Awmlopatikn Epyoacio

“’EAgyyog Kau eraifgvon npotokérLhev bus

kot Systems-on-Chip «

2o@la ['kovpykovvia

EmpAiénovieg : loavvng Movvtavog, Néstopog Evpoppomoviog

BéAog, Ioviog 2013

“"EAeyxoc kat emaAnBsuon mpwtokOAAwV bus kat
Systems-on-Chip ”

OL ukvoTéEg silicon, toco yla ASICs 600 yla FPGAs, pmopouv mA€ov va urmtootnpifouv
mpayuatika Systems-on-Chip. Auto to emimedo oxedloopou amaltel cuotiuata
StavAwv yla tnv dtacuvdeon Twv dLadopwv oToxeiwyv, cupnepAapBavopévou evog
N TAPATIAVW UKPOETEEEPYAOTWY, VLN, TTEPODEPELAKA KAL ELSLKN UVAUN.

H apxltektovikn emkowvwviog yla On-chip &tavAoug (bus) eival petafy Ttwv
Kopudaiwv mpokAnoewv otnv CMOS SoC texvoloyia efattiog tng Taxeiag avénong
TWV OUXVOTNTWV AeLToupylag Kot tNg avénong Twv peyeBwv twv chip. e yevikEg
YPOUMEG, n amodoon evog SoC oxediou efaptatal o€ MOAU peyaio Babuo amd tnv
QTMOTEAEOUATIKOTNTA TNG SoNC Tou StavAou. H loooporia petall umoAoylopol Kal
ETIKOWVWViaC oe omowadnmote edpappoyn n epyacia €ival, Guolkd, yvwotn wg
BepeAlwdnG Kal KaBopLOTIKOG mapayovtag TnG TeAkng anodoong. Xuvnbwg, ot IP
TIUPNVEG, WG oUOTATIKA Twv SoCs, oxedialovtal pe TOAAEG SLadopeTIKEG SlemadEg
Kall TPWTOKOAAA emikowvwviag. H evowpdtwon Tétolwv nmupnvwy oe éva SoC cuxva
amattel TNV elcaywyn g “suboptimal glue logic”.

Mpoétuna twv on-chip SltavAwv avamtoxBnkav ywa va amnodpeuvxbel autd To
MPOPBANUA. 2’ autr TNV SUTAWHATIKY epyacio eEETATOUE TIG APXLITEKTOVIKEG SLUAWY
AMBA, thg ARM.

To mpwtokoAo AMBA eivat éva avoltdé mpotumo, uia on-chip mpodiaypadn
Slaolvdeong yla tn olvOeon Kot tn Slaxeipnon Twv AETOUPYLKWVY TUNUATWY OE £va
System-on-Chip. AieukoAUvel tn “right-first-time” avamtuén oxeblwv moAu-
enegepyaoTwy PE HeyAAO aplOud eleyktwv Kal meplpepelakwy. To AMBA mpowbBetl
NV enavaypnotpornoion oxedblwv pe Tov KaBopLopd Kowvwv potunwy Slemadng yla
SoC evotnte¢. MEAN QuTAC TNG OLKOYEVELOC TPWTOKOAWY eival kot to AHB
(Advanced High Performance Bus) kat APB (Advance Peripheral Bus) mou e€staloupe
o’autn TNV gpyaoia.

JUYKEKPLUEVA oxedlaoape ploe AHB2APB yédpupa n omolo TapExel pa Stemadn
HeTagl, tou uPnAng taxvutntag StavAou AHB kot tou XapnAng evépyelag APB. H
AHB2APB yédupa mpooopolwBnke apxikd pe to GTKWave omou moapouotaloupe
TO00 petadopEC avayvwong 000 Kal gyypadnic kol €metta pe to Insive Formal
Verifier.

TéAog, xpnowomotjoape Evav AHB master eAéy§ape KATA MOCO LKOWVOTIOLEL KATIOLEG
oo TLC LBLoTNTEG Iou Tipodlaypddel To TPWTOKOAAO AHB.

CONTENTS

I |1 oo 114 o] o PPN 4
2. Advanced High Performance BUS.............coouiiiiiiii i 4
2.1 A typical AMBA AHB-based microcontroller...................cocooiiiiiii 5

2.2 BUS INtEICONNECTION. .. .o\e et e 5
2.3 Overview of AMBA AHB 0peration...........c..coiveiiiiiriiiiiiieieeieeeennen 6

2.4 BaSiC TranSter.ot 7

2.0 TrANS O Ty P ettt e 9
2.6 BUISLOPEratiONt 10
2.7 Control SIgNalS ... 12
2.8 AAAress deCOTINGovieiirie i 14

2.9 Slave Transfer RESPONSE.iuie i 15
2.9.1 Transter DONE.uiiii e 15

2.9.2 Transfer RESPONSE.c.ivint it 15

2.9.3 TWO CYCIE FESPONSE. ...ttt 16

N S 4 o] g =T 0 0] - 17

295 Splitand Retry......cooii i 17

210 Data BUSES. ... et 18
211 ATDIratioN. ..o 19
2.11.1 Requesting BUS ACCESS........viuieriii e, 19

2.11.2 Granting BUS ACCESSuvurieeiiit e e 20

2.11.3 Early Bursttermination. ..o 22

2.11.4 Locked Transfers.......c.ouiuiniiii e 22
2.11.5 Default buS Mastercooviniiri i 23

2.11.6 Splttranstersooooiiii i, 23

2. 007 RESEE .ttt 27

2.11.8 AHB AMBA COMPONENES. ...t e 28

2.11.9 AHB bus matrix topology..........ccooveiiiii 31

3. Advanced Peripheral BUS...........coiiiiii i 31
3L APB BrAgE. .. vttt 32

B2 APB SIaVE. ...t 32

3.3 APB State Diagramouiriiit i 34

3.4 APB WIIte Transter. ... e e 36

3.5 APB Read Transfer........c.iiiii i, 37

3.6 AHB VS AP ... 37

4, AHBZ2APB BIilge. ..o vt 39
4.1 AHB2APB bridge module signals............ccooviiiiiiiiii 40

4.2 AHB2APB function and Operation..............o.eeviiiiiiiniiieeeee 41

5. Synthesisand SImulation ... 45

Abstract-Advanced microcontroller bus architecture (AMBA) protocol family provides
metric-driven verification of protocol compliance, enabling comprehensive testing of
interface intellectual property (IP) blocks and System-on-Chip (SoC) designs. This
bachelor thesis presents a work aimed to design the AMBA AHB2APB bridge modeled
in VHDL hardware description language (HDL) and simulate the results for read and
write operation of data and address using the INCISIVE Cadence tool.

1. Introduction

Embedded system designers have a choice of using a share or point-to-point bus in their
designs. Typically, an embedded design will have a general purpose processor, cache,
SDRAM, DMA port, and Bridge port to a slower I/O bus, such as the Advanced Micro
controller Bus Architecture (AMBA) Advanced Peripheral Bus (APB). In addition, there
might be a port to a DSP processor, or hardware accelerator, common with the increased use
of video in many applications. As chip-level device geometries become smaller and smaller,
more and more functionality can be added without the concomitant increase in power and cost
per die as seen in prior generations.

