
University of Thessaly

Μεταπτυχιακή

“Control Smart-home equipment through Android Application

Μεταπτυχιακή εργασία

Θέμα:

home equipment through Android Application”

Βαραλής Αργύριος

Επιβλέπων καθηγητής:

Αθανάσιος Κοράκης

Συνεπιβλέπων καθηγητές:

Τασιούλας Λέανδρος

Αργυρίου Αντώνιος

Βόλος, Σεπτέμβριος 2014

”

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

2

Acknowledgments

I offer my sincerest gratitude to my supervisor, Dr Korakis Athanasios. Also, i

express my thanks to my co-supervisors Leandros Tassiulas, and Argyriou Antonios.

Moreover I am grateful to Ioannis Kazdaridis for the guidance across the whole

period of this work. Most special thanks go to my parents and my friends who

supported me with patience and love through this long process.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

3

Abstract

Nowadays a large percentage of the utilization of pc’s has been substituted by

mobile devices, such as phones and tablets. More and more our homes have become

technologically advanced. Many home appliances can be controlled wirelessly or

connect to the Internet. The ease of use and portability are the main reasons that made

mobile devices so widespread, so why not use them to control a smart-home.

Thousands of applications are constructed, considering the needs of every user,

covering different platforms such as android, iOS, Windows.

The purpose of this report is the design and construction of an Android

application, which controls and monitors energy consumption of electrical appliances.

NITLab [1] developed a Power Meter framework consisted of Power Meter Devices

[2] and respective User Interface. This framework is capable of sampling the Power

Consumption of a connected electric device. Moreover, it can sense environmental

conditions using a temperature and humidity sensor and a light intensity photo-

resistor sensor as well. Until now users could only control and view data measures

through a web browser via http requests, thus an Android application has been

developed as an alternative and more practical way. The entire hardware

infrastructure is analyzed in detail and different use cases of the application are

demonstrated. Measurements of various electrical appliances are depicted as an

example of use.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

4

Table of Contents
Acknowledgments ... 2

Abstract ... 3

1. Introduction... 6

2. Hardware... 7

2.1 Power meter device .. 7

2.2 Gateway... 10

3. Topology and data returned.. 12

3.1 Topology .. 12

3.2 Data transferred .. 13

4. Android Application... 16

4.1 Android components of application.. 16

4.1.1 Activities .. 16

4.1.2 Fragments.. 19

4.1.3 User Interface .. 21

4.1.4 Swipe Views with tabs ... 22

4.1.5 Action Bar .. 22

4.1.6 Async Task ... 23

4.1.7 GraphView ... 24

4.1.8 Shared Preferences ... 26

4.2 Main features of the app... 27

4.2.1 Fragment Control .. 27

4.2.2 Fragment Monitoring .. 28

4.2.3 Fragment Configure... 30

4.2.4 Settings window .. 31

5. Use Cases... 34

5.1 Measure home electrical appliances... 35

6. Future work ... 38

7. References... 42

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

5

Table of Figures
Figure 1 : Pro Micro controller.. 7
Figure 2 : ACS712 current sensor ... 8
Figure 3 : Xbee S2 module for wireless communication .. 8
Figure 4 : Power meter device... 9
Figure 5 : Arduino Ethernet board... 10
Figure 6 : Gateway device ... 11
Figure 7 : Topology ... 12
Figure 8 : Http request and answer from the Gateway .. 13
Figure 9 : Explanation of fields of the response .. 14
Figure 10 : Demonstration of changing the three parameters.. 15
Figure 11 : Reset effect on all counters. .. 15
Figure 12 : Lifecycle of an Activity. ... 18
Figure 13 : Lifecycle of a Fragment. ... 21
Figure 14 : Action Bar... 23
Figure 15 : A graph using GraphView. ... 25
Figure 16 : Fragment Control. ... 27
Figure 17 : Fragment Monitoring. ... 28
Figure 18 : Real time graph. .. 29
Figure 19 : Fragment Configure. ... 31
Figure 20 : Settings window.. 31
Figure 21 : Setting IP... 32
Figure 22 : Interval Setting.. 33
Figure 23 : ON / OFF state of button. ... 34
Figure 24 : Laptop consumption.. 35
Figure 25 : Coffee machine consumption ... 35
Figure 26 : Lamp consumption.. 36
Figure 27 : Stereo consumption... 36
Figure 28 : Graph of consumptions. .. 37
Figure 29 : Arduino – Bluetooth modem topology ... 38
Figure 30 : Harware topology.. 40

