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Abstract

Reliable computing under unreliable circumstances is the next challenge the comput-
ing community must overcome. To achieve such a difficult task we need to perform
a thorough analysis of the way hardware faults manifest errors to architectural com-
ponents and how such errors affect the applications behavior. In this direction the
first contribution of my diploma thesis is the enhancement of new concepts in an
already existed fault injection tool which was created by another thesis and improved
by mine. The new framework utilized the Gem5 full cycle accurate simulator in or-
der to enable fault injection. The current tool provides a variety of fault injection
methods while it is not limited to models covering radiation or timing induced faults,
but also facilitates an easily extensible tool to support future effective fault models.
Extensive experimentation showed that our GEMb-based fault injection mechanism
was very effective in emulating the behavior of faults in modern high-performance
processors running complex workloads. An additional contribution of my thesis is
the experimental analysis on two different applications: blackscholes and fluidani-
mate. We observed that tolerance to injected faults was highly dependent on the
spatial location of the faults (e.g. registers, program counter, IF unit, etc.) and
on the specific portion of the code affected. To accelerate data gathering and in-
crease simulation speed, we made extensive use of a checkpoint mechanism , called
DMTCP (Distributed MultiThreaded CheckPointing), while the whole procedure was
automatized to execute on a distributed
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Kotd tn dudpxetar twv TeheuTtaieny SeEXAeTIOV EUACTE UHPTUPES TNG TEOMOXTIXNG vamTU-
&ng mou epgaviCouy 1 enldoon xou 1 AeltoupywdTNTa Twv enelepyactov. To péyedog
Twv TeavlloTop yewwidnxe Spopoatixd amd ta 10uy ota 32vu. AuTo TO QUVOUEVO Elval
ouuPatéd pe TNy mopatrhenon tou Moore o apriudc Twv TeavlicTop Tou uTopolY Vo To-
rodetnioly ot éva LY XEXPWEVO EUPadoy dimhactdletar avd 18 pfvec. Auth| n ovdntudn
EYEL OONYNOEL TOUG UMY OVIX0UC UTOAOYLOTMY OTO VO GYEDIACOUY TO TEPITAOXES apy(L-
TEXTOVIXEC OL OTOlEC Oyt HOVO Tapelyay eupelar AstToupyxdTNTA dAAX AElToLEYO)CUY GE
VMAGTERES CUYVOTNTES XoU YUUNAOTERT| TOROY 1) EVERYELIS.

Hopdho autd auTH oL GUVEYOUEVT TPOODOC YTUTNOE Ot évay ‘Tolyo‘. AuZdvovtog TnV
oLy VOTNTA ActToupyiog ot yenoylorowwvTog Baditepo oTddL TapoyETEUoTG BEATIOVOUE
NV €nidooY TOU GUOTALNTOS, oAAd aTh 1 Owdixacia yivetar GO xaL O oTOUTNTLXY)
To Barditepa 0TddI TOPOYETEVOTS ATOTEAOVY EVay Bacixd TEOTO Yo VoL BEATIWOELS TNV
amod00T 10U oUCTAUATOS. AMAG auTY| 1) Pedtinon eCagaviCeton otay 1 xaducTtépnon Twy
Flip-Flop yivelr ouyxplown pe tny xoductépnon twv hoywoy tuhev Emmiéov Baditepa
oTddta mapoyéteuong avidvouy to CPI xou £youv apvnuind aviixturo oty enidoon tou
ovothuatoc. O dhhog TpdTog Bedtinone g enldoong Tou cucTAUATOC ATay 1) Uelto
Tou peyédoug Tou tpavliotop Yo va avgniel n ouyvotnTa Aettovpyiag. Auth n uédodog
€pTace ot 6pid TG xodwg elte To uéyedog Tou TpavlioTop Yivetow cuyxpiowo ue To
UEYEDOC TWV ATOUMY oL 1) CUPTEELPORE TOU BeV Elvon VIETEQUIIOTIXT ElTE TO X00TOg
TopoywyNg evog TéToou TpavlioTop elvol amayopeuTIXG.

To mporyoluevd odfynoay Ty TeYVOAOYIXT X0WOTNTA Vo UeTaf3el amd povomenva
ovoTAuaTa ot ToAUTUEN VAL ANNoL QorvOUEVO TOU TUAAOTERA OEV elyay xopio emtidpar-
on ota xuxhouota Théov xaductepolv Ty e€éMEn g teyvoloyiog. H ducavdioyn
emTdyuvon TV TeavlioTop o clYXEWON UE TNV ToyUTNTA TNG MVAUNG Onuiolpynoay To
Aeyouevo Power Wall. "Eva gawvéuevo mou €yive oxduo mo €viovo e ta mohundpr-
VO CUGTAUATY AOY® TNG Emxovwviag PeTald Tou xdle muprva. H cucowpeuon tov
TpavlioTop adEncay TNV Mooy T EVERYELNS Xt BNULoveYUNXE €vo GARO QUVOUEVO OVO-
uolopevo Power Wall.

Extoc anéd ta mponyolueva 1 opixpuvet| tou TeavlloTop adince tnv miavotnTa
EUPAVIONG ToEOOXOY hordwdv. Autd tar Addn €youv un TEOBAETOUEVT CUUTERPLPOR XAl
ametho0V TNV AELTOURYIXOTNTA TWV CUCTNUATOY TNG ETOMEVNG YeVIdS. O Twpvég Te-



YVOROYIEC YENOWOTOW0V ETTAEOY UAMXO Yl Vo EYYUNUoUY TNV owo T Asttoupyio Tou
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CLUCTHUOTA ToL 0Tolor AELTOLEYOUV €LOTLOTA XATw Amd U o&lOTIGTEC CUVITXES.

Enopéveg aflomotol unoloylopol xdte and avallomioteg cUVIXES elvor 1) ETOUE-
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UTOPECOUUE EVIGY OCOLUE To XATIAANAL OTuEld TOL GUCTHUTOS.
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Introduction

During the past decades we witnessed a terrifying development in the performance and
functionality of processors. The consecutive decrease of the transistor size conveying
us from 10pum feature size to today’s 32nm . A trend speculated by Moore’s Law,
doubling the processors transistors every 18 months. This multitude led computer
engineers to design more complex processor architectures which not only gave great
functionality but also functioned at higher frequency and lower voltage.

However this constant progress has hit a wall. Increasing clock frequencies and
using wide issue architectures has worked well to improve processor performance,
but recently has become more challenging. Deeper pipeline is one of the key tech-
niques to increase the clock frequency and performance, but the benefit of the deeper
pipeline is eventually diminished when the inserted Flip-Flop’s delay is comparable
to the combinational logic delay. Moreover deeper pipeline stages increase Cycles Per
Instruction (CPI) and negatively impact the system’s performance. The other key
technology technique - shrinking the transistor size to increase the clock frequency
and integration ability has eventually reached it’s limit. Either because of the physi-
cal limit when the size of transistors approaches the size of atoms, or because of the
fabrication cost prohibiting further progress.

The current solution for the addressing problems was to shift from uni - core to
multi-core processors. However secondary phenomena that on previously generations
had little to no effect halt the system performance halted the evolution. The dispro-
portional speed-up of transistors, compared to that of DRAMSs, created the so called
“memory wall”. A phenomenon that has become greater on multi-core processors due
to the communication between the cores. Their continuous accumulation increased
circuit power density to an unbearable degree, a phenomenon called “power wall”.

Besides the previously mentioned scaling of the CMOS feature size increase the
probability of transient faults (radiation-induced faults which are caused by cosmic
particles that enter the atmosphere). These faults have an unpredictable impact
on gate delay and consequently lead to delay failures threatening the functionality
and operational reliability of next generation systems. Current technologies use ex-
tra hardware for error detection and correction which not only is expensive but also
posses a great proportion of the total area of the chip. These techniques are very strict



and detect - correct all faults without taking into consideration the effect of the fault
on the primary output. As the previously mentioned obstacle becomes more intense
and current solutions are not satisfactory researchers are working on building reli-
able systems which operate under unreliable circumstances (dysfunctional hardware
components or dysfunctional operation due to transient faults) . Another important
aspect is the decrease of process yield. Accumulation of more components for a single
system means that there is a greater chance that part may contain corruptions, hence
lead to a corrupted output. This problem is solved inefficiently by disabling such
modules,however this has an disadvantageous impact on the systems cost and area
utilization. Besides all these , power efficiency can be achieved by enabling processors
usage in the sub threshold levels.

Reliable computing under unreliable circumstances is the next challenge the com-
puting community must solve. To achieve such a difficult task we need to perform
a thorough analysis of the way hardware faults manifest errors to architectural com-
ponents and how on their turn affect the applications behavior. The analysis of the
faults may help us construct an hierarchy of target-modules that need to be enhanced
in order to achieve robustness.

To achieve a high grasp of the previously mentioned phenomenon new tools had
to be constructed and the existing ones to be extended by adding new functionalities.
The main contribution of this thesis is extending such a tool. In order to study the
effects of transient faults on various applications G. Tziantzioulis has developed such
a framework on top of Mb5. This framework was extended by this thesis in order to
cover our needs.

The other contribution of this thesis is to automatize the experimental procedure
on a distributed system in order to speed up the process of experimenting. Finally
evaluation of 2 applications (blackscholes, fluidanimate) included in the Parsec Bench-
mark Suite on an unreliable environment.

This document is constructed in three blocks. The first one introduces a theoret-
ical background, the second describes our framework and the laboratory setup and
the third part outlines the experimental evaluation.

In the first part we discuss the concept of dependability (Chapter 2) , various
fault models which are used widely for research purposes (Chapter 3). Chapter 4
describes some characteristics of application which demonstrates tolerance towards
faults. Chapter 5 describes fault injection methods and chapter 6 describes the ben-
efits of a simulator.

In the second part starting at chapter 7 we discuss the fault model which this
work is based on, On chapter 8 the tool is demonstrated and on chapter 9 methods
which accelerated the experimental procedure are discussed.

The third part chapter 10 is an analysis of the experimental results for each
application separately.

Finally, chapter 11 presents the conclusion of this work and directions for future
work.



Introduction To the Reliability Theory

In the previous section we discussed the need for fault tolerant design in the near
future systems. In this section we will introduce some simple aspects of Reliability
theory in order to obtain a better grasp on how faults are categorized and how they
are connected to Power consumption.

3.1 Dependability

Dependability is an ‘umbrella’ term that comprises core attributes that describe par-
ticular dependability-related aspects of relevant performance attributes.

3.1.1 The Concept of Dependability

Depending on the applications different emphasis may be put on different aspects of
dependability. According to the application behavior dependability may be viewed by
different viewpoints which enables the attributes of dependability[5]. The attributes
are the following:

Availability Describes the extent to which an item is operational and able to per-
form any required function or set of functions if a demand is placed on it. It
is derived from reliability and maintainability (where hardware failure is con-
cerned)

Reliability Measures the component continuity, hence how long does the component
function as it is constructed to function

Safety The non occurrence of catastrophic and unexpected consequences.
Confidentiality The non occurrence of unauthorized disclosure of information.

Integrity The non-occurrence of improper alteration of Information.
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Maintainability Measure the ability to perform maintenance under given condi-
tions and indicates the ease with which an item can be repaired. A high de-
gree of maintainability means that repairs consume little time and effort, on
average. Maintenance support describes various aspects responsible for mainte-
nance, e.g., skill of repair personnel, location of repair facilities, traveling time,
time taken to procure spare parts, etc.

