
U n iv e r s it y O f T h essa ly

M a s t e r T h e s is

Packet R ou tin g in android environm ent
for m otion m anagem ent o f m ultip le

heterogen eou s w ireless netw ork
interfaces

Δ ρ ομ ολόγη σ η πακέτων σε περιβάλλον android γ ια τη διαχείριση
κίνησης από πολλαπλές ετερ ογενείς διεπαφές ασύρματων δικτύων

Supervisors:
Author: Dr. Athanasios K orakis

Zoi Vasileiou Dr. Leandros Tassioulas
Dr. Antonios Argyriou

A thesis submitted in fulfilment of the requirements
for the degree of Master Of Science

in the

University Of Thessaly
Computer and Communications Engineering

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

http://www.university.com
http://www.inf.uth.gr/?page_id=4854&lang=en
http://www.johnsmith.com
http://inf-server.inf.uth.gr/~leandros/
http://www.inf.uth.gr/?page_id=2155&lang=en
Research%20Group%20Web%20Site%20URL%20Here%20(include%20http://)
Department%20or%20School%20Web%20Site%20URL%20Here%20(include%20http://)

ii

September 18, 2014

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

D eclaration o f A uthorsh ip

I, Zoi Va sil eio u , declare that this thesis titled, ’Packet Routing in android environment
for motion management of multiple heterogeneous wireless network interfaces’ and the
work presented in it are my own. I confirm that:

■ This work was done wholly or mainly while in candidature for a research degree
at this University.

■ Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

■ Where I have consulted the published work of others, this is always clearly at­
tributed.

■ Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

■ Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

UNIVERSITY OF THESSALY

Περίληψη
Computer and Communications Engineering

Master Of Science

Packet Routing in android environment for m otion management of multiple
heterogeneous wireless network interfaces

by Zoi VASiLEiou

Ο αρχικός στόχος της διπλωματικής ήταν η εξάπλωση της κυκλοφορίας μέσα από πολλές
διεπαφές σε μια android εφαρμογή. Για να το πετύχουμε αυτό, πρέπει να αποσυνδέσουμε την
ροή της εφαρμογής από τις IP διευθύνσεις σε κάθε διεπαφή. Μπορούμε να πετύχουμε αυτή
την αποσύνδεση χρησιμοποιώντας το λογισμικό OpenVSwitch. Γιάυτό, το πρώτο βήμα
αφορά την εισαγωγή του OpenVSwitch kernel module και της διεπαφής χρήστη του στο
android. Στην διπλωματική υλοποιήσαμε αυτό το πρώτο βήμα. Πιο συγκεκριμένα, κάναμε
cross-compile επιτυχώς το OpenVSwitch kernel module για το Nexus 4, Nexus 5, και
την x86 πλατφόρμα. Ωστώσο, κάναμε cross-compile κάποια από τα εργαλεία της διεπαφής
χρήστη του OpenVSwitch μόνο για το κινητό Nexus 4. Επειδή δεν είχαμε τα επιθυμητά
αποτελέσματα με την εισαγωγή του OpenVSwitch στο android, συμπληρώσαμε αυτη την
διπλωματική με την υλοποίηση μιας android εφαρμογής. Ύλοποίησαμε τον nitos scheduler
ως εφαρμογή στα κινητά με λογισμικό android. Ο NITOS scheduler εχει ήδη υλοποιηθεί
ως εφαρμογή του ιστού [3]. Το NITOS είναι μια πειραματική διάταξη που οι κόμβοι του
βρίσκονται σε ένα εξαόροφο κτίριο. Το NITOS Scheduler είναι ένα εργαλείο υπεύθυνο για
τη διαχείρηση των πόρων.της πειραματικής διάταξης. Αποτελείται κυρίως από δύο κομμάτια,
μια web-based διεπαφή χρήστη και ένα κομμάτι εξυπηρετητή που αποτελείται από κάποια
scripts και μια βάση δεδομένων. Η διεπαφή χρήστη είναι υπεύθυνη για τη καθοδήγηση
των χρηστών κατα τη διαδικασία της κρατησης των πόρων, φροντίζοντας να μην κανει
μια κράτηση που συμπίπτει με κρατήσεις άλλων χρηστών. Το κομμάτι του εξυπηρετητη
διαχειρίζεται τους πόρους, δηλαδή τους ασύρματους κομβους, και τα κανάλια φάσματος,
συσχετίζοντας την αρχή κάθε χρονοθυρίδας (30 λεπτά) κάθε πόρου με το αντίστοιχο slice,
σύμφωνα με την πληροφορία που είναι αποθηκευμένη στη βάση δεδομένων. Η διεπαφή που
καθοδηγεί τον χρήστη κατα τη διαδικασία της κράτησης υλοποιείται σε αυτή τη διπλωματική
ως εφαρμογή για κινητά με λογισμικό android. Είναι σημαντικό να πραγματοποιηθεί μια
υλοποίηση του NITOS για πλατφόρμα android, γιατι οι χρήστες που κάνουν κράτηση
στους κόμβους από το smartphone τους, θα έχουν καλύτερη εμπειρία από τη διεπαφή, και
θα κάνουν ταχύτερες κρατήσεις από το να χρησιμοποιούσαν τον web browser του κινητόυ.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

University%20Web%20Site%20URL%20Here%20(include%20http://)
Department%20or%20School%20Web%20Site%20URL%20Here%20(include%20http://)

iii

UNIVERSITY OF THESSALY

Abstract
Computer and Communications Engineering

Master Of Science

Packet Routing in android environment for m otion management of multiple
heterogeneous wireless network interfaces

by Zoi Vasileiou

The initial goal of this thesis was to spread traffic from one android application over
multiple interfaces. To achieve this, we should decouple the application flow from the
IP addresses on each interface. We can do this decoupling by using the OpenVSwitch.
Thus, the first step should be the porting of the OpenVswitch Kernel module and its
user interface to android. We implement this first step in this thesis. In particular, we
cross-compiled successfully the OpenVSwitch kernel module for the Nexus 4, Nexus 5,
and android-x86 platform. However, we have cross-compiled successfully some of the
OpenVSwitch interface tools only for the Nexus 4.

Since, we did not have the desired results of the porting of OpenVSwitch in android
kernel, we enhanced this thesis with the implementation of an android application. We
have implemented the nitos scheduler as a mobile application in android. The Nitos
Scheduler is already implemented as a web application [3]. NITOS is a testbed whose
nodes are laying in a six-floor building. NITOS Scheduler is a tool which is responsible
for managing the testbed resources. It is mainly consists of two components, a web-
based user interface and a server component comprising of some scripts and a database.
The user interface is responsible for guiding the user through the reservation process,
making sure that he does not make a reservation conflicting with reservations made
by other users. The server component manages the resources, namely wireless nodes
and spectrum channels, by associating at the beginning of each time slot (30 min) each
resource to the corresponding slice, according to the information stored in the database.
The user interface guiding the user through the reservation process is implemented in
this thesis in a android mobile application. The biggest advantage of making a mobile
application is that it can be customized to leverage the device capabilities that enhance
the user experience. Thus, it is worthwhile to make an implementation of the NITOS
Scheduler in the Android Platform, since the users reserving the resources through their
smartphone have better user experience and faster reservations than using the web
browser of the mobile phone.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

University%20Web%20Site%20URL%20Here%20(include%20http://)
Department%20or%20School%20Web%20Site%20URL%20Here%20(include%20http://)

Acknowledgements

I offer my sincerest gratitude to my supervisor, Dr Korakis Athanasios. Also, i express
my thanks to my co-supervisors Leandros Tassiulas, and Argyriou Antonios. Further­
more, I am grateful to Aris Dadoukis and Ioannis Igoumenos for their guidance and
help. The most special thanks goes to my parents and friends who gave me uncondi­
tional support and love through all this long process.

iv

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Contents

Declaration of Authorship i

Περίληψη i

Abstract iii

Acknowledgements iv

Contents v

List of Figures viii

Abbreviations ix

1 Introduction 1
1.1 Porting OpenVSwitch to Android’s k e rn e l.. 1
1.2 NitosTools Application.. 2
1.3 Thesis S tru c tu re .. 3

2 Compiling Open VSwitch for android 4
2.1 O penV sw itch.. 4
2.2 General In s tru c tio n s .. 6

2.2.1 Initializing the Build E nvironm ent.. 6
2.2.2 Downloading the so u rc e ... 7
2.2.3 Downloading the source effic ien tly .. 7
2.2.4 Flashing the device.. 8

2.3 Build AOSP for GALAXY NEXUS - maguro and cross-compiling open-
vswitch ... 8
2.3.1 Building AOSP for NEXUS 4 ... 9
2.3.2 Cross compiling OpenVswitch..17

2.4 Building AOSP for NEXUS 4 (occam (mako) and cross compile Open-
VSwitch ... 18
2.4.1 Building AOSP for NEXUS 4 ...19
2.4.2 Cross compiling OpenVswitch... 21

v

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Contents vi

2.4.3 Activate OpenVswitch in kernel 3.4 25
2.5 Build AOSP for NEXUS 5 - hammerhead and cross-compiling openvswitch 26

2.5.1 Building AOSP for NEXUS 5 ... 27
2.5.2 Cross compiling OpenVswitch... 29

2.6 Building CyanogenMod for HTC EVO 4g (supersonic) and cross compile
OpenVSwitch .. 29
2.6.1 Building CyanogenMod for HTC EVO 4 g ..29
2.6.2 Cross compiling OpenVswitch... 32

2.7 Build AOSP for x86 platform and cross-compiling openvsw itch 33
2.7.1 Building AOSP for -x86 p latform ... 33
2.7.2 Cross-compiling OpenVswitch... 33

2.8 Conclusion ...34

3 Technologies Overview 35
3.1 A c tiv itie s ..35

3.1.1 Activity's Lifecycle .. 36
3.2 Fragments .. 38
3.3 User Interface..40
3.4 Action Bar ...41
3.5 Different ways to share data between Activities/Fragments 42

4 System Design 44
4.1 System A rch itectu re ... 44
4.2 Application Architecture... 45
4.3 Description of classes and frag m en ts ... 46

4.3.1 Main A ctivities.. 46
4.3.1.1 LoginScreenActivity extends A c tiv ity46
4.3.1.2 MainMenuActivity extends A ctionBarA ctivity................... 47
4.3.1.3 NitosSchedulerActivity extends MainMenuActivity 47
4.3.1.4 MyReservationsActivity extends MainMenuActivity . . . 48

4.3.2 Other C lasses... 48
4.3.2.1 TestbedHttpClient.. 48
4.3.2.2 GlobalData extends A pplication ..48
4.3.2.3 C onstants..49

4.3.3 Fragm ents... 49
4.3.3.1 SchedulerChooserFragment extends Fragment 49
4.3.3.2 DatePickerFragment extends DialogFragment implements

DatePickerDialog.OnDateSetListener50
4.3.3.3 TimePickerFragment extends DialogFragment implements

TimePickerDialog.OnTimeSetListener 50
4.3.3.4 OutdoorTestbedFragment extends Fragment 50
4.3.3.5 IndoorTestbedFragment extends Fragment 53
4.3.3.6 AvailableResourcesFragment extends Fragment 53
4.3.3.7 CheckResourcesFragment extends Fragment 54
4.3.3.8 ReserveResourcesFragment extends Fragment 55

5 Im plementation 56
5.1 GlobalData class ... 56

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Contents vii

5.2 Fragments using the global data ... 58
5.2.1 SchedulerChooserFragment...58
5.2.2 AvailableResourcesFragment ... 59
5.2.3 ReserveResourcesFragment ...59

5.3 Date and time ...59
5.4 Nested Fragments... 61

5.4.1 Bug in nested Fragments ... 61
5.5 Platforms and Development Software... 61

6 User Guide 63
6.1 Application’s Launching... 63
6.2 How to L o g in ..64
6.3 Main m e n u ...64
6.4 How to make a reservation.. 65
6.5 How to check the reservation s ta tu s .. 70
6.6 How to log o u t ...71

7 Chapter 7 72
7.1 Conclusion ...72
7.2 Future Work ..72

A UML Diagrams 73

Bibliography 75

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

List of Figures

2.1 OpenVSwitch Architecture ... 6
2.2 OpenVSwitch successfulness...34

3.1 Activity’s lifecycle .. 37
3.2 Fragments’s lifecycle... 39
3.3 Action b a r ..41

4.1 System architecture ... 44
4.2 Simplified UML Class D iag ram ...47
4.3 SchedulerChooserFragment’s U I ...51
4.4 OutdoorTestbedFragment’s UI ...52
4.5 IndoorTestbedFragment’s UI ..53
4.6 AvailableResourcesFragment’s U I ..54
4.7 ReserveResourcesFragment’s U I ...55

5.1 GlobalData Class Diagram ...57
5.2 H a sh M ap ..60
5.3 TreeM ap...60

6.1 Launcher Ico n ..63
6.2 Login screen...64
6.3 Main Menu S c re e n .. 65
6.4 ”Choose reservation’s paramaters” s c r e e n .. 65
6.5 Select date, time, and duration screens.. 66
6.6 Warning messages in selection’s sc ree n .. 66
6.7 Waiting message in selection’s screen ... 67
6.8 Screen displaying all the available resources... 67
6.9 Selecting the resources.. 68
6.10 Message after the reserva tion ..68
6.11 Screens displaying the outdoor and indoor t e s t b e d ...69
6.12 Reservation status of the u s e r ..70
6.13 How to Log o u t ...71

A.1 UML Class D iag ram ..74

viii

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Abbreviations

AOSP

JSON

NITLAB

OVS

UI

A ndroid Open Source P roject

Javascript Object N otation

N etwork Implementation Testbed Laboratory

Open V Switch

U ser Interface

ix

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

This work is dedicated to my parents, teachers and my best
friends...

X

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

C hapter 1

Introduction

1.1 P o rtin g O p en V S w itch to A n d ro id ’s kernel

Poor connectivity is common when using wireless networks on the go. Connectivity
comes and goes, throughput varies, latencies can be extremely unpredictable, and failures
are frequent. Industry reports that demand is growing faster than wireless capacity, and
the wireless crunch will continue for some time to come. Yet users expect to run increas­
ingly rich and demanding applications on their smart-phones, such as video streaming,
anywhere anytime access to their personal files, and online gaming;all of which depend
on connectivity to the cloud over un- predictable wireless networks. Given the mismatch
between user expectations and wireless network characteristics, users will continue to be
frustrated with application performance on their mobile computing devices.

The good news[7] is that smart-phones will be armed with multiple radios capable
of connecting to several networks at the same time. Whereas today's phones commonly
have four or five radios (e.g. 3G, 4G, WiFi, Bluetooth), in future they will have more.
Shrinking geometries and energy- efficient circuit design will lead to mobile devices with
more radios/antennas; a mobile device will talk to multiple APs at the same time for
improved capacity, coverage and seamless handover.