The Advanced Microcontroller Bus Architecture (AMBA) was introduced by ARM Ltd 1996
and is widely used as the on-chip bus in system on chip (SoC) designs. AMBA is a registered
trademark of ARM Ltd. The first AMBA buses were Advanced System Bus (ASB) and
Advanced Peripheral Bus (APB). In its 2nd version, AMBA 2, ARM added AMBA High-
performance Bus (AHB) that is a single clock-edge protocol. In 2003, ARM introduced the
3rd generation, AMBA 3, including AXI to reach even higher performance interconnects and
the Advanced Trace Bus (ATB) as part of the Core Sight on-chip debugs and trace solution.
These protocols are today the de-facto standard for 32-bit embedded processors because they
are well documented and can be used without royalties. In 2010 the AMBA 4 specifications
were introduced starting with AMBA 4 AXI4, then in 2011 extending system wide coherency
with AMBA 4 ACE. In 2013 the AMBA 5 CHI (Coherent Hub Interface) specification was
introduced, with a re-designed high-speed transport layer and features designed to reduce
congestion. The thesis has been organized as follows. The first section contains the
description of AHB protocol. Second section describes the APB protocol. Third section
describes AHB-to-APB bridge module. Fourth section shows how we used INCISIVE for
synthesis and simulation.

2. Advanced High Performance Bus (AHB)

AHB is the second generation of AMBA bus which is intended to address the requirements of
high-performance synthesizable designs. AMBA AHB is a new level of bus which sits above
the APB and implements the features required for high-performance, high clock frequency
systems including:

* burst transfers

» split transactions

* single cycle bus master handover
* single clock edge operation

* non-tristate implementation

» wider data bus configurations (64/128 bits)

2.1 A typical AMBA AHB-based microcontroller

An AMBA-based microcontroller typically consists of a high-performance system backbone
bus, able to sustain the external memory bandwidth, on which the CPU and other Direct
Memory Access (DMA) devices reside, plus a bridge to a narrower APB bus on which the
lower bandwidth peripheral devices are located. Figurel shows both AHB and APB in a
typical AMBA system.

Figure 1

2.2 Bus Interconnection

The AMBA AHB bus protocol is designed to be used with a central multiplexor
interconnection scheme. Using this scheme all bus masters drive out the address and control
signals indicating the transfer they wish to perform and the arbiter determines which master
has its address and control signals routed to all of the slaves. A central decoder is also
required to control the read data and response signal multiplexor, which selects the
appropriate signals from the slave that is involved in the transfer.

Figure 2 illustrates the structure required to implement an AMBA AHB design with three
masters and four slaves.

centralized arbitration / decode

) | HADDR
HADOR Wwosta | swve | * 1 unidirectional address
HWDATA | veoam | " bus (HADDR)
HRDATA ~ T "
| HADDR | + 2 unidirectional data buses
| HADDR wwoa | swe | (HWDATA, HRDATA)
Mastor HWDATA Md,;;;and | HRDATA | "
. confrol mux . | I
— || snon - At any time only 1 active
| HADDR | | HWDATA | Slave data bus
Mastor |HWDATA | | | g dats mux | e | "
" | HROATA | Read data mux
- | HADDR |
. HWDATA Slave
L HRDATA

Decodar

Figure 2

2.3 Overview of AMBA AHB operation

Before an AMBA AHB transfer can commence the bus master must be granted access to the
bus. This process is started by the master asserting a request signal to the arbiter. Then the
arbiter indicates when the master will be granted use of the bus. A granted bus master starts
an AMBA AHB transfer by driving the address and control signals. These signals provide
information on the address, direction and width of the transfer, as well as an indication if the
transfer forms part of a burst. Two different forms of burst transfers are allowed:

* incrementing bursts, which do not wrap at address boundaries
* wrapping bursts, which wrap at particular address boundaries.

A write data bus is used to move data from the master to a slave, while a read data bus is used
to move data from a slave to the master. Every transfer consists of:

* an address and control cycle

* one or more cycles for the data.

The address cannot be extended and therefore all slaves must sample the address during this
time. The data, however, can be extended using the HREADY signal. When LOW this signal
causes wait states to be inserted into the transfer and allows extra time for the slave to provide
or sample data.

During a transfer the slave shows the status using the response signals, HRESP[1:0]:

OKAY The OKAY response is used to indicate that the transfer is

progressing normally and when HREADY goes HIGH this
shows the transfer has completed successfully.

ERROR The ERROR response indicates that a transfer error has
occurred and the transfer has been unsuccessful.

RETRY and SPLIT Both the RETRY and SPLIT transfer responses indicate that
the transfer cannot complete immediately, but the bus master
should continue to attempt the transfer.

In normal operation a master is allowed to complete all the transfers in a particular burst
before the arbiter grants another master access to the bus. However, in order to avoid
excessive arbitration latencies it is possible for the arbiter to break up a burst and in such
cases the master must re-arbitrate for the bus in order to complete the remaining transfers in
the burst.

2.4 Basic Transfer
An AHB transfer consists of two distinct sections:
* The address phase, which lasts only a single cycle.
» The data phase, which may require several cycles. This is achieved using

the HREADY signal.

Figure 3 shows the simplest transfer, one with no wait states

Address phase Data phase

HCLK
\ I\ [\

HADDR[31:0] ! (A) < > |

J\ J M". ,-"l \ __.-'

\W ."l_"'.
Control i 5< Control k f< \X
AN | /

. f\/ / 4 Data 3\

HWDATAR1:0] | X >(,. Il((A) > ,<

HREADY | | (/ \

YA
HRDATA[31:0] i)<

|

E
)

Figure 3

e The master drives the address and control signals onto the bus after the rising
edge of HCLK.

e The slave then samples the address and control information on the next rising
edge of the clock.

o After the slave has sampled the address and control it can start to drive the
appropriate response and this is sampled by the bus master on the third rising
edge of the clock.

This simple example demonstrates how the address and data phases of the transfer occur
during different clock periods. In fact, the address phase of any transfer occurs during the data
phase of the previous transfer. This overlapping of address and data is fundamental to the
pipelined nature of the bus and allows for high performance operation, while still providing
adequate time for a slave to provide the response to a transfer.

A slave may insert wait states into any transfer, as shown in Figure 4, which extends the
transfer allowing additional time for completion.

| Data phase | _‘
H H .-j

HCLK

HADDR[31:0] X:X A
Control X:X Contral
HWDATA[31:0] X:x

Data
(A)

A [
}O(=)(o

HREADY

HRDATA[31:0] X:X

EEEELE
BARER

Figure 4

When a transfer is extended in this way it will have the side-effect of extending the address
phase of the following transfer. This is illustrated in Figure 5 which shows three transfers to
unrelated addresses, A, B & C. Transaction pipelining increases bus bandwidth.

HOLK _| B
HADDR[31:0] :x oA S Xix BN c X:X ij:
N\ o JOCJ0C
po—a ﬁ T & JO0C
HREADY :—__ y ! L
P 0 G G Vo) X OEPOC

Figure 5

2.5 Transfer Type

Every transfer can be classified into one of four different types, as indicated by the
HTRANS[1:0] signals as shown in Table 1

HTRANS[1:0] Type

Description

0o IDLE

Indicates that no data transfer is required. The IDLE transfer type is used when a bus
master 1s granted the bus, but does not wish to perform a data transfer.

Slaves must always provide a zero wait state OKAY response to IDLE transfers and the
transfer should be ignored by the slave.

01 BUSY

The BUSY transfer type allows bus masters to insert IDLE cycles in the middle of bursts
of transfers. This transfer type indicates that the bus master is continuing with a burst of
transfers, but the next transfer canmot take place immediately. When a master uses the
BUSY transfer type the address and control signals must reflect the next transfer in the
burst.

The transfer should be ignored by the slave. Slaves must always provide a zero wait state
OKAY response, in the same way that they respond to IDLE transfers.