An association of integrity and availability with a combination of authorized ac-
tions together with confidentiality lead to Security.
Reliability

The reliability of a system is the probability function R(t), defined on the in the
internal [0, oo], that a system will operate correctly with no repair up to time t. The
reliability is defined as a function o failure rate A(t) .Another commonly variable used
to describe the systems reliability is the Mean Time To Failure

R(t) = e~ Jo X0t (3.1)

MTTF = / " Rt (3.2)

3.1.2 Factors of Dependability

A system may not always perform the function it is intended for. The causes and
consequences of deviations from the expected function of a system are called the
factors to dependability [32] :

Fault is a physical defect, imperfection, or flaw that occurs within some hardware
or software

Error is a deviation from accuracy or correctness and is the manifestation of a fault.
Failure is the non-performance of some action that is due or expected

When a fault causes an incorrect change in a machine stage, an error occurs.
Although the fault may remain localized in the affected code and alter the function-
ality of a certain circuit, multiple errors can originate one fault site and propagate
throughout the system.

3.1.3 Fault categorization

A fault as a deviation in a hardware or software component from its intended func-
tion can arise during all stages in a computer system design process[32]: Specification,
design, development, manufacturing, assembly, and installation throughout it’s op-
erational life. Most faults that occur before full system deployment are discovered
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and eliminated through testing techniques. Faults which are not removed on this
stage may reduce the dependability of the system. Hardware- Physical faults are best
classified based on their duration:

Permanent faults Caused by irreversible component damage, such as a semicon-
ductor junction that has shorted out because of thermal aging, improper manu-
facture, or misuse. Recovery can only be accomplished by replacing or repairing
the damaged component or subsystem.

Transient faults triggered by environmental conditions such as power-line fluctu-
ation, electromagnetic interference, or radiation. These faults rarely do any
lasting damage to the affected component, however the may lead the system to
an erroneous state. Transient faults occur far more often that permanent ones,
and are far harder to detect.

Intermittent faults Caused by unstable hardware or varying hardware states. They
can be repaired by replacement or redesign.

3.1.4 Methods for dependable Computing

In order to achieve dependable computing there is a need for a combined utilization
of a set of methods-mechanisms [18] :

Fault prevention How to prevent a fault to occur.

Fault tolerance How to ensure that under presence of faults a service will achieve
the system’s functionality.

Fault removal How to reduce the number as well as the seriousness of faults

Fault forecasting How to forecast the upcoming faults and the consequences of
them

3.2 Power Consumption - Reliability

Although this thesis does not concentrate on power consumption aspects a brief in-
troduction will be done in order to understand how the consumption of the system
affects its reliability.

3.2.1 Methods of Decreasing Power Consumption

The following power model help us in the abstraction of the problem and keep an
convenient distance from a more detailed model which would add more information
about hardware components and would be difficult to comprehend. The model is
taken from [12]
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P:Ps+h(Pznd+Pd)
Pd:CerQf

e P is the static power (Includes the power to maintain basic circuits active, keep
clock running and memory in power saving sleep mode)

e h =1 if circuit is active or 0 if circuit inactive.

e P4 is the frequency independent active power.(consists of part of memory and
processors power as well as any power used that can removed by putting the
system into system sleep state and is independent of system supply voltages
and processing frequencies)

e P, is the frequency dependent active power.

o (s is the switch capacitance

V' is supply voltage

e f is operating frequency

Dynamic Frequency Scaling

Dynamic Frequency Scaling (DFS) the processor frequency is lowered and thus the
power consumption is decreased since frequency dependent power is related with the
system frequency, however as a major disadvantage the cycle period is increased and
this means worse performance. Moreover since the execution time is increased the
probability of a fault also increases.

Dynamic Voltage Scaling

Dynamic Voltage Scaling (DVS) the supply Voltage is decreased. Due to the square
relationship between supply Voltage and frequency dependent active Power the over-
all gain is significant. However as the voltage supply is decreased the energy of a
circuit decreases and becomes more vulnerable to smaller energy particles and so the
probability of a fault is greater

Dynamic Voltage and Frequency Scaling

Dynamic Voltage and Frequency Scaling (DVFS) as the name implies decreases both
frequency and Voltage supply however due to the previously stated reasons the prob-
ability that a fault is going to manifest is greatly increased.
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3.2.2 Power Consumption - Faulting Probability
The relationship between fault probability and the frequency is the following [28]:

®A—-f)

A(t) = A 10T Fi) (3.5)

Ao is the nominal failure rate per time unit.

e b > ( is a constant

f is the frequency scaling factor

fmin is the lowest operating frequency

The failure rate is maximal at fmin/Vmin : A\az = \,10°
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Fault Modeling

As mentioned before faults are sorted into 3 main categories. Permanent, Transient
, Intermittent faults. In this chapter we will demonstrate some mathematical models
which correspond to the behavior of each fault.

4.1 Permanent Faults

Permanent faults usually occur because of a deflecting hardware component. Many
models have been used in order to create tests for such faults. There will be demon-
strated the most commonly used Single Stuck at faults and bridging faults.

4.1.1 Single Stuck at Faults

The single stuck at fault model is one of the most widely used fault models in practice.
There are 2 types of stuck at faults:

1. stuck at 1 (s-a-1) for which he faulty net takes permanently the value 1.

2. stuck at 0 (s-a-0) for which the faulty net takes permanently the value 0.
The model has some basic assumptions :

1. The fault only affects the interconnection between gates.

2. Only one line in the circuit is faulty

3. The fault is permanent set to 0 or 1

4. The fault can be in the either in the input or in the output of the gates

5. The fault does not affect the functionality of the gates in the circuit

Because of its simplicity this model offers many advantages in fault modeling.
This is the reason why this model is the most used in the industry. Some of the
advantages are the following:
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e The model covers a large portion of manufacturing defects.

e [t comparably easy to develop algorithms to generate test patterns for stuck at
faults detection. Current already developed algorithms are very efficient

e It results in a reasonable fault number. At most 2n. This number can be
furthered reduced with fault collapsing techniques.

e Some other fault models can be mapped into a series of stuck at faults.

However the stuck at faults does not cover all permanent fault types.

4.1.2 Bridging Fault Model

A bridging fault model corresponds to a shortcut between a group of signals. This
is usually modeled at the gate or transistor level. Bridging faults are usually found
in lines which are placed physically close by. A bridging fault can be 1-dominant,0-
dominant. They can also be classified as non-feed back bridging faults and feedback
bridging faults. Non feedback faults are usually combinational and stuck at fault
testing may detect them. Feedback faults produce memory states.

4.2 Transient Faults

As stated before as systems are scaled down to the very deep sub micron range
they are increasingly sensitive to radiation strikes or other similar single event upsets
(SEU), which are capable of producing transient (soft) errors. Their impact ranges
from o minor glitch to a major crash. The behavior depends mainly on interacting
physical factors, such as :

e Where The SEU occurs
e How much energy has the strike circuit have at the current state

e The strike time relevant to the system clock cycle.

4.2.1 Single Transient Fault Model

This model is targeting Synchronous digital circuits composed of logic gates, Flip
Flops , Register transfer level (RTL). C' = (1,0, 5,0, A, So) is a sequential circuit
with & logic lines. A single transient fault(STF) is given by f(I/p,z,s) and defines
the next properties [27]

1. it causes line 1 to be stacked at the opposite of the current value (flip) for one
cycle.

2. The new state of C is z,s where x € [ and s € §
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The total explicit number of STFs in C is 2k|l||S| . Although the method gives a
numerous of faults the problem is not intractable. There is no relationship between
an STF and the associate state of C. The STF is a fault that occurs in state x by
chance.

Although there is a huge similarity between STF and SAF (stuck at faults) the
main difference is that an SAF remains after it is manifested and is not associated
with specific states.

Combinational Circuits

In such cases STF is similar to an SAF and is reduced to a more simple form f(1/p, z).
Assuming that C' has one output z, k lines and n inputs. Assuming that all STFs
are equiprobable. The error probability perr(z) is the total number of possible errors
seen at output z divided by the total number of STFs.

Sequential Circuits

In such cases STF becomes a bit more complicated. Besides the output of the sequen-
tial circuit there is an internal state which controls the functionality of the circuit.
Suppose that z is the output of the circuit and ¢ is a wire that controls the next stage.
the next table lists a set of classes which will help us understand the model. After

STF class | Class definition | Number of STF's in class
FaultTypel | No effect neither | Calculate STFs of Circuit
on z Nor on ¢ under examination that do
not effect the circuit at all
FaultType2 | Error on 2z no | Calculate STFs of Circuit
effect on next | under examination that ef-
stage(c) fect only =z
FaultType3 | Error on ¢ but | Calculate number of STFs
no effect on cur- | of Circuit under examina-
rent result z tion that effect only ¢
FaultType4 | Error on both z | Calculate number of STF's
and ¢ of Circuit under examina-
tion that effect both ¢ and
z

Table 4.1: Fault Classes for Sequential Circuits

calculating all the number of STF's for each class each easy to find the probability
for each fault class by dividing the faults of the class with the total number of STF
in all classes. After Calculating the probabilities a new FSM must be constructed by
taking into consideration all the new faulty transitions.
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4.3 Intermittent Faults

Intermittent faults is a malfunction of a device or a system that occurs at intervals,
usually irregular in a device that normally functions correctly [19]. An intermittent
fault is caused by several contributing factors, some of which may be random , which
occur at the same time. The more complex the faulting mechanism is involved the
greater the probability of an intermittent fault.

A simple example of intermittent fault is a borderline electrical connection in a
wiring component (bridging fault) because of 2 conductors may be touching each other
leading to a increase in temperature. An application may fail to initialize a variable
which is required to be initially 0 if the program is executed under circumstances that
memory is cleared before executing, it will malfunction on the rare occasions that the
memory is not stored before loaded.

This faults seemingly to occur randomly for a period of time [¢1,¢2] and the
occurrence is strongly related to the state of the device and the state of the application.
These factors make intermittent faults difficult to model. Most model use SAF for a
period of time in order to model the behavior of Intermittent faults.
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Self-Tolerant Applications

Usually, a program executes properly only when the produced architectural state
is correct on a cycle-by-cycle basis. A looser (though still fairly strict) notion of
program correctness commonly adopted by reliability researchers is that the visible
memory state after program completion is correct in its entirety. Such strict notions
of program correctness are appropriate for traditional workloads that are numerically
oriented. However, a growing number of important workloads produce results that
have a higher (often qualitative) user-level interpretation. These computations are
been referred to as soft computations. An example of a soft computation is the pro-
cessing of human sensory information common in multimedia workloads. Another
example is cognitive information processing, an emerging application domain that
applies artificial intelligence algorithms for reasoning, inference, and learning to com-
mercial workloads. While data corruptions can change the numerical result of soft
computations, they often do not change the user’s interpretation of those numerical
results. Consequently, faults that would otherwise be deemed unacceptable from a
numerical standpoint may in fact be tolerable (or even imperceptible) from the user’s
standpoint. Systems that can identify and exploit such error resiliency at the user
level offer new opportunities for fault tolerance optimization.

5.1 Soft Computing Characteristics

In the past, researchers have observed soft computing characteristics and proposed
exploiting them for reduced energy consumption [24, 2, 3, 25| as well as for fault
tolerance in ASIC design [1, 23]. Three important characteristics of soft computations
make them resilient to error: redundancy, adaptivity, and reduced precision [22].

Redundancy Soft computations that are iterative or that exhibit reduced preci-
sion often contain some degree of redundancy. These redundant computations
contribute to the application result,but may not improve answer quality appre-
ciably. Programs with redundant computations are more error resilient because
the redundancy can mask faults.
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Adaptivity The possibility of error has been taken into account during the design
of many soft computing algorithms . This is particularly common in those that
compute on noisy or probabilistic data. Such soft computations include code
to detect certain forms of error noisy or probabilistic data. Such soft computa-
tions include code to detect certain forms of error, and adapt the computation
accordingly. Due to their self-healing nature adaptive codes are naturally error
resilient.

