
Electronic Design Automation Algorithms for

Standard Cell Legalization in Microelectronic

Circuits

Master Thesis by

Nikolaos K. Sketopoulos

University of Thessaly

Department of Electrical and Computer Engineering

Supervisor:

Dr. Christos Sotiriou, Associate Professor, University of Thessaly

Committee:

Dr. George Stamoulis, Professor, University of Thessaly

Dr. Nestor Eumorfopoulos, Assistant Professor, University of Thessaly

Volos, Greece

October 2016

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Αλγόϱιϑµοι Ηλεκτϱονικού Αυτοµατισµού για Νοµιµοποίηση

Στοιχείων σε Μικϱοηλεκτϱικά Κυκλώµατα

∆ιπλωµατική Εϱγασία

για την Απόκτηση Μεταπτυχιακού ∆ιπλώµατος Σπουδών

του:

Νικόλαος Κ. Σκετόπουλος

Επιϐλέποντες:

∆ϱ. Χϱήστος Σωτηϱίου, Αναπληϱωτής Καϑηγητής, Πανεπιστήµιο Θεσσαλίας

∆ϱ. Γεώϱγιος Σταµούλης, Καϑηγητής, Πανεπιστήµιο Θεσσαλίας

∆ϱ. Νέστωϱ Ευµοϱϕόπουλος, Επίκουϱος Καϑηγητής, Πανεπιστήµιο Θεσσαλίας

Εγκϱίϑηκε από τη τϱιµελή εξεταστική επιτϱοπή την 26 Οκτωϐϱίου 2016

.........................

Χϱήστος Σωτηϱίου Γεώϱγιος Σταµούλης Νέστωϱ Ευµοϱϕόπουλος

Αναπληϱωτής Καϑηγητής Καϑηγητής Επίκουϱος Καϑηγητής

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

Acknowledgments

To my family, my friends & Dr. Sotiriou

Nikolaos Sketopoulos

Volos, Greece

26/10/2016

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

CONTENTS

CONTENTS

1 Introduction to EDA 16

1.1 Placement . 16

1.1.1 Global Placement . 17

1.1.2 Legalization . 19

1.1.3 Detailed Placement . 19

2 Background 20

2.1 Global Legalization Approaches . 20

2.2 Local Legalization Approaches . 21

2.2.1 Tetris Legalizer . 21

2.2.2 Abacus Legalizer . 22

2.2.2.1 Quadratic Program . 22

2.2.2.2 Displacement Cost Function . 24

2.2.2.3 Row Search Bounding . 24

2.2.2.4 Cells Selection Order . 24

2.2.2.5 Abacus Algorithm . 24

2.2.3 Our Motivation . 26

3 Our Work 28

3.1 Cell Selection Order . 28

7

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

CONTENTS

3.2 Displacement Cost Functions . 30

3.3 Row Search Bounding . 30

3.4 Legalization Artifacts . 32

3.5 Blockage Handling Strategies . 34

3.6 Multi-Row Height Cells Handling Approach . 35

3.7 Abacus2 Algorithm . 38

3.8 Extra Features . 44

4 Results 47

4.1 Cell Selection Order Comparison . 47

4.2 Displacement Functions Comparison . 50

4.3 SRA vs SRR Comparison . 52

4.4 Multi-Row Height Cells . 54

5 Conclusions and Future Work 59

Bibliography 60

8

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

LIST OF FIGURES

LIST OF FIGURES

1.1 Placement Flow . 17

1.2 Global placement Algorithm Methodologies . 18

3.1 Cell Selection Order Example . 29

3.2 Row Search Bound Example . 31

3.3 Legalization Artifacts for Single-cell and Multi-cell total displacement functions 33

3.4 Blockage Handling Approaches Example . 35

3.5 (Sub-)Row Diviation from a MRHC . 36

3.6 MRHC Legalization Example: Global Placement 37

3.7 Bottom-Up Sub-row Scan . 38

3.8 Top-Down Sub-row Scan . 39

3.9 Cell Up-scaling Example . 46

4.1 Blockages Pattern . 48

4.2 Placement I/O Pins Position . 49

4.3 cordic_I4 Benchmark GP Example . 51

4.4 cordic_I4 Benchmark SRA Displacement Function Example 52

4.5 cordic_I4 Benchmark SRR Displacement Function Example 52

4.6 SRA vs SRR TWL Comparison . 53

4.7 SRA vs SRR TD Comparison . 53

4.8 SRA vs SRR Execution Time Comparison . 54

10

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

LIST OF FIGURES

4.9 MRHC TWL Comparison . 56

4.10MRHC TD Comparison . 56

4.11MRHC Execution Time Comparison . 57

4.12des_perf_1 Benchmark MRHC Legalization Example 58

11

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

Abstract

Nowadays EDA tools use both combinatorial and analytical methods to place circuits’ com-

ponents. However, analytical methods render placement illegal. This phenomenon occurs

because analytical methods use components as physical points. Thus, after global place-

ment, components may overlap each other and receive non-aligned positions in the circuit’s

grid. For this reason, legalization is used by eliminating components’ overlapping and align-

ing them in the circuit’s grid. The aim of legalizers is to minimize the components’ movement

from their positions at global placement.

In this work, implementation, optimization and evaluation of a legalizer are presented.

We present a novel evolution of fundamental Abacus legalizer [10]. Abacus has been chosen

due to its great performance in terms of minimizing the perturbation of the optimal solution.

However, the fundamental algorithm supports legalization only at flat circuits and without

blockages. In this way, the fundamental legalization algorithm has been extended to support

not only flat circuits, but also hierarchical and circuits with blockages. Moreover, fundamen-

tal Abacus legalizer, can not handle components which height are greater than the placement

row. As a sequence, we modify and tune Abacus2 also to support cells with different heights

than the placement row height.

Additionally, different approaches for the individual stages of legalization have been im-

plemented, such as the calculation of the components’ movement cost. Execution time of

legalization has been optimized by using heuristic algorithms and legalization with blockages

have also been studied. We performed experiments and comparisons between the features of

Abacus and Abacus2. Finally, the legalizer has been integrated in developing an industrial

EDA tool, taking its restrictions into account.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

LIST OF FIGURES

Πεϱίληψη

Τα σηµερινά εργαλεία EDA πραγµατοποιούν την τοποθέτηση των στοιχείων τόσο µε συνδ-

υαστικούς, όσο και µε αναλυτικούς µεθόδους. Ωστόσο, οι αναλυτικοί µέϑοδοι καθιστούν την

τοποθέτηση µη έγκυϱη. Το ϕαινόµενο αυτό παρουσιάζεται διότι οι αναλυτικοί µέϑοδοι µεταχειρί-

Ϲονται τα στοιχεία ως σηµεία στο χώϱο. ΄Ετσι, µετά την τοποθέτηση παρατηρούνται επικαλύψεις

µεταξύ των στοιχείων και επιπλέον τα στοιχεία λαµβάνουν µη ευθυγραµµισµένες ϑέσεις στο

πλέγµα του κυκλώµατος. Για το λόγο αυτό πραγµατοποιείται η νοµιµοποίηση των στοιχείων

εξαλείφοντας τις επικαλύψεις και ευθυγραµµίζοντας τα στοιχεία στο πλέγµα του κυκλώµατος.

Η διαδικασία αυτή πραγµατοποιείται από τους νοµιµοποιητές. Στόχος των νοµιµοποιητών είναι

η ελαχιστοποίηση της µετακίνησης των στοιχείων από τις ϐέλτιστες ϑέσεις που έλαβαν από την

γενική τοποθέτηση.

Στη παϱούσα διπλωµατική διατριβή παρουσιάζεται η υλοποίηση, η ϐελτιστοποίηση και η

αξιολόγηση ενός αλγορίθµου για τη νοµιµοποίηση των στοιχείων ενός κυκλώµατος, ο οποίος

ονοµάζεται Abacus2. Ο νοµιµοποιητής αυτός αποτελεί εξέλιξη και επέκταση ενός ευρέως δι-

αδεδοµένου νοµιµοποιητή, του Abacus [10]. Η επιλογή του, πραγµατοποιήθηκε λόγω των

καλών επιδόσεων σε ό,τι αϕοϱά την ελάχιστη τϱοποποίηση της ϐέλτιστης λύσης. Ωστόσο, ο

κλασικός αλγόριθµος υποστηρίζει τη νοµιµοποίηση µόνο επίπεδων κυκλωµάτων και χωϱίς εµ-

πόδια. Εποµένως, µελετήϑηκαν και υλοποιήϑηκαν προσεγγίσεις για την υποστήριξη ιεραρχικών

κυκλωµάτων και κυκλωµάτων µε εµπόδια. Επιπλέον, Επιπλέον, ο ϑεµελιώδης αλγόριθµος δε

µποϱεί αν χειριστεί κυκλώµατα των οποίων τα στοιχεία έχουν ύψος, το οποίο είναι πολλαπλά-

σιο του ύψους των γραµµών του κυκλώµατος. Η αδυναµία αυτή, µας ώϑησε στην περεταίρω

ανάπτυξή του αλγορίθµου για να µποϱεί να αντιµετωπίζει τέτοια στοιχεία.

Επιπλέον, υλοποιήϑηκαν διαφορετικές προσεγγίσεις για τα επιµέϱους στάδια της νοµι-

µοποίησης, όπως για παϱάδειγµα του υπολογισµού του κόστους µετακίνησης των στοιχείων.

Βελτιστοποιήϑηκε ο χϱόνο εκτέλεσης του αλγορίθµου χρησιµοποιώντας ευριστικούς αλγόριθ-

µους και µελετήϑηκε η υποστήριξη κυκλωµάτων µε εµπόδια. Πραγµατόποήθηκαν πειράµατα

για να ελεχθεί η ποιότητα της τελικής έγκυϱης τοποθέσης. Επιπρόσθετα πραγµατοποιήθηκαν

συγκρυσεις µεταξύ του Abacus και του Abacus2. Τέλος, ο νοµιµοποιητής ενσωµατώϑηκε σε ένα

υπό ανάπτυξη ϐιοµηχανικό εργαλείο EDA, λαµβάνοντας υπόψιν τους ϐιοµηχανικούς περιορισ-

µούς.

14

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

CHAPTER 1

Introduction to EDA

Integrated circuits (ICs) have had an astonishing effect on our everyday life as there are

vital parts of conveniences such as cell phones, personal computers, navigation systems and

music players, just to name a few. In fact, almost everything and every daily task has been

influenced by ICs. The modern integrated circuits are among the most complex products

ever built by humans. Moreover, the number of transistors per integrated circuit has been

doubled almost every two years, following the Moore’s Law. So, the design of very large-

scale integrated (VLSI) circuits, has become very challenging, inspiring designers to develop

electronic design automation (EDA) tools. The aim of EDA tools includes area and power

minimization, circuit performance optimization, and manufacturability e.t.c..

EDA is a software which helps engineers to create new ICs. EDA tools have always been

focusing on automating the entire circuit design process and combining the design tasks

into a complete design flow. Due to the high complexity of modern designs, EDA handles

many aspects of the IC design flow. However, such integration is challenging, since some

designing tasks need additional degrees of freedom, and scalability requires tackling some

tasks independently. On the other hand, the constant decrease of transistors and wire

dimensions have obscured not only the boundaries, but also the abstractions that separate

successive designing tasks. That is, EDA tools are mostly used in automated design tasks

such as logic design, physical design, simulation and verification.

