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ABSTRACT

Nowadays, Electronic Design Automation (EDA) is required for every IC to be
designed and fabricated. Placement is a paramount stage in the manufacturing
process. One of the Placement objectives is to target the best and Minimum Total

Wirelength (TWL). Both Analytical and Combinatorial methods do exist for Placement 
process. Although Combinatorial techniques, which are characterized of low complexity 
and slow execution, give an exact solution, Analytical ones, and especially Linear ones, 
are much faster by giving a very good approximation of the solution.

Being challenged by a Force-directed Analytical Placer, with purely Linear complex-
ity, called Kraftwerk2, we propose a new extended version Kraftwerk2++ that supports 
Sparse Linear solving, faster Convergence using a Maximum Density metric and both 
Poisson and Gaussian Blur formulation that the algorithm’s Forces derive from. Fur-
thermore, an enriched Quality Control system is analyzed and proposed that aims in 
a correct, concrete and of high quality placement. An attempt to support Clusters is 
presented, too. Last but not least, it should be mentioned that Kraftwerk2 has three 
degrees of Freedom that need to be balanced, which are not in the original algorithm. 
Hence, we inserted Combinatorial Logic in our iterative Kraftwerk2++ placer, in order to 
reject incorrect and invalid local solutions, balancing every placement’s solution. Finally, 
we present results proving the strength of our new KW2++ algorithm.
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Περίληψη

Στη σημερινή εποχή, ο Αυτοματισμός στον Ηλεκτρονικό Σχεδιασμό (EDA) απαιτείται ώστε 
να σχεδιαστεί και να κατασκευαστεί ένα ολοκληρωμένο Κύκλωμα (IC). Το στάδιο της 
Τοποθέτησης των στοιχείων μέσα στον πυρήνα ενός IC είναι υψίστης σημασίας. ΄Ενας από 
τους στόχους της Τοποθέτησης είναι η επίτευξη του καλύτερου και ελάχιστου συνολικού 
μήκους καλωδίων (Total Wirelength - TWL). Τόσο Αναλυτικές όσο και Συνδυαστικές 
μέθοδοι υπάρχουν για την διαδικασία της Τοποθέτηση. Παρόλου που οι Συνδυαστικές 
Τεχνικές, οι οποίες χαρακτηρίζονται από χαμηλή πολυπλοκότητα και αργή εκτέλεση, δίνουν 
μία ακριβή λύση, οι Αναλυτικές μέθοδοι, και κυρίως οι Γραμμικές, είναι πολύ πιο γρήγορες, 
δίνοντας μια πολύ καλή προσέγγιση της λύσης.

Επηρεαζόμενοι από έναν Αναλυτικό αλγόριθμο Τοποθέτης, βασισμένο σε μεθόδους 
Μηχανικής, τον Kraftwerk2, προτείνουμε μια νέα εκτεταμένη έκδοση με όνομα Kraftwerk2++, 
η οποία υποστηρίζει επίλυση Sparse Γραμμικών Προβλημάτων, ταχύτερη σύγκλιση χρησι-
μοποιώντας μια μετρική Maximum Density και έναν φορμαλισμό τόσο της μεθόδου Pois-
son όσο και της Gaussian Blur από την οποία προέρχονται οι Δυνάμεις του αλγορίθμου. 
Επιπρόσθετα, προτείνεται ένα πιο εμπλουτισμένο σύστημα ποιοτικού ελέγχου το οποίο 
στοχεύει σε μια σωστή, έγκυρη και ποιοτική λύση. Επίσης, παρουσιάζεται μια προσπάθεια 
για την υποστήριξη Clusters, ομαδοποιημένων στοιχείων. Τελικώς είναι πολύ σημαντικό 
να αναφερθεί ότι ο αλγόριθμος Kraftwerk2 έχει τρεις βαθμούς ελευθερίας που πρέπει να 
βρίσκονται σε συνεχή ισορροπία σε όλη την εκτέλεση, πράγμα που δεν εμφανίζεται στην 
αρχική προσσέγιση του αλγόριθμου. Για το λόγο αυτό, στον δικός μας Kraftwerk2++ έχει 
εισαχθεί Συνδυαστική Λογική, ώστε σε όλη την επαναληπτική εκτέλεση του αλγορίθμου 
να απορρίπτονται λανθασμένες και μη έγκυρες τοπικές λύσεις, εξισορροπώντας έτσι την 
τελική λύση. Στο τελευταίο κεφάλαιο της διπλωματικής αυτής εργασίας, παρουσιάζουμε 
αποτελέσματα που αποδεικνύουν τη 'δύναμη' και την αποτελεσματικότητα του νέου μας 
αλγορίθμου KW2++.
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1
INTRODUCTION TO EDA

EDA stands for Electonic Design Automation [3, 6]. EDA is becoming ever more
important with the continuous scaling of semiconductor devices and the growing
complexities of their use in circuits and systems. Demands for lower-power, higher-

reliability and more agile electronic systems raise new challenges to both design and
design automation of such systems. But, let’s get straight to the point by analyzing each
word’s meaning separately.

Electronic refers to anything electronic, from computer chips, cellular phones,
pacemakers, controls for automobiles and satellites to the servers, routers and switches
that run the Internet. Everything made by the nearly $1 trillion electronics industry
results from designers using EDA tools and services. As electronics become even more
complex and pervasive, the EDA industry is more vital to the continued success of the
global economy.

Design is the part of the production cycle where creativity, new ideas, ingenuity
and inspiration come to the fore. This is also where designers try to model the behavior
of their designs and analyze the complex interactions of millions of constituent parts
in their designs to ensure completeness, correctness and manufacturability of the final
product. Why? Because it is impossibly difficult, expensive and time consuming to "build
it first and fix it later." Because the designers in our industry are mostly electrical
engineers ("hardware engineers") and computer scientists ("software engineers"), some
segments of the EDA industry are also called, "Computer Aided Engineering" (CAE).
EDA is also referred to as "Electronic Computer-Aided Design" (ECAD), acknowledging
the crucial role EDA plays in the design phase.

Automation! The dramatic increase in complexity - enabled by the relentless on-
slaught of Moore’s Law 1.1 - that designers must tackle in electronics today, drives the
need for automation. Engineers need to validate their concepts, model and analyze their
designs, identify and eliminate problems before making production commitments. EDA

1



CHAPTER 1. INTRODUCTION TO EDA

helps them get it done right.

Figure 1.1: Moore’s Law

Moore’s Law is a trend observed by Intel co-founder Gordon Moore in 1965 in which
the number of transistors in integrated circuits doubles every 18 months. For more than
30 years this has been the driving force behind the electronics revolution.

To sum up, EDA is a category of software tools for designing electronic integrated
circuits. EDA ease the manufacturing process in all stages and especially in Physical
Design, which is my thesis reference area.

1.1 Physical Design - Placement
In integrated circuit design, physical design is a step in the standard design cycle which
follows after the circuit design, as analyzed in detail in [3, 6]. At this step, circuit rep-
resentations of the components (devices and interconnects) of the design are converted
into geometric representations of shapes which, when manufactured in the correspond-
ing layers of materials, will ensure the required functioning of the components. This
geometric representation is called integrated circuit layout. This step is usually split
into several sub-steps, which include both design and verification and validation of the
layout, as presented in Figure 1.2.

Modern day Integrated Circuit (IC) design is split up into Front-end design using
HDLs, Verification, and Back-end Design or Physical Design [8]. The next step after
Physical Design is the Manufacturing process or Fabrication Process that is done in the
Wafer Fabrication Houses. Fab-houses fabricate designs onto silicon dies which are then
packaged into ICs.

