
Algorithms for Large-Scale Power Delivery
Network Analysis on Massively Parallel

Architectures
by

Konstantis Daloukas
Submitted to the Department of Electrical and Computer

Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering

at the

UNIVERSITY OF THESSALY

July 2014

©Konstantis Daloukas, 2014.

Author .
Konstantis Daloukas

Department of Electrical and Computer Engineering
July 4, 2014

Certified by .
Panagiota Tsompanopoulou

Assistant Professor
Thesis Supervisor

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

2
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Algorithms for Large-Scale Power Delivery Network
Analysis on Massively Parallel Architectures

by

Konstantis Daloukas

Submitted to the Department of Electrical and Computer Engineering
on July 4, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical and Computer Engineering

Abstract
The on-chip power delivery network constitutes a vital subsystem of modern

nanometer-scale integrated circuits, since it affects in a critical way the performance
and correct operation of the devices. As technology scaling enters in the nanometer
regime, there is an increasing need for accurate and efficient analysis of the power
delivery network. The impact of first-order phenomena like IR drop or electromi-
gration or second-order phenomena like Joule heating, that were neglected until
recently, on the power delivery network, necessitates the existence of fast and
accurate methodologies for electrical and thermal analysis of the power grid.
A typical power delivery network is modeled as an RLC network and its electrical

or thermal analysis amounts at solving a linear system of equations. Due to the sheer
size of contemporary power delivery networks (which comprise millions or billions
of nodes), its analysis is a very challenging process, both in terms of computational
and memory requirements. Parallel architectures that have recently appeared and
provide a large amount of computational resources appear as the platform of choice
for executing computationally demanding algorithms. However, most state-of-the-
art algorithms for power grid analysis do not entail a large degree of parallelism
and have excessive memory requirements, which makes their mapping onto parallel
architectures difficult or even infeasible.
To this end, this dissertation proposes three new methodologies for analysis

of large-scale power delivery networks found in contemporary integrated circuits.
We present two algorithms for electrical analysis and one algorithm for combined
electro-thermal analysis of the power delivery network. The novel characteristic of
the proposed algorithms is the large degree of multi-level parallelism that they entail.
As a results, they appear as ideal candidates for mapping onto parallel architectures.
Our algorithms are able to greatly accelerate the simulation process, achieving up
to two or three orders of magnitude speedup for power grid electrical analysis and
one order of magnitude speedup for electro-thermal analysis, while at the same time
scaling linearly with the number of power grid nodes.

3
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

4
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Αόριμοι ια Ανάυση του Δικτύου Τροφοδοσίας
Μεάης Κίμακας Οοκηρμένν Κυκμάτν σε

Μαζικά Παράηες Αριτεκτονικές
Κνσταντής Νταούκας

Περίηψη

Το δίκτυο τροφοδοσίας αποτεεί ένα ζτικής σημασίας υποσύστημα στα μοντέρνα
οοκηρμένα κυκώματα, καώς καορίζει τη σστή ειτουρία και την απόδοση
του κυκώματος. Λό της συνεούς μείσης της κίμακας σεδιασμού, υπάρει μια
αυξανόμενη ανάκη ια ακριή και αποδοτική ανάυση του δικτύου τροφοδοσίας. Ο
αντίκτυπος τν πρτευόντν φαινομένν, όπς η πτώση τάσης ή η ηεκτρομετανά-
στευση, αά και τν δευτερευόντν φαινομένν, όπς η επίδραση του φαινομένου
Joule heating στους αούς, που δε αμάνονταν υπόψη μέρι πρότινος, καιστούν
απαραίτητη την ύπαρξη κατάην και αποδοτικών μεοδοοιών ια ηεκτρική και
ερμική ανάυση του δικτύου τροφοδοσίας.
Ένα τυπικό δίκτυο τροφοδοσίας μοντεοποιείται ς ένα δίκτυο RLC και η ηε-

κτρική και ερμική ανάυσή του ανάεται στην επίυση ενός συστήματος ραμμικών
εξισώσεν. Λό του μεάου μεέους τν σύρονν δικτύν τροφοδοσίας (τα
οποία περιαμάνουν εκατομμύρια ή δισεκατομμύρια κόμους), η ανάυσή τους είναι
μια πού απαιτητική διαδικασία, τόσο από άποψη υποοιστικής ισύος όσο και από
άποψη απαιτήσεν σε μνήμη. Οι παράηες αριτεκτονικές που έουν εμφανιστεί πρό-
σφατα, προσφέρουν πού μεάη υποοιστική ισύ με αποτέεσμα να εμφανίζονται
ς η κατάηη πατφόρμα ια την εκτέεση υποοιστικά απαιτητικών αορίμν.
Ωστόσο, οι περισσότεροι αόριμοι που ρησιμοποιούνται σήμερα στα περισσότερα
εμπορικά εραεία ια την ανάυση του δικτύου τροφοδοσίας δεν εμπεριέουν μεάο
αμό παραηισμού και έουν υπεροικές απαιτήσεις μνήμης, εονός που καιστά
την υοποίησή τους σε παράηες αριτεκτονικές ιδιαίτερα δύσκοη και σε αρκετές
περιπτώσεις ανέφικτη.
Βάσει τν παραπάν, η παρούσα διατριή προτείνει τρεις νέες μεοδοοίες ια την

5
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

ανάυση τν δικτύν τροφοδοσίας μεάης κίμακας που εμπεριέονται στα σύρονα
οοκηρμένα κυκώματα. Παρουσιάζονται δύο αόριμοι ια την ηεκτρική ανά-
υση και ένας αόριμος ια τη συνδυασμένη ηεκτρο-ερμική ανάυση του δικτύου
τροφοδοσίας. Το νέο αρακτηριστικό τν προτεινόμενν αορίμν είναι ο μεάος
αμός παραηισμού σε ποαπά επίπεδα, ο οποίος τους καιστά κατάηους
ια την υοποίηση σε παράηες αριτεκτονικές. Οι προτεινόμενοι αόριμοι επιτα-
ύνουν σημαντικά τη διαδικασία προσομοίσης, επιτυάνοντας ές και τρεις τάξεις
μεέους επιτάυνση ια την ηεκτρική ανάυση και μία τάξη μεέους επιτάυνση
ια την ηεκτρο-ερμική ανάυση, ενώ την ίδια στιμή κιμακώνουν ραμμικά με τον
αριμό τν κόμν στο δίκτυο τροφοδοσίας τόσο σε υποοιστική πουποκότητα
όσο και σε απαιτήσεις σε μνήμη.

