MANEMIZTHMIO OE22AAIAZ
MOAYTEXNIKH 2XOAH
TMHMA MHXANIKQN H/Y,

THAETIIKOINQNIQN KAl AIKTYQN

“ BeAtiotonoinon Taxutntag kat Katavalwaong loxuog
Wnolakwv KukAwpatwy ”

“Power of Timing Optimization of Digital Circuits ”

AumAwpatiki Epyaocia
Avtwviadng Toatodiag NikoAaog
ErupBAénovteg KaOnynteg :
JtapoUANG Newpylog

Eupopdomourog Néotwp

BoAog, ZenteuBplog 2016

AumAwuatikn Epyaocia yia tnv ardoktnon tou AutAwuato¢ tou Mnxovikou
HAektpovikwv YrroAoyiotwy, TnAemikovwviwy kat Aiktowv tou lavermiotnuiov
Oeooaliac, ota mAaiola tou Mpoypauuatoc Mportuytakwy Zrnovdwv tou TURUATOS
Mnxavikwv H/Y, ThAemikowwviwv kat Aiktuwv tou lNavemiotnuiov Osooadiag.

Euxapiotieg

Me tnv napovoa StmAwuartikn epyacio Ga nveda va euxaplotnow Gepud toug
enBAEmOVTEC KAUNYNTEC LOU YLO TN CUVEPYXOLO KOL TNV EUTTLOTOCUVI TTOU UOU
enedetéav kaGwc kat Toug PIAoug/oUVEPYATEC TOU epyaotnpiou E5 kat 1dlattépwe
10 81daktopLko outnth Mapupdaidlov Anuntpto yia tnv kadodnynon Kot tig
ouotlwdelg untodeiéelc Toug. TEAOG Eva UEYAAO EUXAPLOTW OTNV OLKOYEVELN LUOU YL
™V avektiuntn Bondeila kot urtoatipLén Tou UoU Tapeiyav Katd Tt SLAPKELA TWV
ormoudwv Lovu.

Contents

Chapter 1

O R - 1 (ol T o 1T F= g NG 1 YA T Y, =1 o T Yo TSN 4

O VT o Yo Y=Y o I Il 0T 4[] o T3 4

TNV 11 Vo Yo Y o =1 V2] RSP 5

1.4 TiMING PrOPagation......uuuiiiiiiiiiiiiiiiiietee et e e ettt e e e e s s s st teeeteeesessesssabassbeeteaaaeeeeesssssssnssssaesaeeessesnnns 6

o (o N =T oo T oY Y=Tor Y oo F=] 11 -SSR 8

1.6 Circuit ElIement MOEIING.....cii ittt et e e e e sre e e st re e e e e ssbeee e e abeeeeeensbeeeeesnnsseeas 10

Chapter 2

DA R oY -4 ot | I = i e PP 14
P20 0 R) {4 oo [0 ot o o o PO P PR PPPPUTOPPUROP 14

2.1.2 Delay in @ 108IC Bat B it et e ettt e et ettt et e et et et e e et st e een st s sae e tes sae e eeeeee s L

2.1.3 Multistage LOGIC NETWOIKS.uviiieiiie e e s e e e e e 17

P A UL o1y i T=Yo I oY= o= I X i o] o SRR 21
2.2. 0 INEFOAUCTION ettt sttt sttt e e st e b b ses e e ee b s e et n et st 21
2.2.2 Delay Model of Logic Gates With WireS.........ccccuiiiiiiiiieeeciiee ettt 21
2.2.3 Delay Minimization using Unified Logical Effort.........cccceveeeiiiiiiiiiciii e, 23
2.2.4 ULE Optimization in Paths With BranChes.........cccuueiiiiiiiiiciiiieeccccee e 25
2.2.5 CONCIUSION ...ttt ettt ettt s et e s bt s esate e sbeesaneeareeneesnneenees 29

Chapter 3

B L INPUL FIlBS.uriuiite ettt ettt sttt et et et et s aeete st steseese s estesaes et ersaneaseaee et ste e sensessensesesersensaneare et s 30

3.2 Input standard parasitic exchange format (.SPEF)......uu e 35

S LY o LU I oY= o 4V (11 o)) TS OO 42

I 0 104 0L 11 =T IRV 2K o1) IO RR 49

Chapter 4

4.1 OpenTimer : TIMiNg ANAlYSiS TOOI.....ccciiiiieiiieie et et e e e e et e e e s sta e e e ssaabaeeessantaeeeesnasaseeas 50
0 I R T A oY [V T AT o O TP PP TUPPT ORI 50
A, 1.2 PUIPOSE ceeiiitiitittttttetttuttet e sasasaeeaeeeaaeeaeeeasesestasaeesesesssssssssnsnssasasasssaaaaseessseseeeeenenessssnsnnnn 54
4.1.3 Find critical paths with positive SIACKS..........ccccuiiiiiiiiiie e 54
4.1.4 Minimum scale factor file PArSEr.....uu i e s 56
4.1.5 Setting the UNit INVEITEI . ..cii et e e e e e e e e s s ebbre e e e sbreeeessanes 57
4.1.6 UNit INVEITEI'S VAlUBS.c.. ettt ettt ettt ettt e st e st e e e sab e s sateesaabeesanee 59
4.1.7 Logical Effort values eXtraction......c.cciicciiiieiiiiiiiiee ettt seiee e s etee e e s saare e e e ssaeeaeeesaans 64

4.2 CONCIUSION. ..eiutiiiiiit ettt ettt ettt ettt e ettt e et e e s bte e s eubeesabe e e s beeesabtessabee e aseeessbaeeansbeeesnsaeesaseeesaseesanseeesan 65

Chapter 1

1.1 Static Timing Analysis Method

Static timing analysis (STA) is a simulation method of computing the expected timing of a digital circuit
without requiring a simulation of the full circuit.

High-performance integrated circuits have traditionally been characterized by the clock frequency at
which they operate. Gauging the ability of a circuit to operate at the specified speed requires an ability to
measure, during the design process, its delay at numerous steps. Moreover, delay calculation must be
incorporated into the inner loop of timing optimizers at various phases of design, such as logic synthesis,
layout (placement and routing), and in in-place optimizations performed late in the design cycle. While
such timing measurements can theoretically be performed using a rigorous circuit simulation, such an
approach is liable to be too slow to be practical. Static timing analysis plays a vital role in facilitating the
fast and reasonably accurate measurement of circuit timing. The speedup comes from the use of
simplified timing models and by mostly ignoring logical interactions in circuits. It has become a mainstay
of design over the last few decades.

One of the earliest descriptions of a static timing approach was based on the Program Evaluation and
Review Technique (PERT), in 1966[1]. More modern versions and algorithms appeared in the early 1980s.

1.2 Purpose and Definitions

In a synchronous digital system, data is supposed to move in lockstep, advancing one stage on each tick of
the clock signal. This is enforced by synchronizing elements such as flip-flops or latches, which copy their
input to their output when instructed to do so by the clock. Only two kinds of timing errors are possible in
such a system:

e A setup time violation, when a signal arrives too late, and misses the time when it should advance;
e A hold time violation, when an input signal changes too soon after the clock's active transition.

The time when a signal arrives can vary due to many reasons - the input data may vary, the circuit may
perform different operations, the temperature and voltage may change, and there are manufacturing
differences in the exact construction of each part. The main goal of static timing analysis is to verify that
despite these possible variations, all signals will arrive neither too early nor too late, and hence proper
circuit operation can be assured.

Since STA is capable of verifying every path, it can detect other problems like glitches, slow paths
and clock skew.

https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Clock_frequency
https://en.wikipedia.org/wiki/Delay_calculation
https://en.wikipedia.org/wiki/Logic_synthesis
https://en.wikipedia.org/wiki/Placement_(EDA)
https://en.wikipedia.org/wiki/Routing_(EDA)
https://en.wikipedia.org/wiki/SPICE
https://en.wikipedia.org/wiki/Program_Evaluation_and_Review_Technique
https://en.wikipedia.org/wiki/Program_Evaluation_and_Review_Technique
https://en.wikipedia.org/wiki/Synchronous_circuit
https://en.wikipedia.org/wiki/Lockstep_(computing)
https://en.wikipedia.org/wiki/Clock_signal
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Latch_(electronic)
https://en.wikipedia.org/wiki/Glitches
https://en.wikipedia.org/wiki/Clock_skew

e The critical path is defined as the path between an input and an output with the maximum delay.
Once the circuit timing has been computed by one of the techniques below, the critical path can
easily be found by using a traceback method.

e The arrival time of a signal is the time elapsed for a signal to arrive at a certain point. The reference,
or time 0.0, is often taken as the arrival time of a clock signal. To calculate the arrival time, delay
calculation of all the components in the path will be required. Arrival times, and indeed almost all
times in timing analysis, are normally kept as a pair of values - the earliest possible time at which a
signal can change, and the latest.

e Another useful concept is required time. This is the latest time at which a signal can arrive without
making the clock cycle longer than desired. The computation of the required time proceeds as
follows: at each primary output, the required times for rise/fall are set according to the specifications
provided to the circuit. Next, a backward topological traversal is carried out, processing each gate
when the required times at all of its fanouts are known.

e The slack associated with each connection is the difference between the required time and the arrival
time. A positive slack s at some node implies that the arrival time at that node may be increased by s,
without affecting the overall delay of the circuit. Conversely, negative slack implies that a path is too
slow, and the path must sped up (or the reference signal delayed) if the whole circuit is to work at the
desired speed|[2].

