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1 Introduction 

The issue of stability is of great importance in analysis and design of structures due 
to the fact that structural members may fail before the exhaustion of their material 
strength. In the area of civil engineering, failure due to stability is mostly 
encountered in steel structural members under different types of buckling (e.g. 
flexural buckling, torsional buckling, sway and non-sway buckling of frames etc.). 
The buckling strength depends on several parameters like, the flexural stiffness of 
the cross sections, the material yield stress, the boundary conditions, the effective 
buckling lengths etc. In most cases, the influence of these factors on the buckling 
strength can be predicted through appropriate methodologies.  

Moreover, the ability of a structure to sustain loads which may cause instability 
effects, depends strongly on the existence of geometric imperfections. In general, 
geometric imperfections develop in structural members due to a variety of reasons 
as e.g. manufacturing processes, member handling from the factory to the 
construction site, etc. It is obvious, that the determination of the type and 
magnitude of geometric imperfections is a rather difficult task. Taking this fact into 
account and  considering that steel structures are in general sensitive in the 
presence of geometric imperfections, the stability behaviour is greatly governed by 
them. For this reason, structural design codes imply the consideration of initial 
geometric imperfections in the design against buckling. 

Even though buckling constitutes a complex problem for the majority of 
structures, the complexity is increased when unilateral constraints are present. 
Unilateral boundary conditions are a particular type of supporting conditions where 
the deflection curve and, consequently, the buckling shape of a structure is obliged 
to develop in one only direction.  This type of buckling is known in the 
bibliography as constrained buckling. The phenomenon of constrained buckling 
appears in many engineering applications such as in steel, composite, naval and 
aerospace structures, in metal forming processes, bioengineering etc.  

The treatment of problems involving stability and unilateral contact conditions 
is usually a difficult task in the field of applied mechanics. The function of the 
unilateral constraints introduces certain type of nonlinearities in the formulation of 
the problem, in addition to the inherent material and geometric nonlinearities. 
Moreover, constraints associated with contact lead to inequalities, making the 
formulation even more complex.  For this reason, computational methods like the 
Finite Element Method are usually combined with special algorithms in order to 
handle unilateral contact buckling problems. 

The present dissertation deals with the unilateral contact buckling problem of 
beams. Due to the rapid improvement of modern computer technology, research 
concerning the development of computational techniques for solving unilateral 
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buckling problems has reached a sufficient level. Therefore, a theoretical study 
which is able to derive analytical solutions for a class of problems may contribute 
in many levels to the existing knowledge in the area of the contact buckling 
problems. The previous fact offered the motivation to study the constrained 
buckling problem from a different point of view. More specifically, through this 
dissertation, a theoretical study concerning the contact buckling problem of beams 
is presented. The study focuses on the calculation of the critical buckling loads of 
geometrically perfect and imperfect beams in the presence of unilateral supports. 
This is achieved by means of the fundamental elastic stability theory which is 
appropriately modified in order to take into account in a mathematically accurate 
way the unilateral constraints.  

A particular feature in the aforementioned mathematical approach is the 
connection of the buckling problem of beams with a series of theorems and 
definitions from the area of differential equations and Boundary Value Problems. 
Under this approach, significant findings concerning the solvability of such 
problems were revealed. These findings are rather difficult to be discovered by 
applying computational techniques, proving in some way the importance of the 
theoretical study in the treatment of complex mechanical problems.  

More specifically, the study in the present dissertation is separated into six 
Chapters. Initially, in Chapter 2, a wide discussion concerning the variety of 
applications where unilateral contact buckling occurs is displayed. Also in that 
chapter a review regarding the methodologies and techniques which have been 
developed until today for the treatment of such problems, is presented. 

In the sequel, Chapter 3 covers the issue of buckling for a simply supported 
beam. In particular, the Boundary Value Problem (BVP) of an axially loaded beam 
with or without transverse loading is formulated. Through this formulation the 
concept of “snap” buckling and the concept of  “instability” due to the 
development of extremely large deflections is clearly displayed, leading to the 
definitions of the critical and instability loads respectively. Due to the fact that the 
buckling problem is actually a BVP, the rest part of the chapter is devoted to the 
mathematical description of the homogeneous and non-homogeneous ordinary 
BVP. In this description a series of definitions and theorems are given. Especially, 
the presented Theorem 3.4 is of great importance because it connects the 
solvability of a non-homogeneous BVP (i.e. buckling of a geometrically imperfect 
beam) with the solutions of the corresponding homogeneous BVP (i.e. buckling of 
the geometrically perfect beam). This fundamental theorem is applied in all the 
cases of constrained buckling examined in this dissertation. In the end of the 
chapter, specific examples prove that singular points may exist in buckling 
problems of geometrically imperfect beams. It is essential to notice that these 
singular points affect the buckling load of a certain structure and are not easy to be 
detected by the geometrically nonlinear finite element analysis.  
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In Chapter 4, the unilateral contact buckling problem of a geometrically perfect 
and imperfect beam in the presence of one intermediate unilateral support, is 
presented. The homogeneous constrained BVP is initially formulated. The 
formulation is based on the fundamental elastic stability theory of Euler, 
appropriately modified in order to take into account the unilateral constraint. The 
solution is obtained under the separation of the problem into subproblems, 
according to the possible contact situations (i.e. the constraint may be active, 
inactive or in neutral contact status). These subproblems are actually the BVPs that 
correspond to each contact case. The inequality character of these BVPs is 
maintained in the formulation and in the solution.  

Due to the fact that the case of the geometrically perfect beam constitutes an 
eigenvalue problem, equilibrium is denoted by a bifurcation state and infinite 
solutions exist. Analytical descriptions are obtained for these solutions which, of 
course, are valid only under the fulfillment of certain inequality restrictions. In the 
following part of Chapter 4, the corresponding non-homogeneous BVP is studied. 
More specifically, first, arbitrary initial geometric imperfections compatible with 
the function of the unilateral constraint are introduced in the structure. Then, the 
non-homogeneous constrained BVP is formulated under the same considerations as 
in the case of the geometrically perfect beam. Following the previous solution 
procedure, the initial BVP is separated into subproblems, one for each contact 
situation. The extraction of  the solution is not straight forward in this case because, 
for the different values of the applied load, the problem may be uniquely solvable, 
unsolvable or solvable with infinite solutions. The issue of solvability is strongly 
connected with the solutions of the corresponding homogeneous subproblems 
examined in the case of the geometrically perfect beam. Due to the complexity of 
the problem, an appropriate calculation procedure is proposed for the treatment of 
the unilateral buckling of imperfect beams. This procedure is able to detect the 
critical or singular points in the solution of the problem analytically, without the 
need to apply any load incrementation scheme. It is noticed that in many cases the 
calculated buckling load is not the actual load that the beam is able to sustain, due 
to the fact that the ultimate load is affected by the actual strength of the cross 
section of the beam. For this reason, in the last part of Chapter 4, the proposed 
methodology is also equipped with design criteria. Therefore, a complete answer to 
the matter of unilateral contact buckling of beams with initial imperfections is 
given. 

The unilateral contact buckling problem of the geometrically perfect and 
imperfect beams is extended in Chapter 5 with the consideration of two unilateral 
constraints in the formulation of the constrained BVP. Due to the fact that the 
method presented in Chapter 4 can easily be extended in cases with more than one 
unilateral supports (the difficulty is attributed  only to the extend of the 
mathematical operations), Chapter 5 considers two unilateral constraints in an 
“opposite” function mode. The treatment of this specific constrained BVP is based 
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on the methodology described in Chapter 4. Obviously, the main BVP is now 
separated into nine different constrained subproblems, one for each possible 
contact case. All the analytically extracted solutions are valid under the fulfillment 
of certain inequality restrictions which are introduced by the constraints.  

The proposed methodology displayed in Chapters 4 and 5 is able to be 
implemented in a variety of cases. Thus, Chapter 6 and 7 are  mainly devoted to the 
implementation and the better comprehension of the proposed methodology 
through the demonstration of several examples. The presented examples concern 
cases with different initial contact situations, various initial geometric 
imperfections with different shapes and amplitudes and various positions for the 
unilateral constraints. The aim of the demonstrated examples is to reveal the 
advantages and the innovative points of the present dissertation.  

The arising conclusions and the innovative points of the present research are 
summarized in the last chapter of the dissertation (Chapter 8). Furthermore, some 
suggestions for further research are given in that chapter.  

Due to the fact that the proposed methodology uses tools from the mathematical 
area of ordinary differential equations and BVPs, appendices A,B and C at the end 
of the manuscript provide the fundamentals of the corresponding theories. Most of 
the information given in the specific appendices concerns definitions and properties 
of the vector space 2 ( , )L a b  which constitutes a subspace of the well known Hilbert 
space.     
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2 Unilateral contact buckling problems in 
structural analysis – Bibliography Survey 

2.1 Introduction 
In practical problems, the contact interaction between a deformable structure and 
the elastic foundation is usually simulated through bilateral boundary conditions. 
Such models are satisfactory for many engineering applications where the 
deformable body does not lose the contact with the foundation during the 
deformation or for cases where the loss of contact is not significant for the overall 
state of stresses and strains in the system. This result holds for all types of loading 
(static, dynamic, etc.). A step beyond that simulation is the consideration of models 
which take into account the mechanical behaviour of soil as elastic subgrade and 
the interaction between the structure and the soil foundation (see e.g. the works by 
Vallabhan, 1991a,b; Avramidis and Morfidis, 2005; Morfidis and Avramidis, 
2003).  In case, where loss of contact occurs, models with bilateral boundary 
conditions are not reliable and therefore a different type of boundary conditions 
must be introduced in the formulation of the problem. For example, this could 
happen when a structure is supported on a foundation which does not provide 
tensile restraint, such as a plate resting on a rigid foundation. In this case, the plate 
is possible to detach or debond, but penetration into the foundation is not 
permitted. Generally, in such cases, it is necessary to consider unilateral boundary 
conditions as part of the solution, since the contact area is not a priori known. This 
type of restraint (or boundary condition) is the well known Signorini-Ficchera 
unilateral contact condition (Fichera, 1963,1972; Panagiotopoulos, 1985) and has 
been an area of active research since 1970s. Obviously, the main feature of systems 
with unilateral constraints is that their displacement in certain positions, is obliged 
to develop in one only direction. 

Problems involving unilateral contact conditions are difficult to be solved due to 
the inequality character of the arising problems. The complexity of such problems 
is increased, when the study focuses on the determination of the critical stability 
points of structures which are vulnerable to buckling. The present dissertation deals 
with the calculation of such critical points in continuous beams under the presence 
of unilateral constraints. This issue concerns mostly civil engineering applications, 
although such simple mechanical systems could be utilized in other engineering 
applications. Moreover, such models may be used for the simulation, in a simple 
but reliable way, of more complex systems involving unilateral constraints.  

The aim of this chapter is to present engineering applications where unilateral 
contact buckling phenomena occur, as well as to display the methodologies and 
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techniques which have been used until now for their treatment. Considering the 
fact that unilateral buckling constitutes a critical type of failure, many researchers 
have turned their scientific interests in this area.  

It is noted that research in the area of unilateral systems usually requires 
development of numerical techniques due to their complex geometry and their 
highly nonlinear response. Thus, most of the relevant publications are associated 
with computational and/or variational methods. However, theoretical studies based 
on the mathematical treatment of the problem have also been published. In these 
papers, individual structural members such as plates and beams resting on a 
tensionless foundation are mainly of interest. Finally, at the end of the chapter, a 
brief discussion regarding the contribution of the present dissertation to the 
treatment of the unilateral contact buckling problem is presented.  

2.2 Unilateral contact buckling and structural systems 

2.2.1 Civil engineering applications 

In the area of civil engineering, unilateral contact conditions involving stability 
phenomena are encountered in steel and composite structures. For example, 
unilateral local buckling phenomena develop on the thin steel components of 
composite steel-concrete structures. In these applications concrete plays the role of 
a restraining medium preventing the free formation of the buckling snap which is 
forced to develop away from the concrete. Obviously, in this case, the elastic local 
buckling load is significantly higher than if the rigid medium (concrete) were 
absent. This issue has been started to be of interest in the last twenty years. More 
specifically, research in this field has been undertaken by Wright (Wright, 1995), 
Uy and Bradford (Uy and Bradford, 1995) and Bridge et al (Bridge et al, 1995). 
The aforementioned researchers studied respectively, the local stability of filled 
and encased steel sections, composite steel-concrete columns and thin walled tubes 
filled with concrete. In the sequel, Bradford et al.(Bradford et al, 1998) handled the 
local buckling problems developing on composite profiled walls while Oehlers et 
al. (Oehlers et al, 1994) and Uy and Bradford (Uy and Bradford, 1996) studied the 
unilateral contact buckling problem on composite profiled beams subjected to 
compressive and bending actions. Recently, a similar work on the unilateral contact 
buckling problem of lightly profiled skin sheets on concrete-filled composite wall 
panels and similar members (e.g. composite slabs) has been published by X. Ma 
et.al (Ma et al, 2006; Ma et al, 2007). In the above publications, computational 
methods were used, having as a scope to address in an rather approximate way the 
problem than to treat it in theoretical and complete manner.  

Unilateral contact buckling may also develop in applications where thin walled 
cold formed sections are used, due to their special way of manufacturing. For 
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example, the cold formed steel beam of Fig 2.1 is a particular member which is 
usually used as platform in scaffold configurations. This type of beams exhibits 
some particular features, such as the geometry of the cross section and the special 
embossments developed in the upper plate of the beam. The cross section of this 
cold formed steel platform is manufactured from a continuous steel sheet which is 
appropriately folded in order to create two box-shaped compartments at the two 
edges and a triangular compartment in the middle. The points at which the folded 
areas come in contact are connected by clinching. In this category of structures the 
bending loading leads to local buckling phenomena, due to their small thickness 
and their geometric imperfection sensitivity. The arising local buckling mode at the 
compressive upper flanges is a constrained type one, due to the existence of the 
clinching with the other parts of the sheeting which prevents in some way the 
development of the unconstrained type buckling mode. Fig. 2.2 shows the 
unilateral contact buckling failure in this type of structures (Tzaros et al 2008; 
Tzaros and Mistakidis, 2008).   

 

 

Fig. 2.1. The cross section of the thin walled cold formed steel beam (Tzaros and 
Mistakidis, 2008). 
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Fig. 2.2. The unilateral contact failure buckling mode of the steel cold formed beam of Fig. 
2.1 ( Tzaros et al, 2008). 

Other examples of unilateral buckling are the upheaval failures of roads and 
runways (Roorda, 1988) and the  buckling of pipelines that are either buried or 
resting on the seabed (Hobbs, 1981) (Fig. 2.3). Finally, the buckling of rock strata 
and floating ice sheets should be mentioned. 
 

 

Fig. 2.3. Upheaval buckling of pipelines buried on the seabed (source: Google search). 
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2.2.2 Mechanical and other engineering applications 

There are a lot of applications in the areas of mechanical, aerospace and naval 
engineering where delamination contact buckling is the predominant type of 
failure. Structures like aircrafts, automobiles, ships etc. are assembled from 
components which are being manufactured from laminated materials. For example, 
Fig. 2.4 shows a delaminated buckling mode of a fiber-metal laminate which is 
actually a hybrid material consisting of alternating layers of metal and fiber-
reinforced prepreg. An example of such material is GLARE (Remmers and Borst, 
2001), a combination of aluminum and glass fiber-reinforced epoxy. This type of 
material is used to construct large parts of the fuselage of the A380 aircraft.  

 

 

Fig. 2.4. Picture of  local unilateralcontact buckling at the top layer of a GLARE specimen 
after being subjected to a three point bending test ( Remmers and Borst, 2001). 

Also, in aerospace engineering, a lot of structural components are made of 
laminated composite plates. The basic problem of these plates is the near-surface 
delamination (disbond) buckling (Shahwan et al, 1993). Due to the relevantly small 
thickness ratio of the laminate plate to that of the sublaminate (parent substrate), 
the sublaminate essentially acts like a rigid surface constraining the out of plane 
deformations of the plate to be of one sign.  

In mechanical engineering, metal forming processes lead to the development of 
unilateral buckling phenomena in the high stressed metal flanges. These particular 
problems are even more complex due to the inherent material nonlinearities. Apart 
from applications encountered in heavy industries, the contact buckling problem at 
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delamination could also arise in thin film coatings such as paints, thermal 
insulators and electric conductors (Giannakopoulos et al, 1995). These components 
are used in a variety of applications in microelectronics, aerospace and naval 
structures, bioengineering etc. It is remarkable that this type of problem arises also  
in the area of art. More specifically, protecting and restoring old master’s paintings 
is an another area of delamination buckling problem (Giannakopoulos et al, 1995). 

2.3 Treatment of unilateral contact buckling problems 

2.3.1 Generalities 

The most of the previously presented applications where unilateral contact 
buckling takes place are difficult to be solved, mainly due to the inherent 
nonlinearities which are introduced by the function of the unilateral constraints and 
the complex structure geometry. Therefore, in order to study equilibrium and 
stability of structures with unilateral constraints, two types of nonlinearities, 
geometric and contact, should be taken into account. The treatment of such 
problems is based on the variational formulation of the governing differential 
equations and in the utilization of numerical techniques suitable for handling the 
arising nonlinear systems of equations. Thus, the first step in the treatment of such 
problems is the discretization of the continuous system. This is achieved by using 
an appropriate numerical technique such as the Finite Element Method (FEM), the 
Rayleigh-Ritz method, the Galerkin method or the Boundary Element Method 
(BEM). After the discretization of the continuous system, attention should be given 
in the consideration of the unilateral contact boundary conditions, i.e. to the 
selection of a proper methodology to handle the contact constraints. As it is well 
known, the constraints associated with contact are inequalities, thus, particular 
techniques should be used in order to incorporate contact constraints into the 
formulation of the problem which, essentially, takes an inequality form. The 
problem becomes even more complex when the main objective is the computation 
of the critical stability points of a structure. In this case the traditional path-
following methods, like the arc-length method (Riks, 1972; Criesfield, 1981), 
cannot manage the bifurcation response, since several post critical solutions are 
likely to develop due to the existence of the unilateral constraints. Thus, these 
techniques have to be modified appropriately. In the next paragraphs, the most 
popular techniques associated with the analysis of unilateral systems and the 
computation of stability points are briefly presented. 

2.3.2 Methodologies for the analysis of unilateral systems 

In general, there are three options for handling the unilateral buckling problem: 
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 Transformation of the contact problem into a minimization problem without 
constraint through the adaption of the usual formulations of structural 
mechanics (i.e. differentiable functionals and bilateral constraints) to the case 
of unilateral contact constraints (Adan et al, 1994; Holmes et al, 1999; Silveira 
and Concalves, 2001; Li and Berger, 2003). The convergence of these 
procedures, which are of iterative nature, is not guaranted. 

 Mathematical programming techniques. This approach allows the solution of 
the contact problem with or without explicit elimination of the unilateral 
constraints. The elimination of the constraints is made possible through 
methods such us Langrange multipliers and the so called “Penalty method” 
(Simo et al., 1985; Wriggers and Imhof, 1993; Wriggers, 2002; Wriggers and 
Zavarise, 2004; Fisher and Wriggers, 2005). Besides these techniques, there 
exist methodologies where the unilateral constraints are maintained in the 
formulation of the problem. These techniques lead to quadratic programming 
or linear complementarity problems which can be solved by a variety of 
mathematical methods, for example, Lemke’s or Dantig’s algorithms (Lemke, 
1968;  Ascione and Grimaldi, 1984; Joo and Kwak, 1986; Barbosa, 1986; 
Silveira, 1995; Koo and Kwak, 1996; Hexiang et al, 1999; Silva et al, 2001; 
Silveira and Concalves, 2001; Wriggers, 2002; Pereira, 2003; Hollanda and 
Concalves, 2003). Mathematical programming resembles the force method of 
structural analysis, thus the local contact loads are set as unknowns and the 
solution is obtained by minimizing a given function (Chand et al., 1976; Fisher 
and Melosh, 1987). While this method does not require an iterative solution 
procedure, the programming and computation time can often be prohibitive. 

 Direct substitution of a unilateral buckling mode shape, displacement function 
or a specified contact surface into the appropriate analysis procedure (i.e. the 
FEM, the Raleigh-Ritz method, etc.) (Shahwan and Wass, 1993; Ma et al 
2006). 

2.3.3 Computation of stability points in unilateral contact problems 

As it was already mentioned, bifurcation can dominate the response of many 
structures where unilateral constraints are present. Due to the fact that the 
bifurcation state leads to solutions which are associated with different branches, 
several post-critical solutions are possible to appear, because of the different active 
contact constraints. Thus, special techniques have to be considered in order to 
calculate the post-critical equilibrium paths. Such algorithms, which have the 
potential of tracing the complex nonlinear equilibrium paths, have been developed 
by Wriggers (Wriggers et al, 1987), Stein (Stein et al, 1990), Bjorkman (Bjorkman, 
1992), Koo and Kwak (Koo and Kwak, 1996), Silveira and Concalves (Silveira and 
Concalves, 2001), Tscope et al (Tscope et al, 2003a,b). 
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It has to be noticed that the treatment of bifurcation problems in the presence of 
unilateral constraints requires particular considerations (Wriggers, 2006). Near the 
stability points, the associated eigenvalue problem has to be solved, in order the 
number of existing branches to be calculated. This is not a simple issue, since the 
contact constraints are presented by inequalities, thus, in essence, an inequality 
eigenvalue problem has to be solved. The latter can be approximated by a 
linearized eigenvalue problem which can be solved utilizing certain results 
obtained by the significant work of Huy and Werner (Huy and Werner, 1986). The 
latter is associated with linear variational eigenvalue inequalities. 

2.4 The unilateral contact buckling problem of plates and beams 

2.4.1 Unilateral contact buckling of plates 

A specific type of engineering applications where unilateral contact buckling 
occurs, employs structures assembled by composite members which, in turn, are 
composed of several layers. These layers are vulnerable to unilateral buckling 
under mechanical or thermal loading. This type of buckling can be simulated by 
treating the distinct layers as elastic plates in a state of unilateral contact. Till now, 
many researchers have worked on this specific area.  

Seide (Seide, 1958) and Do (Do, 1977) were among the first researchers who 
studied the buckling problem on elastic plates. Seide (Seide, 1958) studied contact 
effects of infinitely long buckled plates, under simply supported boundary 
conditions with longitudinal immovable edges. His work has been also extended to 
a compressive plate on a tensionless rigid foundations by Shahwan and Wass 
(Shahwan and Wass, 1994; Shahwan and Wass, 1998) and Smith et al (Smith et al, 
1999a). The buckling strength of finite size plates with unilateral constraints was 
considered by Bezine et al. (Bezine et al, 1985), Wright (Wright H.D, 1993) and 
Smith et al. (Smith et al, 1999a,b) using the finite element method (FEM) and 
Rayleigh-Ritz approaches. All these studies concerned the cases of linear elastic 
buckling and they concluded that the constraint increases the buckling load. 

Numerical approximations involving stability and postbuckling behavior of 
plates under unilateral contact constraints imposed by elastic foundation, appear in 
recent papers by Muradova and Stavroulakis (Muradova and Stavroulakis, 2006), 
Shen and Li (Shen and Li, 2004), Shen and Yu (Shen and Yu, 2004), Shen and 
Teng (Shen and Teng, 2004), Hollanda and Concalves (Hollanda and Concalves, 
2003). More specifically, Ohtake et al (Ohtake et al, 1980) was among the first 
researchers who studied the postbuckling behavior of a simply supported square 
thin plate with unilateral constraints using a finite element scheme coupled with a 
penalty method. In the sequel, Chai (Chai, 2001) obtained results for the 
postbuckling behaviour of a clamped thin plate unilaterally constrained by a rigid 
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foundation. On the other hand, Hollanda and Concalves (Hollanda and Concalves, 
2003) presented the post buckling analysis of a simply supported thin plate resting 
on a tensionless elastic foundation. Furthermore, Muradova and Stavroulakis 
(Muradova and Stavroulakis, 2006) considered the unilateral buckling problem in 
von Karman plates. The same formulation, based on the higher order shear 
deformation plate theory with a von Karman type of kinematic nonlinearity, was 
followed by Shen and Li (Shen and Li, 2004). In their work, the contact 
postbuckling response of composite laminated plates subjected to thermal loading 
is for the first time encountered. Additionally, in the same paper, the initial 
geometric imperfection of the plate is taken into account. In this specific field, 
assuming von Karman kinematic approximations, Giannakopoulos et al 
(Giannakopoulos et al, 1995) dealt with the buckling and postbuckling range of a 
laminated plate which contains delamination. In the latter paper the interaction 
between postbuckling and local delamination growth is analyzed using an 
analytical formula for computing the energy release rate along the delamination 
front. The proposed formulation accounts for geometric nonlinearity and 
hyperelasticity. 

From a more practical point of view, (Wright, 1995), Uy and Bradford (Uy and 
Bradford, 1996) and Smith et al (Smith et al, 1999b,c) studied the local buckling 
problem of plates in composite steel-concrete members. Furthermore, results with 
practical interest have been reported in the work of X. Ma et al (Ma et al, 2006; 
2007). In their work, the theoretical and numerical research concerning the initial 
skin buckling in the behaviour of composite wall panels, was also supported by 
experiments. 

2.4.2 Unilateral contact buckling of beams-Constrained Euler buckling 

A lot of practical cases exist, especially in the area of civil engineering, where 
beam models are suitable in order to describe the buckling behaviour of unilateral 
systems. Thus, a series of papers associated with the boundary value problem of 
the buckling of beams under unilateral constraints is encountered in the existing 
bibliography. Apart from the fact that the findings in these papers could be used for 
practical purposes, the simplicity of the proposed models provides, among the 
others, certain advantages.  More specifically, analytical formulation and solution 
of the complex mathematical problem, comparison between theoretical and 
experimental results, the potential of using the theoretical results as benchmark for 
numerical methods and quantitatevely characterization of the dependence of the 
solution on the number and the position of the unilateral constraints, are only some 
of these advantages. 

A significant work with many citations has been presented by Huy and Werner 
(Huy and Werner, 1985) who studied the linear variational eigenvalue inequalities. 
Their theoretical work has been applied to the buckling problem of the unilaterally 
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supported beam and it is of great importance because it provides results which can 
be used to calculate the eigenvalues near stability points in structures with 
bifurcation response and many possible postbuckling branches. 

Earlier, P. Villagio (Villagio, 1978) extended the classical variational theory for 
eigenvalue problems so as to define the Euler critical load for unilaterally 
constrained beams. This was achieved by minimizing the Rayleigh quotient on a 
convex subset of a Hilbert space. In this work, a method for bounding the buckling 
load in beams with unilateral constraints by comparison with the critical loads 
obtained by the corresponding unconstrained beams, was proposed. Also, 
information about the optimal position of the unilateral constraints in order to 
maximize the critical load as well as the change of the critical load under 
perturbation of the constraints, was given. Similar research has been presented by 
M. Papia (Papia, 1988). In his paper a criterion for the calculation of the critical 
load of continuous beams under unilateral constraints, is proposed. In the latter 
work, the arising constrained problem is solved by determining the length of the 
half-wave of the buckled shape, the number of supports involved and their 
positions with respect to the end of the half-wave. The importance of Papia’s work 
is that it shows the existence of a limit value, below which the critical load is 
unaffected by the presence of the unilateral supports. The arising results are 
depicted in a nondimensional diagram which can be used in common practical 
applications. Results concerning the change of the critical load when beams are 
resting on elastic foundation has been recently reported by Michalopoulos et al 
(Michalopoulos et al. 2007). In this specific work, the buckling strength of a 
cantilevered beam resting on a foundation is investigated and a special fiber-bundle 
type of beam model is proposed in order to handle the buckling problem. 

Recent works on the constrained Euler buckling problem of beams have been 
published by Domokos et al. (Domokos et al., 1996) and Holmes (Holmes et al., 
1999).  In these papers the constrained Euler buckling problem of an inextensible 
beam confined to the plane and subjected to fixed end displacements, is considered. 
The analytical results from the geometrically nonlinear problem are compared with 
experimental ones. The experiments have been carried out on steel slender beams. 
The findings in this research show a rich bifurcation structure with multiple 
branches in the overall load-displacement curves. 

2.5 Contribution to the unilateral contact buckling problem 
The present dissertation deals solely with the buckling problem of axially loaded 
beams in the presence of unilateral supports. As it was already mentioned, beam 
models may be adequate in the prediction of the critical loads of certain structures. 
Except that, beam models provide a better insight into the classical mathematical 
contact buckling problem.  
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Even though the whole research is focused on the contact buckling problem of 
beams, many advantages and innovative points exist, which finally contribute to 
the existing published knowledge in the scientific area of the unilateral contact 
problems. As it was displayed in the introductory Chapter 1, the main goal of the 
study is the calculation of the critical buckling loads of geometrically perfect and 
imperfect beams which are supported by unilateral supports. Through this target 
the following points are achieved: 
 
 The present work avoids to handle the contact buckling problem numerically. 

Instead of using variational inequalities for the treatment of the constraints, a 
more simplified formulation is applied which, nevertheless, maintains the 
features of a constrained BVP. This formulation is based on the classical 
Euler’s equilibrium method of elastic stability, appropriately modified in order 
to treat the unilateral constraints. 
 

 The proposed methodology creates a strong connection between the 
mechanical and the mathematical aspects, of the buckling problem. Taking into 
account Euler’s method and the fact that the buckling problem is actually, from 
the mathematical point of view, a homogeneous or a non homogeneous BVP, 
answer to the solvability of the problem could be given just utilizing theorems 
from the mathematical field of differential equations and BVPs.  

 
 The application of these theorems in various examples localizes the singular 

points in the obtained solution and specific analytic expressions can be given to 
them. It is essential to notice that these singular points cannot be located easily 
in a finite element analysis procedure. An inadequate loading incrementation 
procedure may “pass” these singular points. 

 
 The calculation of the critical loads and the determination of the singular points 

is accomplished directly through the utilization of an appropriate calculation 
procedure which is based on the analytical solutions and the fundamental 
mathematical theorems, without applying a load incrementation scheme. 

 
 Arbitrary geometrically imperfect systems can be investigated under different 

initial contact situations. 
 

 Analytical solutions are derived for both the studied cases (i.e. the perfect and 
imperfect configurations). These solutions can be used as benchmarks in the 
development of computational methods. 

 
 The particular formulation of the constrained Euler buckling problem of beams 

in the present dissertation, offers the potential of deriving analytical solutions 
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for a variety of practical problems associated with different end boundary 
conditions and initial contact conditions. Furthermore, the automatic solution 
procedure gives the opportunity of studying the influence of the position of the 
constraints in the value of the critical load.  

 
 The major advantage of the present study, in comparison with related works on 

the unilateral contact buckling of beams, is that it proposes a methodology of 
finding the instability and ultimate load of beams in the presence of initial 
geometric imperfections. As the axial loading increases, the bending strength 
of the beam is decreased due to the interaction between bending moment and 
axial force. The decrease in the strength is strongly dependent on the shape and 
magnitude of the initial geometric imperfection. But, except that obvious 
conclusion, imperfections influence the buckling modes of a beam when 
unilateral supports are present. Depending on the initial imperfection, the 
buckling mode as well as the critical buckling load may may be different for 
two beams with common features (i.e. position of the unilateral supports, 
material and section properties etc.). This happens due to the fact that each 
imperfection may activate different contact conditions during the bending 
deformation. This issue has both theoretical and practical interest and has not 
been investigated in previous works concerning the unilateral buckling of 
beams. 
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3 The BVP of buckling of beams - 
Mathematical preliminaries 

3.1 Introduction 
As it was briefly mentioned in Chapter1, the aim of the present dissertation is to 
propose a certain analytical methodology for the treatment of the buckling problem 
of continuous beams in the presence of unilateral supports and arbitrary initial 
geometric imperfections, which is based on the fundamentals of the elastic stability 
theory. The study requires the formulation of the buckling Boundary Value 
Problem (BVP), which describes the bending behavior of the beam by means of the 
second order bending theory. Undoubtedly, the direct consideration of the 
unilateral constraints in the formulation of the governing differential equations of 
the BVP, creates a series of mathematical difficulties (Wriggers, 2006). In most 
practical applications the formulation of the problem in an analytical way is rather 
impossible, therefore variational methods must be employed in order to solve the 
BVP numerically in an approximate way. Even in that case, the classical 
variational techniques confront many difficulties which arise from the unilateral 
constraints. To this end, evolutionary mathematical theories and algorithms have 
been proposed by some researchers,  leading however to a much more complex 
formulation (Wriggers et al, 1987; Stein et al, 1990; Bjorkman, 1992; Koo and 
Kwak, 1996; Silveira and Concalves, 2001; Tscope et al, 2003a,b). 

The proposed methodology avoids the numerical treatment of the certain 
constrained BVP by considering the basic differential equations of a beam in 
bending and adapting them appropriately in order to take into account the unilateral 
contact conditions. For this reason, a brief discussion of the classical buckling 
problem is attempted in the following. Initially, the well-known fourth order 
governing differential equation is formulated which is based on a theory that takes 
into account the effect of the deflections and of the unavoidable change of the 
geometry of the structure on the equilibrium conditions. Therefore, the basic 
assumptions of the second order bending theory should be given first. Then, the 
homogeneous and non-homogeneous stability BVP is described. The whole 
description lies on the limits between the mathematical and the mechanical 
disciplines. Apart from the classical buckling description dealing mainly with the 
structural problem which is encountered in the most classical textbooks 
(Timoshenko and Gere, 1963; Brush and Almorth, 1975; Bazant and Cedolin, 
1991), a more mathematical description will be displayed here in order the reader 
to be acquainted with the mathematical concept of buckling. The latter includes 
theorems related with the general BVP of ordinary differential equations which 
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will be very helpful in the following chapters. More details concerning the 
mathematical description of the BVP can be found in Appendix A.  

3.2 The basic assumptions of the second order bending theory 
In order to calculate the critical load of axially loaded beams in the framework of 
the second-order bending theory (linear elastic stability theory), the fundamental 
equilibrium equations are formulated in the deformed configuration (geometric 
nonlinearity). The formulation of the governing differential equation (which 
includes the equilibrium equations, the constitutive law and the compatibility law) 
lies on the following assumptions (Timoshenko and Gere, 1963; Bazant and 
Cedolin, 1991; Kounadis, 1997): 
 
 The material of the under consideration mechanical system is supposed to be 

homogeneous, isotropic and linear elastic obeying the Hooke’s law. 
 The stress-strain law is the same, both in tension and compression. 
 The Bernoulli-Navier assumption holds, i.e. during bending the cross-section of 

the beam remains plane and normal to the deformed axis. 
 The transverse loading passes through the shear center of the cross-section and 

is parallel to one of the centroidal inertia axes. Therefore, twisting or torsion of 
the considered cross-section about the axis of the member is avoided.  

 The problem is formulated within the context of the theory of small deflections. 
More specifically, the axial strain   attributed to the axial displacement u  and 
the transverse displacement w  are considered small enough compared to the 
cross-section dimensions. Therefore, the following relations hold for the axial 
strain   and the curvature k  of the beam: 

( ) ( )du x u x
dx

  
 

(3.1) 

2

2

( ) ( )d w xk w x
dx

   
 

(3.2) 

It is noted that the description of the curvature k  of the beam according to 
relation (3.2), has been extracted with the additional assumption that the beam 
is incompressible (or inextensional) i.e. the length of the beam does not change 
during the bending deformation. This assumption is used only for the 
description of the curvature of the beam so that the simple formula of relation 
(3.2) is extracted. More complicated descriptions of the curvature are 
encountered in the nonlinear theory of elastic stability (Trogger and Steindl, 
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1991). It also has to be noticed that in the above relations xand xdenote the 
first and second derivatives. 

 
 The shear deformation is neglected. 
 The critical buckling loads are calculated considering only the bending 

deformation. The possible axial deformations arising from the buckling 
phenomenon are neglected1.                  

3.3 The reference systems for the analysis 
For the formulation of the governing differential equations which describe the 
bending behavior of beams according to the second-order bending theory, the 
reference system of Fig. 3.1 is considered.  The beam is separated by the unilateral 
constraint into two spans. The two spans are equipped with the coordinate systems  

1 1,x w and 2 2,x w  as it is shown in Fig. 3.1, where 1 2,x x   measure the position along 
the axis of the beam and 1 2,w w  denote the transverse deflections of the beam in the 
two spans. The positive internal forces are also displayed in Fig. 3.1. 

 

Fig. 3.1 The considered conventions for the positive displacements and  internal forces. 

                                                   
1In reality, at the moment that the buckling phenomenon occurs, the bending deflection is 
accompanied by an axial deformation. This axial deformation is neglected in the 
formulation of the governing differential equation in the sense of equilibrium of forces 
(Euler’s equilibrium method). It should be noticed that if an energy approach with respect 
to the same principles of the elastic stability theory is applied, then the consideration of the 
axial deformation is mandatory in order the equilibrium equation which arises from the 
energy criterion to be valid (obviously the axial force should have the potential of 
producing work). 
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3.4 The concept of buckling for a simply supported beam – 
Formulation of the BVP - Bifurcation state 

Let us consider the slender simply supported geometrically perfect beam (i.e. 
without any initial geometric imperfection) of Fig. 3.2, subjected to an axial 
compressive load P . Let E  be the Young’s modulus of elasticity and I  the 
moment of inertia of the cross section with respect to the axis of bending (in plane 
bending).  
 

w1

x1

L

PA B

dx

 

Fig. 3.2 The buckling problem of the geometrically perfect beam. 

According to the principles of the first order bending theory, the beam will be 
stressed and shortened axially due to the action of the compressive load. As it is 
well known, there exists a certain value of the compressive load P  (critical load) 
for which the geometry of the beam will take a curved shape (buckling shape) 
different from the straight line configuration. In order to calculate this critical load 
and the corresponding buckling shape, it is assumed that the beam can be in 
equilibrium in a curved deformed configuration. In this state, the governing  
differential equation describing the bending behavior can be formulated. If this 
equation admits a solution for a certain value of the compressive load P  , then the 
initial assumption is correct and, as a result, the beam has the ability to buckle and 
equilibrate in a curved configuration. 

