5 1/5 1/5 1/5]

By computing the multiplication ZT*Z for our example, we take the following result:

𝑍𝑇 ∗ 𝑍 = [2 1 1 1 0 0 0 0
 1 2 1 1 0 0 0 0
 1 1 2 1 0 0 0 0
 1 1 1 2 0 0 0 0
 0 0 0 0 2 1 1 1
 0 0 0 0 1 2 1 1
 0 0 0 0 1 1 2 1
 0 0 0 0 1 1 1 2]

where Z is the null space of A described in chapter [2.1]

With a careful looking at this matrix, we realize that there are two same submatrices that have 2 in
their main diagonals and 1 in the remaining positions. Finally, the outer matrix’s upper and lower
parts are filled with zeros. This means that those matrices analyzed above appear as block matrices of
ZT*Z.
At this point, it is necessary to describe extensively what the matrix A represents. As we can see, it is a
2x10 matrix whose dimensions show that there are 2 partitions with 5 cells in each partition. The 2
submatrices that are presented above are 4x4 matrices with this special format that has been
previously explicated. The inverse of Z*ZT has the following format:

16

(𝑍 ∗ 𝑍𝑇)−1 = [4 5⁄
−1

5⁄ −1
5⁄

−1
5⁄

 −1
5⁄

4
5⁄ −1

5⁄
−1

5⁄

 −1
5⁄

−1
5⁄ 4 5⁄

−1
5⁄

 −1
5⁄

−1
5⁄ −1

5⁄
4

5⁄]

Now we will try to generalize the format of the inverse of
ZT*Z, ∀ 𝑚,where 𝑚 the number of cells in each partition, by consulting the example that was given
previously.
So, for partitions with m cells, the dimension of the ZT*Z is m-1xm-1. This leads to the conjecture that
there is the inverse of this matrix, as it is a square one, and it has the format below:

 The main diagonal of the matrix is filled with
(𝑚 − 1)

𝑚⁄ and

 Both the upper and the lower part of it is filled with −1
𝑚⁄

𝑍𝑇 ∗ 𝑍 = [

(𝑚 − 1)
𝑚⁄ −1

𝑚⁄

 ⋱
−1

𝑚⁄
(𝑚 − 1)

𝑚⁄

]

9. Conclusion

With this simple method that is applied for the inverse’s computation of the ZT*Z, it is achieved for a
matrix to be inverted without any cost. Not to mention the fact that only three numbers need to be
maintained in memory, as the non-zero elements of the ZT*Z are always two in quantity. The other
element that is helpful to be stored in memory is the number of cells that exist in each partition which
provides information about the dimension of the matrix ZT*Z.

All in all, by applying this method we have the opportunity to confirm that there is an easy, simple and
costless way to compute the inverse of a matrix, taking advantage of the special format of its null
space.

17

10. Future work

In the future, bigger circuits can be tested by applying this method in order to define their “reaction”
to it. The results of this method is definite and obvious, but further research and optimization may lead
to more spectacular effects. Furthermore, more and more different methods for the computation of an
inverse could be examined and applied in order to check the results, comparing them with the results
of the method presented in this thesis and finally deciding which is the appropriate for this problem.

11. References

[1] J. Kleinhans, G. Sigl, F. Johannes and K. Antreich, “GORDIAN: VLSI Placement by Quadratic
Programming and Slicing Optimization”, IEEE Transactions on Computer-Aided Design. 10 (3), March
1991, pp. 356-365.

[2] G. Sigl, K. Doll, F.M. Johannes, “Analytical Placement: A Linear or a Quadratic Objective
Function?”, DAC’91 pp 427-423.

[3] I. Koutis, G. L. Miller and D. Tolliver, “Combinatorial Preconditioners and Multilevel Solvers for
problems in computer vision and image processing. Computer Vision and Image Understanding”,
115(12):1638–1646, 2011.

[4] I. Koutis and G. Miler, “The Combinatorial multigrid solver”, in: Conference Talk, March, 2009.

[5] Sung Kyu Lim, “Practical Problems in VLSI Physical Design Automation”, Georgia Institut of
Technology, Atlanta, pp. 112-121.

[6] N. Gould, M. Hribar, J. Nocedal, “On the Solution of Equality Constrained Quadratic
Programming Problems Arising in Optimization”, pp. 1-3, 2000.

[7] Stavros K. Ioannidis, “Implementation and Optimization of an Integrated Circuit Placement
Algorithm in Parallel Environment”, 2014.