6
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Acknowledgements
As this long endeavor has reached its end, I would like to express my deep

gratitude to a group of people who provided my with guidance, assistance, support,
and encouragement. It is certain that without their help, I would not have been
able to complete my dissertation.
First of all, I would like to express my sincere gratitude to my Ph.D. advisors,

Professor Panagiota Tsompanopoulou, Professor Nestor Evmorfopoulos, and Pro-
fessor George Stamoulis. Their guidance and support were the main reasons that
most ideas presented in this dissertation have been accomplished. Their diligence,
intelligence and wisdom have had great influence on my research development.
Research directions, technical criticisms as well as valuable feedback from our office
discussions brought me continuous sources of motivation and inspiration. Apart from
being excellent scientists, they are also valuable collaborators and true supporters.
I would also like to thank my thesis committee members, Professor John Moonda-

nos and Professor Christos Sotiriou from the University of Thessaly, as well as Pro-
fessor Apostolos Dollas and Professor Dionisios Pnevmatikatos from the Technical
University of Crete, for providing important feedback for my dissertation.
My sincere thanks to all my friends for their encouragement all these years.

Especially, I would like to thank my friends from the Electronics Lab. Without
their help, I would not have led such a fruitful and joyful life in the Department of
Electrical and Computer Engineering. Particularly, I would like to thank my close
friends, George, Michalis, and Babis for their constant support, help and valuable
discussions. Also, many thanks to Mary, Lena, Maria, and Despoina for their conti-
nuous secretarial support.
During the academic years 2010-2013, my research had been partially funded

by the Bodossaki Foundation in Greece. I really appreciate the opportunity of
being a member of the Bodossaki Foundation scholars’ family and the experience of
participating in a large number of conferences that made my research more visible.
Also, I would like to thank Yorgos Koutsoyannopoulos and Sotiris Bantas from

7
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Helic, Inc. for their guidance and financial support during the last year of my studies.
Finally, I appreciate so much the unconditional love, help, trust, and support

from my family and Ioanna. There are no words that can express my gratitude and
appreciation for all they have done for me. Without their patience and support, I
would not have been able to finish my dissertation. The least I can do in recognition
is to dedicate this dissertation to them.

8
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

To my family, Ioanna & my friends

9
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

10
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

This doctoral thesis has been examined by a joint committee of the
Department of Electrical and Computer Engineering from the
University of Thessaly and the Department of Electronic and

Computer Engineering from Technical University of Crete as follows:

Professor Panagiota Tsompanopoulou .
Chairwoman, Thesis Supervisor

Assistant Professor of Electrical and Computer Engineering
University of Thessaly

Professor Nestor Evmorfopoulos .
Member, Thesis Committee

Assistant Professor of Electrical and Computer Engineering
University of Thessaly

Professor George Stamoulis .
Member, Thesis Committee

Professor of Electrical and Computer Engineering
University of Thessaly

Professor Apostolos Dollas .
Member, Examination Committee

Professor of Electronic and Computer Engineering
Technical University of Crete

Professor John Moondanos .
Member, Examination Committee

Professor of Electrical and Computer Engineering
University of Thessaly

Professor Dionisios Pnevmatikatos .
Member, Examination Committee

Professor of Electronic and Computer Engineering
Technical University of Crete

Professor Christos Sotiriou .
Member, Examination Committee

Professor of Electrical and Computer Engineering
University of Thessaly

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

12
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Contents

Abstract 3

Περίηψη 5

List of Figures 17

List of Tables 19

List of Acronyms 21

1 Introduction 23
1.1 Background and Motivation . 23
1.2 Contributions . 26
1.3 Outline . 27

2 Parallel Computing Architectures 29
2.1 Introduction . 29
2.2 Differences between CPUs and GPUs 31

2.2.1 Concurrency in GPUs . 32
2.3 GPU Programming - The CUDA Programming Model 32

3 Linear System Solution Methods 35
3.1 Direct Methods . 36
3.2 Iterative Methods . 39

3.2.1 Conjugate Gradient Algorithm 40

13
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

3.2.2 Preconditioning . 41
3.3 Solution of Linear Systems on Parallel

Architectures . 45

4 Power Grid Electrical Simulation 47
4.1 Power Grid Modeling . 47
4.2 Related Work . 51
4.3 Fast Transform Solvers for Networks with

Special Structure . 54
4.3.1 Fast Transform Solvers for 2D Networks 54
4.3.2 Fast Transform Solvers for 3D Networks 58

4.4 Proposed Methodology for Power Grid
Analysis . 64
4.4.1 Preconditioner Construction and Storage 64
4.4.2 Procedure Implementation and Opportunities for Parallelism 72

4.5 Experimental Results . 75
4.5.1 Experimental Setup . 75
4.5.2 Transient Analysis Results for the Industrial

Benchmarks . 76
4.5.3 Transient Analysis Results for the Synthetic

Benchmarks . 80
4.5.4 Scalability of FTCG and FTCG-3D 82
4.5.5 Memory Efficiency . 83
4.5.6 Efficiency Under Grid Irregularity 84

5 Power Grid Electro-Thermal Simulation 87
5.1 Methodology Overview . 89
5.2 Fast Transform Solvers for Full 3D Networks 92
5.3 Proposed Approach for Electro-Thermal Analysis 96

5.3.1 Procedure Implementation . 98
5.4 Experimental Evaluation . 99

14
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

6 Conclusions and Future Directions 103
6.1 Conclusions . 103
6.2 Future Directions . 104

Appendix A: Mathematical Proofs 106

Publications 113

References 115

15
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

16
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

List of Figures

2-1 Architecture of the NVIDIA Tesla K20 GPU. 30
2-2 NVIDIA CUDA Thread Model. 33

4-1 Example of a power delivery network with 3 horizontal and 3 vertical
rails, along with its equivalent model for electrical analysis 48

4-2 Example of a power delivery network with 3 horizontal and 3 vertical
rails, along with the regular 2D and 3D grids used for preconditioning. 65

4-3 The key steps for the application of the proposed preconditioners and
their mapping onto the available GPUs. 72

4-4 Runtime scalability of FTCG and FTCG-3D on the set of the industrial
benchmarks. 82

4-5 Thread scalability of the 1-thread, 6-thread, and the GPU implementations
of FTCG and FTCG-3D on the set of the industrial benchmarks. . . 83

5-1 Electrical-Thermal positive feedback simulation loop. 90
5-2 Example of the thermal equivalent of the 3D power grid from Fig. 4-

1(i) that is used for preconditioning. 98

17
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

18
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

List of Tables

4.1 Maximum and average voltage drop error when neglecting via resi-
stances in the analysis of a set of large-scale industrial power grid
benchmarks. 69