Let us consider the infinitesimal element of Fig.3.3 with length dx  in its 
deformed configuration. For convenience, the shear components are taken into 
account by means of the forces V which are perpendicular to the undeformed axis 
of the beam. For this element three sets of equilibrium equations can be derived: 
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Fig. 3.3 Body force diagram for an infinitesimal element d x of the beam. 

 Equilibrium of horizontal forces: 

0 0 ( ) constantdN N dN N x         (3.3) 

Applying  the boundary condition at the right end (roll support) of the beam, the 
following equation is derived: 

( ) ( )N L P N x P      (3.4) 

 Equilibrium of vertical forces: 

0 0 ( ) constantV dV V dV V x        (3.5) 

 Equilibrium of moments at the point A: 

( ) ( ) ( ) 0dwM M dM V dV dx N dN dx
dx

        

0dw dwdM Vdx dVdx N dx dN dx
dx dx

        (3.6) 

Neglecting in the above equation the terms with higher order differentials, the 
following equation is derived: 

0dw dM dwdM Vdx N dx V N
dx dx dx

        (3.7) 

M
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N
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Differentiating twice the two parts of equation (3.7) and taking into account 
relations (3.4) and (3.5), the above equation is transformed into the following 
ordinary second order homogeneous differential equation: 

2 2

2 2

( ) ( ) 0d M x d w xP
dx dx

  . (3.8) 

Recall now the following basic relation from the theory of elasticity which 
connects the bending moment ( )M x  and the second derivative of the transverse 
displacement ( )w x : 

2

2

( )( ) d w xM x EI
dx

  . (3.9) 

Using the above, the differential equation (3.8) is transformed into a general 
differential equation of fourth order which takes into account indirectly the linear 
elastic constitutive law and the compatibility conditions and is therefore able to 
describe the bending behavior of the beam: 

4 2

4 2

( ) ( ) 0d w x P d w x
dx EI dx

  . (3.10) 

The ordinary homogeneous fourth order differential equation (3.10) constitutes the 
governing equation for beams in bending in the framework of the second-order 
bending theory. It is noticed that this equation is very convenient for the analysis of 
systems with various boundary conditions. The general solution of the above 
equation has the form:  

( ) cos sinw x A kx B kx Cx D     (3.11) 

where: 

0Pk
EI

  .  (3.12) 

The constant coefficients , , ,A B C D  of equation (3.11) are determined by applying 
the boundary conditions of the problem. In the studied case the transverse 
deflection and the bending moment at the two ends of the beam are equal to zero. 
Therefore, the following relations can be used to determine the coefficients

, , ,A B C D : 
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 Zero bending moment at the position of the support (point A) 

(0) 0 0EIw A     (3.13) 

 Zero vertical displacement at the position of the support (point A) 

(0) 0 0 0w A D D       (3.14) 

 Zero bending moment at the position of the rolling support (point B) 

( ) 0 sin 0w L B kL     (3.15) 

 Zero vertical displacement at the position of the rolling support (point B) 

( ) 0 sin 0 0w L B kL CL C       (3.16) 

The demand to have a non trivial2 solution results to 0B  . Consequently: 

sin 0kL  . (3.17) 

Equation (3.17) has an infinite number of solutions having the following form: 

2 2

2 ,    1,2,3......n
n n EIk P n
L L
 

   
 

(3.18) 

Therefore, infinite values of axial loads exist, for which the beam can be in 
equilibrium in a curved deformed configuration different from the straight line one. 
The phenomenon for which the beam suddenly jumps from the initial straight line 
equilibrium configuration to a new curved one, is called buckling. Relation (3.17) 
constitutes the buckling equation while relation (3.18) gives the buckling loads 
(eigenvalues). The corresponding buckling shapes (eigenmodes) are practically the 
infinite solutions of the governing differential equation (3.10), calculated 
individually for each eigenvalue from relation (3.11). In the framework of the 
elastic stability theory, only the buckling loads and the shape of the buckling 
modes can be determined. The magnitude of the deflections which develop at the 
moment that the “violent” buckling occurs cannot be calculated by this specific 
theory. From an engineering point of view, only the smallest buckling load (for 

1n  ), the so-called Euler critical load, is of interest in real applications. Fig. 3.4 
                                                   
2 The case of the trivial solution corresponds to the obvious zero solution, i.e. 

0A B C D     which describes the undeformed configuration. 
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represents the equilibrium path of the beam as a function of the transverse 

deflection w . For 
2

2 cr
EIP P

L


   the beam can be in equilibrium in the straight 

line configuration. For 
2

2crP P
L

 
   two different equilibrium modes exist 

(bifurcation state), the straight line mode, which is unstable and the curved mode3.  
 

 

Fig. 3.4 Equilibrium path of a geometrically perfect beam . 

3.5 The critical buckling load of a simply supported beam with 
transverse loading 

In the previous paragraph the studied beam was assumed to be geometrically 
perfect (i.e. without any initial geometric imperfections). Furthermore, the beam 
was subjected only to axial loading without any kind of transverse loading acting 
on it. Obviously, a different behavior is expected in case where geometric 
imperfections are present or when the beam is subjected to transverse loading.  

Let us consider the same slender geometrically perfect simply supported beam 
of (Fig. 3.2). The beam is subjected to axial compressive load P   considered as 
variable and to a constant uniformly distributed load q  (Fig. 3.5).  
                                                   
3The elastic stability theory has not the ability to decide if the curved mode is stable or 
unstable. This question can be answered either numerically, using geometric nonlinear 
finite element analysis (Bathe,1996;), either with the application of superior analytical 
theories of static stability (e.g. Trogger and Steindl, 1991) or dynamic stability (e.g. 
Sophianopoulos, 1996) . 

+w

P

Pcr

-w
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Fig. 3.5 The buckling problem of the geometrically perfect beam subjected to axial and 
transverse loading. 

 

Fig. 3.6 Body force diagram for an arbitrary  finite element dx   of the beam (case with 
transverse loading). 

Taking into account the contribution of the transverse load (Fig.3.6), the new 
equilibrium equations can be written as: 
 
 Equilibrium of vertical forces 

0 dVV dV V qdx q
dx

      
 

(3.19) 

 
 
 Equilibrium of moments at point A 

w1

x1

L

PA B

dx

q

M
V

N

M+dM

V+dV

N+dN

x1 1x + dx1

wA

dx

q
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( ) ( ) ( )
2

dw dxM M dM V dV dx N dN dx qdx
dx

        

0
2

dw dw dxdM Vdx dVdx N dx dN dx qdx
dx dx

       
 

(3.20) 

Concerning the equilibrium of the horizontal forces, relations (3.3) and (3.4) are 
still valid. Neglecting the terms with high order differentials, (3.20) yields the 
following equation: 

0dw dM dwdM Vdx N V N
dx dx dx

       .  (3.21) 

Obviously, differentiating twice the two parts of equation (3.21) and taking into 
account relations (3.4) and (3.19), the above equation is transformed into the 
following ordinary second order non-homogeneous differential equation:   

2 2

2 2

( ) ( )d M x d w xP q
dx dx

   . (3.22) 

Following the procedure of the previous paragraph, relation (3.22) leads to the 
following governing fourth order non-homogeneous differential equation: 

4 2

4 2

( ) ( )d w x d w xEI P q
dx dx

  . (3.23) 

The above equation is an ordinary non-homogeneous differential equation of fourth 
order. Therefore, the solution of the latter results from the addition of a particular 
solution to the solution of the corresponding homogeneous equation (general 
solution). The general solution has the form of relation (3.11) while the particular 
solution is given by the next equation: 

2
pw Gx , (3.24) 

where the coefficient G  can be determined so that 2
pw Gx  satisfies equation 

(3.23). Therefore, the substitution of relation (3.24) into (3.23) gives: 

2
qG
P

 . (3.25) 
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Then, the coefficients of the general solution (3.11) can be determined through the 
utilization of the boundary conditions of the problem: 

2(0) 0 qEIw A
P

   
 

(3.26) 

2(0) 0 0 qEIw A D D
P


     
 

(3.27) 

2( ) 0 sin (1 cos )qw L Bk kL kL
P

    
 

(3.28) 

2( ) 0 cos sin
2
qw L A kL B kL CL D L
P

       

21 cos sin
2
qC A kL B kL D L

L P
       
 

.
 

(3.29) 

A very interesting conclusion arises from the above equations connected with the 

mathematical aspects of the problem. For any value of the axial load 
2

2P
L

 
  the 

certain boundary value problem has a unique solution which can be expressed as: 

2

1 cos( ) cos sin
2 sin
q qEI kLw x kx kx
P P kL

    
 

 

   2 221 cos 1 1
2 2

q EI qkL L x L
LP P P

         
  

. (3.30) 

This results from the fact that for any value of kL   (e.g. 
2

2P
L

 
 ) the 

boundary conditions are satisfied and therefore the coefficients , , ,A B C D  can be 

determined uniquely. When the parameter k  takes the value 
L
  (e.g. 

2

2P
L

 
 ), it 

is noticed that the boundary condition (3.28) cannot be satisfied for any value of 
0B  , due to the fact that the term of the right hand side is always positive and 

cannot become zero. Therefore, the studied BVP is not solvable for this certain 
value of load. It is interesting to notice that this value of load is solution of the 
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corresponding homogeneous problem and more specifically, it constitutes the 
critical load for which the geometrically perfect beam buckles instantaneously. 

Studying the problem from a more engineering point of view, it is clearly 
concluded that when the axial load P  approaches the aforementioned critical 
value, the second term of equation (3.30) tends to infinity while the other terms 
have a finite value. Thus, the values of the deflection curve tend to infinity. In this 
case, the beam does not buckle instantaneously (bifurcation state) but it deflects 
progressively. When the load tends to the critical load, the deflections become 
disproportionately large, indicating the failure of the beam. As it will be shown in 
the following paragraphs, similar conclusions can be inferred for the case of the 
geometrically imperfect beam which also leads to a non-homogeneous BVP. 
Generally, it seems that a strong connection between the homogeneous boundary 
value problem and the non-homogeneous one, exists. This connection will be more 
clearly demonstrated in the next section.  

3.6 Mathematical description of the homogeneous and non-
homogeneous ordinary BVP- Essential theorems and definitions 

3.6.1 Generalities 

In the previous sections two types of mechanical problems were studied, where the 
bending and stability behavior of the system is dominated by the presence of the 
axial compressive force. The formulation of these problems in the framework of 
the second-order bending theory led to a certain differential equation of fourth 
order with an equal number of boundary conditions, which should be fulfilled. It 
was clearly concluded that some problems may have a solution and others may 
have not. Furthermore, in some cases infinite solutions may appear. On the other 
hand, the mechanical behavior of systems described by non-homogeneous 
differential equations, seems to be affected by the solutions of the corresponding 
homogeneous problems.  

 The governing differential equations (3.10) and (3.23) together with the linear 
homogeneous boundary conditions can be put in the general form (Rektorys, 
1994): 

( ) ( ) ( )w w f x     (3.31) 

(2 1) (2 1)
0 0 1 1 ,2 1 ,2 1( ) ( ) ( ) ( ) .... ( ) ( ) 0m m

i i i i i m i ma w a b w b a w a b w b a w a b w b 
         , 

   1,2,3....,2i m  .(3.32) 
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In the above, ,a b  are the boundaries of a closed interval [ , ]a b  and 0 0, ,.....i ia b  are 
real constants. Moreover (2 1)mw  denotes the 2 1m  derivative of the function w . 
Also, the function ( ) :f x � �  describes the non-homogeneous term. Relation 
(3.31) is the governing differential equation while equations (3.32) represent the 
boundary conditions which should be equal in number to the order of the 
differential equation so that the whole problem is well posed. In equation (3.31) 

( ), ( )w w   are self-adjoint4 expressions with respect to the differential operators 
,    having orders 2m  and 2n  respectively, with m n . These operators are 

defined in the domain5
 AD  and have the following form: 

( ) ( )( ) ( )

0

( ) ( 1) ( ) ( 1) ( )
m k mk k m m

k m
k

w h x w h x w


           
 

 ( 1)1 ( 1) 1
1 1 0 ( 1) ( ) ...... ( 1) ( ) ( )

mm m
mh x w h x w h x w

 


          (3.33) 

( ) ( )( ) ( )

0

( ) ( 1) ( ) ( 1) ( )
n k nk k n n

k n
k

w g x w g x w


             

 ( 1)1 ( 1) 1
1 1 0 ( 1) ( ) ...... ( 1) ( ) ( )

nn n
ng x w g x w g x w

 


        .  (3.34) 

Relations (3.31)-(3.34) refer to a closed interval  ,a b . In this interval the real 
functions ( ),  ( )k kh x g x  are continuous and have k  continuous derivatives. 
Additionally, ( ) 0, g ( ) 0m nh x x   in the interval  ,a b . The boundary conditions 
described by equations (3.32) are supposed to be linearly independent and the real 

                                                   
4Consider the linear ordinary differential equation 

( ) ( 1)
1 1 0( ) ( ) ... ( ) ( ) ( )n n

n nf x w f x w f x w f x w f x
      , briefly in the form ( ) ( )L w f x , 

where L  is a linear differential operator of the n th order. Expression

       ( ) ( 1)1
1 2 1 0( ) ( 1) ( ) ( 1) ( ) ... ( ) ( ) ( )n nn n

n nK w f x w f x w f x w f x w f x w


          

constitutes  the adjoint expression to expression ( )L w (and K  is the adjoint differential 
operator to the operator L ). If ( ) ( )L w K w for each n  times differentiable function w , 
then expression ( )L w  (and the differential operator L  ) is called self-adjoint (Rektorys, 
1994; Rektorys, 1999 Kovach, 1984). 
5

AD  is a subset of the space 2mC  of all the continuous functions including their derivatives 

up to the order of 2 m  in a closed region  . 
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constant coefficients 0 0, ,...i ia b  are not simultaneously equal to zero for any of the 
equations (3.32).  

Therefore, if the real number   in equation (3.31) is given, the problem of 
finding the solution ( )w x of equation (3.31) satisfying the boundary conditions 
(3.32), is called a Boundary Value Problem (BVP).  In case where ( ) 0f x  , the 
BVP is called non-homogeneous while in the opposite case it is called 
homogeneous. 

 
Example 3.1 
The equation (3.10) in section 3.4 can be written as: 

4 2

4 2

( ) ( ) 0d w x P d w x
dx EI dx

  .  (3.35) 

The above equation has the form of the general equation (3.31) where: 

4
(4)

4

( )( ) ( )d w xw w x
dx

  
 

(3.36a) 

2

2

( )( ) ( )d w xw w x
dx

     (3.36b) 

P
EI

  . (3.36c) 

The differential operators ,  Ν  are of 4th and  2nd order respectively, thus       
2 4m   and 2 2n  . Therefore, using relations (3.33),(3.34) it is proved that the 
expressions ( ),  ( )w w   of (3.36) are self-adjoint expressions of 4th and  2nd 
order respectively, due to the fact that the following relations hold: 

2( ) ( )( ) ( )

0 0

( ) ( 1) ( ) ( 1) ( )
m k kk k k k

k k
k k

w h x w h x w
 

              

4
1 2 1 2

1 2 4

( )( 1) [ ( ) ] ( 1) [ ( ) ] ( 1) [0 ] ( 1) [1 ] d w xh x w h x w w w
dx

                 
 

(3.37) 

1( ) ( )( ) ( )

0 0

( ) ( 1) ( ) ( 1) ( )
n k kk k k k

k k
k k

w g x w g x w
 

              
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2
1 1

1 2

( )( 1) [ ( ) ] ( 1) [1 ] d w xg x w w
dx

          ,  (3.38)  

with 1( ) 0h x   , 2 ( ) 0h x  , 3( ) 0h x  . 
 
In the following paragraphs several theorems and definitions related with the 
homogeneous and the non-homogeneous BVP will be referred. These theorems 
mostly concern the solvability and the properties of the derived solutions. As it will 
be clearly demonstrated, there is a strong connection between the homogeneous 
and non-homogeneous BVP. The following theorems will be very useful in the 
formulation of the proposed methodology for solving the unilateral contact 
buckling problem of a continuous beam in the presence of initial geometric 
imperfection (Chapters 4,5, and 7).  

3.6.2 The homogeneous BVP 

3.6.2.1 Eigenvalues and eigenfunctions 

When the function ( )f x of equation (3.31) is equal to zero, the latter differential 
equation takes the form:  

( ) ( ) 0w w    .  (3.39) 

In this case the homogeneous problem defined by (3.39) and the boundary 
conditions, (3.32) have to be solved. It is obvious that for 0   the BVP has the 
“zero” solution ( ) 0w x  , which constitutes the trivial solution of the certain 
problem and it is, of course, of no interest. If there exists 0    so that the BVP 
(3.39),(3.32) has solutions different from the trivial one, then these values of   are 
called eigenvalues, the corresponding solutions constitute the eigenfunctions and 
the BVP is referred as the“eigenvalue problem”. Definitions and theorems will be 
given in the following which concerns the solvability of the general BVP and the 
properties of eigenvalues and eigenfunctions.  
 

3.6.2.2 Definitions and theorems 

Initially, the symmetric and positive eigenvalue problem will be defined. To this 
end, the comparison (or test, or trial) functions (Rektorys, 1975; Bathe, 1996; 
Gosz, 2005) should be introduced. 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 05:19:12 EEST - 3.138.32.9



34 Doctoral Dissertation 
 

 

Definition 3.1 

A real function :  w R R  is called a comparison function of the eigenvalue 
problem (3.39),(3.32) if it has 2m continuous derivatives in the interval  ,a b and 
satisfies the given boundary conditions (3.32). Thus, the comparison function 
belongs to the set  (2 ): ( )m

AD w w C   . The comparison functions are 
sufficiently smooth and satisfy the given boundary conditions. It is noticed that 
there is no need for a comparison function to satisfy the differential equation 
(3.39). 

Definition 3.2 
The eigenvalue problem (3.39), (3.32) is called symmetric, if for any comparison 
functions ( ),  ( )u x v x the following relations are fulfilled: 

[ ( ) ( )] 0
b

a

u v v u dx   
 

(3.40) 

[ ( ) ( )] 0
b

a

u v v u dx    . (3.41) 

Definition 3.3 
The eigenvalue problem (3.39), (3.32) is called positive, if for any non-zero 
comparison function ( )u x the following relations hold: 

( ) 0
b

a

u u dx 
 

(3.42) 

( ) 0
b

a

u u dx  .
 

(3.43) 

In general, it is easy to prove if a certain BVP is symmetric and positive just 
applying the rule of integration by parts. The following example is a typical one. In 
cases where this is rather difficult, the well known Green’s formula may be 
applied. 
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Example 3.2 

The eigenvalue problem of section 3.4 is considered again here. As it was shown in 
Example 3.1 this eigenvalue problem can be written in the general form of equation 
(3.31) considering the self-adjoint expressions of relations (3.36a) and (3.36b). For 
any comparison functions ,u v    (which, of course, satisfy the boundary conditions 
(3.13)-(3.16)), the following relations hold: 

0 0 0

[ ( ) ( )] ( ) ( )
L L L

u v v u dx u v dx v u dx           

   0 0
0 0 0 0

( ) ( ) ( ) ( )
L L L L

L Lu v dx v u dx uv u v dx vu v u dx                      

   0 0
0 0 0 0

0 ( ) 0 ( )
L L L L

L Lu v dx v u dx u v u v dx v u v u dx                           

0 0

0 0 0      ,
L L

Au v dx v u dx u v D             (3.44) 

0 0 0

[ ( ) ( )] ( ) ( )
L L L

u v v u dx u v dx v u dx         

 

   0 0
0 0 0 0

( ) ( )
L L L L

L Lu v dx v u dx uv u v dx vu v u dx                       

0 0

0 0 0     ,
L L

Au v dx v u dx u v D            .  (3.45) 

Due to the fact that equations (3.44) and (3.45) are fulfilled, the examined 
eigenvalue problem is symmetric. In order to prove that it is also positive, relations 
(3.42), (3.43) should additionally be fulfilled. For the specific case treated here and 
for any non-zero comparison function Au D , it holds: 

( 4) 2

0 0 0

( ) ( ) 0   0
L L L

AuM u dx uu dx u dx u D          (3.46) 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 05:19:12 EEST - 3.138.32.9



36 Doctoral Dissertation 
 

 

2

0 0 0

( ) ( ) ( ) 0    0
L L L

AuN u dx u u dx u dx u D          . (3.47) 

 Thus, the eigenvalue problem of section 3.4 is symmetric and positive. 

Theorem 3.1 

If the eigenvalue problem is symmetric, then the eigenfunctions 1 2( ),  ( )w x w x , 
corresponding to different eigenvalues 1 2,   are orthogonal in the so-called 
generalized sense, i.e.  

1 2 1 2( ) ( ) 0,   λ λ
b

a
w x w x dx   . (3.48) 

Theorem 3.2 

If the eigenvalue problem is positive, then it can have only positive eigenvalues.  

Theorem 3.3 
If the eigenvalue problem is symmetric and positive, then there exists a countable 
set of positive, mutually different eigenvalues, thus n   for n  . 

3.6.3 The non-homogeneous BVP 

Consider the BVP (3.31), (3.32) where the function ( )f x  of the right-hand side 
has non-zero values for each value of the variable x  . Then, the BVP is called non-
homogeneous. The following theorem that concerns the solvability of the problem 
holds. 

Theorem 3.4 

Let a real number    in (3.30) be given. Then: 
 If this value   is not an eigenvalue of the corresponding homogeneous 

problem (3.39), (3.32), then the given non-homogeneous problem has exactly 
one solution for every arbitrary right-hand side function ( )f x . 

 If this value   is an eigenvalue of the corresponding homogeneous problem 
(3.39), (3.32) then the given non-homogeneous problem is in general not 
solvable. It is solvable (but not uniquely) if and only if the function ( )f x  is 
orthogonal to every eigenfunction   corresponding to that  , thus if the 
following equation holds for every such eigenfunction. 
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( , ) ( ) ( ) 0
b

a

f f x x dx   6. (3.49) 

Example 3.3 

It is assumed that the beam of Fig. 3.2 is imperfect i.e. it has an initial deflection 
with a maximum amplitude equal to 0 . It is considered that the initial deflected 
configuration can be described by the following relation: 

0 0( ) sin ,    [0, ]xw x a x L
L


  . (3.50) 

It is assumed that this initial deflected configuration is not accompanied by the 
development of internal stresses (hence the term “initial”). Therefore, in this 
specific case the internal bending moment (included e.g. in the first term of relation 
(3.8)) is caused only by the additional deflection beyond 0( )w x . Denoting by ( )w x
the total deflection of the beam, the governing differential equation can be written 
as: 

4 42 4 2
0 0

4 2 4 2 4

( ( ) ( )) ( )( ) ( ) ( )0d w x w x d w xd w x d w x d w xEI P EI P EI
dx dx dx dx dx


    
 
.(3.51) 

Substituting equation (3.50) into (3.51) and dividing all the terms with the constant 
rigidity EI , the following differential equation is obtained:  

44 2

04 2

( ) ( ) sind w x P d w x xa
dx EI dx L L

     
 

. (3.52) 

The solution of equation (3.52) is yielded by the addition of a particular solution to 
the solution of the corresponding homogeneous equation (general solution). The 
general solution has the form of relation (3.11) while the particular solution is 
given by the following equation: 

                                                   
6This integral represents the scalar product of two functions in the metric space 2 ( , )L a b of 
the square integrable functions (in the Lebesgue sense). For more details about this space 
and the relative properties see Apppendix A. 
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4

0

04 2

2

2

1sin sin
1

p

EIa
x xLw a PL L

EI P
L L

L


 

 


 
    
    

     
                    

   

(3.53) 

where the following term is termed as “magnification factor”: 

2

2

1

1
F P

EI
L



 
 
 
 
  
 
 

.  (3.54) 

 
The “magnification factor” is encountered in the most structural textbooks and 
codes concerning stability, where it is actually used to approximate the stress and 
strain state of the system by means of the corresponding magnitudes obtained by 
the first order bending theory. 

Then, the coefficients of the general solution (3.11) can be determined by 
means of the boundary conditions, thus: 

(0) 0 0 0w A D D        (3.55) 

(0) 0 0 0w A D D        (3.56) 

0

2

2

1( ) 0 sin sin 0
1

Lw L B kL a P L

L





 
 
 
      
   
 
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0

2

2

1sin 0 0
1

B kL a P

L


 
 
 
    
   
 

  (3.57) 

( ) 0 sin 0w L B kL CL    . (3.58) 

Applying the theorem (3.4), it is apparent that 0B C   for any value of the axial 

load 
2

2P
L

 
  (i.e. k

L


 ). Moreover, the certain boundary value problem has a 

unique solution which can be expressed as: 

0

2

2

1( ) ( ) sin
1

p
xw x w x a P L

L





 
 
 
  
   
 

.  (3.59) 

When the parameter k   takes the value 
L


  (i.e.
2

2P
L

 
 ) which constitutes the 

first eigenvalue of the corresponding homogeneous BVP, the problem will either 
have infinite solutions or it will be unsolvable. It is obvious that for this specific 
value of load, the term s inB kL  in relations (3.57) and (3.58) becomes zero (and 
hence 0C  ), while the boundary condition (3.57) cannot be satisfied because the 
denominator of the magnification factor becomes zero. Thus, the problem is not 
solvable for every value of B . This can also be proved by taking the scalar product 

between the function 
4

0( ) sin xf x a
L L
    
   

and the first eigenfunction 

1 0( ) sin  xx b
L
  which corresponds to the first eigenvalue 

2

2P
L

 
 : 

4 2

1 0 1 0 0
0 0

( ( ), ) ( ) ( ) sin
L L xf x w x x dx a b

L L
           
      
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 
4 4

0 0 0 0
0

20.5 0.25 sin 0.5 0 0 0
LL xa b x a b L

L L L
  


                      

 

4

0 0 0a b L
L
   

 
.             (3.60) 

 
Therefore, the criterion (3.49) does not hold. Thus the non-homogeneous problem 

is not solvable. For 
2

2

EIk P
L L
 

    the deflection curve takes infinite values 

and the beam develops extremely large deflections. 
 

Untill now two different types of instability have been displayed. The first one 
corresponds to the “snap” buckling when the axial compressive load of the 
structure is taking a critical value while the second one corresponds to the 
development of disproportionate large deflections, when the axial load approaches 
a critical value. Moreover, the first type of instability results from a homogeneous 
BVP while the later results from a non-homogeneous BVP. In the framework of the 
present dissertation these two types of loading, which both lead to instability 
should be appropriately distinguished. The load which lead the structure to “snap” 
buckling is termed as “critical load” while the axial load which leads to the 
development of extremely large deflections is termed as “instability load”. 

 
Example 3.4 
Let us consider herein the previous example, where now, instead of an 
imperfection described by the first eigenmode of the corresponding homogeneous 
BVP, the second eigenmode is considered. According to the findings of the 
previous example, the imperfect beam of the studied example is expected to be 
solvable for all the values of load which do not constitute eigenvalues of the 
corresponding homogeneous BVP (i.e the axially loaded simply supported  beam), 
while for values of load P  which constitute eigenvalues an appropriate 
examination should be done with respect to Theorem 3.4. For this specific values 
the certain problem may be either unsolvable or solvable with infinite solutions.  
The initial deflected configuration can be described by the following relation: 

 0 0
2( ) sin      0,xw x b x L
L


  .  (3.61) 

According to the procedure followed in Example 3.3, the following differential 
equation is obtained:  
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44 2

04 2

( ) ( ) 216 sind w x P d w x xb
dx EI dx L L

     
 

.  (3.62) 

The above differential equation has the form of equation (3.31) where: 

4

4

( )( ) d w xw
dx

   (3.63) 

2

2

( )( ) d w xw
dx

     (3.64) 

4

0
2( ) 16 sin xf x b

L L
    

 
  (3.65) 

2P k
EI

   .  (3.66) 

The solution of equation (3.62) is obtained by the addition of a particular solution 
to the solution of the corresponding homogeneous equation (general solution). The 
general solution has the form of relation (3.11) while the particular solution is 
given by the following equation: 

0 0 2

2

2

1 2 2( ) sin sin
1

4

p
x xw x b b FP L L

L

 



 
 
 
  
   
 

, (3.67) 

where the “magnification factor” is given by: 

2

2

2

1

1
4

F P

L


 
 
 
 
   
 

.                                                                                             (3.68) 
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Then, the coefficients of the general solution (3.11) can be determined by 
means of the boundary conditions of the problem. At this point a strict 
investigation of the solvability of the studied non-homogeneous BVP with respect 
to the different values of the axial load should be made. More specifically, in the 
previous example the obtained solution (3.59) was valid for all the values of the 

axial load P   in the open interval 
2

2(0, )EI
L

 . When the axial load was approaching 

the value 
2

2

EI
L

 , the values of the solution of the BVP were developing the 

tendency to become extremely large, while for this specific value the BVP was 
unsolvable. The same findings were obtained either through the direct application 
of the boundary conditions or through the utilization of the basic Theorem 3.4. In 
the example considered now, a rather unusual, situation is arising just applying the  
boundary conditions of the problem. The interesting findings are also verified by 
the utilization of the Theorem 3.4. Therefore, let us consider the following 
problem: 

Find 2( ) (0, )w x L L  such that equation (3.62) and the following boundary 
conditions are satisfied: 

(0) 0 0w A      (3.69) 

(0) 0 0 0w A D D       (3.70) 

2
2

0

2

2

1 2 2( ) 0 sin sin 0
1

4

Lw L Bk kL b P L L

L

 



 
 
 

             
 

 

2
2

0

2

2

1 2sin 0 0
1

4

Bk kL b P L

L





 
 
 

           
 

                                                  

(3.71) 
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0

2

2

1 2( ) 0 sin sin 0
1

4

Lw L B kL CL b P L
EI

L





     


,                                   (3.72) 

where the load P   belongs to the open interval 
 

2

2

4(0, )EI
L
 . It is easily inferred 

that for any value of the axial load 
2 2

2 2

4(0, ) /EI EIP
L L
  

  
 

 the unknown 

coefficients ,  B C  become zero, therefore the deflection curve ( )w x is uniquely 
determined and is equal to the particular solution ( )pw x (equation (3.67)). When 

the value of load P  approaches to the critical value 
2

2

4 EI
L
 , then the deflection 

curve is taking extremely large values. For this specific value, the non-
homogeneous BVP is unsolvable due to the fact that an indeterminate form is 
arising (“ 0  ”) and thus the boundary conditions cannot be fulfilled. The above 
conclusion results also and by the utilization of the basic Theorem 3.4. More 
specifically, the eigenvalues of the homogeneous problem (the BVP of the simply 
supported beam which has been already discussed in paragraph 3.4) do not belong 

in the open interval 
2 2

2 2

4(0, ) /EI EIP
L L
  

  
 

. Therefore the certain non-

homogeneous BVP is solved uniquely. For the specific value 
2

2

4 EI
L
 , which is the 

second eigenvalue of the homogeneous BVP, the problem is unsolvable due to the 
fact that the eigenmode corresponding to that eigenvalue is not orthogonal to the 
function ( )f x  of the right part of equation (3.62). This can be  proved easily by 
taking the scalar product of the two functions: 

4

2 2 0 0
0 0

2 2( ( ), ) ( ) ( ) 16 sin sin
L L x xf x f x x dx b m dx

L L L
   

               
   

4 2 4

0 0 0 0
00

2 416 sin 16 0.5 0.125 sin
LL x L xb m b m x

L L L L
   


                          

 
4 4

0 0 0 0 316 0.5 0 0 0 8 0b m L b m
L L
        

 
. (3.73) 
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Comparing this example with the previous one, the studied BVP problem reveals a 

very interesting point. Inside the open interval 
2

2

4(0, )EI
L
  there exists the value 

2

2

EI
L



 
which constitutes the first eigenvalue of the corresponding homogeneous 

BVP. Therefore, according to the fundamental Theorem 3.4, for this specific value 
the studied non-homogeneous BVP will be either unsolvable or solvable, but not 
uniquely. Taking the scalar product between the function ( )f x  and the eigenmode 
corresponding to that eigenvalue, we have: 

4

1 1 0 0
0 0

2( ( ), ) ( ) ( ) 16 sin sin
L L x xf x f x x dx b r dx

L L L
   

               
   

4

0 0
0

216 sin sin 0
L x xb r

L L L
           
     . (3.74) 

Therefore, it is proved that the two functions, 1( ),  f x   are orthogonal and, 
consequently, the non-homogeneous BVP is solvable. This conclusion also results 

from the boundary conditions (3.71) and (3.72). More specifically, for 
2

2

EIP
L


   

the latter give respectively: 

sin 0 sin 0 0 0B kL B L B
L


        (3.75) 

0 0CL C   . (3.76) 

Equation (3.75) is satisfied for every real number B , therefore the non-
homogeneous BVP (3.62), (3.69)-(3.72), has infinite solutions. These infinite 
solutions are obtained for arbitrary choice of the coefficient B : 
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0 02

2

2

2

1 2 4 2( ) sin sin sin sin
3

1
4

x x x xw x B b B b
L L L L

L

L

   




 
 
 
 
      
 
 
 
 

. (3.77) 

Summarizing, the investigation for the solvability of the non-homogeneous BVP 
(3.62), the following results are obtained: 
 

a.   For 
2 2

2 2

4(0, ) /EI EIP
L L
  

  
 

 the BVP is uniquely solvable and the function 

( )w x is given by the following relation: 

0 0 2

2

2

1 2 2( ) ( ) sin sin    [0, ]
1

4

p
x xw x w x b b F x LP L L

L

 



 
 
 
    
   
 

  (3.78) 

b.   For  
2

2

EIP
L


 the BVP has infinite solutions: 

0
4 2( ) sin sin    [0, ]
3

x xw x B b x L
L L
 

    (3.79) 

c.   For 
2

2

4 EIP
L


  the BVP is unsolvable. 

 
 
It is obvious from the above results, that the solution of the non-homogeneous BVP 

appears singularities for the values 
2

2

EIP
L


 and 

2

2

4 EIP
L


 , which constitute 

the first and the second eigenvalues of the corresponding homogeneous BVP. The 
effect of this singular behavior is actually the same, i.e. buckling occurs for both 
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cases. The difference is associated with the type of the instability. More 

specifically, the value 
2

2

EIP
L


  corresponds to an eigenvalue which is orthogonal 

to the function of the right hand side of the fundamental equation (3.62), thus, the 
BVP has infinite solutions for that value. In this case, instability occurs for this 

specific value of load. On the other hand, for 
2

2

4 EIP
L


  the problem is 

unsolvable due to the fact that the eigenmode corresponding to that eigenvalue is 
not orthogonal to the function of the right hand side of the fundamental equation 
(3.62). In this case instability occurs as the value of the applied load approaches 
the specifc eigenvalue. In the following chapters the load for which singular 
behaviour arises in the solution of the non-homogeneous BVP, is termed as 
instability load in both the previous cases. 
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4 The unilateral buckling of beams – Part 1 

4.1 Introduction 
In the previous chapter the classical BVP of buckling of beams was discussed and 
several mathematical theorems were displayed. The present chapter concerns the 
calculation of the critical buckling load of a beam in which, apart from the classical 
bilateral support conditions, unilateral constraints are also present. The existence of 
the unilateral supports leads to a unilateral contact buckling problem. Problems of 
that type are usually handled using computational techniques based on variational 
formulations of the governing differential equations (see Chapter 2).  

In this dissertation an analytical approach is developed which can be applied in 
common practical problems. The proposed methodology is based on the linear 
elastic stability theory, appropriately extended in order to take into account the 
unilateral constraints. The presented method concerns mostly beams which are 
considered as geometrically imperfect. However, as it was intuitively inferred in 
the previous chapter, the corresponding bifurcation problem is important and has to 
be handled as well. 

More specifically, the considered beam is separated into parts by the unilateral 
supports. For each part of the considered beam, a fourth-order differential equation 
is constructed, arising from equilibrium and describing the bending behavior of the 
beam. Then, applying the boundary conditions at the ends of the divided parts, a 
total BVP is formulated. The BVP is then equipped with certain restrictions yielded 
by the unilateral constraints.   

 In the following paragraphs the formulation of the proposed methodology will 
be displayed. Without losing generality, the BVP of a simply supported beam with 
two unequal spans and one intermediate unilateral support, subjected to axial 
compressive load is formulated and investigated in the present chapter. The same 
procedure may be followed also in the case that the beam is equipped with more 
than one unilateral constraints, with the difference that the arising mathematical 
operations become more complicated. 

Initially, the elastic contact buckling problem of the perfect structure is 
formulated. For this homogeneous constrained BVP, the eigenvalues (critical 
buckling loads) and the eigenmodes (buckling shapes) are extracted. In the next 
part of the chapter, arbitrary initial geometric imperfections are introduced in the 
structure and the non-homogeneous constrained BVP is examined. For the 
imperfect beam, the instability load and the corresponding buckling shape can be 
calculated by following an effective algorithm without having the necessity to use 
an incremental loading procedure.  
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Due to the fact that the present research aims also at deriving practical solutions 
for real life applications, a wide discussion is devoted to the consideration of the 
actual strength of the beam under axial compression and bending. 

The present chapter deals only with the formulation of the proposed 
methodology. The implementation of the described procedures is carried out in 
Chapters 6 and 7 through the demonstration of a series of numerical examples.  