10 NONSEQ

Indicates the first fransfer of a burst or a single transfer The address and confrol signals
are unrelated to the previous transfer.

Single transfers on the bus are treated as bursts of one and therefore the transfer tvpe 1s
NONSEQUENTIAL.

11 SEQ

The remaining transfers in a burst are SEQUENTIAL and the address is related to the
previous transfer. The control information is identical fo the previous transfer. The
address is equal to the address of the previous transfer plus the size (in bytes). In the
case of 2 wrapping burst the address of the transfer wraps at the address boundary equal

to the size (in bytes) multiplied by the number of beats in the transfer (either 4. 8 or 16).

Table 1

2.6 Burst Operation

Both incrementing and wrapping bursts are supported in the protocol:

e Incrementing bursts access sequential locations and the address of each transfer
in the burst is just an increment of the previous address.

e For wrapping bursts, if the start address of the transfer is not aligned to the total
number of bytes in the burst (size x beats) then the address of the transfers in the
burst will wrap when the boundary is reached. For example, a four-beat wrapping
burst of word (4-byte) accesses will wrap at 16-byte boundaries. Therefore, if the start
address of the transfer is 0x34, then it consists of four transfers to addresses 0x34,
0x38, 0x3C and 0x30.

Burst information is provided using HBURST[2:0] and the eight possible types are

defined in Table 2.

10

HBURST[2:0] Type Description

000 SINGLE Single transfer
001 INCB Incrementing burst of unspecified length
‘E (010 WRAP4 4-beat wrapping burst
_E 011 INCR4 4-beat incrementing burst
§D < 100 WRAPS B-beat wrapping burst
5 101 INCR& B-beat incrementing burst
% 110 WRAP16 16-beat wrapping burst
2O\ 1 INCR16 16-beat incrementing burst
[y
Table 2

Bursts must not cross a 1kB address boundary. Therefore it is important that masters do not
attempt to start a fixed-length incrementing burst which would cause this boundary to be
crossed.

There are certain circumstances when a burst will not be allowed to complete (early burst
termination) and therefore it is important that any slave design which makes use of the burst
information can take the correct course of action if the burst is terminated early. The slave can
determine when a burst has terminated early by monitoring the HTRANS signals and
ensuring that after the start of the burst every transfer is labelled as SEQUENTIAL or BUSY.
If a NONSEQUENTIAL or IDLE transfer occurs then this indicates that a new burst has
started and therefore the previous one must have been terminated. If a bus master cannot
complete a burst because it loses ownership of the bus then it must rebuild the burst
appropriately when it next gains access to the bus. For example, if a master has only
completed one beat of a four-beat burst then it must use an undefined-length burst to perform
the remaining three transfers.

In Figure 6 we can see an example of a four-beat incrementing burst that shows how bursts
cut down on arbitration, handshaking time and improve performance.

11

T T2 T3 T4 TS T6 T7

HCLK ‘ 1 l | l I
.SEO)O\ SEQ X:X SEQ
0x3C \G(x40)O(Qxdd

=

HTRANS[1:0] |}) nonseq

|
==
S
=

HADDR[31:0] JY\ 0x38

HBURsST220] |} INCRA WX OC
HWRITE . '
Hsize(20] |} - XX

HPROT[3:0] — "

HWDATA31:0] |

— EX gahsr “ﬂ’!‘g X X {m} D [Efﬁ)
HREADY \/ \ E i/ \/ v \/

AR R

Figure 6

2.7 Control Signals
As well as the transfer type and burst type each transfer will have a number of control signals
that provide additional information about the transfer. These control signals have exactly the

same timing as the address bus. However, they must remain constant throughout a burst of
transfers.

e Transfer direction
When HWRITE is HIGH, this signal indicates a write transfer and the master
will broadcast data on the write data bus, HWDATA[31:0]. When LOW a
read transfer will be performed and the slave must generate the data on the
read data bus HRDATA[31:0].

e Transfer size

HSIZE[2:0] indicates the size of the transfer, as shown in Table 3.

12

HSIZE[2] HSIZE[1] HSIZE[0] Size Description
0 0 0 8 bits Byte
0 0 1 16 bits Halfword
0 1 0 32 bits Word
0 1 1 64 bits -
1 0 0 128 bits 4-word line
1 0 1 256 bits 8-word line
1 1 0 512 bits -
1 1 1 1024 bits -
Table 3

The size is used in conjunction with the HBURST[2:0] signals to determine the address

boundary for wrapping bursts.

e Protection Control

The protection control signals, HPROT[3:0], provide additional information
about a bus access and are primarily intended for use by any module that
wishes to implement some level of protection

HPROT[3] HPROT[2] HPROT[1] HPROT[0]

cacheable bufferable privileged data/opcode

Description

. - - 0

Opcode fetch

; ; i 1

Daata access

User access

Privileged access

Mot bufferable

Bufferable

Mot cacheable

Cacheable

Table 4

Not all bus masters will be capable of generating accurate protection information, therefore it
is recommended that slaves do not use the HPROT signals unless strictly necessary.

13

2.8 Address decoding

A central address decoder is used to provide a select signal, HSELX, for each slave on
the bus. The select signal is a combinatorial decode of the high-order address signals,
and simple address decoding schemes are encouraged to avoid complex decode logic
and to ensure high-speed operation.

A slave must only sample the address and control signals and HSELx when HREADY
is HIGH, indicating that the current transfer is completing. Under certain circumstances
it is possible that HSELx will be asserted when HREADY is LOW, but the selected
slave will have changed by the time the current transfer completes.

The minimum address space that can be allocated to a single slave is 1kB. All bus
masters are designed such that they will not perform incrementing transfers over a 1kB
boundary, thus ensuring that a burst never crosses an address decode boundary.

In the case where a system design does not contain a completely filled memory map an
additional default slave should be implemented to provide a response when any of the
nonexistent address locations are accessed. If a NONSEQUENTIAL or SEQUENTIAL
transfer is attempted to a nonexistent address location then the default slave should
provide an ERROR response. IDLE or BUSY transfers to nonexistent locations should
result in a zero wait state OKAY response. Typically the default slave functionality will
be implemented as part of the central address decoder.

Figure 7 shows a typical address decoding system and the slave select signals

Figure 7

14

2.9 Slave Transfer Response

After a master has started a transfer, the slave then determines how the transfer should
progress. No provision is made within the AHB specification for a bus master to cancel a
transfer once it has commenced.

Whenever a slave is accessed it must provide a response which indicates the status of the
transfer. The HREADY signal is used to extend the transfer and this works in combination
with the response signals, HRESP[1:0], which provide the status of the transfer.

The slave can complete the transfer in a number of ways. It can:

complete the transfer immediately

insert one or more wait states to allow time to complete the transfer

signal an error to indicate that the transfer has failed

delay the completion of the transfer, but allow the master and slave to back off
the bus, leaving it available for other transfers

2.9.1 Transfer Done

The HREADY signal is used to extend the data portion of an AHB transfer. When LOW the
HREADY signal indicates the transfer is to be extended and when HIGH indicates that the
transfer can complete.

2.9.2 Transfer Response

A typical slave will use the HREADY signal to insert the appropriate number of wait states
into the transfer and then the transfer will complete with HREADY HIGH and an OKAY
response, which indicates the successful completion of the transfer.

The ERROR response is used by a slave to indicate some form of error condition with the
associated transfer. Typically this is used for a protection error, such as an attempt to write to
a read-only memory location.

The SPLIT and RETRY response combinations allow slaves to delay the completion of a
transfer, but free up the bus for use by other masters. These response combinations are usually
only required by slaves that have a high access latency and can make use of these response
codes to ensure that other masters are not prevented from accessing the bus for long periods
of time.