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

6

1. Introduction

NITLab has designed and constructed the hardware of the power meter devices

which are constituted by various boards, wireless modules and sensors. Until now

users could control, monitor and configure the devices by sending http requests

through a web browser where the data is displayed. As an alternative and handier way

to utilize these actions an application has been developed using Eclipse ADT bundle

[3] which provides the android SDK tools and a version of Eclipse IDE with built-in

Android Development tools. In the next chapters this work is presented in more detail.

In the second section a detailed description of the power meter hardware devices is

presented, following the topology of the use cases and the possible data exchanged of

the devices is shown in section 3. Android components which were used are outlined

in section 4 and finally in section 5 use cases of the application are shown while

measurements of various electrical devices are presented. An alternative way of

communicating with the devices utilizing Bluetooth connectivity is presented in

section 6 as future work.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

7

2. Hardware

In this section the hardware is anatomized; the power meter device and the Gateway.

2.1 Power meter device

NITlab developed a Power Meter framework consisted of Power Meter Device. The

Power Meter Device features:

 Arduino Pro Micro microcontroller (Figure 1) board featuring the

ATMega 32U4 running at 3.3V/8MHz microcontroller [4].

The Pro Micro has an ATmega32U4 on board. The USB transceiver inside

the 32U4 allows users to add USB connectivity on-board and do away with

bulky external USB interface. The boards features are; 4 channels of 10-bit

ADC, 5 PWM pins, 12 DIOs as well as hardware serial connections Rx and

Tx. Running at 8MHz and 3.3V.

 ACS712 current sensor [5] that provides precise current measurements

The Allegro ACS712 provides economical and precise solutions for AC or DC

current sensing in industrial, commercial, and communications systems. The

device package allows for easy implementation by the customer. Typical

applications include motor control, load detection and management, switched-

mode power supplies, and over current fault protection. The device is not

intended for automotive applications.

Figure 1 : Pro Micro controller

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

8

 Featuring Electrical Power Relay

A power relay is a switch which uses an electromagnetic coil in order to close

or open a circuit. Power relays also contain an armature, a spring and one or

several contacts. If the power relay is designed to normally be open, when

power is applied, the electromagnet attracts the armature, which is then pulled

in the coil’s direction until it reaches a contact, therefore closing the circuit. If

the relay is designed to be normally closed, the electromagnetic coil pulls the

armature away from the contact, therefore opening the circuit.

 Xbee S2 [6] module for wireless communication

XBee Series 2 improves on the power output and data protocol. Series 2

modules allow users to create complex mesh networks based on the XBee ZB

ZigBee mesh firmware. These modules allow a very reliable and simple

communication between microcontrollers, computers, systems and anything

with a serial port. Point to point and multi-point networks are supported.

Figure 2 : ACS712 current
sensor

Figure 3 : Xbee S2 module for

wireless communication

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

 Sht11 temperature & humidity sensor

The digital humidity and temperature sensor SHTx is a reflow solderable

sensor. The SHT1x-series contains a low cost version with the SHT10, a

standard version with the SHT11 and a high end version with the SHT15. As

every other Sensirion sensor type of the SHTxx family, they are fully

calibrated and provide a digital output. SHT11 is the standard version, which

offers +/-3% RH accuracy.

 Light intensity photo-resistor sensor

A photo-resistor or light-dependent resistor (LDR) or photocell is a light-

controlled variable resistor. The resistance of a photo-resistor decreases with

increasing incident light intensity; in other words, it

exhibits photoconductivity. A photo-resistor can be applied in light-sensitive

detector circuits, and light- and dark-activated switching circuits.