4.2 Formulation of the elastic contact buckling problem of a 
geometrically perfect continuous beam 

4.2.1 Formulation 

A geometrically perfect (i.e. without any initial geometric imperfections) beam 
with an intermediate unilateral constraint is considered, subjected to an axial 
compressive load (Fig. 4.1). The beam is divided into two spans, Span I and Span 
II, having lengths aL and (1 )a L respectively, where L  is the total length of the 
beam. The two spans are equipped with the coordinate systems 1 1,x w  and 2 2,x w   
as it is shown in Fig. 4.1. Here, 1 2,x x   measure the position along the axis of the 
beam and 1 2,w w   denote the transverse deflections of the beam in the two spans. 
 
 

w

aL

1 w2

x1 x2

(1-a)L

PSpan I Span IIA C B

 

Fig. 4.1 The buckling problem of the beam with the unilateral support. 

The positive internal forces follow the conventions given in Fig. 4.2. For the 
description of the bending behaviour of the beam, the Euler’s equilibrium method 
can be applied as it was demonstrated in Section 3.4, leading to a fourth-order 
homogeneous differential equation for the two spans of the beam: 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 05:19:12 EEST - 3.138.32.9



The unilateral buckling of beams – Part 1 49 
 

 

 

Fig. 4.2 The considered conventions for the positive displacements and internal forces. 

 
4 2

21 1 1 1
14 2

1 1

( ) ( ) 0    0,d w x d w xk x aL
dx dx

     (4.1) 

 
4 2

22 2 2 2
24 2

2 2

( ) ( ) 0    0,(1 )d w x d w xk x a L
dx dx

    . (4.2) 

The parameter k  is given by relation (3.12) where E  denotes the Young’s 
modulus of the material of the beam, I  denotes the moment of inertia of the 
beam’s cross-section for in plane bending and P  is the axial compressive load 
applied on the beam. 

If a non-trivial solution for the above equations exists, the beam can be in 
equilibrium in a bended configuration different from the straight line one 
(bifurcation equilibrium state). Therefore, the solution of the above equations gives 
the transverse deflections 1 2,w w  of the beam at any point, as a function of the 
compressive load P . The boundary conditions of the problem are formulated 
taking into account the essential boundary conditions, the natural boundary 
conditions and the unilateral contact conditions at the point of the unilateral 
support. 

 
1. Essential boundary conditions 

 
 Zero vertical displacement at the positions of the classical supports (points 

A,B): 

1 (0) 0w    (4.3) 

2 (0) 0w   (4.4) 

 
 

w

M
V

N

M+dM

V+dV

N+dN

MV

N

M+dM

V+dV

N+dN

x

1
w1'

w2

x1 x2

P

1 1x + dx1 2x + dx2

w2'

x2

aL (1-a)L

R

+u
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 Common vertical displacement at the points of the unilateral support (point C): 

1 2( ) ((1 ) )w aL w a L u    (4.5) 

2. Natural boundary conditions 
 

 Common rotation at the position of the unilateral support (point C): 

1 2( ) ((1 ) )w aL w a L      (4.6) 

 Zero bending moment at the positions of the bilateral supports (points A,B): 

1 (0) 0EIw     (4.7) 

2 (0) 0EIw     (4.8) 

 Moment equilibrium at the position of the unilateral support (point C): 

1 2( ) ((1 ) ) 0EIw aL EIw a L      (4.9) 

 Forces equilibrium at the position of the unilateral support (point C): 
 

In order to formulate the boundary conditions that correspond to the unilateral 
constraint, the support reaction R  should be considered with an unknown 
value (Fig. 4.3). Obviously, the existence of this reaction force R  depends on 
whether the unilateral constraint is active or not. 

1 1 2 2( ) ( ) ((1 ) ) ((1 ) )EIw aL Pw aL EIw a L Pw a L R                   (4.10) 

 

Fig. 4.3 The indirect consideration of the function of the unilateral support through the 
unknown reaction force R. 

PSpan I Span IIA
C

B

R

w1 w2

x1 x2

aL (1-a)L
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3. Unilateral contact boundary conditions at the position of the unilateral 
constraint 
The unilateral constraint may be represented through the following inequality 
conditions (Panagiotopoulos, 1985): 

1 2( ) ((1 ) ) 0w aL w a L u      (4.11) 

0R     (4.12) 

0R u   . (4.13) 

Inequalities (4.11) and (4.12) together with the complementarity condition (4.13) 
express that either the displacement or the reaction may develop, with a negative 
value. Thus, the homogeneous constrained BVP describing the buckling problem 
of the continuous beam with the intermediate unilateral constraint is formulated as: 
 
Problem BP1 : 

Find 1 1
2

2 2

( ) [0, ]
( ) (0, )

( ) [0,(1 ) ]
w x x aL

w x L L
w x x a L

      
7

 
of the system of differential 

equations (4.1), (4.2) such as the equality boundary conditions (4.3)-(4.10), the 
inequality constraints (4.11)-(4.12) and the complementarity condition (4.13) are 
satisfied. 

It has to be noticed that the fundamental equations (4.55) and (4.56) do not take 
into account the stress in the lateral direction (Euler-Bernoulli beam assumption). 
Therefore, they can also be derived by the consideration of the one-dimensional 
von Karman model (Washizu, 1968). Moreover, these types of models are suitable 
for pre-buckling analysis under the assumption of infinitesimal deformations. For 
problems where large deformations have to be consider, different types of beam 
models should be taken into account (Gao, 1996; Gao, 2000). Such models lead to 
nolinear ordinary differential equations and are suitable for the analysis and 
simulation of a variety of mechanical applications. However, bifurcation problems 
of that type are very difficult to be solved analytically and, therefore, 
computational methods are usually employed.  

                                                   
7 The vector space 2(0, )L L is a subspace of the well known Hilbert space. The space 

2(0, )L L constitutes the space of square integrable functions (in the Lebesgue sense). Further 
details are given in Appendix A. 
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4.2.2 Solution of the Problem BP1 for all the possible contact situations 

The BVP of Problem BP1 consists of homogeneous fourth order differential 
equations, which have, respectively, general solutions of the following form: 

1 1 1 1 1 1 1 1 1( ) cos sinw x A kx B kx C x D      (4.14) 

2 2 2 2 2 2 2 2 2( ) cos sinw x A kx B kx C x D    . (4.15) 

The full expression of the deflection curve of the continuous beam is given after 
the determination of the coefficients 1 1 1 1 2 2 2 2, , , , , , ,A B C D A B C D  . These 
coefficients are calculated through the boundary conditions of the problem. 
However, due to the presence of the inequality conditions, the calculation of the 
above coefficients requires an appropriate examination for all the possible contact 
situations. Obviously, the solution of the BVP of the perfect structure depends on 
the different contact situations which can occur. There exist three possible 
deformed configurations compatible with the unilateral constraint. The first 
corresponds to the situation where the unilateral constraint is inactive. In this case 
the contact reaction force 0R   and the transverse deflection 0u  . When 0R   
the unilateral constraint is active, therefore the transverse deflection u  is equal to 
zero. Finally, there exists the limit situation, where the beam is in contact with the 
constraint without producing any reaction force ( 0,  0R u  ). 

Applying the boundary conditions (4.3), (4.4) and (4.7), (4.8) and using the 
derivatives of the deflection curves which are given in Table 4.1, the following 
algebraic equations are obtained: 

 
Deflection 
curve 

1 1 1 1 1 1 1 1 1( ) cos sinw x A kx B kx C x D     2 2 2 2 2 2 2 2 2( ) cos sinw x A kx B kx C x D   

 
First 
Derivative 1 1 1 1 1 1 1( ) sin cosw x Ak kx B k kx C      2 2 2 2 2 2 2( ) sin cosw x A k kx B k kx C     

Second 
Derivative 

2 2
1 1 1 1 1 1( ) cos sinw x Ak kx B k kx     2 2

2 2 2 2 2 2( ) cos sinw x A k x B k kx     

Third 
Derivative 

3 3
1 1 1 1 1 1( ) sin cosw x Ak kx B k kx    3 3

2 2 2 2 2 2( ) sin cosw x A k kx B k kx    

Table 4.1 The derivatives of the deflection curves. 
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1 1 1(0) 0 0w A D                                                                                         (4.16) 

2 2 2(0) 0 0w A D                                                                                       (4.17) 

2
1 1 1(0) 0 0 0  ( 0 for 0)EIw A k A k P                                             (4.18) 

2
2 2 2(0) 0 0 0  ( 0 for 0)EIw A k A k P         .           (4.19) 

Obviously, the previous inequalities yield 1 2 1 2 0A A D D    . As a result, the 
rest of the boundary conditions are transformed to the following equations which 
constitute an algebraic system with respect to the coefficients 1 2 1 2, , ,B B C C :  

1 2( ) ((1 ) )w aL w a L u     

1 2 1 2sin sin (1 ) (1 ) 0B kaL B k a L C aL C a L         (4.20) 

1 2 1 2( ) ((1 ) ) 0 sin sin (1 ) 0EIw aL EIw a L B kaL B k a L           (4.21) 

1 2 1 2 1 2( ) ((1 ) ) cos cos (1 ) 0w aL w a L B k kaL B k k a L C C           (4.22) 

1 1 2 2( ) ( ) ((1 ) ) ((1 ) )EIw aL Pw aL EIw a L Pw a L R                 

 
1 2 3cos cos (1 ) RB kaL B k a L

EIk
   . (4.23) 

The above linear system, can be written in a matrix form as: 

1

2

1

2 3

0sin( ) sin( (1 ) ) (1 )
0sin( ) sin( (1 ) ) 0 0
0cos cos (1 ) 1 1

cos cos (1 ) 0 0

BkaL k a L aL a L
BkaL k a L
Ck kaL k k a L

RCkaL k a L
EIk

                                   

                        (4.24) 

Considering the above, the initial problem BP1 is transformed into the following 
one: 
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Problem BP1-a: 

Find a solution of the algebraic system of equations (4.24) with respect to the 
unknown coefficients 1 1 2 2, , ,B C B C , such that restrictions (4.11)-(4.13) are 
satisfied. 

The solution of the Problem BP1-a is obtained under the separation of the problem 
into subproblems according to the possible contact situation (i.e. the constraint may 
be active, inactive or in neutral contact status). 

4.2.2.1 Inactive constraint, 0R   and 0u   

In the case where the unilateral constraint is inactive (i.e. 0, 0R u  ) the 
following problem has to be solved: 
 
Problem BP1-a,1: 

Find a solution of the algebraic system of equations (4.20)-(4.23) or equivalently of 
the system (4.24) with respect to the unknown coefficients 1 1 2 2, , ,B C B C  , such that 
the following restrictions are satisfied:  

0R     (4.25) 

0u  .  (4.26) 

 
The above BVP produces infinite number of solutions. More specifically, the study 
of the homogeneous linear system (4.24) under the certain contact conditions gives: 

1 2 0C C  .  (4.27) 

The demand of having non-trivial solution leads to: 

1 2
sin( (1 ) ) 0

sin( )
k a LB B

kaL


  , (4.28) 

where 2B  is chosen arbitrarily, and to the following buckling equation: 

cot( ) cot( (1 ) ) 0kaL k a L   .  (4.29) 
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The above equation is a transcendental algebraic one, having infinite solutions8. 
The existence of solution for this specific contact situation indicates a curved 
deformed equilibrium configuration different from the initial straight line one 
(bifurcation). The buckling equation (4.29) gives the eigenvalues of the BVP which 
are the critical loads of the problem under consideration. Moreover, the 
implementation of equations (4.14), (4.15) for each eigenvalue gives the 
corresponding eigenmodes:  

1 1 1 1 1( ) sin ,   [0, ]w x B kx x aL    (4.30) 

2 2 2 2 2( ) sin ,   [0, (1 ) ]w x B kx x a L   .  (4.31) 

From the set of all the functions which can be created for arbitrary values of the 
coefficient 2B  (coefficient 1B  is calculated from relation (4.28)), only the 
functions which fulfill restrictions (4.25) and (4.26) are admissible. Therefore, the 
coefficients  1B  and 2B  should, in turn, satisfy the following inequalities: 

1 sin( ) 0B kaL    (4.32a) 

or, equivalently: 

2 sin( (1 ) ) 0B k a L   .  (4.32b) 

4.2.2.2 Active constraint, 0R   and 0u   

When the unilateral constraint is active (i.e. 0R    and 0u  ) the following 
problem has to be solved: 
 
Problem BP1-a,2: 

Find a solution of the algebraic system of equations (4.24) with respect to the 
unknown coefficients 1 1 2 2, , ,B C B C , such that the following restrictions are 
satisfied:  

0R    (4.33) 

0u  .  (4.34) 

                                                   
8The values of the roots of transcendental equations can be derived easily by using 
numerical methods such as the iterative Newton method. Further details can be found in 
Appendix C. 
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The study of the linear algebraic system (4.24) with respect to the coefficients 
1 1 2 2, , ,B C B C  leads to: 

1 2
sin( (1 ) ) 0

sin( )
k a LB B

kaL


    (4.35) 

1
1

sin( )B kaLC
aL


   (4.36) 

1
2 1

aCC
a




   (4.37) 

and to the following buckling equation: 

1cot( ) cot( (1 ) )
(1 )

kaL k a L
k a aL

  


. (4.38) 

The buckling equation (4.38) is also a transcendental one, producing the critical 
loads (eigenvalues) of the continuous beam in the case that the constraint is active. 
The corresponding eigenmodes are the buckle deflection curves which are 
determined substituting, for each eigenvalue k , relations (4.35)-(4.37) into 
equations (4.14), (4.15): 

1 1 1 1 1 1 1( ) sin +      [0, ]w x B kx C x x aL     (4.39) 

2 2 2 2 2 2 2( ) sin +      [0,(1 ) ]w x B kx C x x a L   .  (4.40) 

The above solution is valid only if the restriction introduced by inequality (4.33) is 
satisfied. Therefore, the coefficient 2B  must be chosen appropriately so that the 
following inequality condition, yielded from relation (4.33), is fulfilled: 

1 2cos( ) cos( (1 ) ) 0B kaL B k a L   .  (4.41) 

4.2.2.3 Neutral contact status, 0R  and 0u   

This is a special case, where simultaneously the reaction force R  and the 
transverse displacement u  in the position of the unilateral constraint are equal to 
zero. For this case, the following problem has to be solved: 
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Problem BP1-a,3: 

Find a solution of the algebraic system of equations (4.24) with respect to the 
unknown coefficients 1 1 2 2, , ,B C B C , such that the following restrictions are 
satisfied:  

0R    (4.42) 

0u  .  (4.43) 

 
The mathematical demand of the above equations leads to: 

1 2 0C C   (4.44) 

 1 2
cos[ (1 ) ] 0

cos
k a LB B

kaL


   . (4.45) 

In this particular contact situation the infinite number of eigenvalues (critical loads) 
is calculated directly through the following formula: 

2 2

( ) 2

( ) ,    ρ,n
n EIP n
L

 



 Z .  (4.46) 

It is noticed that the demand of having simultaneously the contact force and the 
common displacement in the position of the unilateral support equal to zero, can be 
produced only when the parameter a  (Fig. 4.1) can be expressed as the ratio 

na
n




 , thus a  must be a rational number. Then the eigenmodes that constitute 

solutions of Problem BP1-a,3 and correspond to the eigenvalues calculated by 
equation (4.46) are the following: 

1 1 1 1 1( ) sin    [0, ]w x B kx x aL     (4.47) 

2 2 2 2 2( ) sin    [0, (1 ) ]w x B kx x a L   .  (4.48) 

From all the functions which can be generated from relations (4.47) and (4.48) for 
arbitrary values of the coefficient 2B , only those which satisfy restrictions (4.42) 
and (4.43) are admissible. 
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4.2.3 Calculation of the critical load 

In order to determine the critical buckling load of an axially loaded geometrically 
perfect beam in the presence of one intermediate unilateral support, the following 
steps are considered: 
 
a.   A sufficient number of eigenvalues is calculated for each contact case through 
the respective buckling equations (i.e. equations (4.29), (4.38) and (4.46) for the 
inactive, active and neutral contact cases respectively). 
 
b.   From the set of the calculated eigenvalues, only the eigenvalues which produce 
eigenmodes compatible with the unilateral constraint are accepted. 

 
c.   The smallest acceptable eigenvalue is the critical one. For this eigenvalue, the 
critical load and the buckling mode of the beam is determined by means of 
equations (3.12) and (4.14), (4.15) respectively. 

4.3 Formulation of the elastic contact buckling problem of a 
geometrically imperfect continuous beam 

4.3.1 Formulation 

In a similar way as described for the geometrically perfect continuous beam, the 
BVP of a simply supported continuous geometrically imperfect beam with two 
unequal spans and one intermediate unilateral constraint subjected to an axial 
compressive load, can be also formulated. The initial shape of the imperfect beam 
is assumed to be described by a Fourier sine series having the following form: 

0
1

( ) sin ,     [0, ]
n

r
r

r xw x b x L
L




   
 

 .  (4.49) 

In the above relation, L  is the total length of the beam and 0w  are the initial 
deflections of the imperfection. The arbitrary initial geometric imperfection has to 
be compatible with the unilateral constraint, thus, the following inequality should 
be satisfied: 

0 ( ) 0w aL  .  (4.50) 
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Due to the fact that the proposed methodology divides the beam into parts, the 
initial geometric imperfection has to be separated into two functions, one for each 
span of the beam (Span I and Span II): 

1
1,0 1 1

1
( ) sin ,      [0, ]

n

r
r

r xw x b x aL
L




   
 

   (4.51) 

2
2,0 2 2

1
( ) sin ( 1) ,      [0, (1 ) ]

n
r

r
r

r xw x b x a L
L




      
 

 .  (4.52) 

Inequality (4.50) imposes that the Fourier coefficients rb  of the above relations 
should, in turn, satisfy the following inequalities: 

1

sin( ) 0 
n

r
r

b r a


   (4.53) 

or equivalently, 

1

sin( (1 )) 0 
n

r
r

b r a


  .  (4.54) 

Then, for each part of the beam of Fig. 4.1, a fourth-order linear non-homogeneous 
ordinary differential equation can be constructed respectively that describes the 
bending behaviour of the beam. These relations are similar to equation (3.52) 
which was derived in Example 3.3 of Chapter 3. Differentiating four times the 
functions (4.51), (4.52) of the initial imperfections, the following equations are 
obtained: 

4 2
2 41 1 1

14 2
11 1

( ) ( ) ( ) sin( ),       [0, ]
n

r
r

d w x d w x r xrk b x aL
dx dx L L




     (4.55) 

4 2
2 42 2 2

24 2
12 2

( ) ( ) ( ) sin( )( 1) ,      [0,(1 ) ]
n

r
r

r

d w x d w x r xrk b x a L
dx dx L L




      .  (4.56) 

The parameter k  is given by equation (3.12). The solution of the above equations 
gives the transverse deflection w  at each point of the beam as a function of the 
axial compressive load P . Consequently, the contact elastic buckling problem of 
the geometrically imperfect continuous beam with one intermediate unilateral 
constraint is formulated as the following non-homogenous constrained BVP: 
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Problem BI1: 

Find 1 1
2

2 2

( ) [0, ]
( ) (0, )

( ) [0,(1 ) ]
w x x aL

w x L L
w x x a L

      
 of the system of differential 

equations (4.55), (4.56) such that the equality boundary conditions (4.3)-(4.10), the 
inequality constraints (4.11)-(4.12) and the complementarity condition (4.13) are 
fulfilled.  

4.3.2 Solution of the Problem BI1 of the geometrically imperfect beam for all the 
possible contact situations 

For the geometrically imperfect structure, the solution of the Problem BI1 is not a 
simple issue due to the fact that the non-homogeneous constrained BVP may be 
unsolvable, uniquely solvable or solvable with infinite solutions, for all the 
possible values of the axial loading P . An answer concerning the solvability of the 
Problem BI1 can be derived from the application of the fundamental Theorem 3.4 
of Chapter 3. From the demonstration of the Examples 3.3 and 3.4 of Chapter 3 it 
is also concluded that the solvability of the fundamental Problem BI1 is strongly 
connected with the type of the initial imperfection and the eigenvalues of the 
corresponding homogeneous constrained BVP, which in turn, depend on the 
position of the unilateral support and the initial contact conditions (i.e. whether an 
initial gap between the beam and the unilateral support exists, after the introduction 
of the imperfection). 

Therefore, due the complexity of problem and the strong dependence of the 
solution on the aforementioned factors, a general closed solution for each case 
cannot be derived. Although each problem should be treated individually, a flexible 
algorithm is proposed in the present dissertation which is able to give the solution 
after certain steps which are based on a unified solution formula. The concept of 
this algorithm is based on the fundamental question: “is the certain value of the 
axial load P  in equations (4.55) and (4.56), for which the solution of the BVP is 
seeked, an eigenvalue of the corresponding eigenvalue problem ? ”. The answer to 
this question, as it will be displayed in the following paragraphs, leads to the 
solution of the problem. 

In the studied case of the imperfect beam, the critical state is usually denoted by 
disproportionate large transverse deflections, developing when the axial 
compressive load P  is approaching a certain value, the so-called instability load 
(denoted by iP ). Notice that, as it was stated in Chapter 3 (see Example 3.4), 
instability can also occur “suddenly” when the load takes the critical value for 
which the non-homogeneous BVP has infinite solutions. Due to the existence of 
the initial imperfection, the beam has a bending deflection even from the initial 
stage of the loading, in contrast with the perfect structure where the critical state is 
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indicated by an instantaneous passing from the stable initial straight line 
configuration to the curved deformed configuration (bifurcation equilibrium state). 

The solution of Problem BI1 of paragraph 4.3.1 is a superposition of a general 
solution and of a particular solution related with the type of the initial imperfection, 
i.e.: 

1
1 1 1 1 1 1 1 1 1

1

( ) cos sin sin( ),       [0, ]
n

r r
r

r xw x A kx B kx C x D b F x aL
L




        (4.57) 

2 2 2 2 2 2 2 2( ) cos sinw x A kx B kx C x D      

                                                 2
2

1

sin( )( 1) ,      [0,(1 ) ]
n

r
r r

r

r xb F x a L
L




    .  (4.58) 

It is noticed that the solutions 1 2,w w  give the total transverse deflections of the 
beam, i.e. the initial deflections are included in them. In the above solutions the 
terms rF  are functions of the axial compressive load P , the so-called 
“magnification factors”: 

1

1
r

r

F P
P




.  (4.59) 

In the above, rP  are the eigenvalues of the elastic contact buckling problem of the 
simply supported beam, i.e.: 

2 2

2r
r EIP

L


 . (4.60) 

The coefficients of the general solution are calculated through the boundary 
conditions (relations (4.3)-(4.10)) of the problem. The boundary conditions (4.3)-
(4.10) are transformed into the following equations: 

1 1 1(0) 0 0w A D      (4.61) 

2 2 2(0) 0 0w A D      (4.62) 

2
1 1 1(0) 0 0 0  ( 0 for 0)EIw A k A k P           (4.63) 
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2
2 2 2(0) 0 0 0  ( 0 for 0)EIw A k A k P         .  (4.64) 

Therefore, 1 2 0D D   and the rest of the boundary conditions take the form: 

1 2 1 1
1

( ) ((1 ) ) sin sin
n

r r
r

w aL w a L u B kaL C aL b F r a


        

2 2
1

                      sin( (1 ) ) (1 ) sin (1 )( 1)
n

r
r r

r
B k a L C a L b F r a



             (4.65) 

2 2
1 2 1

1

( ) ((1 ) ) sin ( ) sin( )
n

r r
r

rEIw aL EIw a L B k kaL b F r a
L





        

2 2
2

1

                               sin (1 ) ( ) sin( (1 ))( 1)
n

r
r r

r

rB k k a L b F r a
L





     
 

(4.66) 

1 2 1 1
1

( ) ((1 ) ) [ cos ( )cos( )]
n

r r
k

rw aL w a L B k kaL C b F r a
L





        

 2 2
1

cos (1 ) ( )cos( (1 ))( 1)
n

r
r r

r

rB k k a L C b F r a
L





       (4.67) 

1 1 2 2( ) ( ) ((1 ) ) ((1 ) )EIw aL Pw aL EIw a L Pw a L R                 
 

3 3
1 2 1

1

[ ( ) ((1 ) )] cos ( ) cos( )
n

r r
r

R rw aL w a L B k kaL b F r a
EI L






          

3
2

1

cos (1 ) ( ) cos( (1 ))( 1)
n

r
r r

r

r RB k a L b F r a
L EI





      .  (4.68) 

Equations (4.65)-(4.68) are used in order to determine the unique values of the 
coefficients 1 2 1 2, , ,B B C C  . The above equations are transformed in the following 
equations, which constitute an algebraic system with respect to the unknown 
coefficients 1 2 1 2, , ,B B C C .  

1 1 2 2sin sin (1 ) (1 )B kaL C aL B k a L C a L       (4.69) 
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1 2sin sin (1 )B kaL B k a L    (4.70) 

1 2 1 2cos cos (1 ) 0B k kaL B k k a L C C       (4.71) 

1 2 3cos cos (1 ) RB kaL B k a L
EIk

   .  (4.72) 

Notice that relations (4.69)-(4.72) have been derived using the following formulas: 

1 1

sin( (1 ))( 1) sin( )
n n

r
r r r r

r r
b F r b F r a  

 

       (4.73) 

1 1

cos( (1 ))( 1) cos( )
n n

r
r r r r

r r
b F r b F r a  

 

    .  (4.74) 

Now, the fundamental constrained BVP BI1 can be modified to the following 
problem: 

Problem BI1-a: 

Find a solution of the algebraic system of equations (4.69)-(4.72) with respect to 
the unknown coefficients 1 1 2 2, , ,B C B C , so that restrictions (4.11)-(4.13) are 
satisfied. 

Obviously, the values of these coefficients are different for each contact situation. 
Due to the inequality conditions (4.11), (4.12) and the complementarity condition 
(4.13), an examination for all the possible contact situations is required. Thus, the 
solution of the Problem BI1-a is obtained under the separation of the problem into 
subproblems according to the possible contact situation (i.e. the constraint may be 
active, inactive or in neutral contact status). 

4.3.2.1 Case of inactive constraint and of neutral contact status, 0R   and 0u   

In the case where the unilateral constraint is inactive, the normal contact force is 
equal to zero. Then, the following problem has to be solved: 
 
Problem BI1-a,1: 

Find a solution of the algebraic system of equations (4.69)-(4.72) with respect to 
the unknown coefficients 1 1 2 2, , ,B C B C , so that the following restrictions are 
satisfied:  
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0R    (4.75) 

0u  .  (4.76) 

 
Applying to the BVP the necessary conditions 0R    and 0u   , the following 
relations are obtained: 

1 1 1
1

( ) sin sin 0
n

r r
r

w aL B kaL C aL b F r a


      (4.77) 

2 2 2
1

((1 ) ) sin( (1 ) ) (1 ) sin 0
n

r r
r

w a L B k a L C a L b F r a


         (4.78) 

1 2 3cos cos (1 ) 0RB kaL B k a L
EIk

    .
 

(4.79) 

From both relations (4.69) and (4.70), it is derived that: 

2
1 2 1

(1 )(1 ) C aC aL C a L C
a


    .  (4.80) 

Additionally, from equations (4.71) and (4.77), the following relation arises:  

1 2C C  .  (4.81) 

Obviously, in order equations (4.80), (4.81) to be satisfied simultaneously, the 
following condition should hold: 

1 2 0C C  . (4.82) 

Then, equations (4.70) and (4.71) formulate the following 2 2  linear 
homogeneous system with respect to the unknowns 1 2,B B : 

1

2

sin( ) sin( (1 ) ) 0
cos( )   cos( (1 ) ) 0

BkaL k a L
BkaL k a L

      
        

.  (4.83) 

The above system admits obviously the zero solution (i.e. 1 2 0B B  ). Also, if the 
determinant of the system is equal to zero, infinite solutions may exist for 1 2,B B , 
and consequently, for the non-homogeneous BVP of the imperfect beam. Here: 
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2 2

sin( ) sin( (1 ) )
cos( )   cos( (1 ) )

kaL k a L
D

kaL k a L

 
 


 

              sin( )cos( (1 ) ) cos( )sin( (1 ) ) sinkaL k a L kaL k a L kL     . (4.84) 

In order to investigate the solvability of the studied BVP, Theorem 3.4 of Chapter 3 

should be applied. More specifically, let us consider the value of k
L



 
which 

fulfills equation (4.84) and also constitutes eigenvalue of the corresponding 
homogeneous BVP (i.e. solution of the geometrically perfect structure). This value 
gives for (4.84) 2 2 0D   . According to the aforementioned theorem, the non-
homogeneous BVP is solvable (but not uniquely) if and only if the function of the 
right hand side of equation (4.55) (termed as ( )f x in the following relation) is 
orthogonal to every eigenfunction corresponding to that value of k , thus in 
essence, if the following equation holds for every value 0a �  : 

 
4

1 1 1
0 0 0 1

10

( ( ), sin ) sin( ) sin 0, ( 0,  0)
aL n

r
r

x r x xrf x a b a dx a b
L L L L
  



       
   

 .(4.85) 

The expansion of the above integral leads to: 

4 4
1 1 1 1

0 1 1 0 1
10 0

sin( ) sin sin( )sin
aL aLn

r
r

r x x x xrb a dx b a dx
L L L L L L

    


                     
   

4
1 1 1

2 0 1
0

22 sin( ) sin( )sin( ) .....
aLx x xb a dx

L L L L
           

  

                             

4
1 1 1

0 1
0

.... sin( ) sin( )sin( )
aL

n
n x n x xnb a dx

L L L L
           

  

24 4
1 1 1

1 0 1 0
0 0

sin( )sin( ) 0 sin( )
aL aLx x xb a dx b a dx

L L L L L
                                  

   

4
1

1 0
0

20.5 0.25 sin
aLxLb a x

L L




               
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4

1 0 (0.5 0.25 sin(2 )) 0    (0,1)Lb a aL a a
L





           
.                               (4.86) 

Relation (4.86) verifies that the function of the right hand side of equation (4.55) is 
not orthogonal to none of the eigenfunctions which correspond to the eigenvalue 

k
L


  . Therefore, for values of loading inside the interval 
2

2(0, )EI
L

  the BVP has 

a unique solution. However, it cannot be asserted that a unique solution can be 
extracted for all the values of loading. It is noticed that in the above example it was 
assumed that 1 0b  . Depending on the position of the unilateral constraint, the 
eigenmodes of the homogeneous BVP may not be orthogonal to the function of the 
right hand side of equation (4.55) (which corresponds to the function ( )f x  of 
Theorem 3.4). Then, according to Theorem 3.4, this remark indicates that the non-
homogeneous BVP accepts infinite solutions.  

Leaving for the moment this interesting conclusion and considering values of 
the parameter k  in equations (4.55) and (4.56) such that the BVP has a unique 
solution, the algebraic system (4.83) yields only the zero solution, thus 1 2 0B B  . 
This means that the solution of the under study non-homogeneous BVP consists 
only of the particular solution, i.e: 

1
1 1 1

1

( ) sin( ),       [0, ]
n

r r
r

r xw x b F x aL
L




                                                           (4.87) 

2
2 2 2

1

( ) sin( )( 1) ,      [0,(1 ) ]
n

r
r r

r

r xw x b F x a L
L




     .                                    (4.88) 

The above solution is valid only if the restriction introduced by the following 
inequality is satisfied: 

1
1

( ) sin 0     0
n

r r
r

w aL b F r a P


                                                                  (4.89) 

or equivalently,  

2
1

((1 ) ) sin( (1 ))( 1) 0     0
n

r
r r

k
w a L b F r a P



       .                                   (4.90) 
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The previous inequality implies that a specific value of the axial load P   that 
makes the inequality untrue is possible to exist. This value of load causes the 
development of the reaction force R  and is termed as cP . The situation for which 

cP P  corresponds to the neutral contact status situation. This particular value of 
loading is calculated from the limit case where (4.89) (or equivalently (4.90), holds 
as equality, i.e. 

1
1

( ) sin 0 
n

r r
r

w aL b F r a


  ,  (4.91) 

or equivalently,  

2
1

((1 ) ) sin( (1 ))( 1) 0
n

r
r r

k
w a L b F r a



     .  (4.92) 

These latter equations derive an ( 1)n   order polynomial algebraic equation with 
respect to the variable P . Obviously, negative or complex values of load P  cannot 
be admissible solutions. Also it should be pointed out that more than one real 
positive solutions may exist, from which only the one with the smallest value is of 
interest. 

4.3.2.2 Case of active constraint, 0R   and 0u   

In case where the unilateral constraint is active the normal contact force is 0R  , 
and the following problem has to be solved: 
 
Problem BI1-a,2: 

Find a solution of the algebraic system of equations (4.69)-(4.72) with respect to 
the unknown coefficients 1 1 2 2, , ,B C B C , so that the following restrictions are 
satisfied:  

0R                                                                                                                    (4.93) 

0u  .                                                                                                                 (4.94) 

 
Applying these restrictions to the relative boundary conditions, the following 
relations are obtained: 
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1 1 1
1

( ) sin sin 0
n

r r
r

w aL B kaL C aL b F r a


       (4.95) 

2 2 2
1

((1 ) ) sin( (1 ) ) (1 ) sin 0
n

r r
r

w a L B k a L C a L b F r a


         (4.96) 

1 2 3cos cos (1 ) 0RB kaL B k a L
EIk

    .
 

(4.97) 

Relations (4.95), (4.96) lead to the determination of the coefficients 1 2,C C  : 

1
1

1

sin sin
n

r r
r

B kaL b F r a
C

aL




 



   (4.98) 

2
1

2

sin( (1 ) ) sin

(1 )

n

r r
r

B k a L b F r a
C

a L




  





, (4.99) 

while equations (4.72), (4.73) formulate a linear algebraic system with respect to 
the coefficients 1 2,B B :  

1

2 1 2

0sin( ) sin( (1 ) )
cos( )   - cos( (1 ) )

BkaL k a L
B C Ck kaL k k a L

      
           

.  (4.100) 

The determinant of the above linear system, gives: 

2 2

sin( ) sin( (1 ) )
cos( )   -cos ( (1 ) )

kaL k a L
D

k kaL k k a L

 
 
 

 

sin( )cos( (1 ) ) cos( )sin( (1 ) ) sink kaL k a L k kaL k a L k kL          (4.101) 

Obviously, the solvability of the non-homogeneous BVP depends on the different 
values of the parameter k  in equations (4.55) and (4.56). Considering that the 
above system has a unique solution (i.e. either the values of the parameter k  are 
not eigenvalues of the corresponding homogeneous BVP or they are eigenvalues 
which, however, produce eigenmodes not orthogonal to the functions of the right 
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hand side of equations (4.55), (4.56)), and after a sequel of mathematical 
operations, the coefficients 1 2,B B  can be determined as: 

1
1

sin[ ] sin[ (1 ) ]

(1 ) sin[ ] sin[ ]sin[ (1 ) ]

n

r r
r

b F r a k a L
B

a a kL kL kaL k a L




 
 

 
  


9  (4.102) 

1
2

sin[ ]
sin[ (1 ) ]

B kaLB
k a L




. (4.103) 

Clearly, the above solution is valid only if the restriction introduced by the 
inequality condition (4.93), is satisfied, i.e.: 

1 2cos[ ] cos[ (1 ) ] 0   0B kaL B k a L P     .                                                   (4.104) 

If a value of the load P  exists so that the left side of inequality (4.104) tends to 
zero, then the beam develops the tendency to be separated from the unilateral 
constraint. This axial load is termed as sP  . Obviously, the admissible values of sP  
should belong into the set of positive real numbers ( � ). From all the admissible 
solutions, only the smallest value is of interest. 

4.3.3 Singularities and infinite solutions 

As it was intuitively inferred in the previous paragraphs, depending on the type of 
the initial imperfection and on the position of the unilateral constraint, the 
following cases may appear for an axially loaded geometrically imperfect beam 
when the axial load takes values in an arbitrary open interval 1 2( , )P P . 
 

   If inside the interval 1 2( , )P P  does not exist an eigenvalue of the 
corresponding homogeneous BVP, then the non-homogeneous BVP has a 
unique solution. This solution can be determined according to the formulas 
derived in paragraphs 4.3.2.1 and 4.3.2.2. 

                                                   
9It is essential to notice that the denominator of relation (4.100) is actually the buckling 
equation (4.38) for the corresponding contact situation of the homogeneous BVP, due to the 
fact that  

sin[ ]cot[ ] cot[ (1 ) ]
sin[ ]sin[ (1 ) ]

kLkaL k a L
kaL k a L

  


.  
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   If inside the interval 1 2( , )P P  an eigenvalue of the corresponding 
homogeneous BVP exists, for which the corresponding eigenmode is not 
orthogonal to the function of the right hand side of equations (4.55) and 
(4.56), then the non-homogeneous BVP is unsolvable.  

   If inside the interval 1 2( , )P P  an eigenvalue of the corresponding 
homogeneous BVP exists, for which the corresponding eigenmode is 
orthogonal to the function of the right hand side of equations (4.55) and 
(4.56), then the non-homogeneous BVP has infinite solutions for the specific 
eigenvalue. The infinite solutions can be easily determined for the particular 
eigenvalues, by means of the boundary conditions. 

It is then obvious that in the last two cases, the deflection curve appears certain 
“singularities” for these specific eigenvalues. The values of load which lead to 
these “singularities” cause instability and, therefore, have to be detected. 

4.3.4 Calculation of the instability load 

In the previous paragraphs the formulation and the solution of the unilateral contact 
elastic buckling problem of a geometrically imperfect beam with an intermediate 
unilateral constraint, was presented. This solution is actually the elastic deflection 
curve of the beam which is dependent on the axial loading, the type of the initial 
imperfection and the position of the unilateral support along the axis of the beam. 
As it was aforementioned, the critical equilibrium state for an imperfect beam is 
usually denoted by disproportionate large values of the deflection curve, when the 
loading tends to the value of the instability load ( iP P ). The calculation of this 
load is accomplished via the determination of the poles10 of the function 
representing the deflection curve. This type of instability results from the fact that 
for the instability load the non-homogeneous BVP is unsolvable. However, 
instability can also occur when the load becomes equal to the critical eigenvalue, 
for which the non-homogeneous BVP has infinite solutions. Depending on the 
contact situation (e.g. active constraint, inactive constraint or neutral condition) the 
poles of the deflection curve are the eigenvalues of the buckling equations of the 
corresponding bifurcation problem, a topic that has been addressed in Section 4.2. 
Due to the different contact cases which can be developed during the bending 
deformation, the determination of the instability load is not a simple issue. For this 
reason, the following convenient calculation procedure is proposed.  
 