2



CHAPTER 1. INTRODUCTION TO EDA

Figure 1.2: Design Flow

Each of the phases mentioned above has Design Flows associated with them. These
Design Flows lay down the process and guide-lines/framework for that phase. Physical
Design flow uses the technology libraries that are provided by the fabrication houses.
These technology files provide information regarding the type of Silicon wafer used, the
standard-cells used, the layout rules (like DRC in VLSI), etc.

Becoming more specific, Placement is an essential step in electronic design automa-
tion - the portion of the physical design flow that assigns exact locations for various
circuit components within the chip’s core area. An inferior placement assignment will
not only affect the chip’s performance but might also make it non-manufacturable by pro-
ducing excessive wirelength, which is beyond available routing resources. Consequently,
a placer must perform the assignment while optimizing a number of objectives to ensure
that a circuit meets its performance demands.
Typical placement objectives include:

• Total wirelength: Minimizing the total wirelength, or the sum of the length of all
the wires in the design, is the primary objective of most existing placers. This not
only helps minimize chip size, and hence cost, but also minimizes power and delay,
which are proportional to the wirelength (This assumes long wires have additional
buffering inserted; all modern design flows do this.)

• Timing: The clock cycle of a chip is determined by the delay of its longest path,
usually referred to as the critical path. Given a performance specification, a placer
must ensure that no path exists with delay exceeding the maximum specified delay.

• Congestion: While it is necessary to minimize the total wirelength to meet the total
routing resources, it is also necessary to meet the routing resources within various

3



CHAPTER 1. INTRODUCTION TO EDA

local regions of the chip’s core area. A congested region might lead to excessive
routing detours, or make it impossible to complete all routes.

• Power: Power minimization typically involves distributing the locations of cell
components so as to reduce the overall power consumption, alleviate hot spots, and
smooth temperature gradients.

A secondary objective is placement run-time minimization.
Currently, placement is usually separated into global and detailed placement.
State of the art global placement algorithms include analytic techniques, which

approximate the wirelength objective using quadratic or nonlinear formulations, and
min-cut placers which use graph partitioning algorithms. The goal of global placement is
to find well spread, ideally with no overlaps, placement for the given net-list that attains
required objectives such as wirelength minimization or timing specifications. Due to the
enormous number of components, these standard cells are places into groups such that
the number of connections between groups is minimized. This is solved through circuit
partitioning. i.e. A modern placement framework called Kraftwerk combines analytic
techniques with fast computational geometry.

Detailed placement uses various kinds of local optimizations, including simulated
annealing. Simulated annealing has also been used for the complete placement flow since
its proposal as a general combinatorial optimisation technique, before being replaced by
analytical and min-cut placers.

Figure 1.3: Placement Layout of Encounter of Cadence

Global Placement is divided into Analytical and Combinatorial. 1.4. Analytical Place-
ment is a more promising field as it formulates the placement process using mathematical
representation of both Linear and Non-Linear complexity. Solving such Linear equations,

4



CHAPTER 1. INTRODUCTION TO EDA

is an easy, fast and robust way that all electronic circuit design and manufacturing
companies, seek. However, Combinatorial Techniques give a precise and exact place-
ment solution in relation to Analytical ones that give an approximation of the solution.
Nevertheless, analytical’s approximation solution is very close to the combinatorial’s one.

Figure 1.4: Placement Techniques

5
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2
KRAFTWERK2 ALGORITHM

Kraftwerk2 Algorithm is a fast Force-Directed Analytical Quadratic Placer. As
described in the paper [7], it is formed by two major ideas. First, Kraftwerk is
based on distributing the modules on the chip by using an additional force. The

additional force is separated in two forces: the hold force and the move force. Both com-
ponents are implemented in a systematic manner. This novel systematic force modeling
yields the robustness of this powerful iterative placement algorithm resulting in an
overlap-free placement. The second concept of Kraftwerk2 is the use of an exact linear
net mode, the "Bound2Bound" (B2B) net model, which can be easily used in any other
quadratic placer. This net model represents the half-perimeter wirelength (HPWL) in
the quadratic cost function more efficiently as claimed. The HPWL in general is a linear
metric for the net length and represents a common and efficient estimation for the routed
wirelength.

2.1 Net Models
The main objective to placement problem is to reduce overlapping cells by simultaneously
minimizing the total length of all nets. Connections between cells or pins or the above both
are represented as two-pin connections, so as to express the wirelength. To achieve that,
a simple net model is necessary. The most commonly used measurement of wirelength
for any given net eεE, where E denotes the sum of the circuit nets, is the HPWL [1] and
can be written as

HPWL(e)= max
i, jεe,i< j

∣∣xi − x j
∣∣+ max

i, jεe,i< j

∣∣yi − yj
∣∣ (2.1)

The total wirelength is then given by the
∑

eεE HPWL(e). Although HPWL is a convex

6



CHAPTER 2. KRAFTWERK2 ALGORITHM

function, it cannot be directly minimized, because of the absolute distances max
∣∣xi − x j

∣∣
and max

∣∣yi − yj
∣∣, that convert the cost function to a non-differentiable one. Therefore,

the solution lies on the weighted and square Euclidean distances between the two-pin
connections of i.e. one net n, whose cost function Γn [5] is:

Γn = ∑
e=(i, j)εE

we,x

2
(xi − x j)2 + we,y

2
(yi − yj)2 (2.2)

where E is the set of two-pin connections that form net n. As a result, the total
Quadratic Cost function is the

Γ=
N∑

n=1
Γn (2.3)

In many years of research, many other types of net models were presented, each one
suitable for different purpose and all of them featuring interesting pros and cons, which
we will not analyze in this thesis. However, some of them are shown in the Figure 2.1
below.

Figure 2.1: Net Models

2.1.1 Bound2Bound net model
In paper [7], a new, better as claimed and proved net model is described, the B2B net
model. The new Bound2Bound net model is based on the idea of removing all inner
two-pin connections, as presented in Figure 2.2, and to utilize only connections to the
boundary pins. This net model is similar to the clique net model, but its connection
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Figure 2.2: Inner Pins

weight WB2B differs. If we focus on x-dimension, similarly for y-dimension, the B2B
weight for one two-pin connection is:

Figure 2.3: B2B net model weight value

In Figure 2.4, setting as boundary pins the p = 1 and q = 2 and given the wn =∣∣∣xpin
1 − xpin

2

∣∣∣, we can write down the math we will conclude that the quadratic cost
function of a net n is exactly the HPWL Wn, with zero approximation error.

Figure 2.4: B2B Cost function

2.2 Quadratic Placement
Quadratic placement (QP) is formed by the rule that each net of the circuit is represented
by two-pin connections. A circuit consists of three basic sets, a set of modules, a set of
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pins and a set of two-pin connections, M, P, E, accordingly. All these sets are located
inside the core area. Modules M are divided into movable and non-movable. Only the
first ones are taken into account in the QP. In addition, pins P refer to the i/o pins of a
chip and they are usually placed in locations close to their connections. Furthermore,
two-pin connections E describe every connection between one and another module, one
module and one pin or one and another pin. Pin to pin connections are rare in modern
circuits. In order QP to be solved, i/o pins need to be placed first.

Figure 2.5: Inner Pin inside a module Figure 2.6: Centralized Inner Pin

Inside the modules, inner pins are presented as shown in Fgure 2.5 , so as to
better visually understand the two-pin connections. But, in order to simplify things,
an assumption is made that inner module pins are placed on the center of the module
as shown in Fgure 2.6, and by referring to inner module pin connection we mean a
connection to that module. In addition, a two-pin connection e = (p, q) ε E connects pin p
with pin q, where p, q can be either i/o pins or inner module pins.

