
U n i v e r s i t y o f T h e s s a l y

H ead-tracked stereoscop ic d isp lay o f 3D
im age on a reconfigurable p latform

(F P G A)

Author:

Georgios Zindros

Supervisors:

Dr. Nikolaos B ella s

Dr. Gerasimos P otamianos

A thesis submitted in fulfilment of the requirements

for the degree of Diploma of Science in Computer and Communication

Engineering

in the

Department of Electrical and Computer Engineering

University of Thessaly

February 5, 2015

http://www.uth.gr
http://www.inf.uth.gr
http://www.uth.gr

UNIVERSITY OF THESSALY

Department of Electrical and Computer Engineering

H ead -tracked stereoscop ic d isp lay o f 3D im age on a reconfigurab le

p la tfo rm (F P G A)

Σ τ ε ρ ε ο σ κ ο π ικ ή π ρο βολή τρ ισ δ ιά σ τα τη ς ε ικ ό ν α ς κ α θ ο δ η γ ο ύ μ εν η

από κ ιν ή σ ε ις κ εφ α λ ιο ύ σ ε επ α να δ ια τα σ σ ό μ ενη π λα τφ όρμα (F P G A)

by
Georgios Zindros

Graduate Thesis
for

the degree of
Diploma of Science in Computer and Communication Engineering

http://www.uth.gr
http://www.inf.uth.gr

D eclaration o f A uthorsh ip

I, Georgios Zindros, declare that this thesis titled, ’Head-tracked stereoscopic display of

3D image on a reconfigurable platform (FPG A)’ and the work presented in it are my

own. The research was carried out wholly or mainly while in candidature for the gradu­

ate degree of Diploma of Science in Computer and Communication Engineering, at the

University of Thessaly, Department of Electrical and Computer Engineering, Greece. No

part of this thesis has been previously submitted for a degree or any other qualification

at this University or any other institution. Wherever I have consulted or quoted from

the work of others, it is always attributed and the source is given. The main sources of

help are referenced in the Bibliography section of this thesis.

C opyright © 2015 by Z indros G eorgios.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from it

should be acknowledged” .

iii

http://www.uth.gr
http://www.inf.uth.gr

Dedicated to my dear friend Yannis Afentos...

lv

Abstract

People perceive the real world through their five senses, sound, sight, touch, smell and

taste. As technology advances by the minute, they expect no less from the virtual

world. Focusing on sight, technology can now project 3D-environments into a 2D screen

according to the position and rotation of a virtual camera. A viewer is able to explore

this environment by controlling that camera through a computer mouse or a controller.

However, this method does not feel natural because it does not correspond to the in­

stinctive movement of the viewer's body, or more precisely head, trying to see beyond

the margins of the screen. As a result, a system that could track the viewer’s movement

and automatically change the viewing point’s location and rotation accordingly, would

bring the virtual world a step closer to the real one.

The purpose of this thesis is the development of such a system in a simplified form.

The idea basically is to receive camera feedback of the viewer’s head, measure via head

detection algorithms its position and rotation, and use those as a viewing angle to

calculate and display the right projection of a virtual 3D image in real time. The whole

of the project was implemented on a reconfigurable platform using Verilog Hardware

Description Language. This decision lies in the fact that similar projects have been

developed in software using a graphics library like OpenGL Performer, but a hardware

solution is more rare, and though more challenging, it could improve the performance

of the system.

vi

Περίληψη

Οι άνθρωποι αντιλαμβάνονται τον πραγματικό κόσμο μέσω των πέντε αισθήσεων, ακοή,

όραση, αφή, όσφρηση και γεύση. Καθώς η τεχνολογία εξελίσσεται με ταχύτατους ρυθμούς,

δεν αναμένεται τίποτα λιγότερο από τον εικονικό κόσμο. Επικεντρώνοντας την προσπάθεια

στην όραση, η τεχνολογία μπορεί πλέον να προβάλει τρισδιάστατα περιβάλλοντα σε μία δισ-

διάστατη οθόνη σύμφωνα με τη θέση και την περιστροφή μιας εικονικής κάμερας. 'Ενας

θεατής μπορεί να εξερευνήσει αυτό το περιβάλλον ελέγχοντας την κάμερα μέσω ενός πον­

τικιού υπολογιστή ή ενός χειριστηρίου. Ωστόσο, αυτή τη μέθοδος δεν την αισθάνεται ο

θεατής φυσική, επειδή δεν ανταποκρίνεται στις ενστικτώδεις κινήσεις του σώματός του, ή

συγκεκριμένα του κεφαλιού του, που προσπαθεί να δει πέρα από τα όρια της οθόνης. Συνε­

πώς, ένα σύστημα που θα μπορούσε να ακολουθήσει τις κινήσεις του θεατή και αυτομάτως

να αλλάζει την γωνία θέασης της κάμερας αντίστοιχα, θα έφερνε τον εικονικό κόσμο ένα

βήμα πιο κοντά στον πραγματικό.

Ο σκοπός αυτής της διπλωματικής εργασίας είναι η ανάπτυξη ενός τέτοιου συστήματος σε

απλοποιημένη μορφή. Η βασική ιδέα περιλαμβάνει τη λήψη βίντεο από κάμερα που στοχεύει

το κεφάλι του θεατή, τη μέτρηση της θέσης και της περιστροφής του κεφαλιού μέσω αλγο­

ρίθμων αναγνώρισης προσώπων, και τη χρήση αυτών των μετρήσεων στον υπολογισμό της

γωνίας θέασης και της κατάλληλης προβολής ενός εικονικού τρισδιάστατου αντικειμένου

σε πραγματικό χρόνο. Το σύνολο της εργασίας υλοποιήθηκε πάνω σε μία επαναδιατασ-

σόμενη πλατφόρμα υλικού χρησιμοποιώντας τη γλώσσα περιγραφής υλικού Verilog. Αυτή

η απόφαση βασίζεται στο γεγονός ότι παρόμοιες εφαρμογές λογισμικού έχουν υλοποιηθεί

χρησιμοποιώντας βιβλιοθήκες γραφικών όπως η OpenGL Performer, αλλά λύσεις στο υλι­

κό είναι πιο σπάνιες, και παρότι πιο απαιτητικές, μπορούν να βελτιώσουν την επίδοση του

συστήματος.

Vii

Acknowledgements

With the fulfillment of this project, I would like to thank my professor Dr. Nikolaos

Bellas for his advice and guidance. He did not lose hope in me even in the midst of

many hardships. The development of this project would not have been possible without

his assistance.

I would also like to thank my supervisor Dr. Gerasimos Potamianos for his great col­

laboration and advice.

Moreover, I would like to thank all my friends and colleagues, and especially my dear

friend Yannis Zographopoulos for his company and support in this journey of knowledge

we went through together.

In conclusion, I would like to thank my family for all their love and support through

my whole life and for the sacrifices they made on my behalf. Thank you for believing in

me.

viii

Contents

D eclaration o f A u th orsh ip iii

A b strac t vi

A cknow ledgem ents viii

C ontents ix

L ist o f F igu re s xi

L ist o f T ab les xii

A bb rev iation s xiii

1 In trodu ction 1
1.1 Describing the M otives... 1
1.2 Thesis S tr u c tu r e ... 2

2 B ackgrou n d 4
2.1 Field Programmable Gate Array - F P G A ... 4

2.1.1 Architecture & O peration .. 4
2.1.2 Nexys3T M ... 6

2.2 ISE Design S o ftw are ... 9
2.3 VGA protocol..12

3 D esign & Im plem entation 15
3.1 High Level Design .. 15
3.2 VGA Controller...17
3.3 Line D raw in g ..18

3.3.1 Bresenham Line A lg o rith m .. 18
3.3.2 Line Module ... 21

3.4 Cube Drawing .. 24
3.5 Convert 3D to 2D ..25
3.6 Debouncer.. 27
3.7 Top M odu le...27

ix

Contents x

4 C onclusion 29
4.1 Project R e p o r t .. 29
4.2 In the F u tu r e ..30

A Source C ode 31

B ib liograph y 61

List of Figures

2.1 Simplified S l i c e ... 5
2.2 N exys3... 6
2.3 Spartan-6 S l i c e ... 7
2.4 Design F lo w ... 9
2.5 Frame Display ...13
2.6 VGA synchronization ..13
2.7 VGA connector...14

3.1 Block D ia g r a m ...16
3.2 Bresenham L in e .. 20
3.3 Projection T y p e s ... 25
3.4 Projection Diagram ...26

4.1 Final Device U tiliza tio n ...30

xi

List of Tables

2.1 BRAM configurations ... 8

3.1 VGA Standard T im in g s .. 18
3.2 48 Multipliers Report ... 22
3.3 LRAM Synthesis R e p o rt.. 24

xii

Abbreviations

A S IC

C L B

D A C

D C M

D SP

F P G A

H D L

IS E

L U T

M U X

R A M

R G B

R T L

U C F

V G A

X S T

Application Specific Integrated Circuit

Configurable Logic Block

Digital to Analog Converter

Digital Clock Manager

Digital Signal Processing

Field Programmable Gate Array

Hardware Description Language

Integrated Synthesis Environment

Look U p Table

Multiplexer

Random Access Memory

Red Green Blue

Register Transfer Level

User Constraints File

Video Graphics Array

Xilinx Synthesis Technology

xiii

C hapter 1

Introduction

1.1 D escribing the M otives

People perceive the real world through their five senses, sound, sight, touch, smell and

taste. Sight especially is the main method of perception. It allows one to see the fasci­

nating design of this world, its dimensions and colors. So people expect no less from the

virtual world, as technology advances by the minute. Nowadays, displaying a beautiful

scenery on a monitor screen can be almost identical to the real experience due to high

resolution standards and enriched color palettes. Even the depth factor can be presented

through illusion techniques artists use. However, a painting or an image cannot compare

to an entire environment which can be viewed from a variety of angles and create an

equal number of sceneries in the viewer’s eye.

