
1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Υπολογιστών

Η εφαρμογή ενός μοντέλου που προσδοκούμε να επηρεάσει τη

συμπεριφορά των γνωστικών πρακτόρων σε ένα σενάριο

αποφυγής συγκρούσεων

Ιωάννα Παντελοπούλου
iopadelo@inf.uth.gr
Μαδρίτη, Ιούλιος 2014

Επιβλέποντες: Ricardo Imbert Paredes Δημήτριος Κατσαρός

mailto:iopadelo@inf.uth.gr

2

Η διπλωματική μου εργασία συντάχθηκε κατά τη διάρκεια της συμμετοχής μου

στο πρόγραμμα Erasmus του εαρινού εξαμήνου του 2014, στο τμήμα Computer

Science and Engineering School - Universidad Politécnica de Madrid, υπό την

επίβλεψη του Director of the European Master in Software Engineering, Ricardo

Imbert Paredes.

© Ιωάννα Παντελοπούλου, 2014

Με επιφύλαξη παντός δικαιώματος.

3

UNIVERSIDAD POLITÉCNICA

DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INFORMÁTICOS

Application of an expectation model to influence
cognitive agents behaviours in a collision avoidance

scenario

B.Sc. Thesis

Ioanna Pantelopoulou

Madrid, July 2014

4

This thesis is submitted to the ETSI Informáticos at Universidad Politécnica de Madrid in partial
fulfillment of the requirements for the degree of Bachelor of Science on Computer Engineering.

B.S.c Thesis
Thesis Title: Application of an expectation model to influence cognitive agents behaviours in a
collision avoidance scenario
July 2014

Author:Ioanna Pantelopoulou
Erasmus student at Universidad Politécnica de Madrid
Student from Greece, University of Thessaly

Supervisor:
Ricardo Imbert Paredes
Ph.D.
Universidad Politécnica de Madrid
Languages, Systems and Software
Engineering Department
ETSI Informáticos
Universidad Politécnica de Madrid

ETSI Informáticos
Universidad Politécnica de Madrid
Campus de Montegancedo, s/n
28660 Boadilla del Monte (Madrid)
Spain

5

Given the completion of my present project, I would like to thank my supervising professor,

mr.Ricardo Imbert Paredes, who helped me with his guidance and valuable advice. During the

course of my effort he was of great support, suggesting solutions to any problems that came up,

listening to my ideas and propositions and always showing his interest and confidence in my

work. By cooperating with him, I gained a great deal of knowledge and this collaboration

contributed to my responding to the needs of this project the best way I could. In addition, I

would like to thank my second supervisor, mr.Demetrios Katsaros.

 Without any doubt, the most important help I received was from my family. They were

always by my side, in good but mostly in bad times, never stopping to show me their love, faith

and support during all these years I have been studying.

 I definitely owe gratitude to my friends as well, who always stood by me, available

whenever I needed them, willing to listen to my problems and offer their advice and

encouragement.

 In the end, I would like to thank Nikos for all his psychological and technical support,

without which it would be impossible to complete the present thesis.

6

ΠΕΡΙΛΗΨΗ

Ο στόχος αυτής της έρευνας είναι η δημιουργία ευφυών πρακτόρων λογισμικού. Η έρευνα αυτή

βασίζεται στην ανάπτυξη ενός πράκτορα, ενός χαρακτήρα που ελέγχεται από τις νοητικές του

ικανότητες, από τα συναισθήματα και από την προσωπικότητα του. Προσομοιώσαμε ανθρώπινα

χαρακτηριστικά στον πράκτορα. Για την έρευνα μας η ανθρωπινή εγκεφαλική λειτουργία είναι το

κλειδί της, το σημείο αναφοράς της. Η έρευνα είναι εμπνευσμένη από το μοντέλο που

δημιουργήθηκε από τον prof Ricardo Imbert Paredes[1], το μοντέλο αυτό ονομάζεται

COGNITIVA και εμείς επεκτείναμε ένα μέρος του μοντέλου. Η έρευνα μας επικεντρώθηκε στις

προσδοκίες του πράκτορα. Τέλος, αυτή η έρευνα είναι ένα βήμα για να ενθαρρύνει την

περαιτέρω έρευνα παρόμοιων ζητημάτων, που έχουν άμεση εφαρμογή στον καθημερινό κόσμο

μας.

7

ABSTRACT

The aim of this Work is the creation of intelligent software agents. This work is based on the

development of an agent, a character controlled by its mental abilities, the moods and his

personality. We have simulated human qualities to the agent. We try to reproduce believable

behaviours. This present work applies by Prof. Ricardo Imbert Paredes’ model (Imbert,2005),

called COGNITIVA. We have implemented a part of his model. Our research emphasized the

expectations of the Agent. Lastly, this work is a step to encourage further research on similar

issues which can be directly applied to everyday situations.

8

Table of Contents

ABSTRACT... 6

1.INTRODUCTION .. 10

2.THEORETICAL CONCEPTS ... 12

2.1 Intelligent Agents .. 12

2.2 Multi-Agent Systems ... 13

2.3 Rational-Emotional Agents .. 14

2.4 Environment of simulation :Avoid up Collisions ... 15

2.5 Expectations ... 15

2.5.1 What we mean with the term “Expectations” .. 15

2.5.2 How the expectations affect the mood ... 16

3. STATE OF THE ART .. 17

3.1 Abstract .. 17

3.2 Emotional architectures for agents .. 17

3.3 Our Cognitive Architecture to Manage Emotions ... 18

3.4 State of the Agent ... 20

3.4.1 Current State of the world: Beliefs ... 20

3.4.2 Manage of the past history .. 22

3.5 The emotional Behaviour .. 23

3.5.1 The Effect of Perceptions on Emotions .. 23

3.5.2 The Effect of Emotions on Actuation .. 24

3.6 Expectations ... 26

4. DEVELOPMENT ... 27

4.1 Description of the Problem .. 27

4.2 Description of the design ... 30

4.2.1 Description of the movement ... 30

4.2.1.1 Perceptions .. 31

4.2.2 Relations between Personality Trait and Mood .. 33

4.2.3 Avoid up Collision .. 35

4.2.4 Description of the Action .. 39

5.EVALUATIONS CASES ... 42

1 EXPERIMENT ... 42

2nd Experiment ... 51

6. FUTURE WORK .. 59

6.1 Introduction of parameters .. 59

6.2 Modifications in the existing algorithm ... 60

BIBLIOGRAPHY ... 61

ANNEX Α .. 64

Description of the software Jade ... 64

Platform .. 68

JADE Agent .. 69

Agents Behaviour ... 70

9

Unlock an Agent ... 70

ACL Messages ... 70

10

1.INTRODUCTION

 Expectation is what is considered most likely to occur provided there is an uncertain

environment. It is a belief focusing on the future and can or cannot be completed. In cases of

lower levels of realization, it leads to a sense of disappointment. If a scenario which is not at all

expected occurs, it constitutes a “surprise”. Expectations and how these contribute to the

changes in the emotional state has been the subject of research in most scientific fields, such as

psychology, philosophy and economy, to name but a few. Expectations are an emotional state

people face in every aspect of their lives. Not only does it apply to an individual’s daily activities,

but it is also of general scientific interest. Expectations Theory is a problem which has met with

numerous studies conducted by psychologists and other scientists towards its solution.

 In the present project, the problem of expectations and its solution is being studied

through a multi-agent system, within a properly simulated environment where there are agents,

some of which do have feelings and personality and others no. In this case, our main goal is to

create agents able to move in a certain environment and how they will react to certain

unpredictable events, depending on their emotional state. This is why we have implemented an

algorithm through which we can create agents moving within a limited environment, some of

whom have certain personality traits while others conduct themselves as mere robots. Our focus

is to try and study what reactions these agents will have when they collide (against each other),

as well as the way they will deal with an unpleasant situation to them based on their emotional

state and what expectations derive from this collision. These scenarios are based on a good and

effective communication among the agents. The algorithm was implemented using Java and

was based on the agent development platform JADE.

In the 2nd Chapter, there is a brief introduction to the agents and the multi-agent systems and

some references are made on basic concepts relating to the believable behaviours, the

expectations and how these can be affected by the mood state. A general reference to the

simulation of the environment is also made.

In the 3rd Chapter, there is an extensive elaboration on the development of COGNITIVA,

prof.Ricardo Impert Paredes’ model (Imbert, 2005), which has been the inspiration of this study.

In the 4th Chapter, a general description of the algorithm used towards the solution of the

problem in this study is provided. There is a reference to the three stages which essentially

compose the algorithm and we analyze what happens in each of them in order to reach the

desirable result.

In the 5th Chapter, the execution of the algorithm is presented. There is a detailed account of

the realization process, the admissions that were made, the simulation of the environment of

the problem as well as the elements which constitute it, the communication among the agents,

11

while there is also a presentation of the roles of the classes and the activities taking place in

each of these.

In the 6th Chapter we present the experiments carried out after the implementation of the

algorithm.

In the 7th Chapter, there are some observation made during the course of the present project

concerning improvements that could be made in the algorithm used to resolve the problem

which has been undertaken. In addition, some ideas and suggestions are offered for further

expansions which could broaden the possibilities of the algorithm in the future, so that it could

be used/applied in a wider range of problems, which represent applications encountered in a

variety of human activities.