Figure 2.7: QP solution simple example

Gathering all these sets together, we can form the QP problem as shown in Figure
2.7. The big rectangle is the core area, the red dots are the pins that are placed on the
boundaries of the core close to their connected modules and the blue dots represent the

9
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inner pins, thus the module’s connection point. Black and purple lines represent the
two-pin connections module to module and module to i/o pin, respectively.

Our goal now is to minimize the cost function 2.3. In order to achieve this, we need
to formulate the cost function in a matrix-vector notation so as to get the QP just by
solving a linear equation Ax = B. Such formulation is shown below:

Γn = 1
2

xTCxx+ 1
2

yTCy y+ xT dx + yT dy + constant (2.4)

Vectors xT and yT represent the movable modules’ position. Matrices Cx and Cy
represent all the two-pin connections. Vectors dx and dy refer to the connections between
i/o pins and modules. By getting the first derivatives of the above equation 2.4 for x and
y separately, then setting them to zero 2.5 2.6 and finally solving them w.r. to x and y,
we end up with the QP solution, which are the locations of the modules inside the core
area with the minimum wirelength.

h

x
Γn = Cxx+dx = 0 (2.5)

h

y
Γn = Cy y+dy = 0 (2.6)

The QP solution is usually the first step to Global Placement, and is characterized
as Initial Placement. Having the components’ location, all the connections and their
connection weights, we just need a way to spread them, and in particular by using a
force. If all these are combined, a new linear equation can be formed, analyzed later in
section 2.4, whose solution will produce new updated locations in each iteration.

2.3 Krafwerk2 Forces

2.3.1 Net & Hold Force
In force-directed quadratic placement methods, two-pin connections can be translated
into elastic springs. Thus, the set of two-pin connections, that represent a simple net
model-set, create a spring system with energy equal to the quadratic cost function Γ 2.3.
The derivative of this cost function represent a force that is called "net" force 2.7.

Fnet
x =

h

x
Γn = Cxx+dx (2.7)

Net Force is the product of the nabla positions of the components with the quadratic
cost function. It is called net force, because this force is created by the two-pin connections,
that represent the nets. Net force needs to be set to zero Fnet

x = 0 in order to obtain an
equilibrium state of the spring system. With just the net force, components tend to
accumulate to the center of the core or in general to their initial location. Hence, an other
force is needed to hold the equilibrium state and additionally spread them. In fact, this
force is separated into two other forces, the "hold" force and the "move force".

Fhold
x =−(Cxx

′ +dx) (2.8)
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Hold Force is just an "inverse net force". This force is used to compensate the net
force in the beginning of each placement iteration. It is formulated as show in 2.8. This
force is using just the previous component’s location in order to achieve a zero relocation,
look 2.9. Components will stay at their current position without collapsing back to their
initial one. Hence, no force accumulation is necessary, because each iteration is decoupled
from the previous one and the algorithm can be restarted at any iteration. It is important
to mention that hold is constant, as it is not affected by variable x inside the linear
equation.

Fnet
x +Fhold

x = 0,

(Cxx+dx)+ (−(Cxx
′ +dx))= 0,

Cx(x− x
′
)+dx −dx = 0,

x− x
′ = 0,

∆x = 0

(2.9)

2.3.2 Move Force - Demand-Supply System
The third and major force of KW2 algorithm is the "move" force. Its major role is to
spread cells (components) all over the core area, which is the main objective of global
placement. Hence, module (component) overlap reduces until a specified limit, where
the algorithm converges and stops. In order to represent the move force, a Distribution
Model is formed and modeled by a Demand-Supply system.

Demand refers to the module overlap, whereas Supply to the placement area, usually
the whole core. At the beginning and after Initial Placement e.g QP, the module overlap is
really high. So, modules need to be moved to lower density regions, which is implemented
with this Demand-Supply system that has to be balanced. The integral over the demand
has to equal the integral over the supply, as presented in Figure 2.8. In addition, in the
first iteration of KW2, Dsup > Ddem, because there is plenty of placement area for cells
to be spread.

Figure 2.8: Demand-Supply system that needs to be balanced

In order to formulate this distribution system, a Rectangle function 2.9 is needed in
order to point the positions that a cell occupies. x and y represent the locations inside
the rectangle and xll , yll and w,h refer to the location and sizing of each cell, accordingly.

For each cell i, the Demand equals 2.10, whereas the Supply equals 2.11. dcell,i is
usually set to 1, but it changes according to what kind of components we place i.e. mixed
circuits with small and big cells, macro cells, etc. .
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Figure 2.9: Rectangle Function of Demand-Supply system

Figure 2.10: Demand value for each cell i

Figure 2.11: Supply value for each cell i

Figure 2.12: Supply density value for each cell i

On the other hand, dsup has a constant value and is given by 2.12. It is the sum of
all components’ demand multiplied by each area and divided with the chip area, which
means it is constant. This kind of distribution system can be easily translated in a more
mathematical way as the electrostatic potential ϕ by the Poisson’s equation 2.10.

(
∂2

∂x2 + ∂2

∂y2 )∗ϕ(x, y)=−D(x, y) (2.10)

This differential equation’s solution determines the target points ẋi and ẏi. Target
points are the positions that each cell is "forced" to move to in each iteration. They are
determined, for a cell i by equation 2.11:

ẋi = x
′
i −

∂

∂x
ϕ(x, y)|(x′i ,y′i) (2.11)

Thus, the Gradients of Potential ϕ are collected in a vector Φ presented in Figure 2.13.
The move force is determined by equation 2.12:

12
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Figure 2.13: Gradient vector of Potential ϕ

Fmove
x,i = ẇi ∗ (xi − ẋi),

Fmove
x,i = ẇi ∗ (xi − (x

′
i +Φ),

Fmove
x,i = ẇi ∗ ((xi − x

′
i)+Φ)

Fmove
x,i = ẇi ∗ (∆x +Φ)

(2.12)

where ∆x is the cell movement in one iteration and ẇi is the move force strength trans-
lated into a weight value. This weight value is fundamental for the KW2 functionality
as it affects the distance that a cell is moved. After having presented all the core force-
directed behaviour of KW2, it is high time we move to the "Core System", the Linear
Equation.

2.4 Krafwerk2 Linear Equation
From QP, the Connection Laplacian Matrix C is ready and obviously needs to be part
of the linear equation and specifically on the left hand. In addition, the gradients of
move force stored in vector Φ need to be integrated. Except from the gradients, inside
move force’s formulation, a weight value is determined for every cell, too. These weights
are stored in a diagonal matrix Ċ. The KW2 core linear equations for both x and y
dimensions is 2.13:

(Cx + Ċx)∆x =−ĊxΦx and (Cy + Ċy)∆y=−ĊyΦy (2.13)

In more detail Connection Matrix Cx is similar to Cy. Focusing on x direction we
form it in the following way:

1. We form the Adjacency Matrix of our design, which is a diagonally zero valued
matrix with weights or 1 in every connection between components.

2. We form the Pin Connection Matrix that is similar to the Adjacency but is
particularly for connection between i/o pins and components

3. We then form the Degree Matrix that is a diagonal matrix with value, the sum of
every row.

An example from book [4], a connection graph design, like the way netlists are
translated before placement, is presented in Figure 2.14. Adjacency matrix, Pin matrix
and Degree matrix are showm in 2.15, 2.16, 2.17, accordingly.
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Figure 2.14: Graph Design

Figure 2.15: Adjacency Matrix

The result is the Laplacian matrix 2.18, the connection one like Cx and is formed
from the subtraction of Degree minus the Adjacency.

The other matrix Ċ derives from the weights of move force and is initialized in the
setup stage of KW2. In addition, it reforms in every iteration in the quality control stage,
analyzed in section 2.5. Gradient results from the Poisson’s equation and directly probed
to the linear solver.

