UNIVERSITY OF THESSALY

Head-tracked stereoscopic display of 3D
image on a reconfigurable platform
(FPGA)

Supervisors:
Dr. Nikolaos BELLAS
Dr. Gerasimos POTAMIANOS

Author:
Georgios ZINDROS

A thesis submitted in fulfilment of the requirements
for the degree of Diploma of Science in Computer and Communication

Engineering
in the

Department of Electrical and Computer Engineering

University of Thessaly

February 5, 2015

http://www.uth.gr
http://www.inf.uth.gr
http://www.uth.gr

UNIVERSITY OF THESSALY

Department of Electrical and Computer Engineering

Head-tracked stereoscopic display of 3D image on a reconfigurable
platform (FPGA)

Ytepeooxonixy| neofoly] Tplodidotatng euxdvag xawdodnyoLuevy

and xWwhHoele xe@ailol o enavadiataccéuevy thatgdpua (FPGA)

by

Georgios Zindros

Graduate Thesis
for
the degree of

Diploma of Science in Compuler and Communication Engineering

http://www.uth.gr
http://www.inf.uth.gr

Declaration of Authorship

I, Georgios Zindros, declare that this thesis titled, 'Head-tracked stereoscopic display of
3D image on a reconfigurable platform (FPGA)" and the work presented in it are my
own. The research was carried out wholly or mainly while in candidature for the gradu-
ate degree of Diploma of Science in Computer and Communication Engineering, at the
University of Thessaly, Department of Electrical and Computer Engineering, Greece. No
part of this thesis has been previously submitted for a degree or any other qualification
at this University or any other institution. Wherever I have consulted or quoted from
the work of others, it is always attributed and the source is given. The main sources of

help are referenced in the Bibliography section of this thesis.

Copyright © 2015 by Zindros Georgios.
“The copyright of this thesis rests with the author. No quotations from it should be
published without the author’s prior written consent and information derived from it

should be acknowledged”.

iii

http://www.uth.gr
http://www.inf.uth.gr

Dedicated to my dear friend Yannis Afentos. ..

iv

Abstract

People perceive the real world through their five senses, sound, sight, touch, smell and
taste. As technology advances by the minute, they expect no less from the virtual
world. Focusing on sight, technology can now project 3D-environments into a 2D screen
according to the position and rotation of a virtual camera. A viewer is able to explore
this environment by controlling that camera through a computer mouse or a controller.
However, this method does not feel natural because it does not correspond to the in-
stinctive movement of the viewer’s body, or more precisely head, trying to see beyond
the margins of the screen. As a result, a system that could track the viewer’s movement
and automatically change the viewing point’s location and rotation accordingly, would

bring the virtual world a step closer to the real one.

The purpose of this thesis is the development of such a system in a simplified form.
The idea basically is to receive camera feedback of the viewer’s head, measure via head
detection algorithms its position and rotation, and use those as a viewing angle to
calculate and display the right projection of a virtual 3D image in real time. The whole
of the project was implemented on a reconfigurable platform using Verilog Hardware
Description Language. This decision lies in the fact that similar projects have been
developed in software using a graphics library like OpenGL Performer, but a hardware
solution is more rare, and though more challenging, it could improve the performance

of the system.

vi

[epiAnyn

Ov dvlpwror avTihouBavovTon ToV TRayRaTi0 XOOUO PECK TWV TEVTE woUNOEWY, oaxoT,
bpoon), agy), bogenon xa yevor. Kaddg n teyvohoyia efehlooeton pe toytortoug puduolc,
0eV ovo€veTar TImoTa Aty OTERO amd ToV ELXovixd xoouo. Emxevtp®vovtag tny mpoonddeta
otV 6pao, N TEYVOROYia unopel TAov va TpoBdhsl Tploddo TaTo TERIBAAAOYTA OF Uia OLo-
ordo oty 00OV olupeva Pe TN VEon %o TNy TEQLOTEOPY| Mg Ewovinhc xduepas. 'Evag
Yeathc umopel vo eCepeuvioet auTd 10 TERBAAAOY EAEYYOVTUS TNV XAUERH YEOE EVAC TOV-
o0 UToAoYtoTH 1) evOg yewpto trplou. 201600, auth TN uévodog Bev Ty aoldveTon o
Ve TrG PuUOLKY|, ETEDT) BEV OVTUTOXPIVETOL 0TI EVOTIXTMOELS XVOELS TOU OOUATOS TOU, V)
OUYXEXPUIEVOL TOU XEQUALOU TOu, Tou TpooTaldel vou 6et Tépa amd To Optar TG 0VovTG. Muve-
T6G, Evol 0Vo TN Tou Yo UTopoUoE Vo 0XOAOUUTOEL TIC XWWAOELS TOU VEUTY| XAt AUTOUATHG
vor ahhdler Ty ywvia Véuong e xduepag avtiototya, Ya €pepve Tov emovind xO0Uo Eva

Brua o ®0OVTE OTOV TR HATIXO.

O oxomdc authc Tne SimheuaTing epyactog slvar 1 avdmTudY) evde TETOLOU CUOTAUATOS O
amhonotnuévn wopey|. H Boow wéa neprhoyuBdver tn A Bivieo and xdpepo Tou otoyele
TO XEPAL Tou Veaty|, TN PETENON TNE VEONE XL TNE TEPLOTROPY|S TOU XEQUALOU UECH UAYO-
PlIUWY VoY VORLOTE TROCHTMY, XL TN XENHOT AUTOV TWV UETEHOEWY GTOV UTOAOYIONO NG
yoviog Véaong %ot TG xUTIAANANG TEOBOAYC EVOC EIXOVIXOU TELOOLEGC TUTOU oV TIXEWEVOU
oe mpaypatd yeovo. To olvoro trg gpyaolug vionominxe tdve o pla emovadtoTao-
oOUEVY) TAUTQOPUA UAXOD YENOHOTOUBYTOS TN YAGOOoo Teptypagic uAtxoy Verilog. Auty
1 omopuor) Bacileton 070 YEYOVOS OTL TUPOUOLES EQPUPUOYES AOYIOMXOU €youy uhomomiet
yenowonowvtag Biatodnnes ypapuney otwe 1 OpenGL Performer, aiid Alboewg oto vAL-
%0 eVl O OTAVIEG, XOL TUPOTL TLO OTOUTNTIXES, UTOPOUY Vo BEATIOO0UY TNV ETB00T TOU

OUC THUTOC.

vii

Acknowledgements

With the fulfillment of this project, I would like to thank my professor Dr. Nikolaos
Bellas for his advice and guidance. He did not lose hope in me even in the midst of
many hardships. The development of this project would not have been possible without

his assistance.

I would also like to thank my supervisor Dr. Gerasimos Potamianos for his great col-

laboration and advice.

Moreover, I would like to thank all my friends and colleagues, and especially my dear
friend Yannis Zographopoulos for his company and support in this journey of knowledge

we went through together.

In conclusion, I would like to thank my family for all their love and support through
my whole life and for the sacrifices they made on my behalf. Thank you for believing in

me.

viil

Contents

Declaration of Authorship

Abstract
Acknowledgements

Contents

List of Figures
List of Tables

Abbreviations

1 Introduction

1.1 Describing the Motives
1.2 Thesis Structure

2 Background

2.1 Field Programmable Gate Array - FPGA

2.1.1 Architecture & Operation
219 NempiB™
2.2 ISE Design Software
2.3 VGA protocol
3 Design & Implementation
3.1 High Level Design
32 VGAController.
3.3 Line Drawing
3.3.1 Bresenham Line Algorithm
3.3.2 Line Module
3.4 Cube Drawing
38 Convert: 3D 2D < <000 2w
26 DeBOBRESE . & v v v nos e 5 b

3.7 TopModule

iii

vi

viii

xii

xiii

15
15
17
18

21
24
25
27
27

Contents X
4 Conclusion 29
4] Project BEDHIE « o v 5 om 5 0 v aom o % % mom v a5 o © 5 5 5 80w & 6 B0 B & G 29
4.2 Inthe Future o e e e e e e 30
A Source Code 31
Bibliography 61

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2T

3.1
3.2
3.3
3.4

4.1

SpIfed SHes ¢ v c it v s Eif i assim syl miusanans 5
WeSghld oo v v v e o s o o s n a0 5 % Wea 8% % M 5 5 0 KM S 86 0 & & 8§ 6
DEAPEARLE BHEE « - v 5 om v m v o v on o s v w mk E w o o R R R B B & R 7
) 9
Frame Display e 13
VEA arnchiionigalion -« : s i s i s i i P e g s IR RS a6 13
NEN CORTEREII o < o uoav o5 % mome & o o wrac o m S G W D S R B N AT R E R @ 14
Blogk IDIDSai: ¢ 2 28 .80 5 0 8 80b 65 4 0ok 5 8 B b b 6 5 8 8 Bub &l 2 b 16
BrgghRamBIne o » o 5 4 s 5 0 R e 84 A0 R F 4 B LR BB SRR PR E B E 5 20
PréjBetith TYPes: « < v m v w2 nome o 5 % avac o & % %0 8 % % 5 %0 % @ W G & F G 25
P jeetiof LRGN & v o om moer 5w 6 @oe & @ 6 6 8 %08 ® & & 5 Bos) £ e s @ 26
Fitial Pleviee WHlZalion . « o om v oo w e 0 0w 00 2 8 0 5 00 2 4 % ok £ e % 30

xi

List of Tables

21 DBBAMeonigutabions o s s s isimabsimbsvsmanaaeseis 8
3.1 VGA Standard Timings o i v v vttt e 18
3.2 48 Multipliers Report e e e e 22
33 ILBAMByuthesis Bepoirt « s v~ s s ciianprap s minine £6 5 24

xii

Abbreviations

ASIC Application Specific Integrated Circuit
CLB Configurable Logic Block

DAC Digital to Analog Converter
DCM Digital Clock Manager

DSP Digital Signal Processing

FPGA Field Programmable Gate Array
HDL Hardware Description Language
ISE Integrated Synthesis Environment
LuT Look Up Table

MUX Multiplexer

RAM Random Access Memory

RGB Red Green Blue

RTL Register Transfer Level

UCF User Constraints File

VGA Video Graphics Array

XST Xilinx Synthesis Technology

xiil

Chapter 1

Introduction

1.1 Describing the Motives

People perceive the real world through their five senses, sound, sight, touch, smell and
taste. Sight especially is the main method of perception. It allows one to see the fasci-
nating design of this world, its dimensions and colors. So people expect no less from the
virtual world, as technology advances by the minute. Nowadays, displaying a beautiful
scenery on a monitor screen can be almost identical to the real experience due to high
resolution standards and enriched color palettes. Even the depth factor can be presented
through illusion techniques artists use. However, a painting or an image cannot compare
to an entire environment which can be viewed from a variety of angles and create an

equal number of sceneries in the viewer’s eye.