1.1 Placement

Circuit placement is one of the most important tasks of EDA tools. After partitioning the

circuit into smaller modules and floorplanning the layout to determine block outlines and pin

locations, placement aims to determine the locations of logic components within each block.

The placement’s main objective is to optimize wirelength, timing, and congestion, thermal

hotspot and power consumption [7]. If logic cells are not all exactly the same in size, then the

physical size of each cell must be known so that placement does not overlap with the cells in

16

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

1.1. Placement

the layout. Some standard cell systems support large array macros (soft and/or hard) such as

RAMs. The placement of these components is troublesome for the automated procedure, so

these macros might have to be manually placed. Because the locations of circuit components

and corresponding interconnect delays are determined during the placement procedure, it

has notable impact on the final performance of the circuit [1].

In the placement process, there is no single cost function or trivial algorithm that guar-

antees success. Hence, it is crucial to choose the right algorithm to optimize the right cost

function at the right time. This needs a deep understanding of different aspects for the

placement problem. Today’s placement tools use this strategy, but in an ad-hoc way. Fun-

damental research is required to devise the methodology which systematically suggests the

solution to the placement problem [9].

In order to handle large-scale circuits, placement is usually done in three tasks, Figure

1.2: (i) global placement, (ii) legal placement (or legalization) and (iii) detailed placement.

Global placement is mainly concerned with the location of the cells, e.g., which region of the

chip a cell is located. Some cells may be overlapping with each other in a global placement.

These overlaps are then removed during legal placement and local optimizations are done

during detailed placement.

Figure 1.1: Placement Flow

1.1.1 Global Placement

There are many different methodologies which can be used to find where a cell must be

placed in the global placement stage, like methods which are based on a simulated annealing,

top-down cut-based partitioning, or analytical techniques [1].

Simulated annealing is an iterative optimization method that has been inspired by the

physical metal cooling process. With the given objective function, the process tries to achieve

17

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

1.1. Placement

Figure 1.2: Global placement Algorithm Methodologies

a better solution via a set of predefined moves. The move which achieves a better solution,

is always accepted. If a move produces a worse solution, it is accepted based on some

probability functions. At early stages (with high temperature), a bad move has a higher chance

to get accepted while at later stages of placement (with lower temperature), the probability is

reduced. These worse-yet-accepted moves are essential for a simulated annealing placement

algorithm to overcome a local optimum solution where a placement might be stuck. When a

greedy move-based placement method steps into local optimum, it cannot escape from this

sink.

Top-down cut-based partitioning placers, partition circuit area into either two or four

regions, then recursively partitions each region until a good coarse placement solution is

achieved. When each region is partitioned, every circuit component outside the region is

assumed to be fixed at the current location and pseudopins are created around the region

under consideration. This is called a terminal propagation. Because the main algorithm is

based on partitioning, the typical objective function is the number of netcuts between sub-

regions, i.e. the cut-size. Finding a good partitioning indicates that good logical clustering

of circuit elements are found with less cut-size among them that can lead to a better total

wirelength (TWL). In general, cut-based multilevel partitioning placement can be performed

quite well when designs are dense. Moreover, partitioning-based placement is a relatively

fast placement algorithm, as the placement problem is subdivided into smaller placement

problems with less parameters.

The main idea of analytical placement is based on first placing the cells optimally, in

terms of wirelenght estimation and then working toward disjointness. The second task, aims

to modify the objective function in small steps so as to force cells to move away from each

other. Such force-directed approaches reduce overlaps by recursive partitioning of the chip

area resulting in the set of cells to be placed in the core area. This partitioning is done in such

a way that no sub-region of the chip area contains more cells than it can fit. Consequently,

when the regions are small enough, the cells will be spread over the chip area. There are

plenty of techniques for cell spreading in force-based analytic placement techniques. During

placement, some form of density analysis is performed to calculate spreading forces. Once

the spreading forces are determined, these forces can be applied to each circuit component

18

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

1.1. Placement

via forces.

1.1.2 Legalization

Global placement assigns locations to standard cells and larger circuit modules, e.g.
macro blocks. However, these locations do not align with the circuit placement grid, and

may have continuous coordinates rather than discrete coordinates. Therefore, a legalization

step must be performed. The allowed legal locations are equally spaced within placement

rows, and the positions from global placement should correspond to the closest possible

legal position [6]. Legalization is necessary not only after global placement, but also after

incremental changes as cell resizing and buffer insertion during physical synthesis. Legaliza-

tion tries to find legal, non-overlapping placements for all cells so as to minimize its impact

on wirelength, timing and other design objectives as little as possible. Unlike algorithms

for cell spreading during global placement, legalization typically assumes that the cells are

sufficiently distributed throughout the core area and have relatively small mutual overlaps.

Some algorithms for legalization and placement are co-developed with global placement

algorithms. For instance, in the context of min-cut placement, detailed placement can be

performed by optimal partitioners and placers invoke in very small bins that are produced

after the netlist is repeatedly partitioned. Given that these bins contain a small number

of cells, optimal locations can be found by exhaustive position search. For larger bins,

partitioning can be performed optimally. Some analytic algorithms perform legalization in

iterations [3]. At each iteration, cells closest to legal sites are identified and snapped to legal

sites, then they are considered fixed thereafter. After a round of analytic placement, another

group of cells is snapped to legal sites, and the process continues until all cells have been

given legal locations. A common problem with simple and fast legalization algorithms is that

some cells may travel a long distance, thus significantly increasing the wirelength and, hence,

delaying the incident nets. This phenomenon can be eased by detailed placement.

1.1.3 Detailed Placement

Once a legal placement is available, it can be improved with respect to a given objective

by means of detailed placement techniques, such as swapping neighboring cells or sliding

cells to one side of the row when unused space is available, to reduce total wirelength . Some

detailed placers target routability, given that route topologies can be determined once a legal

placement is available.

19

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

CHAPTER 2

Background

Many legalization strategies have been proposed throughout the years trying to minimize

the impact on the legalizer as little as possible. These strategies can be classified as (i) global

or (ii) local approaches [8]. The main difference between these approaches is that the former

legalizes groups of standard cells simultaneously, while the latter legalizes one standard

cell at a time. Table 2.1 presents additional techniques which are widely used directly or

combined in modern legalizers.

Legalization

Techniques

Greedy moves to free locations

Ripple Cell Movement

Diffusion Based

Dynamic Programming

Computational Geometry

Network Flow

Linear Programming

Top-Down Opt. & Clustering

Table 2.1: Legalization Techniques [8]

2.1 Global Legalization Approaches

Global legalization approaches are applied, mainly, in network flow techniques or similarly

in maximum bipartite matching to get a direction guideline in which cells have to be moved.

The main idea of these approaches is to exploit the global view of the cells’ positions and guide

them to positions avoiding local optima [2]. In this way, the placement area is subdivided into

regions or bins and cells are moved from dense to sparse regions by solving a transportation

problem, where the nodes are the regions and the cells, the edges are the matching between

cells and regions, and the edges’ weights are the movement cost of the cells.

20

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

2.2. Local Legalization Approaches

Brenner [2] subdivides the chip area into bins and assigns cells to bins. Then, in order to

manage bins which exceed their cell capacity, a network flow problem is solved to distribute

cells between bins, while achieving minimum total cell displacement. Doll et al. [4] propose

an iterative approach, whereby the chip area is divided into overlapping regions. For a given

order of the regions, a minimum-cost, maximum-flow problem is then solved, per region, to

identify the cells with minimum local displacement, which may be legalized per row. Another

iteration is then performed with different region orders, until no improvement is achieved.

The drawback of global legalization algorithms is its high complexity, and the fact that

flow models estimate the cost of moving cells between regions. In the case that the estimation

is inaccurate, the end result may be suboptimal. Moreover, the majority of global legalization

approaches do not lead directly to a legal placement. Although the cells have been spread in

the placement core area, many cells may continue overlapping. So, a final legalization step

must be taken to assign the cells to the placement rows without overlaps.

2.2 Local Legalization Approaches

On the other hand, local approaches, like Tetris [5] and Abacus [10], legalize one cell after

another by using mostly greedy decisions. Each cell is selected to be legalized based on an

order. Cell order may depend on the cell GP position, the cell area and the cell influence on

the critical path e.t.c.. The cells’ order significantly influences the legal result, as each

alternative order may lead to different legal placements. A legal position is selected in order

to minimize the GP perturbation as little as possible. The next sections present the two most

common local approaches, Tetris and Abacus legalizers.

2.2.1 Tetris Legalizer

Tetris [5] is a greedy and sequential legalizer which handles mixed cells, i.e. standard

cells and macroblocks. This method is remarkably simple and trivial to be implemented.

Algorithm 1 describes how Tetris works. For the simplicity of the above pseudocode, let’s

assume that a component is either a standard cell or a macroblock.

Tetris, first assumes a virtual grid which corresponds to the available positions, x and y,
where each component can be placed. Actually, the coordinates x and y are determined by

"Library Exchange Format (LEF)" files which depend on current technology. x coordinates

are based on the vertical core area sites and y coordinates on the horizontal, which is actually

the placement rows. Then, the components are legalized one at a time, lines: 3-14. For each

component Ci, all the available positions (x, y) are checked for each position where there is

no overlapping with pre-placed components and cost D is determined, lines: 3-8. Tetris aims

to place each component to the nearest GP position without overlaps. As a consequence, it’s

cost function is the displacement between the GP position and the trial legal position. If the

current component’s displacement is less than the minimum, then the best cost is updated,

lines: 9-11. When all available positions are checked, then the current component Ci is

assigned to the legal position (xbest, ybest) with the lowest displacement cost, best_cost, line:

21

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

2.2. Local Legalization Approaches

Algorithm 1: Tetris

1 create (x, y) grid;

2 cell_ordering();

3 for each component Ci do

4 best_cost =∞;

5 for each x do

6 for each y do

7 if component_fits_at_position(Ci, x, y) then

8 Determine cost D;

9 if D < best_cost then

10 xbest = x, ybest = y; /* Trial */

11 best_cost = D;

12 end

13 end

14 Assign Ci to (xbest, ybest) ; /* Final */

15 end

14.

In its purest form, Tetris has several known drawbacks [6], one being its obliviousness

to the netlist, because the cells’ relative GP order is not maintained. As a consequence, if

component a is on the left of (or above) b in GP, then component a may be legalized on the

right of (or below) b, leading to greater total displacement cost and total wirelenght. Another

drawback is that in the presence of large amounts of whitespace, once a module is legalized,

it will not be moved anymore. These main drawbacks are solved by several evolutions of

Tetris, like Abacus.

2.2.2 Abacus Legalizer

Abacus [10] is also a sequential and greedy algorithm which is more effective, as for total

wirelength, than Tetris. In contrast to Tetris, Abacus legalizes only standard cells with the

same height, but different width, trying to minimise their displacement (movement) from

the GP positions. In order to achieve the minimal total displacement, standard cells are

allowed to be moved through placement rows by keeping their initial global placement order.