At last, the final form of the KW2’s Linear Equation 2.13 is a really interesting
procedure as described in Figure 2.19. In order to form the linear system, all forces need
to be simultaneously set to zero. By adding them all together, as defined in section 2.3,
we have:

In a "magical" but totally mathematical way, we formed the basic and more complex
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Figure 2.16: Pin Connection Matrix

Figure 2.17: Degree Matrix

linear system, which has three major degrees of freedom, that should be described in
detail.

1. Weight Matrix Ċ

2. Gradient Φ

3. Net Model Weights inside C Matrix
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Figure 2.18: Laplacian Matrix Cx

Figure 2.19: Linear Equation Formulation Cx

2.5 Quality Control
In order to obtain a better spreading, paper’s [7] authors propose a weight assignment for
a module i with the value ẇi = amodi

Aavg
1
M , where M is the number of movable components

inside the core area, Amodi and Aavg refer to the area of component i and the total
average components’ area , respectively. The goal of this formulation is to achieve a
proportional weight value - move force - according to the module’s dimensions. Hence,
large modules tend to spread further in each iteration.

It is correctly claimed that, high quality placement need more CPU time and vice
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versa. This trade-off between quality and execution time is controlled by the user by
setting a target movement µτ. In each iteration, the module movement µ is compared
to the target movement and the weight wi adapts its value in the quality control stage.
The function that changes these weights is a bounded hyperbolic tangent 2.14. If µ>µτ
then κ> 1, whereas κ= 1 when µ<µτ. In Figures 2.20 and 2.21 we can see the way the
execution time and the HPWL "moves" in this Paretto diagram. Finally, we observe the
values of κ according to the movement µ.

κ(µ)= 1+ tanh(ln(µτ/µ)) (2.14)

Figure 2.20: Scale factor κ depending on µ

and µτ

Figure 2.21: Trade-off between execution
time and placement quality

2.6 Kraftwerk2 Algorithm Flow
Kraftwerk2 tries uses analytical methods. It needs an Initial Placement as input so as
to iteratively reach an optimal solution or the Global Placement, as it is characterized.
With Initial Placement cells are placed inside the core area, which can be done either
by placing them in random x and y coordinates, or by getting the Quadratic Problem
(QP) solution. The QP is the minimized solution produced by solving a linear system.
That kind of linear system is formed using the weighted connections between cells and
pins and the coordinates of the i/o pins, whose solution results in the optimal locations of
every cell inside the core area, with the minimum Total Wirelength (TWL).

The first stage of Kraftwerk2 Global Placement is the Initial Placement. Then, in
each iteration, the algorithm needs to solve a more complex linear system for each
dimension, as shown in Equation 2.13. Simultaneously, KW2 creates all the matrices and
vectors needed, in order to form the linear equation. Both this iterative solving technique
and a Quality Control System help Kraftwerk2 achieve a solution with significantly
reduced cell overlap. The pseudocode of the basic and most important algorithmic steps
is presented below. Then, in Figure ?? we present you the Algorithm’s Flow Design.

17



CHAPTER 2. KRAFTWERK2 ALGORITHM

INITIAL Placement {...}
GLOBAL Placement
begin

while moduleOverlap < 20% do
Create Demand-Supply system D(x, y)
Calculate Potential Φ(x, y)
Apply B2B net-model
for x-direction (analogously for y-direction) do

Create Cx, Ċx,Φx
Solve (2.3) w.r.t ∆x
Update module position x by ∆x

end
Quality Control

end
end
DETAILED Placement { ... }

Algorithm 1: Kraftwerk2 algorithm

Initial 

Placement

Quadratic Pl.

Density-Overlap 

Demand Supply

POISSON

Linear Equation 

Matrices / 
Vectors

Solve

LINEAR SYSTEM

Quality Control

Iteratively  continue while nue while 

Figure 2.22: KW2 FLow Design
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2.7 Thesis Motivation and Purpose
After this Chapter’s 2 further analysis, we concluded that KW2 is an interesting, easily
parametrized and fast analytical placement technique. It is also very important to note
that KW2 is fully Linear in relation to other placement algorithms that are NonLinear
and really slow, like NTUPlace, mPL, APlace, etc. Its Linear complexity in both the linear
equation system and in the Poisson’s Distribution system was the basic stimulus to start
our further analysis and exploration.

In addition, with KW2’s three degrees of freedom, numerous ways of quality opti-
mization appear. We implement and extend the algorithm to an updated version, named
KW2++, that introduces a slightly different weight approach, an other Demand-Supply
system formulation and a novel quality bounded control. Thus, our KW2++ rejects in-
correct and invalid solutions in each iteration, where KW2 wasn’t. By accepting all
movements, three major things happen. The algorithm converges either very slow or
never, much more than 25 iterations, as claimed in the KW2 paper [7], are needed and of
course the solution is totally incorrect. We optimized it in order converge extremely fast,
and enriched its Features, ike clustering support, etc. , as shown in Figure 2.23. We met
various test cases that KW2 couldn’t handle, and solved them in our updated version.

Figure 2.23: KW2 and KW2++ Feature comparison

Moreover, it should also be mentioned that, the paper’s [7] proposal does slightly
change the form of the connection matrix by assigning weights, in this already formed
Connection Matrix, that derive from the B2B net model. The B2B net model’s weights
slightly change the Matrix form, resulting in no actual solution’s quality optimization.
Thus, we propose the simplest approach Point2Point, by representing all connections as
two-pin connections.
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3
KRAFTWERK2++ IMPLEMENTATION AND ANALYSIS

In this chapter, a detailed analysis of the implementation of our Kraftwerk2++
algorithm is presented, which is the main concept of this thesis. Furthermore, each
step of the algorithm will be technically analyzed and discussed, by mentioning

various problems encountered throughout the whole process and the way they were
successfully solved.

Although, analytical algorithms, like Kraftwerk2, use simple mathematical solving
techniques, they can be difficult to implement. Through the design process, various
solving and coding techniques were tested, targeting solving speed, execution time,
complexity, scalability and correctness of the result. Thus, the workload was divided in
two parts.

The first part was assigned to me, including the whole algorithm flow and the Linear
System formulation and solving. The second part was assigned to Michalis Giaourtas, a
colleague of mine, which was targeting the formulation of the Demand-Supply System, a
very demanding and paramount part of the algorithm.

3.1 Solver Options
Solving Linear Equations is a mathematical process that can be accomplished in many
different ways. A huge variety of direct or iterative methods exist like the Cramer’s Rule,
Gaussian Elimination, LU Decomposition, Gauss Jordan Elimination, Crout’s Method
[2] and many others. Fortunately, these methods are being optimized and integrated into
Mathematical Solvers. Due to the fact that the development was done in C programming
language, the focus was on compatible solving packages, some of which are MUMPS,
MOSEK, GSL, LAPACKE, CSPARSE, UMFPACK. After continuous testing the first
successful solvers were the GSL and Lapacke. Although they were fast, they couldn’t
handle and support large matrices. Thus, the solution was to try sparse matrix solvers
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like the rest three mentioned above. In this section, a detailed Linear Solver analysis
will be done, which was a fundamental step for the completion of this thesis.