A solution to this problem came with the rising of 3D graphics technologies, which

are widely used in modern video games. Most modern video games incorporate a 3D-

environment, part of which is projected to the screen according to the in-game camera’s

position and rotation. Changing the camera’s position/rotation changes the scenery in

display. But here rises a new question. How is this camera controlled?

Games mainly use a computer mouse or a controller’s analog stick to move the camera,

but this method does not correspond to the instinctive movement of the viewer’s body,

or more precisely head, trying to see beyond the margins of the screen. A great ex­

ample to identify this problem is the modern first-person video games where the player

1

Chapter 1. Introduction 2

sees through the character’s eyes. In this case, regular movement like walking or looking

around is easily implemented, but what if a person desires to peak behind a corner? The

viewer streches his neck in order to change his viewing angle but of course that does not

make any difference. A more productive and realistic approach is to somehow track the

viewer’s head and use it to guide the viewing point and consequently the projection of

the environment. As a result, the viewer does not have to concern himself/herself with

fixing what is supposed to come naturally....

The purpose of this project is to develop a hardware design that implements the latest

method. Similar software applications already exist due to the variety of graphics li­

braries available, like OpenCV and others, but the real challenge is to efficiently transfer

the functionality to a hardware design and gain in performance.

The following design is a simplified version of the desired functionality, since it is tested

on a Field Programmable Gate Array(FPGA) with limited hardware resources. It isl

also described in Verilog Hardware Description Language.

1.2 Thesis Structure

This thesis is divided in three main Chapters, each one of those includes smaller sections

and possibly subsections.

Chapter2 provides background information useful to understanding the development and

experimental approach followed in this project. At first, it describes the architecture

and operation of FPGAs in general and then focuses on the technical characteristics

of Nexys3, the FPGA used for testing. It also offers a few information concerning the

program used for development, ISE by Xilinx. In addition, the functionality of a gereral

VGA driver is analyzed in order to explain how the output is displayed.

Chapter3 begins with a brief introduction to the idea and hierarchy of the design and

then follows with an exhaustive analysis divided into sections for each of its parts. Parts

of the design are considered algorithms implemented, in which case the algorithm is

Chapter 1. Introduction 3

explained first and then the approach of its design, or functions necessary to the whole

operation of the project. The algorithms could be explained on a different chapter but

for quicker reference they are paired with their implementation. Moreover, for each

function there is a small analysis of problems encountered during the development.

Chapter4 summarizes the work done, the problems faced and the results generated.

Finally, it provides some future improvements that are more or less necessary for a

completed design with all its functionality available.

C hapter 2

Background

2.1 Field Program m able G ate A rray - F P G A

A Field Programmable Gate Array (FPGA) is an integrated circuit configurable to a

design written in a Hardware Description Language (HDL). It contains programmable

logic components that can be configured to imitate the behaviour of a simple logic

gate, like AND or XOR, as well as a more complex function. Several logic blocks

can even be connected together via a routing system for implementing large designs.

The greatest advantage of FPGAs is that they are reconfigurable any number of times

in constast with Application-Specific Integrated Circuits (ASICs) which are basically

predetermined hardware performing certain fixed functions. That is the reason FPGAs

are more suitable for testing ASIC designs before their production. Other applications

put into practice on FPGAs include cryptography, computer vision, video and image

processing, communications, bioinformatics and applications in a variety of other fields.

2.1.1 A rch itectu re & O p eration

Most FPGAs consist of an array of Configurable Logic Blocks (CLBs), a hierarchy of

interconnects that allows the cooperation of those blocks, I/O banks which are able to

support many I/O standards, Digital Signal Processing (DSP) components for higher

performance on certain arithmetic and signal processing functions, memory elements

like flip-flops and blocks of RAM and Clock Management Tiles (CMTs). A few mod­

ern FPGAs even include embedded microprocessors and related peripherals to form

4

Chapter 2. Background 5

a system on programmable chip. An example of such architecture is the Xilinx Zynq-

7000 System on Chip (SoC) which includes a dual-core ARM Cortex-A9 microprocessor.

The CLBs in turn consist of logical cells called Slices, an array of MUXes for selection

purposes and flip-flops. The most interesting part are the slices. A typical slice includes

a number of Look Up Tables (LUTs), at least one Full Adder and a D-type flip-flop.

A simplified example of a slice is shown in Figure 2.1 below. The output of slices can

either be synchronous or asynchronous depending on the rightmost multiplexer shown

in the figure. The slice can operate in either normal or arithmetic mode according to the

middle multiplexer. In normal mode, the two 3-input LUTs are combined into a 4-input

LUT. In arithmetic mode, the slice output is the result of the Full Adder instance.

F igure 2.1: Simplified example illustration of a logic cell/slice

Zooming in on the core of FPGAs, the basic element is LUT. Look Up Tables are re­

sponsible for providing the functionality to reconfigure an FPGA board. The notion of

their function is unexpectedly simple. As their name suggests they are arrays with a

simple indexing operation that implement a logic function. The array values are initial­

ized during the programming of the FPGA and can be reinitialized each time the board

is reconfigured to have different output.

It is worth mentioning that various configurations of a board are applicable on the

same design to optimize performance or area variables. A process called Floor Planning

enables resources allocation to meet such constraints.

Chapter 2. Background 6

2.1.2 N e x y s3 TM

This project was developed on a Nexys3 board which hosts a Xilinx Spartan-6 LX16

FPGA. In addition to Spartan-6, the Nexys3 board offers a wide collection of peripherals

such as 16Mbytes of Cellular RAM, a USB-UART port, a USB-host port, an 100MHz

CMOS oscillator, an 8-bit VGA port and a few others. For the needs of this project the

VGA port, the oscillator, the USB-UART port and of course the Spartan-6 are used.

Most peripherals are shown in the image that follows.

F igure 2.2: Nexys3 Board

The Spartan-6 LX16 FPGA is a product of Xilinx Inc. It consists of 2,278 slices, 576

Kbits of block RAM, two CMTs and 32 DSP slices. Slices are a bit more complicated

than the simplified version shown above, since each slice is comprised of four 6-input

LUTs and eight flip-flops. For comparison needs, the Spartan-6 slice is portrayed in

Figure 2.3.

Chapter 2. Background 7

F igure 2.3: Simplified Spartan-6 Slice

The sum of block RAM available in Spartan-6 LX16 is 576Kbit as mentioned. However,

it is organized in blocks of 18Kbit RAM (BRAMs) that are used individually and must

be connected by the designer if more than one is needed. For large memory structures it

is advisable for one to use the Xilinx CORE Generator program which offers an easy way

to generate wider and deeper structures using multiple block RAM instances.If though

only one block is sufficient, it can be configured in either two 9Kb RAMs or a single

18Kb RAM.

Each BRAM can be addressed through two ports, totally symmetrical and independent

of each other. Write and Read operations are syncronous, and independent between

ports. Simultaneous access of the same address can lead to serious collisions though.

There are two different situations that must be examined to determine the results of a

collision.

The first situation implies that different clock frequencies or phases drive each port.

Subsequently, whenever a write operation is performed, the other port must not access

the same address for any operation. The simulation model will produce an error message

Chapter 2. Background 8

if this condition is violated. The output data in this case will be unpredictable.

The second situation implies that both ports operate under the same clock. If one of

them performs a write operation, the other one must only perform a read operation on

the same address. The reliability of the output data depends on the option controlling

the sequence of the operations. A READ_FIRST option should be a safe call, while a

W RITE_FIRST would be unreliable.

Another subject that should be taken under consideration is to choose between all the

possible configurations of the data port’s width. Sacrificing a large in favor of a smaller

amount of elements to be addressed, data width is able to increase up to 32bits. The

address port still remains 14bit or 13bit for 18Kb RAM or 9Kb RAM respectively (parity

bits included), but a number of least significant bits act as offset. All the possible data

combinations are listed in the table below.

C o m b in a tio n s
M em ory

Depth
Data

W idth
Parity
W idth

Data Input
Data O utput A D D R

Total RAM
(K b)

9 K b B lo c k RAM W ith and W ithout P arity

256 x 3 2 »» 256 32 N A [31:0] [12:5] 8

256 x 3 6 »» 256 32 4 [35:0] [12:5] 9

5 1 2 x 1 6 512 16 N A [15:0] [12:4] 8

5 1 2 x 1 8 512 16 2 [17:0] [12:4] 9

I K x 8 1024 8 NA [7:01 [12:3] 8

1 K x 9 1024 8 1 [8:0] [12:3] 9

2K x 4 2048 4 NA 13:0] [12:2] 8

4K x 2 4 0 % 2 NA [1:0] [12:1] 8

8 K x 1 8192 1 NA [0:0] [12:0] 8

18 K b B lo c k RAM W ith and W ithout P arity

5 1 2 x 3 2 512 32 NA [31:0] [13:5] 16

5 1 2 x 3 6 512 32 4 [35:0] [13:5] 18

I K x l6 1024 16 NA [15:01 [13:4] 16

I K x l8 1024 16 2 [17:0] [13:4] 18

2K x 8 2045 8 N A [7:01 [13:3] 16

2 K x 9 2048 8 1 [8:0] [13:3] 18

4K x 4 4 0 % 4 NA [3:01 [13:2] 16

8K x 2 8192 2 NA [1:0] [13:1] 16

16K x 1 16384 1 NA [0:0] [13:0] 16

Notes:
1. x32 and x36 data widths available in simple dual-port iSDP) mode only.

Table 2.1: Block RAM Data combinations and ADDR Locations

As mentioned before, Spartan-6 LX16 also includes two Clock Management Tiles (CMTs).

Each one of these consists of two Digital Clock Managers (DCMs) and one Phase-Locked

Loop (PLL). A DCM is able to multiply and divide the frequency of an incoming clock,

Chapter 2. Background 9

or shift its phase. The functions performed result in a new clock signal.

The Digital Signal Processing (DSP) slices, called DSP48A1 in Spartan-6, are dedicated

circuits whose design usually follow a multiply with addition. They support many func­

tions, like a multiplier, a multiplier-accumulator, a multiplier followed by an adder, a

preadder followed by a multiplier, etc. Connecting multiple DSP slices is also supported

to form more complex arithmetic functions and save off of the general FPGA logic.