Initially, according to Section 4.2, the eigenvalues for each contact case (i.e. active, 
inactive and neutral contact status) are extracted. Then, 
                                                   
10 As a pole of a function is defined the point for which the limit of the function about this 
point, tends to infinity. 
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Step 1 

The initial imperfection is applied and the deflection at the position of the 
unilateral support is examined (i.e. if 0u   or if 0u  ). 

Step 2 

If 0u   , then relations (4.87)-(4.90) hold. It is then checked whether a valid value 

cP  exists, yielded by relations (4.91) or (4.92) when they hold as equalities. 
 
a)   If these relations do not produce a valid value for cP  , then it is sure that the 

beam will never come in contact with the unilateral support. In this case the 
procedure continues with Step 5. 

b)   If these relations produce a valid value for cP ,  it is then examined if an 
eigenvalue of the corresponding BVP of the perfect structure, located inside 
the interval [0, ]cP , exists. If such an eigenvalue does not exist, then the beam 
is able to sustain more loading till the unstable equilibrium state and the 
procedure continues with Step 4. If such an eigenvalue exists, then it is 
checked if the latter produces eigenmodes orthogonal to the particular each 
time function of the right hand side part of the fundamental equation (3.31).  

 If yes, then the deflection curve has infinite solutions for this certain value 
of loading and thus a singularity point appears. In this case the beam 
buckles “suddenly” and the instability load is actually this eigenvalue.  

 If not, then this eigenvalue is also the instability load of the beam  due to 
the fact that as the applied load approaches the specific eigenvalue the 
deflections of the beam take extremely large values.  

In both cases: 

( )
,
I

in cr eigP P                                                      (4.105) 

Step 3 

If 0u  , then the beam is in contact with the constraint and the relations of 
paragraph 4.3.2.2 hold. It is then checked, whether a valid value sP  exists, yielded 
by relation (4.104) when it holds as equality ( 0R ). In this case the beam 
develops the tendency to be separated from the unilateral support. 
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a) If relation (4.104) does not produce a valid value for sP , then it is sure that the 
beam will never lose contact with the unilateral support. In this case the 
procedure is continued with Step 4. 

b)  If relation (4.104) produces a valid value for sP , then it is examined if there 
exists an eigenvalue, ( )

,
A

cr eigP , of the corresponding homogeneous BVP of the 
perfect structure, located inside the interval [0, ]sP , that either produces 
disproportionate large deflections or  leads to a singular case expressed through 
a different function of the deflection curve.  

 If not, the procedure continues with Step 5.  

 If yes, then this eigenvalue constitutes the instability load of the beam and 
the procedure is terminated. In this case,  

( )
,
A

in cr eigP P                                                      (4.106) 

Step 4 
Having reached in this step, the deflection curve is in contact with the unilateral 
support and will remain in contact till the maximum value of the loading, which 
leads to unstable equilibrium state, has been attained, therefore, 0u   and 0R  . 
Now the relations of paragraph 4.3.2.2 hold. Two different cases can be 
distinguished, depending on the previous steps which led to this specific situation. 
More specifically: 

a) Case of arriving in Step 4 from Step 2b 

In this case the beam has come in contact with the unilateral support for cP P   
and has the ability to sustain more loading. For loads cP P , the bending 
behaviour of the beam is described by the set of equations (4.95)-(4.104). The 
instability load is equal to the critical eigenvalue ( ( )

,
A

cr eigenP ) which corresponds to 
the existing contact case (i.e. the case of the active constraint). The type of 
instability can be examined through the utilization of Theorem 3.4. 

b) Case of arriving in Step 4 from Step 3a 

As in the previous case, the beam will either undergo disproportionate large 
deflections as the applied load approaches the critical eigenvalue of the 
corresponding bifurcation problem ( ( )

,
A

cr eigenP ), or lose its stability suddenly as the 
load takes a value equal to that eigenvalue. Similarly, the type of instability can 
be examined through the utilization of Theorem 3.4. 

In both cases of Step 4: 
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( )
,
A

in cr eigP P                                                      (4.107) 

 

 

Step 5 

The deflection curve is not in contact with the unilateral support and this situation 
will not change till the unstable equilibrium state will be attained, therefore 0u 
and 0R    and relations (4.85),(4.86) hold. In this case the determination of the 
instability load is based on the following: 
 
a) Case of arriving in Step 5 from Step 2a 

In this case the bending behaviour of the beam is described by equations (4.87) 
and (4.88) until the unstable equilibrium state. The instability load is the 
critical eigenvalue ( _cr eigP ) which corresponds to the case of the inactive 
constraint, i.e the Euler load of the simply supported beam: 

2
( )

, 2
I

in cr eig
EIP P

L


  .                                                    (4.108) 

b) Case of arriving in Step 5 from Step 3a 

In case where the beam separates from the unilateral support (Step 3a), two 
different cases can be occur depending on the value of sP  : 

 If ( )
,
I

s cr eigP P  (where ( )
,
I

cr eigP  is the critical eigenvalue of the existing contact 
case, i.e the case of the inactive constraint), then the beam is able to sustain 
more loading until that critical value is reached.  

 If ( )
,
I

s cr eigP P , then the beam cannot stay in equilibrium and the deflections 
of the beam are accompanied by an abrupt decrease of the applied load to 
lower values.  

In both cases the instability load is equal to the critical eigenvalue ( )
,
I

cr eigP .  

( )
,
I

in cr eigP P                                                      (4.109) 

Moreover, the type of instability has to be checked, as in the previous cases.  
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The solution procedure which has been described in this section is also displayed in 
the flow-chart of Fig.4.3 and will be clearly demonstrated in the examples treated 
in Chapter 7. 

Step 1
Examination of the

deflection u at the position
of the unilateral support

Check:
u<0 or u=0

u=0

Step 3

u<0

Step 2

Check:
P exists or

P doesn't exist
c

c

Step 2a Step 2b

P existscP doesn't existc

Go to 5a

Examine if an eigenvalue
exists inside the interval

[0,P]

YesNo

P=P (I)
cr,eig

Step 4

Step 4bStep 4a
P=P (A)

cr,eig P=P (A)
in cr,eigin

Step 5

Step 5a

P =P     = π²ΕΙ(I)

L²in cr,eig

Step 5b

Step 3a

P existssP doesn't exists

Go to 4b

Step 3b

Examine if a critical
eigenvalue  P      exists inside

the interval [0, P]
(A)

cr,eig

s

YesNo

P=P (I)
cr,eig

P =P     = π²ΕΙ(I)

L²in cr,eig

P exists or
P doesn't exist

s

s

Check:

c

in in

 

Fig. 4.3 The flow chart diagram of the proposed calculation procedure. 
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4.4 Failure axial load of the continuous beam considering the cross-
section strength  

4.4.1 Generalities 

Even though the methodology described in the previous section is able to handle 
the unilateral contact elastic buckling problem of continuous beams with geometric 
initial imperfections, from a practical point of view, the calculated instability load 
is not the ultimate load that the beam can sustain. As it is obvious from the 
previous paragraphs, two types of loads causing instability have been calculated so 
far. The first one, the critical load, is the smallest eigenvalue (compatible with the 
restriction introduced by the unilateral constraint) calculated from the 
homogeneous BVP of the perfect continuous beam. This load surely does not 
reflect the realistic buckling load of the beam, due to the fact that it does not take 
into account the inevitable initial geometric imperfections which are present in real 
structures. For this reason, a second type of load, the instability load, was 
determined in Section 4.3 for imperfect continuous beams. Nevertheless, this load 
cannot be considered as the maximum load that the beam can sustain when a real 
design case is under study, due to the fact that it does not take into account the 
cross-section actual strength. Clearly, as the loading increases, the transverse 
deflections of the beam increase disproportionately, leading eventually to the 
exhaustion of the ultimate strength of the cross-sections of the beam. Moreover, the 
exhaustion of the capacity of the  cross-section should be examined under the 
coexistence of the compressive axial load with the second order bending moment, 
which, in turn, depends on the magnitude of the developed deflections. Therefore, 
the ultimate load of a real life problem depends on the specific shape of the initial 
imperfections, their amplitudes and on the strength of the actual cross-section of 
the beam. For the determination of this ultimate load, the proposed method should 
be equipped with design criteria, connected with the strength of the cross-sections. 
Without losing generality, it is assumed  that the beams which are considered in the 
present dissertation are made of steel and, therefore, the provisions of Eurocode 3 
(EN 1993.01.01 (2005)) apply. As a result, the design criterion is related with the 
bending moment resistance .N RdM  which is computed considering also the effect 
of the axial compressive force  P . More specifically, at each point of the beam the 
following relation should be fulfilled: 

.Ed N RdM M ,   (4.110) 

where EdM   is the design second order bending moment that can be determined 
through the following equations: 
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1 1, 1 1 1 1,0 1 1( ) ( ) ( ( ) ( ))     [0, ]Ed pM x EIw x EI w x w x x aL          (4.111) 

1 2, 1 2 2 2,0 2 2( ) ( ) ( ( ) ( ))     [0,(1 ) ]Ed pM x EIw x EI w x w x x a L         ,  (4.112) 

where, 1,pw  and 2, pw  are the second derivatives of the elastic transverse deflection 
which are attributed solely to the axial loading P . The calculation of the bending 
moment resistance .N RdM  depends on the type of the cross-section and the 
appropriate relations can be found in Eurocode 3. 

4.4.2 Calculation of the second-order bending moment as a function of the 
unilateral constraint conditions 

Using the expressions obtained in Section 4.3 for the deflections 1w  and 2w , the 
following equations are obtained that give the function of the bending moment 
when the constraint is inactive and active, respectively.  
 
a. Inactive unilateral constraint and neutral contact status, i.e. 0R  and 0u  : 

 
2

1
1 1

1
( ) 1 sin      [0, ]

n

Ed r r
k

r xrM x EI b F x aL
L L




          
     

   (4.113) 

 
2

2
2 2

1
( ) 1 sin ( 1)      [0, ]

n
k

Ed r r
k

r xrM x EI b F x aL
L L




           
     

   (4.114) 

 
b. Active unilateral constraint, i.e. 0R  and 0u  : 

 
2

2 1
1 1 1 1

1
( ) sin( ) 1 sin ,   [0, ]

n

Ed r r
r

r xrM x EI B k kx b F x aL
L L




            
     

 (4.115) 

 2 2
2 2 2 2

1
( ) [ sin( ) ( 1)sin 1 ,

n
r

Ed r r
r

r xrM x EI B k kx b F
L L




          
   

       

 2 [0,(1 ) ]x a L  .    (4.116) 
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5 The unilateral buckling of beams – Part 2 

5.1 Introduction 
In the previous chapter the contact buckling problem of a beam with one 
intermediate unilateral constraint was treated. The presented methodology can be 
extended in order to solve the same problem when more than one unilateral 
constraints are likely to be present in the considered beam. In general, there is no 
difficulty in the formulation of the latter contact problem, apart from the 
complexity of the mathematical operations which are increased.  

The present chapter deals with the contact buckling problem of beams when the 
functioning of the unilateral constraints is such that their reactions are likely to 
have opposite signs (Fig. 5.1). For the simplification of the required calculations 
and without compromising generality, the contact buckling problem of a beam with 
two intermediate unilateral constraints in an “opposite” functioning mode is 
considered here. The proposed methodology can be extended in order to handle 
more than two intermediate constraints. For the formulation of the problem, 
assumptions similar to those of the contact buckling problem of Chapter 4 will be 
used. Again, the described methodology will be an extension of Euler’s 
equilibrium method.  

This study concerns two different types of the considered structure, i.e. the 
perfect beam and the geometrically imperfect beam. For the two individualy 
studied cases, analytical solutions are derived which can be applied in several 
different classes of contact buckling problems. In the present Chapter, only the 
formulation and the solution of the aforementioned problem are presented. The 
range of applications which the described methodology has the potential to handle, 
is presented in the next chapter through the demonstration of several examples.  

5.2 Formulation of the elastic contact buckling problem of a 
geometrically perfect continuous beam with two opposite 
functioning unilateral supports 

5.2.1 Formulation 

A geometrically perfect (i.e. without any initial geometric imperfections) beam 
with two intermediate unilateral constraints having opposite functions is 
considered, subjected to an axial compressive load (Fig.5.1). The beam is divided 
into three spans, Span I, Span II and Span III, having lengths aL , bL  and cL
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respectively, where L  is the total length of the beam. The three spans are equipped 
with the coordinate systems 1 1,x w  , 2 2,x w  and 3 3,x w   as it is shown in Fig. 5.1. The 
coordinates 1 2 3, ,x x x  measure the position along the axis of the beam in each span 
and 1 2 3, ,w w w   denote the corresponding transverse deflections. 
 

w

aL

1 w3

x1 x3

bL

PSpan I Span IIA C BSpan III

cL

x2

w2

D

 

Fig. 5.1 The buckling problem of a beam with two intermediate unilateral constraints 
having opposite functions. 

The positive internal forces are assumed to follow the positive directions of Fig. 
3.1. For the description of the bending behaviour of the beam, the Euler’s 
equilibrium method can be applied, as it was already explained in Section 3.4, 
leading to a fourth-order homogeneous differential equation for each span of the 
beam: 

 
4 2

21 1 1 1
14 2

1 1

( ) ( ) 0    0,d w x d w xk x aL
dx dx

       (5.1) 

 
4 2

22 2 2 2
24 2

2 2

( ) ( ) 0    0,d w x d w xk x bL
dx dx

     (5.2) 

 
4 2

23 3 3 3
34 2

3 3

( ) ( ) 0    0,d w x d w xk x cL
dx dx

    .  (5.3) 

The parameter k  is given by relation (3.12). If a non-trivial solution for the above 
equations exists, the beam can be in equilibrium in a curved configuration different 
from the straight line one (bifurcation equilibrium state). Therefore, the solution of 
the above equations gives the transverse deflections 1 2 3, ,w w w  of the beam at any 
point, as a function of the compressive load P . The boundary conditions of the 
problem are formulated taking into account the essential boundary conditions, the 
natural boundary conditions and the unilateral contact conditions at the points of 
the unilateral supports. For the certain case with the two intermediate unilateral 
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supports which produce reactions with opposite signs, twelve boundary conditions 
and two sets of restrictions exist. More specifically: 

1. Essential boundary conditions 
 Zero vertical displacement at the positions of the classical supports (points 

A,B): 

1(0) 0w      (5.4) 

3 (0) 0w        (5.5) 

 Common vertical displacement at the unilateral support at point C: 

1 2 1( ) (0)w aL w u    (5.6) 

 Common vertical displacement at the unilateral support at point D: 

2 3 2( ) ( )w bL w cL u    (5.7) 

2. Natural boundary conditions 
 Common rotation at the position of the unilateral support at point C: 

1 2( ) (0)w aL w    (5.8) 

 Common rotation at the position of the unilateral support at point D: 

2 3( ) ( )w bL w cL     (5.9) 

 Zero bending moment at the positions of the two ends of the beam (points 
A,B): 

1 (0) 0EIw      (5.10) 

3 (0) 0EIw      (5.11) 

 Moment equilibrium at the position of the unilateral support at point C: 

1 2( ) (0) 0EIw aL EIw      (5.12) 
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 Moment equilibrium at the position of the unilateral support at point D: 

2 3( ) ( ) 0EIw bL EIw cL      (5.13) 

 Forces equilibrium at the position of the unilateral support (points C and D) 
 

In order to formulate the boundary conditions that correspond to the unilateral 
constraints, the support reaction of the unilateral constraint at point C (denoted 
as 1R ) and the support reaction of the unilateral constraint at point D (denoted 
as 2R ) should be considered with an unknown value (Fig. 5.2). Obviously, the 
existence of this reaction force ,  ( 1, 2)iR i   depends on whether the unilateral 
constraint is active or not. In any case, the equilibrium of forces at these two 
points is written as: 

1 1 2 2 1( ) ( ) (0) (0)EIw aL Pw aL EIw Pw R              
   (5.14) 

2 2 2 3 2( ) ( ) ( ) ( )EIw bL Pw bL EIw cL Pw cL R              
   (5.15) 

 

Fig 5.2 The considered positive directions for the unknown reaction forces  R1  and R2 of 
the unilateral supports. 

3. Unilateral contact boundary conditions at the positions of the unilateral 
constraints 

 
The unilateral constraint at point C may be represented through the following 
inequality conditions (Panagiotopoulos, 1985): 

1 2 1( ) (0) 0w aL w u     (5.16) 

1 0R     (5.17) 

w

aL

1 w3

x1 x3

bL

PSpan I Span IIA C BSpan III

cL

x2

w2

D

R1 R2
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1 1 0R u  .  (5.18) 

Similarly, the unilateral constraint at point D may be represented through the 
following inequality conditions: 

2 3 2( ) ( ) 0w bL w cL u    (5.19) 

2 0R    (5.20) 

2 2 0R u  . (5.21) 

Thus, the unilateral contact buckling problem of the continuous beam with the two 
intermediate unilateral constraints with opposite functions is formulated as: 
 
Problem BP2 : 

Find 
1 1

2 2 2

3 3

( ),  [0, ]
( ),  [0, ]( ) (0, )
( ),  [0, ]

w x x aL
w x x bLw x L L
w x x cL


   
  

 of the system of differential equations 

(5.1)- (5.3) such as the equality boundary conditions (5.4)-(5.15), the inequality 
constraints (5.16), (5.17), (5.19), (5.20), and the complementarity conditions 
(5.18), (5.21) are fulfilled. 

 

5.2.2 Examination of the BVP for all the possible contact situations 

The BVP discussed in the previous paragraph consists of homogeneous fourth 
order differential equations, which have, respectively, general solutions of the 
following form: 

1 1 1 1 1 1 1 1 1( ) cos sinw x A kx B kx C x D      (5.22) 

2 2 2 2 2 2 2 2 2( ) cos sinw x A kx B kx C x D       (5.23) 

3 3 3 3 3 3 3 3 3( ) cos sinw x A kx B kx C x D       (5.24) 

The full expression of the deflection curve of the continuous beam is given after 
the determination of the coefficients 1 1 1 1 2 2 2 2 3 3,  ,  ,  ,  ,  ,  ,  ,  ,  ,A B C D A B C D A B 3 3,  C D  
These coefficients are calculated through the boundary conditions of the problem. 
However, due to the presence of the inequality conditions, the calculation of the 
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above coefficients requires an appropriate examination for all the possible contact 
situations. Any of the two constraints may be active, inactive or in a neutral contact 
status (both 0iu   and 0iR  ). Obviously, there are nine different possible contact 
combinations which are presented in Table 5.1. 

 
Contact 
Case 

Unilateral constraint 
placed at point C 

Unilateral constraint 
placed at point D 

Contact  
Status 

CC1 
Active 
( 1 10,  0R u  ) 

Active 
( 2 20,  0R u  ) A-A 

CC2 
Inactive 
( 1 10,  0R u  ) 

Inactive 
( 2 20,  0R u  ) I-I 

CC3 
Active 
( 1 10,  0R u  ) 

Inactive 
( 2 20,  0R u  ) A-I 

CC4 
Inactive 
( 1 10,  0R u  ) 

Active 
( 2 20,  0R u  ) I-A 

CC5 
Active 
( 1 10,  0R u  ) 

Neutral Contact Status 
( 2 20,  0R u  ) A-N 

CC6 
Inactive 
( 1 10,  0R u  ) 

Neutral Contact Status 
( 2 20,  0R u  ) I-N 

CC7 
Neutral Contact Status 
( 1 10,  0R u  ) 

Active 
( 2 20,  0R u  ) N-A 

CC8 
Neutral Contact Status 
( 1 10,  0R u  ) 

Inactive 
( 2 20,  0R u  ) N-I 

CC9 
Neutral Contact Status 
( 1 10,  0R u  ) 

Neutral Contact Status 
( 2 20,  0R u  ) N-N 

Table 5.1 The nine possible different contact combinations of the beam with two opposite 
functioning unilateral supports. 

Applying the boundary conditions at the ends of the beam, i.e. the equations 
(5.4), (5.5), (5.10) and (5.11), the following relations are obtained:  

1 1 1(0) 0 0w A D        (5.25) 

3 3 3(0) 0 0w A D        (5.26) 

2
1 1 1(0) 0 0 0  ( 0 for 0)EIw A k A k P           (5.27) 
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2
3 3 3(0) 0 0 0  ( 0 for 0)EIw A k A k P         .  (5.28) 

Obviously, 1 3 1 3 0A A D D    . Then, applying the boundary conditions at the 
points of the unilateral constraints (points C and D) an algebraic 8 8  system of 
equations with respect to the coefficients 1 1 2 2 2 2 3 3, , , , , , ,B C A B C D B C , is 
formulated:  

1 2 1 1 1 2 2( ) (0) sinw aL w u B kaL C aL A D        (5.29) 

1 2 2 1( ) (0) 0 sinEIw aL EIw A B kaL        (5.30) 

1 2 1 1 2 2( ) (0) cosw aL w B k kaL C B k C         (5.31) 

1 1 2 2 1( ) ( ) (0) (0)EIw aL Pw aL EIw Pw R               

 
1

1 2 3cos RB kaL B
EIk

     (5.32) 

2 3 2 2 2 2 2( ) ( ) cos sinw bL w cL u A kbL B kbL C bL D         
                                                                                         3 3sinB kcL C cL     (5.33) 

2 3 2 2 3( ) ( ) 0 cos sin sinEIw bL EIw cL A kbL B kbL B kcL         (5.34) 

2 3 2 2 2 3 3( ) ( ) sin cos cosw bL w cL A k kbL B k kbL C B k kcL C          (5.35)  

2 2 3 3 2( ) ( ) ( ) ( )EIw bL Pw bL EIw cL Pw cL R               
 

2
2 2 3 3sin cos cos RA kbL B kbL B kcL

EIk
    . (5.36) 

The above algebraic system can be written in matrix form as follows: 
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1

1

2

2

sin 1 0 0 1 0 0
sin 0 1 0 0 0 0 0
cos 1 0 1 0 0 0

cos 0 0 1 0 0 0 0
0 0 cos sin 1 sin
0 0 cos sin 0 0 sin 0
0 0 sin cos 1 0 cos 1
0 0 sin cos 0 0 cos 0

BkaL aL
CkaL
Ak kaL k
BkaL

kbL kbL bL kcL cL
kbL kbL kcL

k kbL k kbL k kcL
kbL kbL kcL

  
  
  
     
 

 
     

  

1
3

2

2

3

23
3

0
0
0

   0
   0
   0

R
EIk

C
D
B

RC
EIk

 
  
  
  
  
  
      
  
  
  
  
     
 

(5.37) 

Finally, the non-homogeneous constrained BVP BP2 can be replaced equivalently 
by the following problem: 
 
Problem BP2-a 

Find a solution of the algebraic system of equations (5.37) with respect to the 
unknowns 1 1 2 2 2 2 3 3 ,  ,  ,  ,  ,  , ,  B C A B C D B C  so that the restrictions (5.16)-(5.21) are 
satisfied. 
 
Obviously, the values of these coefficients are different for each contact situation. 
Due to the inequality conditions (5.16), (5.17), (5.19), (5.20) and the 
complementarity conditions (5.18), (5.21), an examination for all the possible 
contact situations is required. Thus, the solution of the Problem BP2-a is obtained 
under the separation of the problem into subproblems, according to the possible 
contact situations (see Table 5.1). 

5.2.2.1 Active constraints, 1 0R  , 1 0u   and 2 0R  , 2 0u   

In the case where the unilateral constraints are active, the displacements 1 2,  u u   at 
the points C, D respectively, are equal to zero. Therefore, the following problem 
has to be solved: 
 
Problem BP2-a,1 

Find a solution of the algebraic system of equations (5.37) such that the following 
restrictions are satisfied:  

1 2 1( ) (0) 0w aL w u     (5.38) 
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1 0R    (5.39) 

2 3 2( ) ( ) 0w bL w cL u    (5.40) 

2 0R  . (5.41) 

 
Applying to equation (5.29) the demand of having zero displacement at point C and 
taking into account relation (5.30), the coefficients 1 2,C D  can be calculated as a 
function of the unknown coefficient 1B , while from relation (5.33) the coefficient 

3C  is calculated as a function of the unknown coefficient 3B  , i.e.: 

1
1

sinB kaLC
aL


   (5.42) 

2 1 sinD B kaL    (5.43) 

3
3

sinB kcLC
cL


 . (5.44) 

Substituting relation (5.34) into equation (5.33) and taking into account equation 
(5.43), the coefficient 2C  is determined: 

1 3
2

sin sinB kaL B kcLC
bL


 .  (5.45) 

Then, substituting relations (5.44) and (5.45) into the boundary equation (5.31), the 
coefficient 2B  can be calculated as a function of the coefficients 1B   and 3B  : 

2 1 1 3
sincos sina b kcLB B kaL B kaL B

kabL kbL


   .  (5.46) 

Till now, all the unknown coefficients have been calculated as functions of the 
unknowns 1B  and 3B . Obviously, substituting all the above calculated coefficients 
into the unused relations  (5.33) and (5.35), a 2 2  algebraic system with respect to 
the unknowns 1B  and 3B  is formulated. More specifically, after the appropriate 
mathematical operations, the following equations are obtained: 

2 2 2 2 20 cos sin 0u A kbL B kbL C bL D        
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 1 3
sin sinsin ( ) sin sin sin 0a b kcL kbLB k a b L kaL kbL B kcL

kabL kbL
              

 (5.47) 

2 2 2 3 3sin cos cosA k kbL B k kbL C B k kcL C      

 1
sin[ cos ( ) sin cos ]a b kaLB k k a b L kaL kbL

abL bL


      

3
sin cos[ cos sin ] 0kcL kbL c bB k kcL kcL

bL bcL


     . (5.48) 

In order to have a non-trivial solution for the specific BVP, the determinant of the 
above homogeneous algebraic system of equations (5.47)-(5.48) with respect to 1B
and 3B   should be equal to zero, thus: 

       2 2 0 sin sin ( ) sin sin ( )a b b cD kaL k b c L kcL k a b L
abL bcL

 
       

         
2

2sin sin sin sin sin
sin

kaL kcL kaL kbL kcL
k kL

bL kabcL
   .  (5.49) 

Equation (5.49) constitutes the buckling equation for the studied contact case of 
the active constraints. The certain equation belongs to the family of the 
trigonometric transcendental equations producing infinite eigenvalues nk . 
Obviously, infinite pairs of the unknowns coefficients 1B  and 3B  exist, for which 
the treated BVP has a non-trivial solution. Due to the fact that the BVP is valid 
under certain restrictions which are imposed by the “unilateral” status of the 
intermediate supports, the coefficients 1B  and 3B  should be appropriately 
calculated , so that restrictions (5.38)-(5.41) are satisfied. 

It is noticed that one of the aforementioned coefficients (e.g. 1B ) may be chosen 
arbitrarily while the other is calculated either from equation (5.47) or equation 
(5.48). The solution of the BVP where the two intermediate constraints are 
considered as active is then given by relations (5.22)-(5.24) just substituting the 
above calculated coefficients. 
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5.2.2.2 Inactive constraints, 1 10,  0R u   and 2 20,  0R u   

When the unilateral constraints are simultaneously inactive, the following problem 
has to be solved: 
 
Problem BP2-a,2 

Find a solution of the algebraic system of equations (5.37) such that the following 
restrictions are satisfied:  

1 2 1( ) (0) 0w aL w u     (5.50) 

1 0R       (5.51) 

2 3 2( ) ( ) 0w bL w cL u      (5.52) 

2 0R  .   (5.53) 

The reaction forces 1 2,  R R  are equal to zero, thus equations (5.32) and (5.36) are 
transformed to the following: 

1
1 2 2 13cos 0 cosRB kaL B B B kaL

EIk
       (5.54) 

2
2 2 3 3sin cos cos 0RA kbL B kbL B kcL

EIk
       

3 2 2cos sin cosB kcL A kbL B kbL   . (5.55) 

Substituting equation (5.30) into (5.29) and equation (5.54) into (5.31), the 
following relations are obtained respectively: 

1 2C aL D    (5.56) 

1 2C C .   (5.57) 

In a similar way, the substitution of equation (5.55) into (5.35) gives: 

2 3 1C C C   .  (5.58) 

Then, taking into account the boundary equation (5.33) in combination with 
equation (5.34) and substituting into them the above calculated coefficients, the 
following equality arises: 
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2 2 3 1 1( ) 0 0C bL D C cL C a b c L C        .   (5.59) 

In the above, the obvious relation 1a b c    was used. Due to the fact that 
coefficient 1C  is equal to zero, coefficients 2 3 2, ,C C D  are also taking zero values. 
Then, taking into account equations (5.30) and (5.54), relations (5.33) and (5.34) 
reduce to an algebraic system with respect to the unknown coefficients 1B  and 3B . 
After a series of mathematical operations this system takes the following matrix 
form: 

 
 

1

3

cos ( ) cos 0
sin ( ) sin 0

k a b L kcL B
k a b L kcL B

     
           

.  (5.60) 

In order the under study BVP to have a non-trivial solution, the determinant of the 
above system should be equal to zero, thus: 

 
 2 2

cos ( ) cos
0 sin 0 ,   1,2,3....

sin ( ) sin n

k a b L kcL nD kL k n
k a b L kcL L





      

 
  (5.61) 

Equation (5.61) constitutes the buckling equation of the certain contact condition. 
It is essential to notice that some of the eigenvalues nk  are producing non 
admissible deflection curves. This results from the following restrictions which 
should be satisfied simultaneously: 

1 10 sin( ) 0,    1, 2,3,.......u B n n     (5.62) 

2 10 sin( ( )) 0,     1, 2,3........u B n a b n                                                      (5.63) 

The determination of the coefficient 3B  is achieved through the usage of one of the 
equations of the algebraic system (5.60) after the arbitrary (but compatible with the 
restrictions (5.50)-(5.53)) selection of the coefficient 3B . The corresponding 
eigenmodes of the studied BVP are the buckle deflection curves which are 
determined substituting the calculated coefficients for each admissible eigenvalue 

nk , into equations (5.22)-(5.24). 
As it will be shown in the following paragraphs, the buckling equation (5.61) is 

also encountered in all the contact cases where the reaction forces of the supports 
are equal to zero (i.e. in cases 6,8,9, of Table 5.1). Clearly, each contact case with 
respect to the corresponding restrictions formulates its own set of admissible 
solutions which are obtained from the solution of the buckling equation (5.61). 
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5.2.2.3 Active constraint at point C and inactive constraint at point D, 1 0R  , 

1 0u  and 2 0R  , 2 0u    

When the constraint at point D is inactive while the constraint at point C is active, 
the following problem has to be solved: 
 
Problem BP2-a,3 

Find a solution of the algebraic system of equations (5.37) such that the following 
restrictions are satisfied:  

1 2 1( ) (0) 0w aL w u     (5.64) 

1 0R       (5.65) 

2 3 2( ) ( ) 0w bL w cL u     (5.66) 

2 0R  .     (5.67) 

The reaction force 1R  and the vertical displacement 1u  are taking zero values, thus 
the corresponding boundary equations (5.36) and (5.29) are transformed in the 
following relations: 

2 2 3sin cos cosA kbL B kbL B kcL    (5.68) 

1
1 1 1

sinsin 0 B kaLB kaL C aL C
aL


      (5.69) 

2 2 2 20A D D A     .  (5.70) 

Considering now equation (5.30), coefficient 2D  can be written as: 

2 1 sinD B kaL  .  (5.71) 

Then, substituting relation (5.58) into the boundary equation (5.36) it arises that: 

2 3C C  .  (5.72) 

In a similar way, substituting equation (5.34) into equation (5.33) and using the 
above relations (5.71) and (5.72) the following equation is obtained: 
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1
2 2 3 3

sin
( )
B kaLC bL D C cL C
b c L


   


  (5.73) 

from which the unknown coefficient 3C  can be determined. 
Coefficient 2B  can be determined from the boundary equation (5.31) as a function 
of the unknown coefficient 1B : 

1 1 2 2 2 1
sincos cos
( )

kaLB k kaL C B k C B B kaL
k b c aL

 
       

  (5.74) 

Obviously, equations (5.68) and (5.34) formulate an algebraic system with respect 
to the unknowns 1 3,  B B   which can be written in matrix form: 

 
1

3

sin cos cos[ ( ) ] cos
0( )

sin sin 0sin ( ) sin
( )

kaL kbL k a b L kcL
Bka b c L
BkaL kbLk a b L kcL

ka b c L

                      

. (5.75) 

In order the studied BVP to have a non-trivial solution, the determinant of the 
above system should be equal to zero. A series of mathematical operations leads to 
the buckling equation of the considered contact case: 

 
2 2

sin cos cos[ ( ) ] cos
( )

0
sin sinsin ( ) sin

( )

kaL kbL k a b L kcL
ka b c L

D
kaL kbLk a b L kcL

ka b c L



  


  
  



 

sin sin[ ( ) ]sin
( )

kaL k b c LkL
ka b c L


 


.  (5.76) 

Obviously, the calculated eigenvalues nk  should produce eigenmodes which satisfy 
the restrictions (5.64)-(5.67). As a result, the calculated coefficients should fulfill 
the following inequalities: 

1 1
sin0 0
( )

kaLR B
ka b c L

  


  (5.77) 
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2 1
sin sin0 sin[ ( ) ] sin 0

( )
kaL kbL cu B k a b L kaL

ka b c L b c
 

        
.  (5.78) 

After the choice of a value for the coefficient 1B , coefficient 3B  may be 
determined through the system (5.75). Then, the eigenmodes of the perfect 
structure for the certain contact status are constructed just substituting the 
calculated coefficients into equations (5.22)-(5.24). 

5.2.2.4 Active constraint at point D and inactive constraint at point C 1 0R  , 

1 0u  and 2 0R  , 2 0u     

In this contact case the problem is stated as: 

Problem BP2-a,4 

Find a solution of the algebraic system of equations (5.37) such that the following 
restrictions are satisfied:  

1 2 1( ) (0) 0w aL w u     (5.79) 

1 0R    (5.80) 

2 3 2( ) ( ) 0w bL w cL u     (5.81) 

2 0R  .  (5.82) 

 
Obviously, this case is similar to the previous one due to the symmetry of the 
problem, thus the buckling equation results easily after the cyclic permutation of 
the parameters ,  , a b c . Therefore, the corresponding buckling equation can be 
written as: 

sin sin[ ( ) ]sin
( )

kcL k a b LkL
kc a b L





,  (5.83) 

while the corresponding coefficients are calculated from the following relations: 

2 1 sinA B kaL   (5.84) 

2 1 cosB B kaL   (5.85) 
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 
 

1
1

sinB k a b L
C

a b L
    


  (5.86) 

2 1C C  (5.87)  

3 1
a bC C

c


   (5.88) 

2 1D C aL .  (5.89) 

The coefficients 1B  and 3B  are determined using the equations of the following 
algebraic system: 
 

 
1

3

sin[ ( ) ] cos[ ( ) ] cos 0( )
0sin ( ) sin

k a b L k k a b L k kcL B
a b cL

Bk a b L kcL

                    

. (5.90) 

Similarly to the previous discussed contact case, the solutions of the buckling 
equation (5.83) should satisfy the restrictions (5.79)-(5.82).  The corresponding 
eigenmodes can be calculated by relations (5.22)-(5.24) and should, in turn, satisfy 
the following restrictions:  

 2 1 30 cos cos 0R B k a b L B kcL          (5.91) 

1 10 sin sin[ ( ) ] 0aLu B kaL k a b L
a b

       
.  (5.92) 

5.2.2.5 Active constraint at point C and neutral contact status condition for the  
constraint at point D, 1 0R  , 1 0u  and 2 0R  , 2 0u     

In this certain contact condition the following problem has to be solved: 
 
Problem BP2-a,5 

Find a solution of the algebraic system of equations (5.37) such that the following 
restrictions are satisfied:  
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1 2 1( ) (0) 0w aL w u     (5.93) 

1 0R     (5.94) 

2 3 2( ) ( ) 0w bL w cL u       (5.95) 

2 0R  .   (5.96) 

Due to the fact that 2 0R  , 2 0u   and 1 0u   , and following the same procedure 
as in the previous case, the implementation of the boundary conditions (5.29), 
(5.30) and (5.35), (5.36), gives: 

2 1D C aL   (5.97) 

1
1

sinB kaLC
aL


  (5.98) 

2 3C C  .    (5.99) 

Then, substituting relation (5.34) into (5.33) and taking into account the above 
equation, it results that: 

2 2 3 2 1
aC bL D C cL C C

b c
    


.  (5.100) 

Therefore, coefficient 2B  can be calculated using equation (5.31) as a function of 
the coefficient 1B , i.e.: 

1
1 1 2 2 2 1

sincos cos
( )

B kaLB kaL C B k C B B kaL
ka b c L

     


. (5.101) 

It is then obvious that equations (5.34) and (5.36) formulate an algebraic system 
with respect to the unknowns 1B  and 3B . More specifically, the system in  matrix 
form can be written as: 

1

3

sin sinsin[ ( ) ] sin
0( )

sin cos 0cos[ ( ) ] cos
( )

kaL kbLk a b L kcL
Ba b c L
BkaL kbLk a b L kcL

ka b c L


                     

. (5.102) 
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In order to have a non-trivial solution, the determinant of the above system should 
be equal to zero, thus: 

1

3

sin sinsin[ ( ) ] sin
0( )

sin cos 0cos[ ( ) ] cos
( )

kaL kbLk a b L kcL
Bka b c L
BkaL kbLk a b L kcL

ka b c L

                      

 

sin sin[ ( ) ]sin
( )

kaL k b c LkL
ka b c L


 


.  (5.103) 

Equation (5.103) constitutes the buckling equation of the studied contact case. 
Admissible eigenvalues are only those that produce eigenmodes compatible with 
restrictions (5.93)-(5.96). 