3.1.1 GSL
The GNU Scientific Library (GSL) is a numerical library in C programming language. It
is a free software under the GNU General Public License. The library provides a wide
range of mathematical routines one of which is Linear Algebra Operations. Let’s assume
that we want to solve the linear system Ax = B with A matrix and B vectors that are
already formed, which is not a time-demanding process. The source code is very simple
and presented below. The core of this solving technique are the two functions:

// ********** Start Function Definition ********** //
int gsl_linalg_LU_decomp(gsl_matrix * A, gsl_permutation * p, int *

signum);
int gsl_linalg_LU_solve(const gsl_matrix * LU, const

gsl_permutation * p, const gsl_vector * b, gsl_vector * x);
// ********** end Function Definition ********** //

// ********** Start Solving Process ********** //
// allocate solution vector X_gsl for #modules =

totalindexedcomponents //
X_gsl = gsl_vector_alloc(totalindexedcomponents);

// allocate permutation matrix p //
p = gsl_permutation_alloc(totalindexedcomponents);

// solve using LU decomposition //
gsl_linalg_LU_decomp(A_gsl , p, &s);
gsl_linalg_LU_solve(A_gsl , p, b_gsl , X_gsl);

// clear permutation p //
gsl_permutation_free(p);

// clear solution //
gsl_vector_free(X_gsl);
// ********** End Solving Process ********** //

In spite of being such a simple method just by performing an LU decomposition
and solving the linear system, it cannot handle bigger designs, meaning big matrices,
and it crashes. In addition, the above technique has to be used twice for both x and y
dimensions that leads to two times more execution time. Moreover, this method requires
too much resources in memory, which means that it is poorly memory optimized. In the
end, it is a great and quick method for small designs, GNU licensed and is the reason
why we started with this simple implementation. Some experiments and results will be
mentioned in 4.
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3.1.2 LAPACKE
After GSL inability to serve our purposes in larger net-lists, an other package helped
us to expand our experiment’s range. LAPACKE is a C interface for LAPACK which is
an older, FORTRAN-based and efficient math library. Is is under BSD free License. By
using the 3.1.1 subsection’s example, but for both x and y dimension, we now need only
one routine to solve the linear system, by using LU decomposition and assuming that we
have already created the connection matrix A and the module to i/o pin’s location vector.
Source code is presented below.

// ********** Start Function Definition ********** //
lapack_int LAPACKE_dsysv(int matrix_layout , char uplo , lapack_int n

, lapack_int nrhs , double * a, lapack_int lda , lapack_int * ipiv
, double * b, lapack_int ldb)

// ********** end Function Definition ********** //

// ********** Start Solving Process ********** //
// Solve for both x and y dimension //
info = LAPACKE_dsysv(LAPACK_ROW_MAJOR ,’U’ , totalindexedcomponents ,

DIMNUM , A_lap , totalindexedcomponents , ipiv , b_lap , DIMNUM);

// Check for the exact singularity //
if (info > 0)

{
printf("The diagonal element of the triangular factor of C,\n")

;
printf("U(%i,%i) is zero , so that C is singular ;\n", info , info

);
printf("the solution could not be computed .\n");
exit (2);

}

// Solution is stored in b_lap vector //

// ********** End Solving Process ********** //

As we can observe, it is such a simple method and really direct and effective, as
can solve more than one linear system simultaneously. DIMNUM defines the number
of dimensions that we want to solve, which in our case is just two. Also, B vector gets
the solution of the linear system. Compared to the GSL method, LAPACKE handles
both memory and speed in a more enhanced way. Thus, it helped us solve and test more
design netlists. Nevertheless, LAPACKE started lagging and stalling in much bigger
test-cases, until it was became slow and finally crashed due to lack of memory. Although
it was a breakthrough and time-consuming task, we started searching for more efficient
and memory conservative techniques. as presented in the next subsections.

3.1.3 SUITESPARSE - Sparse Matrix Solving Techniques
In this section, sparse solving method are presented using the mathematical packages
CSPARSE and UMFPACK. These packages support solvingof linear equations in com-
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pressed column and triplet sparse format. Thus, the challenge lied to the conversion of
the above A matrix to a sparse form.

3.1.3.1 CSPARSE

CSPARSE is a concise sparse Cholesky factorization package included in the SuiteSparse
Suite. In needs a compressed-column input in order to solve the linear equation. The
solving flow is also so simple and is presented below. The tough part of this part of the
thesis, was the conversion of the connection matrix into sparse format. A part of my
colleague’s Angelina Delacura Master Thesis, was the formulation of the QP. With the
help and guidance of Associate Professor Christos Sotiriou, they achieved to convert QP
connection Matrix into triplet format.

// ********** Start Solving Process ********** //
// allocate temporary SuiteSparse/CXSparse sumbolic and numeric

temporary variables //
S = NULL;
N = NULL;
S = cs_dl_malloc(totalindexedcomponents , sizeof(cs_dls));
N = cs_dl_malloc(totalindexedcomponents , sizeof(cs_dln));

// allocate global solution vector //
X_cs = cs_dl_malloc(totalindexedcomponents , sizeof(double));

// create compressed matrix compressed_A_cs from A, where A is in
triplet //

compressed_A_cs = cs_dl_compress(A_triplet);

// remove duplicate entries from compressed matrices //
int removedsuccess = cs_dl_dupl(compressed_A_cs);

if (removedsuccess == 0)
{

printf("ERROR: SCS Could not Remove Duplicate Entries from
Compressed Matrix .\n");

}

// solve linear sparse system //
S = cs_dl_sqr (2, compressed_A_cs , 0); // order = 2, qr = 0 //
N = cs_dl_lu(compressed_A_cs , S, 1); // tol = 1 //
cs_dl_ipvec(N->pinv , B_cs , X_cs , totalindexedcomponents);

cs_dl_lsolve(N->L, X_cs);
cs_dl_usolve(N->U, X_cs);
cs_dl_ipvec(S->q, X_cs , B_cs , totalindexedcomponents);

// clear compressed matrix compressed_A_cs //
cs_dl_free(compressed_A_cs);

// ********** End Solving Process ********** //
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So simple as that, this method performed amazingly faster than the previous ones,
in spite of the fact that it needed two times to execute for x and y direction. It could
handle almost all designs, but after testing it was lagging and being so slow in much
bigger designs. Results will be analyzed on chapter 4.

3.1.3.2 UMFPACK

Fortunately, Suitesparse has numerous solving methods, one of which is UMFPACK,
which is a multifrontal LU factorization technique. In other words, it performs LU de-
composition on a more optimized way like right memory management, error handling,
etc. leading to better solving speed and ability to cope with all given netlists with approx-
imately 1 million components, wchich are tested so far. It consists of similar routines as
csparse, like triplet to compressed format conversion, symbolic and numeric formulation
and a solving routine. It solves one dimension in a routines’ flow pass/execution. Below,
the short example of Ax = B is presented.

// ********** Start Solving Process ********** //

// allocate global vector X_umf //
X_umf = malloc(totalindexedcomponents * sizeof(double));

// allocate temporary SuiteSparse/UMFPACK compressed column
temporary vectors //

Ap = NULL; Ai = NULL; Ax = NULL;
Ap = (SuiteSparse_long *) malloc (( totalindexedcomponents + 1) *

sizeof(SuiteSparse_long));
Ai = (SuiteSparse_long *) malloc(A_triplet ->nz * sizeof(

SuiteSparse_long));
Ax = (double *) malloc(A_triplet ->nz * sizeof(double));

// create compressed column arrays Ap, Ai, Ax //
status = umfpack_dl_triplet_to_col(totalindexedcomponents ,

totalindexedcomponents , A_triplet ->nz, A_triplet ->i, A_triplet ->
p, A_triplet ->x, Ap, Ai, Ax , NULL);

if (status != UMFPACK_OK)
{

printf("ERROR: UMFPACK Reports Compressed Column Conversion
Error for the x Direction !\n");

switch (status)
{

case UMFPACK_ERROR_out_of_memory:
{

printf("ERROR: UMFPACK Reports Out of Memory
Error!\n");

return 0;
break;

}
case UMFPACK_WARNING_singular_matrix:

{
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printf("WARNING: UMFPACK Reports Singular Matrix
!\n");

break;
}

}
}

// create symbolic factorisation temporary data //
status = umfpack_dl_symbolic(totalindexedcomponents ,

totalindexedcomponents , Ap , Ai , Ax, &Symbolic ,
UMFPACK_STRATEGY_AUTO , NULL);

if (status != UMFPACK_OK)
{

// ... ABOVE ERROR CHECKING ... //
}

// create numeric factorisation temporary data , based on symbolic
result //

status = umfpack_dl_numeric(Ap, Ai , Ax, Symbolic , &Numeric ,
UMFPACK_STRATEGY_AUTO , NULL);

if (status != UMFPACK_OK)
{

// ... ABOVE ERROR CHECKING ... //
}

// free symbolic factorisation temporary data //
umfpack_dl_free_symbolic (& Symbolic);

// solve in X_umf , using temporary numeric factorisation data //
status = umfpack_dl_solve(UMFPACK_A , Ap, Ai, Ax , X_umf , B_umf ,

Numeric , UMFPACK_STRATEGY_AUTO , NULL); // sys = UMFPACK_A (Ax =
b) //

if (status != UMFPACK_OK)
{

// ... ABOVE ERROR CHECKING ... //
}

// free numeric factorisation temporary data //
umfpack_dl_free_numeric (& Numeric);

// free temporary compressed column arrays //
free(Ap); free(Ai); free(Ax);

// ********** End Solving Process ********** //

All the memory optimization and error handling is performed inside these routines.
For the Kraftwerk’s purposes, only memory increase and matrix singularity were the only,
so far, warnings and errors that occurred and perfectly handled. This part of the thesis,
was the most demanding, time consuming and really hard. Hours of experimentation and
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testing led to an optimal solving technique. Therefore, being able to solve every sparse
linear system efficiently, the execution time of KW’s solving steps in each iteration was
extremely decreased, and minimised, due to a code trick optimization performed, which
will be discussed later in section 3.3.

3.2 Our Demand Supply System
The Demand Supply System was the most important and difficult part to implement due
to its high complexity. Michalis Giaourtas created this system, using bins formulation.
Using Poisson equation he was able to determine the Gradients for the components
needed for the right part of the Linear System. Figure 3.1 presents a plot of the distribu-
tion of the components in a core area, the Poisson’s result and a sample of the Gradients
created.

Figure 3.1: Demand Supply System

3.3 Linear System Analysis
This section focuses on the technical details, coding techniques and implementation of the
Kraftwerk’s core. In the experimentation process, many different implementations were
proposed and completed, due to the various solver options. In this section, though, only
the final optimized one that uses sparse formulation, is being mentioned. As described in
chapter 2, the linear system is composed by two parts, the left and the right, which are
being analyzed below.

3.3.1 Linear Equation Left part
Left segment of the linear equation consists of the connection matrix C and the weight
matrix Ċ. Laplacian matrix C, is symmetric, diagonally positive and off-diagonally either
negative or of zero value. It is mostly sparse and already formed from Angelina’s QP
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project. Both the QP and the KW need the same matrix, as the connections between
components and i/o pins are not altered, through placement. Moreover, weight matrix Ċ
is diagonal positive and off-diagonal zero valued.

On the one hand, matrix C is formed twice for each dimension x and y, but is the
same. On the other hand, diagonal weight matrix Ċ is is formed also twice, but it differs
in each dimension due to the iterative quality control that is being analyzed later in
section 3.3. Thus, in KW2 Setup phase, the above matrices are formed, and only the Ċ is
reformed in every iteration of KW2 Core phase.

By being more precise, we needed to perform a matrix addition. Due the zero valued
off-diagonal Ċ, only the diagonal entries were added, iteratively one by one with the
ones of connection matrix C. A sparse seek matrix function was available in SuiteSparse
package, but it was too slow, because it was searching all entries to reach one. Thus,
we implemented an trick with a pre-phase mode inside the KW2 Setup. With a matrix
complete pass, we stored the diagonal entries locations and stored them in an new vector.
Then, every time, we needed to alter the diagonal values, we were just using the already
stored locations. In total, the execution time reduction was really paramount. Below, this
simple coding trick is presented.

k ← 0 for c ← 1 to NonZeroCmatrixV alues do
/* if diagonal value found, store location */
if C.i[c]== C. j[c] then

DiagonalLocation(k)= c;
k++;

end
/* if all diagonal locations are discovered, then exit */
if NonZeroCvalues == TotalComponents then

exit1;
end

end

Algorithm 2: Seek Sparse Diagonal Entries trick
The weight matrix can control the algorithm behaviour, and that is why is one of the

quality control "ingredients". With the right value handling in every iteration, we can
achieve the best placement quality, in execution time and wirelength, see section 3.3.

3.3.2 Linear Equation Right part
On the other part of the equation, we meet two crucial parameters. One is once again the
weight matrix Ċ and the other one is the Gradient of the distribution system proposed in
section 3.2. The math is so simple, that just by performing a multiplication, we instantly
formulate the right hand of the equation. Nevertheless, through quality control, we try
to affect these values in a novel way, which will be described in section 3.3.
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3.4 Quality Control
Our KW2++ algorithm introduces a slightly different weight approach 3.1, as presented
in detail in section 3.4. The paper’s implementation (KW2) was working really good, but
it was spreading the components either completely wrong creating Spreading Artifacts
or extremely slow. In order to solve slow execution, we actually removed the fraction

1
totalcomponents by assigning bigger weights in each component in matrix Ċ. However, we
managed to spread the cells in a quicker way, but we couldn’t handle bigger and dense
(high-overlapping) designs. Components were bounding all over the core area in each
iteration. In order to solve that, we formed an Upper Bound function to restrict the
Algorithms behaviour by limiting the average movement of each component in every
iteration. Hence, not only we fixed the Algorithm’s Convergence, but we vanished the
Spreading Artifacts phenomenon.

ẇi = amodi

Aavg
(3.1)

3.4.1 Spreading Artifacts Effect
Meanwhile, we noticed that KW2 paper’s algorithm, couldn’t handle high region overlap-
ping designs. Components’ weights in KW2 are really small in value resulting in tiny
movements, preserving the high density, being grouped and being unable to converge at
all, as proved in the experiments in Chapter 4. We named this behaviour "Spreading
Artifacts Effect". We firstly observed it in cordic design and then in b19 and des_perf
designs as shown in Figures 3.2 and 3.3 , accordingly.

Figure 3.2: Spreading Artifacts Effect in KW2 (solved in KW2++) cordic design

Of course, this phenomenon was successfully solved using the Upper Bound (UB)
solution of KW2++,as displayed below in Section 3.4.2.

3.4.2 Bouncing effect and our UB solution
In Figure 3.4 we notice this bouncing behavior over the core area. It is caused by the big
weights assigned in every component, which affects the component’s locations x and y.
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Figure 3.3: Spreading Artifacts Effect in KW2 (solved in KW2++) in b19 and des_perf
design

The target points were in incorrect positions inside or usually outside of the core area.
This phenomenon is present in high-dense designs and could also appear in KW2 by just
assigning bigger or lower values either in component’s weights or in the component’s
gradient in each iteration, referring to the three ways of freedom mentioned before.

The solution was simple enough, just by limiting the movement of the components
Fortunately, we successfully solved it by the Upper Bound (UB) method as already
introduced and tested it on one of the biggest and of high overlap designs cordic and
b19, accordingly. The result was expected as show in Figures 3.5 and 3.6, analogously.
To sum up, our Upper Bound method does not only solve the bouncing effect but many
other phenomenon, too.

Rejecting invalid movements is the novel part of our KW2++ and my major con-
tribution. From now on, KW2++ is able to handle every transformation in whichever
part of the linear equation, meaning the three ways of freedom. Thus, our new KW2++
surpasses the original KW2 algorithm.