2.2 IS E D esign Software

Xilinx ISE (Integrated Synthesis Environment) is a software tool produced by Xilinx for

synthesis and analysis of HDL designs. It features the ability to synthesize ('compile')

a design to primitive structures, simulate a design's behaviour to different stimuli, gen­

erate and analyze Register-Transfer Level (RTL) diagrams, place & route the primitive

elements onto the target FPGA board, perform timing analysis of the design and finally

program the target FPGA board with a configuration file.

Creating a design, a certain flow of actions must be followed. Each step is equally im­

portant to succeed in an optimal working design. That flow is shown in Figure 2.4.

FlGURE 2.4: FPGA Design Flow. Steps a hardware desgner must follow

Chapter 2. Background 10

At first, the overall operation of the design must be specified, and its purpose, input

and output defined.

Secondly, a high level design may follow, in which functionality is divided into large

'black boxes' of a diagram. Black box is considered an object that can be viewed in

terms of its inputs and outputs without any knowledge of its internal workings.

Then each larger operation is considered in how it will break into smaller functions and

how will those be connected together. A design hierarchy is being constructed, but it

definitely does not correspond to the final product. A lot of backtracking will change

its form many times.

The next step is to start translating the ideas to Register-Transfer Level (RTL) code

using a Hardware Description Language (HDL). This is a hand made process, and the

designer must be extremely fastidious and careful. Avoiding logical errors can save a

great deal of time in design verification that follows. The level of abstraction in this

stage may seem low to the user, but is still high enough in compare to an actual imple­

mented design. This project was written in Verilog and so the output files of this step

have the file extension ” *.v ” .

After the design code is produced, its behaviour to various stimuli must be evaluated.

In order to perform this, several testing files are created, called testbenches, which drive

input into a simulated design. The functional simulation process, as it is called, may

provide signals with unexpected values at certain timestamps. These faults will lead the

designer to logic errors in his/her code, backtracking him/her to the previous step where

a fix is necessary. It is also recommended for any designer to first test his functions in­

dividually and later as a whole. It is easier to identify his/her mistakes that way. Note

that this simulation tests ONLY the logic of the design, not its actual operation when

it is expressed in primitive structures or even circuitry.

The next step includes the synthesis of the design which is solely performed by the

design tool, in this case Xilinx Synthesis Technology (X ST) which is part of the ISE

software. In synthesis, behavioural description is translated into gates and other primi­

tive structures available in libraries. A netlist file, called NGC for X ST tool, is created

Chapter 2. Background 11

as a result, containing logical design data and constraints.This phase also estimates the

size of the implemented design, generating an error message if it is unlikely to fit on the

target board due to inadequate resources. In such a case, the tool offers an option to

focus on area optimization during the next synthesis attempt.

Once more a simulation must be performed, but this time on gate level. The main pur­

pose of the post-synthesis simulation is mostly to compare the results with the previous

simulation and determine whether the synthesis tool has translated correctly the RTL

code to an equivalent netlist. If not, then there is probably a logic error in the RTL code

or the designer simply uses a bad coding practice. In either way, it is recommended to

backtrack to the coding stage.

Place & Route is the next step of the flow, which is also automatically performed by the

design tool. As the name suggests it consists of two functions, placement and routing.

Placement maps the netlist generated from the synthesis step to the available resources

of the target board. Routing then interconnects all the placed components on the FPGA

grid. Of course, both processes struggle to optimize the geometry of the design for the

best achievable performance. The ISE software allows the designer to see the produced

layout and even make changes on it if desired. It should be mentioned that the User

Constraints File (U CF) is also taken under consideration during this process. This is

a user defined file that specifies which I/O pins will be used on the FPGA and what

timing requirements are supposed to be met in signal propagations.

Last but not least, a timing analysis is performed to ensure that all timing constraints

are met. Usually that involves finding the critical path, which is the path with the

maximum delay between an input and an output. In a synchronous system, where a

clock signal is present, there can only be two timing errors.

• A H old T im e V io lation : when an input signal changes too soon after the clock’s

active transition

• A Setu p T im e V io lation : when a signal arrives too late at the flip-flop, and

misses the time when it should advance

Chapter 2. Background 12

In the second scenario, the tool provides the designer with the worst-case execution time

(WCET) which is actually the shortest clock period he/she could have in his design. It

is up to him/her to either lower the design’s frequency as long as this does not mess

with its functionality or backtrack to coding phase and alter the design especially at the

point of worst delay.

After all these steps are performed, the design is finally ready to be tested on the FPGA.

A configuration file is generated according to the layout provided from the Place & Route

step. This file has the extension ” *.b it” and is actual a bitstream that is loaded to the

FPGA and configures it to the specific design. When finished loading, the board starts

running automatically. The results are shown to whichever output target is indicated.

For this project, that would be a monitor screen.

2.3 V G A protocol

VGA stands for ”Video Graphics Array” . It is the standard monitor or display interface

used in most PCs. The VGA standard was originally developed by IBM in 1987 and

allowed for a display resolution of 640x480 pixels. Since then, many revisions of the

standard have been introduced. The most common is Super VGA (SVGA), which allows

for resolutions greater than 640x480, such as 800x600 or 1024x768. The video displayed

is a stream of still frames that the eye perceives as a moving image due to a high enough

frame rate. Each frame is an array of pixels set horizontically and vertically that are

drawn in order of lines from top to bottom and in each line from left to right.

The interface provides the monitor with horizontal and vertical sync signals, color magni­

tudes, and ground references. The h_sync and v_sync are digital signals that synchronize

the signal timings with the monitor. Both follow the same wavelength pattern but with

differt timings. These wavelengths can be divided into two main regions. The first is

the active region where color is transmitted and the actual display takes place. The

second is the blanking region, where color should not be transmitted. In about the

middle of this blanking interval, a pulse of the synch signal takes place that defines

three inner regions. The region before the pulse is called front porch, followed by the

Chapter 2. Background 13

pulse region and then the back porch. While the pattern is the same for both signals,

the h_sync wavelength applies to a single line, but the v_sync wavelength applies to a

whole frame. So during the active region of the v_sync signal all lines must be drawn,

meaning the h_synch signal has to repeat its pattern multiple times. Figure 2.6 clarifies

the synchronization patterns and the signals' operation.

Horizontal Timing
(h_sync signal)

Display Time

Blanking Time

F igure 2.6: H_synch and V_synch signals’ operation

Chapter 2. Background 14

The color magnitudes are 0V-0.7V analog signals sent over to the RGB wires (Red,

Green, Blue). To produce those magnitudes a digital representation of arbitrary bit size

for each of red, green and blue passes through a Digital to Analog Converter (DAC). The

VGA color system supports an 18-bit RGB system. This provides 64 different intensity

levels for each basic color, resulting in 262,144 possible colors, any 256 of which can form

a palette.

A standard VGA connection has 15 pins arranged in three rows and is shaped like

a trapezoid. Six pins are used for colors and their respective grounds, two for the

synchronization signals and the rest are either used for grounds, optional DC voltage or

not used at all.

F igure 2.7: The VGA connector pins

C hapter 3

Design & Im plem entation

This chapter focuses on the created design of a Head-tracked Image Projection system.

Initially, it provides general information on the idea and its development into a high

level diagram. Afterwards, elaborates on every function and algorithm used, revealing

their operation and the coding approach in Verilog. And finally, presents the testing

results on simulation or FPGA configuration.

3.1 High Level Design

The basic idea of a Head-Tracked Image Projection system is consisted of two main

parts. The very first is to capture a viewer's point of view towards a screen, meaning

the position and rotation of his/her head. The second part utilizes that information to

project a 3D object/environment existing virtually behind the screen onto the screen

according to the viewer's point of view. As a result the fake environment would seem

more real to the viewer since it is moving naturally to his/her movement. Of course, the

same projected image does not work for multiple users, since they all a different viewing

angle.

Analyzing the first part, it seems obvious enough that a camera is needed to provide

feedback to the system and that a buffer is need to store all or some of this data for

future processing. This processing should probably include head-detection algorithms to

pinpoint the center of the user's head and its rotation. The output should be presented

15

Chapter 3. Design & Implementation 16

to the second part as either absolute values or distance vectors.

The second part, receives those values as input and then normalizes them to its own vir­

tual world space. Then a 3Dto2D conversion algorithm has the responsibility to convert

the 3-dimensional points of the virtual objects into 2-dimensional pixel addresses. As in

3D modeling only a collection of certain data points that form geometrical entities are

used, so the 3D rendering/projection process can be practical. The generated 2D points

are connected properly and used as margins to fill in the remaining pixel values. The

generated image is stored in a video RAM and then displayed with the help of a vga

controller.

D IS C L A IM E R : The first part of this project was not implemented due to technical

difficulties and its functionality was replaced by FPGA button input representing the

viewer’s movement.

The virtual object chosen for this design was a parameterizable cube and its actual lines

were colored instead of filling the space between them. Moreover an optimized way of

pixel value storage was used. All of the components are individually explained in detail.

The figure below shows the block diagram that guided this project.

F igure 3.1: The high-level design’s block diagram

Chapter 3. Design & Implementation 17

3.2 V G A Controller

The first part of the project to be implemented was the VGA controller. The decision

relies on the fact that this module is responsible for the general output, therefore it is

necessary for testing the already configured device. It should be noted that functional

verification through simulation runs is not in the least practical testing method in de­

signs that target vga output. Multiple frames must be examined which could mean

millions of clock cycles.

The industry standard resolution of 640x480 pixels at 60Hz frame rate was used. This

requires a 25MHz pixel clock. The Nexys3 board offers an 100MHz CMOS oscillator, so

a DCM component reduced the input clock four times.

In this design the DCM was originally part of the VGA controller, now it is part of the

top logic module to share the divided clock to all components.

The VGA standard timings are available and shown in Table 3.1.