1.3 Method Analysis

Timing analysis computes the amount of time signals propagate in a circuit from its p ri mary inputs (PlIs) to
its primary outputs (POs) through various circuit elements and interconnect. Signals arriving at an input of an
element will be available at its output(s) at some later time; each element therefore introduces a delay
during signal propagation. Further-more, assume that signal transitions are characterized by their input slew
and their output slew, which is defined as the amount of time required for a signal to transition from high-to-
low or low-to-high.

L T~~~ . _ Element

i
;
i
' Interconnect Bl RN ~ -
i
i
i

! Primary — Primary | e ——

i Inputs Outputs | e S~

L conb ol -

r g —e ~— — ! s ~.

i :-. P > e ol 57 .

: 1] .__: .’,’ , ~

rod i 3 [P 2 *\

b ' ! e IanE‘SIeWSI.Aj \
- - i

b H e E — \ ! A d Output Slew s,

o : . -4 L N\L asy| B e

o 1 - i 1 ! 1

= 2 1 1
> EEah SN P .yN !
l 1 o N P
il ! 3 L vl R IantFSIewsm 7)
1 A

b : ! = 5 | ye ;

L : 1 oreni Lo : ’

P! ! o ~ =14 Circuit . s

Lo i

[[l

|

1

i

i

circuit

Figure 1 - Slews and delays in a circuit element.

https://en.wikipedia.org/wiki/Arrival_time
https://en.wikipedia.org/wiki/Delay_calculation
https://en.wikipedia.org/wiki/Delay_calculation

In the figure, the delay across the circuit element from input A to output Y is designated by day , the input
slew at A by S;s and the output slew at Y by S,y . Here, both the delay and the output slew are functions of
input slew.

1.4 Timing Propagation

Starting from the primary input(s), we quantify the instant that a signal reaches an input or output of a
circuit element as the arrival time (at). Similarly, starting from the primary output(s), we quantify the limits
imposed for each arrival time to ensure proper circuit operation as the required arrival time (rat). Given an
arrival time and a required arrival time, we define the slack at a circuit node as a measurement of how well
timing constraints are met. That is, a positive slack means the required time is satisfied, and a negative slack
means the required time is in violation.

To account for multiple sources of within-chip variation, such as manufacturing variations, temperature
fluctuation, voltage drops, and electromigration, timing analysis is typically done using an early/late split,
where each circuit node has an early (lower) bound and a late (upper) bound on its time. By convention, if the
early or late mode is not explicitly stated, both modes will be need to be considered. For example, a generic
output slew so that is a function of input slew s; implies that the early mode s, is a function of early
mode s , and the late mode s, is a function of late mode s/“t.

Actual arrival time. Starting from the primary inputs, arrival times (at) are computed by adding delays
across a path, and performing the minimum (in early mode) or maximum (in late mode) of such
accumulated times at a convergence point. That is, in early mode, we are concerned with computing the
earliest time instant that a signal transition can reach any given circuit node. For example, let at,®" and
atz®" to be the early arrival times at pins A and B in Figure(). Then the early mode arrival time at the
output pin Y will be

atyearly: min(atAearly+ dear/yAeyl atBearly + deurIyBey)

Conversely, in late mode, we are concerned with computing the latest time instant that a signal
transition can reach any given circuit node. Following the same example in Figure 1 (right), the late mode
arrival time at Y will be

at.ylate= max(atA""e+ d/uteAey’ atBlate + d/mesey)

Required arrival time. Starting from the primary outputs, required arrival times (rat) are computed by
subtracting the delays across a path, and performing the maximum (in early mode) or minimum (in late
mode) of such accumulated times at a convergence point. That is, in early mode, we are concerned with
computing the earliest time instant that a signal transition must reach any circuit node. For example, in
Figure 2 (left), the early mode required arrival time at the input pin Z will be

ratzearly - max(rat_rlearly _ dearlyz9 T, ratrzearly_ dearlyz9 2)

Conversely, in late mode, we are concerned with computing the latest time instant that a signal transition
must reach any given circuit node. Following the same example in Figure 2 (left), the late mode required
arrival time at the input pin Z will be

ratzlate - min(rat_’_llate _ d/atez9 T r.athlal‘e _ dlatez9 2)

Slacks. For proper circuit operation, the following conditions must hold:
atearly > ratearly

atl ate < ratlate

To quantify how well timing constraints are met at each circuit node, slacks (slack) can be computed based
on equations for at and rat . That is, slacks are positive when the required times are met, and negative
otherwise.

Slackearly - atearly _ r.atearly

Slacklate - ratlate _atlate

Slew propagation. As circuit element delays and interconnect delays are a function of the input slew (si), the
subsequent output slew (so) must be propagated. In this contest, we will assume worst-slew propagation,
where we propagate the smallest (largest) slew in early (late) mode. Following the example in Figure 1 (right),
the early mode and late output slew at output pin Y are, respectively:

SOYearly = min (SOAYearly (SiAearIy)’ SOBVearly (SiBearIy))

SOYIate = max (SOAYIate (SiAIate)’ SOBYIate (siBIate))

Transitions. For each timing arc, delay and output slew values will propagate only for transitions that exist.
For example, suppose there two timing arcs in serial, where the first timing arc propagates rise-to-rise (R>R)
and fall-to-fall (F=>F), and the second timing arc propagates fall-to-rise (F=>R). After timing analysis, the only
valid output transition at the second timing arc will be rise (R). The delay through both the timing arcs is the

sum of the delay for the F->F transition in first arc plus the delay for the second arc for the F>R transition in
the second arc. Note that the delay for the R->R delay from the first arc is not used, and the fall arrival time
for the second arc is undefined. For this contest, an undefined early (late) arrival time is set as 987654 (-
987654), and an undefined early (late) required arrival time is set as (-987654) (987654).

Figure 2 : Generic interconnect (left), its timing model (center) and RC network (right).

1.5 Interconnect Modeling

The basic instance of interconnect (wire) is a net, which is assumed to have an input pin (Port) and one or
more output pins (Taps), as illustrated in Figure 2 (left). Parasitic RC trees only contain grounded capacitors
and floating resistors (we will not include the discussion of coupling capacitors or grounded resistors).

Delay. The computation of port-to-tap delays can be accurately performed through electrical simulation.
However, and for the sake of simplicity (and speed), we will assume the simpler Elmore delay model [3],
where the delay is approximated by the symmetric of the value of the first moment of the impulse response. To
compute the delay of RC tree networks, we summarize the topological method [4].

In an RC network, consider any two nodes e and k. Let Ck be the lumped capacitance at node k, and let
Ri>e be the total resistance of the common path between the paths from Port to e and Port to k. For
example, in Figure 2 (right), the resistance between nodes 1 and T2 (R1->T2) is RA, as that is the only
common resistor between the paths Zto 1 and Z to T2. The

Elmore delay at node e is

10

de = Z Ryoe Ck

where N is the set of all nodes in the RC network. For the example net illustrated in Figure (right), the delay at
node T2 (tap) is (visiting in order nodes 1, T1, 3, 2, T2):

dr2 = RaCi + RAC3 + RaCs + (Ra+Rs)C2 + (Ra+ R 5+Re)Cs = Ra(C1+ C3+ C4) + (Ra+ R)Ca + (Ra + Rs + Re)Cs

Output slew. The value of the output slew (s,) on any given tap node T can be approximated by a two-step
process. First, compute the output slew of the impulse response on T, which was observed to be well-
approximated by

where Br is the second moment of the input response at node T, and dr is the corresponding Elmore delay
from Equation . Second, compute the slew of the response to the input ramp by the expression given :

o ~ 2 _ a 2
SoT"’ Si SoT

where s; is the input slew.

Figure 3. RC tree

11

Modified RC network for output slew calculation

The value of Br can be computed through the efficient path-tracing algorithm for moment
computation proposed in [5], which is a generalization of the algorithm proposed in [1]. To
calculate B, first replace all capacitance values Ci in the RC network by Cidi where dy is the

Elmore delay. Second, follow the same procedure as before for finding B+
Br = Z Ryt Crdy
kEeN

At node T, we have :

BTZ: Ra (C1d1 + Cids + C4d4) + (RA + RB)Czdz + (RA +Rg + RE)CSdS

1.6 Circuit Element Modeling

For delay and output slew calculations between two pins, the information will be given in the .lib file as two-
dimensional tables. To find the corresponding timing information, extrapolation or interpolation will be
necessary.

If the table contains a single value, i.e., a 1x1 table (Figure 4 left), no interpolation is necessary. That is,
regardless of input x and y, the corresponding value is constant. If the table is one-dimensional, i.e., a 1xn
table or a mx1 table (Figure 4 center), then the value will depend only on the non-scalar dimension. For
example, consider the 1x4 table in Figure 4. If y <y1, then the corresponding output z value will be the linear
extrapolation between z1 and z2. If y2 < y < y3, then z will be the linear interpolation between z2 and z3.

Table 1.lllustration of different tables: scalar, one-dimensional, and two-dimensional.

12

If y4 <y, then z will be the linear extrapolation between z3 and z4.