The complete power meter device is depicted in Figure 4.

Figure 4 : Power meter device

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

10

2.2 Gateway

Gateway ‘s main features:

 Arduino Ethernet Board [7]

The Arduino Ethernet is a microcontroller board based on the ATmega328. It

has 14 digital input/output pins, 6 analog inputs, a 16 MHz crystal oscillator,

a RJ45 connection, a power jack, an ICSP header, and a reset button.

Pins 10, 11, 12 and 13 are reserved for interfacing with the Ethernet module

and should not be used otherwise. This reduces the number of available pins to

9, with 4 available as PWM outputs. An onboard microSD card reader, which

can be used to store files for serving over the network, is accessible through

the SD Library. Pin 10 is reserved for the Wiznet interface; SS for the SD card

is on Pin 4.

 Custom-made shield

 Xbee S2

The same module introduced in 2.1

Gateway receives mesurments from the power meter device and displays data on a

web interface. The collected mesasurments are refreshed every 1 second and is

Figure 5 : Arduino Ethernet board

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

connected to the Internet through an

facilititate application communicate

associates with the Xbee’s located on the power meter devices,

sends configurations. The Arduino Ethernet board runs a WebServer

users to communicate with power meter devices through HTTP protocol.

The complete Gateway device is depicted in

connected to the Internet through an Ethernet cable, where an IP is set manually to

facilititate application communicate with it. The Xbee located on the Gateway

s located on the power meter devices, receives results and

sends configurations. The Arduino Ethernet board runs a WebServer thtat allows

users to communicate with power meter devices through HTTP protocol.

The complete Gateway device is depicted in Figure 6.

Figure 6 : Gateway device

Ethernet cable, where an IP is set manually to

the Gateway

receives results and

thtat allows

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

3. Topology and data returned

3.1 Topology

To map the topology of a possible case scenario, each plug has attached an electrical

appliance which the user wants to control or measure its power consumption. The

microcontroller, located on the power meter device, collects the all the measurements;

power consumption, values of photocell sensor, value of the temperature sensor and

value of humidity sensor. Through a wireless interface each plug sends the

measurements to the Gateway. User utilizing the android application can control the

plugs (on/off), monitor the current and the cumulative power consumption, also a live

graph depicting the current consumption is incorporated and finally the user can

configure the Gateway.

Figure 7 : Topology

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

13

3.2 Data transferred

Gateway needs to be triggered from the Android User (AU) to send back the

measurements. The trigger is an http request with the necessary format. All the

possible triggers are presented and explained. Commands towards the Gateway (IP :

192.168.1.20) :

 192.168.1.20/

o Returns the measurements of all plugs.

 192.168.1.20/1-on

o Turns on plug 1.

 192.168.1.20/1-off

o Turns off the plug 1.

 192.168.1.20/1-switch

o Turns on plug 1 if it is off, or turns it off if it is on.

 192.168.1.20/1-calibrate

o It is called without needing any appliance to be connected to the plug

and tunes all the sensors.

 192.168.1.20/1-reset

o Resets the counters; Amperes per hour, Watts per hour and Time since

last reset (in seconds), for plug 1.

 192.168.1.20/1-sampling-20-40-0

o Sets new parameters for sampling. The values are samples per period,

periods per measurement and measurements interval respectively.

To demonstrate the commands Curl [8] was used on Linux OS. The power meter used

for the experiments is the one with node id 1. All the commands return “ok” except

the one that returns the measurements of the devices. The ip of the Gateway is

“192.168.1.20”. Some examples are presented below:

So with a reset request (Figure 8) we have:

Figure 8 : Http request and answer from the Gateway

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

14

The data structure that the Gateway returns to the AU is illustrated below:

<node_id> <instantaneous consumption in (Amperes)> <total consumption (Amperes

per hour)> <total consumption (Watts per hour)> <time since last reset of the total

consumption counters (seconds)> <value of the photocell sensor (percentage)> <value

of the temperature sensor (Celsius)> <value of the humidity sensor (percentage)>

<input voltage of the Arduino (volts)> <device status off or on (integer 0 or 1)>