An easy way to calculate the pixel clock's frequency needed is to find the number of

clock cycles a frame needs and multiply it times the frame rate. So in this case:

PixelClockFreq = FrameClockCycles * FrameRate

= LinesPerFram e * LineClockCycles * FrameRate
(3.1)

= 525 * 800 * 60

= 25, 2MHz

To drive h_synch and v_synch signals, two separate behavioural blocks were constructed,

hence one block described a line’s implementation and the other a frame’s. According

to the timings table the h_synch pulse should occur at the 657th clock cycle since it is

preceded by the visible area and the front porch and its duration should be 96 clock

cycles. The v_synch pulse should occur at the 491st line for the same reason and its

should last the duration of 2 lines.

The Nexys 3 FPGA Board has a non-regular 8-bit RGB output. The 3-3-2 bit RGB uses

3 bits for each of the red and green color components, and 2 bits for the blue component.

This results in a 8*8*4 = 256 color palette. Signal groups of the same color are driven

Chapter 3. Design & Implementation 18

Table 3.1: VGA timings of a 640x480 resolution at 60Hz

from the corresponding FPGA pins to the VGA DAC(Digital to Analog Converter) and

then to the VGA connector pins.

The source code can be found in vga_controller.v.

3.3 Line Drawing

3.3.1 B re sen h am Line A lgorith m

Bresenham line algorithm is the basic line drawing algorithm used in computer graphics.

This algorithm was developed to draw lines on digital plotters, but has found wide-spread

usage in computer graphics. The algorithm is fast - it can be implemented with integer

Chapter 3. Design & Implementation 19

calculations only - and very simple to describe.

Given two known endpoints (x0,y0), (x1,y1) the algorithm forms a close approximation

of a straight line between them. Starting from either endpoint it generates sequentially

one point after another until it reaches the second endpoint.

The generation of points is based on the fact that either the x or y axis, columns or rows

of pixels respectively, will only hold one pixel of the line per coordinate value. Which

one of those axes it will be, is determined by the line slope. The line slope is derived

from the fraction of distances of the endpoints' coordinates, namely Slope = Dy/Dx =

(y1-y0)/(x1-x0).

• If Dy/Dx <1 , then x coordinate advances faster than y, so multiple pixels can

have the same y value, but not the same x

• If Dy/Dx >1 , then y coordinate advances faster than x, so multiple pixels can

have the same x value, but not the same y

In each case, Bresenham has to answer a single question in every iteration.

• For a slope <1, the question is ” If (x0,y0) is part of the line, will (x0+1,y0) or

(x0+1,y0+1) be also part of the line?”

• For a slope >1, the question is ” If (x0,y0) is part of the line, will (x0,y0+1) or

(x0+1,y0+1) be also part of the line?”

To answer this question, only the first case will be examined, since an equal solution can

be applied to the other.

Of course, the algorithm decides the closest answer to the actual line. For the actual

line, if x rises to x+1, then y rises to y+D y/D x. If Dy/Dx <0,5 then (x+1,y) is closer

to the actual line, so this one should be chosen for the drawn line.

For the next iteration though, the drawn line is already distal from the actual line by

the interval Dy/Dx. Therefore, for the actual line if x+1 rises to x+2, then y+D y/D x

rises to y+2*D y/D x. For the drawn line should (x+2,y) or (x+2,y+1) be chosen? If

2*D y/D x <0,5 then y should remain the same and (x+2,y) should be chosen. Otherwise,

if 2*D y/D x >0,5, then (x+2,y+1) is closer to the actual line and should be chosen. This

Chapter 3. Design & Implementation 20

choice will change the interval between lines to 2*Dy/Dx-1, which is a negative number

since Dy/Dx <0,5.

This example can go on for many iterations, but the point is that after each iteration

the drawn line has a different distance from the actual line. That distance is stored in

an ’error’ variable and its value is checked in every iteration for a decision to be made.

Its value ranges from -0,5 to 0,5, since whenever it rises above 0,5 the slow moving co­

ordinate progresses and the error is decreased by 1.

As mentioned before, there is no point in repeating the experiment for a steep line, since

the solution is similar.

F igure 3.2: An illustration of the result of Bresenham’s line algorithm

An optimization to this algorithm is to avoid calculating the slope fraction Dy/Dx by

multiplying each mathematical function by Dx. The algorithm is saved from expensive

operations like the Dy/Dx division and all the floating point arithmetic operations when

calculating the error variable. Error now ranges from -Dx/2 to Dx/2.

This optimization has been integrated in this project.

Chapter 3. Design & Implementation 21

3.3.2 L ine M odu le

This module is responsible for generating a line segment given its two endpoints. It

should calculate the addresses of the pixels belonging on this line and return a non-zero

color value when the display control reaches one of those pixels. This module has been

reformed many times during the development of this project.

The first attempt included implementing the Bresenham line algorithm, but without

a Video RAM to store the pixel values. This was considered possible because Bresen-

ham computes the pixels belonging to the line sequencially starting from one endpoint

to another. A VGA controller also demands for only one pixel value at a clock cycle.

Therefore, only the next line pixel was needed until the display control reached that pixel

address. Then the non-zero pixel value would be sent to the output and the calculation

would move on to the next line pixel. So the line algorith would be a state machine with

two states, ’Ready’ and ’Calculating’.This design would spare the use of a Video RAM

and would only maintain the current line pixel address.

The flaw of this design was that it considered the flow of the display equal to the flow of

the line pixel addresses generated. However, a following line pixel could have a smaller

address than the current line pixel even if the computation started at the smaller end­

point, hence it could not be displayed in the same frame since the display control has

already passed through its address. Clear examples are line slopes less than 45 degrees.

The second attempt implemented a more obvious algorithm. It simply replaced the

current pixel address, where the display control was, to the mathematical function of

the line. If the outcome was less than a tolerance error then a non-zero color value was

returned. The thickness of the line was tightly connected to the tolerance error chosen.

A single line though required four multipliers to produce its results. A cube, which

consists of 12 lines, needed 48 multipliers. A total waste of FPGA resources considering

the fact that Spartan-6 has only 32 DSP slices. The impact of this problem was not felt

immediately since the design was still small. A part of a synthesis report that indicates

this problem is shown in Table 3.2.

The third and final attempt reused Bresenham line algorithm with the support of a block

RAM, called LRAM (Line RAM). LRAM was not used in the typical way of a Video

Chapter 3. Design & Implementation 22

Device utilization summary

Selected Device : 6sixl6csg324-3

Slice Logic Utilization:
Number of slice Registers: 595 out of 18224 3%
Number of Slice LUTs: 14770 out of 9112 162% (*)

Number used as Logic: 14770 out of 9112 162% i *)
slice Logic Distribution:
Number of LUT Flip Flop pairs used: 14885

Number with an unused Flip Flop: 14290 out of 14885 96%
Number with an unused LUT: 115 out of 14885 0%
Number of fully used l u t -FF pairs: 480 out of 14885 3%
Number of unique control sets: 25

io utilization:
Number of io s : 24
Number of bonded IOBs: 16 out of 232 6%

iob Flip Flops/Latches: 10

specific Feature utilization:
Number of BUFG/BUFGCTRLS: 2 out of 16 12%
Number of ds p48a 1s : 30 out of 32 93%

w a r n i n g :xst:1336 - (*) More than 100% of Device resources are used

Table 3.2: Device Utilization of design with 48 multipliers on Cube module

RAM. It did not store pixel data, but it did store pixel horizontal or vertical address.

The concept was that at the end of each frame, in the back porch region, this memory

would be reinitialized with the line pixel addresses of the current line computed by the

Bresenham algorithm. However, not the whole pixel address would be stored, only the

vertical or horizontal position would be written at a memory address where the other

position would point. That means the second position would serve as an index to the

LRAM.

This technique is based on the fact that a line can be either steep or not.

Being steep means that each display row contains only one pixel of the line, so the ver­

tical address of pixels is used as index to the LRAM address where the only possible

line pixel has his horizontal address stored. If the display pixel's horizontal address does

not match up to the horizontal address read from LRAM then it is not a part of this

line. In case a row does not contain any line pixels a default non-possible address value

is read from the LRAM.

Respectively, if the line is not steep, each column may contain only one pixel, so the

horizontal address is used to index the LRAM. Once more if vertical value of the current

pixel does not match the address read from LRAM it does not belong on the line.

Chapter 3. Design & Implementation 23

To sum up, steep lines use the vertical address as index and the horizontal address as

data. Non steep lines use the horizontal address as index and the vertical address as

data.

Note that during the frame back porch, the LRAM is always reinitialized to non-possible

address values first and then the line pixels calculated by Bresenham are written.

Is this though an optimized way of storing the line? To answer that question, a com­

parison between an actual Video RAM and this LRAM will be conducted. To represent

the data in a classic operation of a Video RAM, at least a single bit for each pixel is

needed, adding up to 640*480 = 307,2 Kbits, more than a block RAM can fit.

To represent the data in LRAM, both indexing cases must be taken under consideration

and the worst variable of each chosen, so it should have at least 640 elements (non-steep

line case) of 10 bits each (steep line case). That means 640*10 = 6,4 Kbits. However,

the possible configurations of a block RAM shown in Table 2.1 does not let the LRAM

be 9Kb, but only 18Kb. Therefore, a 18Kb LRAM is needed for each line and 12*18 =

216 Kbits of memory for all lines.

So, 307,2 Kbits of VRAM is still larger than 216Kbits of LRAM.

This approach utilizes memory resources, saving up combinational logic resources for

other functions. In contrast, the previous approach did not use memory resources at

all and tried to force the outcome combinationally as soon as possible, risking area

deficiency and timing violations. Since all line pixels must be calculated in an interval

of thousands of clock cycles, performance is not an issue and a brute force approach like

the second one is unecessary, or even harmful.

The final synthesis report of the design in Table 3.3 suggests exactly the point that

saving resources is useful. Note that this is the final synthesis report including more

components and still fits better than the previous design.

The source code for the line module can be found in line.v.