The encoding of HRESP[1:0], the transfer response signals, and a description of each
response are shown in Table 5.

15

HRESP[1] HRESP[0] Response Description

0] OEAY When HREADY is HIGH this shows the
transfer has completed successfully.
The OKAY response is also used for any
additional cvcles that are inserted, with
HEREADY LOW. prior to giving one of the
three other responses.

0 1 ERROR This response shows an error has occurred.
The error condition should be signalled to
the bus master so that it is aware the transfer
has been unsuccessful.

A two-cycle response is required for an error
condition.

1 0 RETEY The RETEY response shows the transfer has
not yet complefed, so the bus master should
retry the transfer The master should
confinue to retry the transfer until it
completes.

A two-cycle RETEY response is required.

1 | SPLIT The transfer has not yet completed
successfully. The bus master must retry the
transfer when if is next granted access to the
bus. The slave will request access fo the bus
on behalf of the master when the transfer can
complete.

A two-cycle SPLIT response is required.

Table 5

2.9.3 Two cycle Response

Only an OKAY response can be given in a single cycle. The ERROR, SPLIT and RETRY
responses require at least two cycles. To complete with any of these responses then in the
penultimate (one before last) cycle the slave drives HRESP[1:0] to indicate ERROR, RETRY
or SPLIT while driving HREADY LOW to extend the transfer for an extra cycle. In the final
cycle HREADY is driven HIGH to end the transfer, while HRESP[1:0] remains driven to
indicate ERROR, RETRY or SPLIT.

If the slave needs more than two cycles to provide the ERROR, SPLIT or RETRY response
then additional wait states may be inserted at the start of the transfer. During this time the
HREADY signal will be LOW and the response must be set to OKAY.

The two-cycle response is required because of the pipelined nature of the bus. By the time a
slave starts to issue either an ERROR, SPLIT or RETRY response then the address for the
following transfer has already been broadcast onto the bus. The two cycle response allows
sufficient time for the master to cancel this address and drive HTRANS[1:0] to IDLE before
the start of the next transfer.

16

For the SPLIT and RETRY response the following transfer must be cancelled because it must
not take place before the current transfer has completed. However, for the ERROR response,
where the current transfer is not repeated, completion of the following transfer is optional.

Figure 8 shows an example of a RETRY operation.

Figure 8

The following events are illustrated:

e The master starts with a transfer to address A.

o Before the response is received for this transfer the master moves the address on
to A+4.

e The slave at address A is unable to complete the transfer immediately and therefore
it issues a RETRY response. This response indicates to the master that the transfer at
address A is unable to complete and so the transfer at address A +4 is cancelled and
replaced by an IDLE transfer.

2.9.4 Error Response

If a slave provides an ERROR response then the master may choose to cancel the remaining
transfers in the burst. However, this is not a strict requirement and it is also acceptable for the
master to continue the remaining transfers in the burst.

2.9.5 Split and Retry

The SPLIT and RETRY responses provide a mechanism for slaves to release the bus when

they are unable to supply data for a transfer immediately. Both mechanisms allow the transfer
to finish on the bus and therefore allow a higher-priority master to get access to the bus.

17

The difference between SPLIT and RETRY is the way the arbiter allocates the bus after a
SPLIT or a RETRY has occurred:

e For RETRY the arbiter will continue to use the normal priority scheme and therefore
only masters having a higher priority will gain access to the bus.

e For a SPLIT transfer the arbiter will adjust the priority scheme so that any other
master requesting the bus will get access, even if it is a lower priority. In order for a
SPLIT transfer to complete the arbiter must be informed when the slave has the data
available.

The SPLIT transfer requires extra complexity in both the slave and the arbiter, but has the
advantage that it completely frees the bus for use by other masters, whereas the RETRY case
will only allow higher priority masters onto the bus.

A bus master should treat SPLIT and RETRY in the same manner. It should continue to
request the bus and attempt the transfer until it has either completed successfully or been
terminated with an ERROR response.

2.10 Data Buses

In order to allow implementation of an AHB system without the use of tristate drivers
separate read and write data buses are required. The minimum data bus width is specified as
32 bits.

e HWDATA[31:0]

The write data bus is driven by the bus master during write transfers. If the
transfer is extended then the bus master must hold the data valid until the
transfer completes, as indicated by HREADY HIGH.

All transfers must be aligned to the address boundary equal to the size of the
transfer. For example, word transfers must be aligned to word address
boundaries (that is A[1:0] = 00), halfword transfers must be aligned to
halfword address boundaries (that is A[0] = 0).

For transfers that are narrower than the width of the bus, for example a 16-bit
transfer on a 32-bit bus, then the bus master only has to drive the appropriate
byte lanes. The slave is responsible for selecting the write data from the
correct byte lanes.

e HRDATA[31:0]

The read data bus is driven by the appropriate slave during read transfers. If
the slave extends the read transfer by holding HREADY LOW then the slave
only needs to provide valid data at the end of the final cycle of the transfer, as
indicated by HREADY HIGH.

For transfers that are narrower than the width of the bus the slave only needs

to provide valid data on the active byte lanes. The bus master is responsible
for selecting the data from the correct byte lanes.

18

A slave only has to provide valid data when a transfer completes with an
OKAY response. SPLIT, RETRY and ERROR responses do not require valid
read data.

2.11 Arbitration

The arbitration mechanism is used to ensure that only one master has access to the bus at any
one time. The arbiter performs this function by observing a number of different requests to
use the bus and deciding which is currently the highest priority master requesting the bus. The
arbiter also receives requests from slaves that wish to complete SPLIT transfers.

Any slaves which are not capable of performing SPLIT transfers do not need to be aware of
the arbitration process, except that they need to observe the fact that a burst of transfers may
not complete if the ownership of the bus is changed.

A brief description of each of the arbitration signals is given below:

e HBUSREQX
e HLOCKXx

o HGRANTX
e HMASTER

: The bus request signal is used by a bus master to request access to

the bus. Each bus master has its own HBUSREQx signal to the
arbiter and there can be up to 16 separate bus masters in any system.

: The lock signal is asserted by a master at the same time as the bus

request signal. This indicates to the arbiter that the master is
performing a number of indivisible transfers and the arbiter must
not grant any other bus master access to the bus once the first
transfer of the locked transfers has commenced. HLOCKXx must
be asserted at least a cycle before the address to which it refers, in
order to prevent the arbiter from changing the grant signals.

: The grant signal is generated by the arbiter and indicates that the

appropriate master is currently the highest priority master
requesting the bus, taking into account locked transfers and
SPLIT transfers.

A master gains ownership of the address bus when HGRANTX is
HIGH and HREADY is HIGH at the rising edge of HCLK.

: The arbiter indicates which master is currently granted the bus

using the HMASTER([3:0] signals and this can be used to control
the central address and control multiplexor. The master number is
also required by SPLIT-capable slaves so that they can indicate to
the arbiter which master is able to complete a SPLIT transaction.

e HMASTLOCK : The arbiter indicates that the current transfer is part of a locked

e HSPLIT

sequence by asserting the HMASTLOCK signal, which has the
same timing as the address and control signals.

: The 16-bit Split Complete bus is used by a SPLIT-capable slave to
indicate which bus master can complete a SPLIT transaction. This
information is needed by the arbiter so that it can grant the master

access to the bus to complete the transfer.

19

2.11.1 Requesting Bus Access

A bus master uses the HBUSREQx signal to request access to the bus and may request the
bus during any cycle. The arbiter will sample the request on the rising of the clock and then
use an internal priority algorithm to decide which master will be the next to gain access to the
bus.