A solution to this problem came with the rising of 3D graphics technologies, which
are widely used in modern video games. Most modern video games incorporate a 3D-
environment, part of which is projected to the screen according to the in-game camera’s
position and rotation. Changing the camera’s position/rotation changes the scenery in

display. But here rises a new question. How is this camera controlled?

Games mainly use a computer mouse or a controller’s analog stick to move the camera,
but this method does not correspond to the instinctive movement of the viewer’s body,
or more precisely head, trying to see beyond the margins of the screen. A great ex-
ample to identify this problem is the modern first-person video games where the player

1

Chapter 1. Introduction 2

sees through the character’s eyes. In this case, regular movement like walking or looking
around is easily implemented, but what if a person desires to peak behind a corner? The
viewer streches his neck in order to change his viewing angle but of course that does not
make any difference. A more productive and realistic approach is to somehow track the
viewer’s head and use it to guide the viewing point and consequently the projection of
the environment. As a result, the viewer does not have to concern himself/herself with

fixing what is supposed to come naturally....

The purpose of this project is to develop a hardware design that implements the latest
method. Similar software applications already exist due to the variety of graphics li-
braries available, like OpenCYV and others, but the real challenge is to efficiently transfer

the functionality to a hardware design and gain in performance.

The following design is a simplified version of the desired functionality, since it is tested
on a Field Programmable Gate Array(FPGA) with limited hardware resources. It isl

also described in Verilog Hardware Description Language.

1.2 Thesis Structure

This thesis is divided in three main Chapters, each one of those includes smaller sections

and possibly subsections.

Chapter2 provides background information useful to understanding the development and
experimental approach followed in this project. At first, it describes the architecture
and operation of FPGAs in general and then focuses on the technical characteristics
of Nexys3, the FPGA used for testing. It also offers a few information concerning the
program used for development, ISE by Xilinx. In addition, the functionality of a gereral

VGA driver is analyzed in order to explain how the output is displayed.

Chapter3 begins with a brief introduction to the idea and hierarchy of the design and
then follows with an exhaustive analysis divided into sections for each of its parts. Parts

of the design are considered algorithms implemented, in which case the algorithm is

Chapter 1. Introduction 3

explained first and then the approach of its design, or functions necessary to the whole
operation of the project. The algorithms could be explained on a different chapter but
for quicker reference they are paired with their implementation. Moreover, for each

function there is a small analysis of problems encountered during the development.

Chapter4d summarizes the work done, the problems faced and the results generated.
Finally, it provides some future improvements that are more or less necessary for a

completed design with all its functionality available.

Chapter 2

Background

2.1 Field Programmable Gate Array - FPGA

A Field Programmable Gate Array (FPGA) is an integrated circuit configurable to a
design written in a Hardware Description Language (HDL). It contains programmable
logic components that can be configured to imitate the behaviour of a simple logic
gate, like AND or XOR, as well as a more complex function. Several logic blocks
can even be connected together via a routing system for implementing large designs.
The greatest advantage of FPGAs is that they are reconfigurable any number of times
in constast with Application-Specific Integrated Circuits (ASICs) which are basically
predetermined hardware performing certain fixed functions. That is the reason FPGAs
are more suitable for testing ASIC designs before their production. Other applications
put into practice on FPGAs include cryptography, computer vision, video and image

processing, communications, bioinformatics and applications in a variety of other fields.

2.1.1 Architecture & Operation

Most FPGAs consist of an array of Configurable Logic Blocks (CLBs), a hierarchy of
interconnects that allows the cooperation of those blocks, I/O banks which are able to
support many I/O standards, Digital Signal Processing (DSP) components for higher
performance on certain arithmetic and signal processing functions, memory elements
like flip-flops and blocks of RAM and Clock Management Tiles (CMTs). A few mod-
ern FPGAs even include embedded microprocessors and related peripherals to form

4

w

Chapter 2. Background

a system on programmable chip. An example of such architecture is the Xilinx Zynqg-

7000 System on Chip (SoC) which includes a dual-core ARM Cortex-A9 microprocessor.

The CLBs in turn consist of logical cells called Slices, an array of MUXes for selection
purposes and flip-flops. The most interesting part are the slices. A typical slice includes
a number of Look Up Tables (LUTs), at least one Full Adder and a D-type flip-flop.
A simplified example of a slice is shown in Figure 2.1 below. The output of slices can
either be synchronous or asynchronous depending on the rightmost multiplexer shown
in the figure. The slice can operate in either normal or arithmetic mode according to the
middle multiplexer. In normal mode, the two 3-input LUTSs are combined into a 4-input

LUT. In arithmetic mode, the slice output is the result of the Full Adder instance.

carry in clk

out

in out
DFF

N
carry out clk

Ficure 2.1: Simplified example illustration of a logic cell/slice

Zooming in on the core of FPGAs, the basic element is LUT. Look Up Tables are re-
sponsible for providing the functionality to reconfigure an FPGA board. The notion of
their function is unexpectedly simple. As their name suggests they are arrays with a
simple indexing operation that implement a logic function. The array values are initial-
ized during the programming of the FPGA and can be reinitialized each time the board

is reconfigured to have different output.

It is worth mentioning that various configurations of a board are applicable on the
same design to optimize performance or area variables. A process called Floor Planning

enables resources allocation to meet such constraints.

Chapter 2. Background 6

2.1.2 Nexys3™

This project was developed on a Nexys3 board which hosts a Xilinx Spartan-6 LX16
FPGA. In addition to Spartan-6, the Nexys3 board offers a wide collection of peripherals
such as 16Mbytes of Cellular RAM, a USB-UART port, a USB-host port, an 100MHz
CMOS oscillator, an 8-bit VGA port and a few others. For the needs of this project the
VGA port, the oscillator, the USB-UART port and of course the Spartan-6 are used.

Most peripherals are shown in the image that follows.

Power Select Power Pmod Done
Jumper Good LED / Connectors LED

Power
Jack

Power
Switch

i)

MEPI p ;. ~ _ ..; : - \
usspon"?,_g L a4 e L b : g i Jumper

VGA ; F #90-1%2 s = .
Port e st
= e = - 34 ! > 4 T-seg
3 g;;’?”ﬂﬁi% gk | - M Display
r '3' T, i
= /\ DIGILENT
'3 &"f = N\ B EYOMD o

USB HID : USB
Host Port UART

LEDs Slide switches Push buttons

FIGURE 2.2: Nexys3 Board

The Spartan-6 LX16 FPGA is a product of Xilinx Inc. It consists of 2,278 slices, 576
Kbits of block RAM, two CMTs and 32 DSP slices. Slices are a bit more complicated
than the simplified version shown above, since each slice is comprised of four 6-input
LUTs and eight flip-flops. For comparison needs, the Spartan-6 slice is portrayed in

Figure 2.3.

Chapter 2. Background 7

LuT

L]

D
e —]
s ML
FRAAT

DX = [Jee
CLK
o a i
‘. = [T
LuT o ™
& i FIBMUX |
inpess o o6 I_\I =C
os £ CMUX
AW [—J FFILAT
for G D oo ca
) p——CE
T - cu(Sn
% o 1
LuT
8 i
Inputs = Ce 8
os £ BMUX
- :]
BX -
-
LuT FrAMLX
A
Ingiss [t 8 o6 oA
[+3 £ AMUX
A
o a0
CE>
CLK =
SR>

e OIS

Ficurg 2.3: Simplified Spartan-6 Slice

The sum of block RAM available in Spartan-6 LX16 is 576Kbit as mentioned. However,
it is organized in blocks of 18Kbit RAM (BRAMs) that are used individually and must
be connected by the designer if more than one is needed. For large memory structures it
is advisable for one to use the Xilinx CORE Generator program which offers an easy way
to generate wider and deeper structures using multiple block RAM instances.If though
only one block is sufficient, it can be configured in either two 9Kb RAMs or a single
I8Kb RAM.

IFach BRAM can be addressed through two ports, totally symmetrical and independent
of each other. Write and Read operations are syncronous, and independent between
ports. Simultaneous access of the same address can lead to serious collisions though.
There are two different situations that must be examined to determine the results of a
collision.

The first situation implies that different clock frequencies or phases drive each port.
Subsequently, whenever a write operation is performed, the other port must not access

the same address for any operation. The simulation model will produce an error message

Chapter 2. Background 8

if this condition is violated. The output data in this case will be unpredictable.

The second situation implies that both ports operate under the same clock. If one of
them performs a write operation, the other one must only perform a read operation on
the same address. The reliability of the output data depends on the option controlling
the sequence of the operations. A READ_FIRST option should be a safe call, while a
WRITE_FIRST would be unreliable.

Another subject that should be taken under consideration is to choose between all the
possible configurations of the data port’s width. Sacrificing a large in favor of a smaller
amount of elements to be addressed, data width is able to increase up to 32bits. The
address port still remains 14bit or 13bit for ISKb RAM or 9Kb RAM respectively (parity
bits included), but a number of least significant bits act as offset. All the possible data

combinations are listed in the table below,

Combinations “;e':‘t’,? \Ef'd‘fh —— DZ‘:;’C;T:::i ADDR T°‘f,'(;““
9 Kb Block RAM With and Without Parity
256 x 3201 26 2 | NA [310] [125] 5
256 x 3611 256 o | 4 [350] [125] P
51216 512 16 | NA [15:0] [124] 5
512x18 512 6 | 2 [17:0] [12:4] 0
1Kx8 1024 B | NA 701 [123] 8
1K x9 1024 8 1 [8:0] [12:3] 9
2K x4 2048 + | NA [30] [122] 8
1K x2 20% 2 | NA (0] [12:1] 8
8K x 1 8192 1 | NA 0] [12:0] 8
18 Kb Block RAM With and Without Parity
s12x 32 512 2 | NA [31:0] [135] 16
512x 3 512 2 | 4 [35:0] [135] 18
K x16 102¢ | 16 | NA [150] [13:4] 16
1K x18 024 | 16 | 2 [17:0] [13:4] 18
K x8 2045 8 | NA 701 [133] 16
2K x0 2048 5 1 501 [133] 18
4K x4 0% 4 | NA [3:0] [132] 16
8K x 2 8192 2 | NA [1:0] [13:1] 16
16K x 1 6388 | 1 | NA [0:0] [13:0] 16
Notes:

1. x32 and x36 data widths available in simple dual-port (SDP’) mode only.