The source code for the LRAM instantiation can be found in LRAM.v.

Chapter 3. Design & Implementation 24

Device utilization summary

selected Device : 6sixl6csg324-3

Slice Logic Utilization
Number of slice Registers: 2174 out of 18224 11%
Number of Slice LUTs: 7515 out of 9112 82%

Number used as Logic: 7515 out of 9112 82%

Slice Logic Distribution:
Number of LUT Flip Flop pairs used: 7771

Number with an unused Flip Flop: 5597 out of 7771 72%
Number with an unused LUT: 256 out of 7771 3%
Number of fully used LUT-FF pairs: 1918 out of 7771 24%
Number of unique control sets: 100

io utilization:
Number of io s : 18
Number of bonded IOBs: 18 out of 232 7%

Specific Feature Utilization:
Number of Block r a m/FIFO: 12 out of 32 37%

Number using Block RAM only: 12
Number of b u f g/b u f g c t r l s : 1 out of 16 6%
Number of DSP48Als: 2 out of 32 6%

Table 3.3: Device Utilization of a design following the LRAM approach

3.4 Cube Drawing

The Cube module is a simple intermediate module instantiating the 12 lines of a cube.

Its inputs are the 8 projected corners of a virtual 3D cube to the monitor screen provided

by the Convert3Dto2D module and the address of the display pixel, just for the purpose

of being propagated as an input to the line modules. Each cube corner appears as an

endpoint in three lines, so the number of lines can be computed as 8*3/2! = 12 lines.

Initially, the cube was of white color. The module output was a simple logical OR gate

of the colors provided by the line modules. However, for better representation of its

movement, different color themes were added for the front square lines, the back square

lines and the side lines. This was achieved by driving only one color channel to each

group of specific lines.

The source code of this module can be found in cube.v.

Chapter 3. Design & Implementation 25

3.5 Convert 3D to 2D

The main purpose of this module is to map the eight 3-dimensional points of the virtual

cube into 2-dimensional points on the monitor screen according to the viewing point. A

simple perspective projection algorithm is used for this task. But before elaborating on

that, it is useful to know what perspective means.

Perspective projection mimics the effect of human eyesight to perceive objects in the dis­

tance smaller than objects close by. On the other hand, orthographic projection ignores

that effect to allow accurate measurements for use in construction and engineering.Figure

3.3 clearly indicates the difference of the two types of projection.

For the purposes of this projection a coordinate system was defined so that the screen

plane would be parallel to the z axis with an offset of 640. So the top left corner of

the screen has the coordinates of (x,y,z) = (0,0,640) and the bottom right corner of

(x,y,z) = (639,479,640). All objects behind the screen in this world plane may move

between (0,0,641) and (639,479,1279), while the viewer may move between (0,0,0) and

(639,479,639). So basically the z dimension is two times larger than the x dimension but

it is split in two equal parts because of the monitor screen.

To calculate the 2D coordinates of 3D points a simple analogy was performed. Let xa,xb

be the horizontal distances between the viewer and the 3D point, unknown 2D point

Chapter 3. Design & Implementation 26

respectively. And za,zb be the depth distances between the viewer and the 3D point,

screen respectively.

The unknown xb then is:

xb = xa * zb/za (3.2)

The same function calculates the y coordinate of the 2D point. It is worth mentioning

that since zb <za, the same will apply to xb, xa (xb <xa). So the projected image will

never exceed the limits of the coordinate system.

The following diagram represents the way this projection works:

F igure 3.4: A point’s coordinate projection

Initially, the projection of all points was designed to happen simultaneously, whenever

the viewer’s position had changed. Yet, since every point mapping from 3D to 2D needs

at least to divisions performed, a total of 16 divisors were generated during synthesis.

That proved a waste of resources, since the viewer’s position changed each time after

thousands of clock cycles and the same divisor could reused only by feeding its input

with the correct signals. A couple of multiplexers were used to drive the input and

Chapter 3. Design & Implementation 27

correct this problem. Of course, the point mapping now lasts a few more cycles.

Another problem was that the division unit required a longer clock period than the

initial used, as to not generate setup time violations. The original clock’s frequency was

100MHz. The DCM module was still used only for the VGA controller. Later on, the

same 25MHz clock was driven to all components due to stability issues and to eliminate

this problem.

Last but not least, the virtual cube margins were parameterized, so one could change

its dimensions before synthesizing the design. The same practice was used for the initial

viewer position.

The source code can be seen in Convert3Dto2D.v.

3.6 D ebouncer

The input buttons on the FPGA board may jitter when pressed. To accertain the value

inputs and exclude the noise factor an input value must remain stable for a small period

of time as perceived by the user, but a significant amount of clock cycles as perceived

by the design. A filter module was created to provide the system with clean button

inputs. The logic behind, suggests to only change the clean input value, if the noise

value remains the same until a counter reaches a parameter ’’Distance” .

The source code of this module is shown in Debouncer.v.

3.7 Top M odule

The top module is at the top of the hierarchy and instantiates all previous submodules

of the design. It formes the connections between them and provides all of them with

the system’s main clock, of 25MHz. That clock frequency is generated from a DCM

instance, which divides the 100MHz of the CMOS Oscillator provided by the Nexys3

Chapter 3. Design & Implementation 28

board to return a quarter of it.

All the I/O signals that let Spartan-6 interact with the Nexys3 peripherals exist as in­

puts or outputs of the top module. Since the FPGA connects through its pins with the

peripherals, the input and output signals are assigned to the right pins through the UCF

file.

The source code of this top module can be found in Top_module.v. Also, the source

code of the User Constraints File (UCF) is in Top_module.ucf.

C hapter 4

Conclusion

Technology has made huge steps into bringing the virtual closer to the real world. This

goal will be considered successful when the average human will not be able to distinguish

whether he currently breathes in the one or the other.

This project is another tiny step towards that dream's realization.

4.1 P ro ject R eport

By the completion of this project, the points of a virtual 3D cube were able to be pro­

jected on the 2D monitor screen according to the viewer’s current position, which was

guided by the FPGA buttons’ input. A drawing algorithm calculated the lines needed to

form the projected cube and stored this information in several block RAMs during the

blanking period of the display. The block RAMs were finally read by the same module

during the display, to decide whether to provide or not the pixels with color.

The project was described on Verilog HDL and after its synthesis to a netlist file, it was

mapped to the FPGA resources. The final device utilization is available in Figure 4.1

below:

29

Chapter 4. Conclusion 30

F igure 4.1: The resources binded by the final version of this project

4.2 In the Future

The end of a project is the beginning of new ideas. Some of them are recited here...

At first, the project’s original idea could be completed. That requires to actually get

data feedback from a camera and use it to calculate the viewer’s position through head

detecting techniques. It would better present the idea of natural projection responces

to natural movement of the viewer.

It would also be interesting to parameterize the project to include more geometrical

entities. Since the generation of a line is possible, many other objects constracted from

straight lines could be included.

Last but not least, a performance comparison could be performed between this hardware

implementation and a similar software application. Of course, that comparison depends

on many variables, like the system in which the software application runs, so the results

would be vague.

A p p en d ix A

Source Code

D eb ou n cer.v
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

'timescale 1ns / 1ps
/*Debouncer module to filter button input*/

module Debouncer(input rst, input clk, input noisy, output reg clean);
parameter DELAY=1000000;

integer count;
reg old_noisy;

always @(posedge clk, posedge rst)

if (rst)
begin

count = 0;
clean = 0;
old_noisy=0;

end
else
begin

if (old_noisy==noisy) count = count +1;
else
begin

31

24

25

26

27

28

29

30

31

32

33

34

35

Appendix A. Source Code 32

old_noisy = noisy;
count = 0;

end

if (count == DELAY)
begin

clean=noisy;
count=0;

end
end

endmodule

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Appendix A. Source Code 33

vga_controller.v
'timescale 1ns / 1ps
/*VGA controller drives the display to the monitor*/

module vga_controller(rst, clk, RGB, VGA_RED, VGA_GREEN, VGA_BLUE,
VGA_HSYNC, VGA_VSYNC, H_address, V_address, endofframe);

input rst, clk;
input [2:0] RGB;
output reg [2:0] VGA_RED, VGA_GREEN;
output reg [1:0] VGA_BLUE;
output reg VGA_HSYNC, VGA_VSYNC;
output reg [9:0] H_address; //maxvalue 640
output reg [8:0] V_address; //maxvalue 480

reg clk_count;
reg H_draw; //when 1 draw
reg V_draw; //when 1 draw
reg [9:0] H_cnt; //maxvalue 800
reg [18:0] V_cnt; //maxvalue 416800
reg endofline;
output reg endofframe;
wire red,green,blue;

/**************Horizontal implementation****************/

always@(posedge clk)
begin

if(rst)
begin
VGA_HSYNC = 1;
H_cnt = 0;
VGA_RED=0;
VGA_GREEN=0;
VGA_BLUE=0;

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

Appendix A. Source Code 34

H_draw=0;
H_address=0;
endofline=0;
end

else
begin

endofline=0;

if(H_cnt < 10'h30) // BackPorch
begin
H_draw=0;
VGA_RED=0;
VGA_GREEN=0;
VGA_BLUE=0;
end

else if(H_cnt < 10'h2B0) // Display
begin
H_draw=1;
VGA_RED = {3{red}};
VGA_GREEN = {3{green}};
VGA_BLUE = {2{blue}};
H_address = H_address + 1;
end

else if(H_cnt < 10'h2C0) // FrontPorch
begin
H_draw=0;
VGA_RED=0;
VGA_GREEN=0;
VGA_BLUE=0;
H_address = 0;
end

else if(H_cnt < 10'h320) // Pulse
VGA_HSYNC = 0;

else // End of line
begin
VGA_HSYNC = 1;
H_cnt = 0;