4.2 Circuit details and convergence results for electrical analysis of the
2D benchmarks. 77

4.3 Circuit details and convergence results for electrical analysis of the
3D benchmarks. 78

4.4 Runtime results of CHOLMOD, ICCG, SPGCG, and FTCG for electrical
analysis of the 2D benchmarks. 79

4.5 Runtime results of CHOLMOD, ICCG, SPGCG, and FTCG for electrical
analysis of the 3D benchmarks. 79

4.6 Memory requirements of FTCG, CHOLMOD, and ICCG. 84
4.7 Results of FTCG-3D under varying grid irregularity. 85

5.1 Runtime results of CHOLMOD, ICCG, and FTCG for electro-thermal
analysis of the synthetic benchmarks. 101

19
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

20
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

List of Acronyms

ALU Arithmetic Logic Unit
BiCG Biconjugate Gradient Method
CG Conjugate Gradient
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DCT Discrete Cosine Transform
FDM Finite Difference Method
FFT Fast Fourier Transform
FPGA Field-Programmable Gate Arrays
GMRES Generalized Minimal Residual Method
GPU Graphics Processing Unit
IC Integrated Circuit
IDCT Inverse Discrete Cosine Transform
MIMD Multiple Instruction Multiple Data
MNA Modified Nodal Analysis
ODE Ordinary Differential Equation
PCG Preconditioned Conjugate Gradient
SFU Special Function Units
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Thread
SMX Streaming Multiprocessor
SP Streaming Processor

21
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

SPD Symmetric and Positive Definite
TSV Through Silicon Via

22
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Chapter 1

Introduction

1.1 Background and Motivation
The relentless push for high-performance and low-power integrated circuits has

been met by aggressive technology scaling, which enabled the integration of a vast
number of devices on the same die but brought new problems and challenges to
the surface. The on-chip power delivery network (power grid) constitutes a vital
subsystem of modern nanometer-scale Integrated Circuits (ICs), since it affects in
a critical way the performance and correct operation of the devices.
The major issues in the power delivery networks of contemporary circuits is

voltage drop (or IR drop) and electromigration. Voltage drop is the decrease in
the nominal value of the supply voltage of the chip that a device sees due to
the finite resistance of interconnects and can severely affect the correct operation
and the performance of the design. On the other hand, electromigration is the
transport of material caused by the gradual movement of the ions in a conductor
due to the momentum transfer between conducting electrons and diffusing metal
atoms. Electromigration affects the reliability of the power grid and can even lead
to disconnections, thus making a chip unusable.
As a result, in order to address these issues and to determine the quality of

the supply voltage delivered to the devices, the designer has to perform static
and dynamic simulation of the electrical circuit modeling the power grid. This

23
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

has become a very challenging problem for contemporary ICs, since power grids
encountered in these circuits are extremely large (comprising several thousands or
millions of nodes) and very difficult to simulate efficiently (especially over multiple
time-steps). Static (DC) or transient simulation refers to the process of computing
the response of an electrical circuit to a constant or time-varying stimulus respecti-
vely. Since a power delivery network can be generally modeled as a linear RLC
circuit, the process of DC or transient simulation of large-scale power grids amounts
to solving very large (and sparse) linear systems of equations. The methods that
have been proposed so far for tackling analysis of power delivery networks can be
categorized as follows:

• Direct methods (based on matrix factorization) have been widely used in
the past for solving the resulting linear systems arising in power grid ana-
lysis, mainly because of their robustness in most types of problems. They also
have the property of reusability of factorization results in transient simulation
with a fixed time-step. Unfortunately, these methods do not scale well with
the dimension of the linear system, and become prohibitively expensive for
circuits beyond a few thousand elements, in both execution time and memory
requirements. In addition, a fixed time-step is almost never used in practice
because it becomes very inefficient to constantly simulate during long intervals
of low activity. All practical implementations of integration techniques for
Ordinary Differential Equations (ODEs) employ a variable or adaptive time-
step mechanism [9]. In those cases, the reusability of matrix factorization in
direct methods ceases to exist.

• Iterative methods involve only inner products and matrix-vector products, and
constitute a better alternative for large sparse linear systems in many respects,
being more computationally- and memory-efficient. This holds even more so
for modern nonstationary iterative methods which fall under the broad class of
”Krylov-subspace” methods [31]. Iterative methods possess themselves a kind
of reusability property for transient simulation, in that the solution at the

24
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

last time-step provides an excellent initial guess for the next time-step, thus
making a properly implemented iterative method converge in a fairly small
number of iterations. In fact, this property also holds in the case of a variable
time-step, since the quality of the last solution as initial guess for the next
solution is not affected. The above features make iterative methods much more
suitable for DC and variable time-step transient analysis of large-scale linear
circuits such as power distribution networks.

The main problem of iterative methods is their unpredictable rate of convergence
which depends greatly on the properties (specifically the condition number) of the
system matrix. A preconditioning mechanism, which transforms the linear system
into one with more favorable properties, is essential to guarantee fast and robust
convergence. However, the ideal preconditioner (one that approximates the system
matrix well and is inexpensive to construct and apply) differs according to each
particular problem and each different type of system matrix. That is why iterative
methods have not reached the maturity of direct methods and have not yet gained
widespread acceptance in linear circuit simulation. Although general-purpose pre-
conditioners (such as incomplete factorizations or sparse approximate inverses) have
been developed, they are not tuned to any particular simulation problems and
cannot improve convergence by as much as specially-tailored preconditioners.
Another aspect of circuit simulation that has become very important recently

is to uncover hidden opportunities for parallelism in its intermediate steps. This is
essential for harnessing the potential of contemporary parallel architectures, such as
multi-core processors and Graphics Processing Units (GPUs) in order to enable ana-
lysis for very-large scale power delivery networks. GPUs, in particular, are massively
parallel architectures whose computational power is about 3.95 TFlops, greater by
an order of magnitude than that of multi-core processors. As a result, they appear
as a platform of choice for the efficient execution of computationally-intensive tasks
such as power grid analysis and simulation.
Direct solution methods offer little room for parallelism as they are mainly based

on backward and forward solution of triangular systems which do not entail large

25
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

parallelism due to the dependencies that exist among the solution steps. On the
contrary, Krylov-subspace iterative methods offer ample possibilities for parallelism
that have been explored sufficiently well. However, the construction and application
of the preconditioner is a very delicate part of parallelizing an iterative method
because it is completely application-dependent (and traditional general-purpose pre-
conditioners have very little room for parallelism). Unfortunately, there has been
little systematic research for the development of parallel simulation algorithms, and
more specifically algorithms for power grid analysis that can be mapped onto massi-
vely parallel architectures like GPUs. This can be attributed in part to the difficulty
in parallelization of direct linear solution methods that have been mostly employed
thus far. In addition, most sophisticated preconditioners that have been developed
for power grid analysis have little room for parallelism. Thus, they cannot be mapped
efficiently and take full advantage of the computational power of massively parallel
architectures.