5.2.2.6 Inactive constraint at point C and neutral contact status condition for the  
constraint at point D, 1 0R  , 1 0u  and 2 0R  , 2 0u     

For this contact case the following problem has to be solved: 
 
Problem BP2-a,6 

Find a solution of the algebraic system of equations (5.37) such that the following 
restrictions are satisfied:  

1 2 1( ) (0) 0w aL w u     (5.104) 

1 0R     (5.105) 

2 3 2( ) ( ) 0w bL w cL u     (5.106) 

2 0R  .  (5.107) 

The solution procedure of the algebraic system (5.37) with respect to restrictions 
(5.104)-(5.107)  leads to the following relations for the determination of the 
unknown coefficients: 

2 1 cosB B kaL   (5.108) 

2 1 sinA B kaL   (5.109) 

1 2 3 2 0C C C D    .  (5.110) 
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The buckling equation arises from the following system with respect to the 
unknowns 1B  and 3B . 

1

3

sin[ ( ) ] sin 0
cos[ ( ) ] cos 0

Bk a b L kcL
Bk a b L kcL

      
         

.  (5.111) 

For the above algebraic system, the demand of having non-trivial solution leads to: 

sin 0 ,   1,2,3,....n
nkL k n
L


      (5.112) 

Obviously, the calculated eigenvalues should satisfy the equality and inequality 
restrictions which are introduced by the studied contact case, i.e. the following 
restrictions: 

1 1 10 sin 0 sin 0u B kaL B n a       (5.113) 

 2 0 sin ( ) 0u n a b    . (5.114) 

For the admissible eigenvalues, the buckling eigenmodes can then be determined, 
after the substitution of the calculated coefficients into equations (5.22)-(5.24). 

5.2.2.7 Active constraint at point D and neutral contact status condition for the  
constraint at point C, 1 0R  , 1 0u  and 2 0R  , 2 0u      

In this contact case, the following problem has to be solved: 
 
Problem BP2-a,7 

Find a solution of the algebraic system of equations (5.37) such that the following 
restrictions are satisfied:  

1 2 1( ) (0) 0w aL w u     (5.115) 

1 0R   (5.116) 

2 3 2( ) ( ) 0w bL w cL u    (5.117) 

2 0R  . (5.118) 

The unknown coefficients are given by the following relations: 
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2 1 cosB B kaL   (5.119) 

2 1 sinA B kaL   (5.120) 

1
1

sinB kaLC
aL


   (5.121) 

1 2C C   (5.122) 

3 1
a bC C

c


   (5.123) 

2 1D C aL .  (5.124) 

The last two unknown coefficients 1B  and 3B  are calculated by the following 
algebraic system: 

1

3

sin[ ( ) ] sin 0
sin 0cos[ ( ) ] cos

k a b L kcL B
kaL Bk k a b L k kcL

caL

                  

 . (5.125) 

The demand of having a non-trivial solution for the studied contact case, requires 
the determinant of the system (5.125) to be equal to zero. The latter leads to the 
buckling equation for the specific contact case: 

sin sinsin kaL kcLkL
kacL

 . (5.126) 

The roots of the above equation should satisfy the restrictions (5.115)-(5.118) in 
order to be accepted. Then, the eigenmodes for the admissible corresponding 
eigenvalues are calculated through the substitution of the above formulas into the 
equations (5.22)-(5.24). 

5.2.2.8 Inactive constraint at point D and neutral contact status condition for the  
constraint at point C, 1 0R  , 1 0u  and 2 0R  , 2 0u      

This contact case is similar to the one treated in paragraph 5.2.2.6. More 
specifically, the following problem has to be solved: 
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Problem BP2-a,8 

Find a solution of the algebraic system of equations (5.37) such that the following 
restrictions are satisfied:  

1 2 1( ) (0) 0w aL w u     (5.127) 

1 0R    (5.128) 

2 3 2( ) ( ) 0w bL w cL u     (5.129) 

2 0R  . (5.130) 

 
All the unknown coefficients are calculated from relations (5.108)-(5.112). 
Obviously, the same buckling equation (equation (5.112)) is derived also for this 
case. However, the roots of this equation should now satisfy the following 
restrictions: 

1 10 sin 0 sin 0u B kaL n a       (5.131) 

2 0 sin ( ) 0u n a b    . (5.132) 

5.2.2.9 Neutral contact status condition for the constraints at the point C,D, 

1 0R  , 1 0u  and 2 0R  , 2 0u      

This limit case corresponds to the neutral contact status condition for both the 
unilateral constraints. Therefore, the following problem has to be solved: 
 
Problem BP2-a,9 

Find a solution of the algebraic system of equations (5.37) such that the following 
restrictions are satisfied:  

1 2 1( ) (0) 0w aL w u     (5.133) 

1 0R    (5.134) 

2 3 2( ) ( ) 0w bL w cL u     (5.135) 

2 0R  . (5.136) 
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The buckling loads for this contact case are derived from the same buckling 
equation (5.112), as in the previous case. The admissible buckling loads should 
now satisfy the following two requirements: 

1 10 sin 0 sin 0u B kaL n a       (5.137) 

2 0 sin ( ) 0u n a b    .  (5.138) 

5.2.3 Calculation of the critical buckling load 

In order to calculate the critical buckling load of a geometrically perfect beam with 
two unilateral supports functioning in opposite directions, the following steps 
should be followed: 

   Initially, a sufficient number of eigenvalues is calculated for all the contact 
cases. The unknown eigenvalues are determined through the utilization of 
the buckling equations which correspond to each contact situation. 

   Due to the fact that the obtained eigenvalues may produce eigenmodes which 
are not compatible with the unilateral constraints, only the eigenvalues 
which satisfy the required restrictions for each contact case are accepted. 
Recall that for the same eigenvalue, the arbitrary choice of the coefficient 1B  
results actually to a scaling of the corresponding eigenmode, producing 
actually an infinite number of similar buckling curves, having different 
amplitudes. Therefore, depending on the value of 1B , some of them may be 
acceptable while others not. 

   The smallest eigenvalue from the set of the accepted eigenvalues is the 
critical one. For this eigenvalue the critical buckling load and the 
corresponding buckling mode can be determined by applying equations 
(3.12) and (5.22)-(5.24) respectively. 

5.3 Formulation of the elastic contact buckling problem of a 
geometrically imperfect continuous beam with two opposite 
functioning unilateral supports 

5.3.1 Formulation 

In a similar way as described for the geometrically perfect beam, the BVP of a 
simply supported geometrically imperfect beam with two intermediate unilateral 
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supports with opposite functions, subjected to an axial compressive load, can also 
be formulated. The initial shape of the imperfect beam is assumed to be described 
by a Fourier sine series having the following form: 

0
1

( ) sin  ,    [0, ]
n

r
r

r xw x g x L
L




   
 

  .  (5.139) 

In the above relation, L  is the total length of the beam and 0w  are the initial 
deflections due to the existence of the imperfection. The arbitrary initial geometric 
imperfection has to be compatible with the unilateral constraints, thus, the 
following inequalities should be satisfied: 

0 ( ) 0w aL    (5.140) 

0 (( ) ) 0w a b L  .  (5.141) 

Due to the fact that the proposed methodology divides the beam into parts, the 
initial geometric imperfection has to be separated into three functions, one for each 
span of the beam (Span I, Span II and Span III): 

1
1,0 1 1

1
( ) sin  ,     [0, ]

n

r
r

r xw x g x aL
L




   
 

                 (5.142) 

2
2,0 2 2

1

( )( ) sin  ,     [0, ]
n

r
r

r x aLw x g x bL
L





   
 

 .              (5.143) 

 r3
3,0 3 3

1
( ) sin -1 ,      [0, ]

n

r
k

r xw x g x cL
L




    
 

 .          (5.144) 

Inequalities (5.140) and (5.141) impose that the Fourier coefficients rg  of the 
above relations should, in turn, satisfy the following inequalities: 

1

sin( ) 0 
n

r
r

g r a


   (5.145) 

and 

1

sin( ( )) 0 
n

r
r

g r a b


  .  (5.146) 
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Equivalently, the above can be written in the form 

1

sin( )( 1) 0 
n

r
r

r
g r c



  .  (5.147) 

Then, for each part of the beam of Fig. 5.2, a fourth-order linear non-homogeneous 
ordinary differential equation can be constructed respectively, that describes the 
bending behaviour of the beam. This equation should be similar to equations 
(4.55), (4.56) which were derived in the previous chapter for the contact buckling 
problem of beams with one intermediate unilateral support. Differentiating four 
times the functions (5.142)-(5.144) of the initial imperfection and substituting into 
the basic differential equations, the following equations are obtained: 

44 2
21 1 1

14 2
11 1

( ) ( ) sin( ),    [0, ]
n

r
r

d w x d w x r xrk g x aL
dx dx L L




    
 

   (5.148) 

44 2
21 1 2

24 2
11 1

( ) ( ) ( )sin( ),      [0, ]
n

r
r

d w x d w x r x aLrk g x bL
dx dx L L




    
 

   (5.149) 

44 2
23 3 3

34 2
13 3

( ) ( ) sin( )( 1) ,     [0, ]
n

r
r

r

d w x d w x r xrk g x cL
dx dx L L




      
 

 .  (5.150) 

The parameter k  is given by equation (3.12). The solution of the above equations 
gives the transverse deflection w  at each point of the beam, as a function of the 
axial compressive load P . Therefore, the contact elastic buckling problem of the 
geometrically imperfect beam with two intermediate unilateral constraints having 
opposite functions, can be formulated as: 
 
Problem BI2 

Find 
1 1

2 2 2

3 3

( ),  [0, ]
( ),  [0, ]( ) (0, )
( ),  [0, ]

w x x aL
w x x bLw x L L
w x x cL


   
  

 of the system of differential equations 

(5.148)-(5.150) such that the equality boundary conditions (5.4)-(5.15), the 
inequality constraints (5.16), (5.17), (5.19), (5.20), and the complementarity 
conditions (5.18), (5.21) are fulfilled. 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 05:19:12 EEST - 3.138.32.9



The unilateral buckling of beams – Part 2 101 
 

 

5.3.2 Solution of the BVP of the geometrically imperfect beam for all the 
possible contact situations 

As it was already inferred previously in Chapter 4, the solution of the fundamental 
problem BI2 is rather complicated due to the fact that there exist values of loading 
P  for which the function of the deflection curve presents singularities. More 
specifically, depending on the value of load P  the problem BI2 may be uniquely 
solvable, unsolvable or solvable with infinite solutions. A criterion in order to 
decide about the solvability of problem BI2 is offered through the application of 
the fundamental Theorem 3.4. 

Supposing that the values of load P  in equations (5.148)-(5.150) are not 
eigenvalues of the corresponding homogeneous BVP, then the non-homogeneous 
BVP is expected to have one unique solution that gives the deflection curve of the 
beam. This solution depends on the type and the amplitude of the initial 
imperfections considered, in combination with the position of the unilateral support 
and the initial contact conditions.  
In this case the arising solution of the non-homogeneous BVP of paragraph 5.3.1 is 
a superposition of a general solution and of a particular solution related with the 
type of the initial imperfection, i.e.: 

1
1 1 1 1 1 1 1 1 1 1

1
( ) cos sin sin( ) ,     [0, ]

n

r r
r

r xw x A kx B kx C x D g F x aL
L




     
 
(5.151) 

2 2 2 2 2 2 2 2 2( ) cos sin +w x A kx B kx C x D   

                                                2
2

1

( )+ sin( ) ,    [0, ]
n

r k
r

r x aLg F x bL
L





       (5.152) 

3 3 3 3 3 3 3 3 3( ) cos sinw x A kx B kx C x D    

                                                3
3

1
sin( )( 1)  ,    [0, ]

n
r

r r
r

r xg F x cL
L




   .
     

(5.153) 

It is noticed that the solutions 1 2 3, ,w w w  give the total transverse deflections of the 
beam, i.e. the initial deflections are included in them. The terms rF  and rP  have 
already been defined in Chapter 4 (relations (4.59) and (4.60)). The coefficients of 
the general solution are calculated through the boundary conditions (relations (5.4)-
(5.15) of the problem). Applying, the boundary conditions at the ends of the beam 
it is proved that: 

1 1 1(0) 0 0w A D                           (5.154) 
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3 3 3(0) 0 0w A D              5.155) 

2
1 1 1(0) 0 0 0  (k 0 for 0)EIw A k A P                  (5.156) 

2
3 3 3(0) 0 0 0  (k 0 for 0)EIw A k A P         . (5.157) 

Therefore, 1 3 0D D  . As the above coefficients take zero values, the functions of 
the deflections curve can be simplified. In order the mathematical operations of the 
rest of the boundary conditions to be implemented in a comprehensive way, the 
required derivatives of certain functions are also displayed below: 
 
   Deflection curve 1 1,  [0, ]w x aL  

1
1 1 1 1 1 1

1

( ) sin sin( )
n

r r
r

r xw x B kx C x g F
L




    (5.158) 

1
1 1 1 1 1

1

( ) os ( )cos( )
n

r r
r

r xrw x B k kx C g F
L L





      (5.159) 

2 2 1
1 1 1 1

1

( ) sin ( ) sin( )
n

r r
r

r xrw x B k kx g F
L L





      (5.160) 

3 3 1
1 1 1 1

1

( ) cos ( ) cos( )
n

r r
r

r xrw x B k kx g F
L L





      (5.161) 

   Deflection curve 2 2,  [0, ]w x bL  

2
2 2 2 2 2 2 2 2 2

1

( )( ) cos sin + sin( )
n

r r
r

r x aLw x A kx B kx C x D g F
L






    

 
(5.162) 

2
2 2 2 2 2 2 2

1

( )( ) sin cos + ( )cos( )
n

r r
r

r x aLrw x A k kx B k kx C g F
L L





     
 

(5.163) 

2 2 2 2
2 2 2 2 2 2

1

( )( ) cos sin ( ) sin( )
n

r r
r

r x aLrw x A k kx B k kx g F
L L





    
 

(5.164) 
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3 3 3 2
2 2 2 2 2 2

1

( )( ) sin cos ( ) cos( )
n

r r
r

r x aLrw x A k kx B k kx g F
L L





   
 

(5.165) 

   Deflection curve 3 3,  [0, ]w x cL  

3
3 3 3 3 3 3

1

( ) sin sin( )( 1)
n

r
r r

r

r xw x B kx C x g F
L




      (5.166) 

3
3 3 3 3 3

1

( ) cos ( )cos( )( 1)
n

r
r r

r

r xrw x B k kx C g F
L L





       (5.167) 

2 2 3
3 3 3 3

1

( ) sin ( ) sin( )( 1)
n

r
r r

r

r xrw x B k kx g F
L L





       (5.168) 

3 3 3
3 3 3 3

1

( ) cos ( ) cos( )( 1)
n

r
r r

r

r xrw x B k kx g F
L L





       (5.169) 

Using the above relations, the following equations which describes the boundary 
conditions at the positions of the unilateral supports can be constructed. More 
specifically, the boundary conditions (5.6)-(5.9) and (5.12)-(5.15) of paragraph 
5.2.1 can be organized as follows: 
 
   Boundary conditions at point C 

1 2 1 1
1

( ) (0) sin sin( )
n

r r
r

w aL w B kaL C aL g F r a


      

2 2 1 1 2 2
1

sin( ) sin
n

r r
r

A D g F r a B kaL C aL A D


                                 (5.170) 

1 2( ) (0)w aL w    

1 1 2 2
1 1

cos ( )cos( ) ( )cos( )
n n

r r r r
r r

r rB k kaL C g F r a B k C g F r a
L L
 

 
 

         

1 1 2 2cosB k kaL C B k C      (5.171) 

1 1( ) (0)EIw aL EIw      

2 2 2 2
1 2

1 1

sin ( ) sin( ) ( ) sin( )
n n

r r r r
r r

r rB k kaL g F r a A k g F r a
L L
 

 
 

        
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2 1 sinA B kaL    (5.172) 

1 1 2 2 1 1 2 1[ ( ) ( )] [ (0) (0)] ( ) (0)EIw aL Pw aL EIw Pw R EIw aL EIw R                 

3 3 3 3 1
1 2

1 1

cos ( ) cos( ) ( ) cos( )
n n

r r r r
r r

Rr rB k kaL g F r a B k g F r a
L L EI
 

 
 

        

1
1 2 3cos RB kaL B

k EI
     (5.173) 

   Boundary conditions at point D 

2 3( ) ( )w bL w cL   

2 2 2 2
1

cos sin sin( ( ))
n

r r
r

A kbL B kbL C bL D g F r a b


        

3 3
1

                                               sin sin( )( 1)
n

r
r r

r
B kcL C cL g F r c



       (5.174) 

2 3( ) ( )w bL w cL     

2 2 2
1

sin cos ( )cos( ( ))
n

r r
r

rA k kbL B k kbL C g F r a b
L





     
 

3 3
1

                              cos ( )cos( )( 1)
n

r
r r

r

rB k kcL C g F r c
L





                  (5.175) 

2 3( ) ( )EIw bL EIw cL      

2 2 2
2 2

1

cos sin ( ) sin( ( ))
n

r r
r

rA k kbL B k kbL g F r a b
L





    
 

2 2
3

1

                                     sin ( ) sin( )( 1)
n

r
r r

r

rB k kcL g F r c
L





      (5.176) 

2 2 3 3 2[ ( ) ( )] [ ( ) ( )]EIw bL Pw bL EIw cL Pw cL R           
3 3 3

2 2
1

sin cos ( ) cos( ( ))
n

r r
r

rA k kbL B k kbL g F r a b
L





    
 

3 3 2
3

1

                                  cos ( ) sin( )( 1)
n

r
r r

r

RrB k kcL g F r c
L EI





      (5.177) 
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It has to be noticed that the complex equations (5.174)-(5.177) can be worked out 
in order to take a simpler form leading to the following relations11: 

2 2 2 2 3 3cos sin sinA kbL B kbL C bL D B kcL C cL       (5.178) 

2 2 3cos sin sinA kbL B kbL B kcL    (5.179) 

2 2 2 3 3sin cos cosA k kbL B k kbL C B k kcL C      (5.180)  

2
2 2 3 3sin cos cos RA kbL B kbL B kcL

EIk
      (5.181) 

Finally, the eight in number boundary equations (5.170)-(5.173) and (5.178)-
(5.181) formulate an algebraic system with respect to the unknown coefficients  

1 1 2 2 2 2 3 3, , , , , , ,B C A B C D B C . Therefore, the solution of the initial BVP BI2 can be 
derived through the solution of the following problem: 
 
Problem BI2-a 

Find a solution of the algebraic system of equations (5.170)-(5.173) and (5.178)-
(5.181) with respect to the unknowns 1 1 2 2 2 2 3 3 ,  ,  ,  ,  ,  , ,  B C A B C D B C  such that the 
restrictions (5.16)-(5.21) are satisfied. 
 
For the solution of this problem, a similar procedure as in the case of 
corresponding homogeneous BVP is adopted for the determination of  the 
unknown coefficients. As a result, the following paragraphs, present only the final 
solutions without displaying the complicated sequences of the mathematical 
operations. The solution of the fundamental Problem BI2-a derives analytical 
solutions for all the aforementioned nine contact cases (see Table 5.1). Each 
solution satisfies the corresponding contact condition for which it has been 
calculated. 

                                                   
11For the appropriate mathematical operations used for the formulation of relations (5.178)-
(5.181), the following equalities have been considered: 

sin( ( )) sin( (1 )) ( 1) sin
cos( ( )) cos( (1 )) ( 1) cos

r

r

r a b r c r c
r a b r c r c
  

  

    

    
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5.3.2.1 Active constraints, 1 0R  , 1 0u   and 2 0R  , 2 0u   

When both of the constraints are active, the following problem has to be solved: 
 
Problem BI2-a,1 

Find a solution of the algebraic system of equations (5.170)-(5.173) and (5.178)-
(5.181) such that the following restrictions are satisfied:  

1 2 1( ) (0) 0w aL w u                         (5.182) 

1 0R                                                        (5.183) 

2 3 2( ) ( ) 0w bL w cL u                      (5.184) 

2 0R  .                   (5.185) 

 
For the case where the two unilateral constraints are both active, the solution of the 
differential equations (5.148)-(5.150) for each value k  which does not constitute 
an eigenvalue of the corresponding homogeneous problem is given by the 
equations (5.151)-(5.153). The unknown coefficients of the deflection curves of 
equations (5.151)-(5.153) are calculated by means of the following relations: 

1
1

1

sin sin
n

r r
r

B kaL g F r a
C

aL




 



  (5.186) 

3 1
1 1

2

sin sin sin sin ( 1)
n n

r
r r r r

r r
B kcL B kaL g F r a g F r c

C
bL

 
 

    


 
  (5.187) 

3
1

3

sin sin ( 1)
n

r
r r

r
B kcL g F r c

C
cL




  



  (5.188) 

2 1 sinA B kaL   (5.189) 

2 1
1

sin sin
n

r r
r

D B kaL g F r a


     (5.190) 
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2 1 1
1

cos sin sin
n

r k
r

a b a bB B kaL B kaL g F r a
kabL kabL




 
     

3
1

sin 1 sin ( 1)
n

r
r r

r

kcLB g F r c
kbL kbL




    . (5.191) 

The above relations are functions of the unknown coefficients 1B  and 3B . The 
latter are calculated through the following algebraic system which results from the 
application of the same boundary conditions used in the corresponding bifurcation 
problem: 

1 2 1 1

3 4 3 2

K K B X
K K B X
     

      
    

  (5.192) 

where:  

1 sin[ ( ) ] sin sina bK k a b L kaL kbL
kabL


     (5.193a) 

2
sin sin sinkcL kbLK kcL

kbL
     (5.193b) 

3
sincos[ ( ) ] sin cosa b kaLK k a b L kaL kbL

kabL kbL


       (5.193c) 

4
sin coscos sinb c kcL kbLK kcL kcL

kbcL kbL


      (5.193d) 

1
1 1

( )sin sinsin (sin )( 1)
n n

r
r r r r

r r

a b kbL kbLX g F r a g F r c
kabL kbL

 
 


      (5.194a) 

2
1 1

1(sin )( 1) sin
n n

r
r r r r

r r

b cX g F r c g F r a
kbcL kbL

 
 


      

1 1

coscos sin (sin )( 1)
n n

r
r r r r

r r

a b kbLkbL g F r a g F r c
kabL kbL

 
 


    .

 
(5.194b) 

The solution of the above system gives: 
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3 1 1 2 3B B     ,  (5.195) 

where: 

1

( )sin[ ( ) ] sin sin

1 sin sin sin

a bk a b L kaL kbL
kabL

kcL kbL kcL
kbL


 

 


  (5.196a) 

1
2

( ) sin sin

1 sin sin sin

n

r r
r

a b kbL g F r a
kabL

kcL kbL kcL
kbL






 



  (5.196b) 

1
3

1 sin (sin )( 1)

1 sin sin sin

n
r

r r
r

kbL g F r c
kbL

kcL kbL kcL
kbL





 





 

(5.196c) 

and: 

1 1 2 3 4B     ,  (5.197) 

where: 

1 1 4
( ) sincos[ ( ) ] sin cosa b kaLk a b L kaL kbL K
kabL kbL


         (5.198a) 

2 2 4K    (5.198b) 

3 3 4K     (5.198c) 

4
1 1

1(sin )( 1) sin
n n

r
r r r r

r r

b c g F r c g F r a
kbcL kbL

 
 


       

1 1

coscos sin (sin )( 1)
n n

r
r r r r

r r

a b kbLkbL g F r a g F r c
kabL kbL

 
 


    .  (5.198d) 
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For the values of the parameter k  which constitute eigenvalues of the 
corresponding bifurcation problem (i.e. the homogeneous BVP), the studied non-
homogeneous problem is either unsolvable or it has infinite solutions. Obviously, 
as aforementioned, the issue of solvability is strongly connected with the type of 
the eigenvalues and the shape of the initial geometric imperfection. Therefore, a 
general answer cannot be given for each case. This remark will be more clear in the 
examples that will be treated in the next chapter. 

 

5.3.2.2 Inactive constraints, 1 10, 0R u   and 2 20, 0R u    

In the case of inactive constraints, the following problem has to be solved: 
 
Problem BI2-a,2 

Find a solution of the algebraic system of equations (5.170)-(5.173) and (5.178)-
(5.181) such that the following restrictions are satisfied: 

1 2 1( ) (0) 0w aL w u                                                (5.199) 

1 0R                                                                (5.200) 

2 3 2( ) ( ) 0w bL w cL u                                             (5.201) 

2 0R  .                                                                 (5.202) 

 
In this case, the examination of the non-homogeneous BVP formulated by 
equations (5.148)-(5.150) with the boundary conditions (5.4)-(5.15) and the 
restrictions (5.199)-(5.202) leads to zero values for all the unknown coefficients. 
Thus, the particular solution is the solution of the problem. This unique solution is 
valid for all the values of the parameter k  except the values which are eigenvalues 
of the corresponding homogeneous problem (problem of paragraph 5.2.2.2). For 
the latter, the solvability issue has to be investigated by means of Theorem 3.4.  
 

5.3.2.3 Active constraint at point C and inactive constraint at point D, 1 0R  , 

1 0u   and 2 0R  , 2 0u    

When the constraint at point C is considered as active while the constraint at point 
D is considered as inactive, the following problem has to be solved:  
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Problem BI2-a,3 

Find a solution of the algebraic system of equations (5.170)-(5.173) and (5.178)-
(5.181) such that the following restrictions are satisfied: 

1 2 1( ) (0) 0w aL w u                               (5.203) 

1 0R                                       (5.204) 

2 3 2(0) ( ) 0w w cL u                                  (5.205) 

2 0R  .                                                   (5.206) 

 
Following the same solution procedure which as in the corresponding case of 
paragraph 5.2.2.3 and assuming that the studied constrained non-homogeneous 
BVP is solved for all the values of load P  which are different from the eigenvalues 
of the corresponding homogeneous constrained BVP, the unknown coefficients of 
the deflection curves are calculated through the following relations: 

1
1

1

sin sin
n

r r
r

B kaL g F r a
C

aL




 



  (5.207) 

1
1

2

sin sin

( )

n

r r
r

B kaL g F r a
C

b c L










  (5.208) 

3 2C C   (5.209) 

2 1 sinA B kaL   (5.210) 

2 1
1

sin sin
n

r r
r

D B kaL g F r a


     (5.211) 

1
1

2 1

sin sin
cos

( )

n

r r
r

g F r a B kaL
B B kaL

ka b c L




 
 

  



   (5.212) 
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 
1

3

sinsin
( )

sin ( )sinsin
( )

n

r r
r

kaLg F r a
ka b c LB

k b c LkaLkL
a k b c L




 
   







.  (5.213) 

The above coefficients are functions of the coefficient 1B  which in turn, is 
calculated by the following relation: 

 

 
1

1

sin ( )
sin

( )
sin ( )sinsin

( )

n

r r
r

k b c L
g F r a

ka b c LB
k b c LkaLkL

a k b c L




 
   








 

(5.214) 

Obviously, the above solution is valid only if the restrictions of relations (5.203)-
(5.206) are fulfilled. It is also reminded that this solution has been derived under 
the assumption that the values of load P  are not eigenvalues of the corresponding 
homogeneous constrained BVP. 

5.3.2.4 Active constraint at point D and inactive constraint at point C, 1 0R  , 

1 0u   and 2 0R  , 2 0u   

In this contact case, the problem to be solved is stated as: 

Problem BI2-a,4 

Find a solution of the algebraic system of equations (5.170)-(5.173) and (5.178)-
(5.181) such that the following restrictions are satisfied: 

1 2 1( ) (0) 0w aL w u     (5.215) 

1 0R    (5.216) 

2 3 2( ) ( ) 0w bL w cL u     (5.217) 

2 0R  .  (5.218) 

 
The unknown coefficients are calculated by the following relations: 

2 1 cosB B kaL                                                   (5.219) 
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2 1 sinA B kaL                                    (5.220) 

3
1

1

sin ( 1) sin

( )

n
r

r r
r

g F r c B kcL
C

a b L




 





  (5.221) 

2 1C C                                           (5.222) 

3 1
( )a bC C

c


                                   (5.223) 

2 1D C aL                            (5.224) 

 

 
1

3

sin ( )
sin ( 1)

( )
sin ( ) sinsin

( )

n
r

r r
r

k a b L
g F r c

c a b LB
k a b L kcLk kL
a b cL





 








 (5.225) 

 
1

1

sin sin ( 1)
( )

sin ( ) sinsin
( )

n
r

r r
r

kcL g F r c
c a b LB

k a b L kcLk kL
a b cL




 








. (5.226) 

After the calculation of the above coefficients, the deflection curve of the beam can 
be determined through the direct substitution of these calculated values into 
relations (5.151)-(5.153). This solution is valid only if restrictions (5.215)-(5.218) 
are satisfied. 
 
 

5.3.2.5 Active constraint at point C and neutral contact status condition for the 
constraint at point D, 1 0R  , 1 0u   and 2 0R  , 2 0u   

In this particular contact case where the beam is marginally in contact with the 
constraint at point D (i.e. without producing any reaction contact force) while 
simultaneously the constraint at point C is assumed to be active, the problem to be 
solved is stated as: 
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Problem BI2-a,5 

Find a solution of the algebraic system of equations (5.170)-(5.173) and (5.178)-
(5.181) such that the following restrictions are satisfied: 

1 2 1( ) (0) 0w aL w u                   (5.227) 

1 0R                                     (5.228) 

2 3 2( ) ( ) 0w bL w cL u                      (5.229) 

2 0R  .                                               (5.230) 

 
The unknown coefficients can be calculated through the following relations: 

2 1 sinA B kaL                                          (5.231) 

2 1 1
1cos

( )
B B kaL C

k b c
 


  (5.232) 

1
1

1

sin sin
n

r r
r

B kaL g F r a
C

aL




 



  (5.233) 

2 1
aC C

b c
 


  (5.234) 

3 2C C    (5.235) 

2 1D C aL   (5.236) 

  1
1

3 1

sin sincos ( ) cos
cos ( ) cos

n

r r
r

B kaL g F r ak a b L kbLB B
kcL k b c aL kcL





  




  (5.237) 

 

     
1

1

sin sin cos tan
.

sin sin cos tan
( ) sin ( ) cos ( ) tan

( )

n

r r
r

g F r a kbL kbL kcL
B

kaL kbL kbL kcL
ka b c L k a b L k a b L kcL

ka b c L




   
 

 
      



 

(5.238) 
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The previous solution is accepted only if the restrictions introduced by relations 
(5.227)-(5.230) are fulfilled. 

5.3.2.6 Inactive constraint at point C and neutral contact status condition for the 
constraint at point D, 1 0R  , 1 0u   and 2 0R  , 2 0u   

In this particular contact case the beam is marginally in contact with the constraint 
at point D (i.e. without producing any reaction contact force) while at the same 
time the constraint at point C is considered as inactive. Therefore, the following 
problem has to be solved: 
 
Problem BI2-a,6 

Find a solution of the algebraic system of equations (5.170)-(5.173) and (5.178)-
(5.181) such that the following restrictions are satisfied: 

1 2 1( ) (0) 0w aL w u     (5.239) 

1 0R    (5.240) 

2 3 2( ) ( ) 0w bL w cL u     (5.241) 

2 0R  .  (5.242) 

In this contact case the investigation of the certain constrained BVP leads to zero 
values for all the unknown coefficients. Thus, the solution of the problem consists 
only of the particular solution (relations (5.151)-(5.153)). 

5.3.2.7 Active constraint at point D and neutral contact status condition for the 
constraint at point C, 1 0R  , 1 0u   and 2 0R  , 2 0u   

In this particular contact case the beam is marginally in contact with the constraint 
at point C (i.e. without producing any reaction contact force) while at the same 
time the constraint at point D is assumed to be active. Therefore, the following 
problem has to be solved: 
 
Problem BI2-a,7 

Find a solution of the algebraic system of equations (5.170)-(5.173) and 
(5.178)-(5.181) such that the following restrictions are satisfied: 

1 2 1( ) (0) 0w aL w u     (5.243) 

1 0R    (5.244) 
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2 3 2( ) ( ) 0w bL w cL u     (5.245) 

2 0R  .  (5.246) 

 
The unknown coefficients can be calculated through the following relations: 

2 1 sinA B kaL                                   (5.247) 

2 1 cosB B kaL                          (5.248) 

1
1

1

sin sin
n

r r
r

B kaL g F r a
C

aL




 



  (5.249) 

2 1C C   (5.250) 

3 1
a bC C

c


    (5.251) 

2 1D C aL   (5.252) 

 
1

3

sin ( )
sin

sin sinsin

n

r r
r

k a b L
g F r a

caLB kaL kcLk kL
caL




  
 
 




  (5.253) 

1
1

sin sin

sin sinsin

n

r r
r

kcL g F r a
caLB kaL kcLk kL

caL




 
 
 



 . (5.254) 

5.3.2.8 Inactive constraint at point D and neutral contact status condition for the 
constraint at point C,  1 0R  , 1 0u   and 2 0R  , 2 0u   

In this particular contact case the beam is marginally in contact with the constraint 
at point C (i.e. without producing any reaction contact force) while at the same 
time the constraint at point D is considered as inactive. Therefore, the following 
problem has to be solved: 
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Problem BI2-a,8 

Find a solution of the algebraic system of equations (5.170)-(5.173) and (5.178)-
(5.181) such that the following restrictions are satisfied: 

1 2 1( ) (0) 0w aL w u                (5.255) 

1 0R                                   (5.256) 

2 3 2( ) ( ) 0w bL w cL u                            (5.257) 

2 0R  .                                      (5.258) 

 

In this contact case the investigation of the certain constrained BVP leads also to 
zero values for all the unknown coefficients. Thus, the solution of the problem 
consists only of the particular solution (of relations (5.151)-(5.153)) which of 
course, should satisfy the restrictions of relations (5.255)-(5.258). 

5.3.2.9 Neutral contact status condition for the constraints at points C, D, 1 0R  , 

1 0u   and 2 0R  , 2 0u   

This situations consists a very particular contact situation whereby the beam is 
marginally in contact with the constraints at points C, D without producing any 
reaction forces. Obviously the following problem has to be solved: 
 
Problem BI2-a,9 

Find a solution of the algebraic system of equations (5.170)-(5.173) and (5.178)-
(5.181) such that the following restrictions are satisfied: 

1 2 1( ) (0) 0w aL w u                        (5.259) 

1 0R                                    (5.260) 

2 3 2( ) ( ) 0w bL w cL u                         (5.261) 

2 0R  .                        (5.262) 

Obviously, the investigation of this constrained BVP leads to zero values for all the 
unknown coefficients. Thus, the solution of the problem consists only of the 
particular solution (relations (5.151)-(5.153)) which should satisfy restrictions 
(5.247)-(5.250). 
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5.3.3 Calculation of the instability load 

The determination of the instability load of a geometrically perfect beam with two 
unilateral supports functioning in opposite direction, is based on the solution of the 
constrained non-homogeneous BVP which was formulated in Section 5.3.1. For the 
solution of that problem, the initial constraint BVP has to be separated into specific 
constrained subproblems, each of them corresponding to different contact case. The 
latter, depending on the value of the applied load P , may be uniquely solvable, 
unsolvable or solvable with infinite solutions. More specifically: 

 For values of the applied load P , which do not constitute eigenvalues of the 
corresponding bifurcation problem the studied subproblem is uniquely solvable 
and the solution can be derived by applying the appropriate equations of 
Section 5.3.2 

 For values of the applied load P , which constitute eigenvalues of the 
corresponding bifurcation problem, the studied subproblem is either unsolvable 
or solvable but not uniquely. For both the previous cases, the behaviour of the 
initial non-homogeneous BVP is considered as singular and the critical 
eigenvalue of the corresponding contact condition constitutes the instability 
load. 

Depending on the type of the eigenvalue and on the initial imperfection, the 
singular behaviour reveals two different types of instability. If the problem is 
unsolvable (see Theorem 3.4) then the beam develops disproportionate large 
deflections as the applied load approaches this critical eigenvalue. If the problem 
is solvable then infinite solutions exist for that eigenvalue. In that case the beam 
buckles “violently” for this value of load.  

In order to determine the instability load of a certain geometrically imperfect 
beam, the following steps should be followed. These steps are practically similar to 
the ones described thoroughly in Section 4.3.4 for the contact buckling problem of 
beams with one intermediate unilateral support. Due to the fact that for the case of 
the two unilateral supports more contact cases exist, the following proposed 
methodology for the determination of the instability load is displayed in simpler 
form:  

Step 1 

The initial imperfection is applied and the deflection at the position of the 
unilateral supports (points C and D) is examined. 

Step 2 

Depending on the initial contact conditions of Step 1, it is checked which of the 
presented in Table 5.1 contact cases is valid. Then, for this contact case, for values 
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of the applied load P  which do not constitute eigenvalues of the corresponding 
bifurcation problem, the initial constrained non-homogeneous BVP has a unique 
solution, i.e. the deflection curve of the beam can be described by applying the 
appropriate equations of Section 5.3.2. The description of the deflection curve 
according to the previous equations may be not valid for each value of load P .  

a) If a value of the applied load exists, for which the inequality restrictions of the 
existing contact case are satisfied as equalities, then the beam develops the 
tendency to change contact status. Practically, this means that for this specific 
value of load  one of the following cases is arised: 

 The beam develops the tendency to come in contact with the unilateral 
support at point C (Fig. 5.1), thus this load is termed as C

cP . 

 The beam develops the tendency to come in contact with the unilateral 
support at point D (Fig. 5.1), thus this load is termed as D

cP . 