We need to spread traffic from one application over multiple interfaces. The ap­
plication sends traffic using one IP source address; We should do this using a virtual
Ethernet interface to connect the application, with its local IP address, to a special gate­
way inside the Linux kernel. The gateway stitches multiple interfaces together, without
the application knowing. Essentially, the gateway is a traffic load-balancer that demul­
tiplexes flows using Open vSwitch, with appropriate changes made to the routing table
and ARP tables. In this way, the application flow is decoupled from the IP addresses

1

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 1. Introduction 2

on each interface, which allows the set of interfaces to change dynamically as connec­
tivity comes and goes. So, we need to port Open vSwitch to android linux kernel so as
change dynamically how each flow is routed. Since the cross-compiling of Open VSwitch
on android was not successful, i changed my thesis subject implementing an Android
application, the NitosTools application. In chapter 2, we describe all the attempts to
cross-compile Open VSwitch for the android linux kernel, and in the next chapters we
discuss about the NitosTools android application.

1.2 N ito sT o o ls A p p lica tion

Mobile devices have drastically shifted the online landscape to the point that in 2010
more than 50 percent of all Internet access was being done via handhelds of some sort.
The most common mobile operating systems (OS) used by modern smart phones include
Google's Android, Apple iOS, Microsoft's Windows Phone etc. Google's Android plat­
form has grown tremendously in the latest years. Android is a mobile operating system
(OS) based on the Linux kernel and currently developed by Google. The main advantage
of Android is that it is an open source operating system so almost anyone can create apps
for it. The goal of this thesis is the implementation of the nitos scheduler as a mobile
application, while it is implemented as a web application. NITOS is is a testbed whose
nodes are laying in a six-floor building. NITOS Scheduler is a tool which is responsible
for managing the testbed resources. It is advantageous to make an implementation of
the NITOS Scheduler in the Android Platform, since the users, reserving the resources
through their smartphone, can have better user experience and faster reservations than
using the web browser of the mobile phone. The biggest advantage of making a mobile
application is that it can be customized to leverage the device capabilities that enhance
the user experience. So, a mobile application can enhance the user experience than a
web application.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 1. Introduction 3

1.3 T h esis S tructu re

In Chapter 2 all the efforts for porting OpenVSwitch to android are described in de­
tail. Chapter 3 discusses about the required theoretical background. In Chapter 4 the
system design and architecture is described as well as a high level class explanation.
Chapter 5 discusses the implementation details and presents the platforms, the software
development. In Chapter 6 a user manual of NitosTools is presented. Finally, Chapter
7 presents our conclusions and directions for future work.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

C hapter 2

Compiling Open V Sw itch for
android

The ultimate purpose is to send traffic over multiple interfaces [7]. We need to spread
traffic from one application over multiple interfaces. The application sends traffic using
one IP source address; the networking stack takes care of spreading the traffic over
several interfaces, each with its own IP address. We will achieve this using a virtual
Ethernet interface to connect the application, with its local IP address, to a special
gateway inside the Linux kernel. The gateway stitches multiple interfaces together,
without the application knowing. Essentially, the gateway is a traffic load-balancer
that demultiplexes flows using Open vSwitch, with appropriate changes made to the
routing table and ARP tables. In this way, the application flow is decoupled from the
IP addresses on each interface, which allows the set of interfaces to change dynamically
as connectivity comes and goes. So, sending traffic over multiple interfaces is achieved
through OpenVSwitch. Thus, the first step should be the porting of the OpenVswitch
Kernel module and its user interface to android.

2.1 O p en V sw itch

Open vSwitch (OVS) replaces the bridging code in Linux, and lets us dynamically change
how each flow is routed [7]. The main purpose of Open vSwitch is to provide a switching
stack for hardware virtualization environments, while supporting multiple protocols and
standards used in computer networks.

4

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 5

OpenVSwitch Architecture(see Figure 2.1)

The OpenVSwitch User Interface is responsible for adding and deleting interfaces to the
kernel module, and adding and deleting forwarding entries:

• ovs-vswitchd:a deamon that implements the switch, along with a companion Linux
kernel module for flow-based switching.

• ovsdb-server:a lightweight database server that ovs-vswitchd queries to obtain its
configuration.

• ovs-vsctl:a utility for querying and updating the configuration of ovs-vswitchd

• ovs-dpctl:a tool for configuring and monitoring the switch kernel module.

• ovs-appctl:a utility that sends commands to running OpenVSwitch deamons(ovs-
vswitchd)

• ovs-controller: a simple OpenFlow controller reference implementation.

OpenVswitch kernel modules:

• brcompat.ko: Linux bridge compatibility module

• openvswitch.ko: works with bridge and forwards the packets according to the
forwarding table entries

OpenFlow is added as a feature to commercial Ethernet switches, routers and wire­
less access points. As mentioned above, the ovs-controller of the OpenVSwitch is a
simple OpenFlow implementation. In a classical router or switch, the fast packet for­
warding (data path) and the high level routing decisions (control path) occur on the
same device. An OpenFlow Switch separates these two functions. The data path por­
tion still resides on the switch, while high-level routing decisions are moved to a separate
controller, typically a standard server. The OpenFlow Switch and Controller commu­
nicate via the OpenFlow protocol. The main advantage of OpenFlow is that allows
you to easily deploy innovative routing and switching protocols in your network. It is
used for applications such as virtual machine mobility, high-security networks and next
generation ip based mobile networks.

We should run OVS in kernel space, and port it to Android by patching and and
cross-compiling its kernel module and user-space control programs using Android Native
Development Kit (NDK) for the ARM or OMAP processors.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 6

To port ovs kernel module in android linux kernel, we should first compile android
linux kernel from source and the android source tree(application framework, libraries)
and then flash the produced images on a phone. The next step is to cross-compile
the openvswitch and its user interface for android, and port them to a phone. At the
following sections, all the steps for building android from source and cross compiling the
OVS are described. We discuss these steps about four mobile phone and one virtual
machine with android-x86 OS. At the first section, we describe some instructions which
should be done for all the mobile phones.

2.2 G eneral In stru ction s

2.2.1 In itia lizin g th e B uild E nvironm ent

In order to set up your local work environment to build the Android source files, we
have followed the instruction at AOSP’s site[7]. You will need to use Linux or Mac OS.
Building under Windows is not currently supported.

Note: The source download is approximately 8.5GB in size. You will need over
30GB free to complete a single build, and up to 100GB (or more) for a full set of builds.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 7

2.2.2 D ow nload ing th e source

This step is the same for all the mobile phones to which we have flashed AOSP ROMS.
Before download the preferred branch of AOSP, it is necessary to download the repo
tool. Repo is a tool that makes it easier to work with Git in the context of Android. To
install Repo:

• Make sure you have a bin/ directory in your home directory and that it is included
in your path:

mkdir ~/bin
PATH=~/bin:\$PATH

• Download the Repo tool and ensure that it is executable:

curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
chmod a+x ~/bin/repo

2.2 .3 D ow nload ing th e source efficiently

Fortunately, you can instruct repo to download several projects in paralell using the “-j”
flag, so the repo sync command will read something like:

repo sync -j16

-j N where N is the number of CPU cores of the host PC. If the CPU cores are hyper­
threaded, N is 2 * number of CPU cores. This option will considerably lower the time
needed to download the sources. Althought, be careful, as raising this number too much
might be counter productive. Another handy option you might consider using is the
“-c” flag: -c, -current-branch fetch only current branch from server That is where the
“-c” flag is useful. With that flag, repo will only download the branch that is specified
in the manifest, not all the branches that are on the remote server. It will thus save
us quite some space, and again it will take less time to download. We downloaded the
AOSP tree on a PC with 4 cores using the following command:

repo sync -c -j4

Troubleshooting network issues

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

https://storage.googleapis.com/git-repo-downloads/repo

Chapter 2. Compiling Open VSwitch for android 8

More rarely, Linux clients experience connectivity issues, getting stuck in the middle of
downloads (typically during ’’Receiving objects”). It has been reported that tweaking
the settings of the TCP/IP stack and using non-parallel commands can improve the
situation. You need root access to modify the TCP setting:

sudo sysctl -w net.ipv4.tcp_window_scaling=0
repo sync -j1

2.2 .4 F lash ing th e d evice

After you have downloaded, and built the system, you should flash the images on the
mobile phone. We decribe here, the flashing process since it is the same for all the
phones. I t’s only possible to flash a custom system if the bootloader allows it. The
bootloader is locked by default. With the device in fastboot mode, the bootloader is
unlocked with fastboot oem unlock The procedure must be confirmed on-screen, and
deletes the user data for privacy reasons. It only needs to be run once.

There are two ways to boot the device into fastboot mode:

• adb reboot bootloader

• Press and hold both Volume Up and Volume Down, then press and hold Power

Once the device is in fastboot mode, run fastboot flashall -w . The way fastboot knows
what files to push onto the phone is via the environment variables set by lunch. I t’s also
very important that you execute fastboot while in the root repo directory(/AOSP/ in
our case). Otherwise the tool will hang. The phone should reboot itself automatically.
If it does not, use the bootloader menu to do so manually. Your new AOSP build should
be on your phone. You’ll notice the snazzy colored google X boot screen is now gone. If
you go into the “About Phone” options screen, you’ll notice the version is set to AOSP
and you’ll have a different kernel build. Congratulations, you’re done.

2.3 B u ild A O S P for G A L A X Y N E X U S - m aguro and cross­

com p ilin g op en vsw itch

This section describes the procedure for setting up a development environment and then
compiling the entire Android Operating System Project (AOSP) from source code for
the Galaxy Nexus. This includes all system software, as well as the kernel. Once built,

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 9

loading your AOSP build onto your phone involves permanently flashing your device.
We will flash a Galaxy Nexus device with android 4.3 and build number JRW66Y. We
can take these characteristics from Settings i About phone.

We should cross-compile the android tree and kernel from source and then cross­
compile the openvswitch for android linux kernel.

We have used the following versions:

Android version: 4.3 (jelly bean)
Android Kernel source git: https://android.googlesource.com/kernel/msm.git
Kernel version: 3.0
Android Build: full_maguro
Openvswitch version: (Open vSwitch) 1.11.0

The directory structure of different source codes is the following(host OS: Ubuntu
13.04):

ANDROID_KERNEL: /home/zoe/AOSP_MAGURO/omap
ANDROID_SOURCE_CODE_PATH: /home/zoe/AOSP_MAGURO/
ANDROID_NDK_ROOT: /home/zoe/android-ndk-r4/
OpenVswitch Source: /home/zoe/openvswitch-1.11.0/
ANDROID_SDK: /home/zoe/android-sdk-linux/

2.3.1 B uild in g A O SP for N E X U S 4

Downloading the source

• Create an empty directory to hold your working files.Give it any name you like:

mkdir WORKING_DIRECTORY
cd WORKING_DIRECTORY

• Run repo init to bring down the latest version of Repo with all its most recent bug
fixes. You must specify a URL for the manifest, which specifies where the various
repositories included in the Android source will be placed within your working
directory. To check out a branch specify it with -b:

repo init -u https://android.googlesource.com/platform/manifest -b android-4.3_r1.1

• When prompted, configure Repo with your real name and email address. To use
the Gerrit code-review tool, you will need an email address that is connected with

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

https://android.googlesource.com/kernel/msm.git
https://android.googlesource.com/platform/manifest

Chapter 2. Compiling Open VSwitch for android 10

a registered Google account. Make sure this is a live address at which you can
receive messages. A successful initialization will end with a message stating that
Repo is initialized in your working directory. Your client directory should now
contain a .repo directory where files such as the manifest will be kept.

To pull down the Android source tree to your working directory from the repositories
as specified in the default manifest, run:

repo sync

Obtaining proprietary binaries

Android Open-Source Project can't be used from pure source code only, and requires ad­
ditional hardware-related proprietary libraries to run, specifically for hardware graphics
acceleration. Official binaries for the supported devices can be downloaded from Google’s
Nexus driver page Google's Nexus driver page which add access to additional hard­
ware capabilities with non-Open-Source code.We downloaded the binaries for Galaxy
Nexus(GSM/HSPA+) (”maguro”) with build number Android 4.3 (JWR66Y).

Extracting the proprietary binaries

Each set of binaries comes as a self-extracting script in a compressed archive. After
uncompressing each archive, run the included self-extracting script from the root of the
source tree, confirm that you agree to the terms of the enclosed license agreement, and
the binaries and their matching makefiles will get installed in the vendor/ hierarchy
of the source tree. [edit] Cleaning up when adding proprietary binaries In order to
make sure that the newly installed binaries are properly taken into account after being
extracted, the existing output of any previous build needs to be deleted with

make clobber

Fix for the camera and gps

Camera and GPS don’t work on Galaxy Nexus. As an example, the Camera application
crashes as soon as it’s launched. Those hardware peripherals require proprietary libraries
that aren’t available in the Android Open Source Project. To fix this we pull the
appropriate files from a phone with the factory image. We download the factory images
”yakju” for the galaxy nexus ”maguro” with build number JWR66Y. We set the phone
to fastboot mode, and we flash all the factory images executing the script ./flash-all.sh.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 11

Then we need to pull the appropriate files for fixing the camera and the gps from the
phone which now is in factory state. We pull the following files with the adb tool: This
is for gps

adb pull /system/vendor/etc/sirfgps.conf

This is for camera

adb pull /system/vendor/firmware/ducati-m3.bin

This is for gps

adb pull /system/vendor/lib/hw/gps.omap4.so

Next, add the following to vendor/samsung/maguro/proprietary/Android.mk

include $(CLEAR_VARS)
LOCAL_MODULE := sirfgps
LOCAL_MODULE_OWNER := samsung
LOCAL_SRC_FILES := sirfgps.conf
LOCAL_MODULE_TAGS := optional
LOCAL_MODULE_SUFFIX := .conf
LOCAL_MODULE_CLASS := SHARED_LIBRARIES
LOCAL_MODULE_PATH := $(TARGET_OUT_VENDOR)/etc
include $(BUILD_PREBUILT)
include $(CLEAR_VARS)
LOCAL_MODULE := g p s .omap4
LOCAL_MODULE_OWNER := samsung
LOCAL_SRC_FILES := g p s .omap4.so
LOCAL_MODULE_TAGS := optional
LOCAL_MODULE_SUFFIX := .so
LOCAL_MODULE_CLASS := SHARED_LIBRARIES
LOCAL_MODULE_PATH := $(TARGET_OUT_VENDOR)/lib/hw
include $(BUILD_PREBUILT)
include $(CLEAR_VARS)
LOCAL_MODULE := ducati-m3
LOCAL_MODULE_OWNER := samsung
LOCAL_SRC_FILES := ducati-m3.bin
LOCAL_MODULE_TAGS := optional
LOCAL_MODULE_SUFFIX := .bin
LOCAL_MODULE_CLASS := SHARED_LIBRARIES
LOCAL_MODULE_PATH := $(TARGET_OUT_VENDOR)/firmware
include $(BUILD_PREBUILT)

We found a hint that we should change in the same file the LOCAL_MODULE_PATH
for fRom to install into (TARGET_OUT)/bin rather than (TARGET_VENDOR_OUT)/bin.
This drastically speeds up the front / back camera switching and stops the video camera
from crashing. This hint was unnecessary as the path was already (TARGET_OUT)/bin.
Lastly, change your packages list in vendor/samsung/maguro/device-partial.mk to:

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 12

PRODUCT_PACKAGES := \
fRom \
libsec-ril \
libsecril-client \
sirfgps \
ducati-m3 \
g p s .omap4

Now we are ready compile the AOSP tree.