Quadratic and dynamic programming is used to find the cells’ position with the minimum

displacement from their GP positions. The following sections describe the most important

features of Abacus legalizer.

2.2.2.1 Quadratic Program

Abacus tries to move the cells as little as possible, in order to minimise it’s influence on

the optimal global placement solution. In this way, pre-placed cells are allowed to be shifted

22

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

2.2. Local Legalization Approaches

through its placement rows to optimize the total quadratic movement of all cells within one

row. The new positions are found by the following quadratic program:

min

Cr∑
i=1

[x(i)− x′(i)]2 (2.1)

s.t. x(i) ≥ x(i− 1)− w(i− 1) i = 2, ..., Cr (2.2)

For Equations 2.1 and 2.2 we assume that the row has Cr cells and for each cell i we have

the following properties, the initial global placement x-coordinate x′(i), the legal placement

x-coordinate x(i) and the width w(i). Besides this, the cell selection order is known. So,

cells i and i − 1, equation x(i) ≥ x(i − 1) must be satisfied, so as to keep the cells initial

order. Objective function 2.1 presents the total squared displacement of all row cells between

the global and legal positions. The objection can be weighted, like Equation 2.3, where e(i)
is a weight parameter for cell i. This parameter can take the cell’s area, cell’s connections,

e.t.c. into account.

min
Cr∑
i=1

e(i) ∗ [x(i)− x′(i)]2 (2.3)

Constraint 2.2 guarantees that there is no overlapping between the two cells i and i −
1. Additionally, this constraint ensures the cells initial order maintenance. However, the

solution of Objective function 2.3 with Constraints 2.2 is time consuming. Abacus faces this

problem by solving the system with "=" constrains. In this way, the system is solved very fast,

but cells must abutt to satisfy "=" constrain. So, 2.2 is transformed to:

x(i) = x(1) +
i−1∑
k=1

w(k) i = 2, ..., Cr (2.4)

By, using 2.2 in 2.3 the quadratic function depends only on x(1) and 2.3 can be re-written

as:

Cr∑
i=1

e(i) ∗ x(1)−
[
e(1) ∗ x′(1) +

Cr∑
i=2

e(i) ∗
[
x′(i)−

i−1∑
k=1

w(k)

]]
= 0 (2.5)

Then the optimal position x(1) of cell i = 1 is given by 2.6 and optimal positions x(i) of

the remaining cells in the row are given by Equation 2.4.

x(1) =

e(1) ∗ x′(1) +
∑Cr

i=2 e(i) ∗
[
x′(i)−

∑i−1
k=1w(k)

]
∑Cr

i=1 e(i)
(2.6)

23

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

2.2. Local Legalization Approaches

2.2.2.2 Displacement Cost Function

Abacus, tentatively places each cell to all or to a number of the placement rows, until the

best row is found. The best row is the row with the minimal displacement cost. The displace-

ment cost is determined by the movement of cell i between its global and legal placement

position. Equation 2.7 shows the Euclidean displacement cost function of Abacus, for cell i
legalization, √

(x(i)− x′(i))2 + (y(i)− y′(i))2, (2.7)

where {x(i), y(i)} and {x′(i), y′(i)}, the legal and global placement coordinates for cell i.

2.2.2.3 Row Search Bounding

In order to find the row where the cell displacement cost is minimal, Abacus theoretically

will try to legalize each cell in each placement row. However, this is time consuming even

for small designs. In this way, this algorithm eliminates the number of the row with bounds.

The bounds depend on the current best displacement cost. It is pointless to search for rows

where their distance is greater than the best displacement cost. So, each cell is trial legalized

in it’s nearest row depending on it’s global placement y-coordinate and then the displacement

cost is determined. This algorithm will not try to legalize the cell in any row, which vertical

distance from the nearest row is greater than the calculated best displacement cost. The aim

of row search bound is only to reduce the execution time of legalization.

2.2.2.4 Cells Selection Order

Similar to Tetris, Abacus is a sequential algorithm, i.e. cells must be sorted in a specified

order and then they are placed in the core area, one by one. In Abacus, Spindler suggests

using the increasing and decreasing order. Abacus, tries to keep this initial cell order by

supposing that the maintenance of the order will lead to the least GP perturbation, i.e. to

minimal total cells displacement.

2.2.2.5 Abacus Algorithm

On the top level Algorithm 2, cells are sorted either in increasing or in decreasing order

based on their GP x-coordinates, line: 2. In this way, each cell in the specified order, is trial

legalized in a number of rows and finally placed in the row with the minimum displacement

cost, lines: 2-15. In the case that blockages are presented, the algorithm slices the placement

rows to sub-rows, so that all new sub-rows are blockage free. The current cell is inserted in

each available (sub-)row and PlaceRow function is used to find the new cells’ position, lines:

6-7. When the cell position is found, the displacement cost is determined, line:8. In the case

that new displacement cost is better than the best, Abacus updates the best cost and row.

Next, the number of the available rows is updated.

24

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

2.2. Local Legalization Approaches

Algorithm 2: Abacus Top Level Algorithm

1 cell_ordering();

2 for each cell i do

3 B = all placement rows;

4 c_best =∞;

5 for each row r in B do

6 Insert cell i into row r;
7 PlaceRow r (trial);

8 Determine cost c;
9 if (c < c_best) then

10 cbest = c;
11 rbest = r;

12 B = min(cost_to_rows(D), B);

13 Remove cell i from row r;

14 end

15 Insert Cell i to row r_best;
16 PlaceRow rbest (final);

17 end

Algorithm 3, describes the dynamic programming implementation, where Abacus finds

the optimal legal position for each cell. Overlaps with other cells are detected, for each cell

in the current row. If there is no overlapping, i.e. xc(c) + wc(c) ≤ x′(i), a group or cluster

of cells is created. The cells of a group will be abutted and all these cells will be considered

as one. The width of the group wc(c) is the sum of the widths of the cells that belong to this

group, the xc(c) will be the optimal legal position of the group and ec(c) the total weight of

the group. Moreover, qc(c) will be the dividend of Equation 2.5.

On the other hand, if the cell overlaps with a group (pre-placed cells), the cell is inserted

in the group with Function 4, AddCell(c, i), which adds the cell’s parameters to the group.

Moving on, Function 6, Collapse(), finds the final position for the cluster, line: 2. The

final position is determined by Equation 2.6. However, the new position of the cluster may

protrude from the core area, so the alignments are necessary, lines: 4-7. Next, the algorithm

must check if the current cell group overlaps with other groups, lines: 10-14. If an overlap

exists, the two groups are merged to create one group with no cell overlapping. Function

AddCluster() is similar to Function AddCell(), but corresponds to group of cells.

Finally, Abacus places the cells of each group to the legal positions depending on the

position of the group, that has been previously found, lines: 15-22. Abacus achieves an

impressive improvement on TWL in contrast to Tetris. This is due to the fact that Abacus

ensures the maintenance of the initial cell order. On the other hand, Abacus is slower than

Tetris since many cells must be re-legalized in each placement row, so as to find the legal

positions with the best total displacement.

25

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

2.2. Local Legalization Approaches

Algorithm 3: PlaceRow

1 for i = 1, ..., Cr do

2 c = Last cluster;

3 /* First cell or cell i does not overlap with last cluster: */

4 if i == 1 or xc(c) + wc(c) ≤ x′(i) then

5 Create new cluster c;
6 Init ec(c), wc(c), qc(c) to zero;

7 xc(c) = x′(i);
8 nfirst(c) = i;
9 AddCell(c, i);

10 else

11 AddCell(c, i);
12 Collapse(c);

13 end

14 /* Transform cluster positions xc(c) to cell positions x(i) */

15 i = 1;

16 for all clusters c do

17 x = xc(c);
18 for i ≤ nlast(c) do

19 x(i) = x;

20 x = x+ w(i);

21 end

22 end

Algorithm 4: AddCell(c, i):

1 nlast(c) = i;
2 ec(c) = ec(c) + e(i);
3 qc(c) = qc(c) + e(i) ∗ (x′(i)− wc(c));
4 wc(c) = wc(c) + w(i);

Algorithm 5: AddCluster(c, c′):

1 nlast(c) = nlast(c
′);

2 ec(c) = ec(c) + ec(c
′);

3 qc(c) = qc(c) + qc(c)− ec(c) ∗ wc(c);
4 wc(c) = wc(c) + wc(c

′);

2.2.3 Our Motivation

Standard cell placement is one of the most important steps in the physical design flow.

Placement, just as it’s sub steps, like legalization, are very complicated and not trivial prob-

26

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

2.2. Local Legalization Approaches

Algorithm 6: Collapse(c)

1 /* Place cluster c: */

2 xc(c) = qc(c)/ec(c);
3 /* Limit position between xmin and xmax - wc(c) */

4 if xc(c) < xmin then

5 xc(c) = xmin;

6 if xc(c) > xmax − wc(c) then

7 xc(c) = xmax − wc(c);
8 /* Overlap between c and its predecessor c′?: */

9 c′ = Predecessor of c;
10 if c′ exists and xc(c

′) + wc(c
′) > xc(c) then

11 /* Merge cluster c to c′: */

12 AddCluster(c′, c);
13 Remove cluster c;
14 Collapse(c′);

lems. Standard cells legalization significantly influences the final placement, motivating

many people to solve this problem efficiently. So, we have also been motivated to implement

a novel legalizer, that legalizes standard cells not only fast but also with the less influence on

the optimal global placement solution.

In this chapter we analyze the two categories of legal placement, the global and the local.

The former legalizes many cells at a time, by having a global overview of all cells’ positions.

However, these legalizers are very slow. On the other hand, local approaches are quite fast,

but make greedy decisions.

Abacus is a local and greedy approach achieving minimal standard cell displacement,

which is widely used in industry. However, in designs with blockages, Abacus legal place-

ments are sub-optimal, as it violates the initial standard cells order which is the key to

minimizing total wirelength. Moreover, the original Abacus, legalizes only standard cells with

the same height. Last but not least, Abacus and generally, local legalization approaches do

not produce efficient solutions in overlapping dense regions.

We developed our legalizer, Abacus2, based on the well-known greedy legalizer Abacus

[10], as it achieves minimal movement to the standard cells. Abacus2, adopts many ideas

from the fundamental Abacus legalizer, like dynamic programming and row search bounding.

Additionally, Abacus2, is capable of handling designs with blockages efficiently, by keeping

the initial standard cell order. Abacus2 can also handle standard cells with different heights,

with a strategy which is based on both Tetris and Abacus approaches. Moreover, Abacus2 has

a super set of features which focus on better QoR (Quality of Results). In the following chapter

we present Abacus2 and its features analytically and we compare them to the corresponding

original Abacus features.

27

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

CHAPTER 3

Our Work

Chapter 2 presented the state of the art techniques in placement legalization. Abacus

[10] is one of the dominant legalization algorithms, which achieves minimum standard cell

displacement. This chapter describes Abacus2, an evolution of the original Abacus algorithm.

Abacus2 is based on the original Abacus framework, but it contains several new features.