TaBLE 2.1: Block RAM Data combinations and ADDR Locations

As mentioned before, Spartan-6 LX16 also includes two Clock Management Tiles (CMTs).
Fach one of these consists of two Digital Clock Managers (DCMs) and one Phase-Locked

Loop (PLL). A DCM is able to multiply and divide the frequency of an incoming clock,

Chapter 2. Background 9

or shift its phase. The functions performed result in a new clock signal.

The Digital Signal Processing (DSP) slices, called DSP48A1 in Spartan-6, are dedicated
circuits whose design usually follow a multiply with addition. They support many func-
tions, like a multiplier, a multiplier-accumulator, a multiplier followed by an adder, a
preadder followed by a multiplier, ete. Connecting multiple DSP slices is also supported

to form more complex arithmetic functions and save off of the general FPGA logic.

2.2 ISE Design Software

Xilinx ISE (Integrated Synthesis Environment) is a software tool produced by Xilinx for
synthesis and analysis of HDL designs. It features the ability to synthesize (‘compile’)
a design to primitive structures, simulate a design’s behaviour to different stimuli, gen-
erate and analyze Register-Transfer Level (RTL) diagrams, place & route the primitive
elements onto the target FPGA board, perform timing analysis of the design and finally

program the target FPGA board with a configuration file.

Creating a design, a certain flow of actions must be followed. Each step is equally im-

portant to succeed in an optimal working design. That flow is shown in Figure 2.4.

Specification

High Level Design

Low Level Design

RTL coding

Functional Verification]

Logic Synthesis "Gate level simulations

Place and Route

" Fabrication/Bitstream loading

Post Si Validation [iREwe,

FicUrE 2.4: FPGA Design Flow. Steps a hardware desgner must follow

Chapter 2. Background 10

At first, the overall operation of the design must be specified, and its purpose, input
and output defined.

Secondly, a high level design may follow, in which functionality is divided into large
"black boxes’ of a diagram. Black box is considered an object that can be viewed in
terms of its inputs and outputs without any knowledge of its internal workings.

Then each larger operation is considered in how it will break into smaller functions and
how will those be connected together. A design hierarchy is being constructed, but it
definitely does not correspond to the final product. A lot of backtracking will change

its form many times.

The next step is to start translating the ideas to Register-Transfer Level (RTL) code
using a Hardware Description Language (HDL). This is a hand made process, and the
designer must be extremely fastidious and careful. Avoiding logical errors can save a
great deal of time in design verification that follows. The level of abstraction in this
stage may seem low to the user, but is still high enough in compare to an actual imple-
mented design. This project was written in Verilog and so the output files of this step

have the file extension ”*.v”.

After the design code is produced, its behaviour to various stimuli must be evaluated.
In order to perform this, several testing files are created, called testbenches, which drive
input into a simulated design. The functional simulation process, as it is called, may
provide signals with unexpected values at certain timestamps. These faults will lead the
designer to logic errors in his/her code, backtracking him/her to the previous step where
a fix is necessary. It is also recommended for any designer to first test his functions in-
dividually and later as a whole. It is easier to identify his/her mistakes that way. Note
that this simulation tests ONLY the logic of the design, not its actual operation when

it is expressed in primitive structures or even circuitry.

The next step includes the synthesis of the design which is solely performed by the
design tool, in this case Xilinx Synthesis Technology (XST) which is part of the ISE
software. In synthesis, behavioural description is translated into gates and other primi-

tive structures available in libraries. A netlist file, called NGC for XST tool, is created

Chapter 2. Background 11

as a result, containing logical design data and constraints.This phase also estimates the
size of the implemented design, generating an error message if it is unlikely to fit on the
target board due to inadequate resources. In such a case, the tool offers an option to

focus on area optimization during the next synthesis attempt.

Once more a simulation must be performed, but this time on gate level. The main pur-
pose of the post-synthesis simulation is mostly to compare the results with the previous
simulation and determine whether the synthesis tool has translated correctly the RTL
code to an equivalent netlist. If not, then there is probably a logic error in the RTL code
or the designer simply uses a bad coding practice. In either way, it is recommended to

backtrack to the coding stage.

Place & Route is the next step of the flow, which is also automatically performed by the
design tool. As the name suggests it consists of two functions, placement and routing.
Placement maps the netlist generated from the synthesis step to the available resources
of the target board. Routing then interconnects all the placed components on the FPGA
grid. Of course, both processes struggle to optimize the geometry of the design for the
best achievable performance. The ISE software allows the designer to see the produced
layout and even make changes on it if desired. It should be mentioned that the User
Constraints File (UCF) is also taken under consideration during this process. This is
a user defined file that specifies which I/O pins will be used on the FPGA and what

timing requirements are supposed to be met in signal propagations.

Last but not least, a timing analysis is performed to ensure that all timing constraints
are met. Usually that involves finding the critical path, which is the path with the
maximum delay between an input and an output. In a synchronous system, where a

clock signal is present, there can only be two timing errors.
e A Hold Time Violation: when an input signal changes too soon after the clock’s
active transition

e A Setup Time Violation: when a signal arrives too late at the flip-flop, and

misses the time when it should advance

Chapter 2. Background 12

In the second scenario, the tool provides the designer with the worst-case execution time
(WCET) which is actually the shortest clock period he/she could have in his design. It
is up to him/her to either lower the design’s frequency as long as this does not mess
with its functionality or backtrack to coding phase and alter the design especially at the

point of worst delay.

After all these steps are performed, the design is finally ready to be tested on the FPGA.
A configuration file is generated according to the layout provided from the Place & Route
step. This file has the extension ”*.bit” and is actual a bitstream that is loaded to the
FPGA and configures it to the specific design. When finished loading, the board starts
running automatically. The results are shown to whichever output target is indicated.

For this project, that would be a monitor screen.

2.3 VGA protocol

VGA stands for ”Video Graphics Array”. It is the standard monitor or display interface
used in most PCs. The VGA standard was originally developed by IBM in 1987 and
allowed for a display resolution of 640x480 pixels. Since then, many revisions of the
standard have been introduced. The most common is Super VGA (SVGA), which allows
for resolutions greater than 640x480, such as 800x600 or 1024x768. The video displayed
is a stream of still frames that the eye perceives as a moving image due to a high enough
frame rate. Fach frame is an array of pixels set horizontically and vertically that are

drawn in order of lines from top to bottom and in each line from left to right.

The interface provides the monitor with horizontal and vertical sync signals, color magni-
tudes, and ground references. The h_sync and v_sync are digital signals that synchronize
the signal timings with the monitor. Both follow the same wavelength pattern but with
differt timings. These wavelengths can be divided into two main regions. The first is
the active region where color is transmitted and the actual display takes place. The
second is the blanking region, where color should not be transmitted. In about the
middle of this blanking interval, a pulse of the synch signal takes place that defines

three inner regions. The region before the pulse is called front porch, followed by the

Chapter 2. Background

|
pixel (0,0} pixel (639,0)

line n

line n+1

V

pixel (479,0) pixel (479,639)

FIGURE 2.5: Lines are drawn from top to bottom and line pixels from left to right

pulse region and then the back porch. While the pattern is the same for both signals,
the h_sync wavelength applies to a single line, but the v_sync wavelength applies to a
whole frame. So during the active region of the v_sync signal all lines must be drawn,
meaning the h_synch signal has to repeat its pattern multiple times. Figure 2.6 clarifies
the synchronization patterns and the signals’ operation.

Horizontal Timing
(h_sync signal)

Display Frant| Syne Back
[|'uc}r:hT Pulza T Parch !
? = 5 ,'g Display Time
= | &
-E &' (=1
[=
.
S E
s 3
]
= 2
tog
28
~Tsd
v
Fa Blanking Time
]
8
28
S SE

FiGURE 2.6: H_synch and V_synch signals’ operation

Chapter 2. Background 14

The color magnitudes are 0V-0.7V analog signals sent over to the RGB wires (Red,
Green, Blue). To produce those magnitudes a digital representation of arbitrary bit size
for each of red, green and blue passes through a Digital to Analog Converter (DAC). The
VGA color system supports an 18-bit RGB system. This provides 64 different intensity
levels for each basic color, resulting in 262,144 possible colors, any 256 of which can form

a palette.

A standard VGA connection has 15 pins arranged in three rows and is shaped like
a trapezoid. Six pins are used for colors and their respective grounds, two for the
synchronization signals and the rest are either used for grounds, optional DC voltage or

not used at all.

VGA port, view from Wire Side

5
o w3 ,0
TR <SR
& O m Z O
4 3\

0 20 30 40 @
‘o-o-‘o e e
110120130140150 O

_ _J/
0 QQ QO
ZZ>_>_2

o
T

Ficurg 2.7: The VGA connector pins

Chapter 3

Design & Implementation

This chapter focuses on the created design of a Head-tracked Image Projection system.
Initially, it provides general information on the idea and its development into a high
level diagram. Afterwards, elaborates on every function and algorithm used, revealing
their operation and the coding approach in Verilog. And finally, presents the testing

results on simulation or FPGA configuration.

3.1 High Level Design

The basic idea of a Head-Tracked Image Projection system is consisted of two main
parts. The very first is to capture a viewer’s point of view towards a screen, meaning
the position and rotation of his/her head. The second part utilizes that information to
project a 3D object/environment existing virtually behind the screen onto the screen
according to the viewer’s point of view. As a result the fake environment would seem
more real to the viewer since it is moving naturally to his/her movement. Of course, the
same projected image does not work for multiple users, since they all a different viewing
angle.

Analyzing the first part, it seems obvious enough that a camera is needed to provide
feedback to the system and that a buffer is need to store all or some of this data for
future processing. This processing should probably include head-detection algorithms to

pinpoint the center of the user’s head and its rotation. The output should be presented

15

Chapter 3. Design & Implementation 16

to the second part as either absolute values or distance vectors.

The second part, receives those values as input and then normalizes them to its own vir-
tual world space. Then a 3Dto2D conversion algorithm has the responsibility to convert
the 3-dimensional points of the virtual objects into 2-dimensional pixel addresses. As in
3D modeling only a collection of certain data points that form geometrical entities are
used, so the 3D rendering/projection process can be practical. The generated 2D points
are connected properly and used as margins to fill in the remaining pixel values. The
generated image is stored in a video RAM and then displayed with the help of a vga

controller.

DISCLAIMER: The first part of this project was not implemented due to technical
difficulties and its functionality was replaced by FPGA button input representing the

viewer’s movement.

The virtual object chosen for this design was a parameterizable cube and its actual lines
were colored instead of filling the space between them. Moreover an optimized way of
pixel value storage was used. All of the components are individually explained in detail.

The figure below shows the block diagram that guided this project.