Reduced Precision Reduced Precision: Soft computations often have precision re-
quirements that are lower than the data types supported by the programming
environment / hardware architecture. These soft computations are resilient to
errors that modify data values within the precision tolerance, as described ear-
lier. Furthermore, they are tolerant to errors whose magnitude decay as the
errors propagate through the computation.

5.2 Define Program correctness

These attributes offer a less strict definition of program correctness because of the fact
that soft computations in comparison with traditional numerical-oriented computa-
tions exhibit an increased resilience to faults. Five definitions of program correctness
are listed below in increasing strictness as stated in [22]:

1. Architectural state is numerically correct on a per-cycle (or per multiple-cycle)
basis.

2. Output state (i.e., computation results visible at program completion or during
system calls) is numerically correct.

3. Output state is numerically correct within some tolerance.
4. Output state is qualitatively correct based on higher-level interpretation.

5. Output state is qualitatively correct based on higher-level interpretation within
some tolerance.

Definitions I,IT are widely used for evaluating program correctness in existing fault
tolerance researches. The remaining definitions are less strict and are appropriate for
soft computations. Even though definition III is numerical, it allows for a slight error
resiliency. That may be possible because results are computed in a greater precision
than necessary. Definition IV applies to applications which have a higher level of
interpretation than the numerical stand point. Finally definition V is quiet similar
to definition IV but allows for some error even at the interpretation level.

One major disadvantage of the previous definitions is that all of them underesti-
mate other factors of reliable systems. Many faults may not have an impact to the
output of the program but may in fact propagate to other application causing them to
have different results . Moreover if these faults are propagated on important system
applications (OS) the results may prove to be destructive. In addition, faults could
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possibly prolong the execution time of an application without altering the output, for
example more iterations on an iterative method. Increasing the execution time of a
real time application can lead to a fatal error while increasing and the possibility of
other errors to manifest.
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Fault Injection

After introducing the aspects of dependability, fault-tolerance, correctness of a sys-
tem in this chapter we will represent Fault Injection a technique to evaluate it. Fault
Injection Is defined as the dependability validation technique that is based on real-
ization of the controlled experiments where the observation behavior of the system is
present of faults, in explicit induced by the deliberate introduction of faults into the
system [32, 6]. Fault tolerance is measured in both electronic hardware and software
systems by using fault Injection. Hardware may be injected with faults into the sim-
ulations of the system as well as into implementation. Software faults can be injected
in the simulation of a system.

Moreover, fault injection is split into execution and simulation based. The first
the system is functioning and some fault creation mechanism are used. The execution
then is observed to determine the behavior of the system. The second model a model
of the system is created and faults are introduced into that model. The model is then
simulated to find the effects of the fault. These methods are usually slower however
easier to change.

Furthermore from another viewpoint fault injection technique’s can be grouped
in another two categories, invasive and non-invasive. The former one contains mech-
anism which leave a footprint after a fault is injected. This footprint may be fatal
for real time applications because the footprint may delay some executions. . Non
invasive mechanisms are those which do not leave a footprint and the fault injected
system does not realize the corruption.

6.1 Fault Injection Categories

6.1.1 Hardware-Based Fault Injection

Special designed hardware allows fault injection in the targeted system. Usually the
faults are injected into the Integrated Circuit (IC) pin level. The system traditionally
is injected with stuck at , bridging, transient faults, and after the injection the overall
behavior of the system is studied. The system under examination is subjected into
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some kind of interference to produce the faults [4]. The hardware based fault injection
has two types of fault injecting techniques.

Forcing technique: The fault is injected directly into the circuit without any dis-
connection of the parts .

Insertion technique: A special device replaces a part of the circuit which injects
faults to the system.

Advantages

1. Hardware fault injection can access locations which are difficult to access by
other means.

2. The technique is great for systems which need high time resolution

3. The experiments are fast. Runned in near real time giving the opportunity to
run many experiments and having statistically reliable evaluation of the system.

Disadvantages

1. Hardware fault injection introduces the system in damage risk.
2. Many devices are used limiting the accessibility of fault injection
3. Special purpose hardware is required in order to inject faults.

4. Expensive in terms of cost

Tools

e AFIT[6]: Pin level fault injection system produced by the Polyethinc University
Of Valencia (Spain)
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e RIFLE[6]: Pin level fault injection system made at University of Coimbra,
Portugal

e FOCUSI6]: A chip level fault injection system developed at the University of
[llinois at Urbana-Champaing (USA)

e FIST[6]: A heavy ion radiation fault injection system developed at Chalmers
University of Technology (Sweden)

e MESSALINE [6]: A pin level fault forcing system developed at LAAS-CNRS,
France.

e MARS [6]: A time triggered fault tolerant distributed system made in Technical
University of Vienna (Austria)

6.1.2 Software-Based Fault Injection

Nowadays software faults (bugs) are probably the major cause of system failures.
Software based fault injection is a method of assessing the consequences of hidden
bugs. In most cased this technique involves the modification of the software executing
on the system. All kind of faults may be injected from the memory to registers.
Software fault injection has a deep connection the implementation details, and
may address the program states as well the communication and the interactions. The
system is runned with faults in order to examine the behavior of the system
Software injection may be non intrusive if the timing of the application under test
is not time relevant. On the other hand if the timing is involved in the application
then the required time of the injection may disrupt the result of the application.

Advantages

1. This technique can target applications and operating systems which are difficult
to be targeted by using hardware fault injection.

2. Experiments are running in almost real time, giving the opportunity to run a
big number of experiments.

3. Special Purpose hardware is not required.

Disadvantages

1. Limited fault injection places. The lowest level of injecting the fault is at the
assembly instruction.

2. Modification of the source code in order to support the fault injection, so the
executing code is not the same code that runs in the field.

3. It is very difficult to model Permanent Faults.
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Tools

BONDI[6]: A fault Injection tools for COTS applications developed at Politec-
nico di Torino (Italy).

XCEPTIONJ[10]: A software fault Injection tool for dependability analysis im-
plemented at University of Coimbra (Portugal).

MAFALDA[14]: A fault injection tool for real time COTS developed at LAAS-
CNRS, Toulouse (France).

DOCTOR[15]: An integrated tool developed at University of Michigan (USA)

6.1.3 Simulation-Based Fault Injection

The simulation Based Fault Injection tools involve the creation of simulation model
of the system under analysis including a detailed model of the processor in use.The
simulator is usually developed in hardware description language such as Verilog -
VHDL.

Advantages

1.
2.

Simulation fault Injection can support all level of abstraction.
No intrusion is conducted in the simulated System

Great support of fault models and fault injection mechanisms.
Does not require special purpose hardware.

Can model all kind of faults (permanent, transient, intermittent).

Disadvantages

1.
2.

Implementation needs a lot effort and time.
Time consuming.

The accuracy of the results depends on the goodness of the developed model
and of the abstraction level of the simulator.

Models may not include all the possible design faults that can be present in a
real system
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Tools
e VFIT: A fault injection toolset, develop at University of Valencia (Spain).

MEFISTO [21]: A tools using VHDL models to conduct fault injection devel-
oped at University of Technology (Sweden).

ALIEN [26]: A tool based on mutation techniques developed at LCIS-ESISAR,
valence (France)

VERIFY [29]: VHDL fault injector developed at University of Erlangen-Nurnberg
(Germany)

6.1.4 Hybrid Fault Injection

The hybrid approach combines two or more fault injection techniques in order to gain
more controllability - accessibility or other attributes.For example a fault injection
technique combined with the Simulation based Fault injection gains in terms of acces-
sibility an observability. On the other hand a combination of Hardware and software
fault injection combines the accuracy of the hardware injection with the versatility
of the software injection.

Tools

e LIVE [6]: Hybrid hardware/software fault injection tool developed at Ansaldo-
Cris (Italy)

e A software/simulation-based fault Injection developed at Chalmers University
of Technology (Sweden)

6.2 Categorization From Another Viewpoint

Fault injection methods may be categorized based on their abstraction level. To
be more precise faults may be injected to any abstraction level of the system. The
abstraction levels are considered as ”"black boxes”. The level of abstraction is directly
analogous to the volume of a black box; the more complicate the functionality of a
black box, the higher its abstraction level.

Experimentation in system’s dependability, fault detection and fault recovery
mechanisms may be verified by injecting faults in any level of abstraction. Researchers
prefer to work on low levels in order to achieve optimal accuracy. However as men-
tioned before (Hardware based fault Injection) problems may arise from such a choice.
Consequently there is a great interest to investigate how faults propagate to higher
level mechanisms in order to create methodologies for fault injection to these levels.

The following taxonomy as given in [31] presents a categorization of faults based
on their abstraction level. It can be categorized into 2 main categories circuit level and
functionality level. As the name imply circuit level describe a low level abstraction
and the functionality category describe a higher level of abstraction.
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Circuit: A physical viewpoint of the processor is considered.

e Device : Focuses on transistor and other circuit elements. Hardware fault
injection on devices is achieved with radiation or other physical stress
methods. Simulated fault injection needs an analog Simulator.

e Gate : Stuck at fault model is used in order to inject gates (AND,NOR,NOT etc).
Sometimes more accurate models are used.

e Basic Block: The abstraction level of this method is high. Faults are
injected in entire "units” such as register file, adders etc.

e Chip Focuses in the chip’s I/O boundary

Functional: The circuit description in this category is not used however the func-
tionality of a unit is used.

e Micro-operation: Focuses in micro-instruction and faults are injected at
data transfers and micro sequencing.

e Macro-operation: The ISA is targeted and the instruction word is hit with
faults.

e System: Faults are inserted in memory and in Processors I/O.

e Network: Communication methods are targeted.

6.3 Our Choice

After carefully studying past implementations and publications in the are of fault
injection we concluded that the hybrid model, simulation based fault injection com-
bined with software based fault injection suits our purposes the most. To be more
precise we adopted full system simulations which serve our purposes. Using a full
system simulator we can evaluate the impact of faults in large widely used workloads.
The software-based fault injection serves the purposes of which thread/application
will be inserted with faults. However we tried to keep minimized the alteration of the
source code. More information will be given later in the document.

Simulation provides the maximum controllability of all previous mentioned meth-
ods in both spatial and temporal manner. Moreover it enables to study applications
while running under real circumstances in the presence of OS and other applications.
Another key factor for pushing us towards this choice is the observability that simu-
lations offer. By tracing the behavior of the system before and after a fault injection
can provide many useful information.

Simulation based fault injection is a non intrusive method and can provide statis-
tics and logs of great detail. In addition our choice is open source so we can alter the
modules on each experiment to match our desires.

Finally we try to nullify the time overhead of the simulation by running many
experiments in parallel and using smart checkpointing. Only simulation based tech-
niques offers such an attribute since the installation cost is none , hence many exper-
iments may be runned concurrently.
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The simulator we chose to extend with fault injection was Gem5. More information
about the simulator will be given in the next section.
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Full System Simulations

7.1 Introduction

A full system simulator is a computer architecture simulator that simulates an elec-
tronic in such level of detail that complete software stacks for real time systems can
run on the simulator without any modification. A full system simulation provides
virtual hardware that is independent from the hardware of the host computer. The
full system simulator model typically provides virtual processor cores, memory, inter-
connection networks, etc.

Due to these characteristics full system simulators can run operating systems
without the need to modify them. This provides a great opportunity to test innovative
ideas on a simulator and after provide them on real computers.