1.2 Contributions
In order to address the limitations of the existing simulation techniques for

power grid analysis, this research work presents a class of new parallel algorithms
for efficient analysis of power delivery networks found in contemporary large-scale
ICs as described below:

1. Two parallel algorithms for DC and transient electrical analysis of power
delivery networks, FTCG and FTCG-3D. FTCG targets power delivery net-
works with negligible via resistances (near-2D structures), while FTCG-3D
targets power delivery networks with significant via resistances. Both methods
combine a preconditioned iterative method with two problem-specific and
highly-parallel preconditioning algorithms. Both preconditioning algorithms
take into account the structure of the underlying power grid in order to
accelerate the convergence of the iterative method. In addition, their specialized
structure allows applying a Fast Transform-based solver that utilizes Fast

26
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Fourier Transform (FFT) for the solution of the necessary preconditioning
step. The main characteristics of the application of a Fast Transform are the
near-optimal operation complexity, as well as its inherent parallelism and
low memory requirements, compared to a generic solver for linear systems.
As a result, massively parallel architectures such as GPUs can be used to
accelerate the simulation algorithm, while at the same time the application’s
memory demands render feasible the analysis of very large power grids on such
architectures.

2. A parallel algorithm (ET-FTCG) for static combined electro-thermal analysis
of power delivery networks. ET-FTCG combines FTCG for electrical ana-
lysis and an efficient preconditioning approach for thermal analysis and can
efficiently tackle electro-thermal analysis of very large-scale power delivery
networks by utilizing massively parallel architectures.

1.3 Outline
The next chapters of the dissertation are organized as follows. Firstly, the

relevant background information regarding parallel architectures are presented in
Chapter 2. Then, in Chapter 3 we give the important background details behind
direct and iterative linear system solution methods, preconditioning and porting of
linear system solution algorithms onto parallel architectures. Chapter 4 describes the
theory behind power grid electrical analysis and discusses the proposed algorithms
for large-scale power grid analysis on massively parallel architectures. Following this
chapter, we describe the details behind our proposed algorithm for electro-thermal
analysis of the power delivery network in Chapter 5. The proposed algorithm combi-
nes one of the techniques described in Chapter 4 with a novel algorithm for thermal
analysis of the power grid. Finally, Chapter 6 concludes the dissertation.

27
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

28
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Chapter 2

Parallel Computing Architectures

2.1 Introduction
During the last few years, we have witnessed a paradigm shift towards parallel

computing. Technology advances have enabled the integration of multiple cores in
a single die, thus enabling the development of a plethora of computation substrates
for parallel, high performance, computing. In addition, the diminishing returns from
the continuous technology scaling on single-core processors has forced researchers
to start designing architectures that would incorporate more than one proces-
sors. Architectures such as homogeneous or heterogeneous multicore and manycore
processors, and, more recently, GPUs have allowed the time- and power efficient
execution of computationally intensive applications at a minimum expense.
Multi-core processors seek to maintain the execution speed of sequential programs

as more cores are utilized. Starting from a small number of processors and owing to
technology scaling, designers increased the number of cores at each semiconductor
process generation. Each core comprises its own local cache and computational
resources, while communication between different cores is achieved through means of
high-speed interconnects. Although multi-core processors offer a significant amount
of computational resources, they are mainly optimized for execution of sequential
applications. As a result, porting of an application on a multi-core architecture is
not a trivial process.

29
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Figure 2-1: Architecture of the NVIDIA Tesla K20 GPU.

In contrast to multi-core architectures, massively parallel architectures (and their
main representatives GPUs) comprise a large number of simpler computational
cores, as they are focused on providing massive parallelism.
Fig. 2.1 depicts the architecture of the latest Tesla K20 GPUs accelerator from

NVIDIA, which is a typical high-end GPUs. The smallest unit capable of performing
parallel computations is the Streaming Multiprocessor (SMX), with the main diffe-
rence between a low-end GPUs and a high-end GPUs of the same architecture being
the number of SMXs inside the chip. In the case of Tesla K20 GPUs, each SMX unit
is composed of 192 cores, also known as Streaming Processors (SPs). Its architecture
was built for a maximum of 15 SMXs, giving a maximum of 2,880 cores. However
in practice, some SMXs are deactivated in order to increase the yield.
The cores of a SMX are mainly optimized for calculations which means that

there is no extra hardware devoted to sequential and control operations (e.g. branch
prediction). They are 32-bit units that can perform basic integer and single precision
(FP32) floating point arithmetic. In addition to the computation cores, there are
32 Special Function Unitss (SFUs) that perform special mathematical operations
such as log, sqrt, sin and cos, among others. Each SMX has also 64 double precision

30
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

floating point units, known as FP64, and 32 LD/ST units (load / store) for writing
and reading memory.
As far as the memory model of the GPU is concerned, GPUs such as the Tesla

K20 implement a four-level memory hierarchy; (1)registers, (2) L1 cache, (3) L2
cache and (4) global memory. All levels, except for the global memory, reside in the
GPU chip. The L2 cache is hardware-managed and it improves memory accesses on
global memory. The L1 cache is software-managed (meaning that the programmer
is responsible for managing its contents), there is one per SMX, and it can be as
fast as the registers. Kepler and Fermi based GPUs have L1 caches of size 64KB
that are split into 16KB of programmable shared memory and 48KB of automatic
cache, or vice versa.

2.2 Differences between CPUs and GPUs
Modern GPUs have evolved towards parallel processing, implementing the Multi-

ple Instruction Multiple Data (MIMD) architecture. Most of their chip budget is
reserved for control units and cache, leaving a small area for numerical computations.
A Central Processing Unit (CPU) performs different tasks and advanced control
and cache mechanisms is the only way to achieve a good performance level. On the
other hand, GPUs have a Single Instruction Multiple Data (SIMD) architecture and
the main goal of its architecture is to achieve high performance through massive
parallelism. Contrary to the CPU, a GPU is mostly occupied by Arithmetic Logic
Units (ALUs) and a minimal region is reserved for control and cache. Owing to
their architecture, GPUs can achieve up to three orders of magnitude speedup over
CPUs for algorithms that entail large degree of parallelism.
Although this difference in architecture makes GPUs much more restrictive than

CPUs, a GPU is much more powerful if an algorithm is carefully designed for it.
Contemporary GPU architectures such as NVIDIA’s Fermi and Kepler have added
a significant degree of flexibility by incorporating a L2 cache for handling irregular
memory accesses and by improving the performance of atomic operations, even if

31
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

such flexibility is still far from the one found in CPUs. As a result, there is a trade-
off between flexibility and computing power. Actual CPUs struggle to maintain a
balance between computing power and general purpose functionality. On the other
hand, GPUs aim at massive parallel arithmetic computations.

2.2.1 Concurrency in GPUs

Usually, the number of logical threads that a GPU application requires is larger
than the available processing units in the GPU hardware. As a result, there must
be an efficient way for thread management that will allow for efficient utilization of
the GPU resources.
GPUs divide the number of threads into small groups that work in SIMD

mode. For the NVIDIA GPUs, these groups are known as warps and each warp
contains 32 threads. GPUs comprise efficient mechanisms for handling the entire
space of computation in order to support concurrency. The number of threads that
are running on the GPU corresponds to the number of processing units available.
However, the maximum number of concurrent threads available is much higher. For
example, the latest Tesla K40 GPU can process up to 2,880 threads in parallel, but
can handle up to 30,720 concurrent threads. The thread scheduler is the hardware
part that is responsible for deciding which warp of threads is ready for execution.
It switches idle warps (e.g., warps that are waiting for a memory access) with
warps ready for computation. This means that numerical computations and memory
accesses are pipelined and the thread scheduler tries to maintain this pipeline full
all the time and fully utilize the computational resources of the GPU.