Changing Toolchain

AOSP has prebuilt toolchains for cross-compiling the source code. We will describe
how it is possible to change the toolchain so as to use our own toolchain. We down­
loaded the toolchain from the android NDK version r8e. The toolchain used is located
in the folder android-ndk-r8e/toolchains/arm-linux-androideabi-4.7. Copy unziped pre­
built toolchain folder to working-folder/prebuilt/gcc/linux-x86/arm.

Note: We will not use the AOSP prebuilt kernel image, but we will produce our own
kernel image cross compiling the kernel source code. We will use the same toolchain
for cross-compiling the kernel source code with the previous one. The environment is
initialized with the build/envsetup.sh script. We should change some paths so as our
toolchain will be used. Open build/envsetup.sh Find this block of code:

export ANDROID_EABI_TOOLCHAIN=
local ARCH = $(get _build_var TARGET_ARCH)
case $ARCH in

x86) toolchaindir = x86/i686-linux- android-$targetgccversion/bin

arm) toolchaindir = arm/android-ndk-r8e/toolchains/arm-1inux-androideabi-$targetgccversion/

mips) toolchaindir=mips/mipsel-linux-android-$targetgccversion
/bin;;
*)

echo "Can't find toolchain for unknown architecture: $ARCH"
toolchaindir=xxxxxxxxx

esac
if [-d "$gccprebuiltdir/$toolchaindir"]; then

export ANDROID_EABI_TOOLCHAIN = $gccprebuiltdir/$toolchaindir
fi

unset ARM_EABI_TOOLCHAIN ARM_EABI_TOOLCHAIN_PATH
case $ARCH in

arm)
toolchaindir = arm/android-ndk-r8e/toolchains/arm-1inux-androideabi-$targetgccversion/p
if [-d "$gccprebuiltdir/$toolchaindir"]; then

export ARM_EABI_TOOLCHAIN=" $gccprebuiltdir/$toolchaindir"

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 13

ARM_EABI_TOOLCHAIN_PATH=":$gccprebuiltdir/$toolchaindir
fi

mips) toolchaindir=mips/mips-eabi-4.4.3/bin

*)
No need to set ARM_EABI_TOOLCHAIN for other ARCHs

esac

Replace bold text with your toolchain folder name The file /build/core/combo/tar-
get_linux_arm contains a variable TARGET_GCC_VERSION which specifies the version
of the toolchain. We changed it to 4.7 as the toolchain’s version is 4.7.

Initialize

Now we are ready to initialiaze the environment: Initialize the environment with the
envsetup.sh script.

. build/envsetup.sh

Choose a target

Choose which target to build with lunch. If run with no arguments lunch will prompt
you to choose a target from the menu. The exact configuration can be passed as
an argument. lunch BUILD-BUILDTYPE All build targets take the form BUILD-
BUILDTYPE, where the BUILD is a codename referring to the particular feature com­
bination. the BUILDTYPE is one of the following:

Buildtype Use user limited access; suited for production userdebug like ”user” but
with root access and debuggability; preferred for debugging eng development configura­
tion with additional debugging tools Userdebug is pretty much the standard. We chose
the configuration for the GSM galaxy nexus with the following command:

lunch full_maguro -userdebug

Build the code

Build everything with make. GNU make can handle parallel tasks with a -jN argument,
and it’s common to use a number of tasks N th a t’s between 1 and 2 times the number

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 14

of hardware threads on the computer being used for the build. Our host pc has 4 cores
which are not hyper-threaded, so we can have totally 4 threads. So, the fastest builds
are made commands between make -j4 and make -j8. We built it with the following
command: make -j4 Assuming everything went well, you should have the following
images(our WORKINGDIRECTORY is named as AOSP):

~/AOSP/out/target/product/maguro/boot.img
~/AOSP/out/target/product/maguro/system.img
~/AOSP/out/target/product/maguro/recovery.img
~/AOSP/out/target/product/maguro/userdata.img

The kernel boot.img was not built from scratch. Rather, boot.img was built using an
included pre-compiled kernel located in /AOSP/device/samsung/maguro/kernel folder.
At the next section we will describe how to build our own kernel and boot.img. We will
flash the device after building our own boot.img.

Building the kernel

As stated previously, the build process until now builds the boot.img based off a pre­
compiled kernel image. If you have a specific reason to modify the kernel you should
build the kernel from scratch.

Downloading the source

We are going to go to the working directory(our working directory is AOSP), and then
fetch the Galaxy nexus kernel source code from omap.

cd AOSP
git clone https://android.googlesource.com/kernel/omap.git

This will give you a git repository with all actual branches of the omap Kernels. omap is
the corresponding kernel source for Maguro devices (Galaxy Nexus) After the download
you have a omap folder. Note, this repo has to be updated and managed separately
from the core aosp repo in /aosp/. That means you need to run git pull from the
/aosp/om ap/ directory after running repo sync from /aosp/ when updating the entire
system from the master repo. In the folder /AOSP/device/samsung/tuna/ do:

git log --maxcount=1 kernel

This command produces a commit message. The commit message for the kernel binary
contains a partial git log of the kernel sources that were used to build the binary in
question. The first entry in the log is the most recent(it is specified with the parameter

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

https://android.googlesource.com/kernel/omap.git

Chapter 2. Compiling Open VSwitch for android 15

-maxcount=1), i.e. the one used to build that kernel. You will need it at a later step.
The git log command produces a commit message like this:

commit 85ae29d3542fd28315cefe3a433bf867e24b3349 Author: JP Abgrall <j...@google.com> Date: Fri J
prebuilt kernel (DDK 1.8@2112805 version change)

3b0c5d2 gpu: pvr: Update to DDK 1.8@2112805

Change-Id: I4158335a06e588f62340848040aae06db1c36d71

Conflicts:

kernel

Check out the branch

Then enter to the folder /AOSP/omap:

c d o ma p

and checkout the branch:

git checkout <commit_from_first_step>

For instance, referred to the previous commit message, the jcommit_from_first_step£ is
3b0c5d2:

git checkout 3b0c5d2

After the checkout you have all files available.

Note: If you want to see all the branches in your /AOSP/omap folder type:

git branch -a

and the output will be:

* (no branch)
master
remotes/origin/HEAD ->
remotes/origin/android
remotes/origin/android
remotes/origin/android
remotes/origin/android
remotes/origin/android
remotes/origin/android
remotes/origin/android
remotes/origin/android
remotes/origin/android

origin/master
-omap-3.0
-omap -panda-3.0
-omap - steelhead-3.0-ics - aah
-omap-tuna-3.0
-omap -tuna-3.0-ics-mr1
-omap-tuna-3.0-jb-mr0
-omap-tuna-3.0-jb-mr1
-omap-tuna-3.0-jb-mr1.1
-omap-tuna-3.0-jb-mr2

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 16

remotes/origin/android-omap-tuna-3.0-jb-pre1
remotes/origin/android-omap-tuna-3.0-mr0
remotes/origin/android-omap-tuna-3.0-mr0.1
remotes/origin/glass-omap-xrr02
remotes/origin/glass-omap-xrr35
remotes/origin/glass-omap-xrr64b
remotes/origin/glass-omap-xrr88
remotes/origin/glass-omap-xrs36
remotes/origin/glass-omap-xrs68
remotes/origin/glass-omap-xrs92
remotes/origin/glass-omap-xrt35
remotes/origin/glass-omap-xrt73b
remotes/origin/linux-omap-3.0
remotes/origin/master
remotes/origin/sph-l700-fh05

This will list you a list of all branches available.Then you can checkout the branch like
this:

git check out name_of_branch

For instance:

git checkout android-omap-tuna-3.0-jb-mr1.1

Building

Set some environment variables: We built the AOSP tree with an ARM cross compiler of
the NDK toolchain. The NDK toolchain is located in the folder /home/user/AOSP/prebuilts/gcc/linux-
x86/arm. We use the same cross-compiler for building the kernel. So, we add the path of
the cross-compiler in the PATH environment variable: export PATH=/home/user/AOSP/prebuilts/gcc7
x86/arm/android-ndk-r8e/toolchains/arm-linux-androideabi-4.7/prebuilt/linux-x86_64/bin:$PATH

export ARCH=arm
export SUBARCH=arm
export CROSS_COMPILE=arm-linux-androideabi-

Cleaning the Source To ensure that you generate a really new kernel type:

make clean
make mrproper

This prepares the make configuration:

make tuna_defconfig

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 17

After this we start the make process: make NOTE:Again, we can use the -jx parameter
to speed up the make. x can be specified taking into account the number of the supported
hardware threads.

When make is finished you should have the message ’’Creating zImage successfully”
The kernel binary is output as: ‘arch/arm/boot/zImage’. To flash it, you need to make
it into a boot.img.

Create boot.im g

What we get out of this process is a zImage. What we want to do is copy that zImage
into the android source tree so we can get a boot.img to use on our device. To do this,
we copy it to the tuna device folder, so run:

cp arch/arm/boot/zImage ../../device/samsung/tuna/kernel

The reason we copy zImage to kernel is because that is what the build system looks for.
It was already there in the source we downloaded, but we want to use our own kernel that
we just compiled. Now, we will convert the zImage to a boot.img. The build/envsetup.sh
script, and the lunch command set the environment variables. If you’ve changed your
environment (by closing the terminal or using another window) initialize the source tree
again like specified above in the Building the system using source and lunch:

. build/envsetup.sh
lunch full_maguro -userdebug

Once that is done, we get a boot.img file by running in the root directory /AOSP/:

make bootimage

When it is done, you’ll have a boot.img file in the /AOSP/out/target/product/sam -
sung/maguro/ folder along with the system, userdata, and recovery images that can be
flashed to your device via fastboot. Most information for this section was taken from
official AOSP page [5].

2.3.2 C ross com piling O penV sw itch

Configure the OpenvSwitch source code:

c d o p e nv s w i t c h
./boot.sh
./configure ovs_cv_use_linker_sections=no -with-l26=<android_kernel_dir> KARCH=arm

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 18

--with-rundir=/data/local/var

Make change to your makefile datapath/linux-2.6/Makefile.main, add the follow­
ing line into Makefile: change the $(MAKE) -C $(KSRC) M=$(builddir) modules to
$(MAKE) -C $(KSRC) M=$(builddir) ARCH=$(ARCH) CROSS_COMPILE=$(CROSS_COMPILE)
modules $ ARCH=arm CROSS_COMPILE=arm-android-eabi- make

Generate Needed Files for Android Apps

cd openvswitch
ARCH=arm CROSS_COMPILE=arm-linux- androideabi- make

After running make, find the kernel module under ./datapath/linux-2.6/ with the
name openvswitch.ko. Then push the files to the android phone: $ adb push open-
vswitch_mod.ko /data/local/tm p $ adb shell insmod /data/local/tmp/openvswitch_mod.ko

However, there are errors during the cross-compilation. These errors appear due to
the linux kernel 3.072 which may not be compatible with the OpenVSwitch. Changes
are needed to become to the OpenVswitch code. One reason is that android does not
support any 128 bit value transfer between variables. Therefore the ipv6 addr can not
be copied directly in android. Some changes should be done in android linux/ipv6.h and
net/ipv6.h header files which have some macro and inline functions to deal with such
128 bit value not being used by the openvswitch. Maybe, other changes are necessary,
since the android linux kernel 3.0.72 is still not compatible with the OpenVSwitch. Also,
the whole source code of OVS is an overkill to the andriod platform since some libraries
may not be supported.

If we got the openvswitch.ko kernel module, the next step would be the cross­
compilation the OVS user interface.There are instructions about the steps of this cross-
compilation^].

2.4 B u ild in g A O S P for N E X U S 4 (occam (m ako) and cross

com p ile O p en V S w itch

We should cross-compile the android tree and kernel from source and then cross-compile
the openvswitch for android linux kernel.

We have used the following versions:

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 19

Android version: 4.2.2 (jelly bean)
Android Kernel source git: https://android.googlesource.com/kernel/msm.git
Kernel version: 3.4
Android Build: full_mako-usedebug 4.2.2
Openvswitch version: (Open vSwitch) 1.11.0

The directory structure of different source codes is the following(host OS: Ubuntu
13.04):

ANDROID_KERNEL: /home/zoe/AOSP_MAKO/msm
ANDROID_SOURCE_CODE_PATH: /home/zoe/AOSP_MAKO/
ANDROID_NDK_ROOT: /home/zoe/android-ndk-r9d/
OpenVswitch Source: /home/zoe/openvswitch-1.11.0/
ANDROID_SDK: /home/zoe/android-sdk-linux/

2.4.1 B uild in g A O SP for N E X U S 4

Downloading the source

After installing Repo, set up your client to access the Android source repository:

• Create an empty directory to hold your working files. If you’re using MacOS, this
has to be on a case-sensitive filesystem. Give it any name you like:
mkdir WORKING_DIRECTORY
cd WORKING_DIRECTORY

• Run repo init to bring down the latest version of Repo with all its most recent bug
fixes. You must specify a URL for the manifest, which specifies where the various
repositories included in the Android source will be placed within your working
directory.