 The beam develops the tendency to be separated from the unilateral 
support at point C, thus this load is termed as C

sP . 

 The beam develops the tendency to be separated from the unilateral 
support at point D, thus this load is termed as D

sP . 

Depending on the initial imperfection and on the positions of the unilateral 
supports the above cases may be combined. Then, it is examined if inside the 
interval  [0, ]M

iP  ( i s  or i c  and M C  or M D ) the critical eigenvalue 
( ,cr eigP ) of the corresponding bifurcation problem exists. If yes, then this value 
of load is the instability load of the beam, i.e: 

( )
,
C S

in cr eigP P  .12 (5.263) 

If such an eigenvalue does not exist, then the instability load should be seeked 
outside the interval [0, ]M

iP . This means that instability phenomena will occur 
in a different contact case, for different values of the applied load. The 
calculation procedure continues with Step 3.   

 
b) If such a value of load does not exist (i.e. the beam does not change contact 

status for none of the values of the applied load P ), then the instability load is 

                                                   
12 The abbreviation “C-S” in relation (5.263) means “Contact status” and indicates one of 
the nine different contact states, i.e. A-A, I-A, A-I, etc. (see Table 5.1) 
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equal to the critical eigenvalue of the corresponding bifurcation problem for 
the current contact case (similar relation to equation (5.263)). 

Step 1
Examination of the

deflections u , u  at the
positions of the unilateral

supports

Step 2

Check:
P   exists or

P   doesn't exist
i

doesn't existexists

M

Step 2bStep 2a

Yes No

Examine if an eigenvalue
exists inside the interval

[0,P     ]

Step 3

Check the value
 of   P

P      <P

Step 4

Examine if
a new P   exists

Check the current C.S.

YesNo

      P    = P (C-S)
cr,eigin

i
M

i
M

P =P (C-S)
cr,eigin

Pi
M Pi

M

     P    = P(C-S)
cr,eigin

1 2

A new C.S.
has been realized.
Calculate new Pi

M

i
M(C-S)

cr,eig

Decrease of
loading

Increase of
loading

P      >Pi
M(C-S)

cr,eig

i
M

(C-S)
cr,eig

 

Fig. 5.3 The flow chart diagram of the proposed calculation procedure. 
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Step 3 

The beam has changed contact status. For the new contact situation two cases exist: 
a) If the critical eigenvalue of the existing contact status is smaller than M

iP , then 
the beam cannot stay in equilibrium and the deflections of the beam are 
accompanied by a decrease of the applied load to lower values. In that case the 
procedure continues with step 4.  

b) If the critical eigenvalue of the existing contact status is greater than M
iP , then 

the beam is able to sustain more loading and the procedure also continues with 
step 4. 

Step 4 

For the existing contact situation, it is examined, if a value of  load exists, for 
which the beam changes contact status. If such a value exists then the procedure 
continues with the application of Step 3 for the new contact case. If such a value 
does not exist then the instability load of the beam is equal to the critical 
eigenvalue which corresponds to the current contact case.  
 
The above calculation procedure is presented schematically in the flow chart of 
Fig. 5.3. 

5.3.4 Calculation of the second-order bending moment as a function of the 
unilateral constraint conditions 

The design second order bending moment of a beam with two unilateral supports 
functioning in opposite direction, can be determined through the following 
equations: 

1 1, 1 1 1 1,0 1 1( ) ( ) ( ( ) ( )) ,    [0, ]Ed pM x EIw x EI w x w x x aL                    (5.264) 

2 2, 1 2 2 2,0 2 2( ) ( ) ( ( ) ( )) ,   [0, ]Ed pM x EIw x EI w x w x x bL                        (5.265) 

3 3, 3 3 3 3,0 3 3( ) ( ) ( ( ) ( )) ,    [0, ]Ed pM x EIw x EI w x w x x cL        ,                (5.266) 

where, 1,pw , 2,pw  and 3,pw  are the second derivatives of the elastic transverse 
deflections which are attributed solely to the axial loading P . Using the 
expressions obtained in Section 5.3 for the deflections 1w , 2w  and 3w , the following 
equations are obtained that give the function of the bending moment for the various 
contact cases may arise. 
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 
2

2 1
1 1 1 1

1
( ) sin( ) 1 sin , [0, ]

n

Ed r r
r

r xrM x EI B k kx g F x aL
L L




            
     

 (5.267) 

2 2
2 2 2 2 2( ) cos( ) sin( )EdM x EI A k kx B k kx    

 
 

2
2

2
1

( )               1 sin ,    [0, ]
n

r r
r

r x aLrg F x bL
L L




       
   

   (5.268) 

 
2

2 3
3 3 3

1
( ) sin( ) 1 sin ( 1) ,

n
r

Ed r r
r

r xrM x EI B k kx g F
L L




            
     


 

3                                                                                               [0, ]x cL   (5.269) 

The determination of the coefficients 2 1 2 3, , ,A B B B  in the above equations depends on 
the existing contact condition and is accomplished through the utilization of the 
relations of Section 5.3 for the respective contact case. 
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6 Geometrically perfect beams - Examples 

6.1 Introduction 
The aim of this chapter is to present several examples related with the buckling 
problem of geometrically perfect beams in the presence of unilateral supports. As it 
was stated in the previous chapters, this problem belongs to the family of 
constrained homogeneous BVPs. The latter produce infinite solutions which, in 
turn, should satisfy the required restrictions. In the following examples the critical 
values of the axial load (eigenvalues) and the corresponding deflection curves 
(eigenmodes) are calculated for a variety of different configurations. The solution 
of these problems is accomplished through the methodology which has been 
introduced in Chapters 4 and 5.  

More specifically, for an axially loaded beam with one or two opposite 
functioning unilateral supports, the buckling loads and the corresponding buckling 
shapes are determined through the following steps: 
 
 Calculation of the eigenvalues (buckling loads) through the corresponding for 

each contact case buckling equation, according to the relations given in 
Chapters 4 and 5. Due to the fact that the eigenvalues are infinite, only the first 
ten eigenvalues are calculated in the presented examples for each contact case. 

 For the calculated eigenvalues, the corresponding eigenmodes are then 
determined. The latter are calculated through the direct determination of the 
unknown coefficients 2 1 2 3 1 2 3 2, , , , , , ,A B B B C C C D , utilizing the appropriate 
relations given in Chapters 4 and 5. Then, the obtained eigenmodes should 
satisfy the restrictions which are introduced by the contact case for which they 
are calculated. The eigenvalues for which the corresponding eigenmodes do 
not satisfy the related restrictions are excluded. 

 The critical buckling load is the one corresponding to the smallest admissible 
eigenvalue. 

6.2 Presentation of the considered examples 
In the following paragrhaphs examples concerning the methodology of calculating 
the buckling load and the buckling mode of geometrically perfect beams subjected 
to axial load in the presensce of unilateral supports, are presented. More 
specifically, Section 6.3 deals with the buckling problem of a beam with a single 
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intermediate unilateral support while in Section 6.4 beams with two unilateral 
supports functioning in opposite direction are treated.  

In Section 6.3, the presented example is a simple one. The derived results are 
used also to support the solution of the examples presented in the next Chapter 
(Section 7.3). The second category of examples (Section 6.4), deals with special 
cases where interesting situation arise. In particular, Example 1 shows a 
trifurcation equilibrium state, i.e. the critical load corresponds to three different 
equilibrium configurations. The first one corresponds to the straight line 
configuration while the other two are curved configurations corresponding to 
different contact cases. 

In Example 2 a non symmetric beam is treated, while the 3rd example of Section 
6.4 shows a special case where the two unilateral supports are very close the one to 
the other. In this particular example, the deflections of the beam due to buckle, 
resemble a virtual clamped support placed at the vicinity of the unilateral supports. 

Example 4 shows how the critical load and the critical buckling mode change if 
the left unilateral support of Example 1 remains in the same position while the 
other unilateral support moves to the right. This case derives a critical buckling 
mode with smaller critical load than the buckling loads of Examples 1 and 2, due to 
the fact that the effective buckling length has increased. 

Example 5 is also particular. More specifically, if one of the unilateral supports  
come very close to the roll support, then the two close supports may be substituded 
by a single support which exhibits free or fixed rotation. This type of support can 
be considered as a unilateral clamped support. The free rotation corresponds to the 
case where the initial unilateral support is active, while the fixed rotation 
corresponds to the opposite case. 
 

6.3 Geometrically perfect beams with one unilateral support 

6.3.1 Example 1 

A geometrically perfect beam with a length of 6 m supported by one intermediate 
unilateral support is considered, subjected to an axial compressive load (Fig. 6.1). 
For this beam, the buckling loads and the corresponding buckling modes will be 
determined considering in plane bending, according to the theory and relations 
displayed in Chapter 4. 
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Fig. 6.1 The geometrically perfect beam treated in Example 1. 

  Calculation of the eigenvalues (buckling loads) 

Two different contact conditions exist for the beam of Fig. 6.1. The first one 
corresponds to the case where the unilateral constraint at point C is inactive while 
the second one corresponds to the case where the unilateral support is active. For 
each contact situation the corresponding eigenvalues are calculated through the 
utilization of the corresponding buckling equations (equations (4.29) and (4.38)).  
By applying the latter the values of Table 6.1 are obtained.  
 

 Inactive 
Constraint 

0
0

R
u



 

Active 
Constraint 

0
0

R
u



 

1
cck  0.5236 0.8784 

2
cck  1.0472 1.4986 

3
cck  1.5708 2.0826 

4
cck  2.0944 2.6136 

5
cck  2.6180 3.1043 

Table 6.1 The first five eigenvalues for each contact case. 

 

L=6 m

Data

E=210000 Mpa

I=8360 cm

aL=4.7 m, bL=1.3 m
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bL

C

4
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  Calculation of the admissible eigenmodes 

The eigenvalues which are derived from buckling equations (4.29) and (4.38) may 
produce eigenmodes which are not compatible with the unilateral constraints. In 
order these eigenvalues to be accepted, the corresponding eigenmodes should 
satisfy the restrictions which are imposed by each contact situation. The 
eigenvalues of Table 6.1 are all acceptable due to the fact that they fulfill the 
required restrictions. It is recalled herein that only the shape (and not the 
magnitude) of the obtained eigenmodes can be calculated. Thus, the determination 
of the latter is based on an arbitrary selection of the coefficient 2B . Table 6.2 
presents the first five admissible eigenvalues of the under study constrained 
buckling problem, while Fig. 6.2 presents schematically the corresponding 
eigenmodes. 
 

Contact 
Case 

Accepted 
Eigenvalue 2B  

Functions of the eigenmodes 
 

Inactive 
Constraint 1 0.5236k   0  

1 1 1 1 1 1

2 2 2 2 2 2

( ) sin ,  [0, ]

( ) sin ,  [0, ]
                                               

w x B kx Cx x aL

w x B kx C x x bL

  

  

 
 

Active 
Constraint 2 0.8784k   0  
Inactive 
Constraint 3 1.0472k   0  
Active 
Constraint 4 1.4986k   0  

Inactive 
Constraint 5 1.5708k   0  

Table 6.2 The first ten admissible eigenvalues and the corresponding eigenmodes. 
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Fig. 6.2 The first five eigenmodes of the beam of Example 1. 
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6.4 Geometrically perfect beams with two opposite functioning 
unilateral supports 

6.4.1 Example 1 

A geometrically perfect beam with a length of 6 m, supported by two unilateral 
supports is considered, subjected to an axial compressive load (Fig. 6.3). For this 
beam, the buckling loads and the corresponding buckling modes will be determined 
considering in plane bending, according to the theory and relations displayed in 
Chapter 5. 
 

 

Fig. 6.3 The geometrically perfect beam treated in Example 1 of Section 6.4.1. 

  Calculation of the eigenvalues (buckling loads) 

For each contact situation (see Table 5.1) the corresponding eigenvalues are 
calculated through the utilization of the corresponding buckling equations. Due to 
the fact that these equations are of transcendental type, a numerical procedure for 
solving nonlinear algebraic equations should be considered. For the purposes of the 
present dissertation, the Newton’s method is applied through the Mathematica 
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software package. Table 6.3 displayes the first ten eigenvalues (from the lowest to 
the highest) for each contact case13.  
 

Contact 
Case 

CC1 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC2 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC3 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC4 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC5 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC6 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC7 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC8 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC9 

1

1

2

2

0
0
0
0

R
u
R
u







 

Contact 
Status A-A I-A A-I I-A A-N I-N N-A N-I N-N 

1
cck  1.4978 0.5236 0.9022 0.9022 0.9022 0.5236 2.0944 0.5236 0.5236 

2
cck  2.0944 1.0472 1.5294 1.5294 1.5294 1.0472 2.5471 1.0472 1.0472 

3
cck  2.5751 1.5708 2.0944 2.0944 2.0944 1.5708 3.2886 1.5708 1.5708 

4
cck  2.9956 2.0944 2.5870 2.5870 2.5870 2.0944 3.5855 2.0944 2.0944 

5
cck  3.6347 2.6180 3.0943 3.0943 3.0943 2.6180 4.1888 2.6180 2.6180 

6
cck  4.1888 3.1416 3.6461 3.6461 3.6461 3.1416 4.6704 3.1416 3.1416 

7
cck  4.6887 3.6652 4.1888 4.1888 4.1888 3.6652 5.3219 3.6652 3.6652 

8
cck  5.1502 4.1888 4.6959 4.6959 4.6959 4.1888 5.715 4.1888 4.1888 

9
cck  5.7403 4.7124 5.2077 5.2077 5.2077 4.7124 6.2832 4.7124 4.7124 

10
cck  6.2832 5.236 5.7472 5.7472 5.7472 5.2360 7.8227 5.236 5.236 

Table 6.3 The first ten eigenvalues for each contact case. 

  Calculation of the admissible eigenmodes 

The eigenvalues presented in Table 6.3 are accepted only if the corresponding 
eigenmodes satisfy the restrictions which correspond to each contact situation. The 
computation of the admissible eigenmodes is based on a special worksheet code 
which has been developed for this reason. The input of this program constists of  
the basic data of Fig. 6.3 and the eigenvalues extracted from the Mathematica 
software. It is reminded that only the shape (and not the magnitude) of the obtained 
eigenmodes can be calculated. Thus, the determination of the latter is based on an 

                                                   
13  The abbreviation CC which is encountered in the columns of Table 6.1 corresponds to 
the term “contact case”. The eigenvalues of this table refer to each contact case, thus they 
are represented with the superscript “cc”.  
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arbitrary selection of the coefficient 1B , which in turn should result to eigenmodes 
compatible with the constraints. The rest coefficients are calculated by means of 
the appropriate relations which are given in Chapter 5 for each contact case. The 
admissible for each contact case eigenvalues are presented in a bold font in Table 
6.3. Table 6.4 presents14,15 the first ten admissible eigenvalues and the 
corresponding eigenmodes of the under study constrained buckling problem, while 
Fig. 6.4 and Fig. 6.5 show the graphical representation of the eigenmodes. The 
fourth column of Table 6.4 show the appropriate sign of 1B  in order the restrictions 
which are introduced by the constraints to be satisfied. 
 

Contact 
Case 

Contact 
Status 

Accepted 
Eigenvalue 1B  

Functions of the eigenmodes 
 
 CC3 A-I 1 0.9022k   0  

1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3

( ) sin ,  [0,1.5]

( ) cos sin ,  [0,3]
                                              

( ) sin ,  [0,1.5]

w x B kx Cx x

w x A kx B kx C x D x

w x B kx C x x

  

    

  

 
 

CC4 I-A 2 0.9022k   0  

CC2 I-I 3 1.0472k   0  

CC9 N-N 4 2.0944k 
 

0  

CC1 A-A 5 2.9956k   0  

CC3 A-I 6 3.0943k   0  

CC4 I-A 7 3.0943k   0  

CC2 I-I 8 3.1416k   0  

CC9 N-N 9 4.1888k   0  

CC1 A-A 10 5.1502k   0  

Table 6.4 The first ten admissible eigenvalues and the corresponding eigenmodes. 

The buckilng load is calculated from the smallest admissible eigenvalue of Table 
6.4. 
                                                   
14 It is noted that the eigenvalues presented in Table 6.4 are the eigenvalues of the initial 
constrained BVP while the eigenvalues of Table 6.3 are solutions of the constrained 
subproblems that correspond to each contact case. Thus the superscript “cc” has been 
removed from the description.  
15 In the second column of Table 6.4 the contact status of each contact case is presented by 
means of the abbreviation “K-L”. The first letter (K) in that abbreviation describes the 
contact status of the unilateral constraint at point C, while the second describes the contact 
status of the unilateral constraint at point D. The active status of each of the constraints is 
termed as A, the inactive as I and the neutral as N. 
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Fig. 6.4 The first five eigenmodes of the beam of Example 1 of Section 6.4.1. 
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Fig. 6.5 Superior eigenmodes of the beam of Example 1 of Section 6.4.1. 
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The critical buckling load corresponds to the smallest admissible eigenvalue, thus it 
is calculated by the following relation: 

2 2
1 0.9022 17556 14289.96 crP k EI kN     . (6.1) 

It is noticed that for this load, due to the symmetry of the structure, the beam can 
be in equilibrium in two different curved configurations. The first one corresponds 
to the contact case where the constraint at point C is active and at the same time the 
constraint at point D is inactive, while the other corresponds to the exactly opposite 
contact situation. Obviously, the buckling response of the beam is dominated by a 
trifurcation state of equilibrium. For this critical load value the beam can be in 
equilibrium either in the straight line configuration or in one of the two different 
curved configurations. The same buckling behaviour (trifurcation) appears also for 
other eigenvalues as it is clearly figured in Table 6.1 (e.g. 6 7 3.0943k k  ). 

6.4.2 Example 2 

Here, the beam of Fig. 6.6 is considered. The difference with the previous one is 
the position of the unilateral support at point D, which now is in the middle of the 
beam (Fig. 6.6). For this case the buckling loads and the corresponding buckling 
modes will be calculated. 
 

 

Fig. 6.6 The geometrically perfect beam of Example 2. 

aL bL

PSpan I Span IIA BSpan III

cL

D

L=6 m

Data

E=210000 Mpa

I=8360 cm

aL=1.5 m, bL=3 m, cL=1.5 m

C

4

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 05:19:12 EEST - 3.138.32.9



134 Doctoral Dissertation 
 

 

  Calculation of the eigenvalues (buckling loads) 

Table 6.5 displays the first ten eigenvalues (from the lowest to the highest) of each 
contact case.  
 

Conatct  
Case 

CC1 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC2 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC3 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC4 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC5 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC6 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC7 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC8 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC9 

1

1

2

2

0
0
0
0

R
u
R
u







 

Contact 
Status A-A I-A A-I I-A A-N I-N N-A N-I N-N 

1
cck  1.3089 0.5236 0.9022 1.0472 0.9022 0.5236 1.0472 0.5236 0.5236 

2
cck  2.0944 1.0472 1.5294 1.4978 1.5294 1.0472 1.6541 1.0472 1.0472 

3
cck  2.4587 1.5708 2.0944 2.0944 2.0944 1.5708 2.0944 1.5708 1.5708 

4
cck  3.0827 2.0944 2.5870 2.5751 2.5870 2.0944 2.6823 2.0944 2.0944 

5
cck  3.6316 2.6180 3.0943 3.14159 3.0943 2.6180 3.1416 2.6180 2.6180 

6
cck  4.1888 3.1416 3.6461 3.6347 3.6461 3.1416 3.6187 3.1416 3.1416 

7
cck  4.6859 3.6652 4.1888 4.1888 4.1888 3.6652 4.1888 3.6652 3.6652 

8
cck  5.1872 4.1888 4.6959 4.6887 4.6959 4.1888 4.6804 4.1888 4.1888 

9
cck  5.6835 4.7124 5.2077 5.2360 5.2077 4.7124 5.2360 4.7124 4.7124 

10
cck  6.2832 5.2360 5.7472 5.7403 5.7472 5.2360 5.7857 5.2360 5.2360 

Table 6.5 The first ten eigenvalues for each contact case. 

Calculation of the admissible eigenmodes 

The eigenvalues presented in Table 6.5  are acceptable only if the corresponding 
eigenmodes satisfy the restrictions which correspond to each contact situation. 
Table. 6.6 presents the first ten admissible eigenvalues and the corresponding 
eigenmodes of the under study constrained buckling problem, while Fig. 6.7 and 
Fig. 6.8 show the eigenmodes graphically. 
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Contact 
Case 

Contact 
Status 

Accepted 
Eigenvalue 1B  

 
Function of the eigenmodes 

 
CC3 A-I 1 0.9022k   0  

1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3

( ) sin ,  [0,1.5]

( ) cos sin ,  [0,1.5]
                                               

( ) sin ,  [0,3]

w x B kx Cx x

w x A kx B kx C x D x

w x B kx C x x

  

    

  
  

CC6 I-N 2 1.0472k   0  

CC1 A-A 3 1.3089k   0  

CC4 I-A 4 1.4978k   0  

CC3 A-I 5 1.5294k   0  

CC2 I-I 6 1.5708k   0  

CC9 N-N 7 2.0944k   0  

CC1 A-A 8 2.4587k   0  

CC4 I-A 9 2.5751k   0  

CC3 A-I 10 2.5870k   0  

Table 6.6 The first ten admissible eigenvalues and the corresponding eigenmodes. 

Obviously, the critical buckling load is calculated by the following relation: 

2 2
1 0.9022 17556 14289.96 crP k EI kN    ,  (6.2) 

and it is the same as in Example 1. It is noted that the effective buckling length of 
the beam, which corresponds to the contact case where the unilateral support at 
point C is active, while the unilateral support at point D is inactive (CC3), did not 
change due to the movement of the latter to the left. Moreover, this contact case 
remains the critical. On the contrary, the effective buckling length of the beam 
which corresponds to the opposite contact case (CC4) has been decreased (now it is 
equal to the half length of the beam). Therefore, the buckling load corresponding to 
this contact case has been increased. 
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Fig. 6.7 The first five eigenmodes of the beam of Example 2. 
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Fig. 6.8 Superior eigenmodes of  the beam of Example 2. 
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6.4.3 Example 3 

The following example is a particular one because it provides the potential of 
evaluating the reliability of the relations derived in Chapter 5, through the 
comparison of the results with already known ones. This is accomplished via the 
movement of the unilateral support at point D, in the vicinity of the other unilateral 
support at point C (Fig. 6.9). In this way, the two unilateral supports, being very 
close the one to the other, may (in certain cases) lead to the development of a pair 
of opposite in sign forces or, equivalently, to a reaction bending moment. This, in 
turn, may be considered to originate from a fictitious clamped support placed in the 
vicinity of points C and D. Of course, due to the unilateral character of the 
supports, this clamped support is activated only under certain conditions (i.e. when 
both the unilateral supports in C and D are active). 
 

 

Fig. 6.9 The geometrically perfect beam of Example 3. 

 

  Calculation of the eigenvalues (buckling loads) 

For each contact situation (see Table 5.1) the corresponding eigenvalues are 
calculated through the utilization of the corresponding buckling equations. Table 
6.7 displays the first ten eigenvalues (from the lowest to the highest) for each 
contact case.  
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Contact 
Case 

CC1 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC2 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC3 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC4 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC5 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC6 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC7 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC8 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC9 

1

1

2

2

0
0
0
0

R
u
R
u







 

Contact 
Status A-A I-A A-I I-A A-N I-N N-A N-I N-N 

1
cck  1.0060 0.5236 0.9022 0.9083 0.9022 0.5236 0.9053 0.5236 0.5236 

2
cck  1.7296 1.0472 1.5294 1.5364 1.5294 1.0472 1.5331 1.0472 1.0472 

3
cck  2.4412 1.5708 2.0944 2.0936 2.0944 1.5708 2.0944 1.5708 1.5708 

4
cck  2.9627 2.0944 2.5870 2.5801 2.5870 2.0944 2.5837 2.0944 2.0944 

5
cck  3.1497 2.6180 3.0943 3.0973 3.0943 2.6180 3.0959 2.6180 2.6180 

6
cck  3.8555 3.1416 3.6461 3.6531 3.6461 3.1416 3.6500 3.1416 3.1416 

7
cck  4.5605 3.6652 4.1888 4.1873 4.1888 3.6652 4.1888 3.6652 3.6652 

8
cck  5.0930 4.1888 4.6959 4.6891 4.6959 4.1888 4.6927 4.1888 4.1888 

9
cck  5.2672 4.7124 5.2077 5.2106 5.2077 4.7124 5.2092 4.7124 4.7124 

10
cck  5.9701 5.2360 5.7472 5.7540 5.7472 5.236 5.7513 5.2360 5.236 

Table 6.7 The first ten eigenvalues for each contact case. 

  Calculation of the admissible eigenmodes 

The eigenvalues of Table 6.7 are accepted only if the corresponding eigenmodes 
satisfy the restrictions which correspond to each contact situation. Table 6.8 
presents the first ten admissible eigenvalues and the corresponding eigenmodes of 
the under study constrained buckling problem, while Fig. 6.10 and Fig. 6.11 show 
the graphical representation of the eigenmodes. 
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Contact 
Case 

Contact 
Status 

Accepted 
Eigenvalue 1B  

 
Functions of the eigenmodes 

 
CC3 A-I 1 0.9022k   0  

1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3

( ) sin ,  [0,1.5]

( ) cos sin ,  [0,0.05]
                                               

( ) sin ,  [0,4.45]

w x B kx Cx x

w x A kx B kx C x D x

w x B kx C x x

  

    

  
  

CC1 A-A 2 1.0060k   0  
CC3 A-I 3 1.5294k   0  
CC1 A-A 4 1.7296k   0  
CC4 I-A 5 2.0936k   0  
CC1 A-A 6 2.4412k   0  
CC4 I-A 7 2.5801k   0  
CC3 A-I 8 3.0943k   0  
CC1 A-A 9 3.1497k   0  
CC3 A-I 10 3.6461k   0  

Table 6.8 The first ten admissible eigenvalues and the corresponding eigenmodes. 

Due to the fact that the length bL is very small, the critical buckling mode is the 
same as in the previous examples, thus: 

2 2
1 0.9022 17556 14289.97 crP k EI kN    .  (6.3) 

However, as the unilateral support at point D moves very close to point C, the 
contact case where the two supports are active (CC1) corresponds now to the 
second buckling mode. This eigenmode corresponds actually to the critical 
eigenmode of the buckling problem of a beam with length equal to cL  and 
clamped support at point C. As it is well known, the critical load for this case is 
given by the following relation: 

0.9973
(0.7 ) (0.7 4.5)crk

L
 

 


� . (6.4) 

Obviously, the value 2 1.006k  is very close to the above value and tends to be 
equal with that when the unilateral support at point D approaches marginally the 
unilateral support at point C. 
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Fig. 6.10 The first five eigenmodes of the beam of Example 3. 

 

1.5m

PA B

cL

D
C 

0.05m

k=0.9022A B
D

C 

k=1.0060A B
D

C 

k=1.5294A B
D

C 

k=1.7296A B
D

C 

k=2.0936A B
D

C 

Deflections resemble
a clamped support at point C

1 

2 

3

4 

5

R >0 
u =0

1

1

R =0
u <0

2

2

R >0 
u =0 1

1

R >0 
u =0 1

1

R >0 
u =0

1

1

R =0
u >0

1 
1 

R <0 
u =0 2

2

R =0 
u <0 2 

2 

R <0
u =0

2

2 

R <0
u =0

2 
2 

Deflections resemble
 a clamped support at point C 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 05:19:12 EEST - 3.138.32.9



142 Doctoral Dissertation 
 

 

 

 
 

 

Fig. 6.11 Superior eigenmodes of  the beam of Example 3. 
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6.4.4 Example 4 

The aim of the present example is to show how the critical load changes if the 
support at point D moves to the right (Fig. 6.12). It is expected that an eigenmode 
based on the case where the support at point D is active while at the same time the 
unilateral support at point C is inactive will be the critical one, due to the fact that 
this contact situation corresponds to the greatest effective buckling length.  
 

 

Fig. 6.12 The geometrically perfect beam of Example 4. 

  Calculation of the eigenvalues (buckling loads) 

For each contact situation (see Table 5.1) the corresponding eigenvalues are 
calculated through the utilization of the respective buckling equations. Table 6.9 
displays the first ten eigenvalues (from the lowest to the highest) for each contact 
case.  
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1

2

2

0
0
0
0

R
u
R
u







 

CC6 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC7 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC8 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC9 

1

1

2

2

0
0
0
0

R
u
R
u







 

Contact 
Status A-A I-A A-I I-A A-N I-N N-A N-I N-N 

1
cck  1.3955 0.5236 0.9022 0.8338 0.9022 0.5236 0.9053 0.5236 0.5236 

2
cck  2.0027 1.0472 1.5294 1.4308 1.5294 1.0472 1.5331 1.0472 1.0472 

3
cck  2.5339 1.5708 2.0944 2.0128 2.0944 1.5708 2.0944 1.5708 1.5708 

4
cck  3.0927 2.0944 2.5870 2.5827 2.5870 2.0944 2.5837 2.0944 2.0944 

5
cck  3.6461 2.6180 3.0943 3.1355 3.0943 2.6180 3.0959 2.6180 2.6180 

6
cck  4.1669 3.1416 3.6461 3.6637 3.6461 3.1416 3.6501 3.1416 3.1416 

7
cck  4.6422 3.6652 4.1888 4.1688 4.1888 3.6652 4.1888 3.6652 3.6652 

8
cck  5.1791 4.1888 4.6959 4.6727 4.6959 4.1888 4.6927 4.1888 4.1888 

9
cck  5.7051 4.7124 5.2077 5.1946 5.2077 4.7124 5.2092 4.7124 4.7124 

10
cck  6.2715 5.2360 5.7472 5.7314 5.7472 5.2360 5.7513 5.2360 5.2360 

Table 6.9 The first ten eigenvalues for each contact case. 

  Calculation of the admissible eigenmodes 

The eigenvalues of Table 6.9 are acceptable only if the corresponding eigenmodes 
satisfy the restrictions which correspond to each contact situation. Table. 6.10 
presents the first ten admissible eigenvalues and the corresponding eigenmodes of 
the under study constrained buckling problem, while Fig. 6.13 and Fig. 6.14 show 
the graphical representation of the eigenmodes. 
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Contact 

Case 
Contact 
Status 

Accepted 
Eigenvalue 1B  

 
Functions of the eigenmodes 

 
CC4 I-A 1 0.8338k   0  

1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3

( ) sin ,  [0,1.5]

( ) cos sin ,  [0,3.60]
                                               

( ) sin ,  [0,0.90]

w x B kx Cx x

w x A kx B kx C x D x

w x B kx C x x

  

    

  

 

CC3 A-I 2 0.9022k   0  
CC2 I-I 3 1.0472k   0  
CC1 A-A 4 2.0027k   0  
CC4 I-A 5 2.0128k   0  
CC8 N-I 6 2.0944k   0  
CC1 A-A 7 2.5339k   0  
CC4 I-A 8 2.5827k   0  
CC3 A-I 9 2.5870k   0  
CC2 I-I 10 2.6180k   0  

Table 6.10 The first ten admissible eigenvalues and the corresponding eigenmodes. 

It is now noticed that when the unilateral support at point D is moving to the right, 
the critical buckling mode corresponds to the case where the unilateral support at 
point D is active, while simultaneously the other unilateral support is inactive. The 
effective buckling length of the beam for this contact case (CC4) is the greatest. 
Therefore the critical load is now given by the following equation:  

2 2
1 0.8338 17556 12205.32 crP k EI kN    .  (6.5) 

 
 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 05:19:12 EEST - 3.138.32.9



146 Doctoral Dissertation 
 

 

 

Fig. 6.13 The first five eigenmodes of the beam of Example 4. 
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Fig. 6.14 Superior eigenmodes of  the beam of Example 4. 
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6.4.5 Example 5 

The following example is also a particular one because it refers to a special case 
where the unilateral support at point D has come very close to the roll support at 
point B (Fig. 6.15).  
 

 

Fig. 6.15 The geometrically perfect beam of Example 5. 

It is noticed that the two close supports at points B and D may be substituted by a 
single support which exhibits either free or fixed rotation. The free rotation 
corresponds to the case where the initial unilateral support at point D is active, 
while the fixed rotation corresponds to the opposite case. This special support can 
be considered as a unilaterally clamped support. A proposal for sketching such a 
support is presented in Fig. 6.16 
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Fig. 6.16 A proposal for sketching unilaterally clamped support. 

  Calculation of the eigenvalues (buckling loads) 

For each contact situation (see Table 5.1) the corresponding eigenvalues are 
calculated through the utilization of the respective buckling equations. Table 6.11 
displays the first ten eigenvalues (from the lowest to the highest) for each contact 
case. 

Contact  
Case 

CC1 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC2 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC3 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC4 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC5 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC6 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC7 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC8 

1

1

2

2

0
0
0
0

R
u
R
u







 

CC9 

1

1

2

2

0
0
0
0

R
u
R
u







 

Contact 
Status A-A I-A A-I I-A A-N I-N N-A N-I N-N 

1
cck  1.2638 0.5236 0.9022 0.7617 0.9022 0.5236 2.0944 0.5236 0.5236 

2
cck  1.8179 1.0472 1.5294 1.3095 1.5294 1.0472 4.0834 1.0472 1.0472 

3
cck  2.3545 1.5708 2.0944 1.8482 2.0944 1.5708 4.1888 1.5708 1.5708 

4
cck  2.8923 2.0944 2.5870 2.3842 2.5870 2.0944 4.2997 2.0944 2.0944 

5
cck  3.3970 2.6180 3.0943 2.9188 3.0943 2.6180 6.2832 2.6180 2.6180 

6
cck  3.9862 3.1416 3.6461 3.4528 3.6461 3.1416 8.1674 3.1416 3.1416 

7
cck  4.5176 3.6652 4.1888 3.9862 4.1888 3.6652 8.3776 3.6652 3.6652 

8
cck  5.0077 4.1888 4.6959 4.5195 4.6959 4.1888 8.5987 4.1888 4.1888 

9
cck  5.5752 4.7124 5.2077 5.0524 5.2077 4.7124 10.4720 4.7124 4.7124 

10
cck  6.1120 5.2360 5.7472 5.5852 5.7472 5.236 12.5664 5.236 5.2360 

Table 6.11 The first ten eigenvalues for each contact case. 

A B

Unilaterally clamped support
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  Calculation of the admissible eigenmodes 

The eigenvalues of Table 6.11 are acceptable only if the corresponding eigenmodes 
satisfy the restrictions which correspond to each contact situation. Table. 6.12 
presents the first ten admissible eigenvalues and the corresponding eigenmodes of 
the under study constrained buckling problem, while Fig. 6.17 and Fig. 6.18 show 
the graphical representation of the eigenmodes. 
 

Contact 
Case 

Contact 
Status 

Accepted 
Eigenvalue 1B  

 
Function of the eigenmodes 

 
CC4 I-A 1 0.7617k   0  

1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3

( ) sin ,  [0,1.5]

( ) cos sin ,  [0,4.35]
                                               

( ) sin ,  [0,0.15]

w x B kx Cx x

w x A kx B kx C x D x

w x B kx C x x

  

    

  
  

CC3 A-I 2 0.9022k   0  
CC2 I-I 3 1.0472k   0  
CC1 A-A 4 1.8179k   0  
CC4 I-A 5 1.8483k   0  
CC8 N-I 6 2.0944k   0  
CC1 A-A 7 2.3545k   0  
CC4 I-A 8 2.3842k   0  
CC3 A-I 9 2.5870k   0  
CC2 I-I 10 2.618k   0  

Table 6.12 The first ten admissible eigenvalues and the corresponding eigenmodes. 

As it clearly results from Table 6.12, the critical buckling mode occurs when the 
unilateral support at point D is active, while at the same time the unilateral support 
at point C is inactive, i.e.: 

2 2
1 0.7617 17556 10185.76 crP k EI kN      (6.6) 

The corresponding critical eigenmode is actually the critical eigenmode of the 
buckling problem of a beam with length equal to L  and fixed restraint conditions 
at point B. As it is well known, the critical load for this case is given by the 
following relation: 

 0.748
(0.7 ) (0.7 6)crk

L
 

 


� . (6.7) 
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Obviously, the value 0.748crk   is very close to the value 1 0.7617k  . The 
accuracy is affected by the length cL . As 0c  , the obtained critical value 

1 crk k . 
 

 

Fig. 6.17 The first five eigenmodes of the beam of Example 5. 
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Fig. 6.18 Superior eigenmodes of  the beam of Example 5. 
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7 Geometrically imperfect beams - Examples 

7.1 Introduction 
The main contribution of the present dissertation is the treatment, through an 
analytical mathematical way, of the buckling problem of geometrically imperfect 
beams in the presence of unilateral supports. The proposed methodology which 
was described thoroughly in Chapters 4 and 5, gives the potential of calculating the 
instability load of geometrically imperfect beams with one intermediate unilateral 
support or with two intermediate unilateral supports functioning in an opposite 
direction.  

In the present chapter several examples are demonstrated, covering different 
cases. Beams with various types of imperfect shapes and initial contact conditions 
are treated. In the first series of the presented examples (Section 7.3) the instability 
load of a beam with one intermediate unilateral support is calculated for different 
initial contact conditions, according to the mathematical theory introduced in 
Chapter 4. In Section 7.4, beams with two unilateral supports functioning in an 
opposite direction are treated, with various types of initial geometric imperfections. 
In the presented examples different contact conditions appear during the bending 
deformation, offering in that way a better comprehension of the implementation of 
the proposed methodology. For the implementation of the demonstrated examples 
the following steps are considered in both cases. 

 
   Initial imperfections are introduced in the structure. The imperfect shape of the 

beam is described by a Fourier sine series.  
 

   Depending on the number of the unilateral supports (one or two), the calculation 
procedure for the determination of the instability load introduced in Chapter 4 
(see Section 4.3.4) or Chapter 5 (Section 5.3.3) is followed. 