<samples per period (integer 10-80)> <periods per measurement (integer 1-50)>

<measurements interval milliseconds (integer 0-600000)>

When the Gateway receives the command “192.168.1.20/” it returns the available

measurements for all the devices connected. Each value is separated from the other

with space and every device is separated from the other with ‘\n’. An example of this

command is we assume that we have three plugs is shown below:

Figure 9 : Explanation of fields of the response

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

An example of sampling in Figure 10 shows the change of values in last three values;

samples per period, periods per measurement, measurements interval milliseconds.

.

Figure 10 : Demonstration of changing the three parameters

And the effect of reset depicted in Figure 11 as all the counters of the device are set to

zero.

Figure 11 : Reset effect on all counters.

In case of a disconnected plug the Gateway returns DISCONNECTED for respective

plug. Moreover in the event of a wrong “node id”, it returns the message “invalid

node id” and in the case of an invalid command, it returns “invalid command”. In all

the other cases the Gateway returns the message “ok”, without meaning that the

command has delivered to the respective device.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

16

4. Android Application

For the construction of the application Eclipse Android Developer Tools (ADT)

Bundle was used, which provides all the necessary components, including the

Android SDK tools and a version of the Eclipse IDE with built-in Android Developer

tools. The programming language is Java.

4.1 Android components of application

Some important Android components will be presented so as to be able to proceed to

the explanation of the application:

 Activities

 Fragments

 User Interface

 Swipe view with tabs

 Action Bar

 Async task

 GraphView

 Shared Preferences

4.1.1 Activities

An Activity is an application component that provides a screen with which users can

interact in order to do something, such as dial the phone, take a photo, send an email,

or view a map. Each activity is given a window in which to draw its user interface. An

application could have more than one Activity. All Activities are declared in the

Manifest.xml file, but one of them must be set to be presented first. Each activity can

then start another activity in order to perform different actions. Each time a new

activity starts, the previous activity is stopped, but the system preserves the activity in

a stack (the "back stack"). When a new activity starts, it is pushed onto the back stack

and takes user focus. The back stack abides to the basic "last in, first out" stack

mechanism, so, when the user is done with the current activity and presses

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

17

the Back button, it is popped from the stack (and destroyed) and the previous activity

resumes.

Lifecycle of an Activity is presented in Figure. To create an activity, you must create

a subclass of Activity (or an existing subclass of it). In the subclass, you need to

implement callback methods that the system calls when the activity transitions

between various states of its lifecycle, such as when the activity is being created,

stopped, resumed, or destroyed. The two most important callback methods are:

 onCreate()

You must implement this method. The system calls this when creating your

activity. Within your implementation, you should initialize the essential

components of your activity. Most importantly, this is where you must

call setContentView() to define the layout for the activity's user interface.

 onPause()

The system calls this method as the first indication that the user is leaving your

activity (though it does not always mean the activity is being destroyed). This

is usually where you should commit any changes that should be persisted

beyond the current user session (because the user might not come back).

There are several other lifecycle callback methods that user should use in order to

provide a fluid user experience between activities and handle unexpected interruptions

that cause your activity to be stopped and even destroyed.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

Figure 12 : Lifecycle of an Activity.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

19

4.1.2 Fragments

A Fragment represents a behavior or a portion of user interface in an Activity.

Multiple fragments can be combined in a single activity to build a multi-pane User

Interface (UI) and reuse a fragment in multiple activities. Fragment can be regarded as

a modular section of an activity, which has its own lifecycle, receives its own input

events, and which you can add or remove while the activity is running.

A fragment must always be embedded in an activity and the fragment's lifecycle is

directly affected by the host activity's lifecycle. For example, when the activity is

paused, so are all fragments in it, and when the activity is destroyed, so are all

fragments. However, while an activity is running (it is in the resumed lifecycle state),

user can manipulate each fragment independently, such as add or remove them. When

user performs such a fragment transaction, also can add it to a back stack that's

managed by the activity—each back stack entry in the activity is a record of the

fragment transaction that occurred. The back stack allows the user to reverse a

fragment transaction (navigate backwards), by pressing the Back button.