To check out the branch, we do:
repo init -u https://android.googlesource.com/platform/manifest -b android-4.2.2_r1.2

Then we run
repo sync -j4

to download the AOSP source code.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

https://android.googlesource.com/kernel/msm.git
https://android.googlesource.com/platform/manifest

Chapter 2. Compiling Open VSwitch for android 20

Building the system

Choose a target

source build/envsetup.sh
lunch full_mako-userdebug

Building the code

make -j4

Building the kernel

Enter in the root directory

cd AOSP_MAKO

Then download the appropriate kernel branch for the nexus 4:

git clone https://android.googlesource.com/kernel/msm.git
git branch -a
c d ms m

And then we checkout the kernel source code:

git checkout android-msm-mako-3.4-jb-mr1

We compiled the kernel with the android-ndk-r9d/toolchains/arm-linux-androideabi-
4.6 toolchain. The compilation steps follow:

export PATH=/home/zoe/android-ndk-r9d/toolchains/arm-linux
-androideabi-4.6/prebuilt/linux-x86_64/bin:\$PATH

export ARCH=arm

export SUBARCH=arm

export CROSS_COMPILE=arm-linux-androideabi-

make mako_defconfig

make

The kernel image file zImage will be created in the arch/boot/arm / folder.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

https://android.googlesource.com/kernel/msm.git

Chapter 2. Compiling Open VSwitch for android 21

2.4.2 C ross com piling O penV sw itch

Environment setup

cd /home/zoe/openvswitch/

Executing this script for transfering some files from the android linux kernel to open-
vswitch source code:

./envsetup.sh

Apply the ovs patch [11] for changing the openvswitch source code:

git apply -v ovs_android.patch

For creating the configure file:

. / b o o t . s h

The contents of the envsetup.sh file is:

cp /home/zoe/AOSP_MAKO/msm/include/linux/genetlink.h /home/zoe/android-ndk
-r9d/platforms/android-18/arch-arm/usr/include/linux/
cp ./android_system_files/external/tcpdump/ icmp6.h /home/zoe/android-ndk
-r9d/platforms/android-18/arch-arm/usr/include/netinet/
cp ./android_system_files/external/tcpdump/ip6.h /home/zoe/android-ndk
-r9d/platforms/android-18/arch-arm/usr/include/netinet/
cp /home/zoe/AOSP/AOSP_MAKO/msm/include/ linux/gen_stats.h /home/zoe/android-ndk
-r9d/platforms/android-18/arch-arm/usr/include/linux/
cp /home/zoe/AOSP_MAKO/msm/include/linux/ethtool.h /home/zoe/android-ndk
-r9d/platforms/android-18/arch-arm/usr/include/linux/
cp /home/zoe/AOSP_MAKO/msm/include/linux/ if_tunnel.h /home/zoe/android-ndk
-r9d/platforms/android-18/arch-arm/usr/include/linux/
cp /home/zoe/AOSP_MAKO/msm/include/linux/mii.h /home/zoe/android-ndk
-r9d/platforms/android-18/arch-arm/usr/include/linux/

Configure the openvswitch:

./configure --with-linux=/home/zoe/AOSP_MAKO/msm KARCH=arm --host=arm-linux-androideabi
CC=arm-linux-androideabi-gcc CPPFLAGS="-I/home/zoe/android-ndk
-r9d/platforms/android-18/arch-arm/usr/include/ -I/home/zoe/AOSP/bionic/libc/include/
" CFLAGS="-D__ARM_ARCH_5__ -D__ARM_ARCH_5T__ -D__ARM_ARCH_5E__ -D__ARM_ARCH_5TE__
-DANDROID -DSK_RELEASE -DNDEBUG -UDEBUG -march=armv5te -mtune=xscale -msoft-float
-mthumb-interwork -fpic -fno-exceptions -ffunction-sections -funwind-tables -fmessage
-length=0 -mtune=xscale -msoft-float" LDFLAGS="-Bdynamic -Wl,
-T,/home/zoe/AOSP/prebuilts/gcc/linux-x86/arm/arm-linux- androideabi-4.6/arm-linux
-androideabi/lib/ldscripts/armelf_linux_eabi.x -Wl,--entry=main,-dynamic
-linker=/system/bin/linker -Wl,--gc-sections -Wl,-z,nocopyreloc -Wl,--no-undefined
-Wl,-rpath-link=/home/zoe/android-ndk-r9d/platforms/android-18/arch-arm
-L/home/zoe/android-ndk-r9d/platforms/android-18/arch-arm/usr/lib
-L/home/zoe/AOSP/out/target/product/mako/obj/lib -nostdlib /home/zoe/android-nd
k-r9d/platforms/android-18/arch-arm/usr/lib/crtend_android.o /home/zoe/android-ndk

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 22

-r9d/platforms / android -18 / arch - arm/ usr/lib/ crtbegin_dynamic .o" LIBS = "-lc
/home/zoe/AOSP/prebuilts/gcc/darwin-x86/arm/arm-linux- androideabi-4.6/lib/gcc/arm
-linux-androideabi/4.6.x-google/libgcc.a -lm -llog -lgcc -lcrypto -lssl"

Compile the source code
ARCH=arm CROSS_COMPILE=arm-linux-androideabi- make

Successful run creates the library file libopenvswitch.a libovsdb.a libsflow.a. Also It
will create the kernel module in /home/zoe/openvswitch/datapath/linux/openvswitch.ko

Now we use following gcc commands to build the different user space program of
openvswitch:
c d ut i l i t i e s

openvswitch/ovsdb/ovsdb-tool
openvswitch/ovsdb/ovsdb-server
openvswitch/utilities/ovs-ofctl
openvswitch/utilities/ovs-dpctl
openvswitch/vswitchd/ovs-vswitchd
openvswitch/utilities/ovs-vsctl
openvswitch/datapath/linux/openvswitch.ko
openvswitch/vswitchd/vswitch.ovsschema

Compile ovs-dpctl utility (It was compiled successfully)

/home/zoe/android-ndk-r9d/toolchains/arm-linux-androideabi-4.6/prebuilt/linux
-x86_64/bin/arm-linux-androideabi-gcc -o ovs-dpctl -I//home/zoe/android-ndk
-r9d/platforms/android-8/arch-arm/usr/include -I. -I../ -I../include/ -I../ofproto/
-I . ./lib/ -D__ARM_ARCH_5__ -D__ARM_ARCH_5T__ -D__ARM_ARCH_5E__ -D__ARM_ARCH_5TE__
-DANDROID -DSK_RELEASE -DNDEBUG -UDEBUG -march=armv5te -mtune=xscale
-msoft-float -mthumb-interwork -fpic -fno-exceptions
-ffunction-sections -funwind-tables -fmessage -length=0
-march=armv5te -mtune=xscale -msoft-float -mthumb-interwork -fpic
-fno-exceptions -ffunction-sections -funwind-tables -fmessage-length=0
ovs-dpctl.c -Bdynamic -Wl,-T,/home/zoe/android-ndk-r9d/toolchains/arm-linux
-androideabi-4.6/prebuilt/linux-x86_64/arm-linux
-androideabi/lib/ldscripts/armelf_linux_eabi.x -Wl,-dynamic-linker,/system/bin/
linker -Wl,--gc-sections -Wl,-z,nocopyreloc -Wl,--no-undefined -Wl,
-rpath-link=/home/zoe/android-ndk-r9d/platforms/android-8/arch-arm
-L/home/zoe/android-ndk-r9d/platforms/android-8/arch-arm/usr/lib -
L/home/zoe/AOSP_MAKO/out/target/product/mako/obj/lib
-nostdlib /home/zoe/android-ndk-r9d/platforms/android-8/arch
-arm/usr/lib/crtend_android. o /home/zoe/android-ndk-r9d/platforms

/android-8/arch-arm/usr/lib/crtbegin_dynamic.o
-lc /home/zoe/android-ndk-r9d/toolchains/arm-linux-androideabi
-4.6/ prebuilt/linux-x86_64/lib/gcc/arm-linux- androideabi/4.6/
libgcc.a /home/zoe/openvswitch-1.11.0/ofproto/libofproto.a
/home/zoe/openvswit c h - 1 .11.0/lib/libopenvswitch.a
/home/zoe/openvswitch-1.11.0/lib/libsflow.a -lm

-ldl -lgcc -lcrypto -lssl

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 23

cd ../vswitchd (It was compiled successfully)

Compile ovs-vswitchd utility.

/home/zoe/android-ndk-r9d/toolchains/arm-linux-androideabi-4.6/
prebuilt/linux-x86_64/bin/arm-linux-androideabi-gcc ovs-vswitchd.c bridge.c
system-stats.c xenserver.c -o ovs-vswitchd

-I/home/zoe/android-ndk-r9d/platforms/android-8/arch-arm/usr/include
-I. -I../ -I../include
-I../ofproto -I../lib -D__ARM_ARCH_5__ -D__ARM_ARCH_5T__
-D__ARM_ARCH_5E__ -D__ARM_ARCH_5TE__
-DANDROID -DSK_RELEASE -DNDEBUG -UDEBUG -march=armv5te
-mtune=xscale -msoft-float -mthumb -interwork -fpic -fno-exceptions
-ffunction-sections -funwind-tables -fmessage-length=0

-march=armv5te -mtune=xscale -msoft-float -mthumb-interwork
-fpic -fno-exceptions -ffunction -sections -funwind-tables
-fmessage-length=0 -Bdynamic -Wl, -T,/home/zoe/android-ndk-r9d/
toolchains/arm-linux-androideabi-4.6 /prebuilt/linux-x86_64/arm-linux

-androideabi/lib/ldscripts/armelf_linux_eabi.x -Wl,-dynamic-linker,
/system/bin/linker -Wl,--gc- sections -Wl,-z,nocopyreloc -Wl,
--no-undefined - Wl,-rpath-link=/home/zoe/android-ndk
-r9d/platforms/android-8/arch-arm -L/home/zoe/android-ndk-r9d/
platforms/platforms/android-8/arch -arm/usr/lib
-L/home/zoe/AOSP_MAKO/out/target/product/mako/obj/lib/
-nostdlib /home/zoe/android-ndk-r9d/platforms/android-8/arch
-arm/usr/lib/crtend_android.o /home/zoe/android-ndk -r9d/platforms/
android-8/arch-arm/usr/lib/crtbegin_dynamic.o -lc /home/zoe/android-ndk
-r9d/toolchains/arm-linux- androideabi-4.6/prebuilt/linux-x86_64/lib/gcc/arm-linux
-androideabi/4.6/libgcc.a /home/zoe/openvswitch-1.11.0/ofproto

/libofproto.a /home/zoe/openvswitch-1.11.0/lib/libopenvswitch.a
/home/zoe/openvswitch-1.11.0/lib/libsflow.a
-lm -ldl -lgcc -lcrypto -lssl

Compile ovs-ofctl utility (It was compiled successfully)

/home/zoe/android-ndk-r9d/toolchains/arm-linux-androideabi-4.6/prebuilt/linux
-x86_64/bin/arm-linux-androideabi-gcc -o ovs-ofctl -I//home/zoe/android-ndk
-r9d/platforms/android-8/arch
-arm/usr/include -I. -I../ -I../include/ -I../ofproto/ -I../lib/
-D__ARM_ARCH_5__
-D__ARM_ARCH_5T__ -D__ARM_ARCH_5E__ -D__ARM_ARCH_5TE__ -DANDROID -DSK_RELEASE
-DNDEBUG -UDEBUG
-march=armv5te -mtune=xscale -msoft-float -mthumb-interwork -fpic
-fno - exceptions -ffunction
-sections -funwind-tables -fmessage-length=0 -march=armv5te -mtune=xscale
- ms o f t - f l o at - mt humb

-interwork -fpic -fno-exceptions -ffunction-sections -funwind-tables
-fmessage-length=0 ovs
-ofctl.c -Bdynamic -Wl,-T,/home/zoe/android-ndk-r9d/toolchains/arm-linux
-androideabi-4.6/prebuilt/linux-x86_64/arm-linux- androideabi/lib/ldscripts/
armelf_linux_eabi.x
-Wl,-dynamic -1inker ,/system/bin/linker -Wl,--gc-sections -Wl,-z,nocopyreloc

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 24

-Wl,--no-undefined
-Wl,-rpath-link=/home/zoe/android-ndk-r9d/platforms/android-8/arch-arm
-L/home/zoe/android-ndk-r9d/platforms/platforms/android-8/arch-arm/usr/lib

-L/home/zoe/AOSP_MAKO/out/target/product/mako/obj/lib/ -nostdlib
/home/zoe/android-ndk-r9d/platforms/android-8/arch-arm/usr/lib
/crtend_android.o /home/zoe/android-ndk-r9d/platforms/android-8/arch
-arm/usr/lib/crtbegin_dynamic.o -lc /home/zoe/
android-ndk-r9d/toolchains/arm-linux-androideabi-4.6/prebuilt/linux-x86_64/lib/
gcc/arm-linux-
androideabi/4.6/libgcc.a /home/zoe/openvswitch-1.11.0/ofproto/ 1ibofproto.a
/home/zoe/openvswitch-1.11.0/lib/libopenvswit c h .a
/home/zoe/openvswit ch-1.11.0/lib/libsflow.a -lm
-ldl -lgcc -lcrypto -lssl

Compile ovsdb-server utility (It was failed to compile)

/home/zoe/android-ndk-r9d/toolchains/arm-linux-androideabi-4.6/prebuilt/linux
-x86_64/bin/arm-linux- androideabi-gcc -o ovsdb-server -I//home/zoe/android-ndk
-r9d/platforms/android-8/arch-arm/usr/ include -I. -I../ -I . ./include/ - I . ./ofproto/
-I../lib/ -D__ARM_ARCH_5__ -D__ARM_ARCH_5T__ -D__ARM_ARCH_5E__ -D__ARM_ARCH_5TE__
-DANDROID -DSK_RELEASE -DNDEBUG -UDEBUG -march=armv5te -mtune=xscale -msoft-float
-mthumb- interwork -fpic -fno- exceptions -ffunction-sections -funwind-tables -fmessage

-length=0 -march=armv5te -mtune=xscale -msoft-float
-mthumb- interwork -fpic -fno-exceptions -ffunction-sections -funwind-tables
-fmessage-length=0 ovsdb- server.c -Bdynamic -Wl,- T ,/home/
zoe/android-ndk-r9d/toolchains/arm-linux
-androideabi-4.6/prebuilt/linux-x86_64/arm-linux
-androideabi/lib/ldscripts/armelf_linux_eabi.x -Wl,-dynamic-linker ,/system/bin
/linker -Wl,--gc-sections -Wl,- z ,nocopyreloc -Wl,--no-undefined -Wl,-rpath
-link = /home/zoe/ android-ndk-r9d/platforms/android-8/arch- arm -L/home/zoe/android -
ndk-r9d/platforms/platforms/android-8/arch-arm/usr/lib
-L/home/zoe/AOSP_MAKO/out/target/product/mako/obj/lib/
-nostdlib /home/zoe /android-ndk-r9d/platforms/android-8/arch
-arm/usr/lib/crtend_android. o /home/zoe/android-ndk-r9d/platforms
/android-8/arch- arm/usr/lib/crtbegin_dynamic.o -lc /home/zoe/android-ndk-r9d/
toolchains/arm-linux-androideabi-4.6/prebuilt/ linux-x86_64/lib/gcc/arm
-linux-androideabi/4.6/libgcc.a
/home/zoe/openvswit c h - 1 .11.0/ofproto/libofproto.a

/home/zoe/openvswit c h -1.11.0/lib/libopenvswit c h .a
/home/zoe/openvswitch-1.11.0/lib/libsflow.a -lm
-ldl -lgcc -lcrypto -lssl

Compile ovs-vsctl utility (It was compiled successfully)

/home/zoe/android-ndk-r9d/toolchains/arm-linux-androideabi-4.6/prebuilt/linux
-x86_64/bin/arm-linux- androideabi-gcc -o ovs-vsctl.c -I//home/zoe/android-ndk
-r9d/platforms/android-8/arch-arm/usr/ include -I. -I../ -I . ./include/ - I . ./ofproto/
-I../lib/ -D__ARM_ARCH_5__ -D__ARM_ARCH_5T__ -D__ARM_ARCH_5E__ -D__ARM_ARCH_5TE__
-DANDROID -DSK_RELEASE -DNDEBUG -UDEBUG -march=armv5te -mtune=xscale -msoft-float
-mthumb- interwork -fpic -fno- exceptions -ffunction-sections -funwind-tables
-fmessage-length=0 -march=armv5te -mtune=xscale -msoft-float -mthumb- interwork