Top Module \
Debouncer
Bunons 5 x / —

Line

LRAM

VGA 1T
\ Controller Monitor

FicURE 3.1: The high-level design’s block diagram

3Dto 2D
Converter |:>

2 X

CZJ oY

Chapter 3. Design & Implementation 17

3.2 VGA Controller

The first part of the project to be implemented was the VGA controller. The decision
relies on the fact that this module is responsible for the general output, therefore it is
necessary for testing the already configured device. It should be noted that functional
verification through simulation runs is not in the least practical testing method in de-
signs that target vga output. Multiple frames must be examined which could mean

millions of clock cycles.

The industry standard resolution of 640x480 pixels at 60Hz frame rate was used. This
requires a 25MHz pixel clock. The Nexys3 board offers an 100MHz CMOS oscillator, so
a DCM component reduced the input clock four times.

In this design the DCM was originally part of the VGA controller, now it is part of the
top logic module to share the divided clock to all components.

The VGA standard timings are available and shown in Table 3.1.

An easy way to calculate the pixel clock’s frequency needed is to find the number of

clock cycles a frame needs and multiply it times the frame rate. So in this case:

PixzelClockFreq = FrameClockCycles * FrameRate

= LinesPerFrame * LineClockCycles * FrameRate

(3.1)
— 525 % 800 * 60

—25,2MHz

To drive h_synch and v_synch signals, two separate behavioural blocks were constructed,
hence one block described a line’s implementation and the other a frame’s. According
to the timings table the h_synch pulse should occur at the 657th clock eycle since it is
preceded by the visible area and the front porch and its duration should be 96 clock
cycles. The v_synch pulse should occur at the 491st line for the same reason and its

should last the duration of 2 lines.

The Nexys 3 FPGA Board has a non-regular 8-bit RGB output. The 3-3-2 bit RGB uses
3 bits for each of the red and green color components, and 2 bits for the blue component.

This results in a 8%8*4 = 256 color palette. Signal groups of the same color are driven

Chapter 3. Design & Implementation 18

General timing

Screen refresh rate[60 Hz |
Vertical refresh [[31.46875 kHz]
|Pixel freq. [25.175 MHz |

Horizontal timing (line)

Polanty of horizontal sync pulse is negative.

Scanline part|[Pixels|[Time [ps]

Visible area |[640 25.422045680238
Front porch |[16 0.63555114200596
Sync pulse |[96 3.8133068520357
Back porch |48 1.9066534260179
Whole line (800 31.777557100298

Vertical timing (frame)

Polanty of vertical sync pulse is negative.

[Frame part |[Lines|Time [ms] |
\Visible area ||480 15.253227408143|
Front porch |10 | 0.31777557100298|
Sync pulse ||2 0.063555114200596
Back porch (33 1.0486593843098
Whole frame|[525 [16.683217477656)

TABLE 3.1: VGA timings of a 640x480 resolution at 60Hz

from the corresponding FPGA pins to the VGA DAC(Digital to Analog Converter) and

then to the VGA connector pins.

The source code can be found in vga_controller.v.

3.3 Line Drawing

3.3.1 Bresenham Line Algorithm

Bresenham line algorithm is the basic line drawing algorithm used in computer graphics.
This algorithm was developed to draw lines on digital plotters, but has found wide-spread

usage in computer graphics. The algorithm is fast — it can be implemented with integer

Chapter 3. Design & Implementation 19

calculations only — and very simple to describe.

Given two known endpoints (x0,y0), (x1,y1) the algorithm forms a close approximation
of a straight line between them. Starting from either endpoint it generates sequentially
one point after another until it reaches the second endpoint.

The generation of points is based on the fact that either the x or y axis, columns or rows
of pixels respectively, will only hold one pixel of the line per coordinate value. Which
one of those axes it will be, is determined by the line slope. The line slope is derived

from the fraction of distances of the endpoints’ coordinates, namely Slope = Dy/Dx =

(y1-y0)/(x1-x0).

e If Dy/Dx <1 , then x coordinate advances faster than y, so multiple pixels can

have the same y value, but not the same x

e If Dy/Dx >1, then y coordinate advances faster than x, so multiple pixels can

have the same x value, but not the same y

In each case, Bresenham has to answer a single question in every iteration.

e For a slope <1, the question is "If (x0,y0) is part of the line, will (x0-+1,y0) or
(x0+1,y0+1) be also part of the line?”

e For a slope >1, the question is "If (x0,y0) is part of the line, will (x0,y0+1) or
(x0+1,y0+1) be also part of the line?”

To answer this question, only the first case will be examined, since an equal solution can
be applied to the other.

Of course, the algorithm decides the closest answer to the actual line. For the actual
line, if x rises to x+1, then y rises to y+Dy/Dx. If Dy/Dx <0,5 then (x+1,y) is closer
to the actual line, so this one should be chosen for the drawn line.

For the next iteration though, the drawn line is already distal from the actual line by
the interval Dy/Dx. Therefore, for the actual line if x+1 rises to x-+2, then y+Dy/Dx
rises to y+2*Dy/Dx. For the drawn line should (x+42,y) or (x+2,y+1) be chosen? If
2*Dy/Dx <0,5 then y should remain the same and (x+2,y) should be chosen. Otherwise,
if 2*Dy/Dx >0,5, then (x+2,y+1) is closer to the actual line and should be chosen. This

Chapter 3. Design & Implementation 20

choice will change the interval between lines to 2*¥Dy/Dx-1. which is a negative number

since Dy/Dx <0,5.

This example can go on for many iterations, but the point is that after each iteration
the drawn line has a different distance from the actual line. That distance is stored in
an ‘error’ variable and its value is checked in every iteration for a decision to be made.
Its value ranges from -0,5 to 0,5, since whenever it rises above 0,5 the slow moving co-
ordinate progresses and the error is decreased by 1.

As mentioned before, there is no point in repeating the experiment for a steep line, since

the solution is similar.

FiGure 3.2: An illustration of the result of Bresenham'’s line algorithm

An optimization to this algorithm is to avoid calculating the slope fraction Dy/Dx by
multiplying each mathematical function by Dx. The algorithm is saved from expensive
operations like the Dy/Dx division and all the floating point arithmetic operations when
calculating the error variable. Error now ranges from -Dx/2 to Dx/2.

This optimization has been integrated in this project.

Chapter 3. Design & Implementation 21

3.3.2 Line Module

This module is responsible for generating a line segment given its two endpoints. It
should calculate the addresses of the pixels belonging on this line and return a non-zero
color value when the display control reaches one of those pixels. This module has been

reformed many times during the development of this project.

The first attempt included implementing the Bresenham line algorithm, but without
a Video RAM to store the pixel values. This was considered possible because Bresen-
ham computes the pixels belonging to the line sequencially starting from one endpoint
to another. A VGA controller also demands for only one pixel value at a clock cycle.
Therefore, only the next line pixel was needed until the display control reached that pixel
address. Then the non-zero pixel value would be sent to the output and the calculation
would move on to the next line pixel. So the line algorith would be a state machine with
two states, 'Ready’ and "Calculating’. This design would spare the use of a Video RAM
and would only maintain the current line pixel address.

The flaw of this design was that it considered the flow of the display equal to the flow of
the line pixel addresses generated. However, a following line pixel could have a smaller
address than the current line pixel even if the computation started at the smaller end-
point, hence it could not be displayed in the same frame since the display control has

already passed through its address. Clear examples are line slopes less than 45 degrees.

The second attempt implemented a more obvious algorithm. It simply replaced the
current pixel address, where the display control was, to the mathematical function of
the line. If the outcome was less than a tolerance error then a non-zero color value was
returned. The thickness of the line was tightly connected to the tolerance error chosen.
A single line though required four multipliers to produce its results. A cube, which
consists of 12 lines, needed 48 multipliers. A total waste of FPGA resources considering
the fact that Spartan-6 has only 32 DSP slices. The impact of this problem was not felt
immediately since the design was still small. A part of a synthesis report that indicates

this problem is shown in Table 3.2.

The third and final attempt reused Bresenham line algorithm with the support of a block

RAM, called LRAM (Line RAM). LRAM was not used in the typical way of a Video

Chapter 3. Design & Implementation 22

Device utilization summary:

selected Device : 651x16csg324-3

Slice Logic utilization:

Number of Slice Registers: 595 out of 18224 3%
Number of Slice LUTs: 14770 out of 9112 162% (*)
Number used as Logic: 14770 out of 9112 162% (*)

slice Logic Distribution:
Number of LUT Flip Flop pairs used: 14885
Number with an unused Flip Flop: 14290 out of 14885 96%
0%

Number with an unused LUT: 115 out of 14885
Number of fully used LUT-FF pairs: 480 out of 14885 3%
Number of unique control sets: 25
I0 utilization:
Number of I0s: 24
Number of bonded I0Bs: 16 out of 232 6%
I0OE Flip Flops/Latches: 10
specific Feature utilization:
Number of BUFG/BUFGCTRLS: 2 out of 16 12%
Number of DsSP48als: 30 out of 32 93%
WARNING:Xs5T:1336 - (*) More than 100% of Device resources are used

TABLE 3.2: Device Utilization of design with 48 multipliers on Cube module

RAM. It did not store pixel data, but it did store pixel horizontal or vertical address.
The concept was that at the end of each frame, in the back porch region, this memory
would be reinitialized with the line pixel addresses of the current line computed by the
Bresenham algorithm. However, not the whole pixel address would be stored, only the
vertical or horizontal position would be written at a memory address where the other
position would point. That means the second position would serve as an index to the

LRAM.

This technique is based on the fact that a line can be either steep or not.

Being steep means that each display row contains only one pixel of the line, so the ver-
tical address of pixels is used as index to the LRAM address where the only possible
line pixel has his horizontal address stored. If the display pixel’s horizontal address does
not match up to the horizontal address read from LRAM then it is not a part of this
line. In case a row does not contain any line pixels a default non-possible address value
is read from the LRAM.

Respectively, if the line is not steep, each column may contain only one pixel, so the
horizontal address is used to index the LRAM. Once more if vertical value of the current

pixel does not match the address read from LRAM it does not belong on the line.

Chapter 3. Design & Implementation 23

To sum up, steep lines use the vertical address as index and the horizontal address as
data. Non steep lines use the horizontal address as index and the vertical address as
data.

Note that during the frame back porch, the LRAM is always reinitialized to non-possible

address values first and then the line pixels calculated by Bresenham are written.

Is this though an optimized way of storing the line? To answer that question, a com-
parison between an actual Video RAM and this LRAM will be conducted. To represent
the data in a classic operation of a Video RAM, at least a single bit for each pixel is
needed, adding up to 640*%480 = 307,2 Kbits, more than a block RAM can fit.