Abacus2 supports (i) two new displacement cost functions, multi-cell mean and multi-cell

total, (ii) an additional cell order, centre-outwards, (iii) and two approaches for handling

blockages, SRA, the proposed approach in the original Abacus paper, and SRR, a more ad-

vanced blockage handling approach, which allows cells to move between sub-rows. The new

displacement cost functions also establish different row search bounds. Moreover, Abacus2

also includes a row overflow check, to ensure that a row has enough space for the current

cell. Lastly, Abacus2 is capable of legalizing multi-height standard cells, i.e cells with dif-

ferent heights. Table 3.1 illustrates a feature set comparison between the two algorithms.

These features are analyzed analytically in the following sections.

3.1 Cell Selection Order

Abacus2, like Abacus, is a sequential legalizer. Cells are placed one at a time in legal

positions in a specified order. Cell ordering in different approaches, depend on different

parameters, like cell global position, cell area or even the influence of each cell on the timing of

the circuit. Abacus2 focuses on minimizing its influence on global placement, by minimizing

the displacement of the cells from its global to legal positions. In this way, cells are legalized

based on their global x-coordinate. In Abacus2, three orders are supported, the (i) increasing,

(ii) decreasing, (iii) and center-outwards. Figures 3.1a and 3.1b, show a GP example and the

cell legalization order, depending on the selection order for the given GP, respectively. It is

worth mentioning, that cell ordering significantly influences the final legal placement, so the

key is to use many orders and choose the best one.

28

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.1. Cell Selection Order

Features Abacus Abacus2

Cell Ordering

Support

Increasing Yes Yes

Decreasing Yes Yes

Centre-outwards No Yes

Displacement

Cost Functions

Support

Single-cell Yes Yes

Multi-cell Mean No Yes

Multi-cell Total No Yes

Row Search

Bounding

Methods

Exhaustive Yes Yes

Bounded

Single-cell Yes Yes

Multi-cell

Mean
No Yes

Multi-cell

Total
No Yes

Blockages/

Hard-Macros

Support

Sub-Row

Assign Approach
No Yes

Sub-Row

Re-Assign Approach
No Yes

Row Overflow Checks No Yes

Multi-Row Height Cell Support No Yes

Table 3.1: Abacus, Abacus2 Feature Set Comparison

(a) Global Placement

(b) Cell Selection Orders

Figure 3.1: Cell Selection Order Example

29

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.2. Displacement Cost Functions

3.2 Displacement Cost Functions

Abacus and Abacus2 try to minimize cells displacement from the global to legal positions.

Both algorithms, choose the legal positions of the cells depending on the displacement cost of

each cell. Abacus algorithm uses the Euclidean distance of the last legalized cell. Equation

3.1 corresponds to the displacement cost function of Abacus, assuming that xc(p), yc(p)
and xc(n), yc(n) are the legal placement and global placement positions, respectively, for the

current cell c. We call this displacement cost function single-cell.

ds =
√
(xc(p)− xc(n))2 + (yc(p)− yc(n))2 (3.1)

However, single-cell displacement cost function has a local overview of the global place-

ment perturbation, as it only considers the displacement of the last legalized cell. This

cost function does not take the perturbation of the pre-placed cells into account. This phe-

nomenon appears mainly in dense overlapping regions. So, we propose two additional dis-

placement cost functions, the multi-cell mean and multi-cell total, which take all

the perturbed cells into account. Equations 3.2 and 3.3 determine the cost of the above cost

functions.

ds +
∑N

i=0

√
(xi(p)− xi(n))2 + (yi(p)− yi(n))2

N + 1
(3.2)

ds +
N∑
i=0

√
(xi(p)− xi(n))2 + (yi(p)− yi(n))2 (3.3)

The multi-cell mean and multi-cell total cost functions are the mean and the sum dis-

placements of the N perturbed cells and the current cell c, respectively. These cost functions

have a global overview of the global placement influence.

3.3 Row Search Bounding

So as to reduce the number of the candidate rows, we first place a cell in the nearest row,

to its global placement y-coordinate, and then determine its displacement. The displacement

cost function is interpreted to a number of rows, depending on the placement row height,

i.e. the number of the searched rows, around the nearest placement row, will be the

result of the division in Equation 3.4. The number of candidate rows is updated when a new

displacement cost is greater than the best.⌈
best displacement cost

core site height

⌉
(3.4)

30

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.3. Row Search Bounding

It is important to point out, that row search bounding must not influence the quality of

the solution, but only the execution time. The results from an exhaustive and a bounding

row search must be the same. However, the single-cell displacement cost function may

lead to sub-optimal solutions, as its row bounds are extremely tiny. Figure 3.2 illustrates a

simple example to understand why single-cell displacement function can lead to suboptimal

solutions. The cells are legalized in increasing order and their names correspond to their

selected order.

(a) Global Placement (b) Tentative Cell 8 Legalization in Row 3

(c) Suboptimal Legal Placement -

Single-cell

(d) Optimal Legal Placement - Multi-cell

Mean, Total or Exhaustive

Figure 3.2: Row Search Bound Example

Figures 3.2a and 3.2b depict the global placement and the legalization of the first seven

cells, respectively. Figure 3.2b also illustrates the global position of cell 8 and its nearest

row, row 3. Firstly, single-cell displacement cost function will try legalizing cell 8 in the row

3 and will determine its displacement cost, which is depicted as an arrow from the global to

the legal position. As we can see, this displacement cost function is very small, so, the row

search bound will be extremely tiny, bounding the row search only to row 3. On the other

hand, if the exhaustive or the multi-cell displacement cost functions are used, a legalization

with a better total displacement cost may be found. In the same example, Figure 3.2d, the

algorithm exhaustively explores all the available rows and finds a better legal placement,

31

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.4. Legalization Artifacts

in terms of total displacement cost. In the same way, multi-cell total and multi-cell mean

displacement cost functions will examine the necessary rows, as they have a global overview

of the legalization in the row. The results of the latter two displacement cost functions are

the same even if we use the row search bounds or not. However, multi-cell total creates very

loose bounds in overlapping dense regions, as the sum of all the perturbed cells are very big.

So, the execution time for multi-cell total displacement cost function is comparable to the

relative exhaustive row search execution time.

3.4 Legalization Artifacts

Another interesting finding of our legalization experiments was the observation of certain

placement artifacts, stemming from the single-cell and multi-cell total displacement func-

tions. We tested Abacus2 using minimum quadratic TWL placements, generating from the

solution of the formulated QP placement problem. The difference in the results, deriving from

a GP, is that the QP solution does not spread cells therefore, reducing overlaps.

We observe horizontal stripe artifacts in very dense QP placements and when the single-

cell displacement function is used, i.e. uneven row occupancy, with certain rows forming

horizontal stripes. On the other hand, when using the multi-cell total displacement function

for the same dense design, we observe vertical stripe artifacts, i.e. vertical stripes formed

across rows.

Figure 3.3 illustrates the cordic_I4 benchmark, which reveals this trend. In this ex-

ample, chip utilisation is 50%, the aspect ratio is 3:1, and cells are selected in decreasing

x-coordinate order. The aspect ratio is selected so as to accentuate the horizontal stripe

artifact. The reason why the horizontal stripe artifact occurs is the following. As the design is

very dense, after the first set of GP cells is placed, any new legalized cell will push its already

legalized counterparts to the right for two reasons. Firstly, since both Abacus and Abacus2

aim to maintain the original cell order, thus scanning new cells to the left, pushes the already

legalized ones to the right. Secondly, since the single-cell bound does not take the displace-

ment of the cells that moved to the right into account, the algorithm will greedily stick to this

solution. Thus, other rows further than the nearest one will seldom be searched. Figure 3.3b,

illustrates the horizontal stripe artifacts produced by the single-cell displacement function

and bound.

In contrast to single-cell, multi-cell total displacement considers all the perturbed cells.

In this way, the more overlapping cells there are, the greater increment in displacement cost

is observed. So multi-cell total actually tries to move as less cells as possible from their GP

positions. However, in overlapping dense regions, in order to move few cells, current cell is

legalized far away from its nearest row, creating vertical artifacts like the example in Figure

3.3d. Moreover, as displacement cost is increasing, row search bound is also increasing,

leading multi-cell total to great execution time.

When multi-cell mean is used as displacement function and bound, the legalization result

will not produce any artifacts, as illustrated in Figure 3.3c. Multi-cell mean is horizontal

32

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.4. Legalization Artifacts

(a) Minimum QP TWL Global Placement

(b) Single-cell Legalization

(c) Multi-cell Mean Legalization

(d) Multi-cell Total

Legalization

Figure 3.3: Legalization Artifacts for Single-cell and Multi-cell total displacement functions

artifact free because it takes all the perturbed cells into consideration.

33

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.5. Blockage Handling Strategies

3.5 Blockage Handling Strategies

Abacus2 supports two approaches for handling blockages. The first approach, Sub-Row
Assign (SRA), was proposed in the original Abacus work but not experimentally evaluated.

In the SRA approach, blockage locations divide rows in row segments, called sub-rows. The

legalization algorithm can then operate on sub-rows, instead of placement rows, with the

restriction that cells were once assigned, they may not move between sub-rows. Thus,

legalization will identify the nearest sub-row, instead of the nearest chip row.

The key disadvantage of the SRA approach is that it will only maintain the relative cell

order of GP within sub-rows, but will very likely violate it across sub-rows. We illustrate this

with a contrived example. Figure 3.4a shows a GP with two blockages, depicted in gray, and

three cells, 1, 2 and 3. If we assume increasing x-coordinate order, cells will be considered

in the order 1, 2, 3. Figures 3.4b, 3.4c illustrate the legalized positions for cells 1 and 2.

cell 1 is legalized in the middle sub-row, where its displacement cost is minimal. As cell 2
cannot fit there too, it is placed within the right sub-row. The last cell, cell 3 will have little

choice, but to be legalized in the left sub-row. Figure 3.4d, illustrates the SRA legalization,

with arrows representing cell displacement from their GP location. The original cell order is

thus not maintained, due to the presence of blockages, and the fact that cells may not move

across sub-rows.

The alternative blockage handling approach, Sub-Row Re-assign (SRR), tackles this

issue by allowing cells to be reassigned to other sub-rows, so as to maintain the original

relative cell order as much as possible. The operation of SRR is recursive in the case where a

sub-row becomes full when a cell is moved there. An inter sub-row cell move thus creates a

wave of recursive, or iterative, such moves, to ensure that: (i) no sub-row overflows, and (ii)

the original cell order is maintained.

SRR identifies the nearest sub-row for the cell, but it maintains cell order. The selected

cell order determines how to achieve this. First, SRR identifies the cell’s closest sub-row.

Then, it identifies the rightmost cell of the current placement row. The nearest sub-row then

becomes the sub-row with the largest x-coordinate between the closest cell sub-row, and the

sub-row of the rightmost legalized cell. For the other two cell orders, SRR uses the same idea

in their respective orders.