[8] Dimitrios K. Garifallou, “Simulation of large-scale circuits with Steiner node preconditioners on
parallel architectures”, 2014.

[9] Antonis Dadaliaris, “Χωροθέτηση Ολοκληρωμένων Κυκλωμάτων με Παραμέτρους Αξιοπιστίας”,
2012.

[10] E. G. Boman and B. Hendrickson, “Support theory for preconditioning”, SIAM J. Matrix Anal.
Appl. 25 (3) (2003) 694-717.

18

[11] P. M. Vaidya, “Solving linear equations with symmetric diagonally dominant matrices by
constructing good preconditioners”, A talk based on this manuscript was presented at the IMA
Workshop on Graph Theory and Sparse Matrix Computation, October 1991.

[12] A. Joshi, “Topics in optimization and sparse linear systems”, PhD thesis, Champaign, IL, USA,
1997. UMI Order No. GAX97-17289.

[13] D. A. Spielman and S.-H. Teng, “Nearly-Linear Time Algorithms for Preconditioning and Solving
Symmetric”, Diagonally Dominant Linear Systems, May 2007.

[14] U. Trottenberg, A. Schuller and C. Oosterlee, Multigrid. Academic Press, 1st edition, 2000.

[15] I. Koutis and G. L. Miller, “A linear work, O(n1/6) time parallel algorithm for solving planar
Laplacians”, In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
SODA ’07, pages 1002–1011, Philadelphia, PA, USA, Society for Industrial and Applied Mathematics,
2007.

[16] I. Koutis and G. L. Miller, “Approaching optimality for solving”, August 2010.

[17] I. Koutis, G. L. Miller και R. Peng, “Solving sdd linear systems in time O(mlognlog(1/ε))”, April
2011.

[18] I. Koutis and G. Miler, “The Combinatorial multigrid solver”, in: Conference Talk, March, 2009.

[19] K. Gremban, “Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant Linear
Systems”, PhD thesis, Carnegie Mellon University, Pittsburgh, October 1996. CMU CS Tech Report
CMU-CS-96-123.

[20] I. Koutis, “Combinatorial and algebraic tools for optimal multilevel algorithms”, PhD thesis,
Carnegie Mellon University, Pittsburgh, May 2007. CMU CS Tech Report CMU-CS- 07-131, 2007.

[21] I. Koutis and G. L. Miller, “Graph partitioning into isolated, high conductance clusters: theory,
computation and applications to preconditioning”, in Proceedings of the twentieth annual symposium
on Parallelism in algorithms and architectures, SPAA ’08, pages 137–145, New York, NY, USA, 2008.
ACM.

[22] D. A. Spielman and S. I. Daitch, “Faster approximate lossy generalized flow via interior point
algorithms”, In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, May 2008.

[23] http://pages.cs.wisc.edu/~amos/412/lecture-notes/lecture17.pdf

[24] http://en.wikipedia.org/wiki/Least_squares

http://pages.cs.wisc.edu/~amos/412/lecture-notes/lecture17.pdf
http://en.wikipedia.org/wiki/Least_squares

19

[25] http://fourier.eng.hmc.edu/e176/lectures/NM/node14.html

[26] http://en.wikipedia.org/wiki/Placement_(EDA)

[27] http://en.wikipedia.org/wiki/Conjugate_gradient_method

[28] http://en.wikipedia.org/wiki/Preconditioner

[29] http://en.wikipedia.org/wiki/Quadratic_programming

[30] http://en.wikipedia.org/wiki/Positive-definite_matrix

[31] http://en.wikipedia.org/wiki/Biconjugate_gradient_method

[32] Igor L. Markov, Jin Hu, Myung-Chul Kim, “Progress and Challenges in VLSI Placement Research”,
University of Michigan, Department of EECS.

[33] Charles Alpert, Zhuo Li, Gi-Joon Nam, C. N. Sze, Natarajan Viswanathan, Samuel I. Ward,
“Placement: Hot or Not?”, IBM Corporation, Austin, Texas, USA.

http://fourier.eng.hmc.edu/e176/lectures/NM/node14.html
http://en.wikipedia.org/wiki/Placement_(EDA)
http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://en.wikipedia.org/wiki/Preconditioner
http://en.wikipedia.org/wiki/Quadratic_programming
http://en.wikipedia.org/wiki/Positive-definite_matrix
http://en.wikipedia.org/wiki/Biconjugate_gradient_method

20