2.3 GPU Programming - The CUDA Program-

ming Model
With the advent of more sophisticated GPUs, the need for programmability

became apparent in order to utilize their computation resources. The Compute
Unified Device Architecture (CUDA) [2] programming model is a parallel computing

32
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Figure 2-2: NVIDIA CUDA Thread Model.

platform and programming model created by NVIDIA and implemented by the
GPUs that they produce. An application written in the CUDA programming model
comprises the host and the device code. The host code executes on the CPU-side and
contains the control-intensive part of the application. It is responsible for uploading
the data to the GPU and orchestrating the execution of the device code. The host
program can work in a synchronous or asynchronous manner, depending if the result
from the GPU is needed for the next step of computation or not. When the device
code has finished in the GPU, the result data is copied back from device to host.
On the other hand, the device code comprises a series of kernel functions (or

kernels) that execute on the GPU and correspond to the computational intensive
parts of the application. CUDA programmers typically use kernels for expressing
parallelism at its finest granularity. Through the abstraction layer that is offered
by the CUDA programming model, the programmer can design massively parallel
algorithms independent of the number of physical processing units or the execution
order of threads.
Upon execution of a kernel function, the programmer defines a logical geometry.

This ”geometry” of execution is described by a 3-level, 3D index space where all
logical threads are organized. The space of computation is composed of a grid,

33
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

blocks and threads. An example of a two dimensional grid of computation depicted
in Fig. 2-2. A grid is a discrete k-dimensional (with k = 1,2,3) box type structure that
defines the size and volume of the space of computation. Each element of the grid is a
block and each block contains many spatially organized threads. A thread is assigned
to every point in the k-dimensional space and corresponds to the execution of a
particular instance of the kernel function. Each thread is described by a unique tuple
of ids. Threads are organized into blocks, each having up to three dimensions (3D
thread index within the block geometry). The overall computation can, in turn, be
partitioned in blocks, also organized in a 3D space (3D block index within the global
computation geometry). CUDA provides functionality for synchronization among
threads that belong to the same block. On the other hand, blocks are completely
independent on each other and can execute in parallel. Therefore, only threads that
belong to the same block can communicate directly, through memory which is visible
only inside the block.

34
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Chapter 3

Linear System Solution Methods

In general, a linear system of equations is described by the following equation:

Ax = b (3.1)

where A ∈ ℜn×n is an n × n matrix of real numbers, b ∈ ℜn is a vector of size n,
and x ∈ ℜn is an unknown solution of vector of size n that will be determined by a
solution method. A solution for the linear system in (3.1) exists if the matrix A is
non-singular, which means that the inverse matrix A−1 with AA−1 = I exists. The
solution methods for linear systems are classified as direct and iterative. Direct
solution methods solve the above linear system in a predefined number of steps,
which depends on the size n of the linear system. On the other hand, iterative
solution methods determine an approximation of the exact solution to a predefined
accuracy level.
Matrices arising in power grid analysis are very large (n can be in the order of

millions or billions) and have two important features:

• The system matrix A is sparse, with less than 20 elements per each row,
in principal. Had the system matrix been full, power grid analysis would be
impractical due to both execution time and memory reasons.

• System matrixA is a Symmetric and Positive Definite (SPD) matrix. Symmetry

35
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

means αij = αji, i, j = 0, 1, . . . , n− 1, while positive definiteness means that

vTAv > 0, for all vectors v

Symmetry and positive definiteness are two important properties of a matrix
that allow utilization of more efficient direct or iterative methods for the
solution of the corresponding system.

This chapter describes the general principles that sparse direct and iterative
methods are based on and describes the state-of-the-art algorithms for solution of
symmetric and positive-definite linear system of equations, namely the Cholesky
decomposition and the Preconditioned Conjugate Gradients algorithms.

3.1 Direct Methods
Direct solution methods solve the linear system in (3.1) in a predefined number

of steps, which depends on the size of the linear system. They consist of two steps,
namely a factorization step where the system matrix is decomposed into a number
of factors, and the solution phase where the matrix factorization is used for the
solution of the initial system.
LU factorization is the direct method used in general, non-symmetric matrices.

It factors the system matrix in two factors, one lower- and one upper-triangular
matrix A = LU, and equation (3.1) is transformed into the following:

Ax = b⇒ (LU)x = b⇒ L(Ux) = b

where L is a lower-triangular matrix whileU is an upper-triangular one. As a result,
the original system is transformed into two equivalent systems and is solved into
two steps as follows:

Ly = b

Ux = y

36
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Algorithm 1 Factorization phase for the LU algorithm
for k = 0 : n− 2 do
for i = k : n− 1 do
a(i,k) = a(i,k) / a(k,k)
for j = k + 1 : n− 1 do
a(i,j) = a(i,j) - a(i,k) · a(k,j)

end for
end for

end for

The advantage of breaking the original linear system into the above set is that each
linear system requires the solution of a triangular system (forward substitution for
the first system and backward substitution for the second one) which is a trivial
computational process.
Algorithm 1 presents the pseudocode for the factorization phase of the LU

algorithm, where the L and U factors are stored in place, while Algorithm 2 and
Algorithm 3 present the pseudocode for the forward and backward substitution for
the solution of the triangular systems. As we can observe, the factorization phase
of the LU algorithm requires 2n3

3
operations, rendering the decomposition phase a

computationally demanding process with the increasing size of the system matrix.
On the other hand, if matrix A is SPD, it allows for a special factorization

and the Cholesky decomposition can be employed. Cholesky decomposition factors
the system matrix into A = LLT and the original system is transformed into the

Algorithm 2 Forward substitution for solution of a lower triangular system
for i = 0 : n− 1 do
y(i) = b(i);
for j = 0 : i− 1 do
y(i) -= L(i, j) * y(j);

end for
y(i) /= L(i, i);

end for

37
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Algorithm 3 Backward substitution for solution of an upper triangular system
for i = n− 1 : 0 do
x(i) = y(i);
for j = i+ 1 : n− 1 do
x(i) -= U(i, j) * x(j);

end for
x(i) /= U(i, i);

end for

Algorithm 4 Factorization phase for the Cholesky algorithm
for i = 1 : n− 1 do
for j = 0 : i do
s = 0
for k = 0 : j − 1 do
s += L[i * n + k] * L[j * n + k];
if i == j then
L[i * n + j] = sqrt(A[i * n + i] - s)

else
L[i * n + j] = (1.0 / L[j * n + j] * (A[i * n + j] - s));

end if
end for

end for
end for

following equivalent systems:

Ly = b

LTx = y

Algorithm 4 presents the pseudocode for the decomposition phase of Cholesky
factorization. Again, after matrix factorization, the resulting linear systems are
solved by employing Algorithm 2 and Algorithm 3. As we can observe, Cholesky
factorization is more efficient than LU factorization, requiring n3

3
operations and

half the amount of memory storage for saving the matrix factors.
The main advantages of direct methods are their robustness and the fact that

once the factorization is completed, the solution of the linear system, even with
multiple right hand side vectors, is a trivial process as long as the system matrix
remains the same. However, direct methods present superlinear scaling both in

38
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

computational and memory requirements with the increasing size of the linear
system, which rules them out for large-scale linear systems.