To create a fragment, a subclass of Fragment (or an existing subclass of it) must be

created. The Fragment class has code that looks a lot like an Activity. It contains

callback methods similar to an activity, such as onCreate() , onStart(), onPause(),

and onStop().

Usually, at least the following lifecycle methods should be implemented:

 onCreate()

The system calls this when creating the fragment. Within the

implementation, user should initialize essential components of the fragment

that are wanted to retain when the fragment is paused or stopped, then

resumed.

 onCreateView()

The system calls this when it's time for the fragment to draw its user

interface for the first time. To draw a UI for a fragment, user must return

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

20

a View from this method that is the root of the fragment's layout. Null can be

returned if the fragment does not provide a UI.

 onPause()

The system calls this method as the first indication that the user is leaving the

fragment (though it does not always mean the fragment is being destroyed).

This is usually where any changes should be commited, which should be

persisted beyond the current user session (because the user might not come

back).

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

21

4.1.3 User Interface

User interface is everything that the user can see and interact with. Android

provides a variety of pre-build UI components such as structured layout objects and

UI controls that allow user to build the graphical user interface for an application. All

user interface elements in an Android application are built

using View and ViewGroup objects. A View is an object that draws something on the

screen that the user can interact with. A ViewGroup is an object that holds other

View (and ViewGroup) objects in order to define the layout of the interface. Android

provides a collection of both View and ViewGroup subclasses that offer common

input controls (such as buttons and text fields) and various layout models (such as a

linear or relative layout).

A layout defines the visual structure for a user interface, such as the UI for

an activity. It can be declared a layout in two ways:

 Declare UI elements in XML. Android provides a straightforward XML

vocabulary that corresponds to the View classes and subclasses, such as those

for widgets and layouts.

 Instantiate layout elements at runtime. Application can create View and

ViewGroup objects (and manipulate their properties) programmatically.

Most common Layouts are:

 LinearLayout is a view group that aligns all children in a single direction,

vertically or horizontally. You can specify the layout direction with

the android:orientation attribute.

 RelativeLayout is a view group that displays child views in relative positions.

The position of each view can be specified as relative to sibling elements or in

positions relative to the parent RealtiveLayout area.

 ListView is a view group that displays a list of scrollable items. The list items

are automatically inserted to the list using an Adapter that pulls content from a

Figure 13 : Lifecycle of a Fragment.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

22

source such as an array or database query and converts each item result into a

view that's placed into the list.

 GridView is a ViewGroup that displays items in a two-dimensional, scrollable

grid.

4.1.4 Swipe Views with tabs

Swipe views provide lateral navigation between sibling screens such as tabs with a

horizontal finger gesture. User can create swipe views in an application using

the ViewPager widget, available in the Support Library. The ViewPager is a layout

widget in which each child view is a separate page (a separate tab) in the layout.

To insert child views that represent each page, you need to hook this layout to

a pagerAdapter . There are two kinds of adapter you can use:

 FragmentPagerAdapter

This is best when navigating between sibling screens representing a fixed,

small number of pages.

 FragmentPagerAdapter

This is best for paging across a collection of objects for which the number of

pages is undetermined. It destroys fragments as the user navigates to other

pages, minimizing memory usage.

4.1.5 Action Bar

The action bar is a window feature that identifies the user location, and provides user

actions and navigation modes. Using the action bar (Figure 14) offers users a familiar

interface across applications that the system gracefully adapts for different screen

configurations.

Action Bar provides several key functions:

 Makes important actions prominent and accessible in a predictable way.

 Supports consistent navigation and view switching within apps.

 Reduces clutter by providing an action overflow for rarely used actions.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

23

 Provides a dedicated space for giving your app an identity.