 
In  most of the presented examples, the instability load is calculated considering 
elastic material behaviour. Nevertheless, another contribution of the present study 
is the ability to consider in the calculations the real strength of the cross-sections of 
the beams, which offers the opportunity of dealing with practical applications, 
where the beam fails after the exhaustion of its bending strength. For this reason, in 
the last example of each of the following sections, the ultimate load of the beam is 
calculated considering the actual strength according to provisions of Eurocode 3 
for steel beams. 
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7.2 Review of the presented examples 
In the following paragraphs, the buckling problem of geometrically imperfect 
beams is under study for specific cases. More specifically, Section 7.3 displays 
four examples which concern the unilateral contact buckling problem of beams 
with one unilateral support.  

In the first one (Fig. 7.1), the imperfect beam is not initially in contact with the 
unilateral support. Due to the increase of loading, the beam will touch the unilateral 
support for a specific value of load, which is termed as cP . Finally, the beam will 
buckle when the load approaches a specific value which corresponds to the first 
eigenvalue of the buckling problem of the geometrically perfect beam (Fig. 7.2).  

In the second example (Fig. 7.3), different contact conditions hold in the 
beginning of loading. In particular, the beam is in contact with the unilateral 
support before the beginning of loading and will remain in contact until the 
moment that the applied load reaches a specific value. For this value of load, the 
beam tends to be separated from the unilateral support. It is then proved, that the 
beam does not have the potential to be in equilibrium and thus, the deflections of 
the beam are accompanied by a sudden decrease in the values of load. Eventually, 
the beam buckles according to the first eigenmode of the simply supported beam 
(case of inactive constraint) (Fig. 7.4). 

The third example of this category (Fig. 7.5) is similar to the previous one with 
the difference that instead of using an arbitrary imperfection, a specific superior 
eigenmode of the corresponding bifurcation problem is considered as the initial 
imperfection. In this case, the beam tends to be separated from the unilateral 
support (i.e. to change contact status) for a value of load which is approximately 
equal to the buckling load of the corresponding bilateral problem (Fig. 7.5) 

In the end of Section 7.3, the problem of Example 1 is extended (Fig. 7.1) in 
order to cover the case of the material nonlinearity. More specifically, the aim of 
Example 4 is to determine the ultimate load of the imperfect beam of Example 1, 
when strength criteria are taken into account. Moreover, a parametric investigation 
is performed in order to investigate the effect of the amplitude of the imperfection 
to the ultimate load of the beam.  

Section 7.4 presents five different examples of beams with two unilateral 
supports functioning in an opposite direction. In the first one (Fig. 7.11), the beam 
is not initially in contact with any of the unilateral supports. For a certain value of 
load the beam will come in contact with one of the unilateral supports. That new 
contact status, where the one of the unilateral supports is active while the other is 
inactive, will remain until the moment that the applied load will approach a certain 
value for which extremely large deflections are developed in the structure (Fig 
7.12).  

The second example of Section 7.4 (Fig. 7.13) is particular, because the contact 
status changes many times during the bending deformation. More specifically, the 
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beam is initially in contact with one of the unilateral supports. For a specific value 
of load, loss of contact occurs, leading to a different contact case. For greater 
values of loading the beam will come in contact with the other unilateral support. 
In the sequel, the beam has the potential to sustain more loading and eventually to 
come in contact for a second time with the other unilateral support. Finally, the 
beam buckles for a buckling mode which corresponds to the case where both 
constraints are active (Fig 7.14). 

The third example in Section 7.4 (Fig. 7.15) is also particular, because a lot of 
different contact conditions are alternated until the beam reaches an instability 
state. The innovative aspect with respect to the previous example, is that an abrupt 
decrease of loading takes place during the bending deformation (Fig 7.16).  

The fourth example (Fig. 7.17) concerns the case where the beam is initially in 
contact with both constraints. However, the arising buckling mode corresponds to 
the contact status where one of the unilateral supports is active while the other is 
inactive (Fig. 7.18).  

In the end of Section 7.4, the problem of Example 1 (Fig. 7.11) is extended in 
order to determine the ultimate load of the specific imperfect beam under the 
consideration of the actual strength of the cross-section of the beam (Example 5).  

7.3 Geometrically imperfect beams with one unilateral support 

7.3.1 Example 1 

The continuous beam of Fig. 7.1 is considered, which has a total length of 6m and 
stiffness rigidity equal to 216989 EI kNm . The beam is divided into two unequal 
spans by a unilateral contact support which is placed at a distance of 4.7 m from 
the left end of the beam. The initial imperfection (Fig.7.1) of the beam is supposed 
to be described by a Fourier sine series of five terms and is given by the following 
relation: 

 
5

0
1

( ) sin ,   [0,6]
6r

r

r xw x b x



  , (7.1) 

while the Fourier coefficients are given in Table 7.1.  
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Fourier coefficients 
of the imperfection function 

1 0.00125b   

2 0.00250b   

3 0.00330b   

4 0.00650b   

5 0.00125b   

Table. 7.1 The Fourier coefficients for the function of the geometric initial imperfection. 

 

Fig. 7.1 The imperfect beam of Example 1 of Section 7.3.1. 

The initial imperfection does not violate the intermediate unilateral constraint due 
to the fact that it satisfies the requirement of inequality (4.50). It is noted that a gap 
equal to 1.68 mm exists at the position of the unilateral support.  The specific  
imperfect beam is subjected to an axial compressive load P  leading to bending 
deformation. The bending behaviour of the above problem is described through the 
equations (4.55) and (4.56), the boundary conditions (4.61)-(4.68) and the 
restrictions (4.11)-(4.13). Due to the fact that the solution of the non-homogeneous 
constrained BVP is connected with the eigenvalues of the corresponding 
bifurcation problem, Table 7.2 presents the critical eigenvalues for each contact 
case. 

Contact Case Eigenvalue Critical load ,cr eigP  

Inactive constraint 2 0.5236k   (1)
, 4657.65 cr eigP kN  

Active constraint 2 0.8784k   
(2)

, 13108.87 cr eigP kN  

Inactive constraint 3 1.0472k   
(3)

, 18630.31 cr eigP kN  

Table 7.2 The critical eigenvalues of the corresponding bifurcation problem for each 
contact case. 
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The required calculations for the determination of the eigenvalues of Table 7.2 are 
not presented herein because they have been already displayed in Example 1 of 
Section 6.3. In order to determine the instability load of the beam and the final 
buckling shape, the following steps are followed according to the calculation 
procedure of Section 4.3.4: 

 Application of Steps 1 and 2  

Initially, it is checked if the beam is in contact with the unilateral support. In the 
beginning of loading the beam is not in contact with the unilateral support thus, the 
constraint at point C is inactive ( 0,  0u R  ). For this contact situation the 
equations of section 4.3.2.1 hold. Therefore, for values of the load P which do not 
constitute eigenvalues of the corresponding homogeneous BVP and at the same 
time satisfy the required restrictions, the deflection curve of the beam is described 
by the following relations:  

5
1

1 1 1
1

( ) sin ,   [0,4.7]
6r r

r

r xw x b F x


   
 

   (7.2) 

5
2

2 2 2
1

( ) sin ( 1) ,   [0,1.3].
6

r
r r

r

r xw x b F x


     
 


 

 (7.3) 

 
Then, it should be examined if a value of the load P which makes (4.87) untrue, 
exists. If such a value exists, then the beam will come in contact with the unilateral 
support and a contact reaction force will appear. The load P that corresponds to the 
moment that the beam will marginally come in contact with the unilateral 
constraint, without producing any reaction force (neutral contact status), is 
calculated through equations (4.89) or (4.90). The calculations for the case treated 
here give 3391.365 kNcP  . In the sequel, it has to be checked if for this specific 
contact status (inactive constraint) the corresponding homogeneous BVP 
produces an eigenvalue inside the interval [0, ]cP . From Table 7.2 it is obtained the 
value, (1)

, 4657.65 cr eigP kN  which of course, does not lie inside the interval [0, ]cP . 
Therefore, the applied load can be increased and the deflection curve of the beam 
will be described by a different set  of equations, as follows. 

 Application of Step 4  

For load values cP P  which do not constitute eigenvalues of the corresponding 
homogeneous BVP (i.e. eigenvalues of the buckling problem of the geometrically 
perfect beam for the case of the active constraint) and at the same time do not 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 05:19:12 EEST - 3.138.32.9



158 Doctoral Dissertation 
 

 

violate the required restriction of this specific contact situation, the set of equations 
of Section 4.3.2.2 holds. The deflection curve of the beam is then given by the 
following equations: 

5
1

1 1 1 1 1 1 1
1

( ) sin sin ,   [0,4.7]
6r

r

r xw x B kx C x b x


     
 

   (7.4) 

5
2

2 2 2 2 2 2 2
1

( ) sin sin ( 1) ,   [0,1.3]
6

r
r

r

r xw x B kx C x b x


      
 

 .
 

 (7.5) 

The coefficients 1 2 1 2, , ,B B C C  are calculated through equations (4.96), (4.97), 
(4.100) and (4.101). It is noted that the deflections of the beam tend to infinity 
when the value of load P approaches the value: 

(2)
, 13108.87 cr eigP kN .

 
 (7.6) 

The load ( 2)
,cr eigP  constitutes the first eigenvalue of the corresponding homogeneous 

BVP for the specific contact case (active constraint). Additionally, the set of 
equations (7.5) and (7.6) is valid for every [3391.365,13108.87)P i.e. restriction 
(4.102) holds for each value inside this interval. Therefore, the instability load of 
the structure for the given imperfection is equal to:  

(2)
, 13108.87 i cr eigP P kN  .

 
 (7.7) 

Fig. 7.2 presents the deflections of the beam for characteristic values of the applied 
axial load P . 
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Fig. 7.2 Progressive deflection of the beam of  Example 1 of Section 7.3.1 till instability. 

It has to be noticed that the type of instability which arises in the studied example 
(i.e. extremely large deflections as the applied load approaches the critical 

4.7m

P=0A B

1.3m

C

1.68mm

13mm

P=2000 kNA B
C

A BC

A BC

P=10000 kN

P=13060 kN

1.23m

25.9mm

P=PA BC c=3391.365 kN

15.5mm

14mm

R=0
u<0

R=0
u=0

R<0
u=0

R<0
u=0

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 05:19:12 EEST - 3.138.32.9



160 Doctoral Dissertation 
 

 

eigenvalue (2)
, 13108.87 cr eigP kN ), results from the validity of the fundamental 

Theorem 3.4. More specifically, for the case treated here the right hand side of the 
fundamental differential equations (4.55) and (4.56) take the form: 

45
1

1 1
1

( ) sin ,   [0,4.7]
6 6r

r

r xrf x b x


      
   

 .
 

(7.8) 

45
2

2 2
1

( ) sin ( 1) ,   [0,1.3]
6 6

r
r

r

r xrf x b x


        
   

 .
 

(7.9) 

For the critical eigenvalue (2)
, 13108.87 cr eigP kN , the corresponding eigenmode is 

written as: 

(2)
1 1 1 1 1 1( ) sin ,   [0,4.7]x B kx C x x    .

 
(7.10) 

(2)
2 2 2 2 2 2 2( ) sin ,   [0,1.3]x B kx C x x    .

 
(7.11) 

For: 

(2)
,

2
13108.87 0.878413

16989
cr eigP

k
EI

  
 

(7.12) 

and using relations (4.35)-(4.37) the unknown coefficients 1 1 2, ,B C C  are 
determined as a function of the coefficient 2 0B  . Therefore, equations (7.10), 
(7.11) take the following form: 

1 2 1 2 1
1 0.83438( ) sin

0.91743 0.91743
x B kx B x      

   
 

                           2 1 1 1
1 0.83438sin ,   [0,4.7]

0.91743 0.91743
B kx x x                

     (7.13) 

2 2 2 2 2 2 2 2
3.01649 3.01649( ) sin sin ,  
0.91743 0.91743

x B kx B x B kx x                
 

                                                                                                       2 [0,1.3]x  . (7.14) 
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Taking the scalar product of the functions 1 1 1

2 2 2

( ),  [0,4.7]
( )

( ),  [0,1.3]
f x x

f x
f x x


  

 and 

(2)
(2) 1 1 1

(2)
2 2 2

( ),  [0,4.7]
( )

( ),  [0,1.3]
x x

x
x x





 

 


 the following equations are derived: 

   
4.7

(2) (2)
1 1 1 1 1 1 1 2

0

, ( ) ( ) 0.0852 0f f x x dx B         (7.15) 

   
1.3

(2) (2)
2 2 2 2 2 2 2 2

0

, ( ) ( ) 0.1095 0f f x x dx B      .         (7.16) 

Therefore, for every eigenmode (2) ( )x  (with 2 0B  ), which corresponds to the 
eigenvalue (7.12), the function ( )f x  is not orthogonal to that eigenmode. 
Consequently, the initial constrained BVP is unsolvable for the eigenvalue (7.12). 
As it was stated in Chapter 3, this result indicates instability as the applied load 
approaches the critical eigenvalue for which the problem is unsolvable. It has to be 
mentioned that in case for which the integrals (7.15) and (7.16) are equal to zero, 
the eigenmode (2) ( )x  is orthogonal to the function ( )f x  leading to infinite 
solutions. Again, the critical eigenvalue constitutes singular point for the solution 
of the initial BVP, but in that case a different type of instability arises (see Example 
3.4). 
 

7.3.2 Example 2 

Let us consider a beam with a length of 6m and the same features as considered in 
the previous example. In present example a new initial geometric imperfection is 
considered, which is described by a Fourier sine series of twenty terms (Table 7.3). 
This initial imperfection is presented schematically in Fig. 7.3. 

20

0
1

( ) sin ,   [0,6]
6r

r

r xw x b x



    (7.17) 
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Fig. 7.3 The imperfect beam of Example 2. 

 
Fourier coefficients for the imperfection function 

1 0.0018056b   6 0.0016562b    11 0.0000502b    16 0.0000419b    

2 0.0008027b    7 0.0012820b   12 0.0001333b   17 0.0000632b   

3 0.0016436b   8 0.0008533b    13 0.0001331b    18 0.0000586b    

4 0.0019047b    9 0.0004570b   14 0.0000769b   19 0.0000327b   

5 0.0018976b   10 0.0001468b    15 0.000012b    20 0.0000015b    

Table. 7.3 The Fourier coefficients for the function of the geometric initial imperfection of 
Example 2 of Section 7.3.2. 

Due to the fact that the initial imperfection satisfies the equality condition of the 
restriction (4.50), i.e. 0 (4.7) 0w  , the beam is initially in contact with the 
unilateral support at point C. The bending behaviour of the above problem is 
described through equations (4.55) and (4.56), the boundary conditions (4.61)-
(4.68) and the restrictions (4.11)-(4.13). Therefore, in order to determine the 
instability load of the beam, the following steps are followed according to the 
calculation procedure of Section 4.3.4. 
 

 Application of Steps 1 and 3  

Because the beam is initially in contact with the unilateral support, it is checked 
whether a valid value sP  exists, yielded by relation (4.104) when it holds as 
equality (i.e. 0R ). The calculation for the specific problem prove that, when the 
load takes the value 11740.587 sP kN�  the reaction force of the constraint becomes 
zero and the beam develops the tendency to be separated from the unilateral 
support. For values of the load sP P  the reaction force of the unilateral support is 
active and therefore the deflection curve of the beam can be described by the 
following relations: 

4.7m

PA B

1.3m

C

9.5mm
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20
1

1 1 1 1 1 1 1
1

( ) sin sin ,   [0,4.7]
6r r

r

r xw x B kx C x b F x


     
 

   (7.18) 

20
2

2 2 2 2 2 2 2
1

( ) sin sin ( 1) ,   [0,1.3]
6

r
r r

r

r xw x B kx C x b F x


      
 

 ,
 

 (7.19) 

where the coefficients 1 2 1 2, , ,B B C C  are calculated through equations (4.98), (4.99), 
(4.100) and (4.101). It is essential to notice that the above solution is valid for all 
the values of load P which lie inside the interval (0,11740.587]  because no one of 
the eigenvalues of the corresponding bifurcation buckling problem belongs to that 
interval (see Example 1 of section 6.2.1).  

 Application of Step 5  

For sP P , the contact status will change. Due to the fact that, the first eigenvalue 
of the corresponding BVP (case of the inactive constraint), is smaller than sP  (see 
Table 7.2 of the previous example),  the beam cannot sustain more loading and will 
suddenly buckle. The arising deflections of the beam are accompanied by an abrust 
decrease in the values of loading. In that case the buckling response of the beam is 
similar to the one appearing in simply supported beams, i.e. the beam buckles for 

(1)
, 4657.65 cr eigP P kN  , thus the instability load is equal to: 

(1)
, 4657.65 i cr eigP P kN  .

 
 (7.20) 

The progressive deflection of the beam till the instability is presented in Fig. 7.4.  
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Fig. 7.4 Progressive deflection of the beam of  Example 2 of Section 7.3.2. 

7.3.3 Example 3  

In the present example the same continuous beam is again considered but with an 
initial imperfection which has the shape of the second eigenmode of the 
corresponding homogeneous BVP (see Section 6.3, Fig. 6.2). For this eigenmode 
the unilateral support is active. The description of this imperfection by means of a 
Fourier sine series, is achieved through the Discrete Fourier Transformation16 
(DFT) method taking into account twenty Fourier terms. 
                                                   
16 Details concerning the transformation of a function into a Fourier series and especially 
for the application of the DFT method, are given in Appendix C. 
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20

0
1

( ) sin ,   [0,6]
6r

r

r xw x b x



  .  (7.21) 

The imperfection is presented in Fig. 7.5, while the Fourier coefficients are given 
in Table 7.4. 
 

Fourier coefficients for the imperfection function 
1 0.0039782b   6 0.0000367b    11 0.0000031b    16 0.0000007b    

2 0.0026521b    7 0.0000227b   12 0.0000022b   17 0.0000005b   

3 0.005568b    8 0.0000095b    13 0.0000009b    18 0.0000001b    

4 0.0001480b   9 0.0000012b   14 0.0000001b    19 0.0000001b    

5 0.0000280b   10 0.0000025b   15 0.0000007b   20 0.0000002b   

Table. 7.4 The Fourier coefficients for the function of the geometric initial imperfection of 
Example 3 of Section 7.3.3. 

 

 

Fig. 7.5 The imperfect beam of Example 3 of Section 7.3.3. 

The initial imperfection satisfies the equality condition of the restriction (4.50), i.e.
0 (4.7) 0w  , thus the beam is initially in contact with the unilateral support at point 

C. The bending behaviour of the above problem can be described through 
equations (4.55) and (4.56), the boundary conditions (4.61)-(4.68) and the 
restrictions (4.11)-(4.13). The determination of the instability load of the beam of 
Fig. 7.5 is accomplished by applying the calculation procedure of Section 4.3.4. 
More specifically, 

 Application of Steps 1 and 3  

Due to the fact that the beam is initially in contact with the unilateral support, it has 
to be checked if a value of the applied load P  exists, such that the restriction 
(4.102) is not fulfilled. The inequality restriction (4.102), when it holds as equality, 

4.7m

PA B

1.3m

C
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yields the value 13108.306 sP kN . It is noticed that the reaction force of the 
unilateral constraint increases together with the loading. However, when the 
applied load takes values sufficiently close to sP , then the reaction force is starting 
to decrease. For 13108.306 sP P kN  , the reaction force of the unilateral support 
becomes zero and the beam develops the tendency to be separated from the 
unilateral support. 

For sP P  the deflection curve of the beam is described by the following 
relations: 

20
1

1 1 1 1 1 1 1
1

( ) sin sin ,   [0,4.7]
6r r

r

r xw x B kx C x b F x


     
 

   (7.22) 

20
2

2 2 2 2 2 2 2
1

( ) sin sin ( 1) ,   [0,1.3]
6

r
r r

r

r xw x B kx C x b F x


      
 

 .
 

 (7.23) 

In the above, the coefficients 1 2 1 2, , ,B B C C  are calculated through equations (4.98)-
(4.101).  
 

 Application of Step 5  

Due to the fact that the critical eigenvalue which corresponds to the contact case of 
the inactive constraint is equal to the Euler load: 

(1)
, 4657.63 cr eigP kN ,

 
  (7.24) 

which is obtained from Table 7.2, the beam cannot sustain more loading and will 
suddenly buckle (notice that the homogenous BVP is the same for all the studied 
examples). It is interesting to notice in this specific example that the critical 
eigenvalue of the buckling problem of the geometrically perfect beam when the 
unilateral constraint is active, is equal to (see Table 7.2): 

(2)
, 13108.87 cr eigP kN .

 
  (7.25) 

Practically, the beam has the tendency to buckle with respect to the buckling 
mode which corresponds to the above critical load. This actually happens when the 
support at point C is considered as bilateral (Fig.7.6). In this case, reaction force at 
point C changes sign for 13108.306 sP P kN  . As a result the beam  buckles when 
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the load approaches the value (2)
, 13108.87 cr eigP kN , developing a buckling mode 

similar to the one in Fig.7.6. 
 
 

 

Fig. 7.6 The buckling mode of the bilateral problem. 

However, in the studied case, the nature of the constraint does not offer to the beam 
the potential of buckling according to that way, due to the fact that the support at 
point C is unilateral. Therefore, for 13108.306 sP P kN   the beam is separated 
from the unilateral support. The moment that the beam is separated from the 
unilateral support at point C, the elastic energy which has been stored in the beam 
corresponds to the applied load sP . Obviously, the beam cannot be in equilibrium 
for this value of load, due to the fact that for the certain contact status (inactive 
constraint) the maximum load is equal to (1)

, 4657.65 cr eigP kN . Therefore, the 
arising deflections of the beam (which happen instantaneously) are accompanied 
by a “violent” jump of the applied load to lower values which approach the load 

(1)
,cr eigP . Thus, the instability load of the beam is equal to: 

(1)
, 4657.65 i cr eigP P kN 

 
  (7.26) 

The above results are depicted schematically in Fig. 7.7. 
 
 

4.7m
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C
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Fig. 7.7 Progressive deflection of the beam of  Example 3 of Section 7.3.3. 

7.3.4 Example 4 

Let us consider now the geometrically imperfect beam of the first example (Fig 
7.1). The stiffness rigidity of the beam is equal to 216989 EI kNm . This value 
corresponds to a HEB 220 steel section. It is supposed that the quality of the steel 
used is S460N with a yield stress equal to 460 yf Mpa . For the certain initial 
geometric imperfection, it is possible that the instability load which was calculated 
in Example 1, is not the ultimate load that the beam is able to sustain. Due to the 
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fact that the development of large deformations causes stresses that may exceed the 
capacity of the cross-section, the ultimate load is limited by the actual strength of 
the cross-section. Therefore, in order to determine the ultimate load of the beam, 
strength criteria should be employed in the calculation procedure. For the 
determination of the actual strength of the used cross-section, the provision of 
Eurocode 3 (EN 1993.01.01. (2005)) are considered. According to the latter, the 
bending strength of an –H cross-section for bending about the y-y axis, is given by 
the following relations: 

 
 If the design axial load satisfies simultaneously the following inequalities: 

.0.25Ed pl RdN N
 

  (7.27) 

0

0.5 w w y
Ed

M

h t f
N




 
  (7.28) 

0
1M 

 
  (7.29) 

 
then, allowance need not be made for the effect of the axial force on the plastic 
resistance moment, thus: 

.
y y
Rd pl RdM M 

 
  (7.30) 

 If the design axial load does not satisfy both the inequalities (7.18) and (7.19), 
then the bending strength of the cross-section is calculated approximately through 
the following equation: 

, , , , , ,
1

1 0.5
y y
Rd N y Rd pl y Rd pl y Rd

nM M M M
a

 
  

  
  (7.31) 

where: 

.

Ed

pl Rd

Nn
N


 

  (7.32) 

2
0.5fA bt

a
A


 

 
  (7.33) 
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In all the above relations, A  denotes the area of the cross-section, b  denotes the 
width of the cross-section, ft  denotes the thickness of the flanges while wh  and wt
denote the height and the thickness of the web, respectively. The term 

0M
constitutes the safety factor for the material strength and is taken unity. It is noted 
that, the design resistance .pl RdN  of a cross-section in uniform compression is 
determined as follows: 

0

.
y

pl Rd
M

Af
N


 .

 
   (7.34) 

Following the above calculation procedure, the axial force-bending moment 
interaction diagram is obtained for the HEB 220 cross-section. The latter is 
depicted in Fig. 7.8. 

For the determination of the design second order bending moment, the 
calculation procedure of  Section 4.4 is followed. More specifically, the bending 
moments along the beam for the imperfect beam of Example 1 are given by the 
following equations:  
 
 For 3391.365 cP P kN   the function of the bending moment is given by 
applying equations (4.113) and (4.114). For the case treated here, these equations 
take the form: 

 
25

1
1 1

1
( ) 1 sin      [0,4.7]Ed r r

r

r xrM x EI b F x
L L




          
     

                     (7.35) 

 
25

2
2 2

1
( ) 1 sin ( 1)      [0,1.3]r

Ed r r
r

r xrM x EI b F x
L L




           
     

 .          (7.36) 

 For cP P  the function of the bending moment is given by applying equations 
(4.115) and (4.116), therefore: 

 
25

2 1
1 1 1 1

1
( ) sin( ) 1 sin ,   [0,4.7]Ed r r

r

r xrM x EI B k kx b F x
L L




            
     


 
(7.37) 
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 
5

2 2
2 2 2 2

1
( ) sin( ) ( 1)sin 1 ,r

Ed r r
r
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Fig. 7.8  The axial force-bending moment interaction diagram for the HEB 220 steel cross-
section according to the provisions of Eurocode 3 (EN 1993.01.01 (2005)). 

Then, for each pair of values ( , )EdP M  it is examined if the strength criterion: 

y y
Ed RdM M 

 
  (7.39) 

is satisfied. If a value of the applied load P exists such that the above criterion 
holds as equality and, simultaneously, is smaller than the instability load iP , then 
this load represents the ultimate load of the beam and is termed as ultP . In the case 
that such load does not exist, the instability load is also the ultimate load of the 
beam. 
Fig. 7.9 presents the values of the second order bending moments for various 
characteristic values of the applied load P  up to failure, which occurs for 
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3431.07 ultP kN . For this value of the axial force, the maximum value of the 
bending moment at the beam is equal to 53.32 M kNm  . This pair of axial force 
and bending moment lies on the boundary of the interaction diagram signalling the 
failure of the beam. Therefore, the ultimate load capacity of the specific 
geometrically imperfect beam is far away from the theoretical instability load 
which was calculated earlier, in Example 1 ( 13108.87 inP kN ). This means that 
in the certain studied case the maximum loading is defined by the failure of the 
material rather than from instability. 
 

 

Fig. 7.9  Variation of the second order bending moment of the beam of Example 1 for 
various values of the loading until failure. 

Finally, Fig. 7.10 presents the results of a parametric study in which the 
imperfection amplitude increases, while keeping the shape of the imperfection 
curve the same. All the imperfection shapes applied herein do not violate the 
unilateral contact support. As it was expected, the failure load decreases as the 
amplitude of the imperfection curve increases.  
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Fig. 7.10  Axial failure load vs. maximum imperfection amplitude for the beam of Example 
1 of Section 7.3.1 

7.4 Geometrically imperfect beams with two opposite functioning 
unilateral supports 

7.4.1 Example 1 

Let us consider the beam of Fig. 7.11 with a length of 6m and stiffness rigidity 
equal to 26216EI kNm . The beam is divided into three unequal spans by two 
unilateral supports functioning in opposite direction. The first one is placed at a 
distance of 1.5 m from the left end, while the other is placed 1.5m from the right 
end of the beam. The initial imperfection of the beam is supposed to be described 
by a Fourier sine series of seven terms (Fig.7.11). The function of the imperfection 
is given by the following relation  
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while the Fourier coefficients are given in Table 7.5. 
 

Fourier coefficients  
for the imperfection function 

1 0.00125g   

2 0.0025g   

3 0.0033g   
4 0.0065g   

5 0.00125g   

6 0.000015g   

7 0.0015g   
 

Table. 7.5 The Fourier coefficients for the function of the geometric initial imperfection of 
Example 1 of Section 7.4.1. 

 

Fig. 7.11 The imperfect beam of Example 1 of Section 7.4.1. 

The initial imperfection (7.40) is compatible with the unilateral constraints due to 
the fact that satisfies the required inequalities (5.140) and (5.141). More 
specifically:  

0 0( ) (1.5) 0.00377 0w aL w     (7.41) 

0 0(( ) ) (4.5) 0.00123 0w a b L w     .  (7.42) 

Obviously, the beam is not in contact with any of the two unilateral supports.  The 
gap at point C is equal to 3.77mm while the gap at point D is equal to 1.23mm. The 
bending behaviour of the above problem is described through the equations 
(5.148)-(5.150), the boundary conditions (5.4)-(5.15) and the restrictions (5.16)-
(5.18). The solution of a non-homogeneous BVP depends on the eigenvalues of the 
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corresponding homogeneous problem. Table 7.6 summarizes the critical 
eigenvalues of the different contact cases which can occur during the bending 
deformation. The required calculation for the determination of the eigenvalues of 
Table 7.6 were given in Example 1 of Section 6.3.  
 

Contact 
Case 

Contact 
Status 

Accepted 
Eigenvalue 

Critical load ,cr eigP   

CC3 A-I 1 0.9022k   (1)
, 5059.6 cr eigP kN  

CC4 I-A 2 0.9022k   (2)
, 5059.6 cr eigP kN  

CC2 I-I 3 1.0472k   (3)
, 6816.6 cr eigP kN  

CC9 N-N 4 2.0944k   (4)
, 27266.5 cr eigP kN  

CC1 A-A 5 2.9956k   (5)
, 55780 cr eigP kN  

Table. 7.6 The critical eigenvalues of the corresponding bifurcation problem. 

For the determination of the instability load of the beam the procedure of Section 
5.3.3 is followed: 
 
   Due to the fact that the beam is not in contact with any of the unilateral 
constraints (I-I contact status), the CC2 contact case is valid. Therefore, at the 
beginning of loading the equations of Section 5.3.2.2 hold and the deflection curve 
of the beam is given by the following equations: 

7
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These equations are valid only for values of load which satisfy the required 
restrictions for the specific contact case. Additionally, these values of load should 
not constitute eigenvalues of the corresponding homogeneous BVP.  

Therefore, it has to be examined if a value of the applied load P  exists, for 
which at least one of the inequality restrictions (5.199) and (5.201) is not fulfilled. 
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If such a value exists, then, for greater values of load, the contact situation will 
change. For the example studied herein, the inequality criterion (5.201) holds as 
equality when the load takes the value 1088D

cP P kN  . For this value of load 
the beam comes in contact with the unilateral support at point D, while at the same 
time the criterion (5.199) is satisfied (i.e. the constrained at point C remains 
inactive). For D

cP P  the bending behaviour of the beam is determined by the 
equations which correspond to the CC4 contact case (I-A contact status, see 
Section 5.3.2.4). More specifically, the deflection curve is calculated through the 
following equations: 

7
1

1 1 1 1 1 1 1 1 1 1
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6r r

r

r xw x A kx B kx C x D g F x
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(7.46) 
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where the unknown coefficients are determined by equations (5.219)-(5.226). It is 
then noticed that when the load approaches the value (2)

, 5059.6 cr eigP kN , the beam 
develops extremely large deflections. Furthermore, the inequality restrictions 
(5.215) and (5.218) of the contact case CC4 (contatct status I-A) are fulfilled for 
every ( ,5059.437)D

cP P  i.e. the constraint at point D is active while the 
constraint at point C is inactive for each value inside that interval. Therefore, the 
instability load of the beam is equal to:   

(2)
, 5059.6 in cr eigP P kN  .

 
  (7.49) 

Fig. 7.12 presents the progressive deflection of the beam up to the instability load.  
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Fig. 7.12 Progressive deflection of the beam of  Example 1 of Section 7.4.1.  
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7.4.2 Example 2 

The beam of Fig. 7.13 with a length of 6m and stiffness rigidity equal to 
26216EI kNm is considered, which is divided into three unequal spans by two 

unilateral supports functioning in opposite direction. The first one is placed in a 
distance of 1.5 m from the left end, while the other is placed 4m from the right end 
of the beam. The initial imperfection of the beam is supposed to be described by a 
Fourier sine series of ten terms (Fig.7.13). The function of the imperfection is 
given by the following relation  

 
10

0
1

( ) sin ,   [0,6]
6r

r

r xw x g x



  ,  (7.50) 

while the Fourier coefficients are given in Table 7.7 
 

Fourier coefficients for the imperfection function 
1 0.001912g   5

6 5.7 10g    

2 0.00231g    5
7 1.1803 10g    

3 0.001252g   5
8 1.34 10g    

4 0.000279g   6
9 2.48 10g    

5
5 2.714 10g    6

10 5.73 10g     
 

Table. 7.7 The Fourier coefficients for the function of the geometric initial imperfection of 
Example 2 of Section 7.4.2. 

 

Fig. 7.13 The imperfect continuous beam of Example 2 of Section 7.4.2. 
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The initial imperfection (7.50) is compatible with the unilateral constraints, due to 
the fact that satisfies the required inequalities (5.140) and (5.141). More 
specifically:  

0 0( ) (1.5) 0w aL w    (7.51) 

0 0(( ) ) (2) 0.00054 0w a b L w     .  (7.52) 

The bending behaviour of the above problem is described through the equations 
(5.148)-(5.150), the boundary conditions (5.4)-(5.15) and the restrictions (5.16)-
(5.18). The solution of the problem is associated with the critical eigenvalues of the 
corresponding homogeneous problem, which can be calculated applying the 
procedures introduced in Chapter 4. Table 7.8 summarizes presents the critical 
eigenvalues for the contact cases which occur.  
 

Contact 
Case 

Contact 
Status 

Accepted 
Eigenvalue Critical load _cr eigenP  

CC3 A-I 1 0.9022k   (1)
, 5059.6 cr eigP kN  

CC4 I-A 2 0.9642k   (2)
, 5778.9 cr eigP kN  

CC1 A-A 3 1.082k   (3)
, 7277.2 cr eigP kN  

Table. 7.8 The critical eigenvalues of the corresponding homogeneous BVP, for all the 
contact cases occur in Example 2 of Section 7.4.2. 

Then, for the determination of the instability load of the beam the procedure of 
Section 5.3.2 should be followed: 
 
   Initially, the contact at the beginning of loading is examined. For the case 
treated here, the CC3 contact case is valid (contact status A-I). This means that 
initially the equations of Section 5.3.2.3 hold. Therefore, the deflection curve of the 
beam is given by the following equations: 

10
1

1 1 1 1 1 1 1 1 1 1
1

( ) cos sin sin( ) ,     [0,1.5]
6r r
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r xw x A kx B kx C x D g F x

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(7.53) 
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(7.55) 

 
where the unknown coefficients are determined by the utilization of equations 
(5.207)-(5.214). These equations are valid only for values of load which satisfy the 
required restrictions for the specific contact case. Additionally, these values of load 
should not constitute eigenvalues of the corresponding homogeneous BVP.  

Therefore, it has to be examined if a value of the applied load P  exists, for 
which at least one of the inequality restrictions (5.204) and (5.205) is not fulfilled. 
If such a value exists, then the contact situation will change for greater load values. 
For the under study example it is found that when the load takes the value of 

32.26C
sP P kN  , the criterion (5.204) is satisfied as equality. The beam appears 

the tendency to be separated from the unilateral support at point C while at the 
same time, the criterion (5.205) is satisfied, i.e. the beam has not touched the 
unilateral support at point D. 

In the sequel, it has to be checked if any of the eigenvalues of the corresponding 
bifurcation problem lies on the interval [0, ]C

sP .The smallest eigenvalue of the 
buckling problem of the geometrically perfect beam of Fig. 7.13, is obtained from 
Table 7.8 when the case CC3 holds (contact status A-I) and it is equal to 

(1)
, 5059.6 cr eigP kN . 

Obviously, none of the eigenvalues lie inside the interval, [0, ]C
sP  therefore,  the 

beam is able to sustain more loading. For values of load slightly greater than the 
load 32.26C

sP P kN   the beam is not in contact with any of the unilateral 
supports (i.e. inactive constraints, contact case CC2 (contact status I-I)). For this 
contact case the equations of Section 5.3.2.2 hold. The description of the deflection 
curve is then given by the following equations:  

10
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1 1 1
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6r r
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r xw x g F x
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(7.56) 
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The above equations describe the deflection curve of the beam for the specific 
contact case, where the two unilateral supports are inactive. These equations are, of 
course, valid only for values of load which are greater than C

sP  and also satisfy the 
required restrictions (5.199) and (5.201). Additionally, these load values  should 
not constitute eigenvalues of the corresponding homogeneous BVP (i.e. the 
eigenvalues of the corresponding perfect beam for the CC2 contact case). 

Therefore, it has to be examined for the specific contact case, if a value of the 
load P  exists, for which at least one of the restrictions (5.199) and (5.201) is not 
satisfied. From the criterion (5.201) it is derived that for the value 

509.42 D
cP P kN  the beam will come in contact with the unilateral support at 

point D, while simultaneously, the beam will not be in contact with the unilateral 
support at point C. This contact situation is termed as CC4 (contact status I-A, see 
Table 5.1).  