3.5 Different number of Bins
In KW2++, bins play a paramount role. Large number of bins result in a more detailed
spreading, whereas less bins tend to either group components or slightly spread them.
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Figure 3.4: Bouncing Effect in cordic design

For instance, on the left part of figure 3.7 we can observe that design fft spreads
a little with a bin grid 20x20, whereas on the left part of figure 3.8 b19 is somehow
grouping components in the center of each bin. Of course, KW2++ is based on the best
bin formulation by setting the size of the bin to the site width, which is the smallest
measurement unit inside the core. With such bin size, KW2++ algorithm succeeds in
spreading the components correctly, right parts of the above mentioned figures, by
preserving the minimum wirelength, which will be analyzed shortly. Simultaneously,
due to the solving capability of the Sparse Linear Solver UMFPACK, the increase of bins
does not affect the solving speed and of course the fast Convergence.

3.6 Aspect Ratio
An other experiment was performed to verify the algorithm correct execution for one
more time. By changing Aspect Ratio, the core shape is being altered from a rectangle
to a quadrangle. This alteration in the core sizing was not mentioned and possibly not
handled in KW2, but fully supported in KW2++. Experiments in figure 3.9, of "BCM2"
prove that our griding system and Demand-Supply system is able to handle such strange
but possible scenarios. In this example, aspect ration 2 is used in the left part and aspect
ration 0.5 in the right part. In fact, KW2++ could successfully handle bigger and lower
aspect ratio values, too.
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Figure 3.5: Upper Bound vanishing Bouncing Effect in cordic

3.7 Center-placed Components
In order to cope with every possible initial placement, we experimented on a specific
corner case, in which all components are placed in a specific location inside the core. As
the component’s location, we set the center of the core. We noticed that, in small designs,
where components are less in number and one cell can occupy more core space than in
bigger designs, cell spreading was acting strangely. In particular, on the upper left part of
figure 3.10, we observe an initial placement of all components of "BCM1" in the center of
the core. After setting the bins’ number in much smaller than the default value, we came
up with the strange results on the right upper and lower part of figure 3.10. Then, we
revert the bins’ number in its initial default value and everything worked perfectly (look
left bottom part of the figure). Hence, we once again experimentally proved and concluded
that the way bins are formed is really important in the functionality of KraftWerk2
algorithm. Of course, we packed this feature in our enhanced KW2++ algorithm.
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Figure 3.6: Upper Bound vanishing Bouncing Effect in b19

Figure 3.7: Spreading Artifacts Effect in KW2(right) and its solution in KW2+(left) in fft
design

3.8 Clustered Support
Using our EDA Tool clustering support formulation, we slightly transformed the code to
work with both components and clusters. Figure 3.11 is a first working attempt of our
KW2++ algorithm to handle clusters. Of course, this version is in an early alpha stage
and looks very promising.
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Figure 3.8: Spreading Artifacts Effect in KW2(right) and its solution in KW2++(left) in
b19 design

Figure 3.9: Aspect Ration Support

3.9 Interface
Our KW2++ Algorithm has a TCL interface where specific variables that affect the
execution result can be set. The Tcl Option List is the following:

• [-solver < 1 | 2 >]

– CSPARSE solver

– UMFPACK solver
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Figure 3.10: Center Placement Support

Figure 3.11: KW2++ on fft design supporting clusters.
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• [-poisson < 0 | 1 | 2 >]

– Poisson Method

– Gaussian Blur Method

– Fast Gaussian Blur Method

• [-weightmethod < 0 | 1 >]

– (Acell/Avg)*(1/numberOfComponents) paper [7] approach

– (Acell/Avg) our approach

• [-qc < 0 | 1 | 2 >]

– Without Quality Control

– With QC by Hyperbolic Tangent function (paper [7] method)

– 1/x Michalis Giaourtas proposed function

• [-iterations < iterations >]

– Number of maximum iteration

• [-terminate < O | T | M >]

– terminate by Overlap

– terminate by Total Density

– terminate by Maximum Overlap

– Either wise terminate on the first-meet termination condition

Many other sub-functions were created to control, termination condition, maximum
density and overlap value, bins setting and drawing, all helping a better execution
experience and flexibility.
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4
KRAFTWERK EXPERIMENTS RESULTS

This thesis chapter is the most crucial, as our KW2++ algorithm proves, via numer-
ous experiments, its placement quality by handling various placement issues, by
creating optimization techniques and improving the algorithm flow, compared to

the paper’s one KW2. More that 15 circuits were tested in different case scenarios, but
only ten are presented using graphs, figures and tables. All the benchmarks mentioned
above are mostly Academic ones form ICCAD and ISPD. In table 4.1 these circuits
are presented with their characteristics that are needed in this chapter. The number
of components of the designs range from 700 to almost 800,000. The smallest three
are hierarchical designs, but as mentioned in previous sections, only flat netlists are
supported in this implementation.

In the first section 4.1 of this chapter, we demonstrate and prove the best solving

Design Name Num. Components Type
Bench1 716 Hierarchical
Bench2 2,346 Hierarchical
Bench3 18,796 Hierarchical

bridge32_1 30,675 Flat
fft 32,281 Flat

cordic_I4 41,601 Flat
des_perf_1 112,644 Flat

matrix_mult 155,325 Flat
b19 219,268 Flat

leon3 649,191 Flat
leon2 794,286 Flat

Table 4.1: My benchmarks
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package used, whereas in the rest we explain and justify our algorithmic extension and
its novel characteristics via targeted and numerous experiments.

??:

Bins Number Utilization Aspect Ratio Gradient Method
Gradient Method

Default 50% 1.0 Poisson
20 %

4.1 Solver Capability
Fast linear equation solving could not be achieved if deep experimentation and testing
was not performed. Hence, below we present you some interesting results. QP is the
initial placement and of course just a solution of a linear equation system. Kraftwerk2
needs to solve one or more linear equations per iteration, too. Thus, at the beginning we
mention results of the QP solution.

The hardware specifications of the machinery used for all experimentation process
is:

CPU: 12-core Intel Xeon
RAM: 50Gbytes available

To begin with, in figure 4.1 the solving summary of the four basic linear solver is
presented. As we can observe Sparse Techniques managed to accomplish the solving
process, due to the less memory and system resources needed. The other solvers, were
failing during the solving, basically due to the demanding large amount of memory
needed. However, they could possibly have handled the other benchmarks, but they
would still need a huge period of execution time, which was an issue for us, too. It should
be noted that UMFPACK "beats" the rest of the solvers as presented in figure 4.1 both in
solving, resources handling and basically in execution time. Thus, it was the best choice
for us.

4.1.1 Execution Time for QP solution
In this experiment, we compare GSL to LAPACKE, then the CSPARSE to UMFPACK
solvers and finally all together. On the one hand, in figure 4.2 we can notice that GSL is
really slow when we try to solve a pretty small, in number of components, design and it
finally crashes due to lack of memory. For instance, "Bridge" benchmark, as presented in
figure 4.3, is being solved by UMFPACK in just 1 second, but using GSL t takes 524
minutes.