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

Appendix A. Source Code 35

endofline=1;
end

H_cnt = H_cnt + 1;

end
end

/***************Vertical implementation********************/

always@(posedge clk)
begin

if(rst)
begin
VGA_VSYNC = 1;
V_cnt = 0;
V_draw=0;
V_address=0;
endofframe=0;
end

else
begin

endofframe=0;
V_cnt = V_cnt + 1;

if(V_cnt < 19’h5AA0) // BackPorch
V_draw = 0;

else if(V_cnt < 19’h636A0) // Display
begin
V_draw = 1;
if(endofline)
V_address = V_address + 1;

end
else if(V_cnt < 19’h655E0) // FrontPorch

begin
V_draw = 0;

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

Appendix A. Source Code 36

V_address = 0;
end

else if(V_cnt < 19'h65C20) // Pulse
VGA_VSYNC = 0;

else // End of frame
begin
VGA_VSYNC = 1;
V_cnt = 0;
endofframe=1;
end

end
end

/****************Combinational Logic************************/

assign red = RGB[2];
assign green = RGB[1];
assign blue = RGB[0];

endmodule

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Appendix A. Source Code 37

lin e.v
'timescale 1ns / 1ps

module line(clk, rst, H_address, V_address, endofframe,
pointO, point1, color);

input clk,rst,endofframe;
input [9:0] H_address;
input [8:0] V_address;
input [18:0] point0, point1;
output reg color;

reg [18:0] start_address, end_address;
reg x_dir;
reg [10:0] dx;
//reg [9:0] dy;
reg [9:0] deltax;
reg [8:0] deltay;
reg steep;

//drawing direction (0 for left, 1 for right)
//x1-x0

//y1-y0
//abs(x1-x0)
//abs(y1-y0)

//steep line (deltay/deltax > 1)

reg [18:0] cur_address;
integer error;
reg [9:0] Ram_AddrA; //writing address
reg [9:0] wdata;
reg we;
reg init_Ram;

reg [9:0] Ram_AddrB; //reading address
wire [9:0] rdata;

/*******************Writing Logic***************************/
always@(posedge clk)
begin

if(rst||endofframe) //Compute the characteristics of the newest
line

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

Appendix A. Source Code 38

begin //according to its endpoints
if(point0 > pointl)
begin
start_address = pointl;
end_address = point0;
end

else
begin
start_address = point0;
end_address = point1;
end

x_dir = (end_address[9:0] > start_address[9:0]);
dx = point1[9:0] - point0[9:0];
//dy = point1[18:10] - point0[18:10];

//The mask used is just the sign bit multiple times
deltax = ({11{dx[10]}}"dx) - {11{dx[10]}}; //mask"dx - mask (to get abs)
deltay = end_address[18:10] - start_address[18:10];
//deltay = ({10{dy[9]}}"dy) - {10{dy[9]}}; //mask"dx - mask (to get

abs)

if(deltax < deltay)
steep = 1;

else
steep = 0;

cur_address = start_address;
error = 0;
Ram_AddrA = 0;
we = 1;
wdata = 10'hFFF;
init_Ram = 1;
end

else //Start writing the line in LRam
begin

if(init_Ram) //Initialize Ram - Erase previous line

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

Appendix A. Source Code 39

begin
wdata = 10'hFFF;
Ram_AddrA = Ram_AddrA + 1;
if(Ram_AddrA == 640)
begin
Ram_AddrA = 0;
init_Ram = 0;
end

end
else
begin
if(steep) //If line is steep Ram_AddrA indicates rows
begin //and wdata columns
Ram_AddrA = cur_address[18:10];
wdata = cur_address[9:0];

if(cur_address[18:10] == end_address[18:10])
begin
we = 0;
end

cur_address[18:10] = cur_address[18:10] + 1;
error = error + deltax;
if((error > (deltay>>1))&&(!error[31]))
begin
cur_address[9:0] = x_dir ? (cur_address[9:0]+1) :

(cur_address[9:0]-1);
error = error - deltay;
end

end
else //If line is not steep Ram_AddrA indicates columns

begin //and wdara rows
Ram_AddrA = cur_address[9:0];
wdata = cur_address[18:10];

if(cur_address[9:0] == end_address[9:0])
begin

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

Appendix A. Source Code 40

we = 0;
end

cur_address[9:0] = x_dir ? (cur_address[9:0]+1) :
(cur_address[9:0]-1);

error = error + deltay;
if((error > (deltax>>1))&&(!error[31]))
begin
cur_address[18:10] = cur_address[18:10]+1;
error = error - deltax;
end

end

end

end

end

/*******************Reading Logic***************************/
always@(posedge clk)
begin

if(rst)
begin
color = 0;
Ram_AddrB = 0;
end

else
begin

if(steep)
begin
if(H_address == rdata)

color = 1;
else

color = 0;

Ram_AddrB = V_address;
end

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

Appendix A. Source Code 41

else
begin
if(V_address == rdata)

color = 1;
else

color = 0;

Ram_AddrB = H_address;
end

end
end

LRAM Ram_inst(
.clk(clk),
.rst(rst),
.we(we),
.Ram_AddrA(Ram_AddrA),
.wdata(wdata),
.Ram_AddrB(Ram_AddrB),
.rdata(rdata)

);

endmodule

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Appendix A. Source Code 42

L R A M .v
'timescale 1ns / 1ps
/*LRAM instantiates a block RAM used for pixel address storing*/

module LRAM(clk, rst, we, Ram_AddrA, wdata, Ram_AddrB, rdata

);

input clk,rst,we;
input [9:0] Ram_AddrA,wdata,Ram_AddrB;
output [9:0] rdata;

// RAMB16BWER: 16k-bit Data and 2k-bit Parity Configurable Synchronous Dual
Port Block RAM with Optional Output Registers
// Spartan-6
// Xilinx HDL Language Template, version 14.6

RAMB16BWER #(
// DATA_WIDTH_A/DATA_WIDTH_B: 0, 1, 2, 4, 9, 18, or 36
.DATA_WIDTH_A(18),
.DATA_WIDTH_B(18),
// DOA_REG/DOB_REG: Optional output register (0 or 1)
.DOA_REG(0),
.DOB_REG(0),
// EN_RSTRAM_A/EN_RSTRAM_B: Enable/disable RST
.EN_RSTRAM_A("TRUE"),
.EN_RSTRAM_B("TRUE"),

// INITP_00 to INITP_07: Initial memory contents.
.INITP_00(256'hFF)
.INITP_01(256'hFF)
.INITP_02(256'hFF)
.INITP_03(256'hFF)
.INITP_04(256'hFF)
.INITP_05(256'hFF)
.INITP_06(256'hFF)
.INITP_07(256'hFF)

// INIT_00 to INIT_3F: Initial memory contents.
.INIT_00(256'hFF),

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Appendix A. Source Code 43

.INIT_01(256'hFF),

.INIT_02(256'hFF),

.INIT_03(256'hFF),

.INIT_04(256'hFF),

.INIT_05(256'hFF),

.INIT_06(256'hFF),

.INIT_07(256'hFF),

.INIT_08(256'hFF),

.INIT_09(256'hFF),

.INIT_0A(256'hFF),

.INIT_0B(256'hFF),

.INIT_0C(256'hFF),

.INIT_0D(256'hFF),

.INIT_0E(256'hFF),

.INIT_0F(256'hFF),

.INIT_10(256'hFF),

.INIT_11(256'hFF),

.INIT_12(256'hFF),

.INIT_13(256'hFF),

.INIT_14(256'hFF),

.INIT_15(256'hFF),

.INIT_16(256'hFF),

.INIT_17(256'hFF),

.INIT_18(256'hFF),

.INIT_19(256'hFF),

.INIT_1A(256'hFF),

.INIT_1B(256'hFF),

.INIT_1C(256'hFF),

.INIT_1D(256'hFF),

.INIT_1E(256'hFF),

.INIT_1F(256'hFF),

.INIT_20(256'hFF),

.INIT_21(256'hFF),

.INIT_22(256'hFF),

.INIT_23(256'hFF),

.INIT_24(256'hFF),

.INIT_25(256'hFF),

.INIT_26(256'hFF),

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Appendix A. Source Code 44

.INIT_27(256'hFF),

.INIT_28(256'hFF),

.INIT_29(256'hFF),

.INIT_2A(256'hFF),

.INIT_2B(256'hFF),

.INIT_2C(256'hFF),

.INIT_2D(256'hFF),

.INIT_2E(256'hFF),

.INIT_2F(256'hFF),

.INIT_30(256'hFF),

.INIT_31(256'hFF),

.INIT_32(256'hFF),

.INIT_33(256'hFF),

.INIT_34(256'hFF),

.INIT_35(256'hFF),

.INIT_36(256'hFF),

.INIT_37(256'hFF),

.INIT_38(256'hFF),

.INIT_39(256'hFF),

.INIT_3A(256'hFF),

.INIT_3B(256'hFF),

.INIT_3C(256'hFF),

.INIT_3D(256'hFF),

.INIT_3E(256'hFF),

.INIT_3F(256'hFF),
// INIT_A/INIT_B: Initial values on output port
.INIT_A(36'h000000000),
.INIT_B(36'h000000000),
// INIT_FILE: Optional file used to specify initial RAM contents
.INIT_FILE("NONE"),
// RSTTYPE: "SYNC" or "ASYNC"
.RSTTYPE("SYNC"),
// RST_PRIORITY_A/RST_PRIORITY_B: "CE" or "SR"
.RST_PRIORITY_A("CE"),
.RST_PRIORITY_B("CE"),
// SIM_COLLISION_CHECK: Collision check enable "ALL", "WARNING_ONLY",

"GENERATE_X_ONLY" or "NONE"
.SIM_COLLISION_CHECK("ALL"),

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

Appendix A. Source Code 45

// SIM_DEVICE: Must be set to "SPARTAN6" for proper simulation behavior
.SIM_DEVICE("SPARTAN6"),
// SRVAL_A/SRVAL_B: Set/Reset value for RAM output
.SRVAL_A(36'h000000000),
.SRVAL_B(36'hFFFFFFFFF),
// WRITE_MODE_A/WRITE_MODE_B: "WRITE_FIRST", "READ_FIRST", or "NO_CHANGE"
.WRITE_MODE_A("WRITE_FIRST"),
.WRITE_MODE_B("WRITE_FIRST")