In the same example of Figure 3.4, and after cell 1 is legalized, the SRR approach will

attempt two tentative legalizations for cell 2. The first is to move cell 1 to the left sub-row, so

as to make room for cell 2 in the middle sub-row. The second is to place cell 2 in the right

sub-row, as in the SRA approach. Note that in the case where a decreasing x-coordinate

order is used, the first tentative move of SRR would correspond to moving the existing cells

of the middle sub-row to the right instead. Out of the two tentative moves, the one with the

least displacement is the second one, i.e. the same result as that of SRA, Figure 3.4c. When

cell 3 is to be legalized by SRR, it will not fit in either the middle or right sub-rows. Thus, the

former is assigned to its nearest sub-row, the right sub-row, reassigning cell 2 to the middle

sub-row, which then recursively reassigns cell 1 to the left sub-row. The result of SRR, which

34

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.6. Multi-Row Height Cells Handling Approach

(a) Global Placement

(b) Cell 1 Legalization in Middle Sub-row

(c) Cell 2 Legalization in Right Sub-row

(d) SRA - Cell 3 Legalization in Left Sub-row

(e) SRR - Cell 3 Legalization in Right Sub-row

Figure 3.4: Blockage Handling Approaches Example

maintains the original, relative cell order, is illustrated in Figure 3.4e. Its TD is less then the

SRA solution.

It is interesting to note that if blockages are not present, the two legalization approaches

produce the same result as sub-rows do not exist and both SRA and SRR will maintain the

cell order.

3.6 Multi-Row Height Cells Handling Approach

Our legalizer, Abacus2, can also handle cells with different heights, i.e. Multi-Row
Height Cell (MRHC). MRHCs can have arbitrary heights, but it must be integral multiple

of the row height. In contrast to the classic soft macros, the number of MRHCs in a modern

circuit is much larger. In this way, the legal positions of MRHCs must be selected efficiently,

so as to influence TWL as little as possible. MHRCs are mainly flip-flops, which play an

important role in the design timing, so their legal positions must differ as little as possible

from the optimal, in terms of TWL, global placement positions. It is inefficient to use the

original Abacus approach to legalize MRHCs, as MRHCs will move cells from many rows and

35

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.6. Multi-Row Height Cells Handling Approach

increase both legalization execution time and final TWL. As a consequence, we decided to

use the legalization strategy of Tetris [5] algorithm, to place MRHCs, by fixing them to their

nearest GP position, in order for pre-placed cells not to be moved. Abacus2 can be subdivided

into two stages, the Multi-Row Height Cell and Single-Row Height Cell legalization. The latter,

legalizes cells according to the features that have been described in the previous sections.

Single-Row Height Cells are the standard cells, which height is equal to the placement row

height. The former, legalizes and fixes each MRHC to the legal position with the minimum

cell displacement. The MRHC will not be moved again from this legal position, throughout

the legalization procedure. As a result, the displacement cost function for the MRHCs is the

single-cell, as only one cell moves at a time.

The MRHC handling approach, treats the already legalized MRHC as blockages, by subdi-

viding placement rows into sub-rows. Figure 3.5 shows a simple example, so as to understand

how a (sub-)row can be subdivided into sub-rows.

Figure 3.5: (Sub-)Row Diviation from a MRHC

Blockages and already legalized MRHCs may exist in core area, gray colored boxes. We

assume that the optimal legal position for MRHC 2 is depicted in the figure. In this example,

we can see how a (sub-)row can be subdivided, i.e. (i) in row 1, MRHC 2 subdivides the

row into two sub-rows, (ii) in the second row, MRHC subdivides the middle sub-row, (iii) in

row 3, the current sub-row is shrinked and (iv) in row 4, the MRHC 2 occupies the hole

sub-row, so this sub-row ceases to exist.

Next, the MRHC handling approach will be presented with a contrived example. The

algorithm starts from the global placement solution with blockages already placed in the core

area, Figure 3.6.

The white MRHC must be legalized in the nearest legal position. The algorithm will

find all the legal positions for the cell and will legalize it to the position with the minimum

displacement from the global position. In order to find the corresponding sub-rows, Abacus2

scans the core area into two opposite directions, i.e. bottom-up and top-down. Both scan

36

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.6. Multi-Row Height Cells Handling Approach

Figure 3.6: MRHC Legalization Example: Global Placement

directions are necessary, so as to find all the available sub-rows. Figures 3.7 and 3.8 depict

the core area bottom-up and top-down scan of the GP example in Figure 3.6.

Firstly, by taking the lower y-coordinate of the MRHC as a reference, the algorithm, starts

from the nearest row and tests all the available sub-rows that the cell fits. Then, algorithm

determines the new cell x-coordinate. The algorithm searches, from the current sub-row to

the height of the MRHC, if the cell can be legalized in the determined by x-coordinate position.

This mean that in a legal position the MRHC will not overlap with any MRHC or blockage.

In the example of Figure 3.6, the nearest row to the lower side of the cell, is row 4 and more

specifically the left most sub-row. The upper left figure of Figure 3.7 illustrates that in the

new x-coordinate, cell can’t be legalized, since Blockage 1 blocks the second row. The next

nearest sub-row is the sub-row in row 5. Again, the nearest x-coordinate to the GP position

will lead to an illegal placement because of the existence of Blockage 2. Moving on, the left

most sub-row of row 3 will also lead to illegal placement. Finally, the right most sub-row

of row 3 leads to a legal placement (lower right figure). When a legal placement is found,

the displacement cost is determined. Each MRHC will be placed in the position with the

minimum displacement cost of the cell.

However, the bottom-up scan is not enough to find all the available sub-rows. In Figure

3.7, it is clear that there are many other corresponding sub-rows. As a consequence, a top-

down scan is necessary to find the remaining available sub-rows. Only the combined results

of bottom-up and top-down scans cover all the possible cases. In Figure 3.8, the top-down

scans are presented, starting each time from the nearest sub-row of the upper y-coordinate

of the cell. The algorithm scans the sub-row in the same way as in bottom-up, but in the

opposite direction.

Finally in this example, we can see that there are four available positions to legalize

the MRHCs. The algorithm will legalize the cell in the position with the least displacement

cost, i.e. the position which is illustrated in the lower left figure in Figure 3.8. After the

legalization of each MRHC, it is fixed in this position and never moved again. The solution

37

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.7. Abacus2 Algorithm

Figure 3.7: Bottom-Up Sub-row Scan

space can be reduced by using the row search bounding approach (see Section 3.3). This

method can be used not only to reduce the number of the explored rows, but also to reduce

the number of the explored sub-rows in each row.

The drawback of this approach, like the Tetris approach, is that the fixed cells will create

many whitespaces between the MRHC. This problem can be handled efficiently, in terms

of TWL, by the SRR algorithm as cells may be shifted to the gaps with the recursive re-

legalizations. However, the execution time, of the legalizer, will be very slow.

3.7 Abacus2 Algorithm

In this section we present how features from the previous sections are combined, in Aba-

cus2. Algorithm 7, describes the top level pseudocode of Abacus2 legalizer. The algorithm

starts from the solution of a global placement (GP), where cells C have been placed in the

optimal, in terms of TWL, positions. C contains information about the cells, like their global

coordinates, their width and height, e.t.c. Moreover, the coordinates of blockages and

placement rows are already known. The user can specify the legalization cell order O (see

Section 3.1), the blockage handling approach (SRA of SRR) (see Section 3.5) and the dis-

placement function (DF) . The output of the algorithm is the legal placement (LG) of cells C,

in the core area, where blockages may exist.

38

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.7. Abacus2 Algorithm

Figure 3.8: Top-Down Sub-row Scan

Firstly, Abacus2 defines the placement sub-rows SR of each row r, lines: 7-10. The sub-

rows are created by the intersection of the original placement rows R and the positions of the

blockages H. If blockages are not present, rows and sub-rows are the same. Next, cells are

subdivided into the Multi-Row Height Cells (MRHC) and the classic Single-Row Height
Cells (SRHC), lines: 13-18. Function isMHRC, checks the cell’s height and determines if

the cell is MRHC or not. In the first case, the cell is inserted in CM , a union of all the MRHC.

However, in the second case, CS contains all the SRHC. Then, the algorithm separates the

cells, and it legalizes the MRHC first and then legalizes the SRHS. It is worth mentioning, that

MRHC can be sorted not only by their x-coordinate, or by their height, but also by combining

them. For example, the tallest cells may be sorted and legalized first and then the shortest.

39

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.7. Abacus2 Algorithm

Algorithm 7: Abacus2 Algorithm

1 Input: GP (C), Blockages (H), Placement Rows (R), Order (O),

2 Blockage Approach (SRA), Displacement Function (DF)

3 Output: Legalized Placement

4 Multi-Row Height Cells CM ;

5 Single-Row Height Cells CS ;

6 /* Define placement sub-rows */

7 for each r ∈ R do

8 for each r ∩H do

9 create sub-rows SR;

10 end

11 end

12 /* Find Multi-Row Height and Single-Row Height Cells */

13 for each c ∈ C do

14 if isMRHC(c) then

15 CM = CM ∪ c;
16 else

17 CS = CS ∪ c;

18 end

19 /* Legalize Multi-Row Height Cells */

20 CM = cell_sorting(CM , O);

21 if CM 6= ∅ then

22 legalize_MRHC(CM);

23 /* Legalize Single-Row Height Cells */

24 CS = cell_sorting(CS , O);

25 if CS 6= ∅ then

26 if SRA) then

27 SRA(CS , DF);

28 else

29 SRR(CS , DF , O);

As for cells with the same height, the user specified order O determines the legalization order.

Function 8, legalizes the MRHC. The algorithm gets a list of MRHC (CM) and the place-

ment sub-rows SR and produces a legal placement for the MRHC. For each MRHC and each

placement row in the bounded list of rows B, Abacus2 makes tentative legalizations to find

the optimal legal position, in terms of TD. As we described in Section 3.6, MRHC are legalized

by taking two points of view into account , the bottom-up and top-down. Starting from the

lower row r, bottom-up approach finds the available sub-rows, line: 9. Function get_subrows,
returns a sorted list of sub-rows in row r, where cell c fits. This list, is sorted based on the

the distance of the sub-row from cell c x-coordinate.

40

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.7. Abacus2 Algorithm

Algorithm 8: legalize_MRHC

1 Input: Sorted Multi-Row Height Cells List (CM), Placement Sub-Rows (SR)

2 Output: MRHC Legalization

3 for each c ∈ CM do

4 B = placement rows;

5 best_cost =∞;

6 flag = 0;

7 for each r ∈ B do

8 /* Bottom-Up Trial Legalization */

9 A = get_subrows(c, r, Sr);
10 backtracking_trial_legalizations(c, best_cost, r + 1, r + get_height(c), A);

11 /* Top-Down Trial Legalization */

12 A = get_subrows(r + get_height(c), Sr);
13 backtracking_trial_legalizations(c, best_cost, r + get_height(c)− 1, r, A);

14 end

15 Select best legalization; /* final */

16 update_subrows();

17 end

Then, Algorithm 9, backtracking_trial_legalizations, scans the sub-rows to find if there is

free space in the sub-rows above the current sub-row. The number of rows above, that the

algorithm checks, depends on the height of the current cells, which is given from function

get_height. The backtracking_trial_legalizations algorithm finds the new position that the cell

c can be placed, for each sub-row in the sorted listA. This position is the nearest x-coordinate

to the global position that the cell can be legalized in sub-row s. For the new x-coordinate,

the algorithm checks the above (bottom-up) or the bellow (top-down) rows vertically, and

discovers if MRHC fits in the respective sub-rows of these rows. Function can_legalized
scans if the cell fits in the specified sub-row and if it does, a flag rises. On the other hand,

if the cell can not be legalized in a sub-row, the flag falls so the backtracking scan for the

current sub-row s fails. If backtracking scans, find a number of sequential vertical sub-rows

that the cell fits, the displacement cost D is determined. In the case that cost D is less than

the best, the best legal placement is updated.