Normally the arbiter will only grant a different bus master when a burst is completing.
However, if required, the arbiter can terminate a burst early to allow a higher priority master
access to the bus.

If the master requires locked accesses then it must also assert the HLOCKX signal to indicate
to the arbiter that no other masters should be granted the bus.

When a master is granted the bus and is performing a fixed length burst it is not necessary to
continue to request the bus in order to complete the burst. The arbiter observes the progress of
the burst and uses the HBURST[2:0] signals to determine how many transfers are required by
the master. If the master wishes to perform a second burst after the one that is currently in
progress then it should re-assert the request signal during the burst.

If a master loses access to the bus in the middle of a burst then it must re-assert the
HBUSREQX request line to regain access to the bus.

For undefined length bursts the master should continue to assert the request until it has started
the last transfer. The arbiter cannot predict when to change the arbitration at the end of an
undefined length burst.

It is possible that a master can be granted the bus when it is not requesting it. This may occur
when no masters are requesting the bus and the arbiter grants access to a default master.
Therefore, it is important that if a master does not require access to the bus it drives the
transfer type HTRANS to indicate an IDLE transfer.

2.11.2 Granting Bus Access

The arbiter indicates which bus master is currently the highest priority requesting the bus by
asserting the appropriate HGRANTX signal. When the current transfer completes, as indicated
by HREADY HIGH, then the master will become granted and the arbiter will change the
HMASTER[3:0] signals to indicate the bus master number.

Figure 9 shows the cost of arbitration in AHB. The ownership of the data bus is delayed from
the ownership of the address bus. Whenever a transfer completes, as indicated by HREADY
HIGH, then the master that owns the address bus will be able to use the data bus and will
continue to own the data bus until the transfer completes.

20

Time for handshaking

Time for arbitration
T1 T2 T3 T4 T5 T6 7 T8 T9
Mastar asserts i number of ik later Eﬂa;%m?ld %ﬂﬂ;; :I:llr: Addrees samplod and data
raquast < AL Qsens grant > < Q.“‘ sharts when HREADY high "_
Hok | I | | I l
HBUSREQx _ |[] 7
HGRANTX p []
I
HMASTER[2:0) b X #

a
[

HADDR[31:0] p i A i hed 0
i

HWDATA[31:0] . X o (Y
o
It

HREADY f 1\ [] 0 [\| f .

Figure 9

It’s also worth mentioning that although arbitration protocol is specified, arbitration policy is
not. Figure 10 shows how HGRANTx and HMASTER signals are used in a system. Because
a central multiplexor is used, each master can drive out the address of the transfer it wishes to
perform immediately and it does not need to wait until it is granted the bus. The HGRANTX
signal is only used by the master to determine when it owns the bus and hence when it should
consider that the address has been sampled by the appropriate slave.

21

Figure 10

2.11.3 Early burst termination

Normally the arbiter will not hand over the bus to a new master until the end of a burst of
transfers. However, if the arbiter determines that the burst must be terminated early in order to
prevent excessive access time to the bus then it may transfer the grant to another bus master
before a burst has completed.

If a master loses ownership of the bus in the middle of a burst it must re-arbitrate for the bus
in order to complete the burst. The master must ensure that the HBURST and HTRANS
signals are adapted to reflect the fact that it no longer has to perform a complete 4, 8 or 16-
beat burst.

For example, if a master is only able to complete 3 transfers of an 8-beat burst, then when it
regains the bus it must use a legal burst encoding to complete the remaining 5 transfers. Any
legal combination can be used, so either a 5-beat undefined length burst or a 4-beat fixed
length burst followed by a single-beat undefined length burst would be acceptable.

2.11.4 Locked Transfers

The arbiter must observe the HLOCKX signal from each master to determine when the master
wishes to perform a locked sequence of transfers. The arbiter is then responsible for ensuring
that no other bus masters are granted the bus until the locked sequence has completed.

After a sequence of locked transfers the arbiter will always keep the bus master granted for an
additional transfer to ensure that the last transfer in the locked sequence has completed
successfully and has not received either a SPLIT or RETRY response. Therefore it is
recommended, but not mandatory, that the master inserts an IDLE transfer after any locked
sequence to provide an opportunity for the arbitration to change before commencing another
burst of transfers.

22

The arbiter is also responsible for asserting the HMASTLOCK signal, which has the same
timing as the address and control signals. This signal indicates to any slave that the current
transfer is locked and therefore must be processed before any other masters are granted the
bus.

2.11.5 Default bus master

Every system must include a default bus master which is granted the bus if all other masters
are unable to use the bus. When granted, the default bus master must only perform IDLE
transfers.

If no masters are requesting the bus then the arbiter may either grant the default master or
alternatively it may grant the master that would benefit the most from having low access
latency to the bus.

Granting the default master access to the bus also provides a useful mechanism for ensuring
that no new transfers are started on the bus and is a useful step to perform prior to entering a
low-power mode of operation.

The default master must be granted if all other masters are waiting for SPLIT transfers to
complete.

2.11.6 Split transfers

SPLIT transfers improve the overall utilization of the bus by separating (or splitting) the
operation of the master providing the address to a slave from the operation of the slave
responding with the appropriate data.

When a transfer occurs the slave can decide to issue a SPLIT response if it believes the
transfer will take a large number of cycles to perform. This signals to the arbiter that the
master which is attempting the transfer should not be granted access to the bus until the slave
indicates it is ready to complete the transfer. Therefore the arbiter is responsible for observing
the response signals and internally masking any requests from masters which have been
SPLIT.

During the address phase of a transfer the arbiter generates a tag, or bus master number, on
HMASTER[3:0] which identifies the master that is performing the transfer. Any slave issuing
a SPLIT response must be capable of indicating that it can complete the transfer, and it does
this by making a note of the master number on the HMASTER[3:0] signals.

Later, when the slave can complete the transfer, it asserts the appropriate bit, according to the
master number, on the HSPLITx[15:0] signals from the slave to the arbiter. The arbiter then
uses this information to unmask the request signal from the master and in due course the
master will be granted access to the bus to retry the transfer. The arbiter samples the
HSPLITx bus every cycle and therefore the slave only needs to assert the appropriate bit for a
single cycle in order for the arbiter to recognize it.

In a system with multiple SPLIT-capable slaves the HSPLITx buses from each slave can be
ORed together to provide a single resultant HSPLIT bus to the arbiter.

In the majority of systems the maximum capacity of 16 bus masters will not be used and
therefore the arbiter only requires an HSPLIT bus which has the same number of bits as there

23

are bus masters. However, it is recommended that all SPLIT-capable slaves are designed to
support up to 16 masters.

The basic stages of a SPLIT transaction are:

1. The master starts the transfer in an identical way to any other transfer and issues
address and control information

2. If the slave is able to provide data immediately it may do so. If the slave decides
that it may take a number of cycles to obtain the data it gives a SPLIT transfer
response.

During every transfer the arbiter broadcasts a number, or tag, showing which
master is using the bus. The slave must record this number, to use it to restart the
transfer at a later time.

3. The arbiter grants other masters use of the bus and the action of the SPLIT
response allows bus master handover to occur. If all other masters have also
received a SPLIT response then the default master is granted.

4. When the slave is ready to complete the transfer it asserts the appropriate bit of
the HSPLITx bus to the arbiter to indicate which master should be regranted access to
the bus.

5. The arbiter observes the HSPLITx signals on every cycle, and when any bit of
HSPLITx is asserted the arbiter restores the priority of the appropriate master.