If the table is two-dimensional, perform linear interpolation on the x values first, then perform linear
interpolation on the y values. For example, consider the 3x4 table in Figure 4. If x; < x < x3 and y, <y <ys,
then (i) determine zrwst by linear interpolation on z,; and z3, (ii) determine zsecona by linear interpolation on
Zy3 and z3zand then (iii) determine z by linear interpolation using Zfirst and Zsecond -

Combinational elements. For a given combinational cell, e.g., OR gate, let the delay d and output slew s, for
a input/output pin-pair (see Figure) be calculated by non-linear delay model interpolation/extrapolation.
These delay and output slew tables are stored in the .lib, and are referenced by the input slew (x) and driving
load (y). C. denotes the equivalent downstream capacitance seen from the output pin of the cell. Several
sophisticated models have been proposed for computing C, . For simplicity, the application of such models is
considered to be out of the scope of the present contest, and a simple model is adopted. C, is assumed to be
the sum of all the capacitances in the parasitic RC tree, including the cell pin capacitances at the taps of the
interconnect network.

Figure 4: Combinational OR gate (left), its timing model (center) and capacitances (right).

13

Sequential elements. Sequential circuits consist of combinational blocks interleaved by registers, usually
implemented with flip-flops (FFs). Typically, sequential circuits are composed of several stages, where a register
captures data from the outputs of a combinational block from a previous stage, and injects it into the inputs
of the combinational block in the next stage. Register operation is synchronized by clock signals generated by
one or multiple clock sources. Clock signals that reach distinct flip-flops, e.g., sinks in the clock tree, are
delayed from the clock source by a clock latency I.

A (D) flip-flop is a storage element that captures a given logic value at its input data pin D, when a given clock
edge is detected at its clock pin CK, and subsequently presents the captured value and its complement at the
output pins Q and Q. The flip-flop also enables asynchronous preset (set) and clear (reset) of the output pins
through the respective S and R input pins.

Figure 5:Generic D flip-flop and its timing model (left), and two FFs in series and their timing models (right).

Setup and hold constraints. Proper operation of a flip-flop requires the logic value of the input data pin to be
stable for a specific period of time before the capturing clock edge. This period of time is designated by the
setup time t.eryp Additionally, the logic value of the input data pin must also be stable for a specific period of
time after the capturing clock edge. This period of time is designated by the hold time tno1a The flip-flop
timing models are depicted in

The complement, preset and clear signals are stated here for completeness. For the purposes of the contest, their

behavior will be ignored.

14

Figure 5 (left). The test time are given in the .lib as two-dimensional tables, and are referenced by the clock-
side input slew (x) and the data-side input slew (y).

Signal propagation. Consider the standard signal transition between two flip-flops as illustrated in Figure 5
(right). Assuming that the clock edge is generated at the source at time 0, it will reach the injecting
(launching) flip-flop F F 1 at time /;, making the data available at the input of the combinational block dcksq
time later. If the propagation delay in the combinational block is d.omb then the data will be available at the
input of the capturing flip-flop F F; at time /i + dck sq + deomb. Let the clock period to be a constant 7. Then
the next clock edge will reach FF ; at time T + /,. For correct operation, the data must be be available at the
input pin D of FF; teetwp time before the next clock edge. Therefore, at the data input pin D of FF,, we have the

following :

athe = [[*° + degq + digmp

_ late _ early
Tatseryp = Taty - =T+ 1, — tsetup

A similar condition can be derived for ensuring that the hold time is respected. The data input pin D of FF;
must remain stable for at least thoia time after the clock edge reaches the corresponding CK pin. Therefore, at
the data input pin D of FF,, we have the following:

early _ jearly early
atD = li + dCK—>Q + dcomb

early _ [late
0

ratpeq = raty = — thotd

Note that when computing the required arrival times in Equations 27 and 29, the value I, is specific to
Figure 6. In the general case, /, should be replaced with atc. The previous arrival times and required arrival
times induce setup and hold slacks, which can be computed from Equations 7 and 8. For the clock pins of the
flip-flop, the required arrival time is derived from the test slack. For early mode, the slack at the clock pin is
the setup or late test slack, and for late mode, the slack at the clock pin is the hold or early test slack. From
the corresponding test slack and arrival time, the clock required arrival time can be derived, and

appropriately propagated.

15

Chapter 2

2.1 Logical Effort

2.1.1 Introduction

Timing modeling and optimization are two of the primary issues in high complexity circuit design. The
method of Logical Effort (LE) [6], a term invented by I. Sutherland and B. Sproull in 1991, is a straightforward
technique for fast evaluation and optimization of delay in logic paths (see Figure 6). The technique has since
been adopted as a basis for numerous CAD tools, for the sake of its simplicity.

Figure 6 - Logical effort optimization for gates without wires is based on equal stage efforts,

glhl=g2h2 etc.

2.1.2 Delay in a Logic Gate

The LE method is founded on a simple model of delay [4] through a single MOS logic gate. The model
describes delays caused by the capacitive load that the logic gate drives and by the topology of the logic
gate. Clearly, as the load increases, the delay increases, but delay also depends on the logic function of the
gate. Inverters, the simplest logic gates, drive loads best and are often used as amplifiers to drive large

capacitances. Logic gates that compute other functions require more transistors, some of which are

16

connected in series, making them poorer than inverters at driving current. Thus a NAND gate has more delay
than an inverter with similar transistor sizes that drives the same load. The method of logical effort

quantifies these effects to simplify delay analysis for individual logic gates and multistage logic networks.

As a first step, delay is expressed in terms of a basic delay unit t which is the delay of an inverter driving an
identical inverter with no parasitic capacitance. The unit-less number associated with this is known as the
normalized delay. The absolute delay is then simply defined as the product of the normalized delay of the

gatedand t:

dabS:dXT

The delay incurred by a logic gate is comprised of two components, a fixed part called the parasitic delay p
and a part that is proportional to the load on the gate’s output, called the effort delay or stage effort f. The

total delay, measured in units of T, is the sum of the effort and parasitic delays:

d=f+p
The effort delay depends on the load and on properties of the logic gate driving the load. We introduce two

related terms for these effects: the logical effort g captures properties of the logic gate, while the electrical

effort h characterizes the load. The effort delay of the logic gate is the product of these two factors:

f=9 %xh
The logical effort g captures the effect of the logic gate’s topology on its ability to produce
output current. It is independent of the size of the transistors in the circuit. The electrical
effort h describes how the electrical environment of the logic gate affects performance and
how the size of the transistors in the gate determines its load-driving capability. The electrical

effort is defined by

where Cout is the capacitance that loads the output of the logic gate and Cin is the capacitance presented
by the input terminal of the logic gate. Electrical effort is also called fanout by many CMOS designers.

17

Combining the last two equations, we obtain the basic equation that models the delay through a single

logic gate, in units of T:

d=gXh+p

This equation shows that logical effort g and electrical effort h both contribute to delay in the same way.
This formulation separates t, , h, and p, the four contributions to delay. The process parameter T
represents the speed of the basic transistors. The parasitic delay p expresses the intrinsic delay of the gate
due to its own internal capacitance, which is largely independent of the size of the transistors in the logic
gate. The electrical effort, h, combines the effects of external load, which establishes Cout, with the sizes
of the transistors in the logic gate, which establish Cin. The logical effort g expresses the effects of circuit
topology on the delay free of considerations of loading or transistor size. Logical effort is useful because it
depends only on circuit topology.

Table 2 - Logical effort for inputs of static CMOS gates, assuming y=2. y is the ratio of an inverter's pull-up
transistor width to pull-down transistor width.

Logical effort values for a few CMOS logic gates are shown in Table 2. Logical effort is defined so that an
inverter has a logical effort of 1. An inverter driving an exact copy of itself experiences an electrical effort
of 1. Therefore, an inverter driving an exact copy of itself will have an effort delay of 1, according to third
equation.

The logical effort of a logic gate tells how much worse it is at producing output current than is an inverter,
given that each of its inputs may present only the same input capacitance as the inverter.

3 In a typical 600-nm process T is about 50 ps. For a 250-nm process, Tis about 20 ps. In modern 45 nm processes the delay is
approximately 4 to 5 ps.

18

Reduced output current means slower operation, and thus the logical effort number for a logic gate tells
how much more slowly it will drive a load than would an inverter. Equivalently, logical effort is how much
more input capacitance a gate must present in order to deliver the same output current as an inverter.

It is interesting but not surprising to note from Table 2 that more complex logic functions have larger
logical effort. Moreover, the logical effort of most logic gates grows with the number of inputs to the gate.
Larger or more complex logic gates will thus exhibit greater delay. These properties make it worthwhile to
contrast different choices of logical structure.

2.1.3 Multistage Logic Networks

The method of logical effort reveals the best number of stages in a multistage network and how to obtain
the least overall delay by balancing the delay among the stages. The notions of logical and electrical effort
generalize easily from individual gates to multistage paths.