12

2.THEORETICAL CONCEPTS

2.1 Intelligent Agents

 In artificial intelligence, an intelligent agent (IA) (wikipedia) is an autonomous entity

which observes through sensors and acts upon an environment using actuators (i.e. it is an

agent) and directs its activity towards achieving goals (i.e. it is rational).Intelligent agents may

also learn or use knowledge to achieve their goals. They may be very simple or very complex: a

reflex machine such as a thermostat is an intelligent agent, as is a human being, as is a

community of human beings working together towards a goal.

 Intelligent agents are often described schematically as an abstract functional system

similar to a computer program. For this reason, intelligent agents are sometimes called abstract

intelligent agents (AIA) to distinguish them from their real world implementations as computer

systems, biological systems, or organizations. Some definitions of intelligent agents emphasize

their autonomy, and so prefer the term autonomous intelligent agents. Still others (notably

Russell & Norvig (2003)) considered goal-directed behavior as the essence of intelligence and

so prefer a term borrowed from economics, "rational agent".

 Intelligent agents in artificial intelligence are closely related to agents in economics, and

versions of the intelligent agent paradigm are studied in cognitive science, ethics, the philosophy

of practical reason, as well as in many interdisciplinary socio-cognitive modeling and computer

social simulations.

 Intelligent agents are also closely related to software agents (an autonomous computer

program that carries out tasks on behalf of users). In computer science, the term intelligent

agent may be used to refer to a software agent that has some intelligence, regardless if it is not

a rational agent by Russell and Norvig's definition. For example, autonomous programs used for

operator assistance or data mining (sometimes referred to as bots) are also called "intelligent

agents".

Apparently, the most widely accepted definition is that of Wooldridge (Wooldridge & Jennings,

1995) according which :

An agent is computer system that is situated in some enviroment ,and that is capable of

autonomous action in this enviroment in order to meet its delegated objectives.

http://en.wikipedia.org/wiki/Rational_choice_theory
http://en.wikipedia.org/wiki/Interdisciplinary
http://en.wikipedia.org/wiki/Scientific_modelling

13

Fig.1 This is a depiction of the agent and the environment where it functions. The Agent, as/being an

autonomous entity, observes the environment and receives inputs through sensors and produces, as

exits, actions which affect the environment.

2.2 Multi-Agent Systems

A multi-agent system is one designed and executed as a sum of agents which interact, meaning

they cooperate, coordinate, negotiate etc. Mutli-agent systems along with the distributed

problem solving form the main fields of the distributed artificial intelligence.

The distributed problem solving deals with how a specific problem can be resolved from a

number of processing units which collaborate by sharing knowledge concerning the matter and

the individual solutions. The multi-agent systems are essentially a network of “leniently-linked “

agents acting together to resolve problems beyond the capabilities and the knowledge of a

single agent. Even though at first it would seem that there is no difference between the two

areas , yet the collaboration in the multi-agent systems is dynamic, meaning that the interacting

entities are autonomous, and they consequently decide on when and how they will cooperate.

This way, a multi-agent system can have as its main aims:

 The resolution of problems otherwise too complex to be resolved efficiently by a

single agent

 The resolution of problems by nature distributed, such as ones where collection

of data from various sources is needed, like sensor networks, distributed databases, air-traffic

control etc.

 The resolution of problems where expertise is distributed, like the flow of tasks in

a work(ing) environment

 The connection and operation of already existing legacy systems in a way to

render their implementation without any mediator systems efficient.

In multi-agent systems, the agents either work independently by exchanging data or services

and try to achieve their individual goals,or cooperate by solving minor problems so that the

combination of the partial solutions leads to the final solution. In the general case, the

environments of this category are open, there is no central design of the whole system, the

14

agents operating within these are possible to cooperate or negotiate the accomplishment of their

personal goals and offer a possibility of communication to the agents .

The main attribute of the cooperating agents is their coordination possibility through a

communication language so that they reach mutually accepted agreements and resolve

potential collisions that might derive from the accomplishment of their individual goals. The most

inclusive definition of what constitutes coordination (of what coordination is) is likely to have

been given by Huhns and Stephens :

Coordination is a property of a system of agents performing some activity in a shared

environment

2.3 Rational-Emotional Agents

 According to traditional definitions stemming from Artificial Intelligence and Multi-Agent

Systems, Rational Agents are associated with programs capable of Practical Reasoning,i.e.

building plans and choosing actions to be executed, in order to achieve their goals. For

example, SOAR-based architectures are one of the first attempts at modeling the cognitive

reasoning process of an agent (Laird, Newell, and Rosenbloom 1987) by means of explicit IF-

THEN rules.More recently, the BDI approach of Bratman (1990), Rao and Georgeff (1995) is a

theory of practical reasoning (deciding what to do next) directed towards situated reasoning

about actions and plans (Allen et al. 1991). Recently, authors have proposed to integrate into

rational agent architectures psychological notions, in order to propose: 1)a more complete

cognitive models of agents; 2) agents capable of sustaining more human-like interactions with

people, especially ordinary people involved in conversational activities with assistant agents.

 For example, Gratch and Marsella (2004) have proposed a model of emotions based on

SOAR, with a significant impact upon the SOAR architecture. Using the agent creation platform

JACK that implements the BDI theory, CoJACK (Norling and Ritter 2004; Evertsz et al. 2008) is

an extension layer intended to simulate physiological human constraints like the duration taken

for cognition, working memory limitations (e.g. “loosing a belief” if the activation is low or

“forgetting the next step” of a procedure), fuzzy retrieval of beliefs, limited focus of attention or

the use of moderators to alter cognition.

 Emotions have also been integrated to the BDI framework, for instance with eBDI (Jiang,

Vidal, and Huhns 2007) or KARO (Steunebrink,Dastani, and Meyer 2007). All those works

provide a good introduction about the history of the necessity to implement emotions, and more

generally psychological notions, into rational agents.

 Although there has also been a lot of research works about the effect of personality on

agents’ behaviors in the virtual agents community (one of the most recent one being the

SEMAINE project (Bevacqua et al. 2010)), they generally focus more on their impact on the

animated agent (e.g. gaze or facial expressions) than on the rational decision process.

15

2.4 Environment of simulation :Avoid up Collisions

 The problem we are trying to resolve in this study is one encountered in several aspects

of daily life. So, motivated by examples regarding our everyday life and the problems we face in

each and every aspect of it, we have tried to simulate one such example in our problem. For

example, if one is in a central avenue running to catch the subway to get to work as fast as

possible, during this particular route they may encounter lots of people heading towards them

and an effort is made to try and avoid them in order not to collide and be late arriving to the

destination. Yet, one can never be sure towards which direction the others are moving; they just

make assumptions in their effort to avoid collision. A similar example could be when a car crash

is about to occur. Such problems taken from our daily life were the inspiration to conduct this

kind of research.

 The simulation environment we have created concerns the movement of two or more

people. More specifically, we have created an environment where an intelligent Agent and

Dummies are interacting. To be exact, the Dummies are moving around the environment alone,

with no particular purpose, aimlessly. One the other hand, our Agent is moving within the

environment with a clear destination and direction toward it. It decides how it wants to move by

itself. Consequently, there is a chance that they will collide during their movement in this world.

So, the intelligent Agent, since it possesses perceptions and feelings, will react uniquely to this

event whereas the Dummy which has no perception will not display a unique reaction because it

conducts itself as a robot. In Chapter 5 there is a more detailed description of the simulation

environment

2.5 Expectations

2.5.1 What we mean with the term “Expectations”

 In the introduction we mentioned the term “expectations”, in this one we are going to

describe it in detail so that we can perceive what we are trying to accomplish in this project. In

case we are not sure of something, meaning there is a feeling of uncertainty, using the term

expectations we refer to what we consider most likely to happen. An expectation is a belief

centered on the future, which may or may not be realistic. For instance, an unexpected result or

one we would not prefer will provoke a sense of disappointment, namely the Agent after an

undesirable collision with another agent will become more nervous and less happy. On the other

hand, if something we did not anticipate occurs, it will cause us the feeling of surprise. For

example, if the agent sees another dummy heading towards them and it is likely that they will

collide, if the dummy ultimately avoids the agent and they do not collide, this will provoke a

feeling of surprise to the agent. An expectation related to the behaviour or the performance of

another person, expressed according to that person, could be a strong request or a command.

16

 Expectations lead to consequences in the beliefs.. If an expectation is true or not has a

direct effect on whether or not a result is going to occur. Regarding the beliefs, it is a situation

where a person, according to what is happening to them and to the results of their actions,

considers these real, a part of their reality.

 Consequently, in this project, we executed a model in which our agent, in accordance

with its behaviour and the scenarios of its movements, adopts the respective perceptions and

beliefs.In compliance with which it acts and behaves in every occasion. Each of its behaviours is

immediately affected by these. We are going to elaborate on all these in the following

paragraphs.

2.5.2 How the expectations affect the mood

 Mood is a certain emotional state. Mood in general differs from emotions in that it is less

specific, less intense and less likely to be caused by a specific simulation or event. Generally

speaking, mood could have either positive or negative effect. For instance, people generally in a

good or bad mood.