One of the "disadvantages” of full system simulators is that the more detailed
information we include in the simulator the more time it executes.

7.2 Simulation Attributes

The past decades simulators have shown an increasing amount of interest. This is
reasonable because simulator offer the ”ability of testing” with almost no cost. New
cache coherence protocols may be tested in a simulator to see the performance of the
protocol and if the results are acceptable the protocol may be implemented in real
hardware.

As Jakob Engblom states a simulator is ”just software” and offers many advantages
compared to a real machine[13].

1. Configurability All possible "hardware” configuration may be used. Hard-
ware resources do not place a constraint on a simulator.

2. Extendability The simulator can be extended with any "new” modules we
wish (DRAMS,MEMORY)

3. Controllability The execution of the simulator can be stopped - restarted,
thus complete control of the simulation must be offered.
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4. Determinism A simulator is completely deterministic. (Behavior must be the
same as if it was a real computer)

5. Globally synchronous Multiple processors, multiple devices, multiple net-
works all can be stopped at the same time and get a global snapshot of the
system

6. Checkpointing The state of the system can be written in the disk and restored
at any time.

7. Availability Creating a new machine is a matter of copying the setup. There
is no need to produce hardware prototypes.

8. Inspectability The state of the simulator can be viewed and monitored without
affecting the simulator.

9. Sandboxing The simulator environment is completely isolated. No external
variable can affect the execution of the code.

The previous mentioned attributes create a perfect environment for a system de-
sign. The coexistence of Configurability with Extendability give the opportunity for
many designers to surpass the current technological limits and hardware barriers.
Controllability,Inspectability,Globally synchronous give the opportunity to have full
knowledge of the simulating system during its execution. Checkpointing and Deter-
minism give produce a perfect system for debugging. Create a checkpoint before the
"bug” restore from there until the bug is fixed.

A major feature for both the industrial and academic community is the availability
of the simulated system. After the initial cost of producing the simulator the dupli-
cation comes with no cost nor in budget nor in time. This is feature is used in thesis
in the fullest for mitigating the time overhead of the simulation by running multiple
experiments in parallel . More information about the setup of the experiments is
going to be given later in the document.

7.3 Gemb

For the purposes of our research we used and extended the Gemb simulator[9, 20].
Gemb is described from its main site as ”a modular platform for computer system
architecture research, encompassing system-level architecture as well as processor
micro-architecture”

Gemb is a full system simulator which is the merge of the best aspects of the M5
and the GEMS simulators. M5 provides a highly configurable simulation framework,
multiple ISA and diverse CPU models. GEMS extends these feature with flexible
memory system, cache coherence protocol and interconnect models. Until now it
consists of about 180k lines of code (C++,Python) and is freely distributed under
the BSD style license and has no dependency to any commercial or restrictive license
software. These features make Gemb ideal tool for research purposes.
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Object Oriented design encapsulates Gemb5’s flexibility. The ability to construct
configurations from independent objects leads to advanced capabilities such as multi-
core and multi-system design. All basic simulation components in the gemb simula-
tor are SimObjects and share some common behaviors for configuration, initializa-
tion,statistics and serialization(Checkpoint). SimObjects represent concrete hardware
components (processor cores,interconnect elements, etc).

Every SimObject is represented by two classes. One in Python and one on C++
which derive from SimObject base classes present in each language. The python
class definition specifies the SimObject parameters and is used in the script based
configuration. The configuration provides mechanisms for instansiation, naming and
setting parameter values. The C++ classes handles the SimObject state and behavior.
All this are feasible by using SWIG which exports information from the C++ class
to the Python class and thus to the configuration script.

Along with the configurability of Gem5, four different CPU models are provided
each of them lie to a specific point in the speed vs accuracy spectrum. Atomic Simple
is a Single IPC CPU model, Timing Simple is similar but also simulates the timing
of memory references, InOrder is a pipelined in order CPU, and O3 is a pipelined
out-of-order CPU model.

Besides the four CPU models Gemb includes two different memory system models.
Classic and ruby. The classic provided by M5 is fast and easily configurable memory
system while the RUBY model from GEMS provides a flexible infrastructure capable
of accuracy simulating a wide variety of cache coherence memory systems. Moreover
gembH can operate in two modes

System Call Emulation (SE) In this mode gem5 emulates most common system
calls. Whenever the program executes a system call, gem5 traps and emulates
the call usually by passing it to the host OS. Currently there is no thread
scheduler in SE mode so threads must be statically mapped to a core limiting
its use with multi-threaded applications

Full System (FS) In this mode gemb support an environment for running an OS.
This includes support from interrupts exceptions 1/O devices. FS improves the
simulation accuracy and variety of workloads that gemb supports. Running
benchmarks in FS mode produces more realistic results.

Apart from the previous because of Gemb’s uniform API across object types allows
to interchange similar simulated objects. The simulation can start with a Simple
functional CPU (in order to speed up the initialization process of the experiment ,
even boot the machine (FS)) and then change to a more detailed model from which
statistics and results.

Many ISAs are supported by Gemb, including Alpha, MIPS,. ARM, Power,
SPARC and x86. The simulator’s modularity allows these different ISAs to be plugged
into the generic CPU models and the memory system without having extra overhead.
However some combinations of ISAs and other components are not working.

All the above features leaded us to chose Gem5 as the most suitable simulator for
implementing the fault injection framework. Although other full system simulators
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supported fault injection our framework is unique because no only it covers a large
amount of errors but also provides high timing accuracy. Finally it is provided by
free-software license enabling modification and experimentation by anyone.
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Generic Processor Fault Model

After explaining the reasons why we chose Gemb5 as the base of our fault injection
Tool in this section we provided an overview of the fault model we based our imple-
mentation. In general providing a sufficient fault model is almost impossible. The
sufficiency of the model is measured after it’s creation with experimental and histor-
ical data which are published in literature.

Yount and Siewiorek developed a generic fault model [31, 30] for the register file
within a processor. Johnson, Cutringht and DeLong [11] measured the sufficiency of
the model through simulations. The generic behavioral-level fault model describes
the faulty behavior of a general purpose, implementation independent processor .

The model consist of seven locations where faults can manifest.

1. Register File

Program Counter

Control Unit/Instruction Decode
Bus

ALU

Fetch and execute

Ne vk W

Memory Mapped Peripheral Functional Block

The framework that we developed covers 4 of this places (1,2,3,5). A more detailed
description for each fault place will be given. excerpts from the following text are
taken from [11] where a detailed presentation of the model can be found.

8.1 Register File Fault Model

8.1.1 Register Fault Model

The Register fault model represents faults that propagate to the registers of a pro-
cessor defined by the programmers model or even special purpose registers.
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where

Any register visible to the programmer’s space or any special purpose register of CPU
may be a possible candidate for a corruption

when

Corruption can occur at an instruction boundary.

what

Regarding the value that is going to take the faulty place there are 4 possible scenarios:

1. Missed load all or part of a register is not loaded when it should be

Ry, + expr = Ry, + (expr & (mask((w —1)...0))) (8.1)

2. Extraneous load (6.2) Part of the register or even the whole register is loaded
when it should not be.

Ry < expr = R; < expr 3(j # k) (8.2)

3. Level change in storage. The value of the register is @ with a mask value and
stored to the register (often referred as the bit flip model)

Ry, = Ry & (mask{(w — 1)...0)) (8.3)

4. Al 0/1 (6.4) Assign all bits of a register to 0 or to 1

R, = R, @ Ry, .
R, = R, P Rk (8.5)

8.1.2 Read/Write Register Selection Fault Model

The read/write Selection fault model represents an error that propagates to the de-
coding stage. The decoding stage erroneously selects a given register other than the
correct one.

(R, < Riop Rj) = R, < (R, op R;) x#1 (8.6)
(R, <+ R;op Rj) = Ry < (Riop R,) x#j (8.7
(Ri < R, op Rj) = R, < (Riop R;) z#k (8.8)
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Where

Instructions during the fetch and decoding stage.

When

Corruption can occur at an instruction boundary.

What

The corruption that will propagate to read/write error are shown in the following
equations:

instr_fetch(addr) =
instr_fetch(addr)
)
((x —a —1)#Fmask((i + a — 1)...7))#(1Q0)) (8.9)

instr_fetch(addr) =
instr_fetch(addr)
S
(((z =b = j)#mask((j +b—1)..7))#(j@0)) (8.10)

where x is the instruction width, i/j is the starting position of input/output register
selection filed, a/b is the register selection field width, v@0 stands for repeating zero
(0) v times and stands for concatenate.

8.2 Program Counter Fault Model

The Program counter (PC) fault model covers errors which propagate to the program
counter of the CPU

Where

The processor’s Program Counter register.

When

Corruption can occur at an instruction boundary.

What

There are three scenarios on how the structure’s value can be corrupted:

1. Missed Load : All or part of a register is not loaded when it should be.
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PC < expr = PC < (expr @ (mask((w — 1)...0))) (8.11)

2. Level Change: in storage The value of one or more bits in the register is com-
plemented.

PC = PC & (mask{(w —1)...0)) (8.12)

3. All 0/1 :Assign the value of all zeros and all ones to the register

PC = PC & PC (8.13)
PC = PC® PC (8.14)

8.3 Control Unit/Instruction Decode Fault Model

The Control Unit/Instruction Decode fault model covers corruptions of similar type
to the read/write register fault model and mainly refers to corruption of the opcode
field.

Where

Any location where an instruction may reside (i.e. memory, instruction register).

When

Corruption can manifest at an instruction boundary or on a memory reference.

What

The corruption that will result in a fetch/decode error is described in equation :

instr_fetch(addr) =
instr_fetch(addr)
S
(((z — ¢ — k)QO)#mask((k + ¢ — 1)...k))#(kQ0)) (8.15)

Where k is the starting position of the operation code field and ¢ is the width

of the operation code. The values of k, ¢ are not constant and depend of the given
instruction.
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8.4 ALU Fault Model

The ALU fault model covers corruptions in the ALU module of the processor, based
on a instruction formats such as :

D <« Si0pSs (8.16)
D < mem_read(Addr) (8.17)
mew_write( Addr, Data) (8.18)
S1, Sy, (Label) (8.19)

Where 8.16 is a general format for arithmetic instructions such as add $Ry $Rs1 $Rs,
, 8.17/8.18 demonstrate general formats for memory reads/write and 8.19 demo state
general branch instructions.

Where

At the Execution state of the processor.

When

Corruption can manifest at an instruction boundary.

What

Depending on the executed instruction the fault manifest in a different way.
1. Arithmetic instruction:

e Part of the operation is not completed:

D + expr = D + (expr & (mask((w — 1)...0))) (8.20)

e Level change in storage. The value of the result (D) is @ with a mask
value and stored to the result (often referred as the bit flip model)

D = D @ (mask{(w —1)...0)) (8.21)
e All 0/1 (6.4) Assign all bits of the result to 0 or to 1
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D=D&D (8.22)
D=D&D (8.23)

2. Write/Load instruction : The fault propagates to the calculated address of the
read /write:

e A part of the source/destination address is not computed.

Addr < expr = Addr < (expr & (mask((w — 1)...0))) (8.24)

e The value of the address is @ with a mask value and stored to the address
(often referred as the bit flip model)

Addr = Addr & (mask((w — 1)...0)) (8.25)

e All 0/1 Assign all bits of the source/destination address to 0 or to 1
Addr = Addr @ Addr (8.26)

Addr = Addr & Addr (8.27)

3. Branch instructions. In this case the condition of the branch is flipped.
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Our Implementation.