)
RAMB16BWER_inst (

// Port A Data: 32-bit (each) output: Port A data
.DOA(DOA), // 32-bit output: A port data output
.DOPA(DOPA), // 4-bit output: A port parity output
// Port B Data: 32-bit (each) output: Port B data
.DOB(rdata), // 32-bit output: B port data output
.DOPB(DOPB), // 4-bit output: B port parity output
// Port A Address/Control Signals: 14-bit (each) input: Port A address

and control signals
.ADDRA({Ram_AddrA,4'b0}), // 14-bit input: A port address input
.CLKA(clk), // 1-bit input: A port clock input
.ENA(1'b1), // 1-bit input: A port enable input
.REGCEA(REGCEA), // 1-bit input: A port register clock enable input
.RSTA(rst), // 1-bit input: A port register set/reset input
.WEA({2'b0,{2{we}}}), // 4-bit input: Port A byte-wide write

enable input
// Port A Data: 32-bit (each) input: Port A data
.DIA(wdata), // 32-bit input: A port data input
.DIPA(DIPA), // 4-bit input: A port parity input
// Port B Address/Control Signals: 14-bit (each) input: Port B address

and control signals
.ADDRB({Ram_AddrB,4'b0}), // 14-bit input: B port address input
.CLKB(clk), // 1-bit input: B port clock input
.ENB(1'b1), // 1-bit input: B port enable input
.REGCEB(REGCEB), // 1-bit input: B port register clock enable input
.RSTB(rst), // 1-bit input: B port register set/reset input
.WEB(4'b0), // 4-bit input: Port B byte-wide write enable input
// Port B Data: 32-bit (each) input: Port B data
.DIB(DIB), // 32-bit input: B port data input

Appendix A. Source Code 46

146

147

148

149

.DIPB(DIPB) // 4-bit input: B port parity input

);

endmodule

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Appendix A. Source Code 47

cu b e.v
'timescale 1ns / 1ps
/*Cube instantiates the 12 lines and assigns color channels to them*/

module cube(clk, rst, H_address, V_address, endofframe, points_2D, RGB);

input clk, rst;
input [9:0] H_address;
input [8:0] V_address;
input endofframe;
input [151:0] points_2D;

output [2:0] RGB;

wire [11:0] colors;
wire [18:0] points [7:0];

assign {points[3],points[2],points[1],points[0]} = points_2D[75:0];
assign {points[7],points[6],points[5],points[4]} = points_2D[151:76];
assign RGB[2] = | colors[3:0];
assign RGB[1] = | colors[11:8];
assign RGB[0] = | colors[7:4];

line inst00 (
.clk(clk),
.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe(endofframe),
.point0(points[0]),
.point1(points[1]),
.color(colors[0])

);

line inst01 (
.clk(clk),
.rst(rst),

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

Appendix A. Source Code 48

.H_address(H_address),

.V_address(V_address),

.endofframe(endofframe),

.point0(points[0]),

.point1(points[2]),

.color(colors[1])

);

line inst02 (
.clk(clk),
.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe(endofframe),
.point0(points[1]),
.point1(points[3]),
.color(colors[2])

);

line inst03 (
.clk(clk),
.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe(endofframe),
.point0(points[2]),
.point1(points[3]),
.color(colors[3])

);

line inst04 (
.clk(clk),
.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe(endofframe),
.point0(points[0]),
.point1(points[4]),

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

Appendix A. Source Code 49

.color(colors[4])

);

line inst05 (
.clk(clk),
.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe(endofframe),
.point0(points[1]),
.point1(points[5]),
.color(colors[5])

);

line inst06 (
.clk(clk),
.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe(endofframe),
.point0(points[2]),
.point1(points[6]),
.color(colors[6])

);

line inst07 (
.clk(clk),
.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe(endofframe),
.point0(points[3]),
.point1(points[7]),
.color(colors[7])

);

line inst08 (
.clk(clk),

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

Appendix A. Source Code 50

.rst(rst),

.H_address(H_address),

.V_address(V_address),

.endofframe(endofframe),

.point0(points[4]),

.point1(points[5]),

.color(colors[8])

);

line inst09 (
.clk(clk),
.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe(endofframe),
.point0(points[4]),
.point1(points[6]),
.color(colors[9])

);

line inst10(
.clk(clk),
.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe(endofframe),
.point0(points[5]),
.point1(points[7]),
.color(colors[10])

);

line inst11(
.clk(clk),
.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe(endofframe),
.point0(points[6]),

Appendix A. Source Code 51

151

152

153

154

155

156

.point1(points[7]),

.color(colors[11])

);

endmodule

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Appendix A. Source Code 52

C on vert3D to2D .v
'timescale 1ns / 1ps
/*Convert3Dto2D projects 3D points to 2D plane*/

module Convert3Dto2D(clk, rst, buttons, switch, points_2D);

parameter DISTANCE = 100000;
parameter cube_x0 = 200; //max x_coordinate = 639
parameter cube_x1 = 440;
parameter cube_y0 = 120; //max y_coordinate = 479
parameter cube_y1 = 360;
parameter cube_z0 = 740; //max z_coordinate = 1279
parameter cube_z1 = 980;
parameter screen = 640; //z_coordinate of screen

parameter viewer_x = 320;
parameter viewer_y = 240;
parameter viewer_z = 0;

input clk, rst;
input [4:0] buttons;
input switch;
output reg [151:0] points_2D;

integer dist_counter;
integer dx; //from point to viewer in 2D
integer dy; //from point to viewer in 2D
reg [11:0] dz; //from screen to viewer
reg [11:0] distances_3D [5:0]; //from cube limits to viewer

reg [29:0] viewer; //{viewer_z,viewer_y,viewer_x} (11+9+10 bits)
reg [18:0] points [7:0];
reg [29:0] viewer_temp;
reg state; //0 for calculating, 1 for ready
reg [2:0] j;
wire [11:0] distance_x = j[0] ? distances_3D[1]:distances_3D[0];
wire [11:0] distance_y = ~j[1]? distances_3D[3]:distances_3D[2];

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

Appendix A. Source Code 53

wire [11:0] distance_z = j[2] ? distances_3D[5]:distances_3D[4];
wire [9:0] deltax = ({12{distance_x[11]}}"distance_x) -
{12{distance_x[11]}}; //abs(distance_x)

wire [8:0] deltay = ({12{distance_y[11]}}"distance_y) -
{12{distance_y[11]}}; //abs(distance_y)

/********Movement of Viewer Position********/

always@(posedge clk)
begin

if(rst)
begin
viewer[9:0] = viewer_x;
viewer[18:10] = viewer_y;
viewer[29:19] = viewer_z;
dist_counter = 0;
end

else
begin

dist_counter = dist_counter + 1;

if(dist_counter == DISTANCE)
begin
dist_counter = 0;

case(buttons)
5'b00001: viewer[18:10] = viewer[18:10] - 1;
5'b00010: viewer[9:0] = viewer[9:0] - 1;
5'b00100: viewer[18:10] = viewer[18:10] + 1;
5'b01000: viewer[9:0] = viewer[9:0] + 1;
5'b10000: viewer[29:19] = switch?(viewer[29:19] + 1):(viewer[29:19]

- 1);
default: viewer = viewer;

endcase

if(viewer[29:19] == 11'hFFF)
viewer[29:19] = 0;

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

Appendix A. Source Code 54

else if(viewer[29:19] == 11'd640)
viewer[29:19] = 11'd639;

if(viewer[18:10] == 9'hFFF)
viewer[18:10] = 0;

else if(viewer[18:10] == 9'd480)
viewer[18:10] = 9'd479;

if(viewer[9:0] == 10'hFFF)
viewer[9:0] = 0;

else if(viewer[9:0] == 10'd640)
viewer[9:0] = 10'd639;

end

end
end

/*************Calculation of 2D Presentation***************/
/******(according to latest captured viewer position)******/
always@(posedge clk)
begin

if(rst)
begin
state = 0;

j = 0;
viewer_temp = viewer;
distances_3D[0] = cube_x0 - viewer_temp[9:0];
distances_3D[1] = cube_x1 - viewer_temp[9:0];
distances_3D[2] = cube_y0 - viewer_temp[18:10];
distances_3D[3] = cube_y1 - viewer_temp[18:10];
distances_3D[4] = cube_z0 - viewer_temp[29:19];
distances_3D[5] = cube_z1 - viewer_temp[29:19];
dz = screen - viewer_temp[29:19];
end

else
begin

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

Appendix A. Source Code 55

if(state) //ready to pass 2D points
begin
//points[7:0] = points_temp[7:0];
points_2D = {points[7],points[6],points[5],points[4],

points[3],points[2],points[1],points[0]};
state = 0;

j = 0;
viewer_temp = viewer;
distances_3D[0] = cube_x0 - viewer_temp[9:0];
distances_3D[1] = cube_x1 - viewer_temp[9:0];
distances_3D[2] = cube_y0 - viewer_temp[18:10];
distances_3D[3] = cube_y1 - viewer_temp[18:10];
distances_3D[4] = cube_z0 - viewer_temp[29:19];
distances_3D[5] = cube_z1 - viewer_temp[29:19];
dz = screen - viewer_temp[29:19];
end

else
begin
dx = deltax * dz / distance_z;
dy = deltay * dz / distance_z;
points[j][9:0] = distance_x[11] ?

(viewer_temp[9:0]-dx):(viewer_temp[9:0]+dx);
points[j][18:10] = distance_y[11] ?