The logical effort along a path compounds by multiplying the logical efforts of all the logic gates along the
path. We use the uppercase symbol G to denote the path logical effort, so that it is distinguished from g,
the logical effort of a single gate in the path. The subscript i indexes the logic stages along the path.
G=Ilgi

G=1_[9i

The electrical effort along a path through a network is simply the ratio of the capacitance that loads the
last logic gate in the path to the input capacitance of the first gate in the path. We use an uppercase
symbol H to indicate the electrical effort along a path. H= Cout/Cin

Cout

H =
Cin

In this case, Cin and Cout refer to the input and output capacitances of the path as a whole, as may be
inferred from context. We need to introduce a new kind of effort, named branching effort, to account for
fanout within a network. So far we have treated fanout as a form of electrical effort: when a logic gate
drives several loads, we sum their capacitances, to obtain an electrical effort. Treating fanout as a form of
electrical effort is easy when the fanout occurs at the final output of a network. This method is less

19

suitable when the fanout occurs within a logic network because we know that the electrical effort for the
network depends only on the ratio of its output capacitance to its input capacitance. When fanout occurs
within a logic network, some of the available drive current is directed along the path we are analyzing, and
some is directed off that path. We define the branching effort b at the output of a logic gate to be

b= Con—path + Coff—path _ Ctotal

Con—path Cuseful

where Con-path is the load capacitance along the path we are analyzing and Cof f-path is the
capacitance of connections that lead off the path. Note that if the path does not branch, the branching
effort is one. The branching effort along an entire path B is the product of the branching effort at each of
the stages along the path.

B = l_lbl

Armed with definitions of logical, electrical, and branching effort along a path, we can define the path
effort F. Again, we use an uppercase symbol to distinguish the path effort from the stage effort f
associated with a single logic stage. The equation that defines path effort is reminiscent of the third
equation, which defines the effort for a single logic gate:

F=G XBxH

Note that the path branching and electrical efforts are related to the electrical effort of each stage:

C
B XH = Outl_[bi=1_[hi
Cin

Although it is not a direct measure of delay along the path, the path effort holds the key to minimizing the
delay. Observe that the path effort depends only on the circuit topology and loading and not upon the
sizes of the transistors used in logic gates embedded within the network. Moreover, the effort is
unchanged if inverters are added to or removed from the path, because the logical effort of an inverter is
one. The path effort is related to the minimum achievable delay along the path, and permits us to
calculate that delay easily. Only a little more work yields the best number of stages and the proper

transistor sizes to realize the minimum delay.

The path delay D is the sum of the delays of each of the stages of logic in the path. As in the expression for
delay in a single stage , we shall distinguish the path effort delay Dr and the path parasitic delay P:

D=Zdl:DF+P

20

The path effort delay is simply:

and the path parasitic delay is:

Optimizing the design of an N-stage logic network proceeds from a very simple result: The path delay is
least when each stage in the path bears the same stage effort. This minimum delay is achieved when the
stage effort is:

A 1
f=gixh=F/
We use a hat over a symbol to indicate an expression that achieves minimum delay.

Combining these equations, we obtain the principal result of the method of logical effort, which is an
expression for the minimum delay achievable along a path:

D=NxF/N+P

To equalize the effort borne by each stage on a path, and therefore achieve the minimum delay along the
path, we must choose appropriate transistor sizes for each stage of logic along the path. Equation 15
shows that each logic stage should be designed with electrical effort

FY/n
i

—~

i

From this relationship, we can determine the transistor sizes of gates along a path. Start at the end of the
path and work backward, applying the capacitance transformation:

_ gi X Couti

Cini - f’-‘

This determines the input capacitance of each gate, which can then be distributed appropriately among
the transistors connected to the input.

21

2.2 Unified Logical Effort

2.2.1 Introduction

The LE method benefits from an uncomplicated and intuitive delay model and closed-form optimization
conditions. The optimization rule of logical effort, however, only addresses logic gates and does not
consider on-chip wires. As VLSI circuits continue to scale, the contribution of wires to the delay increases
and cannot be neglected. This characteristic occurs not only with respect to long wires connecting
separate modules but also to the interconnect within logic modules where the delays introduced by the
wires connecting closely coupled gates approach and can exceed the gate delays. The useful LE rule that
the path delay is minimum when the effort of each stage is equal breaks down, because interconnect has
fixed capacitances which do not correlate with the characteristics of the gates (see Figure 7). This behavior
is described by the authors of the LE method as “one of the most dissatisfying limitations of logical effort”.

Figure 7 — In the case of gates with wires, the rule of equal effort breaks down because of fixed
wire parameters.

2.2.2 Delay Model of Logic Gates with Wires

The logical effort model is modified to include the interconnect delay [7]. This change is achieved by
extending the gate logical effort delay by the wire delay, establishing a Unified Logical Effort (ULE) model.
Thanks to the EImore delay model the delay of a circuit comprising logic gates and wires (see Figure 8) can
be easily calculated

22

Figure 8 - Cascaded logic gates with resistive-capacitive interconnect.

The total combined delay expression is:

Di=Rix (Cpi+ Cwi+ Ci+l) + Rwi x (0.5 x Cwi + Ci+1)

where R; is the effective output resistance of the gate i, Cp; is the parasitic output capacitance of gate i,
Cw; and Rw; are, respectively, the wire capacitance and resistance of segment i, and Ci.1 is the input
capacitance of gate i+1.

This expression can be rewritten similar with the function of the delay of a minimum sized inverter t
=R0CO, where RO and CO are the output resistance and input capacitance of a minimum sized inverter:

Ri Cwi+Ci1+Cpi Ry
Di=r><di=T><[R—;>< = é:l = R :lCOX(O-SXCwi+Ci+1)]
o

The delay d; normalized with respect to a minimum sized inverter delay T is defined by:

+ Rwi X (05 X Cwi + Ci+1) n

i

C.;
dizgix(hi‘l'ﬂ)

Ci T
Where,
gi=(RixCi)/(ROX C0) is the logical effort,
hi=Ci+1/Ci is the electrical effort,
pi=(RixCpi)/(ROX CO) is the parasitic delay.

The capacitive interconnect effort hy, and the resistive interconnect effort py, are, respectively:

23

_ Rui X (0.5 X Cyi + Ciya)
T

Pwi

The wire influences the electrical effort of the logic gate with hyw and contributes more delay to the total
delay with pw. The final expression of the ULE delay of a single logic gate considering the interconnect is:

d=gXx(h+hy)+(p+pw)

For an N stage logic path with interconnect the ULE delay is the sum of each delay of the single stage:

N
d= Zgi X (h; + hy;) + (i + Dwi)

=1

Note that in the case of short wires, the resistance Rw of the wire may be neglected, eliminating pw and
leaving only the capacitive interconnect effort hw in the expression. When the wire impedance along the
logic path is negligible, the extended delay expression reduces to the standard LE delay equation.

2.2.3 Delay Minimization using Unified Logical Effort

As a first step in the path delay optimization process, consider a two-stage portion of a logic path with
wires (as shown in Figure 4). The condition for optimal gate sizing is determined by equating the
derivative of the delay with respect to the gate size to zero. As proven , the resulting optimum condition
is:

24

(R + Ryi) X Cipq = Ripq X (Ciy2 + Cyyy)

The meaning of the optimum size of gate i+1 is achieved when the delay component (R; + R,,;) X C;41
due to the gate capacitance is equal to the delay component R; 1 X (Cy;2 + Cy,,,,) due to the effective

resistance of the gate. A schematic model describing the related delay components is shown in Figure 9.

After solving the differential equations that occur in the optimization problem , we get the expression for
the optimum input capacitance of each gate based on the ULE model:

_ 9i
lopt Rwi_1 X Ci—l X Ci—l X (Ci+1 + CWL-)

gi-1+ Ry X Cy

Cw, i
= /Ci1 X Cipy X L+ R, X Ci 1

i+1
gi-1t Ry X C,

The first part of the resulting expression is similar to the condition described by the LE model for a path of
identical gates. The second component expresses the influence of the interconnect capacitance. The last
component is related to the resistance of the wire and the difference among the individual logical efforts
(types of logic gates) along the path. This expression illustrates the quadratic relationship between the
sizes of the neighboring gates. The gate size based on ULE can be determined by solving a set of N
polynomial expressions for the N gates along the path.

25

Figure 9 : Delay components in characterizing ULE for long wires.

Later in this thesis we will show how this expression can be further extended in order to include fixed side
branches and multiple fan-outs. In order to simplify the solution, a relaxation method has been used. The
technique is based on an iterative calculation along the path while applying the optimum conditions. Each
capacitance along the path is iteratively replaced by the capacitance determined from applying the
optimum expression of the capacitance to two neighboring logic gates.

2.2.4 ULE Optimization in Paths with Branches

As we mentioned earlier, the expression of the optimum input capacitance of each gate based on the
ULE model can be further extended to address the general design case where the logic path may
include branches or gates with multiple fanout. For instance, consider the circuit shown in Figure 6.
The circuit shows the general structure containing a side branch with RC interconnect and/or a fanout

26

load with arbitrary capacitance where Rband Cb are the resistance and capacitance of branch wires,
respectively, and Cris the fanout load capacitance.