Moving on, when all the available sub-rows in A are checked, the algorithm uses the

top-down approach. This method is similar to the bottom-up scan approach, but scans the

rows from the upper to the lower row of the current cell. Finally, when all the available

rows are checked, the algorithm selects the legalization result with the less displacement

cost and updates the sub-rows (see Section 3.6). The legalization of each MRHC changes the

placement sub-rows as the cell is fixed to the legal position.

The result of the function legalize_MRHC, it is that all the MRHC have been legalized in

the core and new sub-rows have been created. From now on, MRHC are treated as blockages,

so as to disable them from moving. Then, Abacus2, legalizes the Single-Row Height Cells

41

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.7. Abacus2 Algorithm

Algorithm 9: backtracking_trial_legalizations

1 Input: Current Cell (c), Best Cost (best_cost), Lower Cell Row (lr), Lower Cell Row (ur),
Sub-Rows of Current Row (A)

2 Output: Best Cost (best_cost), Tentative Best Legalization

3 for each s ∈ A do

4 find_new_position(c, s);
5 for each u ∈ [lr : ur] do

6 if !can_legalized(c, u) then

7 flag = 0;

8 break;

9 else

10 flag = 1;

11 end

12 if flag then

13 D = determine_cost();

14 if D < best_cost then

15 Update best legalization; /* tentative */

16 best_cost = D;

17 end

(SRHC), with the user specified blockage handling approach (SRA or SRR).

The SRA approach pseudocode is illustrated in Algorithm 10. Each cell, in the specified

order is tentatively legalized within a bounded range of sub-rows, lines: 3-7, where the bound

is initially the entire set of rows. For each sub-row, where the cell can fit, a trial legalization

is performed, and the displacement cost D is determined, lines: 8-10. If the new cost D is

greater than the current best cost, the current best cost and the cells best legal location are

updated, lines: 11-13. At this point, the row bound is relaxed, based on the displacement

cost of the current best solution, line: 14. After all sub-rows within the bounded range are

explored, the cell will be legalized at the sub-row location of minimum displacement cost,

line: 17.

The SRR approach pseudocode, which supports cell sub-row reassignment, is illustrated

in Algorithm 11. Similarly to SRA, each cell, in the specified cell order, is tentatively legalized

within a bounded range of sub-rows, lines: 3-6. Here, the nearest valid, sub-row is identified,

line: 7. The nearest valid, sub-row is the nearest sub-row, where (i) the current cell may

fit, and (ii) the original cell order is maintained, within the chip row. If cells need to be

moved for the current cell to fit within the identified sub-row, SRR will recursively move the

necessary number of already legalized cells, from sub-row to sub-row, by calling function

recursive_moves, line: 9. The pseudocode for recursive_moves is illustrated in Algorithm 12.

In the first recursive iteration, we check if the current cell Ci fits in the nearest sub-row,

considering Ci as the only cell in the moving group M , line: 3. If the cell fits in the sub-row,

it is legalized there, line: 12. In the case where the nearest sub-row is already occupied,

42

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.7. Abacus2 Algorithm

Algorithm 10: SRA Approach

1 Input: Sorted Single-Row Height Cells List (CS), Displacement Function (DF)

2 Output: Legalized Placement

3 for each cell Ci in CS do

4 B = # placement rows;

5 best_cost =∞;

6 for each row R in B do

7 for each sub-row SR do

8 if cell_fits_in_subrow(Ci, SR) then

9 Legalize Ci in SR;

10 D = determine_displacement_cost(DF);

11 if D < best_cost then

12 Update best legalization; /* tentative */

13 best_cost = D;

14 B = min(cost_to_row_range(best_cost), B);

15 end

16 end

17 Select best legalization; /* final */

18 end

already legalized cells will be re-legalized in previous sub-rows. Function previous returns

the previous sub-row for a specified sub-row, depending on cell order O, i.e. in the increasing

order, the previous sub-row of the ith is the i− 1th, in the decreasing order, the previous sub-

row is the i + 1th and in the centre-outwards order, the previous sub-row depends on the

direction of the selected cell compared to the central cell. Similarly, function next returns

the next sub-row, to a specified sub-row. On the other hand, function next returns the next

sub-row. In this way, if there is a previous sub-row, a new moving group M ′
is created, line:

5. M ′
consists of the cells that must be removed from the current sub-row so as to legalize M

group there. However, in very thin sub-rows, the new group M ′
may contain cells from the

previous moving group M , so after each legalization each moving group must be updated,

line: 11.

After the creation of the new moving groupM ′
, the algorithm recursively tries to move cells

to previous sub-rows, until either all cells are legalized in the sub-rows, or there is a moving

group but there are no more previous sub-rows, line: 7. In the second terminating condition,

the whole legalization procedure fails to re-legalize cells. If the recursive re-legalizations are

achieved, the displacement cost D is determined and the best legalization is updated, if the

new cost is greater than the best, lines: 10-13.

Next, SRR will try to legalize Ci in the opposite direction of the recursive cells move, so

as to find a legal position without any cell movement, again maintaining their initial order

and finding the new cost, lines: 15-20. When the above approaches are both finished, the

algorithm updates the number of the available rows which may be influenced by the best

43

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.8. Extra Features

cost.

When all the available rows are checked, cell Ci will be assigned to the best sub-row by

reassigning cells in other sub-rows, if needed, and then will continue legalizing the remaining

cells.

Algorithm 11: SRR Approach

1 Input: Sorted Single-Row Height Cells List (CS), Displacement Function (DF), Order (O)

2 Output: Legalized Placement

3 for each cell Ci in CS do

4 B = # placement rows;

5 best_cost =∞;

6 for each row R in B do

7 Find nearest sub-row Sn;

8 /* phase1 */

9 if recursive_moves(Ci, Sn, O) then

10 D = determine_displacement_cost(DF);

11 if D < best_cost then

12 Update best legalization; /* tentative */

13 best_cost = D;

14 /* phase2 */

15 if next(Sn, O) then

16 Legalize Ci in next(Sn);

17 D = determine_displacement_cost(DF);

18 if D < best_cost then

19 Update best legalization; /* tentative */

20 best_cost = D;

21 B = min(cost_to_row_range(best_cost), B);

22 end

23 Select best legalization; /* final */

24 end

3.8 Extra Features

This section contain extra applications that Abacus2 supports. Abacus2 is capable of

handling highly dense overlapping regions with and/or without blockages. In this way,

Abacus2 can be used as a look-ahead legalizer in the placement flow. In [3], a look-ahead

legalizer is used so as to legalize the cells after a number of spreading iterations. In this

hill climbing approach, the final legal placement is the best legal placement found through

all iterations. However, the whole placement execution time is very slow, mainly in the first

iterations, due to the great number of cell overlaps.

44

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.8. Extra Features

Algorithm 12: recursive_moves

1 Input: Moving Group M , Current Sub-row S, Order (O)

2 Output: Legalized Cell in Sub-row

3 if !cell_fits_in_subrow(M , S) then

4 if previous(S,O) then

5 Create M ′;
6 S′ = previous(S, O);

7 if !recursive_moves(M ′, S′, O) then

8 return(False);

9 else

10 return(False);

11 Update M ;

12 Legalize M in S;

Abacus2 can be used when cells are up-scaled, i.e. to increase its width. In this way,

we can use the legalizer in a previous legal placement, taking the new cells’ sizes into account.

The same procedure can be used if the height of the cells is changed. This application of the

legalizer is important, as it is time consuming to start placement procedure from scratch.

Figure 3.9 presents a simple example so as to understand how Abacus2 legalizes an up-

scaled circuit. Figures 3.9a and 3.9b show the example’s GP and LG, respectively. Blue lines

depict the cell connections and the orange lines the connections between placement I/O pins

and cells. Then, if we increase, for example, the width of the same cells by 14%, cell overlaps

will occur, Figure 3.9c. Finally, Figure 3.9d shows the legalization of the up-scaled placement

of Figure 3.9c. As we can see in this simple example, the legalizer’s work will be trivial and

the final legal placement differs infinitesimally. More specifically, the initial TWL in Figure

3.9b is 121.250µm, the TWL after the legal placement of Figure 3.9c is 178.250µm and the

final TWL, after the cells’ up-scale legalization, is 186.030µm. As for the execution time, the

legalizer is very fast as there are a few overlapping cells.

Moreover, Abacus2 can be used to legalize hierarchical circuits. Abacus2 handles hierar-

chical circuits with a divide and conquer technique. A floorplanning approach can subdivide

the core area into smaller areas, called bounded boxes. Each bounded box contains other

bounded boxes and/or cells. Abacus2 can be used in any stage of the divide and conquer

technique. The legalization of hierarchical designs is faster than if the same designs is flat-

tened because the legalizer manages a fewer number of cells and placement rows for each

separate problem. However, the TWL of the legal placement is worse in hierarchical than in

flat legalizations, as the legalizer loses the global overview of the cells.

45

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

3.8. Extra Features

(a) Up-scaling GP Example (b) Legal Placement

(c) Up-scaling about 14% Flops Widths (d) Up-scaled Legal Placement

Figure 3.9: Cell Up-scaling Example

46

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

CHAPTER 4

Results

This chapter presents the results of this thesis. Abacus2 is implemented in C and has

been embed in an under development industrial placer. The placer reads verilog and Library

Exchange Format (LEF) files and produces the necessary structures for placement. Verilog

files have the description of the circuit and LEF files have the physical information about

the cells and its connections. In this way, the experiments presented in this chapter, are

produced from the ISPD2014, ICCAD2014 and small industrial benchmarks. Moreover, the

core area utilization is set to 50% and the core aspect ratio to 1:1, i.e. the core area width

is similar to its height. The 1:1 aspect inhibits artifacts occurring in the original Abacus, as

discussed in Section 3.4. Table 4.1, presents the names, the number of the standard cells,

the number of the placement rows and the GP TWL of the benchmarks that we examined. Our

legalization results were obtained by using minimum quadratic TWL placements, obtained

directly from the solution of the formulated QP placement problem, i.e. without any cell

spreading to reduce overlaps. We focused on legalizing circuits with high cell overlaps, to

handle the worst-case scenario of a legalizer. By ensuring that Abacus2 works efficiently,

even for designs without cell spreading, we demonstrate that it can be used as a look-ahead

legalizer, i.e. it can be use during the cell spreading steps of Global Placement [3].

In order to test Abacus2 with blockages, we used a standard, scalable blockages pattern,

which tests many legalization corner cases. Our scalable blockages pattern is illustrated in

Figure 4.1. We scaled this pattern so as to have blockages which occupy about 20% of the

entire chip area.

4.1 Cell Selection Order Comparison

We tested three different cell selection orders, i.e. increasing, decreasing and centre-

outwards. Table 4.2 illustrates the results of our cell ordering experiments, for the three

displacement cost functions, in terms of total displacement, and the best ordering, per

benchmark. The minimum displacement cost for each experiment is highlighted in bold.