6. Eventually the arbiter will grant the master so it can re-attempt the transfer. This
may not occur immediately if a higher priority master is using the bus.

7. When the transfer eventually takes place the slave finishes with an OKAY
transfer response.

Multiple split transfers

The bus protocol only allows a single outstanding transaction per bus master. If any
master module is able to deal with more than one outstanding transaction it requires
an additional set of request and grant signals for each outstanding transaction that it
can handle. At the protocol level a single module may appear as a number of different
bus masters, each of which can only have one outstanding transaction.

It is, however, possible that a SPLIT-capable slave could receive more transfer
requests than it is able to process concurrently. If this happens then it is acceptable for
the slave to issue a SPLIT response without recording the appropriate address and
control information for the transfer and it is only necessary for the slave to record the
bus master number. The slave can then indicate that it can process another transfer by
asserting the appropriate bits on the HSPLITx bus for all masters that the slave has
previously SPLIT, but that the slave has not recorded the address and control
information.

The arbiter is then able to regrant the masters access to the bus and they will retry the
transfer, giving the address and control information required by the slave. This means

24

that a master may be granted the bus a number of times before it is finally allowed to
complete the transfer it requires.

Preventing deadlock

Both the SPLIT and RETRY transfer responses must be used with care to prevent bus
deadlock. A single transfer can never lock the AHB as every slave must be designed
to finish a transfer within a predetermined number of cycles. However, it is possible
for deadlock to occur if a number of different masters attempt to access a slave which
issues SPLIT or RETRY responses in a manner which the slave is unable to deal
with.

Split transfers

For slaves that can issue a SPLIT transfer response, bus deadlock is prevented by
ensuring that the slave can withstand a request from every master in the system, up to
a maximum of 16. The slave does not need to store the address and control
information for every transfer, it simply needs to record the fact that a transfer request
has been made and a SPLIT response issued. Eventually all masters will be at a low
priority and the slave can then work through the requests in an orderly manner,
indicating to the arbiter which request it is servicing, thus ensuring that all requests
are eventually serviced.

When a slave has a number of outstanding requests it may choose to process them in
any order, although the slave must be aware that a locked transfer will have to be
completed before any other transfers can continue.

It is perfectly legal for the slave to use a SPLIT response without latching the address
and control information. The slave only needs to record that a transfer attempt has
been made by that particular master and then at a later point the slave can obtain the
address and control information by indicating that it is ready to complete the transfer.
The master will be granted the bus and will rebroadcast the transfer, allowing the
slave to latch the address and control information and either respond with the data
immediately, or issue another SPLIT response if a number of additional cycles are
required.

Ideally the slave should never have more outstanding transfers than it can support, but
the mechanism to support this is required to prevent bus deadlock.

Retry transfers

A slave which issues RETRY responses must only be accessed by one master at a
time. This is not enforced by the protocol of the bus and should be ensured by the
system architecture. In most cases slaves that issue RETRY responses will be
peripherals which need to be accessed by just one master at a time, so this will be
ensured by some higher level protocol.

Hardware protection against multiple masters accessing RETRY slaves is not a
requirement of the protocol, but may be implemented as described in the following
paragraph. The only bus-level requirement is that the slave must drive HREADY
HIGH within a predetermined number of clock cycles.

25

If hardware protection is required then this may be implemented within the RETRY
slave itself. When a slave issues a RETRY it can sample the master number. Between
that point and the time when the transfer is finally completed the RETRY slave can
check every transfer attempt that is made to ensure the master number is the same. If
it ever detects that the master number is different then it can take an alternative course
of action, such as:

= an ERROR response
= asignal to the arbiter
= asystem level interrupt
= acomplete system reset

Bus handover with split transfers
The protocol requires that a master performs an IDLE transfer immediately after receiving a

SPLIT or RETRY response allowing the bus to be transferred to another master. Figure 11
shows the sequence of events that occur for a split transfer.

Slave Arbiter MNew master
gigngls changes drives
T T2 split T3 grant T4 address Ts
HCLK | ﬁ
HGRANT
-'I \ I nl. 1'. .'.I |’—
HTRAN[1:0])O(NONSEQ O; sea \Of IDLE)Or NONSEQ O(
J 1 J i f !] \ / \
y VS Vi \Ya¥i Tay,
HADDR[31:0]](_} A Ifo\ A4 m .-O‘-. B O\
HBURST[2:0] .J']
HWRITE _'\}Of \& \ 0 -O.r
Clontrol (A) c B
HSIZE[2:0) { N e / A), control)| XX
HPROT[3:0]
weor I N V|G
/ / \ \ / R
HRESP(1:0] [) seur [Y0) seur [YOX omar [)(X
Figure 11

A split transfer improves bus utilization but may cause deadlocks if it’s not carefully
implemented.

26

2.11.7 Reset

The reset, HRESETNn, is the only active LOW signal in the AMBA AHB specification and is
the primary reset for all bus elements. The reset may be asserted asynchronously, but is
deasserted synchronously after the rising edge of HCLK.

During reset all masters must ensure the address and control signals are at valid levels and
that HTRANS[1:0] indicates IDLE.

2.11.8 AHB AMBA compnents

AHB bus slave
An AHB bus slave responds to transfers initiated by bus masters within the system. The slave
uses a HSELXx select signal from the decoder to determine when it should respond to a bus

transfer. All other signals required for the transfer, such as the address and control
information, will be generated by the bus master.

Figure 12 AHB bus slave interface diagram

27

Figure 13 AHB Slave FSM

AHB bus master

An AHB bus master has the most complex bus interface in an AMBA system. Typically an

AMBA system designer would use predesigned bus masters and therefore would not need to
be concerned with the detail of the bus master interface.

28

Figure 14 AHB bus master interface diagram

Figure 15 AHB Master FSM

AHB bus arbiter

29

The role of the arbiter in an AMBA system is to control which master has access to the bus.
Every bus master has a REQUEST/GRANT interface to the arbiter and the arbiter uses a
prioritization scheme to decide which bus master is currently the highest priority master
requesting the bus.

Each master also generates an HLOCKXx signal which is used to indicate that the master
requires exclusive access to the bus.

The detail of the priority scheme is not specified and is defined for each application. It is

acceptable for the arbiter to use other signals, either AMBA or non-AMBA, to influence the
priority scheme that is in use.

Figure 16 AHB arbiter interface diagram

AHB bus decoder
The decoder in an AMBA system is used to perform a centralized address decoding function,

which improves the portability of peripherals, by making them independent of the system
memory map.

30

Figure 17 AHB decoder interface diagram

2.11.9 AHB bus matrix topology

In addition to shared bus and hierarchical bus, AHB can be implemented as a bus matrix.

Masters

Arbiter

Input
stage

@

Input
stage

Figure 18 AHB bus matrix topology

3. Advanced Peripheral Bus (APB)

stage

Arbiter

Output
stage

Arbiter

M

'

Output
stage

Arbiter

Output
stage

Slaves
- ()
-H- .

<>

Qe
-

The Advanced Peripheral Bus (APB) is part of the Advanced Microcontroller Bus
Architecture (AMBA) hierarchy of buses and is optimized for minimal power consumption

and reduced interface complexity.

31

The AMBA APB should be used to interface to any peripherals which are low bandwidth and
do not require the high performance of a pipelined bus interface.