The ULE expression of the total delay of stages i and i 4+ 1 containing branches and fanout can be

written as:

Cbli + Cfli + Cbzi + szi

R,,.
d:gix[hi+hwi+ :|+%X[O-SXCwi+hiXCi+Cb2i+Cf2i]+gi+1

C; C;
Cwipy + Civz + Cp1yy, + Crapy, + Coay,, + Cra, R,
% [Wit l i+1 fliva i+1 f +1] + Wi+t1 x [0_5 X Cw‘+1 + Ci+2
hi X Ci T L

+ Cb2i+1 + Cf2i+1]

where T = R0 x €0 is the minimum inverter delay. Following the same procedure as in the case with no
branches and fan-outs, we equate the derivative of the delay with respect to the gate size to zero, and the
optimum expression for the input capacitance of each gate can be written as:

9i X Ciq X (Cy; + Cigq + Cpy, + Cpy, + Cpoy + Cpa))

Ry X Ci_y
Gioq + 2L

= 1/Ci_l X Ci+1 X \]1 + C Rwi_l > Ci_l

T

CWi + (Cbli + Cfli + CbZi + CfZi) % i
. C;
i+1 i+1 gi_1 +

This ULE optimum expression can be generalized for any combination of side branch wires and fanout
gates by determining the total effective capacitance of the fanout branches for each stage of the path:

n m
CBF = zcbn +2Cfm
1 1

27

where n and m are the number of branch wires and fanout gates in a path, respectively. Taking into
consideration the last equation, the general ULE optimum expression for the input capacitance is
determined :

CWi CBFi i
C= O X G X [14 24 2 R, X Tl

i+1 Cit1 2
Jiat— 7

Figure 10 : A logic path segment including RC interconnect and two branches.

In the case of a more complex parasitic tree (see Figure 11), the resistance of a wire, between two
adjacent cells, is defined as the sum of all the resistances in the path between the adjacent cells,

Ry, = Z Riiv1

28

Figure 11 - Ryw;=R1+ R, + Rs.

In order to simplify the solution, a relaxation method is proposed in [8]. The technique is based on an
iterative calculation along the path while applying the optimum conditions. Each capacitance along the
path is iteratively replaced by the capacitance determined from applying the optimum expressions to two
neighboring logic gates. The technique consists of the following steps:

a) (Initialization) Set the gate capacitances along the path to arbitrary values (only the first and last values

are given).

b) (Iteration) Replace each capacitance by the value determined from applying the optimum expressions
on two neighboring logic gates

29

c) (Stop check) If any of the new values differ by more than a given precision from the previous value,
reiterate step b

The application of the algorithm generally produces the optimal size, converging to 5% accuracy after
three iterations. The gates in the last few stages of the path are the first to converge, since the accuracy
increases while propagating along the path from the leaf to the root of the path. Consequently, fewer
calculations are performed in each successive iteration.

2.2.5 Conclusion

Delay minimization in logic paths with wires is an important issue in the high complexity IC design process.
The interconnect is a dominant factor in performance-driven circuits and must be explicitly considered
throughout the design process. The characteristics of the wires are not correlated with those of the gates,
thereby not permitting the use of the standard logical effort model. In fact, gate sizing in the presence of
interconnect does not correspond to equal effort of all of the stages along a path. The ULE method is
proposed for delay evaluation and minimization of logic paths with general gates and RC wires. The ULE
method provides conditions to achieve minimum delay. Optimal gate sizing in logic paths with wires is
achieved when the delay component due to the gate capacitance is equal to the delay component due to
the effective resistance of the gate. The ULE method converges to the standard Logical Effort when wire
resistance and capacitance are negligible. Gate sizing determined by the proposed ULE method makes ULE
suitable for both manual calculations and integration into existing EDA tools.

The following chapter introduce the input files that needed for the resizing tools in order to perform the
implementation of the static timing analysis and resizing methods.

30

Chapter 3

3.1 Input Files

The Verilog file specifies the top level hierarchy of the design. For this thesis, we will be using a small set
of keywords with the Verilog language. Our Verilog parser supports the set of keywords found within the
simple.v file (reproduced below for clarity). It also supports comments that start with ‘//’. The expected
syntax is:

module <circuit name> (
<input 1>,
<input n>,

<output 1>,

<output m>);

input <input 1>;

input <input n>;

output <output 1>;

output <output m>;

// begin wire definitions

wire <wire 1> ;

31

// end wire definitions
// begin cell definitions
<cell type> <cell instance name> (.<pin name> (<net name));

// end cell definitions

endmodule

The expected structure of the Verilog file is to start with a module declaration, defining the interface with
of the module with name <circuit name>. The inputs and output pins are explicitly declared; the internal
wires are optionally declared with the keyword wire. For each cell definition, every <cell type> (.<pin
name>) should be a specified cell type (pin) in the library file and every <cell instance name> and <net
name> should be found in the design specification. Each field is considered a string. The following
example is from c17.v; its corresponding implementation is shown in Figure 12 .

01. module c17 (

02. N1, N2, N3, N6, N7,

03. N22, N23

04.);

05.

06. // Start Pls

07. input N1, N2, N3, N6, N7;
08.

009. // Start Pos

32

10.

11.

12.

13.

14.

15.

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

output N22, N23;

// Start wires

wire NO, N4, N5, N8, N9, N12, N10, N11, N16, N19;

// Start cells

INV_X2 1_5 (.A(N12), .ZN(N23));

AND2_X2 NAND2_6 (.A1(N16), .A2(N19), .ZN(N12));
INV_X2 I_4 (.A(N9), .ZN(N22));

AND2_X2 NAND2_5 (.A1(N10), .A2(N16), .ZN(N9));
INV_X2 1_3 (.A(N8), .ZN(N19));

AND2_X2 NAND2_4 (.A1(N11), .A2(N7), .ZN(N8));
INV_X2 1_2 (.A(N5), .ZN(N16));

AND2_X2 NAND2_3 (.A1(N2), .A2(N11), .ZN(N5));
INV_X21_1 (.A(N4), .ZN(N11));

AND2_X2 NAND2_2 (.A1(N3), .A2(N6), .ZN(N4));
INV_X21_0(.A(NO), .ZN(N10));

AND2_X2 NAND2_1 (.A1(N1), .A2(N3), .ZN(NO));

endmodule

33

Lines 01 and 29 define the start and end of the specified design with the keywords module and
endmodule. Lines 01-04 specify the input and output connection names of the module (note that the
direction is not specified here). Line 07 specifies the primary inputs (Pls) of the module with the keyword
input. These names must match the ones started with module (lines 01-04). Line 10 specifies the primary
output (PO) of the module with the keyword output. This name must match the one stated with the
module (lines 01-04). Line 13 specifies the connections or 22 nets within the module with the keyword
wire. These connections specify both the external Pls and POs as well as the internal connections between
gates (explained further after lines 16-27). Lines 17-27 specify the cells used in the design, as well as how
the cells are connected. For example, on line 16, an INV_X2-type cell instance of |_5 is specified, it's A pin
is fed by primary input N12, and its ZN pin feeds the primary output N23. On line 27, N1 feeds the Al pin
of the AND2_X2-type cell instance NAND2_1. Line 29 terminates the module definition.

Figure 12 - Implementation of c17.v.

34

01. module dff_d(clk, q, d);

02. input clk, d;

03. output g;

04. wire clk, d;

05. wire q;

06. DFF_X1 q_reg(.CK (clk), .D (d), .Q (q), .QN ());
07. endmodule

08.

09. module dff_d_4(clk, q, d);

10. input clk, d;

11. output q;

12. wire clk, d;

13. wire ;

14. DFF_X1 q_reg(.CK (clk), .D (d), .Q (q), .QN ())q;
15. endmodule

16.

17. module dff_d_3(clk, q, d);

18. input clk, d;

19. output g;

20. wire clk, d;

21. wire g;

22. DFF_X1 q_reg(.CK(clk), .D (d), .Q (q), .QN ());
23. endmodule

24,

25. module s27(CK, GO, G1, G17, G2, G3);
26. input CK, GO, G1, G2, G3;

27. output G17;

28.

29. wire CK, GO, G1, G2, G3;

30. wire G17;

31. wire G5, G6, G7, G10, G11, G13,n_0, n_1;

32. wiren_2;

33.

34, dff_d DFF_0(.d (G10), .clk (CK), .q (G5));

35. dff_d_4 DFF_1(CK, G6, G11);

36. dff_d_3 DFF_2(CK, G7, G13);

37.

38. INV_X32 p1579A(.A (G11), .ZN (G17));

39. NOR2_X1 p5988A(.A1 (G11), .A2 (n_0), .ZN (G10));
40. NOR2_X1 p2151D(.Al1 (n_2), .A2 (G5), .ZN (G11));
41. AOI22_X1 p2104A(.Al1 (n_1), .A2 (G3), .B1 (n_0), .B2 (G6), .ZN (n_2));
42, NOR2_X1 p6096A(.A1 (n_1), .A2 (G2), .ZN (G13));
43. NOR2_X1 p2096A(.A1 (G1), .A2 (G7), .ZN (n_1));
44, INV_X1 Fp2096A(.A (GO), .ZN (n_0));
45.endmodule

35

Line 34 instantiates the module dff_d, and the arguments are passed in explicit format, where in

line 35 the module dff_d_4 is instantiated in implicit format.

The keyword assign can also be handled along the constants 1°b0, 1°b1, where the later can be

used as wires.

assign <wire_name_a> = <wire_name_b>

Designs containing busses only in the top level module can also be partial handled (bus
operations are not supported).