3.2 Iterative Methods
Iterative methods belong to the general category of relaxation methods. Starting

with an initial solution guess, they provide a partial solution in each step which
eventually converge to the desired solution, with a predefined accuracy level. Iterative
methods can be categorized as follows:

• Stationary methods that solve a linear system with a matrix that approximates
the original one through a series of steps that try to minimize the error of the
result. The approximation matrix is usually a decomposition of the initial
matrix that allows for more efficient solution. Among the most well-known
stationary iterative methods is Jacobi, Gauss-Seidel, and Successive Over-
Relaxation (SOR). If A = D+L+U is a decomposition of the system matrix
in its diagonal (D), upper triangular (U), and lower triangular (L) parts, the
approximation for each of the aforementioned iterative method is presented
below:

– Jacobi: x(k+1) = D−1(b−Rx(k)), where R = U+ L.

– Gauss-Seidel: x(k+1) = L−1
∗ (b−Ux(k)), where L∗ = L+D.

– SOR: x(k+1) = (D+ωL)−1
(
ωb−(ωU+(ω−1)D)

)
x(k) = Lwx(k)+c, where

Lw = −(D+ωL)−1(ωU+ (ω− 1)D), c = (D+ωL)−1ωb, and 0 < ω < 2.

• Non-stationary (or Krylov-subspace) methods: They form a basis of the sequence
of successive matrix powers times the initial residual, which is called the Krylov
sequence. Then, the approximations to the solution are formed by minimizing
the residual over the subspace formed. Typical examples of Krylov-subspace
methods are the Conjugate Gradient (CG), the Generalized Minimal Residual
Method (GMRES), and the Biconjugate Gradient Method (BiCG). The CG

39
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

method is applicable to SPD systems while GMRES and BiCG are applicable
on non-symmetric problems.

We are mainly interested in SPD matrices as this is the type of matrices involved in
linear systems arising from power grid analysis. In the next section we will provide
a detailed description of the CG iterative method that is applicable on SPD linear
systems.

3.2.1 Conjugate Gradient Algorithm

The CG method is the first Krylov-subspace iterative method that was developed
for SPD matrices [31]. The idea behind the CG algorithm is based on the theory of
global minimization and orthogonal polynomials. Through a number of iterations,
the CG method aims to minimize the A-norm:

∥ xi − x ∥2A≡ (xi − x,A(xi − x))

for xi that are in the Krylov subspace Ki(A, r0) ≡ {r0, . . . ,Ai−1r0}. The CG method
approximates the solution of the linear system by computing a series of residual
vectors, where in each step the current residual vector is orthogonal to the space
of the previously generated residuals. At its final iteration, the solution vector
approximates the real solution of the initial system in a predefined accuracy level.
Regarding the convergence rate of CG, it can be shown [4] that the required

number of iterations (for a given initial guess and convergence tolerance) is bounded
in terms of the spectral condition number κ2(A) = ∥A∥2∥A−1∥2 ≥ 1 - specifically,
it is O(

√
κ2(A)), which for SPD matrices becomes κ2(A) = λmax(A)

λmin(A)
where λmax(A),

λmin(A) are the maximum and minimum eigenvalues of A respectively. This means
that convergence of CG is fast when κ2(A) ≃ 1 and slow when κ2(A) ≫ 1.
The main drawback of iterative methods is the unknown number of steps that

are required for convergence (convergence rate). The convergence rate of iterative
methods depends on the spectral properties of the matrix A of the linear system. In
order to improve these properties, a mechanism that transforms the original matrix

40
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

to a matrix with more favorable properties is required. This process is known as
preconditioning.

3.2.2 Preconditioning

Preconditioning is a technique that is used to transform the original linear
system into one with more favorable spectral properties, and is essential to guarantee
fast and robust convergence of an iterative method. In the case of linear systems
involving SPD matrices, the rate of convergence of the conjugate gradient method
depends on the distribution of the eigenvalues of A. Hopefully, the transformed
(preconditioned) matrix will have a smaller spectral condition number, and/or
eigenvalues clustered around 1. Nevertheless, a clustered spectrum (away from 0)
often results in rapid convergence, particularly when the preconditioned matrix is
close to normal. If M denotes the preconditioner matrix, then the following linear
system (left preconditioned system) has the same solution with the system from (3.1)
but is easier to solve:

M−1Ax = b (3.2)

In the case of Krylov subspace methods like the CG algorithm, it is not necessary
to form the preconditioned matrix M−1A explicitly, as it would be too expensive
and we would lose the sparsity of the matrix. Instead, matrix-vector products are
required and a series of linear system solutions of the form:

Mz = r (3.3)

Algorithm 5 describes the Preconditioned Conjugate Gradient (PCG) method for
the solution of an SPD linear systemAx = b. As we can observe, PCG entails a large
degree of parallelism as it comprises only matrix-vector and vector-vector products
that make the method an ideal candidate for mapping onto parallel architectures.
The preconditioner solve stepMz = r in every iteration (line 6) effectively modifies
the CG algorithm to solve the systemM−1Ax =M−1b, which has the same solution
as the original one Ax = b [4]. In this case, the computationally demanding part of

41
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Algorithm 5 Preconditioned Conjugate Gradients
1: x = initial guess x(0)
2: r = b−Ax
3: iter = 0
4: repeat
5: iter = iter + 1
6: Solve Mz = r (Preconditioner Solve Step)
7: ρ = r · z
8: if iter == 1 then
9: p = z
10: else
11: β = ρ/ρ1
12: p = z+ βp
13: end if
14: ρ1 = ρ
15: q = Ap
16: α = ρ/(p · q)
17: x = x+ αp
18: r = r− αq
19: until convergence

the algorithm is the preconditioner solve step, which effectively receives the whole
burden of the algorithm. In general, the condition number κ2(A) and the number
of iterations grows as a function of the matrix dimension N . If M approximates
A in some way, then M−1 ≃ A−1 and κ2(M−1A) ≃ κ2(I) = 1, which makes
the PCG converge quickly as the number of iterations become independent of the
matrix dimension (i.e. they are bounded by a constant, O(1)). So the motivation
behind preconditioning is to find a matrix M with the following properties: 1) the
convergence rate of the preconditioned system M−1Ax = M−1b is fast, and 2) a
linear system involving M (i.e. Mz = r) can be solved much more efficiently (in
O(N) or slightly higher number of operations) than the original system involving
A, in which case the performance of PCG will be optimal or very close to optimal.
An additional salient feature for a preconditioner matrix is the degree of paralle-

lism that the solution of the linear systemMz = rmust entail. The last characteristic
is quite significant in order allow for efficient mapping of the preconditioner solve
step onto parallel architectures.