The latest revision of the APB ensures that all signal transitions are only related to the rising
edge of the clock. This improvement means the APB peripherals can be integrated easily into
any design flow, with the following advantages:

o performance is improved at high-frequency operation

performance is independent of the mark-space ratio of the clock

e static timing analysis is simplified by the use of a single clock edge

e no special considerations are required for automatic test insertion

e many Application-Specific Integrated Circuit (ASIC) libraries have a better

selection of rising edge registers
e easy integration with cycle based simulators

These changes to the APB also make it simpler to interface it to the new Advanced
High-performance Bus (AHB).
3.1 APB Bridge

The APB bridge is the only bus master on the AMBA APB. In addition, the APB bridge is
also a slave on the higher-level system bus.

The bridge unit converts system bus transfers into APB transfers and performs the following
functions:

» Latches the address and holds it valid throughout the transfer.

* Decodes the address and generates a peripheral select, PSELx. Only one select
signal can be active during a transfer.

* Drives the data onto the APB for a write transfer.
* Drives the APB data onto the system bus for a read transfer.

* Generates a timing strobe, PENABLE, for the transfer.

32

Figure 19 APB bridge interface diagram

3.2 APB Slave

APB slaves have a simple, yet flexible, interface. The exact implementation of the interface
will be dependent on the design style employed and many different options are possible.

The APB slave interface is very flexible.
For a write transfer the data can be latched at the following points:
* on either rising edge of PCLK, when PSEL is HIGH

» on the rising edge of PENABLE, when PSEL is HIGH.

The select signal PSELX, the address PADDR and the write signal PWRITE can be combined
to determine which register should be updated by the write operation.

For read transfers the data can be driven on to the data bus when PWRITE is LOW and both
PSELx and PENABLE are HIGH. While PADDR is used to determine which register should
be read.

33

Figure 20 APB Slave interface diagram

3.3 APB State Diagram

The state diagram, shown in Figure 19, can be used to represent the activity of the peripheral
bus.

34

Figure 21 APB FSM

Operation of the state machine is through the three states described below:

IDLE

SETUP

ENABLE

The default state for the peripheral bus.

When a transfer is required the bus moves into the SETUP state,
where the appropriate select signal, PSELYX, is asserted. The bus only
remains in the SETUP state for one clock cycle and will always
move to the ENABLE state on the next rising edge of the clock.

In the ENABLE state the enable signal, PENABLE is asserted. The
address, write and select signals all remain stable during the
transition from the SETUP to ENABLE state.

35

The ENABLE state also only lasts for a single clock cycle and after
this state the bus will return to the IDLE state if no further transfers
are required. Alternatively, if another transfer is to follow then the
bus will move directly to the SETUP state.

It is acceptable for the address, write and select signals to glitch
during a transition from the ENABLE to SETUP states.

3.4 APB Write Transfer

The write transfer starts with the address, write data, write signal and select signal all
changing after the rising edge of the clock. The first clock cycle of the transfer is called the
SETUP cycle. After the following clock edge the enable signal PENABLE is asserted and this
indicates that the ENABLE cycle is taking place. The address, data and control signals all
remain valid throughout the ENABLE cycle. The transfer completes at the end of this cycle.

The enable signal, PENABLE, will be deasserted at the end of the transfer. The select signal
will also go LOW, unless the transfer is to be immediately followed by another transfer to the
same peripheral.

In order to reduce power consumption the address signal and the write signal will not change
after a transfer until the next access occurs.

The protocol only requires a clean transition on the enable signal. It is possible that in the case
of back to back transfers the select and write signals may glitch.

Figure 22 APB write transfer

36

3.5 APB Read transfer

The timing of the address, write, select and strobe signals are all the same as for the write
transfer. In the case of a read, the slave must provide the data during the ENABLE cycle. The
data is sampled on the rising edge of clock at the end of the ENABLE cycle.

Figure 23 APB read transfer

3.6 AHB vs. APB

When talking of the difference between the two, the AHB uses a full duplex parallel
communication whereas the APB uses massive memory-1/0 accesses.

Both the AHB and the APB are on chip Bus standards. The Advanced High-performance Bus
is capable of waits, errors and bursts. The ADH, which is pipelined, mainly connects to
memories.

When comparing the usage, the APB is simpler than the AHB. Unlike the AHB, there is no
pipelining in APB. The APB is mainly proposed for connecting to simple peripherals.
Looking at the AHB and the APB, it can be seen that the APB comes with a low power
peripheral.

It can also be seen that Advanced Peripheral Bus is sometimes optimized for reduced
interface complexity and minimal power consumption for supporting peripheral functions.
This Bus can also be used in union with either version of the system bus.

37

When looking at the features of AHB, it has a single edge clock protocol, several bus masters,
split transactions, single-cycle bus master handover, burst transfers, large bus widths and non-
tristate implementation.

In AHB, the transaction consists of an address phase and a data phase. In case of AHB, there
is only one Bus master at a time.

When compared to Advanced High-performance Bus, the Advanced Peripheral Bus is only
used for low bandwidth control accesses. Though the APB has an address phase and data
phase as like that of the AHB, it comes with a list of low complexity signal.

Figure 24 AHB vs APB

38

4 AHB2APB Bridge

The AHB to APB bridge is an AHB slave, providing an interface between the high-speed
AHB and the low-power APB. Read and write transfers on the AHB are converted into
equivalent transfers on the APB. Because the APB is not pipelined, wait states are added
during transfers to and from the APB when the AHB is required to wait for the APB. Figure
25 shows the block diagram of the APB bridge module.

HCLK -
HRESETn ——»
HTRANS —»

HWRITE —»
State

DFF

HSELAPEBIf —» mackine DFF
HREADYIn —»
® HREADYout -
- HRESP =

E HWDATA = [DFF

HRDATA -
HADDR = DFF
L
Addrass
decode DFF

Figure 25 Block diagram of bridge module

The main sections of this module are:

» AHB slave bus interface

» APB transfer state machine, which is independent of the device memory map

» APB output signal generation.

FPENABLE

PWRITE

PWDATA
PROATA
FADDR

PSELx
signals

APB Bus

To add new APB peripherals, or alter the system memory map, only the address decode

sections have to be modified.

39

4.1 AHB2APB bridge module signals

40

4.2 AHB2APB function and operation

The APB bridge responds to transaction requests from the currently granted AHB master. The
AHB transactions are then converted into APB transactions. The state machine, shown in
Figure 26, controls:

* the AHB transactions with the HREADY out signal

* the generation of all APB output signals.

The individual PSELX signals are decoded from HADDR, using the state machine to enable
the outputs while the APB transaction is being performed.

If an undefined location is accessed, operation of the system continues as normal, but no
peripherals are selected.

Figure 26 State machine for AHB to APB interface

41

The individual states of the state machine operation are described in the following sections:

ST_IDLE

During this state the APB buses and PWRITE are driven with the last values they had, and
PSEL and PENABLE lines are driven LOW.

The ST_IDLE state is entered from:
» reset, when the system is initialized

+ ST_RENABLE, ST_WENABLE, or ST_IDLE, when there are no peripheral
transfers to perform.

The next state is:

» ST _READ, for aread transfer, when the AHB contains a valid APB read transfer

ST _WWAIT, for a write transfer, when the AHB contains a valid APB write
transfer.

ST _READ

During this state the address is decoded and driven onto PADDR, the relevant PSEL line is
driven HIGH, and PWRITE is driven LOW. A wait state is always inserted to ensure that the
data phase of the current AHB transfer does not complete until the APB read data has been
driven onto HRDATA.

The ST_READ state is entered from ST _IDLE, ST _RENABLE, ST WENABLE, or
ST_WENABLEP during a valid read transfer.

The next state is always ST_RENABLE.