3.2 Input Standard Parasitic Exchange Format (.spef)

This file contains the parasitics of a set of nets as a resistive-capacitive (RC) network. If a (e.g. gate-
to-gate) connection does not have parasitics, then that connection has 0 delay and the output slew
is equivalent to the input slew. Our SPEF parser supports the format specified in simple.spef (see

Appendix A) (portions reproduced for clarity). It also supports comments beginning with ‘//’. The

format is:

// begin header

*SPEF <string>

* DESIGN <string>

* DATE <string>
*VENDOR <string>
*PROGRAM <string>
*VERSION <string>

* DESIGN_FLOW <string>

* DIVIDER <string>

36

* DELIMITER <string>

* BUS_DELIMITER <string>
*T_UNIT <int> <string>
*C_UNIT <int> <string>
*R_UNIT <int> <string>
*L_UNIT <int> <string>

// end header

// begin nets
// ...

// end nets

The header describes the general set of units for the file. In this thesis, the DELIMITER field will be
set to ‘', the C_UNIT field will be set to one picoFarad (1 PF), and the R_UNIT field will be set to one

Ohm (1 OHM). All other fields in the header will not be used. Below shows an example header.

*SPEF "IEEE 1481-1998"

*DESIGN "c17"

*DATE "Thu Sep 25 17:47:29 2014"

*VENDOR "Cadence Design Systems, Inc."

*PROGRAM "Encounter"

*VERSION "13.13-s017_1"

*DESIGN_FLOW "PIN_CAP NONE" "NAME_SCOPE LOCAL"
*DIVIDER /

© N oun k wWwNE

9. *DELIMITER :
10. *BUS_DELIMITER []

11. *T_UNIT 1 NS
12. *C_UNIT 1 PF

13. *R_UNIT 1 OHM

37

14. *L_UNIT 1 HENRY

Line 01 specifies the SPEF format date. Line 02 specifies the design name. Line 03 specifies the
date at which the file was generated. Line 04 specifies the consumer of this file. Line 05 specifies
the tool used to generate the file. Line 06 specifies the version of this file. Line 07 specifies the
format in which this file is used. Line 08 specifies the hierarchy divider character. Line 09
specifies the pin divider character. Line 10 specifies the bus delimiter characters. Line 11 specifies
the time units for the design. Line 12 specifies the capacitance units for the design. Line 13
specifies the resistance units for the design. Line 14 specifies the inductance units for the design.
To reduce file size, SPEF allows long names to be mapped (optional) to shorter numbers preceded

by a *. This mapping is defined in the name map section. For example:

1. // MMMC spef file for corner 'typ'

3. *NAME_MAP

4. *1 N1
5. *2N2
6. *3 N3
7. *4 N6
8. *5N7
9. *6N22
10. *7 N23

11. *8 NO
12. *9 N4

13. *10 N5
14. *11 N8

15. *12 N9
16. *13 N12

17. *14 N10
18. *15 N11

19. *16 N16
20. *17 N19
21. *181_5

22. *19 NAND2_6

38

23.*201_4
24. *21 NAND2_5
25.%221_3
26. *23 NAND2_4
27.%241 2

28. *25 NAND2_3

29.*261_1
30. *27 NAND2_2
31.*281.0

32. *29 NAND2_1

Later in the file, N1 can be referred to by its name or by *1. Name mapping in SPEF is not
required. Also, mapped and non-mapped names can appear in the same file. Typically, short
names such as a pin named A will not be mapped as mapping would not reduce file size. One can
write a script that will map the numbers back into names. This will make SPEF easier to read, but

greatly increase file size.

After the name map section, each net’s parasitics will be defined by the following format:

*D_NET <net name> <total net capacitance>

*CONN

<pin type> <pin name> <pin direction>
// more pin definitions

*CAP

<integer label> <pin or node name> <pin or node capacitance>
// more capacitor definitions

*RES

<integer label> <pin or node name> <pin or node name> <pin or node resistance>

// more resistor definitions

*END

39

Each net’s definition begins with the keyword *D NET followed by its name and the sum of all
the capacitors of the net. The <net name> will be unique for each net. The <total net
capacitance> will be a decimal value, and is the sum of all the capacitors defined in the *CAP
section. The *CONN keyword describes the set of pins attached to the net. The <pin type> field
will either be of type port (*P), which is a primary input or output pin, or internal (*1), which is
an internal pin in the design. In this section, only design pins will be referenced — no
intermediate SPEF-specific node will be listed. The <pin name> field will be either a primary
input, a primary output, have the syntax <cell name>:<cell pin name>, e.g., NAND2_1:A1, or have
the syntax <net name>:<int>, e.g., N1:1. The <pin direction> field refers to the pin directional

type (not the net), and will be either input (1) or output (O).

The *CAP keyword describes the set of grounded capacitors that are in the net. Namely, each
capacitor will be connected to a specified node and GND. For each capacitor, the <integer label>
is a unique integer that identifies the capacitor for this net. The <pin or node name> is a string,
and can be a primary input, primary output, a design pin with the syntax <cell name>:<cell pin

name>, or an intermediate SPEF-specific node with the syntax <net name>:<integer>. The <pin

40

or node capacitance> will be a decimal value specifying the capacitance
attached to the node. The actual capacitance will be this value multiplied by
the C_UNIT value specified in the header. For example, if C_UNIT is 1 PF and
<pin or node capacitance> is 1.2, the capacitance is 1.2 pF.

The *RES keyword describes the set of resistors in the net. Each resistor
connects two pins or nodes (whose format is identical to the *CAP field),
and similarly has a unique <integer label>. The <pin or node resistance> is a
decimal value; the actual resistance value is this field multiplied by the
R_UNIT value specified in the header. For example, if R_UNIT is 1 OHM and
<pin or node resistance> is 3.4, then the resistance is 3.4 Q. The *END
keyword indicates the end of the net parasitics. An example net definition
is shown below:

01. *D_NET *15 0.000332396

02. *CONN

03. *I *23:A11*C4 3 *L0.00166 *D AND2_X2
04. *I *26:ZN O *C4 3 *L 0 *D INV_X2
05. *I *25:A2 1 *C4 6 *L 0.00173 *D AND2_X2
06. *CAP

07. 1 * 15:00.000117155

08. 2 *15:1 0.000134821

09. 3 * 15:2 1.83593e-05

10. 4 *15:3 3.06835e-05

11. 5 *23:A1 9.17966e-06

12. 6 *26:ZN 9.17966e-06

13. 7 *15:6 1.30172e-05

14. * RES

15. 1 *15:6 *25:A2 4

16. 2 *15:3 *15:6 1

17. 3 *15:2 *26:ZN 1.03143

18. 4 *15:2 *23:A1 1.03143

19. 5 *15:1 *15:3 1.35714

20. 6 *15:0 *15:2 4

21. 7 *15:0 *15:1 9

22. *END

41

Let *R_UNIT and *C_UNIT be the same values as in the header above, i.e., *R_UNIT is 1 OHM
and *C_UNIT is 1 PF. Line 01 defines the net *15 (or N11 before name mapping) with a total
lumped capacitance of 0.000332396 pF. Lines 02-05 define the connectivity of the net *15. Line
03 specifies the internal design pin *23:Al is an input type. Line 04 specifies the internal design
pin *26:ZN in an output type. Line 05 specifies the internal design pin *25:A2 is an input type.
Lines 06-13 define the set of capacitors for the net *15. Line 07 specifies capacitor 1 between
the SPEF-specific intermediate node *15:0 and GND with a value 0.000117155 pF. Line 08
specifies capacitor 2 between the SPEF-specific intermediate node *15:1 and GND with a value
0.000134821 pF. Line 09 specifies capacitor 3 between the SPEF-specific intermediate node *15:2
and GND with a value 1.83593e-05 pF. Line 10 specifies capacitor 4 between the SPEF-specific
intermediate node *15:3 and GND with a value 3.06835e-05 pF. Line 11 specifies capacitor 5
between the SPEF-specific intermediate node *23:A1 and GND with a value 9.17966e-06 pF. Line
12 specifies capacitor 6 between the SPEF-specific intermediate node *26:ZN and GND with a
value 9.17966e-06 pF. Line 13 specifies capacitor 7 between the SPEF-specific intermediate node
*15:6 and GND with a value 1.30172e-05 pF. Lines 14-21 defines the set of resistors of net *15.
Line 15 specifies resistor 1 between the SPEF-specific intermediate nodes *15:6 and *25:A2 with
a value of 4 Q. Line 15 specifies resistor 1 between the SPEF-specific intermediate nodes *15:6
and *25:A2 with a value of 4 Q. Line 16 specifies resistor 2 between the SPEF-specific
intermediate nodes *15:3 and *15:6 with a value of 1 Q. Line 17 specifies resistor 3 between the
SPEF-specific intermediate nodes *15:2 and *26:ZN with a value of 1.03143 Q. Line 18 specifies
resistor 4 between the SPEF-specific intermediate nodes *15:2 and *23:A1 with a value of
1.03143 Q. Line 19 specifies resistor 5 between the SPEF-specific intermediate nodes *15:1 and
*15:3 with a value of 4 Q. Line 20 specifies resistor 6 between the SPEF-specific intermediate
nodes *15:0 and *15:2 with a value of 4 Q. Line 21 specifies resistor 7 between the SPEF-specific
intermediate nodes *15:0 and *15:1 with a value of 9 Q. Line 22 ends the net definition. Figure 10
illustrates the parasitics described above for net *15.

42

Figure 13 - Parasitics of net *15 (N11). The R (C) labels refer to resistors (capacitors).