In the introduction we gave a brief overview of the problem that arise with new tech-
nologies and how the impact the reliability of the system. Furthermore we discussed
the fault types and some fault models and how the faults propagate to outer abstrac-
tion levels. Creating realistic error models and characterizing errors will enable us to
design solutions in order to preserve the current levels of system’s robustness.

In order to asses the impact of faults to each abstraction level new tools had to
be reinvented or existing tools had to be extended. Such a case is Gemb a full system
,cycle accurate simulator with broad usage across the world for performance analysis
that we presented in section 6.3. To avoid recreating a simulator we extended Gemb
with fault injection capabilities following the General Processor fault model described
in chapter 7. The result is a configurable framework for studying the effect of faults
in a processor.

The framework was developed mainly using C++ and in some places Python.
The configuration interfaces is exported to the user by employing the SWIG library.
So a uniform model is created for configuring and the fault injection framework and
the rest of the simulator capabilities. It must be mentioned that the framework only
supports the ALPHA isa in full system mode although an older implementation exists
which supports bots SE and FS mode. The current fault injection framework targets
multi-threaded applications runned on realistic circumstances (full OS support ), since
SE does not fully support multi-threaded applications because of the luck of a thread
local storage implementation (TLS) and a scheduler we implemented the current
framework only for FS. Porting the code of the framework for other ISA’s does not
require extensive modification as the ISA depended portions of the framework is used
for disguising the processes/threads , the user/privileged mode execution and the
parser of the Supported ISA for fault injection during execution stage.

In the following sectors we will describe the fault injection framework and present
implementation details.
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9.1 Introduction on the idea of WWW (W)

Fault injection attributes can be divided into 3 basic categories [17].
e Where: The location of the injected fault.
e When : The time of the fault manifestation.
e What : The nature of the fault, as well as its effects on the fault structure.

Besides these three categories we created one more category in order to gain more
controllability over the fault injection framework and be able to target specific por-
tions of an application with different kind of faults. This attribute is the software
based fault injection of our hybrid model. We tried to minimize the extend of this
part of the model so that the applications under investigation will have minimized
changes.

e Which : Which Thread/application is going to manifest the injected fault.

9.1.1 Where

A very important aspect that we need to clarify when creating a fault injection sce-
nario is the location of the fault e.g which modules are going to be targeted. A good
method is a top down approach. We begin by selecting the high level unit, in other
words specifying which core, then we proceed with internal modules and in the end
select a specific bit which is going to be modified. Common locations are general
purpose registers, pipeline stages (fetch, decode , execute).

The location of the fault s of crucial importance since it "bounds” the possi-
ble errors that can propagate throughout the system. An error in a register (inte-
ger,floating) will affect the internal storage of the processor and in the case of hitting
a special purpose register the fault may alter the state of the processor. On the other
hand an error in a memory location will affect the internal storage of the system and
may affect the execution and the output of the process that uses this content.

9.1.2 When

Another important aspect of the fault injection infrastructure is the timing of the
injection thus the time when the fault will be manifested. Faults can be set to occur
on the value of a system variable, such as a specific address (PC address) or can be
scheduled to a) a more software approach like :

1. the number of executed instruction of a specific tread/application
2. the number of executed instructions of a specific core
3. the cycles that has thread/application executed on a specific core

4. the total instructions/cycles executed by all cores since the start of the frame-
work
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The timing of the fault is closely related with the values of ”Which”,” Where”. More
information are going to be given later on the document.

9.1.3 What

These fault injection instrumentation variable will describe the nature of the fault;
more specifically how the structure’s value will be corrupted. As faults manifest in
different ways , based on their cause, we need to use different models for each type
of hardware fault. The most common way to model permanent faults is the stuck-at
model where a signal is permanently set (stuck) to one (1) or zero (0) . Transient faults
are modeled using the bit-flip model where a bit’s value is flipped to its complement

9.1.4 Which

A software aspect of our fault injection framework. Which threads/applications is
going to be injected with a fault. Each thread/application which is going to be
injected with a fault executes an instruction and is inserted into a group of faults.
This is achieved by extending the ALPHA ISA with one more instruction. This
instruction is executed by the application/thread.

Moreover the value of the attribute which describes which instructions/ticks are
going to be taken under consideration for defining the behavior of ”When”

9.2 Implementation

Having explained the aspects of fault injection instrumentation, we will now present
the general form of the implementation details. For the development of our tool
we adhered to the object oriented approach of the Gemb5 simulator. The framework
is composed of classes that define different fault types and fault queues where the
objects are stored for quick access and easy manipulation. Moreover due to the fact
that faults are scheduled for a specific thread/application or a group of threads and
applications we needed a class that stores information for all threads/applications
that have enabled fault injection called ThreadEnabledFault. This class, with the
aid of the cpuExecutedTicks class (9-1), keeps track of all the needed information for
each core and each thread that has enabled fault injection. It is worth mentioning
that the alpha architecture cannot distinguish between thread and applications and
treats them with the same way.

The hierarchy of faults types that our framework currently supports is depicted in
Figure 9-2 . All faults objects derive from the InjectedFault class which contains the
basic variables for fault injection as well as the generic attributes of a fault. A core
component of fault injection framework is the queue structure. All faults described
at the input file are inserted in 4 queues, based on their attributes; execution, fetch
,decode and other. The queue class provides public functions for inserting, removing
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ThreadEnabledFault

& MagiclnstInstCnt : intenger Executed Ticks By This Core
& MagicInstTickCnt : intenger & instrFetched : intenger

& MagicInstVirtual Addr : Addr thread executes on this core|@ instrDecoded : intenger

& Relative : bool 1 number of cores & instrExexuted : intenger

@ threadld : intenger & ticks : intenger

& myld : intenger & _name : String

& cores : std map CpuExecutedTicks

Figure 9-1: ThreadEnabledFault - cpuExecutedTicks

and searching for a fault. In order to improve performance the faults are kept in a
descending order thereby decreasing the average search time.

Finally all the previously mentioned information are encapsulated in a wrapper
class called Fi_System. The Fi_System class derives from the SimObject /MemObject
class. Fi_system is initialized at the configuration file and is responsible for initializing
all information necessary for the framework after reading the fault injection input file.
The initialization of the framework is done on the beginning of the simulation and
after restoring from a checkpoint. More information about the checkpoint and the
input file are going to be given later in the document. A general hierarchy scheme of
our framework is presented in 9-3

To enable fault injection in specific threads a new instruction was added into
the Alpha ISA called fi_activate_inst(int id).The usage of the instruction is to
enable/disable the manifestation of faults for each thread. For this to be achieved
we had to exploit the Process Control Block (PCB) address which is unique to each
application/thread. When a thread executes fi_activate_inst(int id) for first time
the instruction enables fault injection for this thread by creating an object Thread-
EnabledFault and attaches it to the last index of the array. The index is stored using
a hash table which uses as a key the PCB address. Quick access is provided to the
thread information by refraining from searching an entire array each time. When the
simulator is running on each cycle the PCB address is read and the hash table returns
index corresponding to this thread if -1 is returned then the current thread has not
activated the framework and so the the fault injection code is not executed. Moreover
with the help of an already implemented function ,the inUserMode() function which
returns true if the processor is currently in user mode, the framework is restricted to
be used only in user mode code.

Another feature of our framework is “Relative Fault Injection”, that is, faults
can be set to manifest relatively to the value of a processor variable. To enable
relative fault injection an extra instruction has been added to the ISA, namely
get_Pc_address(),. The get_Pc_address() instruction is used to set a relative
point for a fault injection. When executed by the processor it updates the informa-
tion of this thread by storing the new information to the correct index of the array.

Finally a third instruction is created ¢nit_fi_system() which initializes our frame-
work. When the instruction is executed all stored information of our framework is
reset, the input file which contains a description of the fault is read from the begin-
ning. This helps for injecting different faults in different places and if the instruction
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Injected Fault

ready: bool

where: string

when: string

what: string

thread: string

relative: bool

faultType: InjectedFaultType
timmingType: InjectedFaultTimmingType
timming: uint64_t

valueType: InjectedFaultValueType
value: uint64_t

——

CPU Injected Fault
@ cpu: BaseCPU *
@ tcontext: int

bbbbbbbbbbb

CPU o0o Injected Fault

« cpu: BaseO3CPU *

« tcontext: int

‘\““““““‘~J\

Execution Stage Injected Fault

@ cpu: BaseO3CPU *
& tcontext: int

Register Fault PC Fault
@ register: int

Memory Injected Fault
int: register

pMem: PhysicalMemory *
int: offset

Decode Stage Injected Fault

& cpu: BaseO3CPU *

@ tcontext: int

bbb

Fetch Stage Injected Fault

@ cpu: BaseO3CPU *
& tcontext: int

Register Selection Fault

X = - - -
- = srcOrDst:RegisterDecodingInjectedFaultType
2 regToChange: int
=

changeToReg: int

‘ General Fetch Fault |
I 1
L J

Figure 9-2: Fault Classes

is coupled with the right configuration options a checkpoint is created right before
the initialization of the framework.

9.2.1 Where

Our implementation supports fault injection on registers, fetch, decode, execute stages
on each core separately. All supported places of our implementation are shown 9.1.
All faults in the implementation are described in an a deterministic way, however
statistical injection is easily implemented with the usage of python scripts and the
configuration file.

Memory faults are relative to the value of the register. To be more exact the stored
value of a register is read and the offset is added afterwards the value is transformed
from a Virtual Address to an Physical Address.Finally the block which is referenced
by this Physical address is injected with a fault

9.2.2 When

The implementation provides three different options for the timing of the manifes-
tation simulation ticks, fetched instructions or the value of the PC in a CPU. The
value of the manifestation can be absolute ( i.e. distance from the first appearance
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Gemb

;

Fi_System

NN

ThreadEnabledFault FaultQueue

cpuExecutedTicks

Figure 9-3: General View of Framework

of the instruction fi_activate_inst(int id) or relative to a simulation milestone
which is different for each thread. The milestone is achieved with a new instruction
get_Pc_addr(). When a thread executes this instruction all the counters of the
thread are set to zero and the PC address of the current instruction is stored. The
when attribute depends on the values of which and where, more information on how
instructions are counted is explained on table 9.3.

9.2.3 What

In our implementation a module’s/structure’s value can be corrupted in a variety of
ways. The supported methods of affecting the value of the structure that is injected
are:

e Immediate Value Assign: the provided constant to the structure. XOR:
XOR the current value with the given constant.

e Bit-Flip: Change the specified bit to its complementary value.
e AllO: Set all bits to zero (0).
e Alll: Set all bits to one (1).

Taking into account the possible changes and enhancements of fault models in the
future, our implementation for the corruption of the targeted structures was design
to be as modular as possible.
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Faults Status
Register File V
Program Counter vV
Memory Unit Vv
\/
X
X

Control Unit

Fetch & Decode Logic Block

Internal Data Bus, Internal Address
Bus, and Internal Control Bus, as well
as the External Bus Interface

ALU V
Memory-Mapped Peripheral Devices X

Table 9.1: Modules where fault injection is supported

Timing Methods | 1 o i | Addr || relative
Fault Type

Memory
PC
Register
Fetch
Operation Code
Register Decoding
Execution

S
S
S
S

Table 9.2: Trigger Mechanisms for each Fault Type

9.2.4 Which

The final attribute of our implementation is "which” and may be the most difficult
to comprehend. Each fault described in the fault injection input file has an id. The
id is not unique for each fault so there is the option to create group of faults (faults
with the same id). When a thread executes the fi_activate_inst(int id) instruction
the id is stored, again one or more threads may execute the instruction with the same
id (group of threads with the same id). In this way we achieve to destine a group of
faults to a group of threads.