42
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Preconditioning Algorithms

As was aforementioned, the preconditioner matrix M must provide a good
approximation to the system matrix A. The optimal preconditioner matrix isM =

A, where the productM−1A has a condition number equal to 1. However, the pre-
conditioner solve step requires solving the system Mx = b, which involves again
the problem of the solution of a linear system with A as a system matrix.
As we can deduce, finding an optimal preconditioner is not trivial. A large

number of research approaches focused on developing general purpose precondi-
tioners. Although such preconditioners can be used as black boxes without specific
knowledge of the underlying problem, their efficacy in terms of the convergence rate
for every problem is not guaranteed. On the other hand, problem-tailored precondi-
tioners can provide a great acceleration of the convergence rate. However, developing
such a preconditioner requires that the underlying problem has a special structure,
which is not the case for most problems.
The simplest preconditioner is a diagonal matrix whose diagonal entries are

identical to those ofA. The preconditioner matrix is known as the diagonalor Jacobi
preconditioner and its application requires inverting a diagonal matrix. Although
inverting a diagonal matrix is a trivial process, the Jacobi preconditioner often offers
mediocre results.
Another class of preconditioning algorithms are algorithms based on incomplete

matrix factorizations. Incomplete LU preconditioning can be used in generic linear
systems whereas Incomplete Cholesky preconditioning can be used in the case of
an SPD system. Both are variants of the factorization methods (namely LU and
Cholesky) that were described in Section 3.1. The Incomplete Cholesky algorithm
creates a preconditioner matrix M = LLT , where L is a lower triangular matrix.
Its main difference with the Cholesky factorization is that little or no fill-ins are
allowed in the L factor. If no fill-ins are allowed, L is restricted to have the same
sparsity pattern as A and all other elements are discarded. In this case, the solution
of the preconditioner solve step Mz = r ⇒ LLTz = r is computed with forward

43
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

and backward substitution. Unfortunately, the Incomplete Cholesky is not always
a stable preconditioner.
The need for more elaborate preconditioning algorithms enforced researchers

to deviate from the standard practice of incomplete factorizations and use more
advanced techniques like Sparse Approximate Inverse or Multigrid preconditioners.
Sparse Approximate Inverse (SPAI) preconditioners [8] compute a preconditioner
matrix M ≈ A−1 as the solution of the constrained minimization problem:

minM∈S ∥ I−AM ∥F

where S is a set of sparsity pattern and ∥∥F is the Frobenius norm of a matrix. The
advantage of this method is that after construction, preconditioner’s application
(preconditioner solve step) requires only a matrix-vector multiplication as we already
haveM−1, making a Sparse Approximate Inverse preconditioner extremely efficient.
However, the main problem with this type of preconditioners is that finding an
appropriate sparsity pattern is not easy. An intuitive approach would be one to
select the sparsity pattern of system matrix A. However, this does not work well
for complicated problems, as the preconditioner may require a larger number of
non-zero elements in order to improve convergence.
On the other hand, multigrid algorithms [7] create a preconditioner by appro-

ximating the original matrix through a hierarchy of coarser matrices (or coarser
grids). There are both geometric and algebraic approaches, with the latter taking
advantage of the a-priori knowledge of the geometry of the underlying problem and
the latter working solely on the system matrix. The main idea behind multigrid
methods when used as preconditioners is to accelerate convergence of the iterative
method by global correction from time to time. They are iterative methods on their
own and consist of the following steps:

• Smoothing that aims at reducing high frequency errors, for example using a
few iterations of the Gauss–Seidel method.

• Restriction, which is the downsampling of the residual error to a coarser grid.

44
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

• Interpolation (or prolongation), which interpolates (maps) the correction compu-
ted on a coarser grid into a finer grid.

The main advantage of multigrid is that it often scales linearly with the number
of discrete nodes used, which means that it can solve these problems to a given
accuracy in a number of operations that is proportional to the number of unknowns.
However, its main drawbacks is that multigrid is an iterative method on its own
and that the prolongation and restriction operators are not rigorously defined for
every problem. As a result, they can tax the ability for convergence of an iterative
method when used as preconditioning mechanisms.

3.3 Solution of Linear Systems on Parallel

Architectures
With the advent of massively parallel architectures, there has been an increasing

demand for linear system solution algorithms that could take advantage of the
computational resources that the former offer. Research works [18] and [49] present
a parallel implementation of the LU and the Cholesky factorization direct algorithms
on a GPU. Authors in [18] reduce the problem to a series of rasterization problems
and use appropriate data representations to match the blocked rasterization order
and cache pre-fetch technology of a GPU. They exploit high spatial coherence
between elementary row operations and use fast parallel data transfer techniques
to move data on GPUs. In the same context, authors in [49] organize blocks of
nodes of a sparse matrix in the supernode data structure for GPU and propose a
queue-based approach for the generation and scheduling of GPU tasks with dense
linear algebraic operations in order to accelerate factorization. The main problems
with the aforementioned approaches is that they entail a small degree of paralle-
lism both in the factorization and the solution phase. As a result, they are not good
candidates for mapping onto a parallel architecture. In addition, their large memory
demands can exceed the main memory available on a GPU, making their execution
infeasible.

45
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

On the other hand, mapping an iterative method on a parallel architecture is
a trivial process as both the matrix-vector and the vector-vector products entail a
large degree of parallelism. The only delicate part is the preconditioner solve step,
which is not amenable for mapping onto a parallel architecture if the solution of the
preconditioner matrixM does not contain a large degree of parallelism. Incomplete
factorization-based preconditioners require the construction of the preconditioner
and the triangular solution steps. For both the Incomplete LU and the Incomplete
Cholesky preconditioners, the factorization phase is amenable to porting on a paral-
lel architecture. However, the triangular solution step exhibits a little degree of para-
llelism. As a result, in a parallel implementation that involves a GPU, the triangular
solution step is performed at the CPU and the solution vector is transferred back to
the GPU, which can greatly limit acceleration [23]. This is not the case for multigrid
preconditioners that exhibit a large degree of parallelism, as the internal grid can
be mapped on the computational grid of a GPU quite well. However, the drawbacks
that were mentioned in Section 3.2.2 hinder its wide adoption as a parallel precondi-
tioning method.
Based on the aforementioned observations, we can deduce that finding a pre-

conditioner that will be able to accelerate convergence rate, while at the same
time exhibit a large degree of parallelism is not trivial. The following chapters
will describe three novel, extremely efficient and highly-parallel preconditioning
approaches that in combination with an iterative method can enable analysis of
very large-scale power delivery networks on massively parallel architectures.