 Mood is different from temperament and personality, however, there are certain

personality traits which intensely affect the mood. Mood is an internal, subjective situation.

A person’s expectations can have a considerable effect on their emotional state, if caused under

intense circumstances. If for example the feeling of happiness or fear is a a strong feature of the

person’s psychosynthesis, it is inevitable that their expectations will also be affected. The

emotion and the mood constitute a determinant factor concerning a person’s expectations and

behaviour.

17

3. STATE OF THE ART

3.1 Abstract

 Emotions are an important aspect of human intelligence and have been shown to play a

significant role in the human decision-making process. Researchers in areas such as cognitive

science, philosophy, and artificial intelligence have proposed a variety of models of emotions.

Most of the previous models focus on an agent’s reactive behavior, for which they often

generate emotions according to static rules or pre-determined domain knowledge. However,

throughout the history of research on emotions, memory and experience have been emphasized

to have a major influence on the emotional process.

 The model I have designed in this study can be considered a part of the model

(originally) created by prof. Ricardo Imbert Paredes (Imbert, 2005). In the following paragraphs

there will be a detailed description of this model, which presents the mechanisms proposed by a

generic cognitive architecture for agents with emotional influenced behaviors, called

COGNITIVA, to maintain behavior control at will without giving up the richness provided by

emotions. This architecture have been used successfully to model intelligent agents with

emotions, expectations and intelligence.

3.2 Emotional architectures for agents

 When trying to incorporate this emotional dimension into computer systems, most of the

theoretical models are very hard to be applied directly, because their psychological formulation

has a difficult fitting on computer restrictions.In fact, most of the current emotionally inspired

computational systems (almost always agent-oriented) match one of a very small group of

emotional model types: appraisal models, motivational models, dimensional models. The

empirical results of these approaches reveal that including an emotional influence in the agent’s

reasoning model helps to better explain and understand behaviors observed in real life.

However, neither these models nor the architectures and systems developed from them, provide

a definitive solution —if there is one— to the inclusion of emotions into the general process of

intelligent reasoning. Some deficiency or drawback is always imputed to everyone, although,

depending on the contexts and problems, they also prove sometimes to be acceptably

adequate.

 The structure underlaying emotional architectures is, frequently, very complex.

Sometimes, emotional elements and mechanisms are interwoven with the restrictions and

particularities of the application context and with the problem to be solved, mingling with them,

and making them very difficult and costly to be reused in different contexts (J. Gratch & S.

Marsella, 2004), (S. Gadanho, 2003).

 In other situations, emotional architectures are very generic, independent from any

specific problem (S. Allen, 2001), (D. Canamero, 1997). However, usually the lack of an

orientation to the particular necessities of the problem originates less-efficient, computationally

18

demanding mechanisms. In the end, the need to produce feasible applications usually forces the

designers to reconsider their structure and simplify some of their inherent features.

 Our hypothesis is that current solutions are not as satisfactory as they should be

because they fail, precisely, in the “attitude” with which they cope with complexity: instead of

betting on specificity or generality, we believe that the key to the solution lies in adaptivity.

The complexity must be faced from a new perspective to allow the development of both

reusable and efficient systems; a new approach adaptable to the specific necessities of the

application context and problem, but without losing a generic nature; and a new architectural

focus able to provide coherent and explainable structures, components and processes.

3.3 Our Cognitive Architecture to Manage Emotions

 Our proposal is to model agents using a truly emotionally-oriented architecture, not a

conventional architecture with an emotion component.In our opinion, explainable and elaborated

emotion-based behaviors can only emerge when the whole architecture has an emotional

vocation.

 The architecture that we propose, called COGNITIVA, is an agent-based one. Agents

are a common choice to model autonomous agents.Considering an agent as a continuous

perception-cognition-action cycle, we have restricted the scope of our proposal to the

“cognitive” activity, although no constraint on the other two modules (perceptual and actuation)

is imposed.This is the reason why this architecture will be sometimes qualified as “cognitive”.

 In cognitiva, emotions are not considered just as a component that provides the system

with some “emotional” attributes, but all the components and processes of the architecture have

been designed to deal naturally with emotions. Cognitiva is a multilayered architecture: it offers

three possible layers to the actor designer, each one corresponding to a different kind of

behavior, viz reactive, deliberative and social (see Fig. 2). The interaction of these three layers

with the other two modules of the actor, the sensors (perceptual module) and the effectors

(actuation module), is made through two specific components, the interpreter and the scheduler,

respectively.

19

Fig2. Structure of COGNITIVA

 The cognitive module described by cognitiva receives from the perceptual module (the

actor’s sensors) perceptions of the environment. This input may not be directly manipulable by

most of the processes of the cognitive module and must be interpreted (for instance, sensors

might provide measures about light wavelengths, but the cognitive module could only be able to

manage directly colors). In other situations, many input may be irrelevant for the agent, and

should be filtered.

 Cognitiva provides a component, called interpreter, which acts as an interface between

sensors and the rest of the cognitive module, receiving the perceptions coming from the

perceptual module, filtering and discarding those noninteresting to the agent, and translating

them into percepts, intelligible by the rest of the components and processes of the cognitive

module.

 On the other hand, each time some internal reasoning process, in any of the three layers

of the architecture, proposes an action to be executed, it must be properly sequenced with other

previous and simultaneous action proposals. This should not be a responsibility of the actuation

module (effectors), since this module should not need to have any information about the origin

and final goal of the actions it receives. Cognitiva proposes a component, the scheduler,to act

as interface between the cognitive module and the effectors, managing an internal agenda in

which action proposals are conveniently sequenced and ordered. The scheduler organizes the

actions according to their priority, established by the reasoning process that generated them,

and their concurrence restrictions. Once it has decided which is/are the most adequate action/s

to be executed, it sends it/them to the effectors.

20

The dynamics of the architecture follow a continuous cycle, represented in the Fig. 3

3.4 State of the Agent

3.4.1 Current State of the world: Beliefs

Beliefs represent the information managed by the agent about the most probable state of the

environment, considering all the individuals in it. Among all the beliefs managed by the agent,

there is a small group specially related to the emotional behavior. This set, that has been called

the agent’s personal model, is composed by the beliefs that the agent has about itself. More

precisely, this personal model consists on personality traits, moods, physical states, attitudes

and concerns.

 Cognitiva defines a taxonomy of beliefs, depending on their object and their nature. On

one hand, a belief may refer to a place in the environment, to objects located in the

environment, and to other individuals. Besides, the agent maintains beliefs concerning the

current situation, for instance a belief of my Agent about the current situation may be the fact

that the Agent walk in the environment for finding his goal and his destination and during his

walk maybe the Agent found dummies and there is a collision.That is not information about the

Agent, nor about the dummies, but about the situation that is taking place. Beliefs about places,

objects and individuals may include:

21

 Defining characteristics (DCs), traits that mark out the fundamental features of places,

objects or individuals. DCs will hardly change in time, and if they do, it will happen very slowly.

For instance, the distance from my Agent to find his destination and his location may be DCs

about the place; a DC about CodeWalker (individual) and the Dummies are their names.

Among all the DCs that an agent can manage, cognitiva prescribes the existence of a set of

personality traits (P) for individuals. Personality traits will mark out the general lines for the

agent’s behavior. For instance, my Agent can be provided with two personality traits, self-

control and positiveness.

 Transitory states (TSs), characteristics whose values represent the current state of the

environment’s places, objects or individuals. Unlike the Dcs, whose values are, practically, static

in time, the TSs values have a much more dynamic nature. Cognitiva considers essential two

kinds of TSs for individuals: their moods(M), which reflect the emotional internal state of the

agents; and their physicalstates (F), which represent the external state of the actors . In our

example, CodeWalker could have as moods happiness, nervousness and disgust.

 Attitudes (As), which determine the predisposition of the agent towards the

environment’s components (places, objects and individuals). Attitudes are less variable in time

than TSs, but more than DCs. Attitudes are important to guide the agent’s decision making,

action selection and, above all, to keep coherence and consistency in the agent’s interactions.

The elements of the personal model in our architecture have been modeled with a fuzzy logic

representation. Fuzzy logic linguistic labels are nearer to the way in which humans qualify these

kind of concepts (it is usual to hear “I am very happy”, instead of “My happiness is 0.8”).

Besides, fuzzy logic is a good approach to manage imprecision. Relationships among personal

model elements are a key point in cognitiva. Many of these beliefs are conceptually closely

related, and have a direct influence on each other:

 Personality traits exert an important influence determining emotions. For

instance, in a similar situation, the value of the mood happiness will be different for a

positiveness agent than for a negative one.

 The set of attitudes of an agent has some influence on the emotions that it

experiences. For instance, the collision of our Codewalker with the dummy will produce an

increment on the agent’s nervousness.

 Personality traits, in turn, have influence on attitudes. The colision towards the

dummy will be different depending on the value for the personality trait positiveness: a

negative agent will feel absolute rejection towards dummies, whereas a happiness one just will

not like them.

 Physical states have also influence on emotions. For instance, when the agent is

positiveness, its happiness will increase.