The which attribute gives the ability to test many software relaxed reliability
schemes. To be more precise faults may be destined to hit a thread which executes
insignificant code compared to other threads and errors may not affect the output of
the application.

9.2.5 Checkpointing

As referred to a previous section simulations offer many advantages. One of those
was the ability to retrieve a snapshot of the state of the system stored to the hard
drive and retrieve from that point on another time. Although Gem5 already provided

45



Which Option

Where Option D ALL

ID Only the cycles spent in | All cycles that this core
this core by the thread | has spent executing any
are taken into considera- | thread that has enabled
tion in order to count if | fault injection are taken
the fault must manifest. | into consideration in or-
This applies for the in- | der to count if the fault
structions. must manifest. This ap-
plies for the instructions
ALL All  cycles that this | All cycles spend in any
thread has spent in | core for any thread that
any core are taken into | has enabled fault injec-
consideration in order | tion are taken into con-
to count if the fault | sideration in order to
must  manifest, the | count if the fault must
same applies for the | manifest. This applies

instructions for the instructions

Table 9.3: Trigger Mechanisms for each Fault Type depending on which-where

checkpointing under some limitations which did not suited our purposes. Check-
point on full system detailed simulation was achieved with two ways. For the first
method CPUS were switched from detailed to atomic mode create the checkpoint
and afterwards switching again from atomic to detailed mode in order to continue
the simulation. For this to be done the pipeline stages on the detailed mode where
flushed prior taking the checkpoint and thus there could be a potential accuracy
loss in our fault injection framework. The other method was achieved by simulating
MOESI_hammer cache coherency protocol. This method did not switched between
detailed and atomic modes however the simulation time increased dramatically and
after the checkpoint was created the system exists and must be restarted from the
checkpoint in order to continue the simulation.

Due to the previous limitations we had to turn to a Linux based checkpoint pack-
age which checkpointed the simulator’s state from an outer scope. After carefully
studying many available Linux based checkpointing packages we concluded to the
DMTCP checkpointing package for various reasons. DMTCP is distributed under
the terms of Lesser GNU Public License (LGPL) and supports checkpointing the
state of multiple of multiple simultaneous applications, including multi-threaded and
distributed applications.Among the applications supported by DMTCP are Open-
MPI, MATLAB, Python, Perl, and many programming languages and shell scripting
languages.

The main reason for choosing DMTCP was based on the ability to take checkpoints
not only inside of the simulator by calling functions given by the API of DMTCP
but also outside of the simulator. The ability to invoke DMTCP inside of the sim-
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ulator gave us the opportunity to keep the already existed checkpointing front-end
of the Gem5 simulator (special instruction added on ISA so that applications may
call a checkpoint internally) and alter the back-end of the checkpointing method (use
the DMTCP API to checkpoint instead). When an application internally created a
checkpoint the simulator exited and when the simulator resumes the fault injection
framework is reset. By doing this we achieve to have a stable point (checkpoint) prior
the portion of code that is going to be injected with faults and every time we restore
from that checkpoint we test another faulting scenario since our framework after the
restoration of that checkpoint resets all counters and reads the input file. By changing
the contents of the input file before restoring the checkpoint we test different faulting
scenarios without re executing the simulator. More information are going to be given
in the next chapter.

Besides the internal checkpointing DMTCP offers the ability to take checkpoints
periodically. After a specified by the user time has passed a checkpoint is created. In
cases of unexpected events, such as power failures, a recent state of the experiment
is kept in order to restore after the failure is fixed. Moreover a checkpoint can be
created manually outside of the simulator by sending a special message to the DMTCP
coordinator.

9.3 Usage-Exporting Into configuration file

Our framework may be consideration as another simulation option and thus can be
described in the configuration file prior execution of the simulation. As an option
to the configuration file the path to an input file is given. This file describes all the
faults that are going to be injected in our simulation. Each line of the file represents
a specific fault and defined the attributes of the fault.

e When : When to inject the fault (format: jtimingType:timingValue;).
e What : What value should be injected and how (format: jvalueType:value;)
e Which : Which thread or threads will execute the fault (format: jID;)

e Where : In which CPU to inject the fault (format: jmodule’s name at the
configuration scripty,)

and the optional fields are:

e Occurrence : How many times should the fault manifest? By default one (1)
- transient fault.

e tcontext : Which Hardware thread is going to execute the fault (Currently
not implemented always 0).
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9.3.1 Register Injected Fault Configuration

The additional required fields for a register fault are:

RegType: what type of register should be fault-injected (format: “int”, “float”,
“misc”).

RegNumber: which register should be injected.

Thus a fault which is going to be injected into a register is described in the input
file as a line with 10 fields:

RegisterInjected Flault When W hat
W hich W here Occ
tcontext RegType RegNumber”endofline” (9.1)

The examples are related on a system with 4 cores which executes an abstract ap-
plication (9-4) with 4 threads. Each thread and the main thread of the application
enable fault injection. All threads have an id. Threadl and Thread3 share the same
id (1) so each fault with which = 1 will be manifested either from thread 1 or thread3.

1. Inject a permanent fault at the first (1) integer register of the first cpu “sys-
tem.cpul” when the PC is 8 + (PC @ magic instruction). After the fault the
register should contain the value 57005. Since the fault is permanent we want all
threads that have enabled the fault injection framework to be able to manifest
the fault so which = 7ALL”.

"RegisterInjectedFault Addr:8 Immd:57005
ALL system.cpul 1 0 int 1"

2. Inject a transient fault at the second thread (thread2) at the first (1) floating
point register of the cpu2 “system.cpu2” when the total cycles of the second
thread executed on the cpu2 are 50000. After the fault the register should
contain the result of the XOR product of 57005 and the initial value.

"RegisterInjectedFault Tick:50000 Mask:57005
2 system.cpu2 1 0 float 1"

3. Inject a transient fault on any core at the second thread (thread2) at the first
(1) floating point register when the total sum of cycles on any core of the second
thread are 50000. After the fault the register should contain the result of the
XOR product of 57005 and the initial value.

"RegisterInjectedFault Tick:50000 Mask:57005
2 ALL 1 0 float 1"
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4. Inject an intermittent fault (occ = 3) at the first (1) miscellaneous register of
CPU4 “system.cpud” when the total fetched instructions on core 4 of thread
4 are 1984 + (fetched instructions @ magic instruction ). After the fault the
register should contain the value 0.

"RegisterInjectedFault Inst:1984 Immd:O0
5 system.cpu4 3 0 misc 1"

PC Injected Fault Configuration

PC faults do not require any additional field so a line in the input file describing such
a fault has 8 fields

PClInjectedFault When W hat
W hich W here Occ
tcontext” endo fline” (9.2)

Examples:

1. Inject a fault into the main thread (id = 0) at the PC register of CPU2 “sys-
tem.cpu2” when the PC of the CPU becomes 4831838348. After the fault the
register should contain the result of the XOR of 2 and the register’s previous
value.

"PCInjectedFault Addr :4831838348
Mask:2 0 system.cpu2 1 0"

Memory Injected Fault Configuration

Memory faults require 2 additional fields

RegNumber: From which register will the framework read the Virtual Address.
Offset: The offset from the previously read address

Examples:

1. Inject a fault to any thread at virtual address read Register(10)4512 of memory
module “system.physmem” when the amount of simulation ticks of cpul is 2000.
After the fault the address should contain the value 3.

"MemoryInjectedFault Tick:2000 Immd:3 ,
ALL system.cpul 1 0 512 10"

It is wise to use registers which we know that contain addresses to the memory (global
pointer,stack pointer etc..)
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Fetch Stage Injected Fault Configuration

Fetch stage injected faults can either be “general”, targeting the whole bit width of
a fetched instruction, or affecting just the Opcode.
Examples:

1. Inject a fault at the fetched instruction of any cpu“ALL” when the first or the
third thread (id = 1) have been executed for 45.000 ticks. After the fault the
instruction should be 540999681 — hex(203F0001).

"GeneralFetchInjectedFault Tick:45000 Immd:540999681
1 ALL 1 0" |

2. Inject a fault at the main thread at the Opcode of the fourth (4) fetched instruc-
tion of CPU1 “system.cpul”. After the fault the instruction’s Opcode should
be 32 — hex(20).

"OpCodeInjectedFault Inst:4 Immd:32
0O system.cpul 1 O"

Decode Stage Injected Fault Configuration

Decode stage faults are targeted at the decoding of source and destination registers
and require an additional field:

regDec: format: whether it should inject the jdestination or source registers;:jwhich
register to change;:jin which register to change;.

Register DecodingInjected Fault When W hat
Which W here Occ
tecontextregDec” endo fline” (9.3)

Example:

1. Change the destination register zero (0), of the instruction that will be de-
coded by any thread on any core after 45.000 ticks have passed since the first
occurrence of fi_activate_inst(int id), to one (1).

"RegisterDecodingInjectedFault Tick:45000 Immd:O
ALL ALL 1 O Dst:0:1"
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Execution Stage Injected Fault Configuration

Execution stage faults do not require any additional configuration field and target
the output of the ALU, if any.
Example:

1. Inject a fault at the execution result of the 10th instruction of the thread2 on
“system.cpu3”, the result should be 10.

"IEWStageInjectedFault Inst:10 Immd:10
2 system.cpu3 1 0"

Note that if the 10th executed instruction is a branch the condition will flip
despite the value of What
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Figure 9-4: Application with 4 threads, each thread activates the fault injection
framework
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Setup of the Workstation Optimization

As mentioned on previous chapters Simulation based fault injection has a main dis-
advantage ,the huge time consumption. In order to overcome this obstacle we runned
many simulations simultaneously on a laboratory .

10.1 Setup of The Laboratory

Our laboratory is consisted of 30 PC. Each PC has an Intel processor (Xeon CPU
E5606) with four cores clocked at 2.13 Ghz and 6Gb of memory (RAM). All PC’s
have access to a network File system and a local file system(10-1). Each PC executes
simultaneously 4 experiments one for each core. So in the best scenario totally 120
experiments are executed simultaneously. Bash script language and other linux tools
are used to control the experiments. To be more exact one script called mainscript.sh
(Figure 10-2)is responsible for initializing the file system of the computer. Copy
scripts ,executable, image disks from the NFS to the Local FS. After everything
is copied and ready mainscript.sh launches 4 child’s which execute a script run.sh
(Figure 10-3).

This script is responsible for all experiments runned by this core on this PC. To
be more exact after the script is launched it checks if the maincheckpoint exists if
not it launches a simulation from the start. The maincheckpoint is a checkpoint
which holds the system state just before fault injection is begun. After that is checks
if a previously experiment has begun but not finished (someone closed the PC) if
this is the case the experiment is finished by launching a simulation from the latest
checkpoint. Finally at this point the script knows that the maincheckpoint exists
and that no unfinished experiment exists so it checks a file stored in the NFS called
experiments.txt. Each line of this file represents an experiment. If the file is not
empty the script locks the file (flock) reads the last line of the file store it to a file in
the Local FS and delete the line from the experiments.txt after that it unlocks the
file (rm -f lock). After all these the script restores the simulator from maincheckpoint
and waits until the experiment is finished. When this is done the script copies the
results to a folder in the NFS.
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Figure 10-1: Topology of the Laboratory

It is worth mentioning that a third script is runned on the background which
checks periodically if an experiment is taking to long (stuck in an infinite loop), if
the output of the experiments exceeds some limits or if another user is logged in
the machine; on both first cases the experiment is killed a message is printed on the
output. On the last case a checkpoint is created for each experiment and after the
experiments are killed in order to respect the other user.