3.3 Input Liberty (.lib)

This file contains the set of all cells or gates that are available to the design. All cell instances
found in the .v file will have corresponding cell type that is located in this file. Gate-level delay
and output slew calculations will use the relevant timing information found for the appropriate
cell type. For this thesis, we will be using the NanGate 45nm Open Cell Library and the Open
Source Liberty parser. The parser supports the full logical (.lib) set of constructs including
Composite Current Source (CCS) Modeling Technology, and noise, plus syntax, and common

semantic checks.

The relevant portions of the .lib file are explained below. The library consists of (i) a header, (ii) a
set of lookup-table definitions, and (iii) a set of cell definitions, where a cell will be a
combinational element (e.g., NAND2) or a sequential element (e.g., flip-flop DFF). While there
are many keywords available, this thesis will only use the following set. For readability, each

syntax set is discussed in separate subsections below.

43

HEADER. The header sets the general information about the library, and is defined in the

NanGate 45nm Open Cell Library with the following format:

01

. /* Documentation Attributes */
02.
03.
04.

date
revision
comment

05.

06.
07.
08.
09.
10.

technology
delay_model

library_features

11.

12.
13.
14.
15.
16.
17.
18.

time_unit

voltage_unit
current_unit

19.

20.
21.

22.

23.

nom_process

nom_voltage

24.

25.
26.

27.

28.
29.
30.
31.
32.
33.
34.
35.

36.

process_corner
process
voltage
temperature
tree_type

}

/* General Attributes */

in_place_swap_mode

/* Units Attributes */

leakage power_unit

pulling_resistance_unit
capacitive_load_unit

/* Operation Conditions */

nom_temperature

voltage_map (VDD,1.10);
voltage_map (VSS,0.00);

default_operating_conditions

:"Thu 10 Feb 2011, 18:11:20";
: "revision 1.0";
: "Copyright (c) 2004-2011 Nangate Inc. All Rights Reserved.";

(cmos);

: table_lookup;

: match_footprint;
report_delay_calculation,report_power_calculation);

:"1ns";
"1InW"
VA
:"1ImA";

: "1kohm";
(1,ff);

:1.00;
: 25.00;

: 1.10;

define(process_corner, operating_conditions, string);
operating_conditions (typical) {

:"TypTyp";

: 1.00;

:1.10;

: 25.00;

: balanced_tree;

: typical;

44

Line 08 specifies the delay model used. Lines 13-18 specify the units in which the values in the
lib file are referenced. Lines 21-23 specify the nominal process, temperature, and voltage at
which the library is characterized at. Lines 29-35 specify a set of operating conditions for the
“typical” profile. Line 24 sets the default operating conditions of the library. |l other lines are

being ignored.

LOOKUP TABLES. Most of the cell libraries include table models to specify the delays and timing
checks for various timing arcs of the cell. The table models are referred to as NLDM (Non-Linear
Delay Model) and are used for delay, output slew, or other timing checks. The table models

capture the delay through the cell for various combinations of input transition time at the cell
input pin and total output capacitance at the cell output. The lookup table templates are defined

as follows:

lu_table_template (<table label>) {

variable_1 : <variable name> ;

index_1 (<string of data points for variable_1>);
variable_2 : <variable name>;

index_2 (<string of data points for variable_2>);

The <table label > and <variable name> fields are considered to be strings, and may or may not be

"o

enclosed in ““ and . The string of data points will be a set of integer or double values indicating the
index values of the table. The variable and index definition lines can be in any order, e.g., all variable
definitions can come before all index definitions. Each <table label> can be referenced in the cell

definitions. An example table template looks like:

lu_table_template (delay_template_3x3) {

variable_1 : input_net_transition;
variable_2 : total_output_net_capacitance;
index_1 ("1000,1001,1002");

index_2 ("1000,1001,1002");

}

oo A W N -

45

Line 01 and 06 define the table template with label “delay_template_3x3”. Line 02 specifies that
variable_1 is the input transition time. Line 03 specifies that variable_2 is the output capacitance.
The table values are specified like a nested loop with the first index_1 (line 04) being the outer
(or least varying) variable and the second index_2 (line 05) being the inner (or most varying)
variable and so on. There are three entries for each variable and thus it corresponds to a 3-by-3
table. In most cases, the entries for the table are also formatted like a table and the first index
(index_1) can then be treated as a row index and the second index (index_2) becomes
equivalent to the column index. The index values (for example 1000) are dummy placeholders
which are overridden by the actual index values in the cell _fall and cell _rise delay tables. An
alternate way of specifying the index values is to specify the index values in the template
definition and to not specify them in the cell_rise and cell _fall tables. Such a template would look
like this:

lu_table_template(delay_template_3x3) {

variable_1 : input_net_transition;

va ria ble_2 : total _output_net_capacitance;
index_1 ("0.1, 0.3, 0.7");

index_2 ("0.16, 0.35, 1.43");

}

U A W NN -

Based upon the delay tables, an input fall transition time of 0.3ns and an output load of 0.16pf
will correspond to the rise delay of the inverter of 0.1018ns. Since a falling transition at the input
results in the inverter output rise, the table lookup for the rise delay involves a falling
transition at the inverter input. This form of representing delays in a table as a function of two
variables, transition time and capacitance, is called the non-linear delay model (NLDM), since
non-linear variations of delay with input transition time and load capacitance are expressed in
such tables. The table models can also be 3-dimensional - an example is a flip-flop with
complementary outputs, Q and QN. The NLDM models are used not only for the delay but also
for the transition time at the output of a cell which is characterized by the input transition time
and the output load. Thus, there are separate two-dimensional tables for computing the output
rise and fall transition times of a cell.

CELL DEFINITIONS. A cell specifies a gate that could be used as part of a design, e.g.,
combinational

gate NAND2 and flip-flop DFF. Its relevant specified syntax in the .lib format is:

46

cell (<cell type>) {

pin(<pin name>) {
direction : <direction> ;

capacitance : <double>;
max_capacitance : <double> ;
min_capacitance : <double> ; timing() {

related_pin : <pin name> ;
/* combinational or sequential definitions */

}

/* other timing() definitions */
}

/* other pin definitions */

In a cell, multiple pins can be defined, e.g., a standard NAND2 will have 3 pins — two inputs and
one output. For each pin, the direction field indicates the type of pin: (i) input, (ii) output, or (iii)
internal. The capacitance, max capacitance, and min capacitance fields specify the respective pin
capacitance, maximum and minimum expected pin loads. A timing() definition creates a timing
arc (directed pin-to-pin) inside a cell. The specific syntax is different for a combinational and
sequential connection (discussed below). Combinational timing arcs. Combinational arcs
propagate delay and output slew from a source pin to a sink pin. They are found in common
combinational logic gates, e.g., NAND2 or as a clock-trigger segment in flip-flops. A propagate
segment’s timing() syntax is:

timing() {
related_pin : <pin name> ;
timing_sense : <timing sense> ;

47

timing_type : <timing type>;
cell_<transition> (<table label>) {

<table instance> /* omitted for space */

}

<transition>_transition(<table label>) {
<table instance> /* omitted for space */ }

/* other cell transition table definitions */

The related pin is the source of the segment, and the pin (from the pin definition) is the sink of
the segment. The timing sense field specifies the transition mode: (i) positive unate, where the
source and sink transitions are the same (e.g., rise-to-rise), (ii) negative unate, where the source
and sink transitions are opposite (e.g., rise-to-fall), and (iii) non unate, where the source
transition has no relation to the sink transition. The timing type field specifies if the arc is
combinational, where the unateness is be defined as either positive unate or negative unate, or
<timing type edge> edge, where the unateness is defined as non unate and <timing type edge> is
either rising or falling, and refers to the source. The cell <transition> table refers to delay; the
<transition> transition table refers to output slew. In both tables, the <transition> refers to the
sink of the arc, and is either rise or fall. Note that in the case of (i) positive unate and (ii) negative
unate, the direction of the source-to-sink transition is implicitly defined by knowing the
unateness and the <transition> transition. For instance, if the arc is negative unate and there
exists a table with fall transition, the arc described is a rise-to-fall transition. In the case of non
unate, both <timing sense> and <transition> transition must be used, where the former
describes the source edge, and the latter describes the sink edge. For example, if <timing sense>
is rising edge and there exists a table with fall transition, the arc described is a rise-to-fall
transition. The <table label> will be a string that corresponds either (i) to a previously-declared
lookup-table template or (ii) be the keyword scalar, indicating that the value stored is a single
element (i.e., a 1x1 table). A sample gate is shown below

cell(OR2_X2) {
pin ("0") {

direction : output;

timing() {

1.

2

3

4. capacitance : 2.00 ;
5

6 related_pin : "a";
7

timing_sense : positive_u nate;

48

8. timing_type : combinational;

9. cell_fall (scalar) {

10. values ("40.00");

11. }

12. fall_transition (delay_slew_load_6x1) {

13. index_1 ("1.050, 2.000, 5.000, 5.500, 9.000, 20.00");

14.index_2 ("1.0000");

15. values (\

16. "1.050000", \
17. "2.000000", \
18. "5.000000", \
19. "5.500000", \
20. "9.000000", \
21. "20.000000" \
22.);

23. }

24. }

25. '}

26.}

Lines 01-26 define the cell OR2 X2. Lines 02-25 define the pin o inside cell OR X2. Line 03
specifies that o is an output pin. Line 04 specifies that the pin capacitance of the cell (for both
rise and fall) is 2fF. Lines 05-24 specify a timing arc between source pin a (line 06) and sink pin o.
Line 07 specifies that this timing arc is of type positive unate, which propagates the incoming
transition to the output transition (i.e., rise-to-rise and fall-to-fall). Lines 09-11 specify that the
arc contains a fall transition at the output with a fixed (scalar) delay value of 40ps. Due to the cell
fall definition and the positive unate type, this arc is implicitly a fall-to-fall transition. Lines 12-23
specify the output slew table using lookup-table template delay slew load 6x1, with lines 13-22
matching the corresponding table syntax.