47

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

4.1. Cell Selection Order Comparison

Benchmark
Num. of

Cells

Num. of

Rows
GP TWL (µm)

ind1 2346 71 1.04E+5

ind2 18796 160 4.54E+5

bridge32_1 30675 135 5.29E+5

fft 32281 144 5.51E+6

cordic_I4 41601 152 2.02E+5

des_perf_1 112644 299 8.33E+5

edit_dist_1 130661 273 5.12E+6

matrix_mult 155325 294 2.13E+7

b19 219268 521 1.51E+6

Table 4.1: Benchmarks Characteristics

Figure 4.1: Blockages Pattern

The average results are presented respectively to the increasing cell order and can even differ

up to 40%.

Moreover, the table shows that, the decreasing order produces the best, on average,

results for the three displacement cost functions. This is a random observation, which is

produced because the GP places the cells on the left side of the core for all testcases. The

reason why the cells are placed on the left side is that most of the placement I/O pins are

places on that side. As a consequence, the cells which are connected to the I/O pins are

forced to be placed near them. Figure 4.2, depicts the GP of edit_dist_1 benchmark. The

48

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

4.1. Cell Selection Order Comparison

Benchmark

Single-cell Multi-cell Total Multi-cell Mean

Inc. Dec. C-O. Inc. Dec. C-O. Inc. Dec. C-O.

ind1 2.01E+4 2.16E+4 2.40E+4 8.62E+3 8.68E+3 8.45E+3 9.10E+3 7.85E+3 8.21E+3

ind2 4.30E+5 4.24E+5 4.40E+5 2.35E+5 2.22E+5 2.35E+5 2.82E+5 2.09E+5 2.34E+5

bridge32_1 2.18E+6 2.22E+6 2.27E+6 1.23E+6 1.26E+6 1.25E+6 1.58E+6 1.08E+6 1.12E+6

fft 2.22E+6 2.03E+6 2.21E+6 5.92E+5 4.70E+5 5.85E+5 5.15E+5 3.06E+5 4.10E+5

cordic_I4 3.31E+6 3.29E+6 3.20E+6 2.07E+6 2.15E+6 2.07E+6 2.65E+6 1.82E+6 1.89E+6

des_perf_1 1.53E+7 1.54E+7 1.56E+7 8.59E+6 9.23E+6 8.94E+6 1.14E+7 7.65E+6 8.23E+6

edit_dist_1 1.69E+7 1.69E+7 1.80E+7 8.73E+6 9.57E+6 9.73E+6 1.08E+7 8.44E+6 9.28E+6

matrix_mult 2.02E+7 2.11E+7 2.23E+7 1.02E+7 1.02E+7 1.08E+7 1.17E+7 8.40E+6 9.41E+6

b19 6.10E+7 5.47E+7 5.70E+7 4.33E+7 3.24E+7 3.86E+7 5.64E+7 3.19E+7 3.43E+7

Average 1.00 0.96 1.00 1.00 0.87 0.96 1.00 0.63 0.68

Table 4.2: Cell Selection Orders Displacement Costs

cells are in green and the connections between cells and I/O pins are depicted with orange

lines. The mass of the cells are on the top left side of the core, where there are many I/O

placement pins. On the other hand, in the case where the mass of the cells are placed on the

right core side, increasing order is observed to produce the best, on average, results.

Figure 4.2: Placement I/O Pins Position

49

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

4.2. Displacement Functions Comparison

4.2 Displacement Functions Comparison

In this section we compare the results of the three displacement functions, i.e. single-

cell, multi-cell total and multi-cell mean. Tables 4.3 and 4.4 present comparative, relative

Total Wirelength (TWL) and Total Displacement (TD) results, with and without the scalable

blockages pattern respectively. The best ordering result of Table 4.2, for the multi-cell mean

and total functions is compared against the original Abacus single-cell.

As for the results in the Table 4.3, no blockages are present, thus the SRA, SRR ap-

proaches produce the same result, as sub-rows correspond directly to chip area rows. It can

be observed that multi-cell total presents worst TWL and TD, on average. This occurs, be-

cause the latter considers the total displacement of all cells, per legalization. Thus, it cannot

distinguish between a cell which moved far, and another which moved near their original

GP, as it considers the sum of their distances. It thus tends to move certain cells further

away from their GP location. Multi-cell mean produces, on average, comparable results to

the original single-cell, for designs without blockages, with multi-cell mean producing better

results on certain benchmarks.

Benchmark

Multi-cell

Total

Multi-cell

Mean

TWL TD TWL TD

ind1 1.27 2.49 0.99 1.04

ind2 1.32 1.97 1.16 1.03

bridge32_1 1.73 1.96 1.25 1.1

fft 1.64 6.43 0.86 1.49

cordic_I4 1.05 1.71 0.97 1.10

des_perf_1 1.71 1.93 1.33 1.09

edit_dist_1 1.48 1.95 1.16 1

matrix_mult 1.61 2.33 1 1.17

b19 0.98 1.66 0.7 0.99

Average 1.42 2.49 1.05 1.11

Table 4.3: Displacement Cost Functions without Blockages Comparison to Single-cell

Table 4.4 presents results, for the same designs, but with the specified blockage pattern

included. The table presents relative TWL, TD comparisons, between the displacement func-

tions, and the SRA and SRR approaches, compared against single-cell SRA. Multi-cell total

exhibits the worst results overall, both with SRA and SRR. On the other hand, multi-cell

mean reduces both TWL and TD, by about 2%, when using the SRA approach. As for the

SRR approach, multi-cell mean reduces TWL and TD, by 9% and 2% respectively. The reason

why multi-cell mean exhibits better results when blockages are present is due to high density

regions. These are created by the blockage pattern. Such regions are likely to produce place-

50

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

4.2. Displacement Functions Comparison

ment artifacts, horizontal for the single-cell, and vertical for the multi-cell total displacement

functions. Artifacts will thus lead to increased TWL. However, multi-cell mean, being artifact

free, correlates TWL better to TD.

Benchmark
Single-cell Multi-cell Total Multi-cell Mean

SRR SRA SRR SRA SRR

TWL TD TWL TD TWL TD TWL TD TWL TD

ind1 0.98 0.98 1.26 2.54 1.17 2.14 0.89 1.03 0.89 1.03

ind2 0.98 0.97 1.64 1.95 1.30 1.52 1.09 0.98 1.05 0.98

bridge32_1 0.97 0.97 1.77 1.91 1.32 1.52 1.15 0.98 1.04 0.97

fft 0.98 0.94 1.53 2.80 1.29 2.46 0.78 0.99 0.78 1.00

cordic_I4 0.98 0.99 1.41 2.09 1.15 1.71 0.93 1.05 0.93 1.05

des_perf_1 1.04 0.97 1.99 1.92 1.40 1.55 1.26 1.01 0.84 1.00

edit_dist_1 0.96 0.98 1.95 1.94 1.44 1.50 1.03 0.90 1.03 0.90

matrix_mult 0.96 0.97 1.69 2.39 1.32 1.80 0.82 0.98 0.82 0.97

b19 0.84 1.09 1.47 1.54 1.26 1.41 0.87 0.90 0.85 0.90

Average 0.97 0.99 1.63 2.12 1.29 1.73 0.98 0.98 0.91 0.98

Table 4.4: Displacement Cost Functions with Blockages Comparison to Single-cell SRA

Figures 4.3, 4.4 and 4.5 show the GP and legalization of cordic_I4 benchmark, with

the three displacement cost functions, for SRA and SRR approaches. The artifacts described

in Section 3.4 are presented in this legalization example. Multi-cell total and single-cell DF

create vertical and horizontal artifacts, respectively. On the other hand, multi-cell legalizes

the cells uniformly.

Figure 4.3: cordic_I4 Benchmark GP Example

51

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

4.3. SRA vs SRR Comparison

(a) Multi-cell Total DF LP (b) Multi-cell Mean DF LP (c) Single-cell DF LP

Figure 4.4: cordic_I4 Benchmark SRA Displacement Function Example

(a) Multi-cell Total DF LP (b) Multi-cell Mean DF LP (c) Single-cell DF LP

Figure 4.5: cordic_I4 Benchmark SRR Displacement Function Example

4.3 SRA vs SRR Comparison

This section presents the compared results between SRA and SRR approaches. As we can

see in the previous Figures 4.4a and 4.5a, the SRA may place cells far away, so as to minimize

the total cell displacement. On the other hand, SRR makes the necessary recursive moves,

proceeding better legal placement, in terms of TWL and TD. The same trend can be observed

when SRA and multi-cell mean or single-cell are used. However, the specified blockage patter

does not reinforce this feature.

The best achieved SRR and SRA results are compared to each other, as depicted in Figures

4.6, 4.7 and 4.8. The relative TWL, TD and Execution Time of the best SRR solution are

compared to the best SRA solution. It can be observed that SRR results are significantly

better and achieve an average 8% reduction in both TWL and TD. This reduction stems from

52

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

4.3. SRA vs SRR Comparison

the fact that SRR maintains the original, relative cell order, and has the ability to move cells

across sub-rows. However, SRR’s execution time is 23% slower, on average, compared to that

of SRA. In terms of absolute execution time requirements, the multi-cell mean legalization of

b19 requires 183 minutes, with SRR, and 175 minutes, with the SRA approach.

-0,03

-0,10

-0,15

-0,07
-0,08

0,07

-0,13
-0,11 -0,11

-0,08

-0,20

-0,15

-0,10

-0,05

0,00

0,05

0,10

ind1 ind2 bridge32_1 fft cordic_I4 des_perf_1 edit_dist_1 matrix_mult b19 Average

%
 T

o
ta

l
W

ir
e

le
g

th
 C

o
m

p
a

ri
so

n

Benchmarks

Blockage Handling Appoaches Comparison

SRR

SRA

(Reference)

Figure 4.6: SRA vs SRR TWL Comparison

-0,09

-0,11 -0,10

-0,08

-0,09

0,00

-0,11

-0,14

0,00

-0,08

-0,16

-0,14

-0,12

-0,10

-0,08

-0,06

-0,04

-0,02

0,00

ind1 ind2 bridge32_1 fft cordic_I4 des_perf_1 edit_dist_1 matrix_mult b19 Average

%
 T

o
ta

l
D

is
p

la
ce

m
e

n
t

C
o

m
p

a
ri

so
n

Benchmark

Blockage Handling Appoaches Comparison

SRR

SRA

(Reference)

Figure 4.7: SRA vs SRR TD Comparison

53

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

4.4. Multi-Row Height Cells

0,00

0,48

0,16

0,00

0,31

0,78

0,09
0,04

0,23 0,23

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

ind1 ind2 bridge32_1 fft cordic_I4 des_perf_1 edit_dist_1 matrix_mult b19 Average%
 E

xe
cu

ti
o

n
 T

im
e

 C
o

m
p

a
ri

so
n

Benchmarks

Blockage Handling Appoaches Comparison

SRR

SRA

(Reference)

Figure 4.8: SRA vs SRR Execution Time Comparison

4.4 Multi-Row Height Cells

In this section we present results of the MRHC’s impact on TWL, TD and execution time.