22

 Finally, personality traits exert some influence on concerns. This influence will be

explained later on.

All these relationships have been designed and implemented through special fuzzy rules and

fuzzy operators. The result is a set of fuzzy relationships, which might include the following:

positiveness DECREASES <much> nervousness

positiveness INCREASES <few> happiness

positiveness DECREASES <some> disgust

self-control DECREASES <much> happiness

3.4.2 Manage of the past history

The agent’s past history maintains propositions related to any significant event —from the

agent’s point of view— that happened. Past history is a key tool to include, in the agent

reasoning, considerations on events occurred in past moments. Behaviors that do not take into

account past events are disappointing to human observers, specially in storytelling. Cognitiva

considers two mechanisms to maintain the agent’s past history information:

 Accumulative effect of the past: this is an implicit mechanism, related to the

way in which beliefs are managed. External changes in the environment or internal modifications

in the agent’s internal state may produce an update of the agent’s beliefs. In the case of

transitory states, this update is performed as a variation —on higher or lower intensity— on the

previous value of the belief, avoiding abrupt alterations in the individual’s state.

 Explicit management of the past state: an accumulative effect of the past

events may not be enough to manage efficiently the past state, because it does not consider

information related to the events themselves or to the temporal instant in which they took place.

Cognitiva maintains explicit propositions related to any significant event —to the agent— that

happened. In the agent’s past history we could find events such as the dummies returned left for

avoiding our agent, or in a previous moment the dummies returned right and they had a colision

with our agent. Past history allows the agent to reason considering facts occurred in past

moments. As a possible way to implement it, an inverse delta based mechanism has been

developed to manage past events.

23

3.5 The emotional Behaviour

 Emotions, in particular moods, may be a strong force to drive the agent’s behavior.

As it was seen before, emotions are part of the state of the agent. If their values are properly

updated and their effects are reasonable, the outcomes of the emotionally based behavior will

not be unpredictable, but coherent responses.

3.5.1 The Effect of Perceptions on Emotions

 Cognitiva provides some mechanisms to update and control the internal state of the

agent and, in particular, to control the values of the components of the personal model.

In the first place, the interpreter will direct the interpreted precepts to the convenient processes

in every layer of the architecture. The interpreter also feeds information for updating past history

and beliefs. Most of that updating may be more or less automatic, and needs no further

processing. For instance, when the agent perceives the new position of the dummy, the

interpreter will update automatically the beliefs about his new position that he wants to move.

However, that is not the case for moods, and moods are the core of emotional behavior. The

new value of moods depends on their old value and on the perceptions, but also on what was

expected to happen and to which degree that occurrence was desired. Moods need a new factor

to be conveniently generated. With this aim, cognitiva includes the mechanism of the

expectations, inspired on the proposal of Seif El-Nasr , which has been adapted, in turn, from

the OCC Model.

 Expectations capture the predisposition of the actor toward the events — confirmed or

potential. In cognitiva, expectations are valuated on:

 Their expectancy: Expressing how probably the occurrence of the event is

expected

 Their desire: Indicating the degree of desirability of the event

Through expectations, the interpreter has a mechanism to update moods from perception:

 When the event occurrence has not yet been confirmed. Moods will be

updated depending on the degrees of expectancy and desire for the event. For example, if the

Agent knows that the Dummy was going towards to him he may elaborate the expectation

“maybe happened a collision”. That is an undesirable event, whose occurrence has not been

confirmed yet, that produces a sensation of distress, increasing the value of agent’s

“nervousness” and decreasing the value of his “happiness”.

 When the event occurrence has already been confirmed. Again, depending on

the degrees of expectancy and desire for the event, moods will be updated. For instance, if

someone (World Agent) informed our Agent that there is one collision between our Agent and

the Dummy, his fears would be confirmed, and his distress would transform into disgust,

decreasing considerably the value of her “happiness”.

24

 When the event non-occurrence has already been confirmed. The degree of

expectancy and desire of the event will determine the updating of moods. For instance, when

our Agent see the dummy to go for an other way and to avoid him, he believes that there is no

collision, so his expectation about collision vanishes, and distress would give way to relief by

increasing “happiness” and decreasing nervousness and disgust.

 This is how expectations are used to update moods, but, what is the origin of those

expectations? Actions will have a set of associated expectations. When the scheduler selects an

action to be executed, it informs the interpreter about what is expected to occur in the future,

according to that action.

3.5.2 The Effect of Emotions on Actuation

 It is reasonable that actions proposed by the reactive layer have a higher priority in the

queue of actions to be executed than those coming from the deliberative or social layers. Even

more, it makes sense that deliberative or social action executions are interrupted when a

reactive action emerges. Then, does not that mean that reactive, instinctive, passional actions

will always take the control of the actuation, leaving out higher level behaviors? Is not that, in

fact, losing control? In fact, humans have, to some extent, the ability to control the reactions that

logically follow from their emotional state.

 The mechanism proposed in Cognitiva to allow higher level control the agent’s actuation

is the use of concerns. Beliefs represent information about what the agent thinks is the most

probable state of the environment, including itself and the rest of the agents. For instance, when

our Agent (CodeWalker) has a collision with others dummies, he will know that he his feeling

nervousness but as this is not at all a desired state for him, he should try to do something to

change that state.

 Concerns express the desirable/acceptable values for the TSs of an agent anytime, in

particular, for emotions and physical states. Concerns restrict the range of values of the TSs

of the agent, expressing the acceptable limits in a certain moment. With this aim, concerns

provide two thresholds, lower and upper, for every TS. All the values among them will be

considered as desired by the agent; those values out of this range will be unpleasant, and the

agent will be inclined to act to avoid them and let them move to the desired range.

 Then, a reaction, besides some triggering conditions, the operator to be executed, the

consequences of its execution, and some other parameters, such as its priority or its expiry time,

will be provided with justifiers, i.e., emotional restrictions that must be satisfied to execute the

action. Justifiers are expressed in terms of restrictions related to the value of the agent’s

concerns, that is, restrictions on the desirable state of the actor. For instance, a justifier to trigger

a reaction to change direction or change mood because of the nervousness produced by the

collision with the Dummy will be:

25

 nervousness > upper threshold concern(nervousness)

 Whenever some agent wants to be able to stand a bit more nervousness, it first must

raise the value of the upper threshold of this concern. If nervousness does not surpass the value

of the upper threshold, the reaction will not be justified and it will not be triggered.

 Depending on the personality traits of the individual, which have some influence on

concerns as it was mentioned before, the real new value for that upper threshold will be higher

or lower. Coming back to the scenario , if we have two agent with personality trait, one

positiveness and another one easily negative, and they have the both a collision with one

Dummy, their nervousness will raise and a reaction of escape would be triggered. Once they are

far enough and their nervousness has descended under the value of the upper threshold of its

corresponding concern, but still they will feel worried if it will happen a collision again. However,

the new information included in their beliefs, the position of the Dummy, prevents them from

generating a plan to change direction and not happen collision again. Then the two agents

decide to increase their nervousness tolerance (the upper threshold of their concern about

nervousness), each one according to their possibilities (their personality traits). They tried again

to walk in the road, perceive the Dummy and, again, their nervousness raises. But, this time, the

level of the nervousness of the positive agent does not surpass its nervousness tolerance upper

threshold, and if it happen collision he isn’t so upset. The other agent, less positive, cannot raise

enough its nervousness tolerance upper threshold, and, again, he feels so upset and disgust.

 In this way, higher processes of the architecture (deliberative and social) can adjust the

value of the thresholds of the agent’s concerns to control the instinctive actuation whenever it is

not desirable.

26

3.6 Expectations

 During the research there were a lot of different models that each focus in a different

parts. For example, Bolles and Fanslow proposed a model to account for the effect of pain on

fear and vice versa (Bolles and Fanslow 1980). Other models focus on the process by which

events trigger certain emotions; these models are called “event appraisal” models. For example,

Roseman et. al. developed a model to describe emotions in terms of distinct event categories,

taking into account the certainty of the occurrence and the causes of an event (Roseman et al.

1990). Other models examine the influence of expectations on emotions (Price et al. 1985).

While none of these models presents a complete view, taken as a whole, they suggest that

emotions are mental states that are selected on the basis of a mapping that includes a variety of

environmental conditions (e.g., events) and internal conditions (e.g., expectations, motivational

states).

 In this papar, we will focus on the part of the expecations of our model COGNITIVA.

Then we will try to implement the part of the expectations of this model.Besides, to update

moods, COGNITIVA allows the definition of expectations, inspired on the proposal of Seif El-

Nasr, adapted, in turn, from the OCC Model. Expectations capture the predisposition of the

agent towards events—confirmed or potential.

27

4. DEVELOPMENT

4.1 Description of the Problem

For the problem we have resolved in this project, we have used an algorithm whose aim is to

research an Agent’s behaviours, reactions and expectations in case of a collision.

The design of the algorithm can be divided into three phases:

Phase 1: We have created an agent(CodeWalker) who has a certain personality according to

which a mood is created respectively. In fact, what we wanted to achieve was to create an

Agent who responds to human characteristics and behaviours, because it is far more interesting

to create and simulate the CodeWalker with feelings, personality and behavior rather that spend

time on one who behaves like a robot, meaning it has a predefined actions and behaviours.