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 25

-fpic -fno-exceptions -ffunction-sections -funwind-tables
-fmessage-length=0 ovs-vsctl.c -Bdynamic -Wl,-T,/home/zoe/
android-ndk-r9d/toolchains/arm-linux- androideabi-4.6/prebuilt/linux-x86_64/arm
-linux-androideabi/lib/ldscripts/armelf_linux_eabi.x -Wl,-dynamic
-linker,/system/bin/linker -Wl,--gc-sections -Wl,-z,nocopyreloc -Wl,
--no-undefined -Wl,-rpath-link=/home/zoe/android-ndk-r9d/platforms/android-8/arch
-arm -L/home/zoe/android-ndk-r9d/platforms/platforms/android-8/arch-arm/usr/lib
-L/home/zoe/AOSP_MAKO/out/target/product/mako/obj/lib/
-nostdlib /home/zoe/android-ndk-r9d/platforms/android-8/arch
-arm/usr/lib/crtend_android.o /home/zoe/android-ndk-r9d/platforms/android-8
/arch-arm/usr/lib/crtbegin_dynamic.o -lc /home/zoe/android-ndk-r9d/toolchains
/arm-linux-androideabi-4.6/prebuilt/linux-x86_64/lib/gcc/arm-linux
-androideabi/4.6/libgcc.a /home/zoe/openvswitch-1.11.0/ofproto/libofproto.a
/home/zoe/openvswitch-1.11.0/lib/libopenvswitch.a
/home/zoe/openvswitch-1.11.0/lib/libsflow.a -lm -ldl -lgcc -lcrypto -lssl

Compile ovsdb-tool utility (It was failed to compile)

/home/zoe/android-ndk-r9d/toolchains/arm-linux-androideabi-4.6/prebuilt/linux
-x86_64/bin/arm-linux-androideabi-gcc -o ovsdb-tool.c -I//home/zoe/android-ndk
-r9d/platforms/android-8/arch-arm/usr/include -I. -I../ -I../include/ -I../ofproto/
-I . ./lib/ -D__ARM_ARCH_5__ -D__ARM_ARCH_5T__ -D__ARM_ARCH_5E__ -D__ARM_ARCH_5TE__
-DANDROID -DSK_RELEASE -DNDEBUG -UDEBUG -march=armv5te -mtune=xscale -msoft-float
-mthumb-interwork -fpic -fno-exceptions -ffunction-sections -funwind-tables -fmessage
-length=0 -march=armv5te -mtune=xscale -msoft-float -mthumb-interwork -fpic
-fno-exceptions -ffunction-sections -funwind-tables -fmessage-length=0
ovsdb-tool.c -Bdynamic -Wl,-T,/home/zoe/android-ndk-r9d/toolchains/arm-linux
-androideabi-4.6/prebuilt/linux-x86_64/arm-linux
-androideabi/lib/ldscripts/armelf_linux_eabi.x -Wl,-dynamic-linker,
/system/bin/linker -Wl,--gc-sections -Wl,-z,nocopyreloc -Wl,
--no-undefined -Wl,-rpath-link=/home/zoe/android-ndk-r9d/platforms/
android-8/arch-arm -L/home/zoe/android-ndk-r9d/platforms/platforms/
android-8/arch-arm/usr/lib -L/home/zoe/AOSP_MAKO/out/target/product/
mako/obj/lib/ -nostdlib /home/zoe/android-ndk-r9d/platforms/
android-8/arch-arm/usr/lib/crtend_android.o /home/zoe/android-ndk
-r9d/platforms/android-8/arch-arm/usr/lib/crtbegin_dynamic.o S-lc
/home/zoe/android-ndk-r9d/toolchains/arm-linux-androideabi-4.6
/prebuilt/linux-x86_64/lib/gcc/arm-linux- androideabi/4.6/
libgcc.a /home/zoe/openvswitch-1.11.0/ofproto/libofproto.a
/home/zoe/openvswit c h - 1 .11.0/lib/libopenvswitch.a
/home/zoe/openvswitch-1.11.0/lib/libsflow.a -lm
-ldl -lgcc -lcrypto -lssl

2.4 .3 A ctiva te O penV sw itch in kernel 3.4

There is another way to have the module openvswitch.ko in the kernel for kernels of
version 3.4 and above. The AOSP 4.2.2_1 branch is based on android linux kernel 3.4.
Thus the OpenvSwitch is already in it. It just needs to be activated.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 26

The OpenVswitch source code of android linux kernel exists in folder:

/home/zoe/AOSP -MAKO/msm/net/openvswitch

The Linux kernel comes with several configuration tools. Each one is run by typing
make jsomething^config in the top-level kernel source directory. (All make commands
need to be run from the top-level kernel directory.

make config: This is the barebones configuration tool. It will ask each and every
configuration question in order. The Linux kernel has a LOT of configuration questions.
make menuconfig This command pops up a text-based menu-style configurator. change
only the configuration options you care about.

Each of the configuration programs produces these end products: A file named
.config in the top-level directory containing all your configuration choices.

• CONFIG* = y it is compiled as build-in in kernel

• CONFIG_*=m it is compiled as a module in kernel

A file named autoconf.h in the include/linux/ directory defining (or not defining) the
CONFIG* symbols so that the C preprocessor knows whether or not they are turned
on.

Activation of OpenVswitch in android linux kernel As for creating OpenVswitch
module in kernel, we configured the hidden file .config manually. We set the CON-
FIGOPENVSWITCH = m, as we want to build OpenVswitch as a module. Then we
compile the kernel and the openvswitch.ko module is created in the folder:
/home/zoe/AOSP_MAKO/msm/net/openvswitch/

2.5 B u ild A O S P for N E X U S 5 - ham m erhead and cross­

com p ilin g op en vsw itch

We should cross-compile the android tree and kernel from source and then cross-compile
the openvswitch for android linux kernel.

We have used the following versions:

Android version: android-4.4.2_r1(KitKat)
Android Kernel source git: https://android.googlesource.com/kernel/msm.git
Kernel version: 3.4
Android Build: aosp_hammerhead-userdebug
Android NDK Version: arm-eabi-4.7

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

https://android.googlesource.com/kernel/msm.git

Chapter 2. Compiling Open VSwitch for android 27

Openvswitch version: (Open vSwitch) 1.11.0

The directory structure of different source codes is the following(host OS: Ubuntu
13.04):

ANDROID_KERNEL: /home/zoe/AOSP_HAMMERHEAD/msm
ANDROID_SOURCE_CODE_PATH: /home/zoe/AOSP_HAMMERHEAD/
ANDROID_NDK_ROOT: home/zoe/AOSP_HAMMERHEAD/prebuilts/ndk/
OpenVswitch Source: /home/zoe/openvswitch-1.11.0/
ANDROID_SDK: /home/zoe/android-sdk-linux/

2.5.1 B uild in g A O SP for N E X U S 5

Downloading the source

• Create an empty directory to hold your working files.Give it any name you like:

mkdir WORKING_DIRECTORY
cd WORKING_DIRECTORY

• Run repo init to bring down the latest version of Repo with all its most recent bug
fixes. You must specify a URL for the manifest, which specifies where the various
repositories included in the Android source will be placed within your working
directory. To check out a branch specify it with -b:

repo init -u https://android.googlesource.com/platform/manifest -b android-4.4.2_r1

• When prompted, configure Repo with your real name and email address. To use
the Gerrit code-review tool, you will need an email address that is connected with
a registered Google account. Make sure this is a live address at which you can
receive messages. A successful initialization will end with a message stating that
Repo is initialized in your working directory. Your client directory should now
contain a .repo directory where files such as the manifest will be kept.

To pull down the Android source tree to your working directory from the repositories
as specified in the default manifest, run:

repo sync

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

https://android.googlesource.com/platform/manifest

Chapter 2. Compiling Open VSwitch for android 28

B u ild in g th e sy ste m

Choose a target

source build/envsetup.sh
lunch aosp_hammerhead-userdebug

Building the code

make -j4

Building the kernel

Enter in the root directory

cd AOSP_HAMMERHEAD

Then download the appropriate kernel branch for the nexus 4:

git clone https://android.googlesource.com/kernel/msm.git
git branch -a
c d ms m

And then we checkout the kernel source code:

git checkout android-msm-hammerhead-3.4-kitkat-mr1

We compiled the kernel with the android-ndk-r9d/toolchains/arm-linux-androideabi-
4.6 toolchain. The compilation steps follow:

export PATH=/home/zoe/AOSP_KITKAT2/prebuilts/gcc/linux-x86/arm/arm-eabi-4.7/bin:$PATH

export ARCH=arm

export SUBARCH=arm

export CROSS_COMPILE=arm-linux-androideabi-

make hammerhead_defconfig

make

The kernel image file zImage will be created in the arch/boot/arm / folder.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

https://android.googlesource.com/kernel/msm.git

Chapter 2. Compiling Open VSwitch for android 29

2.5.2 C ross com piling O penV sw itch

Cross-compiling OpenVswitch for the android linux kernel of the hammerhead failed
with the same error messages of the maguro linux kernel. These errors appear since
the linux kernel of the hammerhead may not be compatible with the OpenVSwitch.
Changes are needed to become to the OpenVswitch source code. However, attempts for
creating a patch changing the openvswitch code appropriately or finding a ready patch
failed.

However, we can create the ovs module easily by activating it through the configu­
ration parameters in the kernel. The activation procedure is the same as in the mako
phone 2.4.3.

Despite we have the openvswitch.ko kernel module, it is necessary the openVSwitch
source code to be cross-compiled successfully for the android linux kernel, in order to
cross-compile the OVS user interface.

2.6 B u ild in g C yanogenM od for H T C EV O 4g (superson ic)

and cross com p ile O p en V S w itch

2.6.1 B uild in g C yanogenM od for H T C EVO 4g

Unlike the AOSP, the CyanogenMod offers the propriety binaries for the phone. Thus,
we compile the CyanogenMod ROM from source code for the HTC EVO 4g. There
are instructions about how to initiate your environment for building the Cyanogenmod
source code[9]. The building instructions follows:

Create the directories

You will need to set up some directories in your build environment. To create them:
mkdir -p ~/bin
mkdir -p ~/android/system

Initialize the CyanogenMod source repository

Enter the following to initialize the repository:

cd ~/android/system/
repo init -u git://github.com/CyanogenMod/android.git -b ics

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 30

D ow n load th e source cod e

To start the download of all the source code to your computer:

repo sync

Get prebuilt apps

cd ~/android/system/vendor/cm
then ent e r :
./get-prebuilts

This should cause some prebuilt apps to be loaded and installed into the source code.
Once completed, this does not need to be done again.

Prepare the device-specific code

After the source downloads, ensure you are in the root of the source code (cd /an-
droid/system), then type:

source build/envsetup.sh
breakfast supersonic

This will download the device specific configuration and kernel source for your device.

Extract proprietary blobs

Now ensure that your Evo 4G is connected to your computer via the USB cable and
that you are in the /android/system/device/htc/supersonic directory (you can cd /an-
droid/system/device/htc/supersonic if necessary). Then run the extract-files.sh script:

./extract-files.sh

You should see the proprietary files (aka “blobs”) get pulled from the device and moved
to the /android/system/vendor/htc directory.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 31

S tart th e build

Time to start building! So now type:

croot
brunch supersonic

Download the kernel source code and build the whole system

mkdir -p ~/android/kernel
cd ~/android/kernel
git clone git://github.com/CyanogenMod/cm-kernel.git
cd cm-kernel
git branch -a
git checkout supersonic -kernel

export ARCH=arm
export SUBARCH=arm
export PATH=$PATH:/home/zoi/android/system/prebuilt/linux-x86/toolchain/arm
-eabi-4.4.3/bin
export CROSS_COMPILE=/home/zoi/android/system/prebuilt/linux
-x86/toolchain/arm-eabi-4.4.3/bin/arm-eabi-
export CCOMPILER=/home/zoi/android/system/prebuilt/linux-x86/toolchain/arm
-eabi-4.4.3/bin/arm-eabi-

Configure and compile the kernel source code. All the configuration files exist in
arch/arm/configs folder, similarly the supersonic_defconfig)

make ARCH=arm supersonic_defconfig

make ARCH=arm CROSS_COMPILE=/home/zoi/android/system/prebuilt/linux
-x86/toolchain/arm-eabi-4.4.3/bin/arm-eabi- - j ‘grep ’processor’ /proc/cpuinfo | wc -l‘

Then, we copy the kernel file to the folder where the cyanogenmod searches for the
kernel image.

cp /home/zoi/android/kernel/cm-kernel/arch/arm/boot/zImage
/home/zoi/android/system/device/htc/supersonic/kernel

Building the system

cd android/system/
. build/envsetup.sh && brunch supersonic

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 32

During the building the following error occurs:

Error
collect2: ld returned 1 exit status
make: *** [out/target/product/supersonic/obj/SHARED_LIBRARIES/libcameraservice_intermediates
/LINKED/libcameraservice.so] Error 1

The problem is solved by pulling the libcamero.so file:

adb pull system/lib/libcamera.so

and place it to the folder vendor/htc/supersonic/proprietary of the Cyanogenmod tree.

2.6.2 C ross com piling O penV sw itch

The version of openvswitch is 2.0.0 and the android linux kernel is located in the folder
android/system. The directory structure of different source codes is the following(host
OS: Ubuntu 13.04):

ANDROID_KERNEL=/home/zoi/android/kernel/cm-kernel/
ANDROID_SOURCE_CODE_PATH = /home/zoi/android/system/
ANDROID_NDK_ROOT=/home/zoi/android/system/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/
OpenVSwitch Source: /home/zoi/openvswitch-2.0.0
ANDROID_SDK: /home/zoe/android -sdk-1inux/

Configure and compile the openvswitch:

export PATH=$PATH:"/home/zoi/android/system/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin

./configure ovs_cv_use_linker_sections=no -with
-l26=/home/zoi/android/kernel/cm-kernel KARCH=arm --with-rundir=/data/local/var

ARCH=arm CROSS_COMPILE=arm-eabi- make

The OpenVSwitch was compiled successfully, and the openvswitch.ko kernel module
was created in the datapath/linux folder. However, we had no success to compile the
ovs user interface.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 2. Compiling Open VSwitch for android 33

2.7 B u ild A O S P for x86 p latform and cross-com p ilin g open-

v sw itch

2.7.1 B uild in g A O SP for -x86 p latform

Firstly, we have followed the instruction for initializing the environment at the section
Initializing environment 2.2.1. Then, we downloaded the kitkat branch:

mkdir android-x86
cd android-x86
repo init -u http://git.android-x86.org/manifest -b kitkat-x86
repo sync

The folder with the kernel source already exists in android open source x86 [10]. The
Android build system doesn’t compile kernel on-fly. It just contains a prebuilt kernel
binary which will be added to the target image. This approach may be good enough
for the arm emulator target, but not suitable for x86 platforms. The x86 platforms
have various hardware. The kernel binary and its modules may need to be adjusted at
compile time or runtime. The android-x86 gives the ability to build kernel and modules
by a predefined or customized config during the building process.