49

3.4 Output Files (.v .scf)

The produced files comprise of a verilog file, as described in a previous section, containing the
new cell names, after the resizing has taken place, and a file containing the scale factors of the
new cells. The output Verilog file will be flatten, which means that if the input Verilog files
contained a hierarchy of modules, the output file will contain only the top module which will

include all the instantiated cells and nets of the hierarchical modules.

The .scf file defines the scale of the new cells compared to the cell sizes contained in the original

design, and the format is defined as,

<instance_name_1> <scale_factor_1>

<instance_name_2> <scale_factor_2>

<instance_name_n> <scale_factor_n>

50

Chapter 4

4.1 OpenTimer : Timing Analysis Tool

4.1.1 Introduction

OpenTimer is a high-performance academic timing analysis tool developed by Tsung-Wei
Huang and Prof. Martin D. F. Wong in the University of lllinois at Urbana-Champaign (UIUC),
IL, USA. Evolving from its previous generation "Ul-Timer", OpenTimer works on industry
formats (.v, .spef, .lib, .sdc, .lef, .def), and supports important features such as block-based
analysis, path-based analysis, cppr, incremental timing, and multi-threading. OpenTimer is
extremely fast by its effective data structure and algorithm which can efficiently and
accurately analyze large-scale designs. To further facilitate seamless integration between
timing and other electronic design automation (EDA) applications such as timing-driven
placement and routing, OpenTimer provides user-friendly application programming inteface
(API) for interactive analysis. Most importantly, OpenTimer is open-source [9].

Experimental results on industry benchmarks released from TAU 2015 timing analysis
contest have demonstrated remarkable results achieved by OpenTimer, especially in its
order-of-magnitude speedup over existing timers.

Figure 14 : Program flowchart of OpenTimer.

51

In deep submicron era, timing-driven operations are imperative for the success of
optimization flows. Optimization transforms change the design and therefore have the
potential to significantly affect timing information. The timer must reflect such changes and
update timing information incrementally and accurately in order to ensure slack integrity as
well as reasonable turnaround time and performance.

However, such process requires extremely high complexity especially when path-based
analysis is configured. A high-quality incremental timer capable of path-based analysis is
definitely advantageous in speeding up the timing closure.

Figure 15. Performance improvement of incremental timing to full timing

The significance of incremental timing is demonstrated in Figure 1. It is observed that the
runtime improvement keeps growing as the number of optimization transforms increases.
One obvious reason is that once the critical paths in a design have been reported, the
optimization tool would optimize the logic (e.g., gate sizing, buffer insertion) so as to
overcome the timing violations. This subtle change can affect up to the majority of a circuit,
whereas in reality, depending on the trace of critical paths, the timing update may only
involve a small portion of the circuit. Since an optimization tool can perform millions of logic
transformations, it is important that the timing profile is kept up-to-date in an incremental
fashion. Otherwise, optimization tools cannot support fast turnaround for timing-specific
improvement, which dramatically degrades the productivity.

52

Three main key features of OpenTimer are:

¢ Parallel framework. OpenTimer applies a pipeline task scheduler as the central engine.
Critical tasks such as timing propagation and endpoint slack calculation are scheduled into
the pipeline so as to overlap their runtimes.

¢ Incremental capability. OpenTimer precisely and minimally captures the features that are
key to incremental timing. With lazy evaluation, we are able to keep computation as
minimum as necessary.

¢ Path-based analysis. OpenTimer represents the path implicitly using efficient and compact
data structure, yielding a significant saving in both search space and search time for CPPR.

Figure 16. Parallel forward timing propagation using pipeline

The effectiveness and efficiency of our timer have been evaluated on a set of industry
benchmarks released from TAU 2015 CAD contest. Compared to the top performers in TAU
2015 CAD contest, OpenTimer confers a high degree of differential in nearly all aspects. The
source code of OpenTimer has been released to the public domain for promoting further
research [10].

53

4.1.2 Purpose

The purpose of this thesis is to extend the Open Timer timing analysis tool in order to get
critical paths with positive slacks so we can perform the Unified Logical Effort (ULE) and
resizing method. For this purpose it is necessary to parse the minimum scale factor
(min_scf.scf) for every cell, to set a unit inverter and calculate inverter’s values in order to
proceed to Logical Effort’s parameters extraction for every cell of our .lib file.

4.1.3 Find critical paths with positive slacks

First we declare the (Path*) object critical _path :

Then we iterate the endpoint vector in order to get the nodes of the path. We perform
backward tracing by checking the unateness of the node that we point every time in order to
get the correct previous one, until we reach a primary input:

54

55

4.1.4 Minimum scale factor file parser

56

4.1.5 Setting the unit inverter

In order to proceed, we have to set our unit inverter, which is the inverter “INV_X1", in
order to calculate it’s values :

57

Setting the unit inverter which is defined from the .conf file:

58

4.1.6 Unit inverter’s values

Next step is to calculate inverter’s parasitic delay (rise/fall), logical effort (rise/fall) the .CO
and .tau value. For this function we need the timing look up tables (rise/fall) in order to
perform the inter-extra polation.

59

60

In order to calculate the parasitic delay values (rise/fall) and logical effort values (rise/fall)
we need to call the NLDM_to_LDM_conv function, the Non-Linear-Delay-Model to Linear
Delay Model conversion. a stands for the parasitic delay, b stands for the logical effort delay

(ps).

61

62

63

4.1.7 Logical Effort values extraction

For the purpose of this function we need to iterate every cell and call the LExtraction :

64

4.2 Conclusion

We have checked and compared our results and values from OpenTimer with the ones that
resulting from the CCSOpt, a continuous gate-level resizing tool that produce valid and
credible values for parasitc delay and logical effort.

For example both tools produce the following values for the input pins of the gate
NOR4_Y20 :

G_fall : 21.2632 (logical effort)
G_rise: 21.2632
P_fall: 0.997727 (parasitic delay)

P_rise: 0.997727

65

That comparison is verified for all the cells of our .lib file, so we end up that we have settled
all the necessary tools and parameters in order to implement the resizing method for the
critical paths with positive slacks.

66

Bibliography

[1] Kirkpatrick, TI & Clark, NR (1966). "PERT as an aid to logic design". IBM Journal of
Research and Development.

[2] McWilliams, T.M. (1980). "Verification of timing constraints on large digital
systems" (PDF). Design Automation, 1980. 17th Conference on. |EEE.

[3] C. V. Kashyap, C. J. Alpert, F. Liu and A. Devgan, “Closed-form Expressions for Extending
Step Delay and Slew Metrics to Ramp Inputs for RC Trees”, IEEE Transactions on
Computer-aided Design of Integrated Circuits and Systems, 23(4)(2004), pp. 509-516.

[4] P. Penfield Jr. and J. Rubinstein, “Signal Delay in RC Tree Networks”, Proc. Design
Automation Conference, 1981, pp. 613-617.

[5] C. L. Ratzlaff and L. T. Pillage, “RICE: Rapid Interconnect Circuit Evaluation Using
AWE”, IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems,
13(6)(1994), pp. 763-776.

[6]. "Logical Effort:designing for speed on the back of an envelope," in IEEE Advanced
Research in VLSI, 1991.

[7]. S. S. Sapatnekar, B. V. Rao, P. M. Vaidya and S. M. Kang, "An exact Solution to the
Transistor Sizing Problem for CMOS Circuits using Convex Optimization," in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 1993.

[8] A. Morgenshtein, E. Friedman, R. Ginosar and A. Kolodny, "Unified logical effort - a
method for delay evaluation and minimization in logic paths with RC interconnect.," in |[EEE
Transactions on Very Large Scale Integration (VLSI) Systems.

[9] Tsung-Wei Huang and Martin D. F. Wong “OpenTimer: An Open-Source High-
Performance Timing Analysis Tool”

[10] Tsung-Wei Huang and Martin D. F. Wong “Special Session Paper: Incremental Timing
and CPPR Analysis”, Department of Electrical and Computer Engineering, University of
Illinois at Urbana-Champaign, IL, USA

67

http://dl.acm.org/citation.cfm?id=1662478
https://e-reports-ext.llnl.gov/pdf/185870.pdf
https://e-reports-ext.llnl.gov/pdf/185870.pdf
http://web.engr.illinois.edu/~thuang19/index.html
https://www.ece.illinois.edu/directory/profile/mdfwong
http://web.engr.illinois.edu/~thuang19/index.html
https://www.ece.illinois.edu/directory/profile/mdfwong

	4.1 OpenTimer : Timing Analysis Tool...50
	4.1.1 Introduction..50
	4.1 OpenTimer : Timing Analysis Tool
	4.1.1 Introduction