When designing a robot, the results are entirely expected and the experiment lacks interest.

Additionally, apart from our Agent, we create Dummies as well, which/who behave like robots,

in other words they have a certain predefined behavior. With this in mind, we create the

following scenario : We have got an Agent moving in an environment and having already

decided set a destination where it intends to arrive fast, staying relaxed and without

encountering any further problems.

Phase 2: This next phase is about their colliding. We add the Dummies in the environment so

that we can observe how the Agent will react, based on its personality, when it stumbles upon

obstacles which will make its task harder, make it sad, then angry and in the end frustrated,

resulting in no letting it reach its goal easily. Their role is to cause collision in the Agent’s

movement. This means that when they meet in the same position, they will collide against each

other and we will observe the way our Agents will react.

Phase 3: This is the most interesting part of the project, the CodeWalker’s reaction. Its reaction

involves numerous elements. For instance, if the CodeWalker collides with one or more

Dummies, the likeliest and most reasonable scenario is that it will want to change its direction in

order to avoid them and reach its destination without any consequences. This incident will also

alter the CodeWalker’s mood, which is directly related to its personality. There is also a function

inextricably linking the CodeWalker’s personality and mood (which we are going to describe in

more detail later on). More specifically, we have added the following personality traits: self-

control and positiveness. And as mood there are the following ones: happiness, nervousness

and disgust. Therefore in the example given, if our agent is not positive enough and happens to

collide with another one, it will experience a decrease in its happiness, an increase in its

nervousness and a considerable increase in its disgust. On the other hand, the opposite

scenario will take place if our agent could be described as rather positive/positive enough. A

variety of other kinds of reactions may also be experienced by our agent, reactions we will focus

28

more on in the next sections and which depend on the collision scenarios we are going to

examine. Thus, after the Agent has reacted, we are going to evaluate the results according to its

expectations as to whether these were expected and desired or not. In our example, this could

be explained by if the Agent had foreseen the way the Dummy would move and if eventually

that was the desirable one.

Summing up, our study focus on the collision between the Agent and the Dummies, on the

Agent’s reaction, as well as on its expectations regarding the desirability of these expectations

Fig.4 The architecture of the Algorithm

29

30

4.2 Description of the design

4.2.1 Description of the movement

 Concerning the Agents and Dummies’ movement, we have created a grid, a two-

dimensional framework where our Agents move, which simulates the environment(world) of the

problem. For example, this grid may be 25x3. Each cell of the grid represents a possible position

either for a dummy or for an agent. We take for assume that the agents’ movement goes

towards a single direction each time – upwards, downwards, right or left. What this means is that

an agent needs to fulfill two movements to access a cell located in a diagonal position to its own:

A horizontal (right or left) and a vertical one (up or down). To recreate this kind of movement in a

more understandable form, we have created a GUI through which we can see exactly how the

agents move.

 The agents development is provided through the Jade library. We have developed a

class, the CustomAgent, which offers its own functions as well, ones used by the Agents for

their various functions, but this method also creates each time a snapshot of the Agents class.

As a result, it is through this class that we design our main 3 agents (CodeWalker, Dummy,

World Agent). We define the location of each agent (CodeWalker, Dummies) in the environment

with the line arguments.

 Initially we create the CodeWalker and as many Dummies as we want. Later, we create

a third agent (called World Agent) which has an assisting role and acts as an administrator,

namely it is the one responsible and which adjusts the CodeWalker and Dummies’ movement.

They do not know their mutual movements, but it is only the World Agent which informs the

CodeWalker of the Dummies’ movements each time, so that the CodeWalker knows if there is

going to occur a collision among them. This happens only after and if the CodeWalker asks the

World Agent for permission to move appropriately and in turn, when ready, the World Agent

sends the appropriate message where to move. The same things happens to the case of the

Dummies accordingly.

 This is a necessary process so that the CodeWalker, depending on its personality and

experience, decide on which is the appropriate next move to make, with the intention of

rendering the arrival at its destination easier. The movement scenarios are the following:

 The CodeWalker moves along the way, meaning up (y+1) - down (y+1) - left

(x+1) – right (x-1), aiming to reach its destination.

 On the other hand, the Dummies move completely randomly within their

environment.

 In this point, it should be noted that the choice to create dummies from the same class is

due to the fact that they are identical in this particular application and they perform exactly the

same actions towards the accomplishment of a common goal. If each of them had a distinct role

31

in the problem-solving process, which would also bring about different actions for each dummy,

then they would have to be taken from different classes.

4.2.1.1 Perceptions

All the steps described above represent the perceptions agents receive from the environment –

their world. In the tables below we will try and recreate how perceptions are linked/connected to

behaviours.

Perception WAITING_WORLD_INITIALIZE

Behaviour All agents are waiting for the environment of the World Agent to initialize and
then proceed to their next move(ment)s.

Perception GOAL_FOUND

Behaviour When the Agent reaches its final destination, the execution of the algorithm
no longer continues

Perception DUMMY_REQUEST_MOVE

Behaviour The Dummy asks the World Agent for permission to move

Perception REQUEST_MOVE

Behaviour The Agent asks the World Agent for permission to move

Perception DUMMY_STOP_MOVE

Behaviour The Dummy stops moving as well as soon as the Agent reaches its final
destination.

32

Perception REQUEST_MOVE_ACCEPT

Behaviour The World Agent grants the Agent permission to move

Perception REQUEST_MOVE_REJECT

Behaviour The World Agent doesn’t allow the Agent to move

Perception DUMMY_MOVE_TO

Behaviour The World Agent informs/instructs the Dummy as to where to move

Perception INFORM_NEW_DUMMY

Behaviour We inform the World Agent of the existence of a new Dummy.

Perception UPDATE_UI

Behaviour When one of the Agents moves, it also notifies the World Agent so that it
can refresh the GUI with their new/current locations/positions.

Perception REQUEST_MOVE_ACCEPT_BUT_MUST_MOVE_DUMMY

Behaviour The World Agent informs the Agent that it can/may move, but that the
Dummy also has to move.

Perception DUMMY_FORCE_MOVE_TO

Behaviour The World Agent forces towards a specific direction.

33

Perception WORLD_INITIALIZED

Behaviour The grid initializes

Perception UPDATE_MOOD

Behaviour The Agent’s behavior is updated (once at a time …)

4.2.2 Relations between Personality Trait and Mood

As it has already stated above, the Agent has certain personality traits, namely self-control and

positiveness. It also possesses certain moods, having three parameters, meaning happiness,

nervousness and disgust. There are two variables in prof. Ricardo Impert Paredes’ model for

the implementation of rules between personality and mood. These variables are interrelated and

refer to the beliefs. The influencer representes the personality trait and the influenced the mood

respectively:

 Influencer: A feature whose value (directly) affects another features value.

 Influenced: The value of influence the influencer exerts on the influenced.

An additional parameter related to the two values and connect them is degree of influence:

 degree of influence: it is the value the influencer affects the influenced.

Thus we use two functions to express the level of influence of the influencer feature on the

influenced:

 INCREASE: According to this function, the influencer trait causes an increase in the

value of the influenced. This value, which will also be estimated through this function, is the

maximum value which can express the degree of influence of the beliefs. The way this function

works is as follows: Suppose X and Y are the values of the attributes of our model (for a given X

personality trait and a Y mood), (inter)related with the following relation:

X INCREASE <deg> Y

34

 “deg” is the degree of influence. Therefore, the new value representing the amount of

mood is going to be:

< Y’ > = < Y > + < X > ⓧ <deg>

 DECREASE: According to this function, the influencer attribute causes a

decrease in the value of the influenced. This value, which will also be estimated/calculated

through this function, is the minimum value which can express the degree of influence of the

beliefs. The way this function works is as follows: Suppose X and Y are the values of the

attributes of our model (for a given X personality trait and a Y mood), (inter)related with the

following relation:

X DECREASE <deg> Y

 “deg” is the degree of influence. Therefore, the new value representing the amount of

mood is going to be:

< Y’ > = < Y > - < X > ⓧ <deg>

In our example, then, these are potential rules to make after the collision:

 Rule: influencer WAY of Influence <degree of influence> influenced

 Where the degree of influence can be the following values: none, some, medium,

much, completely. In our algorithm, the degree of influence is represented by three values:

much, some, none.

 Accordingly, all the aforementioned stages in our algorithm have been carried out as

described here: First, we initialize the personality and the mood from the arguments line with

random values from 0 to 1 and we have created two classes: one for the mood and one more for

the personality. Within the CodeWalker class we caal for a new behavior, which updates every

time the Agent’s mood. We have also defined cleared an area within whose limits the Agent

expects that a collision will occur if one or more Dummies enter, thus changing its mood since it

no longer feels safe. This distance is equal or less than 5 (referring to a distance of 5 cells

between them). This results in the following scenarios:

 The Dummy is outside the critical point, so the mood increases (function

Increase) in a positive way and the degree of influence is between the values (0.5,1) and can

be represented with the expression <much>.

35

 If it already is within the critical area but is on its way out, there is also a function

increase, though not that intense. The degree of influence is between the values (0.15,0.5) and

can be represented with the expression <some>.