We made our own my_defconfig file configuring the kernel and placed it in the folder
kernel/arch/x86/configs/. We set in the my_def_config file the configuration parameter
CONFIG_OPENVSWITCH = m so as the openvswitch to be built as module. Then,
we build whole the sustem along with the kernel specifying the kernel configuration file:

cd android -x86
make clean
make -j4 iso_img TARGET_KERNEL_CONFIG:=my_defconfig

The build process was completed successfully. The openvswitch.ko was created in the
folder /home/zoi/android-x86/android-x86_kitkat/out/target/product/x86/obj/kernel/net/
openvswitch. The image that we will flash on the target is in iso format. After the build
process, the android-x86.iso is created in the folder /home/zoi/android-x86/android -
x86_kitkat/out/target/product/x86/obj/kernel/net/openvswitch. Then, we flashed the
android-x86.iso on a virtual machine and noticed that the kernel module was placed in
this folder /system/lib/modules/3.10.30-andeois-x86+/kernel/net/openvswitch/.

2.7.2 C ross-com piling O penV sw itch

Despite, we activated the openvswitch module successfully, we did not achieve to cross­
compile openvswitch user interface for android.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

http://git.android-x86.org/manifest

Chapter 2. Compiling Open VSwitch for android 34

2.8 C onclusion

To sum up, we have cross-compiled OpenVswitch for four mobile devices and one virtual
machine based on x86 platform. We have failed to get the openvswitch.ko kernel module
for the HTC Evo 4G and the Galaxy Nexus. However, we have cross compiled the OVS
kernel module successfully for the Nexus 4, Nexus 5 and for x86 platforms. Also, we
have cross-compiled some OVS user interface utilities successfully for the Nexus 4. The
following user interface utilities have been cross-compiled successfully:

• ovs-dpctl

• ovs-ofctl

• ovs-vswitchd

• ovsctl

The following user interface utilities have not been cross-compiled successfully:

• ovsdb-server

ovsdb-tool

HTC Evo 4G G a la x y N e x u s 4 N e x u s 5 A n d ro id -

N e x u s x 8 6
Gingerbread Jellybean KitKat KitKat KitKat

OVS kernel
module No No Yes Yes Yes

OVS
User
interface

No No
Partially
Yes No No

F igure 2.2: This figure shows if the openvswitch kernel module and its user interface
compiled successfully for each device

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

C hapter 3

Technologies Overview

In this section we will see the technologies used to develop the NitosTools application
with the intention of the reader understands better the issues discussed.

Android applications are written in Java Programming language . Android is de­
signed with the maximum amount of modularity in mind. This modularity makes it easy
for developers to exchange functionality between their applications, which is a central
concept of the open source paradigm upon which Android is based.

There are four main types of components that can be (but do not need to be) used
within an Android application:

• Activities handle the UI to the smartphone screen.

• Services handle background processing.

• Broadcast receivers handle communication in your apps.

• Content providers handle data and database management issues.

3.1 A c tiv it ie s

An Activity is an application component that provides a screen with which users can
interact in order to do something, such as dial the phone, take a photo, send an email,
or view a map. Each activity is given a window in which to draw its user interface. If
an application has more than one activity, then one of them should be marked as the
activity that is presented when the application is launched.

35

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 3. Technologies Overview 36

3.1.1 A c tiv ity ’s L ifecycle

An application can consists of multiple activities [1]. One activity may trigger another
activity.Each time a new activity starts, the previous activity is stopped, but the system
preserves the activity in a stack (the ”back stack”). When a new activity starts, it is
pushed onto the back stack and takes user focus. The back stack abides to the basic ”last
in, first out” stack mechanism, so, when the user is done with the current activity and
presses the Back button, it is popped from the stack (and destroyed) and the previous
activity resumes.

When an activity is stopped because a new activity starts, it is notified of this
change in state through the activity's lifecycle callback methods. There are several
callback methods that an activity might receive, due to a change in its state—whether
the system is creating it, stopping it, resuming it, or destroying it—and each callback
provides you the opportunity to perform specific work that's appropriate to that state
change. For instance, when the activity is paused, it is a good practice to save the
variables you want so as to restore them later. The onStop() method is not guaranteed
to be called, thus onPause is the appropriate method for storing state.

To create an activity, you must create a subclass of Activity (or an existing subclass
of it). In your subclass, you need to implement callback methods that the system calls
when the activity transitions between various states of its lifecycle, such as when the
activity is being created, stopped, resumed, or destroyed. All activities will implement
onCreate(Bundle) to do their initial setup; many will also implement onPause() to com­
mit changes to data and otherwise prepare to stop interacting with the user. Thus, the
two latter callback methods are the most important:

• onCreate()

- Called when the activity is first created. This is where you should do all of
your normal static set up: create views, bind data to lists, etc. This method
also provides you with a Bundle containing the activity's previously frozen
state, if there was one.

• onPause()

- Called when the system is about to start resuming a previous activity. This is
typically used to commit unsaved changes to persistent data, stop animations
and other things that may be consuming CPU, etc. Implementations of this
method must be very quick because the next activity will not be resumed
until this method returns.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 3. Technologies Overview 37

F igure 3.1: The diagram shows the important state paths of an Activity[1].

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 3. Technologies Overview 38

There are three key loops in monitoring within your activity:

• The entire lifetime of an activity happens between the first call to onCre-
ate(Bundle) through to a single final call to onDestroy(). An activity will do
all setup of ’’global” state in onCreate(), and release all remaining resources in
onDestroy().

• The visible lifetime of an activity happens between a call to onStart() until a
corresponding call to onStop(). During this time the user can see the activity
on-screen, though it may not be in the foreground and interacting with the user.
Between these two methods you can maintain resources that are needed to show
the activity to the user.

• The foreground lifetime of an activity happens between a call to onResume()
until a corresponding call to onPause(). During this time the activity is in front
of all other activities and interacting with the user.

3.2 F ragm ents

Fragments represent a re-usable portion of an Activity’s user interface. You can combine
multiple fragments in a single activity to build a multi-pane layout user interface and
reuse fragments in multiple activities. In other words, a fragment is a modular section
of an activity. A fragment is a sort of like a “sub activity” that you can reuse in different
activities. It has its own lifecycle, receives its own input events and can be added or
removed while the activity is running.

A fragment must always be embedded in an activity and the fragment’s lifecycle
is directly affected by the host’s activity’s lifecycle. For instance, when the activity is
paused, all fragments in the activity will also be paused. However, while the activity
is running(It is in the resumed lifecycle state), you can manipulate each fragment inde­
pendently, such as add or remove them. Fragment transactions are used to remove and
replace fragments associated with the action bar tabs, such as:

• ft.remove(fragment); remove a fragment from the UI

• ft.replace(R.id.fragment_container, fragment); replace one fragment (or view) with
another.

These fragment transactions allow the activity to manage the back stack - a back
stack entry in the activity is a record of the fragment transaction that occurred. This,

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 3. Technologies Overview 39

for example, allows the user to reverse a fragment transaction (navigate backwards), by
pressing the back button.

When you add a fragment as a part of your activity layout, it lives in a ViewGroup
inside the activity’s view hierarchy and the fragment defines its own view layout. There
are two ways to add a fragment into your activity layout. You can added statically by
declaring the fragment in the activity’s layout file, as a fragment^ element or dynami­
cally from your application code by adding to an existing ViewGroup.

To create a fragment, you must create a subclass of Fragment. The Fragment class
has code that looks a lot like an Activity. It contains callback methods similar to an
activity, such as onCreate(), onStart(), onPause(), and onStop().

F igure 3.2: The lifecycle of a fragment[1] (while its activity is running).

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 3. Technologies Overview 40

Most applications should implement at least the following three methods for every
fragment, but there are several other callback methods you should also use to handle
various stages of the fragment lifecycle. Usually, you should implement at least the
following lifecycle methods:

• onC reate()

— The system calls this when creating the fragment. Within your implemen­
tation, you should initialize essential components of the fragment that you
want to retain when the fragment is paused or stopped, then resumed.

• onC reateV iew ()

— The system calls this when it’s time for the fragment to draw its user interface
for the first time. To draw a UI for your fragment, you must return a View
from this method that is the root of your fragment’s layout. You can return
null if the fragment does not provide a UI.

• onPause()

— The system calls this method as the first indication that the user is leaving the
fragment (though it does not always mean the fragment is being destroyed).
This is usually where you should commit any changes that should be persisted
beyond the current user session (because the user might not come back).

3.3 U ser In terface

Up to this point, we have seen that the basic unit of an Android application is an Activity.
The Activity displays the user interface of your application, which may contain widgets
like buttons, labels, text boxes e.t.c A layout defines the visual structure for a user
interface, such as the UI for an activity . You can declare a layout in two ways:

• Declare UI elements in XML. Android provides a straightforward XML vocabulary
that corresponds to the View classes and subclasses, such as those for widgets and
layouts.

• Instantiate layout elements at runtime. Your application can create View and
ViewGroup objects (and manipulate their properties) programmatically.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 3. Technologies Overview 41

Some of the most common layouts are:

• L inearLayout is a layout that aligns all children in a single direction, vertically
or horizontally.

• R elativeLayout is a layout that every element arranges itslef relative to other
elements or a parent element.

• TableLayout is a layout that is divided into rows and columns.

• Fram eLayout is designed to block out an area on the screen to display a single
item.

• ScrollView is a layout that can be scrolled by the user, allowing to be larger than
the physical display.

3.4 A ctio n Bar

The action bar is a window feature that identifies the user location, and provides user
actions and navigation modes. Using the action bar offers your users a familiar interface
across applications that the system gracefully adapts for different screen configurations.

F igure 3.3: action bar[1]

The action bar provides several key functions:

• Provides a dedicated space for giving your app an identity and indicating the user's
location in the app.

• Makes important actions prominent and accessible in a predictable way (such as
Search).

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 3. Technologies Overview 42

• Supports consistent navigation and view switching within apps (with tabs or drop­
down lists).

3.5 D ifferent w ays to share d a ta b etw een A ctiv it ie s /F ra g -

m en ts

There is no perfect storage option [2] since it depends on the data that we want to
share. There are two ways of sharing data: passing data in the intent's extras or saving
it somewhere else. If data is primitives, Strings or user-defined objects: send it as
part of the intent extras (user-defined objects must implement Parcelable). If passing
complex objects save an instance in a singleton somewhere else and access them from
the launched activity.

• Prim itive Data Types To share primitive data between Activities/Services in
an application, use Intent.putExtras(). For passing primitive data that needs to
persist use the Preferences storage mechanism.

• Non-Persistent Objects For sharing complex non-persistent user-defined ob­
jects for short duration, the following approaches are recommended:

— Singleton class You can take advantage of the fact that your application
components run in the same process through the use of a singleton. This is
a class that is designed to have only one instance. It has a static method
with a name such as getInstance() that returns the instance; the first time
this method is called, it creates the global instance. Because all callers get
the same instance, they can use this as a point of interaction.

— Application singleton Each Android application can have at most one an-
droid.app.Applicationassociated with it. You are responsible for sub-classing
the Application Class, and it is used to maintain a global state of the appli­
cation across all Activites. Conceptually, you can think of it as a non-static
singleton its life cycle being managed by Android OS.

— A HashMap of W eakReferences to Objects You can also use a HashMap
of WeakReferences to Objects with Long keys. When an activity wants to
pass an object to another activity, it simply puts the object in the map and
sends the key (which is a unique Long based on a counter or time stamp) to
the recipient activity via intent extras. The recipient activity retrieves the
object using this key.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 3. Technologies Overview 43

— A public s ta tic fie ld /m eth o d An alternate way to make data accessible
across Activities/Services is to use public static fields and/or methods. You
can access these static fields from any other class in your application. To
share an object, the activity which creates your object sets a static field to
point to this object and any other activity that wants to use this object just
accesses this static field.

• P ers is ten t O bjects Even while an application appears to continue running, the
system may choose to kill its process and restart it later. If you have data that
you need to persist from one activity invocation to the next, you need to repre­
sent that data as state that gets saved by an activity when it is informed that it
might go away. For sharing complex persistent user-defined objects, the following
approaches are recommended:

— Application Preferences

— Files

— contentProviders

— SQLite DB

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

C hapter 4

System Design

This chapter presents the design of the mobile application.

4.1 S y stem A rch itectu re

The system architecture has been illustrated on Figure 4.1. From the left-hand side an
Android device (not necessarily a smartphone, it could be a tablet) with the NitosTools
application already installed communicates with the web service using a special RESTful
API. The application sends HTTP requests with GET/PUT/POST/DELETE method
headers and receives well formatted JSON responses. REST objects can be exchanged
both ways.

HTTP request
6 ET\ PO ST\ PUT\DELETE
Rest Objects: JSON

Android device JSON

F igure 4.1: System architecture

44

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 4. System Design 45

4.2 A p p lica tio n A rch itectu re

In this section we will describe the NitosTools application’s architecture. Firstly, we will
present a simplified diagram presenting the main classes of the system in Figure 4.2. It
is a reference to the extended class diagram which includes the attributes and operations
of the classes. The extended class diagram is available in Appendix A.

Each class which has the suffix Activity represents a screen of the mobile application.
For example, LoginScreenActivity.class is the login screen. The classes that has suffix
Fragment, such as SchedulerChooserFragment, are fragments.

The diagram shows the relationships (dependencies) between the classes. When
an activity class depends on another activity class in our design, it means that the
independent class is called by the depended class.

The class diagram does not include the inner classes in the MyReservationsActivity,
SchedulerChooserFragment and ReserveResourcesFragment that parse the JSON files,
so as the class diagram to be easily readable. An extended diagram, with the classes
that sends requests to the servers and parses the JSON files, is available in the Appendix
A.

NitosTools consists of four activities:

• LoginScreenActivity: validates the user.

• MainMenuActivity: displays a list of all the testbed tools.

• NitosSchedulerActivity: creates a tabbed user interface.

• MyReservationsActivity: displays all the user’s reservations and offers the ability
for canceling them.

Apart from the activities, the application consists of eight fragments:

• SchedulerChooserFragment displays the user’s interface for choosing the reserva­
tion’s parameters(slice, date, time, duration) and checking the available resources.

• DatePickerFragment: is fired through the SchedulerChooserFragment for the date
selection.

• TimePickerFragment: is fired through the SchedulerChooserFragment for the time
selection.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 4. System Design 46

• OutdoorTestbedFragmen: displays the outdoor testbed

• IndoorTestbedFragment: displays the indoor testbed

• AvailableResourcesFragment: displays a UI displaying all available nodes. The
user can reserve the resources through this fragment.