Besides the scripts the following linux tools where used to help the workstation
setup:

e WON (Wake On Lan) : Remotely boot each PC by sending a special Packet to
the Network card.

e SSH (Secure Shell) : Remotely start the experiments (start mainscript.sh to
each PC)

e SFTP (Secure file Transfer) : Used for putting the experiments on the NFS and
for getting the results after they are finished.

o4



Figure 10-2: mainscript.sh responsible for initializing each PC

10.2 Optimization

Apart of running experiments in parallel we tried to reduce the duration of each
experiment individually. This was achieved by two mayor Optimization (Figure 10-
4).

Main Checkpoint : Create a checkpoint just before the fault injection framework
starts. After the checkpoint is created for each new experiment we do not have
to reach that same state (boot, Read Inputs , etc) but we only have to restore
from the previous mentioned checkpoint. Since our framework every time an
internal checkpoint is created it resets everything and reads again the input file
new experiments can be executed.

Switch CPU: Gemb has developed a special instruction which allows to switch be-
tween CPU models. When the instruction is executed the simulator pauses and
a Python script initializes the next CPU model and then restored the execution
with the new CPU model. In some cases except the of the CPU model the
memory model is also switched (atomic - simple). In our experiments after our
framework is stopped (usually after computation are finished and the applica-
tions results are going to be printed) we switch from detailed mode to atomic.
By doing this all computation which do not concern our experiments are been
done faster (atomic offers offers less accuracy so less time).
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Figure 10-3: run.sh responsible for running experiments in each core
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(b) (c)
Figure 10-4: (a) Initially all experiments followed this procedure.(b) Only first exper-

iment boots machine and reads input,(c) all remaining experiments execute from the
saved checkpoint
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Fault Injection Campaigns Experiments

After setting up of the workstation this Thesis conducted a series of fault injection
campaigns in order to test the workstations functionality and the functionality of our
framework. We targeted the broad used benchmark suite PARSEC which offers high

parallel applications.

11.1 Experimental Methodology

In our experiments we conducted 4 series of experiments on each application (11.1).
All applications have been tested using statistical fault injection in order to evaluate
their behavior under unreliable circumstances. Due to the volume of the experimental
results additional python and bash scripts were implemented in order to process the
results.

Execution

Compilation

1 Thread

4 Threads

No Optimization

A set of experiments for
each applications is exe-
cuted with no Optimization
runned with 1 thread

A set of experiments for
each applications is exe-
cuted with no Optimization
runned with 4 thread

Full Optimization

A set of experiments for
each applications is exe-
cuted with full Optimiza-
tion runned with 1 thread

A set of experiments for
each applications is exe-
cuted with full Optimiza-
tion runned with 4 threads

Table 11.1: Experimental test Series

In order to obtain the instrumentation variables for statistical fault injection cam-
paigns we assumed that faults in all structures and bits are equally possible. In addi-
tion we assumed that time occurrences in time follow a uniform distribution. Finally
each simulation was injected with a single fault.

Compilation of the parsec benchmark for the alpha ISA was achieved by following
the instructions from [16]. To be more exact all programs were compiled using a cross
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compiler, version 4.3.2 (gcc/g++). The first campaign of experiments was with no
Optimization while the second campaign was with full Optimization (given by parsec
Makefiles/ Tutorial).

Finally each we executed 4 different campaigns of fault injection for each Bench-
mark. Each fault campaign was composed of 2450 experiments runned in detailed
mode. Each experiment contained a single fault injection and hitted all the threads.
The values of the instrumentation variables were provided by a uniform distribution
function (Python implementation of Mersenne Twister).

11.2 Quick Parsec Overview

Parsec is an open-source parallel benchmark suite of emerging applications for evaluat-
ing multi core and multi processor systems|[8, 7]. It covers a broad range of application
domains such as financial , computer vision, physical modeling, future media, content
based search, deduplication. Table 11.2 list all benchmarks and their characteristics.

Program Apphca‘Flon Parallel Model Working Set | Communication
Domain
blackscholes Fmanm.a : data parallel small low
Analysis
bodytrack Corpputer data parallel medium medium
Vision
canneal Engineering Unstructured unbounded high
dedub Enterprise Pipeline unbounded high
Storage
facesim Animation data parallel large medium
Similarity o .
ferret Search pipeline unbounded high
fluidanimate Animation data parallel large low
freqmine Data Mining data parallel unbounded high
raytrace Rendering data parallel unbounded medium
streamcluster Data Mining data parallel medium low
swaptions Flnanm.a : data-Parallel medium low
Analysis
vips Medl%.l data parallel medium low
Processing
Media o : .
X264 Processing pipeline medium high

Table 11.2: Parsec Benchmarks

59




11.3 Result demonstration

For each campaign of experiments a table is going to be displayed demonstrating the
results while they will be visualized in stacked percentage stats. A quick description
of the row categories:

No difference The fault manifested but did not create any user visible error.

Crashed The fault created an error which leaded the application to abort (segmen-
tation fault, Divide by zero etc.)

Detected A fault was manifested which create a user visible error and the application
handle it. (Only possible if the application has error detection mechanism)

Not Detected The fault created a user-visible error

Not Manifested The error did not manifest either because the fault injection frame-
work was disabled or the CPU was not in User Mode

11.4 Fault Injection In Blackscholes

This section presents the results from our first fault injection campaign. We chose
blackscholes as the first application under test since it is the simplest of all parsec
workloads and initially was used for debugging and testing our framework.

The blackscholes application solves the Black—Scholes formula (11.1) for a set of
data (2-D array a line represents a different set of inputs) and stores the result on an
other array. Finally the results are printed on the output.

C(S,t) = N(dy) S — N(dy) Ke T, (11.1)
In(2)+ (r+2)(T—1)
dy = U<\/T__t> (11.2)
In (£ r— ) (T —
" ($)+(r-%)@-1

=d —oVT —t (11.3)
P(S,t) = Ke "0 — S 4 C(S,1)
= N(—dy) Ke """ — N(—d;) S (11.4)

e N(.) is the cumulative distribution function of the standard normal distribution

T-t is the time to maturity

S is the spot price of the underlying asset

e K is the strike price
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e 1 is the risk free rate (annual rate, expressed in terms of continuous compound-
ing)

e o is the volatility of returns of the underlying asset

Almost all computation are floating point and each solution is arithmetically inde-
pendent from the previous ones. Having that in mind we suppose that fault injection
in registers which hold data (floating point) will only affect the result of one set of
inputs and will not propagate through the entire computation as long as the fault
did not propagated to an exception. On the other hand we do not expect such a be-
havior from an injection which affects other software-related attributes. For example
injecting errors to integers may affect the computation of other solutions, To be more
specific hitting a register which holds the virtual address of the stored input data
may shift the entire computations by some bytes which will alter all the results after
the manifestation of the fault.

Q099990 9090009000
Q099990 990900000
Q009990 990900900

(a) Fault propagation of a fault in a floating (b) Fault propagation of a fault in an integer
point register register

N

Figure 11-1: Last column represents the solution of one equation,the remaining
columns represent the stages until the computation is finished.The red node is a
when an error causes a user visible fault. The gray are correct computations

11.4.1 Unoptimized binary code
1 thread

Table 11.3 demonstrates the results of the first fault campaign while figure 11-2 visu-
alizes the results in stacked percentage chart.

From table 11.3 we can observe that almost 87% percentage of faults where masked
so they did not produce any visible error to the user space. The rest 10% (3% did
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Figure 11-2: Blackscholes: Fault Injection results 1 thread Unoptimized

Corruption | No difference | crashed | detected | not detected | not Manifested

Fault Place # % # % |\# D | # % # %
Integer Register 993  86% | 114 10% |31 2% | 3 0% 20 2%
Floating Register 1144  97% 0 0% |0 0% |9 1% 30 2%

PC address 16 39% | 22 4% |3 7% | O 0% 0 0%

Fetch 9 24% 15 41% |11 30% | O 0% 2 5%

IEW 5 17% 11 38% | 4 13% | 0 0% 9 31%

Total 2167 8% | 162 8% |49 2% | 12 0% 61 3%

Table 11.3: Blackscholes: Fault Injection results 1 thread Unoptimized

not manifest) are splitted into 3 main categories. The first one are those that crashed
the program (8%). The second category are the faults where detected by the error
detection mechanism of blackscholes and constitute the 2% of faults.The third and
last category are the faults which produced an error to the output however the error
detection mechanism did not detect those errors consist the remaining errors although
on a insignificance percentage.

The results create the impression that the blackscholes when executed unoptimized
is in general fault tolerant considering the simplicity of the error detection mechanism
and the absence of other reliability mechanism. However if we separate the results
based on a the corruption structure we can observe that each structure demonstrates
a great variance.

We observe that the floating point register file is the most fault-tolerant of all
structures. Less than 1% lead to an undetected error and none fault in the floating
register file crashed the application. This is a result of fault masking through register
rewriting, unused registers, register liveness. Moreover this low percentage of errors in
the floating register file is a result of the applications behavior. Since the computation
of each result is individual from the computation of other results a fault in a floating
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register is difficult to propagate to other results. Finally floating point exceptions in
tha ALPHA architecture are minimal so we did not expect to have crashed from this
injection although it is possible (divide by zero,etc).

Furthermore the next most fault tolerant structure is the integer register file. Since
almost 12% of injected faults resulted to an error visible to the user space. Although
the same fault masking mechanism of the floating point register file apply to the
integer file the increase of the visible errors is explained by the global usage of some
registers (global pointer, stack pointer frame pointer). Moreover some registers are
used as pointers to the data of the applications and their usage is wide during the
execution of the benchmark, this is the main reason for many crashes..

On the other hand the rest of the injected structures led by the Fetch faults with
71% or user visible errors and followed by the PC address and the IEW faults with
61% and 52% visible errors respectively. These structures are characterized as less
fault tolerant and the possibility for a crash is also high because they are used on
each cycle.

4 thread

Table 11.4 demonstrates the results of the first fault campaign while figure 11-3 visu-
alizes the results in stacked percentage chart.

Corruption | No difference | crashed | detected | not detected | not Manifested

Fault Place # % # % | # % | # % # %
Integer Register 975  86% | 81 8% [26 2% | 3 0% 50 4%
Floating Register 1148 97% 0 0% |0 0% |7 0% 39 3%

PC address 4 10% | 28 68% | 3 8% | 2 4% 4 10%

Fetch 2 5% 23 63% |10 27% | O 0% 2 5%

IEW 16 36% | 15 3% | 5 11% | 0 0% 8 18%

Total 2145 8% | 147 6% |44 2% | 12 0% 103 4%

Table 11.4: Blackscholes: Fault Injection results 4 thread Unoptimized

On this case the results are quit same in comparison with the results of the exe-
cution with 1 thread. A slight increase in shown in the number of faults that did not
manifest at all. This is because gemb serializes the parallel execution of the cores.
Hence in the globally executed code appear portions of code with higher density of OS
code. Since injected faults do not manifest when OS code is executing the probability
for fault to not manifest has slightly increased.

This similarity is quiet reasonable since all computation are pure parallel. There
is no communication between threads and a user visible error can not propagate to
the computation of another thread as long as the application does not crashes.