 The Dummy has just entered the critical area, so there is a function decrease in

the Agent’s mood, but not dramatic one. The degree of influence is between the values (0,0.15)

and can be described with the expression <some>.

 The Dummy is just beside the Agent and a collision is bound to occur, so a rapid

function decrease is experienced. The degree of influence is between the values (0.15,0.5) and

can be represented with the expression <none>.

 Which function is the one we use each time depends on whether the Agent is within the

critical area and on the respective features. Furthermore, the Degree of Influence takes a variety

of values because it also depends on the Agent’s personality and on the area it is in.

 We have created as well a GUI in the CodeWalker class to recreate the CodeWalker’s mood

and make the way it behaves more understandable to the user. In the GUI, we initially created 3

bars (JSlider type) which go up and down oscillate according to the mood changes. More

specifically, in the CodeWalker class we call for the class in order to create the feelings frame.

The bars represent the mood fluctuations of our Agent during the course of its motion. Finally,

we have added textFiled (JTextField type) where we can see the Agent’s mood and name.

4.2.3 Avoid up Collision

 During the agents’ movement, it is very likely that a collision will take place. Thus, we are

trying to apply different scenarios so as to avoid the collision. A collision is achieved when(ever)

the CodeWalker, in its next step, tries to occupy a place already occupied by someone else. As

a result, when the CodeWalker wants to claim this kind of place in its next step, the main goal

during this phase is to avoid colliding, though in most cases such an event is impossible due to

our inability to predict another’s movements. We simply try to guess which the dummy’s possible

movements are. The possible scenarios in case both want the exact same position are the

following:

 When the Dummy is already in the position the Agent wants to claim, we let the

Agent select the way it will move, giving him priority, as it has both perception and intelligence.

As long as the Agent selects the way it is going to move, the Dummy has 2 possible choices on

its part. Since its movement is controlled by the World Agent, it will either <<push>> him towards

an alternative direction (left or right for example) or it weill remain in the same position.

36

 On the other hand, as long as the CodeWalker has received all the refreshed

movements of the Dummies within the particular environment and observed a collision is about

to take place, it will try to decide upon where to move so that the collision can be avoided. As a

consequence, its choices could be either move towards a certain direction (up, down, left or right

for example) or remain still in the already occupied position without taking any steps. The

decision that will prevail is immediately dependent on the perceptions the CodeWalker receives

from its environment.

The scenario that will prevail each time depends exclusively on the Agent because it has the

perception to decide on what its next step is going to be. The World Agent sends the updated

movements of the Dummy and as a result, the CodeWalker has in its memory the way the

Dummy moved in previous occasions. As a result, the CodeWalker’s decision as to where to

move relies on where it thinks the Dummy is going to move, even though it can never be sure as

to where the Dummy will really move.

In our code, this algorithm design is developed in the administrator’s code, meaning the World

Agent’s, because it is responsible for the agents’ movements as it has already been stated.

Therefore, we store the id and location of all agents in a hash map type variable and what we

have to do every time is detect whether there is another in the same position. If the answer is

yes, then it removes this position and selects one from the rest.

Whenever there is a collision and the dummy can move, we send the following messages

DUMMY_FORCE_MOVE_TO και REQUEST_MOVE_ACCEPT_

BUT_MUST_MOVE_DUMMY.If on the other hand there is a collision and we cannot move the

dummy elsewhere, we send REQUEST_MOVE_REJECT. If then there is no collision, the

CodeWalker moves normally and the World Agent sends it the REQUEST_MOVE_ACCEPT

message. A similar detection takes place in case two dummies collide. In such case, we let one

of these move randomly toward a direction and the other remains still. The Dummy’s

movements are decided within the World Agent’s class, but they take place within its own class.

In the same respect, the CodeWalker decides on its own moves within its own class but these

take place within tat of the World Agent.

This check is performed at the level of perceptions, when we receive a message like

DUMMY_REQUEST_MOVE or REQUEST_MOVE.

The possible collision scenarios are described in the following figures.

37

Fig 5 .No collision. The CodeWalker is in the Critical Area and he avoids the collision

Fig 6. Collision. The CodeWalker is in the Critical Area and it going to be happened collision

38

Fig 7 No Collision. The CodeWalker is in the Critical Area and avoidance of Collision

Fig 8 .Collision. The CodeWalker is in the Critical Area with the Dummy and they go towards each other.

39

4.2.4 Description of the Action

 In our model, COGNITIVA, the interpreter initially takes as entry the position of each

agent, interprets it according to the moods, personality, beliefs and acts-reacts

accordingly(reactive level). If it acts appropriately, we judge if the result of this reaction is

expected or desired. The results of the action are :

 The mood is a feature immediately by the Agent’s reaction. More specifically, every

mood attribute may increase or decrease depending on whether there is a collision or not . The

mood plays a decisive role in the Agent’s reaction.

 The change of the direction of the movement. While the agent had an initial plan

regarding its direction, this changes whenever there is a collision. This results in the change of

the initial movement plan.

 If the Agent avoids colliding, then it will be happy and smile, whereas it will feel angry in

case of a collision.

Therefore, according to the way the CodeWalker reacts, there are two variables describing its

motion:

 Expected: Based on the perception and mood, the CodeWalker judges whether the

reaction was expected, meaning if it anticipated the way the Dummy moved so that it could react

accordingly in its effort to avoid the collision. If for example they collided and this was not

expected, the value of this variable decreases, while it increases in the opposite scenario.

 Desired: The CodeWalker considers of its motion is desired or not. For example, if there

is a collision, this is not a desired scenario and the value of this variable decreases, whereas it

increases as well in the opposite one.

 In a previous paragraph we elaborated on haw we design the change in the mood within

the code. As for the opposite case, meaning how the direction of the movement changes, it is

performed within each Agent’s code individually. To be more precise, it is in the DummyAgent

class where we design the moveTo function, the one which pushes the Agent towards its new

position. When it receives the message DUMMY_FORCE_MOVE_TO or DUMMY_MOVE_TO ,

it calls for this particular function which stores the dummy’s new location. Similarly, within the

CodeWalker’s class, we develop a Location type moveTo variable, where we have created all

the appropriate methods to move the CodeWalker through this class.

 In a previous section, we also that the expectations and the mood are inextricably linked

to one another and we developed our algorithm as follows: As we have previously stated, we

have determined a certain distance. If the Dummy enters its limits, meaning it approaches the

40

Agent, the latter expects there will be a collision between them. As a result, it changes its mood

according to the rules we described in a previous section, but it simultaneously changes its

expectations. More precisely, 4 cases take place in this area, and the two variables (expected

and desired) are affected by these. In our algorithm we defined our variables as either positive

(expected, desired) or negative (unexpected, undesired), in an effort to simplify the values of the

variables. More specifically, whenever the CodeWalker is placed in the grid, these variables

initialize based on the circumstances of the environment (for example if there are Dummies, in

what distance, how many dummies are next to it…). If the expected variable is positive, we

expect a collision, whereas we do not expect one in case it is negative. If the Desired variable is

positive too, the existing situation is the desired/desirable one for the Agent, while it is not in the

case of a negative value. Additionally, there may be more than just one Dummy in that particular

space, so the possible scenarios are the following:

 A Dummy enters this area but is just on the borders, so the CodeWalker’s mood

is starting to vhange because it believes a collision is going to take place. The Expected value is

positive and the Desired negative.

 The Dummy is already inside the critical area and is really close to the

CodeWalker, so the CodeWalker’s mood and expectations change dramatically. Positive

Expected and negative Desired.

 While the Dummy is inside this area, it is starting to getting further, so there is a

slight positive change in the mood variables. Negative Expected and positive Desired.

 The Dummy is getting away from the CodeWalker’s vicinity, but is still within the

confined area, so a collision is still likely and the CodeWalker cannot rest. Negative Expected

and positive Desired.

 Reaching this point, I feel useful to point out the use of a helping class (Helper) to

develop the Expected (value). This means that, in this class, we took three positions (the

CodeWalker’s actual position, the Dummy’s position and the final destination of CodeWalker)

and we estimate the deviation. If the three positions together with the deviation have a true

result, this means the dummies are aligned with the CodeWalker and a collision is expected.

The opposite applies in case it is false. Then we estimate/calculate the ExpectationDelta. If it is

little, the CodeWalker has just entered the critical area and it increases as the Dummy

approaches the CodeWalker.

In the table below we can observe the connection between mood and expectation.

41

 Desirable Not Desirable

Expected Positiveness Increase much
happiness and decrease much
nervousness and
disgust.(reaction = smile)

Self-control Increase some
happiness and decrease some
nervousness and
disgust.(reaction = smile)

Positiveness Decrease some
Happiness and Increase some
Nervousness and
Disgust.(reaction = sad

Self-Control not change
Happiness and not change
nervousness and disgust.
(reaction = sad)

Not Expected Positiveness Increase much
Happiness and Decrease much
Nervousness and
Disgust(reaction = surprise)

Self-Control Increase some
Happiness and Decrease some
Nervousness and
Disgust(reaction = surprise)

Positiveness Decrease some
Happiness and Increase some
Nervousness and
Disgust(reaction = angry)

Self-Control Decrease much
Happiness and Increase much
Nervousness and
Disgust(reaction = angry)

Table 2: Display of the relation between expectations and mood

42

5.EVALUATIONS CASES

I have applied experiments of two sorts. In the first one, I decided that our CodeWalker has just

one personality trait, the positiveness. You will see in detail the way the CodeWalker reacts and

makes decisions in two cases, when there is only one Dummy and when there are several.