• CheckResourcesFragment: a nested fragment to the AvailableNodesFragment, which
displays all the nodes of a specific type in a listview of checkboxes.

• ReserveResourcesFragment: performs the reservation process and in case of a suc­
cessful reservation displays an appropriate message.

There are also two classes performing the requests to the server:

• TestbedHttpClient: This class contains methods for connecting with the server
and making GET and POST requests.

• GlobalData: This class contains all the global data for the application

• Reservation: This class contains information(date and time) for a reservation.

• Constants: Constants class is responsible for all the constants of the application.

4.3 D escr ip tio n o f classes and fragm ents

4.3 .1 M ain A ctiv itie s

4.3.1.1 LoginScreenActivity extends A ctivity

LoginScreenActivity is the main Activity as we have defined it on the Manifest file,
which means that it is the first activity that is created when NitosTools is launched.
This activity accepts user name and password from the user , and then checks their
validity. If the username and password are valid, the LoginScreenActivity redirects
the user to the MainMenuActivity. There is a ”Keep me signed in” checkbox in the
LoginScreenActivity's user interface. If the user does not want to login every time
launches the application, he should check this checkbox. When the ”Keep me signed in”
is checked, the user is redirected to the MainMenuActivity’s screen.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 4. System Design 47

F igure 4.2: NitosTools Application

4.3.1.2 M ainM enuActivity extends A ctionBarActivity

MainMenuActivity displays a list with all Testbed Tools. Only the Nitos scheduler tool
is implemented. When the Nitos scheduler list item is clicked, the user is redirected to
the NitosSchedulerActivity. The action bar of the application is visible in the MainMen-
uActivity activity. Two important actions(User's reservation history and Log out) are
made prominent and accessible through the action bar.

4.3.1.3 N itosSchedulerActivity extends M ainM enuActivity

Three fragment tabs are added to the NitosSchedulerActivity’s Action Bar. The tabs,on
tab click, will show the selected fragments. These tabs have as text prompts ’’Select”,
”Outdoor”,and ’ Indoor”, and the fragments hosted :

• ’’Select” tab

- The tab with the prompt text ’’Select” hosts the SchedulerChooserFragment
which is responsible for the selection of the slice, the date, the time and the
duration of the reservation. These tab hosts, also, nested fragments which
will be described later.

• ’’Outdoor” tab

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 4. System Design 48

- This tab hosts the OutdoorTestbedFragment. This fragment is responsible
for displaying the outdoor testbed with all the nodes. The kind of each node
is determined from its color.

• ”Indoor” tab

— This tab hosts the IndoorTestbedFragment. This fragment is responsible for
displaying the indoor testbed with all the nodes. All nodes , in the indoor
testbed, are Icarus nodes.

4.3.1.4 M yReservationsActivity extends M ainM enuActivity

MyReservationsActivity is fired when the user icon on action bar is pressed. This Ac­
tivity is responsible for displaying all the resources being reserved from the user. To get
the leases, MyReservationsActivity makes an HTTP Get Request to the server returning
the leases in JSON format. Then, the activity parses the JSON file and retrieves all the
leases with account names equals user’s account names. While the activity parses the
JSON file, it creates the UI dynamically. For each resource, it prints the date and time
in which the resource is reserved, the name of the resource, and a ’’cancel” button to
cancel the reservation.

4 .3 .2 O ther C lasses

We will describe some other classes not being activities, but have a supportive purpose
to the activities and fragments of the application:

4.3.2.1 TestbedHttpClient

The TestbedHttpClient class provides HTTP services to the application. In particular,
it has two methods, one for making HTTP GET request, and one for making HTTP
POST Request to the server.

4.3.2.2 GlobalData extends Application

The GlobalData class is a subclass of the android.app.Application class, thus retains a
global state of the NitosTools application. It contains all the resources which should be
global across all activities and fragments. In particular, the resources in the testbed,
and all the resources which are available ,during the date and time entered by the user,

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 4. System Design 49

are declared in this class. Also, the GlobalData class provides accessors and mutators
methods for the resources.

4.3.2.3 Constants

This class is used to keep constant values.

• String B A S E U R L : this is a string value referring to the base URL used for
making HTTP requests. This constant is only used by the TestbedHttpClient
class.

• String CHECKBOXES_PREFERENCES is a string value used by the Shared-
Preferences in the AvalaibleResourcesFragment and CheckResourcesFragment.

• String LOGIN_PREFS: this is a string value used by the SharedPreferences in
the LoginScreenActivity and MainMenuActivity.

• String LOWER_CHANNEL_802_11a, UPPER_CHANNEL_802_11a ,
LOWER_CHANNEL_802_11bg , UPPER_CHANNEL_802_11bg: These

String constants are used for categorizing channels in protocols taking into account
its number. These constants are used in the SchedulerChooserFragment.

• enum HardwareType: The HardwareType is an enumeration type referring to
the set of the resources.The set of the resources is the following : ORBIT, GRID,
USRP, DISKLESS, ICARUS,BASE_STATIONS,CHANNELS_802_11A,
CHANNELS_802_11BG.

• String TAG_RESOURCE_RESPONSE, TAG-RESOURCES,
TAG-COM PONENTS, TAG -CO M PO NENT : these are string constants which
are used for referring to some tags of the JSON files through the parsing.

4 .3 .3 Fragm ents

4.3.3.1 SchedulerChooserFragment extends Fragment

The SchedulerChoooserFragment is hosted in the NitosSchedulerActivity's first tab.
This fragment displays the UI for setting the required parameters for the reservation.
Firstly, it displays the local date and time. It contains two buttons , ”Pick a date” and
”Pick time”, for picking the date and time for the reservation. When the user presses

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 4. System Design 50

the button ”Pick a date” and ”Pick time”, the DatePickerFragment and the TimePick-
erFragment are inflated respectively. Also, it contains a spinner to select the duration
of the reservation.

When the user sets all the parameters and is ready to see the available nodes,
he should press the ’’Check Available Resources” Button. When the latter button is
pressed, three HTTP GET requests are performed for receiving the JSON files for the
nodes, the channels and the leases. Firstly, it parses the JSON file for the nodes, and
sets each node to a global data structure, defined in the GlobalData class, accordingly to
the node’s Hardware Type. Also, it parses the JSON file for the channels and sets each
channel to a global data structure accordingly to its protocol. Finally, the Scheduler-
ChooserFragment parses the JSON file for the leases and stores each lease in the related
resource’s data structure. All the global data structures, defined in the GlobalData
class, will be described in detail in Chapter 5. After the clicking of the ’’Check Available
Resources” button, all the previous processing is performed and then the AvailableRe-
sourcesFragment is inflated. The UI of this fragment is presented in the Figure 4.3
figure.

4.3.3.2 DatePickerFragment extends DialogFragment implements DatePick-
erDialog.OnDateSetListener

DatePickerFragment is launched by the SchedulerChooserFragment through the ”Pick
a date” button. Each time the button is pressed, a dialog appears. The first time the
”Pick a date” is pressed, the dialog displays the current local date depending on where
the mobile phone is located.

4.3.3.3 TimePickerFragment extends DialogFragment implements TimePick-
erDialog.OnTimeSetListener

TimePickerFragment is launched by the SchedulerChooserFragment through the ”Pick
time” button. Each time the button is pressed, a dialog appears with 30 minute intervals.
The first time the ”Pick time” is pressed, the dialog displays ”00:00” time.

4.3.3.4 OutdoorTestbedFragment extends Fragment

The OutdoorTestbedFragment is hosted in the NitosSchedulerActivity’s second tab. It
just displays the outdoor testbed categorizing the resources with colors according to
their hardware type. This fragment’s interface is presented on the Figure 4.4

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 4. System Design 51

5ELECT OUTDOOR INDOOR

Select Slice, Start Time
and Duration
Local Date Time: 2014-09-07 22:12:49

Slice:

Start Date: 2014-09-07

Start time: 00:00

Duration: 0.5

Check Available Resources

F igure 4.3: The SchedulerChooserFragment’s UI is presented on this figure at the left
corner. The DatePickerFragment and the TimePickerFragment dialogs , inflated from

SchedulerChooserFragment’s buttons, are presented next to the latter respectively.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 4. System Design 52

< N

S E L E C T O UT D O O R IN D O O R

Φ Red dots represent Grid Nodes

Yellow dots represent Orbit Nodes

Green dots represent USRP Nodes

. Orange dots represent Diskless Nodes

F igure 4.4: The OutdoorTestbedFragment’s UI is presented on this figure.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 4. System Design 53

4.3.3.5 IndoorT estbedF ragm ent ex tends Fragm ent

The IndoorTestbedFragment is hosted in the NitosSchedulerActivity’s third tab. It just
displays the indoor testbed. Only icarus nodes are located in the indoor testbed.

<N f t
■
■
■

S ELE C T O U T D O O R IN D O O R

Office 1

0

© 0
Office 3 Office 4

I © i f 1

L__ I
0r

$ | Γ

L a b i 0 L a b2 0
0 >

Office 2

Θ

Blue dots represent Icarus Nodes

F igure 4.5: The IndoorTestbedFragment’s UI is presented on this figure.

4.3.3.6 A vailableR esourcesFragm ent ex tends Fragm ent

The AvailableResourcesFragment fragment is inflated from the ’’Check Available Re­
sources” button of the SchedulerChooserFragment fragment. It displays all the avail­
able resources. Its UI consists of a list displaying all the categories of the resources,
the nested CheckResourcesFragment fragment displaying the resources of the matching
category in a listview of checkboxes, and a ’ Reserve” button inflating the ReserveRe-
sourcesFragment fragment performing the reservation process. The CheckResources-
Fragment retains the checkboxes state. Thus, while the user navigates through the
list and checks the checkboxes of each category, the checkboxes state’ being lost. This
fragment’s interface is presented on the Figure 4.6.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 4. System Design 54

4.3.3.7 C heckR esourcesFragm ent ex tends Fragm ent

The CheckResourcesFragment is hosted in the AvailableResourcesFragment. It is placed
on the right of the listView, inflated each time a listview item of the AvailableResources­
Fragment is pressed, and the corresponding resources are displayed as checkboxes in the
CheckResourcesFragment. This fragment keeps the checkboxes’ state, so as the user
will check all the resources he wants, and then click the ’’Reserve” button to inflate the
ReserveResourcesFragment performing the reservation process.

F igure 4.6: The AvailableResourcesFragment’s UI is displayed on this figure. The
CheckResourcesFragment fragment which is a nested fragment to the previous one is

the white one with the checkboxes.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 4. System Design 55

4.3.3.8 R eserveR esourcesFragm ent ex tends Fragm ent

The ReserveResourcesFragment is inflated from the ’’Reserve” button’s pressing of the
AvailableResourcesFragment. It checks the state of all the checkboxes, and then makes a
JSON message with all the selected resources, the dates and times when the reservation
starts and ends, and other essential elements. Finally, it sends an HTTP POST request
to the server with the JSON message in order to perform the reservation. This fragment’s
interface is presented on the Figure 4.7.

< N ■

S E L E C T O U T D O O R IN D O O R

Your Nodes and you r Frequencies have been
booked! Check M y R eservations!

F igure 4.7: The ReserveResourcesFragment’s UI is presented on this figure.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

C hapter 5

Im plem entation

In this chapter, we will discuss some implementation details of some classes we described
in the previous chapter.

5.1 G lob a lD ata class

The implementation of GlobalData class is needed to keep data global across the applica­
tion. This class is an application singleton. Each Android application can have at most
one android.app.Application associated with it. Thus, the GlobalData class subclasses
the Application class. There are also other ways to share data between the fragments
and activities, such as exchanging data through interfaces. However, this kind of sharing
data is suitable for primitive types. Our data structures are complex belonging to Java
Collections, thus we use the application singleton for sharing the data. The global data
structures are referring to:

• all resources existing at testbed and their data type is HashMap<String, ResourcesData>

• all resources being available at the given user’s date ad time and their data type
is TreeMap<String, String>

• checkboxes associated to the available resources at the given time and their data
type is ArrayList<CheckBoxes>

• the date and time entered by the user

The GlobalData class also provides accessors and mutators methods for each
data structure. The GlobalData class diagram is shown at Figure 5.1.

56

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 5. Implementation 57

F igure 5.1: GlobalData Class Diagram

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 5. Implementation 58

5.2 Fragm ents u sin g th e g lobal d a ta

5.2.1 SchedulerC hooserFragm ent

When the user selects date, time and duration for the reservation, and then clicks the
’’Check Available Resources” button, the SchedulerChooserFragment fragment makes
request to the server and then stores all the existing resources to the data structures
defined in GlobalData class. There are eight different kinds of resources(orbit, grid, usrp,
diskless, and icarus nodes base Stations, channels for 802_11a and 802_11bg protocol).
So, there are eight data structures of type HashMap<String, ResourcesData>. The
SchedulerChooserFragement makes three HTTP GET requests to get the nodes, the
channels, and the leases in JSON format respectively. Then, while it parses the JSON
files, it stores the resources to the HashMap<String, ResourcesData> data structures.

The HashMap<String, ResourcesData> data structure has as a key a String rep­
resenting the node name and as a value an object of the ResourcesData class. The
ResourcesData class has as instance fields a String uuid needed in case of an HTTP
POST request , and an ArrayList of Reservation objects. The Reservation class con­
tains instance fields for date and time about when a reservation starts and finishes. Each
resource may be reserved many times, thus has to be associated with an ArrayList of
Reservation objects. In this way, we can compare the user’s given date and time with the
ArrayList<Reservation> to check each resource’s availability. The figure representing
the HashMap<String, ResourcesData> structure is Figure 5.2.

In particular, the SchedulerChooserFragment makes the first HTTP request to get
the JSON String with all the nodes and then parses the String while storing the node
name for each node to the key of the HashMap<String, ResourcesData>, selecting the
data structure according to node’s hardware type. Secondly, this fragment makes the
second HTTP request to get the JSON String with all the Channels, and stores them
similarly to the nodes’ procedure. Finally, the SchedulerChooserFragment fragment
makes an HTTP GET request to get the JSON string about all the leases, namely
all the reservations. Then, it parses the leases String, and stores, for each resource,
the starting dates and times, and the ending dates and times to a Reservation object
and adds this object to the ArrayList of the ResourcesData object of the matching
HashMap<String, ResourcesData>.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 5. Implementation 59

5.2.2 A vailab leR esourcesF ragm ent

After the ’’Check Available Resources” is pressed, the AvailableResourcesFragment frag­
ment is inflated. As mentioned in 3, the AvailableResourcesFragment UI has a listview
with all the categories of the resources. Each time the user clicks a listview item, the
AvailableResourcesFragment computes which resources of the matching category are
available at the given date and time and stores them in a TreeMap<String, String>(see
Figure 5.3) . The key of the TreeMap represents the resource name and the value repre­
sents the UUID. The UUID will be useful in the case of the reservation of the resource.
The AvailableResourcesFragment has a nested fragment CheckResourcesFragment dis­
playing the corresponding available resources with checkboxes each time a listview item
is clicked. The reason we choose the TreeMap data structure is that it sorts the items by
key with the red-black tree algorithm. In this way, the CheckResourcesFragment frag­
ment displays the checkboxes sorted while parsing the available resources in a TreeMap.
Also, while the user navigate across the listview's items and checks the checkboxes, the
checkboxes’ state is retained through the shared preferences 2.