To represent the data in LRAM, both indexing cases must be taken under consideration
and the worst variable of each chosen, so it should have at least 640 elements (non-steep
line case) of 10 bits each (steep line case). That means 640%10 = 6,4 Kbits. However,
the possible configurations of a block RAM shown in Table 2.1 does not let the LRAM
be 9Kb, but only 18Kb. Therefore, a 18Kb LRAM is needed for each line and 12%18 =
216 Kbits of memory for all lines.

So, 307,2 Kbits of VRAM is still larger than 216Kbits of LRAM.

This approach utilizes memory resources, saving up combinational logic resources for
other funetions. In contrast, the previous approach did not use memory resources at
all and tried to force the outcome combinationally as soon as possible, risking area
deficiency and timing violations. Since all line pixels must be calculated in an interval
of thousands of clock cycles, performance is not an issue and a brute force approach like
the second one is unecessary, or even harmful.

The final synthesis report of the design in Table 3.3 suggests exactly the point that
saving resources is useful. Note that this is the final synthesis report including more

components and still fits better than the previous design.

The source code for the line module can be found in line.v.

The source code for the LRAM instantiation can be found in LRAM.v.

Chapter 3. Design & Implementation 24

Device utilization summary:

selected Device : 651x16cs5g324-3

51ice Logic utilization:

Number of slice Registers: 2174 out of 18224 11%
Number of Slice LUTs: 7515 out of 9112 82%
Number used as Logic: 7515 out of 9112 82%

slice Logic Distribution:
Number of LUT Flip Flop pairs used: 7771

Number with an unused Flip Flop: 5597 out of 7771 72%
Number with an unused LUT: 256 out of 7771 3%
Number of fully used LUT-FF pairs: 1918 out of 7771 24%
Number of unique control sets: 100

I0 utilization:

Number of I0s: 18

Number of bonded IOBs: 18 out of 232 7%

Specific Feature utilization:

Number of Block RAM/FIFO: 12 out of 32 37%
Number using Block RAM only: 12

Number of BUFG/BUFGCTRLS: 1 out of 16 6%

Number of DSP48Als: 2 out of 32 6%

TABLE 3.3: Device Utilization of a design following the LRAM approach

3.4 Cube Drawing

The Cube module is a simple intermediate module instantiating the 12 lines of a cube.
Its inputs are the 8 projected corners of a virtual 3D cube to the monitor screen provided
by the Convert3Dto2D module and the address of the display pixel, just for the purpose
of being propagated as an input to the line modules. Each cube corner appears as an
endpoint in three lines, so the number of lines can be computed as 8%3/2! = 12 lines.

Initially, the cube was of white color. The module output was a simple logical OR gate
of the colors provided by the line modules. However, for better representation of its
movement, different color themes were added for the front square lines, the back square
lines and the side lines. This was achieved by driving only one color channel to each

group of specific lines.

The source code of this module can be found in cube.v.

Chapter 3. Design & Implementation 25

3.5 Convert 3D to 2D

The main purpose of this module is to map the eight 3-dimensional points of the virtual
cube into 2-dimensional points on the monitor screen according to the viewing point. A
simple perspective projection algorithm is used for this task. But before elaborating on

that, it is useful to know what perspective means.

Perspective projection mimics the effect of human eyesight to perceive objects in the dis-
tance smaller than objects close by. On the other hand, orthographic projection ignores
that effect to allow accurate measurements for use in construction and engineering.Figure

3.3 clearly indicates the difference of the two types of projection.

‘ (xu Yo 5%)

-\(xu 3o ’Za)

T\ B
S

ca,b,c’

(a,b,c)}%"

FIGURE 3.3: Projection Types: Perspective on the left, Orthographic on the right

For the purposes of this projection a coordinate system was defined so that the screen
plane would be parallel to the z axis with an offset of 640. So the top left corner of
the screen has the coordinates of (x,y,z) = (0,0,640) and the bottom right corner of
(x,y,2) = (639,479,640). All objects behind the screen in this world plane may move
between (0,0,641) and (639,479,1279), while the viewer may move between (0,0,0) and
(639,479,639). So basically the z dimension is two times larger than the x dimension but

it is split in two equal parts because of the monitor screen.

To calculate the 2D coordinates of 3D points a simple analogy was performed. Let xa,xb

be the horizontal distances between the viewer and the 3D point, unknown 2D point

Chapter 3. Design & Implementation 26

respectively. And za,zb be the depth distances between the viewer and the 3D point,
screen respectively.

The unknown xb then is:

xb = xa * 2b/za (3.2)

The same function calculates the y coordinate of the 2D point. It is worth mentioning
that since zb <za, the same will apply to xb, xa (xb <xa). So the projected image will
never exceed the limits of the coordinate system.

The following diagram represents the way this projection works:

A
A
/
Bz| AZ
Y Y
 a
€ >
<« Ax »

FicURE 3.4: A point’s coordinate projection

Initially, the projection of all points was designed to happen simultaneously, whenever
the viewer’s position had changed. Yet, since every point mapping from 3D to 2D needs
at least to divisions performed, a total of 16 divisors were generated during synthesis.
That proved a waste of resources, since the viewer’s position changed each time after
thousands of clock cycles and the same divisor could reused only by feeding its input

with the correct signals. A couple of multiplexers were used to drive the input and

Chapter 3. Design & Implementation 27

correct this problem. Of course, the point mapping now lasts a few more cycles.

Another problem was that the division unit required a longer clock period than the
initial used, as to not generate setup time violations. The original clock’s frequency was
100MHz. The DCM module was still used only for the VGA controller. Later on, the
same 25MHz clock was driven to all components due to stability issues and to eliminate

this problem.

Last but not least, the virtual cube margins were parameterized, so one could change
its dimensions before synthesizing the design. The same practice was used for the initial

viewer position.

The source code can be seen in Convert3Dto2D.v.

3.6 Debouncer

The input buttons on the FPGA board may jitter when pressed. To accertain the value
inputs and exclude the noise factor an input value must remain stable for a small period
of time as perceived by the user, but a significant amount of clock cycles as perceived
by the design. A filter module was created to provide the system with clean button
inputs. The logic behind, suggests to only change the clean input value, if the noise

value remains the same until a counter reaches a parameter ”Distance”.

The source code of this module is shown in Debouncer.v.

3.7 Top Module

The top module is at the top of the hierarchy and instantiates all previous submodules
of the design. It formes the connections between them and provides all of them with
the system’s main clock, of 25MHz. That clock frequency is generated from a DCM

instance, which divides the 100MHz of the CMOS Oscillator provided by the Nexys3

Chapter 3. Design & Implementation 28

board to return a quarter of it.

All the I/0 signals that let Spartan-6 interact with the Nexys3 peripherals exist as in-
puts or outputs of the top module. Since the FPGA connects through its pins with the
peripherals, the input and output signals are assigned to the right pins through the UCF

file.

The source code of this top module can be found in Top_module.v. Also, the source

code of the User Constraints File (UCF) is in Top_module.ucf.

Chapter 4

Conclusion

Technology has made huge steps into bringing the virtual closer to the real world. This
goal will be considered successful when the average human will not be able to distinguish
whether he currently breathes in the one or the other.

This project is another tiny step towards that dream’s realization.

4.1 Project Report

By the completion of this project, the points of a virtual 3D cube were able to be pro-
jected on the 2D monitor screen according to the viewer’s current position, which was
guided by the FPGA buttons’ input. A drawing algorithm calculated the lines needed to
form the projected cube and stored this information in several block RAMs during the
blanking period of the display. The block RAMs were finally read by the same module

during the display, to decide whether to provide or not the pixels with color.

The project was described on Verilog HDL and after its synthesis to a netlist file, it was
mapped to the FPGA resources. The final device utilization is available in Figure 4.1

below:

29

Chapter 4. Conclusion 30

Logic Utilization Used Available Utilization

Number of Slice Registers 2174 18224 11%
Number of Slice LUTs 7515 9112 82%
Number of fully used LUT-FF pairs 1918 7771 29%
Number of bonded 10Bs 18 232 7%
Number of Block RAM/FIFO 12 32 37%
Number of BUFG/BUFGCTRLS 1 16 6%
Number of DSP48A 1s 2 32 6%

['IGURE 4.1: The resources binded by the final version of this project

4.2 In the Future

The end of a project is the beginning of new ideas. Some of them are recited here...

At first, the project’s original idea could be completed. That requires to actually get
data feedback from a camera and use it to calculate the viewer’s position through head
detecting techniques. It would better present the idea of natural projection responces

to natural movement of the viewer.

It would also be interesting to parameterize the project to include more geometrical
entities. Since the generation of a line is possible, many other objects constracted from

straight lines could be included.

Last but not least, a performance comparison could be performed between this hardware
implementation and a similar software application. Of course, that comparison depends
on many variables, like the system in which the software application runs, so the results

would be vague.

Appendix A

Source Code

Debouncer.v

‘timescale 1ns / 1ps

parameter DELAY=1000000;

integer count;

reg old_noisy;

if (rst)
begin

count = 0;

clean = 0;
old_noisy=0;
end
else
begin

if (old_noisy==noisy)
else

begin

1| always @(posedge clk, posedge rst)

count

/*Debouncer module to filter button input#*/

1|module Debouncer(input rst, input clk, input noisy, output reg clean);

= count +1;

Appendix A. Source Code

old_noisy = noisy;
count = 0O;

end

if (count == DELAY)
begin
clean=noisy;
count=0;
end

end

;| endmodule

Appendix A. Source Code

vga_controller.v

‘timescale 1ns / 1ps

2| /*VGA controller drives the display to the monitor*/

4|module vga_controller(rst, clk, RGB, VGA_RED, VGA_GREEN, VGA_BLUE,

VGA_HSYNC, VGA_VSYNC, H_address, V_address, endofframe);

input rst, clk;

input [2:0] RGB;

output reg [2:0] VGA_RED, VGA_GREEN;
output reg [1:0] VGA_BLUE;

output reg VGA_HSYNC, VGA_VSYNC;

output reg [9:0] H_address; //maxvalue 640
output reg [8:0] V_address; //maxvalue 480

reg clk_count;

reg H_draw; //when 1 draw
reg V_draw; //when 1 draw
reg [9:0] H_cnt; //maxvalue 800

reg [18:0] V_cnt; //maxvalue 416800
reg endofline;
output reg endofframe;

wire red,green,blue;

[FxFFxxkxkkkxk*xxHorizontal implementationkksskkskskksokkakskkisk/

always@(posedge clk)
begin

if(rst)
begin
VGA_HSYNC = 1;
H_cnt = 0;
VGA_RED=0;
VGA_GREEN=0;
VGA_BLUE=0;