1 EXPERIMENT

 1st case: One Dummy. We initialized the positiveness at 0.5, happiness at 0.4, nervous(ness)

at 0.5 and disgust at 0.6. The Agent is in the position 0,0 moving towards 15,2.

In this screenshot, we see the CodeWalker named Jo moving towards to the Dummy (lala). We see also

how the values of the variable Mood change depending on the Personality. We represent these moves in

a grid, so we implement a Gui. We also implement a second Gui for the moods. Finally we print some

messages from the console: how the CodeWalker moves and how he avoids the collision.

43

In these screenshot, we observe that the Dummy is going out of the Critical Area, so The CodeWalker

Increase his happiness and Decrease his nervous and disgust.

44

In these screenshot, the Dummy approach the CodeWalker and we see how the mood changes again.

45

In the last screenshot, the Dummy is next to CodeWalker, so it is very possible to be happened collision,

so he Decrease his happiness and he Increase the nervous and disgust.

46

Datagram of Moods: How the mood changes in time.

47

2nd case: Three Dummies. We initialized the positiveness at 0.2, happiness at 0.4,

nervous(ness) at 0.5 and disgust at 0.6. The Agent is in the position 0.0 heading for the 8.2.

In these screenshot, we represent the environment as a grid and how the mood changes in a Gui. The

CodeWalker named jo walks in the Critical Area with three Dummies. So we can see how he changes his

mood during his movement. We can also see how he avoids the collision.

48

49

50

Diagram Of Moods: How the mood changes in time.

51

2nd Experiment

:In this experiment, we examine CodeWalker with personality trait: self_control.

1st case: one dummy. We initialized the Self_control variable at 0.4, happiness at 0.3,

nervous(ness) at 0.4 and disgust at 0.3. The Agent is in the position 0,0 heading for the 4,1.

In the following screenshots, we represent the movement of the agents in a grid. The CodeWalker named

Jo is walking across this grid and one dummy approach him. So we observe in an other gui how he

changes the mood during his movement. We also print message in the left side how he avoid the collision.

52

53

54

Diagram Of Moods: How the mood change in time.

55

2nd case: three dummies. We initialized the Self_control variable at 0.4, happiness at 0.3,

nervous(ness) at 0.4 and disgust at 0.3. Our Agent is in position 0,0 heading for the 6,1.

In the following screenshots, we create the CodeWalker named jo and three other dummies. The

CodeWalker tries to avoid the collision with them. In the console, we print messages how the

CodeWalker avoids the Dummies. First, we represent in a Gui the road where the agents walk and

secondly, we represent in a second Gui how the mood changes.

56

57

58

Diagram of Moods: How the mood changes in time.

59

6. FUTURE WORK

Having already presented the general design of an algorithm to resolve the expectations

problem in a multi-agent system as well as the results deriving from its application with certain

data and assumptions, it is worth noting some modifications or expansions that can apply. Some

of these concern different acceptances for the same problem and the way it is formed into

words, while othersare linked to the way it can be studied and resolved. Under any

circumstances, such changes increase the intricate nature of the problem and render its solution

much more demanding, but at the same time motivate more thorough research on it and are of

great research interest.

6.1 Introduction of parameters

The initial problem can be studied under various scopes of view, changing the assumptions that

have already been made for this particular development. This happens by developing a series of

scenarios. In each of these scenarios, one or more of the initial assumptions for the research of

the problem in the present project are rescinded.

 Participation and impact of external factors

Each problem consists of certain elements which should be taken into account towards finding a

way to resolve it. There are numerous cases, though, where external factors (elements not

belonging to the immediate environment of the problem) may increase or decrease the

complexity of the problem and therefore play a significant role in the design of its solution. The

problem of avoiding collision and the Agent’s expectations deriving from this is the focus of the

present project without taking under consideration external circumstances that may have an

impact on it. The sole changes which occur concern the entities existing inside the environment

of the problem and these are tested during the execution of the algorithm to find a solution. On

the other hand, if this general view of the problem, with the specific acceptances that have been

made, is assigned to a particular problem of the real world, than there will be an amountl of

external events which should be taken under consideration for a complete solution from every

single aspect.

 Existence of multiple agents and priority assignment

The problem we have examined involves only one intelligent agent. Therefore, an expansion of

the algorithm vould be to add more intelligent agents or convert the Dummies into Agents with

personality, expectations and perception of their environment.As a result, their reaction and their

new movement/motion plan during their movement would increase the complexity of the

problem. A nice/interesting scenario would be to add priorities to the agents and make the one

with the highest priority decide where to move and let the others decide afterwards. We should

pay attention though for there not to be starvation. This would happen to an agent if it has very

60

low priority and the rest, having a higher one, would not be right to keep overruling it. There

should be proper conditions where our problem will run smoothly.

 As it has already been stated in a previous chapter, avoiding collisions is a fundamental

criterion of the Agents’ movement. As a consequence, the decision where the agent is going to

move depends on whether the next position it wants to claim is already occupied by another

dummy. Another way of expanding this scenario would be for the agent to be willing to check if

in the position where there has already been a collision with a dummy a new collision would take

place . The best case scenario each time for the agent would be to select positions that would

cause as few collisions and problems as possible. This way its feelings will not be constantly

disturbed and as a result the moves it makes each time will approach the ideal scenario for it,

meaning that they are both desired and expected

6.2 Modifications in the existing algorithm

Apart from the modifications mentioned in the previous section which have to be made in the

(re)solution algorithm in case some of the acceptances are rescinded or modified, there are also

some optimizations or expansions that can be made in the existing algorithm.

 The JADE platform offers the possibility of designing mobile agents which can “move”

within a network environment in order to achieve their goals. Essentially, these are software

processes which, during their execution, are transferred to the computers constituting the

network-environment.

There is a possibility the expectations problem is not found solely locally, but that it has a

distributed character. This means that the environment of the problem may correspond to a

JADE platform which is distributed among numerous hosts (Jade distributed Agent Platform),

which results in all the agents not being in a single host. Only a particular kind of agents can be

provided in each host (agents and dummies for example). At this point, the possibility Agents

have to “move” will be of help/assistance, so that they can get into in another host and find their

ideal/appropriate position in order to move right according to the relevant criteria. In such a

scenario, the matter of the agents’ communication and message exchange over the network is

out of question. There will be the possibility only for agents in the same host to communicate

between one another, so that they decide which is to move first at the time. In a different view of

the same problem, it is likely that the communication or even the transfer of great amounts of

data over the network will be considered essential. In any case, when the problem is based on a

distributed JADE platform, there are certain difficulties. These also concern the fact that the

remote control of mobile agents is more complex and demanding.

61

BIBLIOGRAPHY

Ricardo Impert Paredes, Tesis Doctoral:Una Arquitectura Cognitiva Multinivel para Agentes con

Comportamiento Influido por Caracter´ısticas Individuales y Emociones, Propias y de Otros

Agentes

An Objective Character Believability Evaluation Procedure for Multi-Agent Story Generation

Systems,Mark O. Riedl and R. Michael Young

http://liquidnarrative.csc.ncsu.edu/pubs/iva05-01.pdf

(Seif El-Nasr et al., 2000) - FLAME - Fuzzy Logic Adaptive Model of Emotions

Wikipedia(http://en.wikipedia.org/wiki/Intelligent_agent#CITEREFRussellNorvig2003)

S. Gadanho. Learning behavior-selection by emotions and cognition in a multi-goal robot task.

Journal of Machine Learning Research, 4:385–412, 2003.

J. Gratch and S. Marsella. Evaluating the modeling and use of emotion in virtual

humans.Proceedings of the 3rd International Joint Conference on Autonomous Agents

and Multi Agent Systems (AAMAS 2004), pages 320–327, New York, 2004.

S. Allen. Concern Processing in Autonomous Agents. PhD thesis, Faculty of Science of The

University of Birmingham, School of Computer Science, UK, 2001.

D. Ca˜namero. Modeling motivations and emotions as a basis for intelligent behavior.

Procs. of the First International Symposium on Autonomous Agents (Agents’97), pages 148–

155, New York, 1997.

Ricardo Imbert Paredes and Angelica de Antonio,Using progressive adaptability against the

complexity of modeling emotionally influenced virtual agents.

Ricardo Imbert and Angelica de Antonio Facultad de Informatica, Universidad Politecnica de

Madrid, An Emotional Architecture for Virtual Characters.

When Emotion Does Not Mean Loss of Control Ricardo Imbert and Angelica de Antonio

Facultad de Informatica, Universidad Politecnica de Madrid.