5.2 .3 R eserveR esourcesF ragm ent

When the user has checked all the desired resources, he presses the ’ Reserve” button
of the ’ AvailableResourcesFragment” and the ’ ReserveResourcesFragment” is inflated.
This fragment checks the global checkboxes structures in order to examine which re­
sources are checked in the checkboxes. Then, for each resource checked, retrieves the
UUID from the TreeMap, and formats a JSON message to perform the POST request
for the reservation.

5.3 D a te and tim e

The date and time is stored in UTC timezone in the database of the server. The
user gives the date and time in the local timezone, namely in the timezone where the
mobile phone is located. Then, the user’s date and time is tranformed , by the mobile
application, in the UTC timezone so as that can be compared with the date and time
of each reservation which is in UTC timezone.

It should be noted that whichever date and time is seen by the user, is displayed
at the local time zone of the mobile phone. In this way, the user does not need to get
confused with the time zones. He just enters and sees everything in his local time zone.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 5. Implementation 60

F igure 5.2: HashMap data structure storing all the resources

F igure 5.3: TreeMap data structure storing all the available resources

The SchedulerChooserFragment displays the local time at the top of the screen and the
MyReservationsActivity displays each resources’s reservation in the local timezone.

We have used the Joda-time library[4]for the date and time since overweights the
standard JDK date/time classes. Joda-Time has been carefully designed to overcome all
the issues the standard JDK date/time classes are blamed for. The standard JDK Cal­
endar makes accessing “normal” dates difficult due to the lack of simple methods, while
Joda-Time has straightforward field accessors such as getYear() or getDayOfWeek().
Joda library cares about the DayLight Saving Time, and adjusts the date and times
accordingly. Also, it is easy to convert date and time from one timezone to another.
For instance, this is an example how to convert a date and time from Europe/Athens
timezone to UTC.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 5. Implementation 61

DateTimeZone zoneUTC = DateTimeZone.UTC;
DateTime dt = new DateTime("2004-12-13T21:39:45.618+03:00", zoneUTC);

5.4 N ested Fragm ents

Nested fragments[1] are released with the android 4.2. Nested fragments means that you
can embed fragment in another. This is useful for a variety of situations in which you
want to place dynamic and re-usable UI components into a UI component that is itself
dynamic and re-usable. To nest a fragment, simply call getChildFragmentManager()
on the Fragment in which you want to add a fragment. NitosTools application has as
nested fragments the CheckResourcesFragment inside the AvailableResourcesFragment.

5.4.1 B u g in n ested Fragm ents

However, as we were navigating across the tabs[2], the application crashed with Ille-
galStateException. This is a bug for nested fragments. Basically, the child Fragment-
Manager ends up with a broken internal state when it is detached from the activity.
The solution is to add the following to onDetach() of every Fragment which we call
getChildFragmentManager() on:

^Override
public void onDetach() {

super.onDetach();

try {
Field childFragmentManager = Fragment.class.getDeclaredField("mChildFragmentManager");
childFragmentManager.setAccessible(true);
childFragmentManager.set(this, null);

} catch (NoSuchFieldException e) {
throw new RuntimeException(e);

} catch (IllegalAccessException e) {
throw new RuntimeException(e);

}
}

5.5 P la tform s and D ev e lo p m en t Softw are

NitosTools was developed on a personal computer running Ubuntu 13.04 64-bit Linux
operating system, where the following open source development tools were used:

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 5. Implementation 62

• Eclipse Kepler IDE

• Open JDK 1.7.0

• Android SDK

• Android 4.3 platform(Jelly Bean)

Also, the following APIs and plug-ins for the Eclipse IDE were used:

• Android Development Tools (ADT)

• an Android Virtual Device (AVD)

The Joda library 2.3 was used for dates and times and is inserted in eclipse in this
way: Create libs folder, then copy paste jode-2.3.jar in libs(create folder libs if not
existed), and then right click and ”Add to Build Path” .

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

C hapter 6

User Guide

In this Chapter we are going to present a user manual, explaining how UI interacts with
the user.

6.1 A p p lica tio n ’s Launching

When the user launches the NitosTools Application., he/she is asked to enter the user­
name and the password to login. The launcher icon is depicted in Figure 6.1.

t i A f i 13 :24

A p p s W id g e ts ±
/

N
C O S M O T ED e m o N a v ig a t io n

S lid in g .. . D r a w e r . . . /
N ito s T o o ls

F igure 6.1: NitosTools Launcher Icon

63

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 6. User Guide 64

6.2 H ow to Login

After the user launches the application, the LoginScreenActivity is shown.Then, when
the user presses one of the editable fields, a keyboard with letters is shown.

If the user does not want to fill the username and password fields, everytime he/she
launches the application, he/she should check the ”Keep me signed in checkbox”. In this
way, eveytime the user launches the application, he/she sees the main activity screen.
If the user wants to logout, he/she can logout pressing the logout option of the action
bar’s menu. The logout procedure is shown in Figure 6.2.

..il i 13:25

Sign in

Keep me signed in

Sign in

Keep me signed in

Sign in

Keep me signed in

a abandoned ν '

N 1 T q w e r t y u i

f a

o

a s d f 9 h) k I

■f z x c v b n m «

123 · ·
Sym Φ L J . Next

N A T

F igure 6.2: How to login to NitosTools activity

6.3 M ain m enu

After the user has logged in, he/she is redirected to the main menu screen. The main
menu screen shows all the testbed tools and it is depicted in Figure 6.3. Right now, only
the nitos scheduler item redirects to the Nitos Scheduler’s screen. All the other testbed
tools are unimplemented.

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 6. User Guide 65

Nitos Scheduler
Connectivity Tool

Nodes Distance Tool
Openflow Settings
Measurement Map

Depiction
Testbed Status
CM Framework

USB Sensors Toolkit

Nitos Scheduler
Connectivity Tool

Nodes Distance Tool
Openflow Settings
Measurement Map

Depiction
Testbed Status
CM Framework

USB Sensors Toolkit

F igure 6.3: Main menu screen

6.4 H ow to m ake a reservation

When the user presses the Nitos Scheduler list item, he/she is redirected to the Nitos
Scheduler’s screen. The user can select the slice, the date, the time, and the duration of
the reservation. Right now, the slice’s selection is not implemented. The screen intended
for the selection is shown in Figure 6.4. The selection procedure screen are shown at
Figure 6.5. When the user is ready, he/she can press the ’’Check Available Resources”
button, in order to be redirected to a screen displaying all available resources.

N
SELECT OUrDOOO INDOOR

Select Slice, Start Time
and Duration
Local Date Tim e: 2014-09-07 22:12:49

Slice.

Start Date 2014-09-07

Start time: 00:00

Duration: 0.5

Check A va ilab le Resources

F igure 6.4: ’ Choose reservation’s parameters” screen

If the user selects a date and time which are before the current date and time, and
then presses the ’ Check Available Resources” button, a warning message ’ Date and

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 6. User Guide 66

F igure 6.5: Select date, time, and duration screens

Time is before now” is shown. There is no meaning to check the resources’ availability
for a past date and time. Also, if the user presses the ’’Check Available Resources”
button with no internet connection, a warning message ”no network connection” is
shown. The warning messages are shown in Figure 6.6.

N &

SELECT OUTDOOR INDOOR

Select Slice, Start Time
and Duration
Local Date Time: 2014-09-07 22:12:49

Slice:

Start Date: 2014-09-07

Start time: 00:00

Duration: 0.5

Date and Time input is before now

Check A vailab le Resources

<H

Select Slice, Start Time
and Duration
Local Date Time: 2014-09-10 13:27:25

Slice:

Stan Date: 2014-10-10

Stan time: 00:00

Duration: 0.5

No network connection

Check A vailable Resources

F igure 6.6: Warning messages in selection screen

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 6. User Guide 67

After the user presses the ’’Check Available Resources” button with a valid date and
time, and with network connection, a message ”Please Wait” is shown. The connection
to the server and the retrieval of the data takes some time, thus the waiting message is
shown to the user. The waiting screen is shown in Figure 6.7.

F igure 6.7: ’’Waiting message in selection’s screen

Then, the user is redirected to a screen displaying all the available resources. Screen
displaying all the available resources is depicted in Figure 6.8. There is a list with blue
color on the left of the screen where you can choose the category of the resources. Every
time, the category of resources is clicked, it is colored with light blue. Each time the
user presses a list item, a list of available resources, in form of checkboxes, appears on
the right of the screen.

<N & i

SELECT OUKMOM INDOG®

Orbit

Grid

USRP

Oiskless

Icarus

Base Station

Channels 802 11a

Channels 802.11 b/g

Reserve

F igure 6.8: Screen displaying all the available resources

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 6. User Guide 68

The user can select the resources that wants to reserve by checking the checkboxes.
The checkboxes’ state is not lost, while the user navigates through the list items. The
selection of checkboxes is shown in Figure 6.9.

<N » : |
SELECT OUTDOOR INOOOf)

O rbit M | 0 1

Grid 0 2

USRP ■
D isk le ss H ·

Ica ru s M S

Base S ta tio n

Channels 802 11a Mg
C h a n n e ls 8 0 2 i 'b q H H

Reserve

F igure 6.9: Selecting the resources

After the user has selected all the resources wants, he/she should press the Reserve
button. After the clicking of this button, the user will be ridirected to a screen display­
ing a message about the successfullness of the reservation. This screen is displayed in
Figure 6.10.

< N

•
1

SELECT OUTDOOR INDOOR

Your Nodes and yo u r Frequencies have been
booked! Check M y Reservations!

F igure 6.10: Message after the reservation

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 6. User Guide 69

The location of the resources in the outdoor and indoor testbed is shown to the
screen, selecting the second and third tab respectively. The screens displaying these
testbeds are depicted in Figure 6.11.

<N *

SELECT OUTDOOR INDOOR

<|N A

SELECT OUTDOOR INDOOR

r ® © ^
Office 1 Office 3 Office 4 1—

0 -1 0 | ©
'
T®

Lab 1

I ©
0 Lab 2 Θ

1
Office 2

©

§ Blue dots represent Icarus Nodes

' 3 Red dots represent Grid Modes

Yellow dots represent Orbit Nodes

Φ Green dots represent USRP Nodes

. Orange dots represent Diskless Nodes

F igure 6.11: Screens displaying the outdoor and indoor testbed

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 6. User Guide 70

6.5 H ow to check th e reservation sta tu s

If the user wants to see his/her reservation status, namely which reservation have been
made, he/she should press the action bar’s person’s icon. When the user presses this
button, a waiting ”Please wait” message is displayed, since the application needs to
retrieve data from the server. After the user presses this icon, he/she is redirected to a
screen showing all the reservations. More specifically, the date and time about the start
and the end of the reservations are depicted. The screens displaying the procedure for
showing the reservation status are depicted .

z·** 4k J

RESERVATION j
ENDING AT 09-| See user reserva tions

^0:00:00 AND

cancel

RESERVATION STARTING AT 0 9 -1 5 -2 0 1 4 01 00 00 AND
ENDING AT 09 15 2014 02:30 00

nodeO16

cancel

RESERVATION STARTING AT 0 9 -1 5 -2 0 1 4 02 .00 .00 AND
ENDING AT 0 9 -1 5 -2 0 1 4 02 30:00

node002

cancel

RESERVATION STARTING AT 09 15 2014 00:00 :00 AND
ENDING AT 0 9 -1 5 -2 0 1 4 00:30:00

nod *0 02

cancel
R E S E R V A T IO N S T A R T IN G AT 09-1 5 201 4 00 SO 00 A N D

F igure 6.12: Reservation status of the user

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Chapter 6. User Guide 71

6.6 H ow to log ou t

If the user wants to log out of the application, he/she can press the logout option of the
action bar’s menu. The logout option is depicted in Figure 6.13.

N Λ
N l t O S · Log out

Connectivity Tool
Nodes Distance Tool

Openflow Settings
Measurement Map

Depiction
Testbed Status
CM Framework

USB Sensors Toolkit

F igure 6.13: How to Log out

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

C hapter 7

Conclusion

In this final section the functionalities of NitosTools are restated and potential future
work is discussed.

7.1 C onclusion

Within this thesis the Android Application NitosTools was implemented. In particular,
an Android application was implemented that is responsible for managing the NITOS
testbed resources. It guides the user through the reservation process, making sure that
he does not make a reservation conflicting with reservations made by other users. The
android application enables its user to select the parameters for the reservation, check
the available resources, select resources, and reserve them. Also, the user can check
his/her reservation status through NitosTools.

7.2 Future W ork

An enhancement of this work could be the design of the user interface so as to work in
landscape mode. Also, only the Nitos Scheduler is implemented from the testbed tools,
the next step is the implementation of the rest as an Android Application.

72

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

A p p en d ix A

UML Diagrams

73

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Appendix A. UML Diagrams 74

F igure A.1: NitosTools Application

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

Bibliography

[1] http://developer.android.com/guide/index.html

[2] http://stackoverflow.com/

[3] http://nitlab.inf.uth.gr/NITlab/index.php/testbed-tools/nitos-scheduler

[4] http://www.joda.org/

[5] https://source.android.com/source/building.html

[6] https://source.android.com/source/initializing.html

[7] Kok-Kiong Yap Making Use of All the Networks Around Us:A Case Study in Android,
CellNet’12, August 13, 2012, Helsinki, Finland, Stanford University.

[8] http://www.stanford.edu/ huangty/cross_compile_patches.tar.gz

[9] http://wiki.cyanogenmod.org/w/Build-forsupersonic

[10] http://www.android-x86.org/documents/customizekernel

[11] http://comments.gmane.org/gmane.network.openvswitch.devel/21601

[12] http://www.slideshare.net/janghoonsim/virtualized-network-with-openv-switch

75

Institutional Repository - Library & Information Centre - University of Thessaly
01/05/2024 12:59:04 EEST - 3.12.120.73

http://developer.android.com/guide/index.html
http://stackoverflow.com/
http://nitlab.inf.uth.gr/NITlab/index.php/testbed-tools/nitos-scheduler
http://www.joda.org/
https://source.android.com/source/building.html
https://source.android.com/source/initializing.html
http://www.stanford.edu/
http://wiki.cyanogenmod.org/w/Build-forsupersonic
http://www.android-x86.org/documents/customizekernel
http://comments.gmane.org/gmane.network.openvswitch.devel/21601
http://www.slideshare.net/janghoonsim/virtualized-network-with-openv-switch