Appendix A. Source Code

H_draw=0;
H_address=0;
endofline=0;
end

else

begin

endofline=0;

if(H_cnt < 10’h30) // BackPorch
begin
H_draw=0;
VGA_RED=0;
VGA_GREEN=0;
VGA_BLUE=0;
end
else if (H_cnt < 10’h2B0) // Display
begin
H_draw=1;
VGA_RED = {3{red}};
VGA_GREEN = {3{green}};
VGA_BLUE = {2{bluel}};
H_address = H_address + 1;
end
else if (H_cnt < 10°h2C0) // FrontPorch
begin
H_draw=0;
VGA_RED=0;
VGA_GREEN=0;
VGA_BLUE=0;
H_address = 0;
end

else if (H_cnt < 107h320) // Pulse

VGA_HSYNC = 0O;

else // End of line
begin
VGA_HSYNC = 1;

H_cnt = 0;

a3

ag

a5

a6

a8

29

100

101

100

110

Appendix A. Source Code

endofline=1;

end

H_cnt = H_cnt + 1;

end

end

JEEEkxkkckkkkkkkkkVertical implementation********************/

always@(posedge clk)
begin

if(rst)
begin
VGA_VSYNC = 1;
V_cnt = 0;
V_draw=0;
V_address=0;
endofframe=0;
end

else

begin

endofframe=0;

V_cnt = V_cnt + 1;

if(V_cnt < 19°h5AA0) // BackPorch
V_draw = O;
else if(V_cnt < 19’h636A0) // Display

begin
V_draw = 1;
if (endofline)

V_address = V_address + 1;
end
else if(V_cnt < 19’h655E0) // FrontPorch
begin
V_draw = 0;

Appendix A. Source Code

36

V_address = 0;
end

else if (V_cnt < 19’h65C20) // Pulse

VGA_VSYNC = 0;
else // End of frame
begin
VGA_VSYNC = 1;
V_cnt = 0;

endofframe=1;

end
end

end

[EEsxxpxsokkxdkrxkkCombinational Logilokskssskskokskskrsks sk kkonknkskdnk /

assign red = RGB[2];
assign green = RGB[1];
assign blue = RGB[0];

endmodule

w

Appendix A.

Source Code

line.v

‘timescale 1ns / 1ps

module line(clk, rst, H_address, V_address, endofframe,

point0, pointl, color);

input clk,rst,endofframe;

input [9:0] H_address;

input [8:0] V_address;

input [18:

0] pointO, pointi;

output reg color;

reg [18:0]

reg x_dir;

start_address, end_address;

//drawing direction (0 for left, 1 for right)

reg [10:0] dx; //x1-x0

//reg [9:0] dy; //y1-y0

reg [9:0] deltax; //abs(x1-x0)
reg [8:0] deltay; //abs (y1-y0)

reg steep;

reg [18:0]

//steep line (deltay/deltax > 1)

cur_address;

integer error;

reg [9:0]
reg [9:0]

reg we;

Ram_AddrA; //writing address

wdata;

reg init_Ram;

reg [9:0]
wire [9:0]

Ram_AddrB; //reading address

rdata;

/*******************Writing Logic***************************/

alwaysQ(posedge clk)

begin

if (rst]|

line

endofframe) //Compute the characteristics of the newest

Appendix A. Source Code

begin //according to its endpoints
if(point0 > pointi)

begin

start_address = pointl;

end_address = pointO;

end
else

begin

start_address = pointQ;

end_address = pointil;

end
¥_dir = (end_address[9:0] > start_address[9:0]);
dx = point1[9:0] - point0[9:0];

//dy = point1[18:10] - point0[18:10];

//The mask used is just the sign bit multiple times

deltax
deltay = end_address[18:10] - start_address[18:10];

//deltay = ({10{dy[9]}}"dy) - {10{dy[9]}}; //mask"dx - mask (to get

abs)

if(deltax < deltay)

steep = 1;
else
steep = 0;

cur_address = start_address;
error = 0;
Ram_AddrA = 0;
we = 1;
wdata = 10’hFFF;
init_Ram = 1;
end
else //Start writing the line in LRam

begin

if(init_Ram) //Initialize Ram - Erase previous line

({11{dx[10]1}}"dx) - {11{dx[10]}}; //mask”dx - mask (to get abs)

ag

100

Appendix A. Source Code

39

begin
wdata = 10’hFFF;
Ram_AddrA = Ram_AddrA + 1;
if (Ram_AddrA == 640)
begin
Ram_AddrA = O;

init_Ram = O;

end
end
else
begin
if (steep) //If line is steep Ram_AddrA indicates rows
begin //and wdata columns

Ram_AddrA = cur_address[18:10];

wdata = cur_address[9:0];

if (cur_address[18:10] == end_address[18:10])
begin
we = 0;

end

cur_address[18:10] = cur_address[18:10] + 1;
error = error + deltax;
if((error > (deltay>>1))&&(!error[31]))
begin
cur_address[9:0] = x_dir 7 (cur_address[9:0]+1)
(cur_address[9:0]-1);

error = error - deltay;

end
end
else //If line is not steep Ram_AddrA indicates columns
begin //and wdara rows

Ram_AddrA = cur_address[9:0];

wdata = cur_address[18:10];

if (cur_address[9:0] == end_address[9:0])

begin

138

139

140

Appendix A. Source Code

40

end

cur_address[9:0] = x_dir 7 (cur_address[9:0]+1)
(cur_address[9:0]-1);

error = error + deltay;

if((error > (deltax>>1))&&(!error[31]))
begin
cur_address[18:10] = cur_address[18:10]+1;
error = error - deltax;
end

end

end

end

end

/**x****************Reading Logic****************#**********/
always@(posedge clk)
begin
if(rst)
begin
color = 0
Ram_AddrB = 0;
end
else
begin
if (steep)
begin
if (H_address == rdata)

color = 1;
else
color = 0;

Ram_AddrB = V_address;

end

Appendix A. Source Code

41

end

LRA

else
begin
if (V_address == rdata)
color = 1;

else

color 0;

Ram_AddrB = H_address;

end

end

M Ram_inst(

.clk(clk),

.rst(rst),

.we(we),

.Ram_AddrA (Ram_AddrA) ,

.wdata(wdata),

.Ram_AddrB(Ram_AddrB),

.rdata(rdata)

endmo

dule

Appendix A. Source Code 42

LRAM.v

‘timescale 1ns / 1ps

/*LRAM instantiates a block RAM used for pixel address storing*/

+|module LRAM(clk, rst, we, Ram_AddrA, wdata, Ram_AddrB, rdata

33

input clk,rst,we;
input [9:0] Ram_AddrA,wdata,Ram_AddrB;

output [9:0] rdata;

// RAMB16BWER: 16k-bit Data and 2k-bit Parity Configurable Synchronous Dual
Port Block RAM with Optional Output Registers

// Spartan-6

// Xilinx HDL Language Template, version 14.6

RAMB16BWER #(

// DATA_WIDTH_A/DATA_WIDTH_B: 0, 1, 2, 4, 9, 18, or 36
.DATA_WIDTH_A(18),

.DATA_WIDTH_B(18),

// DOA_REG/DOB_REG: Optional output register (0 or 1)
.DOA_REG(O),

.DOB_REG(0),

// EN_RSTRAM_A/EN_RSTRAM_B: Enable/disable RST
.EN_RSTRAM_A("TRUE"),

.EN_RSTRAM_B("TRUE"),
// INITP_00 to INITP_O7: Initial memory contents.

.INITP_00(256’ hFF)

.INITP_01 (256’ hFF)

.INITP_02(256’ hFF)

.INITP_03(256’ hFF)

.INITP_04 (256’ hFF)

.INITP_05 (256’ hFF)

:| . INITP_06(256° hFF)

.INITP_07 (256’ hFF)

// INIT_00 to INIT_3F: Initial memory contents.

.INIT_00(256 ' hFF) ,

Appendix A. Source Code 43

.INIT_01(256 'hFF) ,

.INIT_02(256’ hFF) ,

.INIT_03(256 'hFF) ,

.INIT_04(256 ' hFF) ,

.INIT_05(256 ' hFF) ,

.INIT_06(256 'hFF) ,

.INIT_07 (256’ hFF) ,

.INIT_08(256’ hFF) ,

.INIT_09(256 'hFF) ,

.INIT_OA(256’ hFF) ,

.INIT_OB(256 ' hFF) ,

.INIT_OC(256 'hFF) ,

.INIT_OD(256 ' hFF) ,

.INIT_OE(256 ' hFF) ,

.INIT_OF(256 'hFF) ,

.INIT_10(256 ' hFF) ,

.INIT_11(256’'hFF) ,

.INIT_12(256 ' hFF) ,

.INIT_13(256’ hFF) ,

.INIT_14(256°hFF) ,

.INIT_15(256 'hFF) ,

.INIT_16(256 ' hFF) ,

.INIT_17 (256’ hFFEF) ,

.INIT_18(256 'hFF) ,

.INIT_19(256’ hFFEF) ,

.INIT_1A(256 ' hFFEF) ,

.INIT_1B(256 ’hFF) ,

.INIT_1C(256’ hFFEF) ,

.INIT_1D(256 ' hFFEF) ,

.INIT_1E(256 'hFF) ,

.INIT_1F (256’ hFFEF) ,

.INIT_20(256 ' hFF) ,

.INIT_21(256 'hFF) ,

.INIT_22(256’ hFFEF) ,

.INIT_23(256 ' hFF) ,

.INIT_24 (256’ hFF) ,

.INIT_25(256’ hFFEF) ,

.INIT_26(256 ' hFF) ,

Eated

109

110

Appendix A. Source Code 14

.INIT_27(256 ' hFF) ,

.INIT_28(256 ' hFF) ,

.INIT_29(256 'hFF) ,

.INIT_2A(256 'hFF) ,

.INIT_2B(256’ hFF) ,

.INIT_2C(256 'hFF) ,

/| .INIT_2D(256°hFF) ,

.INIT_2E(256’ hFF) ,

.INIT_2F(256 'hFF) ,

;| . INIT_30(256 ' hFF) ,

.INIT_31(256 ' hFF) ,

.INIT_32(256 'hFF) ,

;| .INIT_33(256 ' hFF) ,

.INIT_34(256 ' hFF) ,

.INIT_35(256 'hFF) ,

)| . INIT_36(256 ' hFF) ,

.INIT_37(256 ' hFF) ,

.INIT_38(256 ' hFF) ,

.INIT_39(256 ' hFF) ,

. INIT_3A(256°hFF) ,

.INIT_3B(256 'hFF) ,

.INIT_3C(256 ' hFF) ,

.INIT_3D(256 ' hFFEF) ,

.INIT_3E(256 'hFF) ,

.INIT_3F (256’ hFFEF) ,
// INIT_A/INIT_B: Initial values on output port
.INIT_A(36’h000000000),