ST_WWAIT

This state is needed because of the pipelined structure of AHB transfers, to allow the AHB
side of the write transfer to complete so that the write data becomes available on HWDATA.
The APB write transfer is then started in the next clock cycle.

The ST_WWAIT state is entered from ST _IDLE, ST _RENABLE, or ST WENABLE, during
a valid write transfer.

The next state is always ST_WRITE.

42

ST_WRITE

During this state the address is decoded and driven onto PADDR, the relevant PSEL line is
driven HIGH, and PWRITE is driven HIGH.

A wait state is not inserted, because a single write transfer can complete without affecting the
AHB.

The ST_WRITE state is entered from:

« ST_WWAIT, when there are no more peripheral transfers to perform

ST _WENABLEP, when the currently pending peripheral transfer is a write, and
there are no more transfers to perform.

The next state is:

» ST_WENABLE, when there are no more peripheral transfers to perform

» ST_WENABLEP, when there is one more peripheral write transfer to perform.

ST_WRITEP

During this state the address is decoded and driven onto PADDR, the relevant PSEL line is
driven HIGH, and PWRITE is driven HIGH. A wait state is always inserted, because there
must only ever be one pending transfer between the currently performed APB transfer and the
currently driven AHB transfer.

The ST_WRITEP state is entered from:

« ST_WWAIT, when there is a further peripheral transfer to perform.

» ST_WENABLEP, when the currently pending peripheral transfer is a write, and
there is a further transfer to perform.

The next state is always ST_WENABLEP.

ST_RENABLE

During this state the PENABLE output is driven HIGH, enabling the current APB transfer.
All other APB outputs remain the same as the previous cycle.

The ST_RENABLE state is always entered from ST_READ.

43

The next state is:

ST_READ, when there is a further peripheral read transfer to perform
ST_READ, when there is a further peripheral read transfer to perform

« ST _WWAIT, when there is a further peripheral write transfer to perform

ST_IDLE, when there are no more peripheral transfers to perform.

ST_WENABLE

During this state the PENABLE output is driven HIGH, enabling the current APB transfer.
All other APB outputs remain the same as the previous cycle.

The ST_WENABLE state is always entered from ST_WRITE.
The next state is:

» ST_READ, when there is a further peripheral read transfer to perform
« ST _WWAIT, when there is a further peripheral write transfer to perform

» ST _IDLE, when there are no more peripheral transfers to perform.

ST_WENABLEP

A wait state is inserted if the pending transfer is a read because, when a read follows a write,
an extra wait state must be inserted to allow the write transfer to complete on the APB before
the read is started.

The ST_WENABLERP state is entered from:

* ST_WRITE, when the currently driven AHB transfer is a peripheral transfer

» ST_WRITEP, when there is a pending peripheral transfer following the current
write.

The next state is:

» ST_READ, when the pending transfer is a read

» ST_WRITE, when the pending transfer is a write, and there are no more transfers
to perform

» ST_WRITEP, when the pending transfer is a write, and there is a further transfer
to perform.

44

5. Synthesis and Simulation

For the creation of the AHB2APB bridge, source code from OpenCores, European Space
Agency and ARM was used.

We used the AHB master and APB master from the open source LEON microprocessor.

 LEON is a 32-bit CPU microprocessor core, based on the SPARC-V8 RISC
architecture and instruction set. It was originally designed by the European Space
Research and Technology Centre (ESTEC), part of the European Space Agency
(ESA) and after that by Gaisler Research. It is described in synthesizable VHDL,
the core is configurable through VHDL generics and is used in SoC designs both
in research and commercial settings.

OpenCores provided us with the AHB arbiter code in Verilog, which we translated in
synthesizable VHDL and ARM provided us the ARM Package declaration.

The AHB2APB bridge we have designed consists of two masters, one arbiter, one bridge and
a simple APB memory slave. The AHB slave component is used as the bridge which conveys
the signals from AHB to APB bus.

The design was initially compiled and simulated with Ghdl and GTKWave ave respectively.
The test bench that we used to test the design generates two write transactions and then issues
a read transaction to each location . The simple memory slave component prints a message
each time, that is written to or read from.

The Figures show waveforms of the write and read transactions from the GTKWave
simulation.

45

Figure 27 AHB2APB transaction

Figure 28 AHB2APB transaction

46

In order to also have a schematic view of the AHB2APB bridge and observe a transaction, we
implemented the design on Incisive Formal Verifier. The following figures show some this
implementation.

Figure 29 AHB2APB schematic

47

e Formal Verifier

Eile Edit View Trace Format Cells FormalVerifier Windows Help cadence

@, f}' Send To: @

hrdata

preadyd= pready

priatas g

pratad g

R R R
@ % 1 ohject selected

Figure 30 AHB2APB schematic

Eile Edit Yiew Trace Format Cells FormalVerifier Windows Help cadence

§+ " RERREEER

DD nonoono

@ % 1 object selected

Figure 31 AHB2APB schematic

48

Incisive Formal Verifier

File Edit View Trace Fomat Cells FormalVerifier Windows Help cadence
CEXNOS |BEHESS ¢+ REARUEE
@EZ Tined | = |0 M- pa-| @ B, | Search Times: | Value |- ’3}2 ’ggm % n% %

1= & B

T

T

(8]

Figure 32 AHB2APB schematic

File Edit Wiew Explore Format Windows Help cadence
B | @ & ¥ B t- |E-| ¢ rRERBREEEE MY

Search Mames: | Signal = B i dF || Search Times: | Value ~ |~] %%% ‘@;v

E!‘ Times | = (7.9 ﬂmsvm' .E% Time: S8 |0: 9ms HQ:;;

(Y Easelinev=0

| Cursor-Baseling v = 7 9ms

MName = Cursar =

Figure 33 AHB2APB waveform

49

In order to showcase some of the Incisive Formal Verifier tool features we used the AHB
master VHDL code provided by OpenCores as our Design under test.

The following images show the AHB master schematic view, waveform and FSM

Figure 34 AHB Master schematic

50

File Edit Wiew Expiore Format Windows Help

B % i X B] -mmagum
‘ Search Names: | Signal = - [“ Search Times: | Value « - il i wV

‘F Tited | = lna—msvg_‘nvl IT\me %%IW_Q*'

X0 @ Bageline =0
m Cursor-Baselinew=11.9m3

tddence

Cursar »

Figure 35 AHB Master waveform

51

Figure 36 AHB2APB FSM

The last step for this thesis was to check AHB master for the following properties :

» If the transfer is not finished the transfer type should not change

» If a master requests access to the bus, it should eventually be granted

Figure 37 AHB master Property Pass

52

Figure 38 AHB master Liveness Property fails

Figure 39 AHB master Liveness Property fails - counterexample

53

REFERENCES

[1] ARM, AMBA Specifications (Rev 2.0). Available at http://www.arm.com, 1999

[2] ARM, AMBA University Kit Technical Reference Manual. Available at
http://www.arm.com, 2001

[3] Cadence, Assertion Checking in Simulation (Rev 10.2) . Available with Incisive Formal
Verifier tool installation, 2011

[4] Cadence, Assertion Writing Guide (Rev 10.2) . Available with Incisive Formal Verifier
tool installation, 2011

[5] Cadence, Formal Verifier Reference Manual (Rev 10.2) . Available with Incisive Formal
Verifier tool installation, 2011

[6] Cadence, Formal Verifier User Guide (Rev 10.2) . Available with Incisive Formal
Verifier tool installation, 2011

[7] Cadence, Simulating Your Design (Rev 10.2). Available with Incisive Formal Verifier
tool installation, 2011

54

http://www.arm.com/
http://www.arm.com/