4.1.6 Async Task

AsyncTask is a class that enables proper and easy use of the UI thread. This

class allows performing background operations and publishing results on the UI

thread without having to manipulate threads and/or handlers. AsyncTask is designed

to be a helper class around Thread and Handler and does not constitute a generic

threading framework. AsyncTasks are ideally used for short operations (a few seconds

at the most.). An asynchronous task is defined by a computation that runs on a

background thread and whose result is published on the UI thread. An asynchronous

task is defined by 3 generic types, called Params, Progress and Result, and 4 steps,

called onPreExecute, doInBackground, onProgressUpdate and onPostExecute.

 onPreExecute

Invoked on the UI thread before the task is executed. This step is normally

used to setup the task, for instance by showing a progress bar in the user

interface.

 doInBackground

Invoked on the background thread immediately after onPreExecute() finishes

executing. This step is used to perform background computation that can take

a long time. The parameters of the asynchronous task are passed to this step.

The result of the computation must be returned by this step and will be passed

back to the last step. This step can also use publishProgress(Progress...) to

Figure 14 : Action Bar.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

24

publish one or more units of progress. These values are published on the UI

thread, in the onProgressUpdate(Progress...) step.

 onProgressUpdate

Invoked on the UI thread after a call to publishProgress(Progress...). The

timing of the execution is undefined. This method is used to display any form

of progress in the user interface while the background computation is still

executing.

 onPostExecute

Invoked on the UI thread after the background computation finishes. The

result of the background computation is passed to this step as a parameter.

4.1.7 GraphView

GraphView is a library for Android to programmatically create flexible and nice-

looking diagrams.

Some features of GraphView library are listed below:

 Two chart types

Line Chart and Bar Chart.

 Draw multiple series of data

Let the diagram show more than one series in a graph. You can set a color and

a description for every series.

 Show legend

A legend can be displayed inline the chart. The width and the vertical align

(top, middle, bottom) can be set.

 Custom labels

The labels for the x- and y-axis are generated automatically. But user can set

his own labels, Strings are possible.

 Handle incomplete data

It's possible to give the data in different frequency.

 Viewport

User can limit the viewport so that only a part of the data will be displayed.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

 Scrolling

User can scroll with a finger touch move gesture.

 Scaling / Zooming

Since Android 2.3! With

viewport can be changed.

 Background (line graph)

Optionally draws a light

 Custom Style

Change the color and thickness, label font size/color and more

 Realtime / Live

Append new data live or reset the whole data

 GraphViewDataInterface

User can use his own model as data

GraphViewDataInterface.

Figure

can scroll with a finger touch move gesture.

Since Android 2.3! With two-finger touch scale gesture (Multi-touch), the

viewport can be changed.

Background (line graph)

Optionally draws a light background under the diagram stroke.

hange the color and thickness, label font size/color and more

ppend new data live or reset the whole data

GraphViewDataInterface

own model as data, by implementing

GraphViewDataInterface.

Figure 15 : A graph using GraphView.

touch), the

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

26

4.1.8 Shared Preferences

Shared Preferences are used to save and retrieve data, where values will persist across

user session. Data in Shared Preferences will be persistent even though user closes the

application.

 getSharedPreferences() is the method to get values from Shared Preferences.

 An Editor is needed to edit and save data changes in Shared Preferences.

 Shared Preferences can store data; Booleans, floats, ints, longs and strings.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

4.2 Main features of the app

Application can control, monitor and configure five plugs and it is constituted by; a

fragment to control the plugs, a fragment to monitor and another one to configure

them, a “Settings” window and an Activity to handle the real-time graph.

All http requests are made by an Async task class called RequestTask and response is

taken back by the use of a listener and the OnLoadFinishedListener interface.

4.2.1 Fragment Control

The first Fragment (Figure 16) is used to control the plugs, turning them on and off.

Toggle buttons are used to change the setting between two states. Whenever a button

is clicked an http request is sent to the Gateway. The format of the http request is

192.168.1.20/x-on (or off), where x is the number of the plug you want to modify its

state. Every time the Fragment starts (onResume function) an http request is sent to

obtain the states of all plugs and set the ToggleButtons to the state that the plug is.