Additionally, there does not exist an eigenvalue which satisfies the restrictions 
of the contact case CC2 and at the same time lies inside the interval [ , ]C D

s cP P . This 
means that equations (7.56)-(7.58) describe the deflection of the beam for values of 

[ , ]C D
s cP P P . For D

cP P the following equations hold for the description of the 
deflection curve of the beam: 

10
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(7.59) 
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(7.61) 

In the above equations, the determination of the unknown coefficients is achieved 
through the utilization of the relations of Section 5.3.2.4. Equations (7.59)-(7.61) 
do not hold for every D

cP P . If a value of the load exists, for which the inequality 
restrictions (5.215) and (5.218) are not fulfilled, then the above equations do not 
hold. Additionaly, the latter hold under the prerequisite that the values of the 
applied load do not constitute eigenvalues of the corresponding homogeneous 
BVP.  
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Therefore, it has to be examined if  a value of load P  exists, such that at least 
one of the restrictions (5.215) and (5.218) is violated. For the case treated herein, 
the value 2916.71 C

cP P kN   leads the deflection curve of the beam to come in 
contact, for a second time, with the unilateral support at point C. Additionally, the 
critical eigenvalue of the corresponding buckling problem of the geometrically 
perfect beam when the case CC4 holds (contact status I-A) is obtained from Table 
7.8 and is equal to (2)

, 5778.9cr eigP kN . 
Consequently, none of the admissible eigenvalues lies inside the interval 

[ , ]D C
c cP P , thus equations (7.59)-(7.61) hold for every [ , ]D C

c cP P P . Therefore, the 
beam has the ability to be loaded with greater load values. For these values, both 
the unilateral constraints are active (contact case CC1) and, therefore, the equations 
of Section 5.3.2.1 hold.  

It is then noticed, that when the load approaches the value (3)
, 7277.2 cr eigP kN   

the deflections of the beam take disproportionate large values. This specific value 
is the first eigenvalue of the corresponding bifurcation problem and can be derived 
by the buckling equation (5.49). It is also noticed that for every ,7277.2C

cP P      
the restrictions (5.183) and (5.185) which refer to the specific contact case CC1 are 
fulfilled. Thus, instability occurs when both of the constraints are active and the 
load approaches the following instability load:  

(3)
, 7277.2 i cr eigP P kN 

 
 (7.62) 

The progressive deflection of the beam for characteristic values of the axial load P
is demonstrated in Fig.7.14 . 
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Fig. 7.14 Progressive deflection of the beam of  Example 2 of Section 7.4.2.  
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7.4.3 Example 3 

In the present example the geometrically imperfect beam of  Fig. 7.15 with a length 
of 6m and stiffness rigidity equal to 216989 EI kNm is considered. The beam is 
supported by two unilateral constraints functioning in opposite directions. The first 
one is placed at a distance of 2.6 m from the left end, while the other is placed 
1.3m from the roll support of the beam. The imperfect shape of the beam is 
described by a Fourier sine series of ten terms (Fig.7.15). The function of the 
imperfection is given by the following relation: 

 
10

0
1

( ) sin ,   [0,6]
6r

r

r xw x g x



  , (7.63) 

while the Fourier coefficients are given in Table 7.5  
 

Fourier coefficients for the imperfection function 
1 0.0039789g   6 -0.0000367g   

2 -0.0026521g   7 0.0000227g   

3 -0.0055680g   8 -0.0000095g   

4 0.0001480g   9 0.0000012g   

5 0.0000278g   10 0.0000025g   
 

Table. 7.9 The Fourier coefficients for the function of the geometric initial imperfection of 
Example 3 of Section 3. 

 

 

Fig. 7.15 The imperfect beam of Example 3. 
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The initial imperfection is compatible with the unilateral constraints due to the fact 
that satisfies the required inequalities (5.140) and (5.141). More specifically:  

0 0( ) (2.6) 0.007195w aL w m    (7.64) 

0 0(( ) ) (4.7) 0w a b L w   .  (7.65) 

Therefore, the bending behaviour of the buckling problem of Fig. 7.15 is described 
through the equations (5.148)-(5.150), the boundary conditions (5.4)-(5.15) and the 
restrictions (5.16)-(5.18). For the calculation of the instability load of the beam the 
procedure of 5.3.3 is followed. For the implementation of that procedure the 
calculation of the eigenvalues of the corresponding homogeneous constrained BVP 
is required. Table 7.6 summarizes the critical eigenvalues which occur in the 
presented example. The calculation of these values is based on the theory 
developed in Section 5.2 and has presented thoroughly in several examples in 
Chapter 6. For the sake of brevity the required calculations are not presented. 
 

Contact 
Case 

Contact 
Status 

Accepted 
Eigenvalue Critical load _cr eigenP  

CC4 I-A 1 0.87841k   (1)
, 13108.87 cr eigP kN  

CC3 A-I 3 1.02985k   (2)
, 18018.38 cr eigP kN  

CC2 I-I 4 1.04720k   (3)
, 18630.61 cr eigP kN  

CC1 A-A 5 1.39471k   (4)
, 33047.27  cr eigP kN  

Table. 7.10 The critical eigenvalues of the bifurcation problem corresponding to Example 3 
of Section 7.4.3 . 

According to relations (7.64) and (7.65), the beam is initially in contact with the 
unilateral support at point D, while it is not in contact with the unilateral support at 
point C. The existing gap at point C is equal to 7.195mm. According to the 
calculation procedure 5.3.3 the following steps are considered: 
 
   Firts, it is examined which of the contact cases presented in Table 5.1 is 
satisfied by the initial imperfection. For the case treated here, the CC4 contact case 
is valid (contact status I-A). Therefore, at the beginning of the loading, the 
equations of Section 5.3.2.4 hold. In this case the deflection curve of the beam is 
given by the following equations: 
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10
1

1 1 1 1 1 1 1 1 1 1
1

( ) cos sin sin( ) ,     [0,2.6]
6r r

r

r xw x A kx B kx C x D g F x


     
 

(7.66)
 

2 2 2 2 2 2 2 2 2( ) cos sin +w x A kx B kx C x D   

 
                                               

10
2

2
1

( 2.6)+ sin( ) ,    [0,2.1]
6r k

r

r xg F x





  
(7.67)

 

3 3 3 3 3 3 3 3 3( ) cos sinw x A kx B kx C x D    

                                                
10

3
3

1
sin( )( 1)  ,    [0,1.3]

6
r

r r
r

r xg F x



   .
     

(7.68) 

where the unknown coefficients are determined by the utilization of equations 
(5.219)-(5.226). These equations are valid only for values of load which satisfy the 
required restrictions for the specific contact case. Additionally, these values of load 
should not constitute eigenvalues of the corresponding homogeneous BVP.  

For this reason, it has to be examined if a value of the applied load P  exists, for 
which at least one of the inequality restrictions (5.215) and (5.218) is not fulfilled. 
The existence of such a value will lead the beam to a different contact status. For 
the problem tretated herein, it is found that when the load takes the value of 

13103.272 D
sP P kN  , the criterion (5.218) is satisfied as equality. The beam 

develops the tendency to be separated from the unilateral support at point D while 
at the same time, the criterion (5.215) is satisfied, i.e. the beam is not in touch with 
the unilateral support at point C. 

Moreover, it has to be checked if any of the eigenvalues of the corresponding 
bifurcation problem (i.e. when the contact case CC4 is considered) lies on the 
interval [0, ]D

sP . According to Table 7.10, such an eigenvalue does not exist (the 
smallest eigenvalue of the buckling problem of the geometrically perfect beam 
which corresponds to the contact case CC4 is equal to 

(1)
, 13108.87 cr eigP kN . 

Therefore, the beam can sustain more axial loading. For values of load slightly 
greater than 13103.272 D

sP P kN   the beam is not in contact with none of the 
unilateral supports (the contact case CC2 is valid, contact status I-I). However, the 
beam cannot be in equilibrium for D

sP P due to the fact that the instability load of 
the simply supported beam is equal to: 

2

2 4657.63 in
EIP kN

L


  .
 

  (7.69) 
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The structure develops the tendency to buckle according to the first eigenmode of 
the simply supported beam, therefore, the deflections of the beam are accompanied 
by a decrease of the applied load to lower values. For values of load D

sP P the 
contact case CC2 is valid thus, equations which refer to that condition hold (see 
Section 5.3.2.2). The existence of the unilateral support at point C constrains the 
development of the buckling mode. Thus, the decrease of the load has a limit which 
is equal to the value:  

9902.35 C
cP kN ,

 
  (7.70) 

for which the beam will come in contact with the unilateral support at point C. The 
C

cP  load is derived through the restriction (5.199) when it holds as equality. 
When the beam comes in contact with the unilateral support at point D, the 

contact case CC3 is activated (contact status A-I). Due to the fact that the critical 
eigenvalue of this contact situation is equal to (2)

, 18018.38 cr eigP kN (see Table 

7.10) the beam is able to sustain more loading. Therefore, for C
cP P the deflection 

curve of the beam is given by the following equations: 

10
1

1 1 1 1 1 1 1 1 1 1
1

( ) cos sin sin( ) ,     [0,2.6]
6r r

r

r xw x A kx B kx C x D g F x


     
 

(7.71) 

2 2 2 2 2 2 2 2 2( ) cos sin +w x A kx B kx C x D   

                                                
10

2
2

1

( 2.6)+ sin( ) ,    [0,2.1]
6r k

r

r xg F x



         (7.72) 

3 3 3 3 3 3 3 3 3( ) cos sinw x A kx B kx C x D    

                                                
10

3
3

1
sin( )( 1)  ,    [0,1.3]

6
r

r r
r

r xg F x



   .
     

(7.73) 

In the above equations the determination of the unknown coefficients is based on 
relations (5.207)-(5.214). Equations (7.71)-(7.72) do not hold for every C

cP P . If 
a value of the applied load exists, for which the inequality restrictions (5.204) or 
(5.205) are not fulfilled, then the above equations do not hold.  

Therefore, it has to be examined for the specific contact case, if a value of the 
load P  exists, for which at least one of the restrictions (5.204) and (5.205) is not 
satisfied. From the criterion (5.205) it is derived that for the value 

13429.9 D
cP P kN  the beam will come in contact with the unilateral support at 
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point D, while simultaneously, the beam will remain in contact with the unilateral 
support at point C. This contact case is termed as CC1 (contact status A-A, see 
Table 5.1).  

For D
cP P equations (7.71)-(7.72) hold for the description of the deflection 

curve of the beam, where now the determination of the unknown coefficients is 
achieved through the utilization of relations (5.187)-(5.198d) of Section 5.3.2.1. It 
is then noted, that when the load approaches the value (3)

, 33047.27  cr eigP kN ,  the 
deflections of the beam tend to infinity. This specific value is the first eigenvalue 
of the corresponding bifurcation problem and can be derived by the buckling 
equation (5.49). Additionally, for every ,33047.27D

cP P  the restrictions (5.183) 
and (5.185) which refer to the specific contact case CC1 are fulfilled. Thus, 
instability occurs when both of the constraints are active and the load approaches 
the following instability load:  

(4)
, 33047.27  cr eigP kN .

 
 (7.74) 

In Fig. 7.16 the progressive deflection of the beam for characteristic values of the 
axial load P  is depicted. Notice that when the beam tends to be separated from the 
unilateral support at point D, then the deflection curve takes instantaneously the 
shape which corresponds to the load 9902.35 C

cP kN . 
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Fig. 7.16 Progressive deflection of the beam of  Example 3 of Section 7.4.3. 
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7.4.4 Example 4 

Let us consider a geometrically imperfect beam with a length of 6m and stiffness 
rigidity equal to 26216 EI kNm (Fig.7.17). Two unilateral supports, functioning 
in opposite directions, are placed in the beam. The first one is placed at a distance 
of 1.5m from the left end, while the other is placed 4.5m from the right end of the 
beam (Fig.7.17). The initial imperfection is supposed to be described by a Fourier 
sine series of ten terms. The function of the imperfection is given by the following 
relation: 

 
10

0
1

( ) sin ,   [0,6]
6r

r

r xw x g x



  , (7.75) 

while the Fourier coefficients are given in Table 7.11 
 

Fourier coefficients for the imperfection function 
1 0.0203836g   6 -0.0048096g   

2 -0.0334536g   7 0.0003248g   

3 -0.0327362g   8 0.0000000g   

4 0.0000000g   9 -0.0000898g   

5 -0.0521351g   10 0.0003099g   
 

Table. 7.11 The Fourier coefficients for the function of the geometric initial imperfection of 
Example 4 of Section 7.4.4. 

 

 

Fig. 7.17 The imperfect beam of Example 4 of Section 7.4.4. 
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The initial geometric imperfection is compatible with the unilateral constraints 
because it satisfies the required inequalities (5.140) and (5.141). More specifically:  

0 0( ) (1.5) 0w aL w    (7.76) 

0 0(( ) ) (3) 0w a b L w   .  (7.77) 

From the above relations, it is clearly concluded that the beam is initially in contact 
with both the unilateral supports. The bending behaviour of the problem of Fig. 
7.17, can be described mathematically by a non homogeneous constrained BVP 
which is formulated through the equations (5.148)-(5.150), the boundary conditions 
(5.4)-(5.15) and the restrictions (5.16)-(5.18). For this reason, for the determination 
of the instability load of the beam, the calculation procedure of Section 5.3.3 
should be followed.  

The solution of the studied example is strongly connected with the eigenvalues 
of the corresponding homogeneous BVP. For this reason, Table 7.12 summarizes 
the critical eigenvalues of that problem for all the contact cases which occur in the 
considered example .  
 
 

Contact 
Case 

Contact 
Status 

Accepted 
Eigenvalue 

Critical load  
_cr eigenP  

CC3 A-I 1 0.9022k   (1)
, 5059.6 cr eigP kN  

CC6 I-N 2 1.0472k   (2)
, 6816.6 cr eigP kN  

CC1 A-A 3 1.3090k   (3)
, 10650.2 cr eigP kN  

CC4 I-A 4 1.4978k   (4)
, 13945.0 cr eigP kN  

CC2 I-A 5 1.5708k   
(5)

, 14540.0 cr eigP kN  

Table. 7.12 The critical eigenvalues of the corresponding, to Example 4, homogeneous 
constrained BVP. 

   Considering the fact that the beam is in contact with the unilateral supports, the 
CC1 contact case is valid. This means that at the beginning of the loading the 
equations of Section 5.3.2.1 hold. Therefore, the deflection curve of the beam can 
be described by the following equations: 

10
1

1 1 1 1 1 1 1 1 1 1
1

( ) cos sin sin( ) ,    [0,1.5]
6r r

r

r xw x A kx B kx C x D g F x


       (7.78) 
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2 2 2 2 2 2 2 2 2( ) cos sin +w x A kx B kx C x D   
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
         (7.79) 
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r

r xg F x


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(7.80) 

where the unknown coefficients are determined by the utilization of equations 
(5.187)-(5.198d). These equations are valid only for values of load which satisfy 
the required restrictions for the specific contact case. Additionally, these values of 
load should not constitute eigenvalues of the corresponding homogeneous BVP.  

Therefore, it has to be examined if a value of the applied load P  exists, for 
which at least one of the inequality restrictions (5.183) and (5.185) is not fulfilled. 
If such a value exists, then the beam will change contact status for greater values of 
the applied load. For the specific example it is found that when the load takes the 
value of 10624.698D

sP P kN  , the criterion (5.185) is satisfied as equality. This 
means that the reaction force of the unilateral support at point D becomes zero and 
the beam tends to be separated from that support. At the same time the restriction 
(5.183) is satisfied, thus the beam remains in contact with the unilateral support at 
point C. Furthermore, it is noticed that the smallest eigenvalue of the homogeneous 
BVP corresponding to that contact case (i.e. both constraints are active, CC1 
contact case) is equal to (3)

, 10650.2 cr eigP kN  (see Table 7.12). Therefore, equations  

(7.78)-(7.80) are valid for every [0, ]D
sP P . For values of load slightly greater 

than  D
sP , the beam is in contact with the unilateral support at point C while it is 

not in contact with the unilateral support at point D. The response of the beam for 
the present contact case (CC3) can be described by the equations of Section 
5.3.2.3.  

However, the beam cannot be in equilibrium for D
sP P due to the fact that the 

instability load which corresponds to the  contact case CC3 is smaller than  D
sP   

(see Table 7.12), i.e.: 

(1)
, 5059.6 D

cr eig sP kN P  .
 

  (7.81) 

The moment that the beam is separated from the unilateral support at point D, the 
elastic energy which has been stored in the beam corresponds to to the applied load 

10624.198 D
sP kN . Obviously, the beam cannot be in equilibrium for this value 
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of load due to the fact that for the certain contact case (i.e. the CC3), the maximum 
load is equal to (1)

, 5059.6 cr eigP kN  . Therefore, the deflections of the beam are 
accompanied by a “violent” decrease  of the applied load to lower values which 
approach the load (1)

,cr eigP  (Fig.7.18). Thus, the instability load of the beam is equal 
to: 

(1)
, 5059.6 in cr eigP P kN 

 
  (7.82) 

It is noticed that for all the values of the applied load [ 5059.6)D
sP P  the 

equilibrium of the beam is unstable.  

 

Fig. 7.18 Progressive deflection of the beam of  Example 4 due to loading.  
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7.4.5 Example 5 

Let us consider herein the geometrically imperfect beam of the second example of 
this section (Fig 7.13). The stiffness rigidity of the beam is equal to 

26216 EI kNm . This value corresponds to the rectangular hollow QHS 200x6.3 
steel section. The quality of the steel used is S355 with a yield stress equal to 

355 yf Mpa . In order to calculate the ultimate load of the beam, strength criteria 
should be taken itno account in the calculation procedure. The actual strength of 
the used cross-section is determined through the provisions of Eurocode 3 (EN 
1993.01.01. (2005)).  

According to the latter, the bending strength of a rectangular hollow cross-
section for bending about the y-y axis, is given by the following relations: 
where: 

, , , , , ,
1

1 0.5
y y
Rd N y Rd pl y Rd pl y Rd

w

nM M M M
a

 
  

  
  (7.83) 

.

Ed
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Nn
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
 

  (7.84) 

2 0.5t
w

A ba
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
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  (7.85) 

0

.
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Af
N


 .

 
   (7.86) 

0

, ,

y y
pl y

pl y Rd
M

W f
M





 .
 

   (7.87) 

0
1M  .

 
  (7.88) 

In all the above relations, A  denotes the area of the cross-section, y y
plW  denotes the 

plastic moduli about the y-y axis, while b  and t  denote the width of the cross-
section and the thickness of the flanges respectively.  
Following the above calculation procedure, the axial force-bending moment 
interaction diagram is obtained for the QHS 200x6.3 cross-section. The latter is 
depicted in Fig. 7.19. 
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For the determination of the design second order bending moment, the 
calculation procedure of Section 5.4 is followed. More specifically, the bending 
moments for the imperfect beam of Example 1 are given by the following 
equations:  
 For 32.26 c

sP P kN   the beam is in contact with the unilateral constraint at 
point C, thus the function of the bending moment is given by applying equations 
(5.267)-( 5.269). For the case treated here, these equations take the form: 

 
210

2 1
1 1 1 1

1
( ) sin( ) 1 sin ,   [0,2.6]Ed r r

r

r xrM x EI B k kx g F x
L L




            
     

 (7.89) 
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2 2
2 2 2 2

2102 12

1
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( ) ,   [0,2.1]( )1 sin

Ed
r r

r

A k kx B k kx
M x EI xr x aLrg F

L L




   
               
  

(7.90) 
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2 3
3 3 3 3

1
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Ed r r
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r xrM x EI B k kx g F x
L L


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             
     



 
(7.91) 

As it is depicted in Fig. 7.20, for 32.26 c
sP P kN  the bending moments along 

the beam are very small, thus the beam is able to sustain more loading. 
 
 For [ , )c D

s cP P P , the beam is not in contact with none of the unilateral supports, 
thus the function of the bending moment is given by the same set of equations 
(5.267)-(5.269) setting 1 2 2 3 0B A B B    . More specifically, the following 
equations hold for the determination of the bending moment when the constraints 
are inactive: 
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1 1

1
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r

r xrM x EI g F x
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(7.92) 
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(7.93) 
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(7.94) 

It is then noticed that when the load takes the value 1603.5 P kN , which lies 
inside the interval [ , )c D

s cP P , the maximum value of the bending moment is equal to 
max 9.077 EdM kNm . The pair of values (1603.5, 9.077)  lies on the boundary of the 

interaction diagram (Fig. 7.19), signalling the failure of the beam. Therefore, the 
ultimate load that the beam is able to sustain is: 

1603.5 ultP kN .
 

  (7.95) 

Fig. 7.20 presents the values of the second order bending moments for various 
characteristic values of the applied load P  up to failure, which occurs for 

1603.5 ultP kN .  
 

 

Fig. 7.19  The axial force-bending moment interaction diagram for the HEB 220 steel 
cross-section according to the provisions of Eurocode 3 (EN 1993.01.01 (2005)). 

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100 120 140

A
xi

al
 fo

rc
e 

(k
N

)

Bending moment (kNm)

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 05:19:12 EEST - 3.138.32.9



Geometrically imperfect beams - Examples 197 
 

 

 

Fig. 7.20  Variation of the second order bending moment of the beam of Example 2 for 
various loading until failure. 
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8 Summary and Conclusions 

In the present dissertation the contact buckling problem of beams in the presence of 
one or two intermediate unilateral supports was investigated. The study uses tools 
from the theory of elastic stability in order to formulate a constraint BVP which is 
solved analytically. Generally, the contact buckling problem in steel and composite 
structures has been of interest for many researchers until today, due to the existence 
of a variety of applications where instability phenomena involve unilateral contact 
conditions. Most of the reported works dealt with methods and techniques based on 
the computational and variational approach. Theoretical and analytical research is 
also important, but the published works are rather few in that case. This results 
from the fact that contact buckling problems exhibit highly nonlinear response 
leading to complex mathematical formulations which are difficult to be solved 
analytically. However, significant work has been developed in this field for 
individual structural members which can be modeled as plates or beams.   

Concerning the buckling problem of beams, special attention has been given to 
the calculation of the crtitical load. In the most of the related works the proposed 
methods aim to determine the critical buckling load for beams resting on an elastic 
foundation or for beams where their displacement is restrained by rigid obstacles.  

The major innovative point of the present research in that field is that it 
considers geometrically imperfect beams (i.e. beams with arbitrary initial 
geometric imperfections). This consideration leads to a non-homogeneous 
constrained BVP. The solution of that problem is obtained after the separation of 
the initial BVP into specific constained subproblems. The separation is based on 
the different contact cases which are possible to occur during the bending 
deformation of the beam (for example one of the constaints may be active and the 
other inactive, or both of the constaints may be active etc.), however, the inequality 
character of the problem is kept. Within this solution procedure, analytical relations 
are derived for each contact case which, of course, are valid under certain 
restrictions introduced by the unilateral supports. The main problem in the case of 
imperfect beams is that during the bending deformation the contact conditions may 
change. In order to take that into account, all the obtained solutions are unified in a 
special algorithm which is able to treat various problems with different contact 
conditions. In that way, the instability load and the deflection curve of the beam 
can be determined.  

Due to the fact that the solution of the constrained non-homogeneous BVP is 
strongly connected with the solution of the corresponding homogenous BVP, the 
latter is also investigated producing eigenvalues and eigenmodes for each contact 
case. As it is well known from the mathematical field of ordinary differential 
equations and BVPs, the eigenvalues of a homogeneous BVP constitute singular 
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points in the solution of a respective non-homogeneous BVP, due to the fact that 
for these eigenvalues the non-homogeneous BVP may be either unsolvable or 
solvable but not uniquely. Obviously, from the mechanical point of view, in the 
case of buckling of beams, the existence of singular points indicates instability 
phenomena. It has to be noticed that these singular points cannot be detected easily 
using common finite element software. Fisrt of all, advanced geometrically 
nonlinear finite element analysis codes should be employed which are able to take 
into account unilateral contact conditions. Even in that case, the correct solution is 
not guaranteed. Special attention should be given to the incrementation of the 
applied load because the analysis procedure may overclme the critical points which 
are not always obvious. In the present study, this target is achieved quickly in a 
simple manner without the utilization of any kind of load-incrementation schemes. 

Among the others, the proposed methodology offers the potential of treating 
problems with various initial geometric imperfections and initial contact 
conditions. The initial contact conditions are defined by the position of the 
unilateral supports. In that way, particular cases can be examined and several 
conclusions concerning the influence of the position of the unilateral supports on 
the value of the critical load and the buckling mode can be extracted. 

Due to the fact that in real world applications the failure of a structural system is 
influenced by material nonlinearity, strength criteria which take into account the 
strength of the cross-section of the beam are employed in the proposed 
methodology. Within that, the ultimate load that the beam is able to sustain can be 
determined considering the interaction between bending moment and axial force in 
the stress analysis.  

By the implementation of the proposed methodology in various cases, a series 
of topics with theoretical interest were treated. More specifically, issues concerning 
the passage from one contact case to another during the bending deformation were 
revealed. These interesting points were studied through the demonstration of 
several examples, for a class of different cases. However, further research, mainly 
from the mathematical point of view, can be a challenge. Similar topics were 
studied numerically by many researchers (e.g. Stein and Wriggers, 1984 ; Simo et 
al, 1986; Wriggers, 2006 etc.) and, therefore, the future research can be supported 
in some way. Furthermore, the consideration in the formulation of the problem, of 
a bending theory different from that of the Euler-Bernoulli, may give the potential 
of treating problems with large deformations. In that way, the postcritical 
behaviour of the beam, after buckling, can be studied as well. 
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Appendix A - The space L2(a,b)  

A.1 Introduction 
The mathematical formulation of the buckling problem of beams in the framework 
of the second-order bending theory, consists of fourth order ordinary differential 
equations together with the appropriate boundary conditions (see Chapter 3). In 
order to solve such problems the functions which constitute the solutions of the 
ordinary BVP should belong to a specific space of functions where certain 
properties hold. For the studied homogeneous and non-homogeneous BVPs of the 
present dissertation the appropriate space in which the mathematical problem 
should be formulated , is the space of the square-integrable functions, the so-called 

2 ( , )L a b space. This space of functions is actually one of the most important 
examples of Hilbert spaces. In general, Hilbert spaces have a rich geometric 
structure because they are endowed with an inner (or scalar) product that allows the 
introduction of the concept of orrthogonality of functions.  That concept is very 
significant for the solution of problems involving differential equations because it 
gives the potential to approximate functions through a series of orthonormal 
functions. Classical example of this potential is the Fourier series expansion, a 
mathematical tool which is fundamental in the study of differential equations. As it 
can be proved (Debnath and Mikusinski, 2005; Rektorys, 1980) in order to 
represent a fuction f  through the sum of other orthonormal functions, the 
following term should be introduced: 

2 2[ ( )]
b

a

f f x dx  . (A.1) 

The above term is the inner product of function f  with itself and represents the 
norm of the 2 ( , )L a b  space. This, in turn, means that the function f should be 
restricted to the class of square-integrable functions. In the following paragraphs 
the basic concept of  the space 2 ( , )L a b  is displayed and the appropriate definitions 
and properties are given. 

A.2 Square integrable functions 

The space 2 ( , )L a b  is a linear space, the elements of which are square integrable 
functions in the bounded interval [ , ]a b . This means, that the following integrals 
exist and are finite. 
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( )
b

a

f x dx    (A.2) 

2 ( )
b

a

f x dx . (A.3) 

The above integrals are considered  in the Lebesgue sence. The Lebesgue integral 
is an extension of the Riemman integral and it is essential from the point of view of 
mathematics rather than from the point of view of mechanics. For the needs of the 
most of applications no difference exist in the calculation of an integral through the 
Lebesgue and the Riemman sences. For this reason further details are not 
presented.  
 

A.3 Inner product, norm, distance and orthogonality in L2(a,b) space 

The inner (or scalar) product of two functions ,f g  in the 2 ( , )L a b space is defined 
as the integral: 

( , ) ( ) ( )
b

a

f g f x g x dx  .  (A.4) 

The norm and the distance (or metrics) are defined by the following relations 
respectively: 

( , ) ( ) ( )
b

a

f f f f x f x dx   .   (A.5) 

  ( , ) ( ) ( ) ( ) ( )
b

a

f g f g f x g x f x g x dx         (A.6) 

It is noted that the concept of norm is an abstract generalization of the length of a 
vector. Any real valued function which satisfies certain conditions (see Debnath 
and Mikusinski, 2005) is called a norm.  A function f  is called normed in the 
space 2 ( , )L a b  if its norm is equal to unity.  
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A.4 Orthogonality and ortonormal functions  

Two functions ,f g  are called orthogonal in 2 ( , )L a b  if their inner product is equal 
to zero, i.e.: 

( , ) ( ) ( ) 0
b

a

f g f x g x dx  .  (A.7) 

A system of functions 1 2 3, ,f f f ….  is called orthogonal in the space 2 ( , )L a b , if 
every two functions ,i jf f  of this system, with i j ,  are orthogonal in that space. 
Furthermore, if every function of that system is normed, then the system is called 
orthonormalized or orthonormal in that space. An orthonormal system constitutes a 
base in the vector space 2 ( , )L a b . 

A.5 Complete systems – Fourier expansion 

An orthonormal basis (having elements the functions nf ) is called complete in the 
space 2 ( , )L a b , if for any square integrable function 2( , )f L a b and any 0 

there is a finite linear combination:  
 

1

( )
n

n n
i

b f x

    (A.8) 

such that,  

1
( ) ( )

n

n n
i

b f x f x 


  .   (A.9) 

 
 
This means that any function ( )f x  can be expressed approximately as a linear 
combination of the elements of the orthonormal basis nf , i.e: 

1 1 2 2 3 3
1

( ) ( ) ( ) ( ) ... ( )
n

n n
i

f x b f x b f x b f x b f x


     .   (A.10) 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 05:19:12 EEST - 3.138.32.9



204 Doctoral Dissertation 
 

 

The above series is called the Fourier series or Fourier expansion of the function f  
with respect to the orthonormal basis. The coefficients nb  are called Fourier 
coefficients and are defined by the following relation: 

( , ) ( ) ( )
b

n n na
b f f f x f x dx   ,   (A.11) 

where 1,2,3n  …. 
 

A.6 Orthogonality of Eigenfunctions in the L2(a,b)   
As it was stated in Chapter 3 a BVP in the form: 

( ) ( ) ( )M f N f g x   (A.12) 

(2 1) (2 1)
0 0 1 1 ,2 1 ,2 1( ) ( ) ( ) ( ) .... ( ) ( ) 0m m

i i i i i m i ma w a b w b a w a b w b a w a b w b 
         , 

 1,2,3....,2i m . (A.13) 

where (A.12) represents the differential equation and (A.13) represent the boundary 
conditions of the problem, has apart from the zero solution,  nonzero solutions, 
which are called eigenenfunctions. The values of the parameter   which produce 
the nonzero solutions are called eigenvalues. For the eigenvalues of a specific BVP 
the following theorem holds. 

Theorem A.1 

If ,i j   with i j are two eigenvalues of the BVP (A.10) and (A.11) and ,i jf f  

are the corresponding eigenfunctions, then the functions i and j  are orthogonal in 

the space 2 ( , )L a b , i.e.: 

( , ) ( ) ( ) 0
b

j i j i j
a

f f f x f x dx     . (A.14) 

From (A.12) results the fact that eigenfunctions corresponding to different 
eigenvalues are orthogonal in the space 2 ( , )L a b . Obviously, the system of  normed 
eigenfunctions constitutes an orthonormal basis in 2 ( , )L a b . 
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Appendix B - Fourier series and the Discrete 
Fourier Transform method 

B.1 Sine Fourier series 
Fourier series are complete sets of functions (see paragraph A.5 in Appendix A) 
which satisfy some certain identities and are used to approximate any square 
integrable function in the space 2 ( , )L a b . Basically, three different set of Fourier 
series exist. The full Fourier series expansion, the sine Fourier series and the cosine 
Fourier series. Depending on the type of the boundary conditions  for a given BVP 
and the type of the function to be approximated, the appropriate Fourier series 
should be used.   

In the present dissertation the sine Fourier series are used in order to express the 
particular solution of the  non-homogeneous BVP which describes the bending 
behavior of a beam in the framework of the second-order bending theory. This set 
of Fourier series is the appropriate set for the given BVP due to  the fact that it is 
well adapted to functions which are zero to x a  and x b . Except that, the 
function of the deflection curve described in the interval [ , ]a b , is an odd 
summetric function, i.e.: 

( ) ( ),   [ , ]f x f x x a b        (C.1) 

and therefore sine Fourier series is the appropriate tool in order to approximate 
functions with that property.  

A sine Fourier  series represents a function as: 

1

( ) sin
n

n
i

n xf x b
L




 ,  (C.2) 

where with the term L  is denoted the length of the interval [ , ]a b . The formula for 
the determination of the Fourier coefficients is defined by the following relation: 

2 ( )sin
b

n a

n xb f x
L L


  .   (C.3) 

For the sine Fourier  series the following fundamental theorem holds: 
 
 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 05:19:12 EEST - 3.138.32.9



206 Doctoral Dissertation 
 

 

Theorem B.1 

If the function ( )f x  is square integrable in an interval [ , ]a b , then: 
 
   all the coefficients nb  of equation (C.3) are well defined, 
 
   all the coefficients nb  are uniquely determined by ( )f x  and depend linearly on 

( )f x , 
 
   the series (C.2) converges to the function ( )f x in the root mean square sense, 
i.e.: 

1
( ) ( ) 0

n

n n
i

b f x f x


  ,   (C.4) 

 
   the following relation holds: 

2 2

1

( )
2

n

n
i

Lf x b


  ,   (C.5) 

where the right hand side part always converges. 
 
Conversely, given a square summable sequence nb  such that the term  

2

1

n

n
i

b

    (C.6) 

is finite, a square integrable function can be determined uniquely, such that all the 
above statements hold. 

B.2 The Discrete Fourier Transform 
In order to approximate a given function ( )f x  through a sine Fourier series, the 
integrals (C.3) have to be calculated. When the function ( )f x  is known and the 
integral can be determined analytically, no difficulty exists in the approximation 
procedure. In cases where the function ( )f x  is unknown, for instance, when 
function values are given only at discerte values (as with physical measurements) 
or the integral (C.3) cannot be calculated in an analytical way, the Discrete Fourier 
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Transform (DFT) method is applied. The DFT method is actually the evaluation of 
the Fourier Transform by numerical computing. The integral (C.3) is determined 
considering a numerical scheme for the integration. In the framework of the present 
dissertation the Simpson’s rule was adopted for that purpose. 
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Appendix C - Solution of nonlinear algebraic 
equations  

C.1 The Newton’s method 
Suppose we want to find the value of the variable x  that satisfies the nonlinear 
algebraic equation: 
 

( ) 0f x 
 

  (A.1) 

where ( )f x  can be a polynomial or a transcendental function. Transcedental are 
called the functions which cannot be expressed as the sum, the difference, the 
product, the ratio of two polynomials, or the the root of one polynomial. A classic 
example of a transedental function is the following:  

( ) sinf x x x  .
 

  (A.2) 

The problem of finding the solution to equation (A.1) is not necessarily a simple 
issue. The solution of such equations is achieved ny means of numerical methods. 
Such methods are the well konown bracketing methods (e.g. the Bisection method), 
the one-point iterations methods etc. A very powerful method for obtaining 
solutions to nonlinear algebraic equations is the Newton’s method. In the present 
dissertation all the encountered transcendental equations are solved by the 
Newton’s method with the utilization of the Mathematica software. In the 
following, a brief description of the Newton’s method is presented. 

Let us consider a function :f � �  which is infinitely differentiable in a 
neighborhoud of a real number ( )kx . Then, the function f  can be represented as a 
Taylor series expansion which is an infinite sum of terms calculated from the 
values of its derivatives at point ( )kx , as follows: 

( ) ( )
( ) ( ) ( ) ( ) 2 ( ) 3( ) ( )( ) ( ) ( )( ) ( ) ( ) ..

2! 3!

k k
k k k k kf x f xf x f x f x x x x x x x

 
        (A.3) 

If we retain only the first two terms of the above sum, the linear approximate 
representation of the function f in the neighbourhood of ( )kx  becomes: 

( ) ( ) ( )( ) ( ) ( )( )k k kf x f x f x x x   . (A.4) 
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The right-hand side of the above equation represents a straight line that is tangent 
to the curve ( )f x  and passes through the point ( )kx . The second term on the right-
hand side is the approximate change in the function ( )f x  with respect to a 
movement to the left or the right of the point ( )kx . That approximate change of the 
function ( )f x  becomes exact, as  the variable x  approaches ( )kx . 

Recall now equation (A.1) and suppose that the function ( )f x  of this equation 
is approximated through the previous  linearization procedure about an arbitrary 
point kx . Then, equation (A.1) becomes: 

( ) ( ) ( )( ) ( ) ( )( ) 0k k kf x f x f x x x    . (A.5) 

The point ( )kx  is called an initial guess. Obviously, the solution of equation (A.5) 
will identify the point ( 1)kx   which is defined by the intersection of the x  axis with  
the tangential line (Fig. A.1), i.e.:  

( )
( 1) ( )

( )

( )
( )

k
k k

k

f xx x
f x

  


 .  (A.6) 

The above equation produces a sequence of approximations based on the iteration 
function: 

( )( )
( )

f xg x x
f x

 


   (A.7) 

Once ( 1)kx   is obtained, the value ( 1)( )kf x   can be determined and checked how 
much this value deviates from zero.  This difference represents the error associated 
with the initial guess ( )kx and is reffered as the residual. If the residual is larger than 
some user-defined tolerance, then the next guess ( 2)kx   is computed and checked 
against the tolerance. The process is repeated until the residual is small compared 
with the defined tolerance.  

Generally, the sequence (A.6) converges when the iteration function ( )g x  
fulfils the iequality: 

( ) 1g X  ,   (A.8) 

where X  constitutes root of the nonlinear equation (A.1). It can be proved (see e.g. 
C. Pozrikidis, 1998; Ostrowski, 1966; Rabinowitz, 1970) that the iteration function 
(A.7) satisfies inequality (A.8) . 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 05:19:12 EEST - 3.138.32.9



Appendix C - Solution of nonlinear algebraic equations 211 
 

 

It has to be noticed that in the practical implementation of Newton’s method, the 
derivative f   is often computed by numerical differentiation. 
 

 

Fig. C.1  Schematical representation of Newton’s method for solving nonlinear equations. 
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