11.4.2 Optimized binary code

We compiled this application with the Optimization given by the Parsec Benchmark
Suite (-O3 -funroll-loops -fprefetch- loop-arrays -fpermissive -fno-exceptions) while
we added some Optimization referred by [16] (-mcpu=ev67 -mtune=ev67).
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Figure 11-3: Blackscholes: Fault Injection results 4 thread Unoptimized

Corruption | No difference | crashed | detected | not detected | not Manifested

Fault Place # % # % |\ # % | # % # %
Integer Register 994  84% [ 114 9% |31 2% | 2 0% 52 5%
Floating Register 1087  94% 0 0% |0 0% |4 0% 64 6%

PC address 14 38% | 19 50% | 2 5% |0 10% 3 %

Fetch 9 2% | 14 43% | 8 24% | 0 0% 2 6%

IEW 9 28% 8 26% | 4 12% | 0 0% 11 34%

Total 2113 8% | 155 7% |45 2% | 6 0% 132 5%

Table 11.5: Blackscholes: Fault Injection results 1 thread Optimized

In order to avoid repeating the results during my thesis I will explain only the
interesting differences of these experiments. During these campaign of experiments
we expected an increase in the experiments which had a different output since the
purpose of a compiler is to utilize the hardware on the maximum and hide latency’s
between memory and cpu. The main trick behind these Optimization is to bring
something from the memory to a register do as many computations with this value
as possible and the return the value again to the memory. So a higher utilization
of the number of registers is accomplished however this is disadvantageous for the
reliability of the system since the probability for a fault to affect a register which is
used increases thus the probability of a fault to affect the output is higher.

On the other hand the differences between the results are minimal on the optimized
code for example the faults which did not manifest has increases this is reasonable
because although the user code displays a decrease in the execution time the decrease
in the execution time of the Operating System s stable and thus the probability for
a fault to try to manifest during the execution of the Operating slightly increases.
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Figure 11-4: Blackscholes: Fault Injection results 1 thread Optimized

Corruption | No difference | crashed | detected | not detected | not Manifested

Fault Place # % # % |\ # % | # % # %
Integer Register 902 81% | 4 7% |30 3% |1 0% 110 9%
Floating Register 1080  89% 7T 1% |0 0% |6 0% 125 10%

PC address 5 13% | 25 68%| 3 8% |0 0% 4 11%

Fetch 8 27% 7T 23% 110 33% | 0 0% ) 17%

IEW 12 25% 9 18% | 8 16% | 1 2% 19 39%

Total 2007 82% | 122 5% |51 2% | 8 0% 263 11%

Table 11.6: Blackscholes: Fault Injection results 4 thread Optimized

11.5 Fault Injection In Fluidanimate

Smoothed Particle Hydrodynamics (SPH) is a computational method for simulating
fluid flows. The benchmark application computes one time step of a liquid simulation
which solves the Navier Strokes equation using SPH. THe liquid is represented by a
set of of particles which interact with each other. These interactions are short ranged
which enables the usage of a uniform grid to accelerate the determination of which
particles interact.

After computing the density of the fluid at each particles position the acceleration
is calculated. Next collision detection is performed and collision response is done with
a penalty method. Finally the new position and velocity of each particle is calculated
based on its acceleration.

The parallelization algorithm is based on spatial partitioning. As mentioned above
particles are sorted spatially into a uniform grid which covers the entire simulation
domain. The grid is evenly partitioned along cell boundaries in order to produce sub
grids and assign them to different threads. Since particles which reside in adjacent
cells interact with each other multiple threads may need to update cells which lie on
sub-grid boundaries.
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Figure 11-5: Blackscholes: Fault Injection results 4 thread Optimized

Each grid cell has a flag which indicates whether or not it lies on a sub grid
boundary. When a particle in a boundary cells needs its info to be updated locks are
used for that update. In other case which particles do not reside on boundaries locks
are not used since updates will never occur concurrently.

Fault injection was performed on the main functions (ComputeDensities Com-
puteDensities2MT ComputeForces, ProcesscollisionsMT,AdvanceParticlesMt) which
co respond to more than the 90% of the execution time of the benchmarks. Since a
huge amount of floating point calculations are performed in this benchmark and each
particle interact with other particles faults on a particle may propagate to the entire
data space producing crashes or resulting to incorrect results.

On the other hand since the application visualizes the movement of liquids there
is a slight fault tolerance in the results.Furthermore due to the order of floating
point operations, results have slight differences between them if runned with different
number of threads. In order to distinguish the results between valid and faulty we
turned to Mean squared error (MSE) allowing an error to be less than 10~%.

11.5.1 Unoptimized code

On table (11.7) the results of the statistical fault injection are demonstrated. In
comparison with the results of the fault injection in the unoptimized blackscholes
fluidanimate seems to be less tolerant. These can be explained by 2 major reasons.

e The utilization of the systems components is higher. If we observed the system
on a per tick basis we would probably recognize that on each tick fluidanimate
utilized more registers than those that blackscholes did. Hence the more regis-
ters the system uses the more the probability that the fault leads to an error
increase.
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Corruption | No difference | crashed | detected | not detected | not Manifested

Fault Place # % # % |# % | # % # %
Integer Register 865 TT% | 163 15% | 0 0% | 47 4% 52 4%
Floating Register 1069 8% | 74 6% |0 0% | O 0% 76 6%

PC address 8 22% | 23 64% | 0 0% | 1 2% 4 12%

Fetch 8 2% | 21 58% |0 0% | 3 8% 4 12%

IEW 9 27% 11 33% |0 0% | 2 ™% 11 33%

Total 1959  81% 292 11% | 0 0% | 53 3% 147 5%

Table 11.7: Fluidanimate: Fault Injection results 1 thread (Unoptimized)

Figure 11-6: Fluidanimate: Fault Injection results 1 thread No-Optimizations

e Since many calculations are performed on each particle and a possible error on
a particle propagates to the neighboring particles which on their turn compute
wrong results. These effect travels through the entire application and increase
the probability that a fault will be fatal. These explain why many injected
faults on floating point registers crashed the system.

Corruption | No difference | crashed | detected | not detected | not Manifested

Fault Place # % # % |\ # % | # % # %
Integer Register 987 8% | 125 11% | 0 0% |45 1% 3 0%
Floating Register 1186 100% | 0 0% |0 0% | O 0% 5 0%

PC address 10 28% | 13 36% | 0 0% | 3 8% 10 28%

Fetch 4 12% | 21 64% | 0 0% | 4 12% 4 12%

IEW 4 13% | 14 45% |0 0% | 5 16% 8 26%

Total 2191 90% |[173 7% | 0 0% |57 2% 30 1%

Table 11.8: Fluidanimate: Fault Injection results 4 thread (Unoptimized)

Besides the register faults the remaining places (PC,IEW Fetch) have shown a
similar behavior with the behavior of blackscholes. Most of fault injection crashed

67



Figure 11-7: Fluidanimate: Fault Injection results 4 threads Unoptimized

the system which actually shows that the errors behavior of these components is
similar regardless the application management.

11.5.2 Optimized Code

Figure 11-8: Fluidanimate: Fault Injection results 1 thread Optimized

For this campaign we employed the default optimazations of the Parsec benchmark
suite (-O3 -funroll-loops -fprefetch- loop-arrays -fpermissive -fno-exceptions) while
we added the optimazations which are referred in [X] (-mcpu=ev67 -mtune=ev67).
All these optimazations demonstrate a huge reduce in the total number of executed
instructions (almost 60 % reduction)
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Corruption | No difference | crashed | detected | not detected | not Manifested

Fault Place # % # % |# RN | # % # %
Integer Register 80 78% | 167 14% | 0 0% | 90 8% 4 0%
Floating Register 1091 90% | 99 9% | 0 0% | 12 1% 2 0%

PC address 15 47% | 17 53% |0 0% | O 0% 0 0%

Fetch 12 34% | 20 56% | 0 0% | 4 0% 0 0%

IEW 13 35% 4 10% |0 0% 2 5% 19 50%

Total 2011 82% [307 12% | 0 0% | 108 5% 25 1%

Table 11.9: Fluidanimate: Fault Injection results 1 thread Optimized

Figure 11-9: Fluidanimate: Fault Injection results 4 thread Optimized

The negative side effect of the optimization becomes more visible in these appli-
cation since the application is larger and the nested loops on each function of the
application gives the opportunity to the compiler to aggressively optimize the code
by unlooping the loops. The unlooping of the loop has a higher demand in register
utilization which is the main reason for the difference between the results.

Corruption | No difference | crashed | detected | not detected | not Manifested

Fault Place # % # % |# % # % # %
Integer Register 772 67% 270 24% | 0 0% | 90 8% 10 1%
Floating Register 961 80% |216 18% | 0 0% | 10 1% 16 1%

PC address 12 3% | 20 63% |0 0% | O 0% 0 0%

Fetch 15 41% | 18 50% | 0 0% | 3 9% 0 0%

IEW 25 65% 6 1% |0 0% | 2 5% 5 13%

Total 1785  73% | 530 22% | 0 0% | 105 4% 31 1%

Table 11.10: Fluidanimate: Fault Injection results 4 thread Optimized

Moreover the relationship between neighboring particles do not help the applica-
tion to barrier the faults into a single place but on the other hand a fault which affects
the applications data can travel through the entire application. Thus the effect of
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a fault is larger and it is almost impossible for a fault which affects the data of the
application to be masked or stopped on a single place.

Finally the applications computation involve many “bad” floating point compu-
tations (multiplications,divisions) thus a fault which affects bits included in the ex-
ponent portion of a register lead to a great difference between the fault data and the
correct data. These value if it is included in the following computation may lead to
a floating point exception since diving with a great value produces a very small num-
ber which in the end may not be able to be represented by the architectures register
(NAN,INF) the same applies for multiplication.
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Conclusions

After the presentation of our framework and the analysis of the experiments, in the
final chapter we restate our observations and discuss potential future work and con-
clude.

12.1 Conclusion

As we mentioned in the introduction the effort to enhance the performance of digi-
tal systems through the shrinking of the transistor size has a negative effect in the
reliability of the circuit. The increase susceptibility of transistors to cosmic radia-
tion along with the need of reducing the power consumption of a system raise a new
“Wall” in the progress of electronic systems. We approached this barrier by observing
the behavior of applications when introduced to faults in order to invent new fault
tolerance techniques that will preserve the reliability of future systems in acceptable
levels.

In this direction the first contribution of this Thesis is the enhancement of new
concepts in an already existed fault injection tool which was created by another thesis
and improved by this one. The new framework enables fault injection of transient in-
termittent and permanent faults in a full cycle accurate simulator in order to simulate
an unreliable environment while allowing to inject different kind of faults on different
applications/threads while executed on the same system. Moreover it is not limited
to models covering radiation or timing induced faults, but also facilitates an easily
extensible tool to support future effective fault models. Through many experiments
our framework proved to be effective and demonstrated great ability to work with
multiple workloads.

An additional contribution of this thesis is the automation of the fault injection
campaign and the ability to run multiple simulations on parallel on a distributed
system nullified the time consumption disadvantage while creating an ideal environ-
ment for experiments. Finally this thesis experimental analysis presented in chapter
10 helped to validate the correctness of the tool while giving a better insight on the
behavior of applications in an unreliable environment. We observed the difference
between the fault tolerance of CPU components and the effect of the faults on the
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output. Specifically the architectural modules demonstrated diverse fault tolerance
behavior. The inherent reliability can be exploited in order to improve other metrics,
for example power consumption. As proposed in [33] portions of code can be char-
acterized as insignificance . In that way we can use CPUs or computational units
that function in sub threshold voltage to execute segments of code with lower power
consumption thus higher fault probability.

12.2 Future Work

As an enhancement of this work we are interested in experimenting with more appli-
cation and create a fault model which characterize computational portions of code as
significant /insignificant. Moreover as a next step we plan to implement mechanism
for scheduling different code parts in different units/CPUS based on their reliability
or even adopt a software approach; scheduling work to different threads via working
pools. Each thread or group of threads has some malfunctioning components. By
doing all these we can evaluate the effectiveness of each method in terms of power
consumption.
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