.INIT_B(36’h000000000) ,

// INIT_FILE: Optional file used to specify initial RAM contents

.INIT_FILE("NONE"),

// RSTTYPE: "SYNC" or "ASYNC"

.RSTTYPE("SYNC"),

// RST_PRIORITY_A/RST_PRIORITY_B: "CE" or "SR"

.RST_PRIORITY_A("CE"),

.RST_PRIORITY_B("CE"),

// SIM_COLLISION_CHECK: Collision check enable "ALL", "WARNING_ONLY",
"GENERATE_X_ONLY" or "NONE"

.SIM_COLLISION_CHECK("ALL"),

111

112

113

114

115

116

130

131

132

133

134

136

137

139

140

141

143

144

Appendix A. Source Code 45

// SIM_DEVICE: Must be set to "SPARTAN6" for proper simulation behavior
.SIM_DEVICE("SPARTANE"),
// SRVAL_A/SRVAL_B: Set/Reset value for RAM output
.SRVAL_A(36’h000000000),
.SRVAL_B(36’hFFFFFFFFF) ,
// WRITE_MODE_A/WRITE_MODE_B: "WRITE_FIRST", "READ_FIRST", or "NO_CHANGE"
.WRITE_MODE_A("WRITE_FIRST"),
.WRITE_MODE_B("WRITE_FIRST")
)
RAMB16BWER_inst (
// Port A Data: 32-bit (each) output: Port A data
.DOA(DOA), // 32-bit output: A port data output
.DOPA(DOPA), // 4-bit output: A port parity output
// Port B Data: 32-bit (each) output: Port B data
.DOB(rdata), // 32-bit output: B port data output
.DOPB(DOPB), // 4-bit output: B port parity output
// Port A Address/Control Signals: 14-bit (each) input: Port A address
and control signals
.ADDRA({Ram_AddrA,4’b0}), // 14-bit input: A port address input
.CLKA(clk), // 1-bit input: A port clock input
.ENA(1°b1), // 1-bit input: A port enable input
.REGCEA(REGCEA), // 1-bit input: A port register clock enable input
.RSTA(rst), // 1-bit input: A port register set/reset input
.WEA({2°b0,{2{we}}}), // 4-bit input: Port A byte-wide write
enable input
// Port A Data: 32-bit (each) input: Port A data
.DIA(wdata), // 32-bit input: A port data input
.DIPA(DIPA), // 4-bit input: A port parity input
// Port B Address/Control Signals: 14-bit (each) input: Port B address
and control signals
.ADDRB({Ram_AddrB,4’b0}), // 14-bit input: B port address input
.CLKB(cl1k), // 1-bit input: B port clock input
.ENB(1°b1), // 1-bit input: B port enable input
.REGCEB(REGCEB), // 1-bit input: B port register clock enable input
.RSTB(rst), // 1-bit input: B port register set/reset input
.WEB(4’b0), // 4-bit input: Port B byte-wide write enable input
// Port B Data: 32-bit (each) input: Port B data

.DIB(DIB), // 32-bit input: B port data input

Appendix A. Source Code

46

i

.DIPB(DIPB)

o| endmodule

// 4-bit input: B port parity input

Appendix A. Source Code

47

cube.v

‘timescale 1ns / 1ps

/*Cube instantiates the 12 lines and assigns color channels to them*/

module cube(clk, rst, H_address, V_address, endofframe, points_2D, RGB);

input clk, rst;

input [9:0] H_address;
input [8:0] V_address;
input endofframe;

input [151:0] points_2D;

output [2:0] RGB;

wire [11:0] colors;

wire [18:0] points [7:0];

assign {points[3],points[2],points([1],points[0]}
assign {points[7],points([6],points[E],points[4]}
assign RGB[2] = | colors[3:0];

assign RGB[1] | colors[11:8];

assign RGB[0] | colors([7:4];
line inst00 (
.clk(clk),
.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe (endofframe),
.point0(points[0]),
.pointl(points[1]),
.color(colors[0])

Vs

line instO1 (
.clk(clk),

.rst(rst),

points_2D[75:0];
points_2D[151:76];

Appendix A. Source Code

48

);

.H_address(H_address),
.V_address (V_address),
.endofframe (endofframe),
.point0(points[0]),
.point1(points[2]),

.color(colors[1])

line inst02 (

¥;

.clk(clk),

.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe (endofframe),
.point0(points[1]),
.pointl(points[3]),
.color (colors[2])

line inst03 (

Y3

.clk(clk),

.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe (endofframe),
.point0(points[2]),
.pointi(points[3]),

.color(colors[3])

line inst04 (

.clk(clk),

.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe (endofframe),
.point0(points[0]),

.pointl(points[4]),

Appendix A. Source Code

49

.color(colors[4])

i

line instO05 (

);

.c1lk(clk),

.rst(rst),
.H_address(H_address),
.V_address (V_address),
.endofframe (endofframe),
.point0(points[1]),
.pointi(points[5]),

.color(colors[5])

line inst06 (

pE

.clk(clk),

.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe (endofframe),
.point0(points[2]),
.point1(points[6]),
.color(colors[6])

line inst07 (

Y3

.clk(clk),

.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe (endofframe),
.point0(points[3]),
.pointi(points[7]),
.color(colors[7])

line inst08 (

.clk(clk),

118

120

196

130

Appendix A. Source Code

50

i

.rst(rst),

.H_address (H_address),
.V_address(V_address),
.endofframe (endofframe),
.point0(points[4]),
.pointi(points[5]),
.color(colors[8])

line inst09 (

);

.clk(clk),

.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe (endofframe),
.point0(points[4]),
.point1(points[6]),
.color(colors[9])

line inst10(

pE

.clk(clk),

.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe (endofframe),
.point0(points[5]),
.pointl(points[7]),
.color(colors[10])

line insti11(

.clk(clk),

.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe (endofframe),

.pointO(points([6]),

Appendix A. Source Code

.pointl(points[7]),
.color(colors[11])

¥

endmodule

Appendix A. Source Code

Convert3Dto2D.v

‘timescale 1ns / 1ps

/*Convert3Dto2D projects 3D points to 2D planex/

module Convert3Dto2D(clk, rst, buttons, switch, points_2D);

parameter DISTANCE = 100000;

parameter cube_x0 = 200; //max x_coordinate = 639

parameter cube_x1 = 440;

parameter cube_y0 = 120; //max y_coordinate = 479

parameter cube_yl = 360;

parameter cube_z0 = 740; //max z_coordinate = 1279
parameter cube_zl = 980;

parameter screen = 640; //z_coordinate of screen

parameter viewer_x = 320;

parameter viewer_y = 240;

parameter viewer_z 0;
input clk, rst;

input [4:0] buttons;
input switch;

output reg [151:0] points_2D;

integer dist_counter;

integer dx; //from point to viewer in 2D
integer dy; //from point to viewer in 2D
reg [11:0] dz; //from screen to viewer

reg [11:0] distances_3D [5:0]; //from cube limits to viewer

reg [29:0] viewer; //{viewer_z,viewer_y,viewer_x} (1149410 bits)
reg [18:0] points [7:0];

reg [29:0] viewer_temp;

reg state; //0 for calculating, 1 for ready

reg [2:0] j;

wire [11:0] distance_x = j[0] 7 distances_3D[1]:distances_3D[0];

wire [11:0] distance_y = “j[1]? distances_3D[3]:distances_3D[2];

Appendix A. Source Code

53

wire [11:0] distance_z = j[2] 7 distances_3D[5]:distances_3D[4];

wire [9:0] deltax = ({12{distance_x[11]}}"distance_x) -
{12{distance_x[11]}}; //abs(distance_x)

wire [8:0] deltay = ({12{distance_y[11]}}"distance_y) -
{12{distance_y[11]}}; //abs(distance_y)

[F*xkxkkkMovement of Viewer Positionkkskkskkskk/
always@(posedge clk)
begin
if(rst)
begin
viewer [9:0] = viewer_x;

viewer[18:10]

viewer_y;

viewer [29:19] viewer_z;

dist_counter 0;
end
else

begin

dist_counter = dist_counter + 1;

if (dist_counter == DISTANCE)

begin

dist_counter = O;

case(buttons)

5°'b00001: viewer[18:10]

viewer[18:10] - 1;
5'b00010: viewer[9:0] = viewer[9:0] - 1;
5'p00100: viewer[18:10] = viewer[18:10] + 1;
5°b01000: viewer[9:0] = viewer[9:0] + 1;

5'b10000: viewer[29:19] = switch?(viewer[29:19] + 1):(viewer[29:

= 35
default: viewer = viewer;

endcase

if (viewer[29:19] == 11’hFFF)
viewer[29:19] = 0;

19]

a8

ag

100

Appendix A. Source Code

24

else if(viewer[29:19] == 11'd640)
viewer[29:19] = 11°d639;

if(viewer[18:10] == 9’hFFF)
viewer[18:10] = O;

else if(viewer[18:10] == 9’d480)
viewer[18:10] = 9°d479;

if(viewer[9:0] == 10’hFFF)
viewer[9:0] = 0;

else if(viewer[9:0] == 10’d640)
viewer[9:0] = 10’d639;

end

end

end

[Hxskrdokkkkx*xkCaloculation of 2D Presentationkskskskskkskskokkskkksk/
/**x*x%x(according to latest captured viewer position)***k*x/
always@(posedge clk)
begin
if (rst)

begin

state = 0;

J =0

viewer_temp = viewer;

distances_3D[0] = cube_x0 - viewer_temp[9:0];
distances_3D[1] = cube_x1 - viewer_temp[9:0];
distances_3D[2] = cube_y0 - viewer_temp[18:10];
distances_3D[3] = cube_yl - viewer_temp[18:10];

distances_3D[4]

cube_z0 - viewer_temp[29:19];

distances_3D[5] = cube_zl - viewer_temp[29:19];
dz = screen - viewer_temp[29:19];
end

else

begin

120

130

Appendix A. Source Code

o

if(state) //ready to pass 2D points
begin
//points[7:0] = points_temp[7:0];
points_2D = {points[7],points[6],points[E],points[4],

points[3],points[2],points[1],points[0]};

state = 0;
j =0
viewer_temp = viewer;
distances_3D[0] = cube_x0 - viewer_temp[9:0];
distances_3D[1] = cube_x1 - viewer_temp[9:0];
distances_3D[2] = cube_y0 - viewer_temp[18:10];
distances_3D[3] = cube_yl - viewer_temp[18:10];
distances_3D[4] = cube_z0 - viewer_temp[29:19];
distances_3D[5] = cube_zl - viewer_temp[29:19];
dz = screen - viewer_temp[29:19];
end

else
begin
dx = deltax * dz / distance_z;
dy = deltay * dz / distance_z;
points[j]1[9:0] = distance_x[11] 7