Figure 16 : Fragment Control.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

4.2.2 Fragment Monitoring

The second Fragment (Figure 17) is used to monitor the measurements of concern

device. In this application we are concerned about the instantaneous and cumulative

consumption measured in Amperes. So when the Fragment begins, the application

starts to send http requests, receive measured values and project these measurements

to the proper fields. When the Gateway does not send data from a plug the field of this

plug remains empty. The send request interval is defined in a variable that is saved in

Shared Preferences. As the Gateway refreshes every one second there is no sense of

asking for measurements faster than one second. The default send request interval is

1000 msec (1 sec).

In order to extract the needed measurement values from the Gateway’s reply, proper

parsing, to the reply String, has been done. The response is returned to String type

with the form we saw in 4.2, thus first the response is separated in lines with the

command “split(“\\r?\\n”)” based on “\n” character and each row is stored to a String

array. After each line is separated we separate again each line based on spaces, using

the command “split(“\\s+”)” and stored again to another String array. Therefore as the

format is known, the needed part is pulled from the final array.

Figure 17 : Fragment Monitoring.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

A live graph has been incorporated by using GraphView Library that shows the

instantaneous power consumption of each plug. The plugs that are not connected are

set to 0.0. When the button “Realtime consumption” is pressed a new Activity is

called to perform the Real-time graph. A snapshot of the instantaneous consumption

of Plug 1 (red line) is depicted in Figure 18. The other four plugs have zero

consumption, so their lines are stack to zero.

Figure 18 : Real time graph.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

30

4.2.3 Fragment Configure

Third and last Fragment (Figure 19) deals with the configuration of the Gateway and

sensors. There are buttons to calibrate and reset the plugs. Each button sends the http

request for the corresponding plug. Calibrate button tunes the sensors located on the

power meter device, without needing any electrical device plugged on power meter

device. Reset button sets to zero the counters; Amperes per hour, Watts per hour and

time since the last reset. By hitting submit button five http requests are send

respectively to the five power meter devices and sets new parameters of sampling.

There are three EditText fields for each device; Samples per period, periods per

measurement and measurements interval. Each field has constrains to restrict user of

inserting incorrect values. More specifically;

 Samples per period should be an integer between 10 - 80. In case user leaves

empty the field the smaller value allowed (10) is automatically set. If the user

sets a smaller value than the one allowed the lesser value is automatically set

(10) and respectively when a larger value is inserted the larger allowed(80)

value is automatically set.

 Periods per measurement should be an integer between 1 - 50. The same

mechanism οf checking the correctness of the values exists with lower bound

1 and upper bound 50.

 Measurment Interval should be an integer between 0 – 60000. Again the

same mechanism exists with lower bound set to 0 and upper one set to 60000.

Values of EditText field are stored in Shared Preferences so user doesn’t to set new

values every time he opens the application.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

4.2.4 Settings window
Android devices occupy a menu key, which displays a list of options available for the

current application. The application includes a menu (Figure 20) that is available to all

three Fragments. Two attributes are customizable:

Figure 19 : Fragment Configure.

Figure 20 : Settings window.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

 Gateway’s IP (Figure 21)

The ip field has IPv4 validator by using a Regular Expression. If the ip is not

valid or the field is empty the default ip is set to “0.0.0.0”.

 Request Interval (Figure 22)

The request interval is used to customize the rate that the application sends

http requests to the Gateway for the monitoring Fragment and the Real-time

graph. If the field is empty the default rate is 1000 msec.

Figure 21 : Setting IP.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

Figure 22 : Interval Setting.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

34

5. Use Cases

To demonstrate the application, home electrical devices will be plugged to the power

meter device, measured and configured. A laptop, a stereo, a lamp and a coffee

machine.

In the Control section we note the ToggleButton, changing on and off. In figure 23 we

see the device on “ON” and on “OFF” state.

Figure 23 : ON / OFF state of button.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

35

5.1 Measure home electrical appliances

To exhibit the application measurements have been taken to various home devices. In

Figure 24 we measure a laptop.

In Figure 25 a coffee machine is measured.

Figure 24 : Laptop consumption.