The difference is enormous, and the design is still one of the small ones. On the other
hand, LAPACKE needs much less time, but quite much memory to solve some larger
designs, but it exceeds the given resources, too.
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Design 
↓ 

Solver 
→

GSL LAPACKE CSPARSE UMFPACK

BECM1 √ √ √ √ 
BECM2 √ √ √ √ 
BECM3 √ √ √ √ 

bridge32_1 √ √ √ √ 
fft √ √ √ 

cordic_I4 √ √ √ 
des_perf_1 √ √ 

matrix_mult √ √ 
b19 √ √ 

leon3 √ 
leon2 √

Figure 4.1: Net Models

BECM1 BECM2 BECM3 bridge32_1
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Figure 4.2: GSL vs LAPACKE
0

Furthermore, in figure 4.4 CSPARSE can be easily reach UMFPACK’s execution
time, but when we exceed 50,000 components, then the time exponentially rises. The
result are very interesting and also cryptic. Some bigger designs can be solved in less
time than some smaller ones. This is happening, due to the form of the connection matrix.
If more components and i/o pins are connected, then the matrix or sparse matrix becomes
bigger.

To conclude, UMFPACK experimentally is proven as the most efficient method for
fast solving of really large linear systems. Hence, that is the reason that we chose it over
the other options. In figure 4.5 we can see the results of a quadratic placement (QP),
meaning the solution of a single linear system.

It is high time, we go through and present you some pictures of the QP solution
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GSL; 524

LAPACKE; 12

CSPARSE; 0,1

UMFPACK; 0,01

0 100 200 300 400 500 600
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TIME IN MINUTES

Bridge Ex. Time among Solvers

(1sec)

(6sec)

Figure 4.3: Bridge over the solvers
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Figure 4.4: CSPARSE vs UMFPACK

of the above ten designs. In the left column we can see both the connections between
components (blue lines) and connections between components and i/o pins (orange lines),
also called fly-lines. The components are colored green. On the right column we can only
see the second connections mentioned above.
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Figure 4.5: UMFPACK execution time of QP over the ten benchmarks given
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4.2 Kw2 vs KW2++
After forming an idea of how fast and efficiently Quadratic Placement can be solved, let
us have a better look on the comparison between the original KW2 and our new KW2++.
By starting from the correct solving capability, meaning the ability to handle the designs
correctly.

We can notice in Figure 4.6 that in the original KW2 cannot solve in a correct way
six out of eleven designs tested, by creating these Spreading Artifacts and not be able to
converge. Hence, in this section we will present you some result regarding just the first 5
benchmarks.

In Figure 4.7 we observe that KW2 is slightly better in Wirelength than our KW2++.
This is obvious as we assign bigger weights in each component, resulting to a bigger,
but still bounded movement. It should be noticed again that there is a trade-off between
spreading quality and fast execution time. KW2++ is really fast, as show in Figure 4.8,
which means that having such a really small difference in Wirelength, we can assume
that KW2++ is much better in both ways, achieving the best Average solution.
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Design 

Algorithm 

KW2 KW2++ 

BECM1   

BECM2   

BECM3   

bridge32_1   

fft   

cordic_I4 IS NOT SUPPORTED  

des_perf_1 IS NOT SUPPORTED  

matrix_mult IS NOT SUPPORTED  

b19 IS NOT SUPPORTED  

leon3 IS NOT SUPPORTED  

leon2 IS NOT SUPPORTED  

Figure 4.6: KW2 vs KW2++ support design list

Table 4.2: Wirelength comparison between KW2 nad KW2++

Design Name KW2 KW2++
BCM1 35771,675 36885,125
BCM2 150803,363 166518,255
BCM3 1224389,631 1563070,047

bridge32_1 1597310,517 2615599
fft 8266159,983 8335183,294

cordic_I4 3149038,739 3170817,087

BCM1 BCM2 BCM3 bridge32_1 fft

KW2 35771,675 150803,363 1224389,631 1597310,517 8266159,983

KW2++ 36885,125 166518,255 1563070,047 2615599 8335183,294
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Figure 4.7: KW2 vs KW2++ wirelength comparison
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Table 4.3: Execution Time comparison between KW2 and KW2++

Design Name Time KW2(s) Time KW2++ (s)
BCM1 31 2
BCM2 480 3
BCM3 64560 144

bridge32_1 38580 296
fft 115200 184

cordic_I4 136800 165

BCM1 BCM2 BCM3
bridge32_

1
fft

Time KW2(s) 31 480 64560 38580 115200

Time KW2++ (s) 2 3 144 296 184
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KW2 vs KW2++ Execution Time

Figure 4.8: KW2 vs KW2++ execution time comparison

Last but not least, is is interesting focusing in the number of iterations needed.
It is claimed that the original KW2 converges in an average of 25 iterations. After
implementing this paper’s KW2 algorithm, we noticed that the above claim would not
stand, not only because the algorithm was spreading components too slow, but also
because it was accepting every solution, regardless its correctness. So, in our KW2++
having this Upper Bound in the average movements of the components, we are rejecting
invalid solutions and continue to the next placement iteration only if a right one is given.
After experimentation, we present you the Figure’s 4.9 results.

4.3 Focusing on our KW2++
Being really proud of KW2++ performance, we present you some resutls regarding
execution time, wirelength, and iterations in the whole design set tested.

In table 4.4 we present you analytical results of all benchmarks. The are really
remarkable as all goals set in the beginning are met. They are solved fast, they Converge
fast, they preserve the best attainable wirelength and reach an semi-overlap free status.
It should be noted that execution time is marked in minutes.
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BCM1 BCM2 BCM3 bridge32_1 fft

KW2 1382 4647 13326 30846 33287

KW2+++ 9 10 13 30 23
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Figure 4.9: KW2 vs KW2++ iteration comparison

Table 4.4: KW2++ Main Results over 11 designs

Design Name # Components Iterations Execution Time Overlap MaxDensity WL
BCM1 716 9 0,03 0,184 4,089 36885,125
BCM2 2346 10 0,05 0,186 4,696 166518,255
BCM3 18796 13 2,5 0,186 5 1563070,04

bridge32_1 30675 30 5 0,193 5,257 2615598,998
fft 32281 23 3 0,191 5,145 8335183,294

cordic_I4 41601 29 2,75 0,197 5,225 3170817,087
des_perf_1 112644 31 31 0,189 5,972 10069376,808

matrix_mult 155325 25 21 0,197 6,912 43232911,791
b19 219268 20 37,75 0,187 17 45413475,128

leon3 649191 18 553 0,199 9 454233995,759
leon2 794286 20 1220 0,192 9,2 743909117,375

Figure 4.10 shows the number of iterations needed, for each benchmark to converge.
Excluding the first 3 and over the last 8 benchmarks we concluded that an average
number of 24 - 25 placement iterations are needed for our KW2++ to converge. It seams
really fast and also experimentally proven.

An overall merging of the execution time for each design is also presented in Figure
4.11. Excluding the last two huge designs we have a really good execution time not
longer than 40 minutes, which is an intriguing and interesting result and a need, for
manufacturing companies. It should be noted that designs like leon3 and leon2 have
a huge number of components. Usually, netlists of over 200.000 components are first
clustered and then placed. That is the reason of my exclusion above. Nevertheless,
KW2++ can handle 1mil component design really effeciently.
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Figure 4.10: KW2++ number of iterations over the designs
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5
CONCLUSION AND FUTURE WORK

To sum up, Kraftwerk2++ achieved all our predefined goals. Its strength lies on the
fact that it is proved fast in both Algorithmic Convergence and Execution Time. It
is enriched with many features some of which are, a novel Quality Control system,

Poisson and Gaussian Blur bin related formulation, Cluster support, different Aspect
Ratio support and an integral Combinatorial Logic, which ensures the correctness of the
ouput result. Supporting very large designs,

KW2++ can be easily extended and optimized in the future. It can be improved as
follows:

• using a Pre-conditioner

• used in Timing Driven Placement

• used in 3D Placement

• optimize Clusters Support

• calibrate Gaussian Blurring Algorithm and possibly introduce a new one

• KW2++ execution in all Floorplan partitions simultaneously using Parallel methods

• combination with a Legalizer, like Abacus2 to achieve iteratively better quality
results
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