(viewer_temp[9:0]-dx): (viewer_temp[9:0]+dx) ;
points[j][18:10] = distance_y[11] 7
(viewer_temp[18:10]-dy): (viewer_temp[18:10]+dy) ;

if(j == 3’hF)
begin
state = 1;
end
J = gFL;
end
end

end

144 endmodule

26

a0

31

Appendix A. Source Code 56

Top_module.v

‘timescale 1ns / 1ps

/*Top_module connects the whole design togetherx/

module Top_module(rst, clk, buttons, switch, VGA_RED, VGA_GREEN, VGA_BLUE,
VGA_HSYNC, VGA_VSYNC);

input rst, clk;

input [4:0] buttons;

input switch;

output [2:0] VGA_RED, VGA_GREEN;
output [1:0] VGA_BLUE;
output VGA_HSYNC, VGA_VSYNC;
wire [2:0] RGB;

wire [9:0] H_address;

wire [8:0] V_address;

wire endofframe;

wire [151:0] points_2D;

wire [4:0] clean_buttons;

wire CLKDiv;

// DCM_SP: Digital Clock Manager

DCM_SP #(
.CLKDV_DIVIDE(4.0), // CLKDV divide value
!/
(1.5,2,2.5,8,3.5,4,4,5.6,56.5,6,6.5,7,7.6,8,9,10,11,12,18, 14 15,16).
.CLKFX_DIVIDE(1), // Divide value on CLKFX outputs -
P: = (1-32)
.CLKFX_MULTIPLY(4), // Multiply value on CLKFX outputs
= M= {2-32)
.CLKIN_DIVIDE_BY_2("FALSE"), // CLKIN divide by twe (TRUE/FALSE)
.CLKIN_PERIOD(10.0), // Input clock period specified in
nS
.CLKOUT_PHASE_SHIFT("NONE"), // Dutput phase shift (NONE,

FIXED, VARIABLE)
.CLK_FEEDBACK("1X"), // Feedback source (NONE, 1X, 2X)

33

34

45

36

3T

46

Appendix A. Source Code

.DESKEW_ADJUST ("SYSTEM_SYNCHRONOUS"), // SYSTEM_SYNCHRNOUS or

SOURCE_SYNCHRONOUS
.DFS_FREQUENCY_MODE("LOW"),
value
.DLL_FREQUENCY_MODE("LOW"),
value
.DSS_MODE("NONE"),
value
.DUTY_CYCLE_CORRECTION ("TRUE")
value
.FACTORY_JF(16°hc080),
value
.PHASE_SHIFT(0),
(=255 to 255)
.STARTUP_WAIT("FALSE")
LOCKED (TRUE/FALSE)
)
DCM_SP_inst (

.CLKO(CLKO), {f 1=bit
.CLK180(CLK180), 4l 1=bik
.CLK270(CLK270) , // 1-bi%
.CLK2X (CLK2X) , 4 1=bit
.CLK2X180(CLK2X180), // 1-bit

clock output
.CLK90(CLK90),
.CLXDV (CLKDiv) ,
.CLKFX(CLKFX),

output (DFS)

.CLKFX180 (CLKFX180), // 1-bit
.LOCKED (LOCKED) , // 1-bit
. PSDONE (PSDONE) , // 1-bit
. STATUS (STATUS) , // 8-bit
.CLKFB (CLKFB) , // 1-bit

.CLKIN(clk),
.DSSEN(DSSEN) ,
.PSCLK (PSCLK),
.PSEN(PSEN),

£

output:
output:
output:
output:

output:

// 1-bit output:
// 1-bit output:

// 1-bit output:

output:
output:
output:

output:

// Unsupported - Do not change
// Unsupported - Do not change
// Unsupported - Do not change
// Unsupported - Do not change
// Unsupported - Do not change

// Amount of fixed phase shift

// Delay config DONE until DCM_SP

0 degree clock output

180 degree clock output

270 degree clock output

2X clock frequency clock output

2X clock frequency, 180 degree

90 degree clock output
Divided clock output

Digital Frequency Synthesizer

180 degree CLKFX output
DCM_SP Lock Output
Phase shift done output

DCM_SP status output

input: Clock feedback input

// 1-bit input: Clock input
// 1-bit input: Unsupported, specify to GND.
// 1-bit input: Phase shift clock input
// 1-bit input: Phase shift enable

a0

Appendix A. Source Code

o8

.PSINCDEC(PSINCDEC), // 1-bit input: Phase shift increment/decrement

input

.RST(rst) // 1-bit input: Active high reset input

Vs

// End of DCM_SP_inst instantiation

vga_controller instO (
.rst(rst),
.c1k(CLKDiv),
.RGB(RGB),
.VGA_RED(VGA_RED),
.VGA_GREEN(VGA_GREEN) ,
.VGA_BLUE(VGA_BLUE) ,
.VGA_HSYNC(VGA_HSYNC),
.VGA_VSYNC(VGA_VSYNC) ,
.H_address(H_address),
.V_address(V_address),
.endofframe (endofframe)

pE

cube instl (
.clk(CLKDiv),
.rst(rst),
.H_address(H_address),
.V_address(V_address),
.endofframe (endofframe),
.points_2D(points_2D),
.RGB(RGB)

);

Convert3Dto2D inst2 (
.¢c1k(CLKDiv),
.rst(rst),
.buttons(clean_buttons),
.switch(switch),

.points_2D(points_2D)

100

Appendix A. Source Code

59

b

Debouncer deb0 (
.rst(rst),
.¢1k(CLKDiv),
.noisy(buttons[0]),
.clean(clean_buttons[0])

i

Debouncer debi (
.rst(rst),
.c1lk(CLKDiv),
.noisy(buttons[1]),
.clean(clean_buttons[1])

¥

Debouncer deb2 (
.rst(rst),
.¢c1k(CLKDiv),
.noisy(buttons[2]),
.clean(clean_buttons[2])

g

Debouncer deb3 (
.rst(rst),
.¢1k(CLKDiv),
.noisy(buttons[3]),
.clean(clean_buttons[3])
)i

Debouncer deb4 (
.rst(rst),
.c1lk(CLKDiv),
.noisy(buttons[4]),
.clean(clean_buttons[4])

25

2| endmodule

Appendix A. Source Code

60

Top_module.ucft

/*Connects Inputs/Outputs with the FPGA pins*/

// Clock signal

NET

llclk"

Loc = "vio" |
5| Net "clk" TNM_NET = sys_clk_pin;

IOSTANDARD = "LVCMOS33";

TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 100000 kHz;

// Switches

Lac = "T10"

NET "switch"
NET ""*xgt" Loc = "T9"
// Buttons

;| NET "buttons<4>" LOC "B8"
NET "buttons<0>" LOC "AB"
NET "buttons<1>" LOC "c4"
NET "buttons<2>" LOC reat
NET "buttons<3>" LOC "Dg"
// VGA Connector
NET "VGA_RED<O>" LoC =
NET "VGA_RED<1>" LoC =
NET "VGA_RED<2>" Loc =
NET "VGA_GREEN<O>" LoC =
NET "VGA_GREEN<1>" LOC =
NET "VGA_GREEN<2>" Loc =

ol NET "VGA_BLUE<O>" LoC =
NET "VGA_BLUE<1>" LOC =

2| NET "VGA_HSYNC" LoC =
NET "VGA_VSYNC" LOC =

| IOSTANDARD = "LVCMOS33";

| IOSTANDARD = "LVCMOS33";

| IOSTANDARD = "LVCMOS33";
| IOSTANDARD = "LVCMOS33";
| IOSTANDARD = "LVCMOS33";

| IOSTANDARD = "LVCMOS33";

| IOSTANDARD = "LVCMOS33";

—
-
—
-
-~
-
-
-

IFN6!I
HPT "

| IOSTANDARD = "LVCMOS33";
| IOSTANDARD = "LVCMOS33";
| IOSTANDARD = "LVCMOS33";
| IOSTANDARD = "LVCMOS33";
| IOSTANDARD = "LVCMOS33";
| IOSTANDARD = "LVCMOS33";
| IOSTANDARD = "LVCMOS33";
| IOSTANDARD = "LVCMOS33";

| IOSTANDARD = "LVCMOS33";
| IOSTANDARD = "LVCMOS33";

Bibliography 61

BIBLIOGRAPHY

(1) Field-programmable gate array - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Field-programmable_gate_array

(2) What is a FPGA?

http://www.xilinx.com/fpga/

(3) Nexys3 Reference Manual

http://www.digilentinc.com/data/products/nexys3/nexys3_rm.pdf

(4) Spartan-6 Family Overview

http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf

(5) Spartan-6 FPGA Block RAM Resources

http://www.xilinx.com/support/documentation/user_guides/ug383.pdf

(6) Xilinx ISE - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Xilinx_ISE

(7) XST Synthesis Overview

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise

c_using_xst_for_synthesis.htm

(8) XST User Guide
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.

pdf

(9) Place and Route - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Place_and_route

(10) Video Graphics Array - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Video_Graphics_Array

(11) VGA Signal 640 x 480 @ 60 Hz Industry standard timing

http://tinyvga.com/vga-timing/640x480@60Hz

(12) VGA Controller (VHDL)
https://eewiki.net/pages/viewpage.action?pageld=15925278

http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://www.xilinx.com/fpga/
http://www.digilentinc.com/data/products/nexys3/nexys3_rm.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/user_guides/ug383.pdf
http://en.wikipedia.org/wiki/Xilinx_ISE
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_using_xst_for_synthesis.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_using_xst_for_synthesis.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.pdf
http://en.wikipedia.org/wiki/Place_and_route
http://en.wikipedia.org/wiki/Video_Graphics_Array
http://tinyvga.com/vga-timing/640x480@60Hz
https://eewiki.net/pages/viewpage.action?pageId=15925278

Bibliography 62

(13) ECE 5760 Final Project
http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2009/

ty244_jgs33/ty244_jgs33/index.html

(14) Bresenham'’s line algorithm - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Bresenham’s_line_algorithm

(15) BRESHENHAM’S ALGORITHM
http://graphics.idav.ucdavis.edu/education/GraphicsNotes/Bresenhams-Algorithm.

pdf

(16) 3D projection - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/3D_projection

http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2009/ty244_jgs33/ty244_jgs33/index.html
http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2009/ty244_jgs33/ty244_jgs33/index.html
http://en.wikipedia.org/wiki/Bresenham's_line_algorithm
http://graphics.idav.ucdavis.edu/education/GraphicsNotes/Bresenhams-Algorithm.pdf
http://graphics.idav.ucdavis.edu/education/GraphicsNotes/Bresenhams-Algorithm.pdf
http://en.wikipedia.org/wiki/3D_projection