(viewer_temp[18:10]-dy):(viewer_temp[18:10]+dy);

if(j == 3'hF)
begin
state = 1;
end

j = j+1;

end
end

end

endmodule

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Appendix A. Source Code 56

T op_m odule.v
'timescale 1ns / 1ps
/*Top_module connects the whole design together*/

module Top_module(rst, clk, buttons, switch, VGA_RED, VGA_GREEN, VGA_BLUE,

input rst, clk;
input [4:0] buttons;
input switch;
output [2:0] VGA_RED, VGA_GREEN;
output [1:0] VGA_BLUE;
output VGA_HSYNC, VGA_VSYNC;
wire [2:0] RGB;
wire [9:0] H_address;
wire [8:0] V_address;
wire endofframe;
wire [151:0] points_2D;
wire [4:0] clean_buttons;
wire CLKDiv;

// DCM_SP: Digital Clock Manager

DCM_SP #(
.CLKDV_DIVIDE(4.0), // CLKDV divide value

VGA_HSYNC, VGA_VSYNC);

.CLKFX_DIVIDE(1), // Divide value on CLKFX outputs -
D - (1-32)

.CLKFX_MULTIPLY(4), // Multiply value on CLKFX outputs
- M - (2-32)

.CLKIN_DIVIDE_BY_2("FALSE"),

.CLKIN_PERIOD(10.0),
// CLKIN divide by two (TRUE/FALSE)
// Input clock period specified in

nS
.CLKOUT_PHASE_SHIFT("NONE"), // Output phase shift (NONE,

FIXED, VARIABLE)

.CLK_FEEDBACK("1X"), // Feedback source (NONE, 1X, 2X)

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Appendix A. Source Code 57

.DESKEW_ADJUST("SYSTEM_SYNCHRONOUS"), // SYSTEM_SYNCHRNOUS or
SOURCE_SYNCHRONOUS

.DFS_FREQUENCY_MODE("LOW"),
value

.DLL_FREQUENCY_MODE("LOW"),
value

.DSS_MODE("NONE"),
value

.DUTY_CYCLE_CORRECTION("TRUE"),
value

.FACTORY_JF(16'hc080),
value

// Unsupported - Do not change

// Unsupported - Do not change

// Unsupported - Do not change

// Unsupported - Do not change

// Unsupported - Do not change

.PHASE_SHIFT(0), // Amount of fixed phase shift
(-255 to 255)

.STARTUP_WAIT("FALSE") // Delay config DONE until DCM_SP
LOCKED (TRUE/FALSE)

)
DCM_SP_inst (

.CLK0(CLK0), //

.CLK180(CLK180), //

.CLK270(CLK270), //

.CLK2X(CLK2X), //

.CLK2X180(CLK2X180), //

1-bit output:
1-bit output:
1-bit output:
1-bit output:
1-bit output:

0 degree clock output
180 degree clock output
270 degree clock output
2X clock frequency clock output
2X clock frequency, 180 degree

clock output
.CLK90(CLK90),
.CLKDV(CLKDiv),
.CLKFX(CLKFX),

output (DFS)
.CLKFX180(CLKFX180)
.LOCKED(LOCKED),
.PSDONE(PSDONE),
.STATUS(STATUS),
.CLKFB(CLKFB),
.CLKIN(clk),
.DSSEN(DSSEN),
.PSCLK(PSCLK),
.PSEN(PSEN),

// 1-bit output: 90 degree clock output
// 1-bit output: Divided clock output

// 1-bit output: Digital Frequency Synthesizer

, // 1-bit output: 180 degree CLKFX output
// 1-bit output: DCM_SP Lock Output
// 1-bit output: Phase shift done output
// 8-bit output: DCM_SP status output
// 1-bit input: Clock feedback input

// 1-bit input: Clock input
// 1-bit input: Unsupported, specify to GND.
// 1-bit input: Phase shift clock input
// 1-bit input: Phase shift enable

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Appendix A. Source Code 58

.PSINCDEC(PSINCDEC), // 1-bit input: Phase shift increment/decrement
input

.RST(rst) // 1-bit input: Active high reset input

);

// End of DCM_SP_inst instantiation

vga_controller inst0 (
.rst(rst),
.clk(CLKDiv),
.RGB(RGB),
.VGA_RED(VGA_RED),
.VGA_GREEN(VGA_GREEN),
.VGA_BLUE(VGA_BLUE),
.VGA_HSYNC(VGA_HSYNC),
.VGA_VSYNC(VGA_VSYNC),
.H_address(H_address),
.V_address(V_address),
.endofframe(endofframe)

);

cube inst1 (
.clk(CLKDiv),
.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe(endofframe),
.points_2D(points_2D),
.RGB(RGB)

);

Convert3Dto2D inst2 (
.clk(CLKDiv),
.rst(rst),
.buttons(clean_buttons),
.switch(switch),
.points_2D(points_2D)

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Appendix A. Source Code 59

);

Debouncer deb0 (
.rst(rst),
.clk(CLKDiv),
.noisy(buttons[0]),
.clean(clean_buttons[0])

);

Debouncer deb1 (
.rst(rst),
.clk(CLKDiv),
.noisy(buttons[1]),
.clean(clean_buttons[1])

);

Debouncer deb2 (
.rst(rst),
.clk(CLKDiv),
.noisy(buttons[2]),
.clean(clean_buttons[2])

);

Debouncer deb3 (
.rst(rst),
.clk(CLKDiv),
.noisy(buttons[3]),
.clean(clean_buttons[3])

);

Debouncer deb4 (
.rst(rst),
.clk(CLKDiv),
.noisy(buttons[4]),
.clean(clean_buttons[4])

);

endmodule

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Appendix A. Source Code 60

T op_m odule.ucf
/^Connects Inputs/Outputs with the FPGA pins*/

// Clock signal
NET "clk" LOC = "V10" | IOSTANDARD = "LVCMOS33";
Net "clk" TNM_NET = sys_clk_pin;
TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 100000 kHz;

// Switches
NET "switch" LOC = "T10" | IOSTANDARD = "LVCMOS33";
NET "rst" LOC = "T9" | IOSTANDARD = "LVCMOS33";

// Buttons
NET "buttons<4>" LOC = "B8
NET "buttons<0>" LOC = "A8
NET "buttons<1>" LOC = "C4
NET "buttons<2>" LOC = "C9
NET "buttons<3>" LOC = "D9

IOSTANDARD = "LVCMOS33";
IOSTANDARD = "LVCMOS33";
IOSTANDARD = "LVCMOS33";
IOSTANDARD = "LVCMOS33";
IOSTANDARD = "LVCMOS33";

// VGA Connector
NET "VGA_RED<0>" LOC = "U7" | IOSTANDARD = "LVCMOS33";
NET "VGA_RED<1>" LOC = "V7" | IOSTANDARD = "LVCMOS33";
NET "VGA_RED<2>" LOC = "N7" | IOSTANDARD = "LVCMOS33";
NET "VGA_GREEN<0>" LOC = 00 | IOSTANDARD = "LVCMOS33";
NET "VGA_GREEN<1>" LOC = "T6" | IOSTANDARD = "LVCMOS33";
NET "VGA_GREEN<2>" LOC = "V6" | IOSTANDARD = "LVCMOS33";
NET "VGA_BLUE<0>" LOC = "R7" | IOSTANDARD = "LVCMOS33";
NET "VGA_BLUE<1>" LOC = "T7 " | IOSTANDARD = "LVCMOS33";

NET "VGA_HSYNC" LOC = "N6" | IOSTANDARD = "LVCMOS33";
NET "VGA_VSYNC" LOC = "P7" | IOSTANDARD = "LVCMOS33";

Bibliography 61

BIBLIOGRAPHY

(1) F ie ld-program m able gate array - W ikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Field-programmable_gate_array

(2) W hat is a F P G A ?

http://www.xilinx.com/fpga/

(3) N exys3 R eference M anual

http://www.digilentinc.com/data/products/nexys3/nexys3_rm.pdf

(4) Sp artan -6 Fam ily Overview

http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf

(5) Sp artan -6 F P G A B lock R A M R esou rces

http://www.xilinx.com/support/documentation/user_guides/ug383.pdf

(6) X ilin x IS E - W ikipedia, the free encyclopedia

http://en .w ikipedia.org/w iki/Xilinx_ISE

(7) X S T Synthesis Overview

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_

c_using_xst_for_synthesis.htm

(8) X S T U ser G uide

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.

pdf

(9) P lace and R ou te - W ikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Place_and_route

(10) V ideo G rap h ics A rray - W ikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Video_Graphics_Array

(11) V G A Sign al 640 x 480 @ 60 Hz In du stry stan d ard tim ing

http://tinyvga.com/vga-timing/640x480@60Hz

(12) V G A C ontroller (V H D L)

https://eewiki.net/pages/viewpage.action7pageIdM5925278

http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://www.xilinx.com/fpga/
http://www.digilentinc.com/data/products/nexys3/nexys3_rm.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/user_guides/ug383.pdf
http://en.wikipedia.org/wiki/Xilinx_ISE
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_using_xst_for_synthesis.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_using_xst_for_synthesis.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.pdf
http://en.wikipedia.org/wiki/Place_and_route
http://en.wikipedia.org/wiki/Video_Graphics_Array
http://tinyvga.com/vga-timing/640x480@60Hz
https://eewiki.net/pages/viewpage.action?pageId=15925278

Bibliography 62

(13) E C E 5760 F in al P ro jec t

http ://people .ece .cornell.edu/land/courses/ece5760/FinalPro jects/f2009/

ty244_jgs33/ty244_jgs33/index.html

(14) B resen h am ’s line algorithm - W ikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Bresenham’ s_line_algorithm

(15) B R E S H E N H A M ’S A L G O R IT H M

http://graphics.idav.ucdavis.edu/education/GraphicsNotes/Bresenhams-Algorithm.

pdf

(16) 3D p ro jection - W ikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/3D_projection

http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2009/ty244_jgs33/ty244_jgs33/index.html
http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2009/ty244_jgs33/ty244_jgs33/index.html
http://en.wikipedia.org/wiki/Bresenham's_line_algorithm
http://graphics.idav.ucdavis.edu/education/GraphicsNotes/Bresenhams-Algorithm.pdf
http://graphics.idav.ucdavis.edu/education/GraphicsNotes/Bresenhams-Algorithm.pdf
http://en.wikipedia.org/wiki/3D_projection