Table 4.5, provides information about the testcases and the benchmarks of the experiments,

i.e. it presents the benchmark names, the total number of standard cells, the percentage

of the MRHC in each design and the initial TWL. It is worth mentioning that the number of

the MRHC in a design is equal to the number of its flops and the initial GP does not differ

when we increase its height.

Benchmark Num. of Cells MRHC % GP TWL (µm)

ind1 2.346 15.39 1.04E+05

ind2 18.796 5.16 4.54E+05

bridge32_1 30.675 10.95 5.29E+05

fft 32.281 6.15 5.51E+06

cordic_I4 41.601 2.96 2.02E+05

des_perf_1 130.661 6.74 8.33E+05

edit_dist_1 130.661 4.33 5.12E+06

matrix_mult 155.325 1.87 2.13E+07

b19 219.268 3.01 1.51E+06

Table 4.5: MRHC Bechmarks

In order to record the influence of MRHC in legalization, we performed experiments where

the cells’ height is (i) the same as the placement row height, i.e. single-row height cell,

(ii) twice (x2) the placement row height and (iii) triple (x3) the placement row height. Table

4.6, presents results for the TWL, the TD and the execution time for the benchmarks of

54

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

4.4. Multi-Row Height Cells

Table 4.5, where the three, x1, x2, x3, up-scale height factors are used on each flop. The

results have been produced from the best cells selection order, the best dispalcement cost

function and the best blockage handling approach. This table shows that not only TD, but

also TWL are extremely increased when the flops heights are increased. The increase occurs

for two reasons. The first is that Abacus2 fixes the MRHC to their legal position. As a

consequence, it forces many cells, MRHC or not, to be legalized far away from the optimal GP

position. Moreover, the GP of the testcases is the solution of a quadratic placement without

minimizing the cells density. In this way, many cells overlap and are then forced to be legalize

to sup-optimal positions. On the other hand, the execution time of legalization is significantly

decreased.

Benchmark

Flops Up-scale Height Factor

x1 x2 x3

TWL

(µm)

TD

(µm)

Exec.

Time (m:s)

TWL

(µm)

TD

(µm)

Exec.

Time (m:s)

TWL

(µm)

TD

(µm)

Exec.

Time (m:s)

ind1 1.80E+05 8.45E+03 0:01 2.70E+05 2.08E+04 0:01 3.07E+05 2.43E+04 0:01

ind2 3.17E+06 2.22E+05 1:05 4.24E+06 4.97E+05 0:33 4.69E+06 6.04E+05 0:29

bridge32_1 1.07E+07 1.23E+06 3:46 1.31E+07 2.49E+06 1:49 1.42E+07 2.99E+06 1:46

fft 8.23E+06 4.70E+05 2:07 9.30E+06 7.48E+05 1:15 9.62E+06 8.35E+05 1:10

cordic_I4 1.58E+07 2.07E+06 7:20 1.88E+07 2.82E+06 5:30 2.16E+07 3.16E+06 5:26

des_perf_1 7.54E+07 8.59E+06 56:00 9.79E+07 1.59E+07 39:16 1.02E+08 1.86E+07 41:13

edit_dist_1 6.08E+07 8.73E+06 71:44 8.66E+07 1.50E+07 48:00 8.80E+07 1.70E+07 48:02

matrix_mult 6.82E+07 1.02E+07 99:11 9.57E+07 1.36E+07 67:21 9.26E+07 1.46E+07 64:34

b19 2.68E+08 3.24E+07 284:05 3.16E+08 4.12E+07 261:20 3.27E+08 4.61E+07 259:01

Table 4.6: MRHC Up-scaling Results

Moreover, the charts in Figures 4.9, 4.10 and 4.11, present the compared percentages

between the three cases (i) where only single-row height cells, i.e. x1 up-scale height factor,

is used, (ii) where up-scale factor x2 is used and (iii) where up-scale factor x3 is used. The

results of x1 up-scale height factor are used as a reference. Figures 4.9 and 4.10 depict the

TWL and TD % comparison between the three up-scaling factors. The former, shows that

TWL is increasing approximately 29% and 38%, when the flops’ height is doubled and tripled

respectively. The latter, presents the increment of TD. The cells displacement is increased due

to the reasons that have previously been described. Figure 4.11 shows that execution time

is decreased when MRHC are used. Execution time reduction occurs because the number of

cells that are moved in each iteration become less and less, as MRHC are fixed.

Finally, Figures 4.12, shows the GP and the legal placement of des_perf_1 benchmark,

when x3 upscale-factor is used. Figures c, d, e and f depict different stage of Figure b
magnification. As we can see in Figures c and d, illustrate the legal placement of MRHC, as

a bubble. The cells’ overlapping density is great so many cells overlap and as a consequence

MRHCs are packed in neighbouring positions. Figure f shows some MRHC with height three

55

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

4.4. Multi-Row Height Cells

49,74

33,75

22,35

12,97

19,37

29,91

42,43
40,31

17,73

29,84

70,25

47,94

32,89

16,78

36,90 35,89

44,66

35,80

22,06

38,13

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

ind1 ind2 bridge32_1 fft cordic_I4 des_perf_1 edit_dist_1 matrix_mult b19 Average

%
 T

o
ta

l
W

ir
e

le
n

g
h

t
C

o
m

p
a

ri
so

n

Benchmarks

x2 x3

x1

(Reference)

Figure 4.9: MRHC TWL Comparison

146,59

123,94

102,67

59,18

36,34

84,51

71,63

34,23
26,97

76,23

188,00

172,34

143,86

77,73

52,61

116,04

94,27

43,22 42,34

103,38

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

180,00

200,00

ind1 ind2 bridge32_1 fft cordic_I4 des_perf_1 edit_dist_1 matrix_mult b19 Average

%
T

o
ta

l
D

is
p

la
ce

m
e

n
t

C
o

m
p

a
ri

so
n

Benchmarks

x2 x3

x1

(Refer

ence)

Figure 4.10: MRHC TD Comparison

times greater than the placement row height. Moreover, we can see that cells have been

legalized in the gaps (white-spaces) between the MRHC.

56

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

4.4. Multi-Row Height Cells

0,00

-68,57

-56,94

-44,44

-26,39

-30,07
-32,39 -32,53

-8,10

-33,27

0,00

-72,38

-57,80

-46,86

-26,94 -26,79
-32,39 -35,55

-8,80

-34,17

-80,00

-70,00

-60,00

-50,00

-40,00

-30,00

-20,00

-10,00

0,00

ind1 ind2 bridge32_1 fft cordic_I4 des_perf_1 edit_dist_1 matrix_mult b19 Average

%
 E

xe
cu

ti
o

n
 T

im
e

 C
o

m
p

a
ri

so
n

Benchmarks

x2 x3

x1

(Reference)

Figure 4.11: MRHC Execution Time Comparison

57

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

4.4. Multi-Row Height Cells

(a) (b) (c)

(d) (e) (f)

Figure 4.12: des_perf_1 Benchmark MRHC Legalization Example

58

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

CHAPTER 5

Conclusions and Future Work

In this work, we propose an evolution of the well-known Abacus placement legalization

algorithm, which is called Abacus2 and it’s aim is to achieve minimum cells’ displacement.

Legalization is one of the three tasks of standard cell placement. The first task is global

placement, which aims to generate a "rough" placement solution that violates some design

constrains, such as cells’ overlapping and cells’ not aligning to the chip grid. The second

placement task, legalization, is covered in this work. The last task, detailed placement,

further improves the legalization placement solution.

Legalization must have as little impact as possible, between the first and the last tasks of

placement. For this reason, Abacus2 legalizer aims to minimise the total displacement of the

cells. Abacus2 has a supperior set of features than the fundamental Abacus legalizer, which

lead to better legal results. Abacus2 supports three displacement cost functions and three

cell sorting orders. Multi-cell mean displacement cost function is artifact free, and produces

an average of 9% in reduction and a 5% increase on average, in TWL, for designs with and

without blockages respectively. Moreover, Abacus2 handles placement blockages, based on

Sub-Row Assign (SRA) and Sub-Row Re-assign (SRR) approaches. In SRA, a cell may only be

moved within its assigned sub-row, in contrast to SRR, which allows cells to be re-assigned

to other sub-rows, recursively. The SRR approach maintains the initial cells order, exhibiting

an average 8% reduction, in both TWL and TD, compared to the SRA approach. Abacus2, is

also capable of handling standard cells with heights integral multiple of the placement row

height.

Our future goals include using Abacus2 as a look-ahead legaliser in a global placement

flow, so as to exploit it’s good behaviour in overlapping dense designs, and to modify its

greedy approach to legalise multiple cells simultaneously.

59

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

Bibliography

[1] Charles J Alpert, Dinesh P Mehta, and Sachin S Sapatnekar. Handbook of algorithms
for physical design automation. CRC press, 2008.

[2] Ulrich Brenner. Vlsi legalization with minimum perturbation by iterative augmentation.

In 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages

1385–1390. IEEE, 2012.

[3] Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen, and Yao-Wen

Chang. Ntuplace3: An analytical placer for large-scale mixed-size designs with pre-

placed blocks and density constraints. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(7):1228–1240, 2008.

[4] Konrad Doll, Frank M Johannes, and Kurt J Antreich. Iterative placement improvement

by network flow methods. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 13(10):1189–1200, 1994.

[5] Dwight Hill. Method and system for high speed detailed placement of cells within an

integrated circuit design, April 9 2002. US Patent 6,370,673.

[6] Andrew B Kahng, Jens Lienig, Igor L Markov, and Jin Hu. VLSI physical design: from
graph partitioning to timing closure. Springer Science & Business Media, 2011.

[7] Sung Kyu Lim. Practical problems in VLSI physical design automation. Springer Science

& Business Media, 2008.

[8] Igor L Markov, Jin Hu, and Myung-Chul Kim. Progress and challenges in vlsi placement

research. Proceedings of the IEEE, 103(11):1985–2003, 2015.

[9] Majid Sarrafzadeh, Maogang Wang, and Xiaojian Yang. Modern placement techniques.

Springer Science & Business Media, 2013.

[10] Peter Spindler, Ulf Schlichtmann, and Frank M Johannes. Abacus: fast legalization of

standard cell circuits with minimal movement. In Proceedings of the 2008 international
symposium on Physical design, pages 47–53. ACM, 2008.

60

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 21:11:28 EEST - 18.223.172.78

	 Introduction to EDA
	Placement
	Global Placement
	Legalization
	Detailed Placement

	 Background
	Global Legalization Approaches
	Local Legalization Approaches
	Tetris Legalizer
	Abacus Legalizer
	Quadratic Program
	Displacement Cost Function
	Row Search Bounding
	Cells Selection Order
	Abacus Algorithm

	Our Motivation

	 Our Work
	Cell Selection Order
	Displacement Cost Functions
	Row Search Bounding
	Legalization Artifacts
	Blockage Handling Strategies
	Multi-Row Height Cells Handling Approach
	Abacus2 Algorithm
	Extra Features

	 Results
	Cell Selection Order Comparison
	Displacement Functions Comparison
	SRA vs SRR Comparison
	Multi-Row Height Cells

	 Conclusions and Future Work
	Bibliography