FIPA: Foundation for Intelligent Physical Agents (1999) Specification part 2 – agent

communication language. The text refers to the specification dated 16 April 1999

http://www.fipa.org/

FIPA ACL Message Structure Specification:

http://liquidnarrative.csc.ncsu.edu/pubs/iva05-01.pdf
http://en.wikipedia.org/wiki/Intelligent_agent#CITEREFRussellNorvig2003
http://www.fipa.org/

62

http://www.fipa.org/specs/fipa00061/SC00061G.html

Wooldridge, M. και Jennings, N. R. (1995), Intelligent Agents: Theory and Practice. The

Knowledge Engineering Review, 10(2), pp. 115-152

Wooldrigde, M. και Jennings, N. R. (1999) The Cooperative Problem-Solving Process. J.

Logic Computat., Vol. 9, No. 4, pp. 563-592, Oxford University Press

Wooldridge, M. (2002) An introduction to multi-agent systems. John Wiley & Sons

Russell, Stuart J.; Norvig, Peter (2003), Artificial Intelligence: A Modern Approach (2nd ed.),

http://en.wikipedia.org/wiki/Template:Russell_Norvig_2003

Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987. Soar: an architecture for general

intelligence. Artif. Intell. 33(1):1–64.

Rao, A. S., and Georgeff, M. P. 1995. BDI agents: From theory to practice. In Proc. First Int.

Conference on Multi-agent Systems (ICMAS-95), 312–319.

Bratman, M. E. 1990. What is intention? In Cohen, P. R.; Morgan, J.; and Pollack, M. E., eds.,

Intentions in Communication. The MIT Press. 15–32.

Gratch, J., and Marsella, S. 2004. A domain-independent framework for modeling emotion.

Journal of Cognitive Systems Research 5(4):269–306.

Norling, E., and Ritter, F. E. 2004. Towards supporting psychologically plausible variability in

Agent-Based human modelling. In Proceedings of the Third International Joint Conference on

Autonomous Agents and Multi-Agent Systems.

Evertsz, R.; Ritter, F. E.; Busetta, P.; and Pedrotti, M. 2008. Realistic behaviour variation in a

BDI-based cognitive architecture. In Proc. of SimTecT’08.

Jiang, H.; Vidal, J. M.; and Huhns, M. N. 2007. eBDI: an architecture for emotional agents. In

AAMAS ’07: Proceedings of the 6th international joint conference on Autonomous agents and

multiagent systems, 1–3. New York, NY, USA: ACM.

R. C. Bolles and M. S. Fanselow. (1980). A Perceptual Defensive Recuperative Model of Fear

and Pain. Behavioral and Brain Sciences, 3, 291-301.

D. D. Price, J. E. Barrell, and J. J. Barrell. (1985). A Quantitative-Experiential Analysis of Human

Emotions. Motivation and Emotion, 9 (1).

I. J. Roseman, P. E. Jose, and M. S. Spindel. (1990). Appraisals of Emotion-Eliciting Events:

Testing a Theory of

http://www.fipa.org/specs/fipa00061/SC00061G.html
http://en.wikipedia.org/wiki/Stuart_J._Russell
http://en.wikipedia.org/wiki/Peter_Norvig
http://aima.cs.berkeley.edu/
http://en.wikipedia.org/wiki/Template:Russell_Norvig_2003

63

Discrete Emotions. Journal of Personality and Social Psychology, 59 (5), 899-915.

64

ANNEX Α

Description of the software Jade

Definition of Jade

 We will try and describe in brief the software we used in the development of our code,

JADE, which has been essential in the design of our agents. JADE coordinates the various

Agents among themselves. It also provides them with mutual communication using the ACL-

message standard as well as services detecting the system.

 JADE (Java Agent Development Framework) is an middleware application fully

developed in Java by Telecom Italia Lab. It is used as the development environment of

distributed multi-agent applications based on the peer-to-peer communication architecture. The

information, the resources and the control can be distributed entirely in mobile terminals, as well

as in fixed network computers. The environment may be developing dynamically with peers,

called Agents in the JADE, which appear and disappear from the system depending on the

needs and demands of each application. The communication among the peers, regardless of

whether they run on a wired or a wireless network, is absolutely symmetrical, therefore giving

each the opportunity to play the role of either the starter of a conversation or of the one

responding to a conversation invitation received by another.

JADE provides:

● An environment where JADE agents are executed.

● Class Libraries to create agents using heritage and redefinition of behaviors.

● A graphical toolkit to monitoring and managing the platform of Intelligent Agent agents.

JADE’s (main) purpose/aim/goal is to simplify the development of multi-agent systems, ensuring

compatibility with the FIPA standard, through a set of system services and agents. To reach this

goal, JADE offers the programmer the following list of features and useful tools:

 An agent platform, compatible with the FIPA standard, which includes 3 agents

automatically activated upon launching the platform: AMS (Agent Management System), DF

(Directory Facilitator) and ACC (Agent Communication Channel).

 Ability to distribute the platform in a number of hosts. Only a Java application and more

specifically a JVM (Java Virtual Machine) runs in each host. The Agents are designed as Java

threads and the Java events are used for effective/efficient communication among the Agents

within the same host.

 Support and administration of each Agent’s life cycle through a graphic(s) environment.

 A transfer mechanism and an interface for message exchanges among the Agents.

 Support of various communication protocols (FIPA ACL) and negotiation protocols

(Contract Net).

65

 ACL message transfer within the same agents platform. These messages are transferred

encoded as Java objects instead of strings. If the sender and the receiver do not belong to the

same platform, the message is automatically converted into a form compatible with the FIPA

standard. In this way, this conversion is not visible to the agent developers who always need to

manage the same class of Java objects.

 White/Yellow Pages services to (search and) find agents and applications.

 Naming service in compliance with the FIPA standard: On launch, the agents obtain a

GUID (Globally Unique Identifier) from the platform, meaning a feature that identifies them.

 Graphic(s) environment for the user (GUI) allowing the management of multiple agents

and platforms by the same agent. The activity of each platform can be monitored and recorded.

 Support of agent transfers (code, performance status) in diverse platforms.

Fig 9. Display of the internal architecture of JADE

66

Fig.10 Architecture of a generic Jade Agent

THE GUI which is provided by the platform (fig 11, fig 12) facilitates the remote management

and status control o the agents, allowing their stop and restart. Moreover, it allows the creation

and beginning of an agent’s performance in a remote host, as well as the control of remote

platforms compatible with the FIPA standard.

67

68

Platform

(More specifically), regarding the JADE platgorm,it is a distributed agents platform, which has a

container for each host where you are running the agents. Additionally the platform has various

debugging tools, mobility of code and content agents, the possibility of parallel execution of the

behavior of agents, as well as support for the definition of languages and ontologies. Each

platform must have a parent container that has two special agents called AMS and DF.

 The DF (Directory Facilitator) provides a directory which announces which agents are

available on the platform.

69

 The AMS (Agent Management System) controls the platform. Is the only one who can

create and destroy other agents, destroy containers and stop the platform.

DF Agent:

To access the DF agent the class "jade.domain.DFService" and its static methods are used:

register, deregistrer, modify and Search.

AMS Agent:

To access the AMS Service an agent is created which automatically runs the register method of

the AMS by default before executing the method setup from the new agent. When an agent is

destroyed it executes its takedown() method by default and automatically calls the deregister

method of the AMS.

Description of the Agent Class

The Agent class is a super class which allows the users to create JADE agents. To create an

agent one needs to inherit directly from Agent. Normally, each agent recorder several services

which they should be implemented by one or more behaviours.

This class provides methods to perform the basic tasks of the agents as:

 Pass messages by objects ACLMessage, with pattern matching.

 Support the life cycle of an agent.

 Plan and execute multiple activities at the same time.

JADE Agent

The cycle of life of a JADE agent follows the cycle proposed by FIPA. These agents go through

different states defined as:

1. Initiated: The agent has been created but has not registered yet the AMS.

2. Active: The agent has been registered and has a name. In this state it can communicate

with other agents.

3. Suspended: The agent is stopped because its thread is suspended.

4. Waiting: The agent is blocked waiting for an event.

5. Deleted: The agent has finished and his thread ended his execute and there is not any

more in the AMS.

6. Transit: The agent is moving to a new location.

70

Agents Behaviour

The behavior defines the actions under a given event. This behaviour of the agent is defined in

the method setup using the method addBehaviour. The different behaviors that the agent will

adopt are defined from the abstract class Behaviour. The class Behaviour contains the abstract

methods:

● action(): Is executed when the action takes place.

● done(): Is executed at the end of the performance.

A user can override the methods onStart () and OnEnd () property. Additionally, there are other

methods such as block () and restart () used for modifying the agent's behavior. When an

agent is locked can be unlocked in different ways. Otherwise the user can override the methods

onStart() and onEnd() the agent possess.

Unlock an Agent

1. Receiving a message.

2. When the timeout happens associated with block ().

3. Calling restart.

ACL Messages

Message passing ACL (Agent Communication Language) is the base of communication

between agents. Sending messages is done by the method send of the class Agent. In this

method you have to pass an object of type 'ACLMessage' that contains the recipient

information, language, coding and content of the message. These messages are sent

asynchronously, while messages are received they will be stored in a message queue. There

are two types of receiving ACL messages, blocking or non-blocking. For this provide methods

blockingReceive () and receive () respectively. In both methods you can make filtering

messages to be retrieved from the queue by setting different templates.