Figure 25 : Coffee machine
consumption

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

In Figure 26 a lamp is measured.

And finally a stereo is measured in Figure 27

Figure 26 : Lamp consumption.

Figure 27 : Stereo consumption.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

A graph that incorporates the measurement of instantaneous consumption is shown in

Figure 28.

Figure 28 : Graph of consumptions.

0

0.5

1

1.5

2

2.5

3

3.5

Laptop Coffee machine Stereo lamp

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

6. Future work

A Bluetooth way of controlling devices was also examined, as an alternative to

wireless communication. By using a Bluetooth modem and an Arduino Ethernet

board an Android application was constructed to control a led. In Figure 1 it is

depicted the topology of the Bluetooth modem and the Arduino board as well with the

entire wiring scheme between them. The Bluetooth modem has a PWR pin to get

power, a GND pin connected to the ground, a Tx pin to transmit data and a Rx pin to

receive data. On the Arduino board the Tx is connected with the Rx of the modem and

Rx on board connected to Tx of the modem, so as Bluetooth modem and Arduino

board can communicate. Arduino board works using the code below, where the

application could send characters to the Bluetooth modem, if the character was an “H”

the led went ”ON” and if the character “L” the led went “OFF”.

Figure 29 : Arduino – Bluetooth modem topology

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

39

CODE:

void setup() {

pinMode(ledpin, OUTPUT); // pin 48 (on-board LED) as OUTPUT

Serial.begin(9600); // start serial communication at 9600bps

}

void loop() {

if(Serial.available()) // if data is available to read

{

val = Serial.read(); // read it and store it in 'val'

}

if(val == 'H') // if 'H' was received

{

digitalWrite(ledpin, HIGH); // turn ON the LED

} else {

digitalWrite(ledpin, LOW); // otherwise turn it OFF

}

delay(100); // wait 100ms for next reading

Hardware used (Figure 322):

 Bluetooth Modem - BlueSMiRF HID
BlueSMIRF is a Bluetooth modem, simple and powerful tool for creating

wireless peripheral devices which can be universally recognized and used

without the installation of special drivers.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

40

 Arduino Ethernet Board
See in 2.2.

Figure 30 : Harware topology

Some Andoid key features [9] to use and handle Bluetooth are:

 BluetoothAdapter

Represents the local Bluetooth adapter. The BluetoothAdapter is the entry-

point for all Bluetooth interaction. Using this, user can discover other

Bluetooth devices, query a list of bonded (paired) devices, instantiate

a BluetoothDevice using a known MAC address, and create

a BluetoothServerSocket to listen for communications from other devices.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

41

 BluetoothSocket

Represents the interface for a Bluetooth socket (similar to a TCP Socket). This

is the connection point that allows an application to exchange data with

another Bluetooth device via InputStream and OutputStream.

 Connecting Devices

In order to create a connection between applications on two devices, user must

implement both the server-side and client-side mechanisms, because one

device must open a server socket and the other one must initiate the

connection (using the server device's MAC address to initiate a connection).

The server and client are considered connected to each other when they each

have a connected BluetoothSocket on the same RFCOMM channel. At this

point, each device can obtain input and output streams and data transfer can

begin, which is discussed in the section about Managing a Connection.

 Managing Connection

When successfully connected two (or more) devices, each one will have a

connected BluetoothSocket. Using the BluetoothSocket, the general procedure

to transfer arbitrary data is simple:

o Get the InputSteram and OutputSteam that handle transmissions

through the socket, via getInputStream()and getOutputStream(),

respectively.

o Read and write data to the streams with read(byte[]) and write(byte[]).

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

University of Thessaly

42

7. References

[1] NITLab homepage.

[2] NITLab’s power meter device, link.

[3] Eclipse ADT, link.

[4] Pro Micro – 3.3V/8MHz, link.

[5] ACS712 current sensor, link.

[6] Xbee S2, link.

[7] Arduino Ethernet Board, link.

[8] Curl main page.

[9] Android Bluetooth, link.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:16:47 EEST - 18.118.32.187