46
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Chapter 4

Power Grid Electrical Simulation

4.1 Power Grid Modeling
Power grid electrical simulation refers to the process of finding the response of

the power delivery network when constant (DC analysis) or time-varying (transient
analysis) sources are present. A power delivery network is a multi-layer network
that comprises a number of metal lines, with alternating routing in horizontally
and vertically directions. The lower-most metal layer connects the power delivery
network with the logic gates, whereas the upper metal layer connects the network
with the supply voltage. Each IC comprises two power delivery networks: one for
the supply voltage (VDD network) and the other for the ground (GND network).
The typical model of a power grid is obtained by modeling each wire segment

(between two contacts) as a resistance in series with an inductance, with capacitances
to ground at both contact nodes. Each power bump is modeled as a voltage source
while each logic gate is modeled as a current source. Fig. 4-1(i) depicts the geometry
structure of a 3D power grid for the VDD supply with 3 layers and Fig. 4-1(ii) depicts
its equivalent model for electrical analysis.
Let the electrical model of the power grid be composed of b composite R-L

branches and N non-supply nodes. If we apply the Modified Nodal Analysis (MNA)
method, we formulate the systems of linear equations (4.1) and (4.2), where the
first is for DC and the second is for transient analysis:

47
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

(i) Geometry structure of a 3D power
grid with 3 layers. Vias represent
connections between adjacent metal
layers while the blue circle represents
the solder bump.

+

-

...

...

...

...

...

...

(ii) Equivalent model for electrical analy-
sis.

Figure 4-1: Example of a power delivery network with 3 horizontal and 3 vertical
rails, along with its equivalent model for electrical analysis. The figure depicts only
the VDD rails.

Gx = e (4.1)

G̃x(t) + C̃ẋ(t) = e(t) (4.2)

where

G̃ =

 0 Arl

−AT
rl Rb

C̃ =

 Cn 0
0 Lb

x(t) =

 vn(t)
ib(t)

e(t) =

 en(t)
0

In the systems described in (4.1) and (4.2), Arl is the N × b incidence matrix of the

48
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

directed composite R-L branches (with elements aij = ±1 or aij = 0 depending on
whether branch j leaves/enters or is not incident with node i), vn(t), ib(t) are the
N × 1 and b× 1 vectors of node voltages and branch currents respectively, en(t) is a
N × 1 vector of excitations from independent sources at the nodes, Cn is a N ×N

diagonal matrix of the node capacitances, and Rb, Lb are diagonal b× b matrices of
the resistances and self-inductances of the composite R-L branches.
The system from (4.2) represents a non-linear system of equations. Using the

Backward-Euler approximation we obtain from (4.2) the following discretized system
of linear algebraic equations:

(G̃+
C̃
hk

)x(hk) = e(hk) +
C̃
hk

x(hk−1) (4.3)

where hk, k = 1, . . . is the chosen time-step that may in general vary during the
analysis. By block-matrix operations on the above system we obtain the following
system of coupled recursive equations [11]:

(Arl(Rb +
Lb

hk

)−1AT
rl +

Cn

hk

)vn(hk) =

Cn

hk

vn(hk−1)− (Arl(Rb +
Lb

hk

)−1Lb

hk

ib(hk−1) + e(hk) (4.4i)

ib(hk) = (Rb +
Lb

hk

)−1Lb

hk

ib(hk−1) + (Rb +
Lb

hk

)−1AT
rlvn(hk) (4.4ii)

At each time-step hk we have to solve the N ×N linear system (4.4i) with system
matrix A ≡ Arl(Rb+

Lb

hk
)−1AT

rl+
Cn

hk
and then find branch currents from (4.4ii). If we

neglect inductances and model the grid as an RC circuit, the system (4.4) reduces
to the following system:

(ArlR−1
b AT

rl +
Cn

hk

)vn(hk) =
Cn

hk

vn(hk−1) + e(hk) (4.5)

In both DC and transient analysis, the system matrix can be shown to be an
SPD matrix, which means that efficient direct or iterative methods such as the

49
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Cholesky factorization or the method of PCG can be employed for its solution.
However, the sheer size of power delivery networks from large-scale ICs mandates
utilization of preconditioned iterative methods instead of direct methods due to the
large computational and memory demands of the latter.
In addition, electrical simulation with variable time-step completely rules out

direct methods as they require a matrix re-factorization each time the time-step
is modified, thus increasing their computational demands especially for large-scale
power delivery networks. In addition, a fixed time-step is almost never used in
practice because it becomes very inefficient to constantly simulate during long
intervals of low activity. All practical implementations of integration techniques
for ODEs employ a variable or adaptive time-step mechanism [9]. In those cases,
the reusability of matrix factorization in direct methods ceases to exist. This is
true even for general-purpose preconditioning mechanisms that are based on matrix
factorization (such as the Incomplete Cholesky) preconditioner that was described
in Chapter 3. Although the computational demands of calculating the incomplete
factorization are significantly lower than that for full factorization, this represents
an additional overhead for the corresponding simulation algorithm.
As a result, finding a preconditioning mechanism that will be efficient for analysis

with variable time-step both in terms of computational and memory demands is
essential in order to allow for the wide adoption of iterative linear system solution
algorithms. In addition, any preconditioning mechanism has to offer a significant
degree of parallelism in order to allow for mapping onto parallel architectures.
Fortunately, as we will describe, matrices arising from power delivery networks

can be well-approximated by preconditioners with special structure such that the
number of iterations becomes bounded (or very slowly rising), while the precondi-
tioned linear system Mz = r can be solved by applying a Fast Transform in a
near-optimal number of operations in a sequential implementation, and even less
operations in a parallel environment (owing to the large parallel potential of Fast
Transforms as well as other parallelization opportunities).

50
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

4.2 Related Work
The growing need to simulate large power grids resulted to the design and

development of a large number of power grid analysis methods. These methods
can be categorized into methods that exploit special structures (such as specific
patterns) of the power delivery network and methods that utilize simulation in order
to analyze the behavior of the power delivery network. The former category includes
algorithms that obtain approximated solutions for the power delivery network, e.g.
algorithms that apply the idea of multigrid techniques for solving partial differential
equations for power grid analysis [20] [48] [26], Fast Poisson solvers [32], methods
based on analysis in the frequency domain [19], stochastic-based algorithms [28], or
model order reduction techniques [37] [22]. Although these methods allow for fast
analysis of a power delivery network, they lack the desired accuracy (which is very
important for late design stage analysis), they do not scale well with the size of
the power grid, and in their majority do not provide a large degree of parallelism.
As a result, the latter category of algorithms has attracted a lot of interest due to
the ability for accurate characterization of the static and dynamic behavior of the
power delivery network. Methods that fall into the aforementioned category include
methods that utilize direct and iterative solution algorithms.
Direct solution methods are proposed in [45] and [34] that utilize either the LU

or the Cholesky decomposition. Although they are robust and achieve the most
accurate results, they suffer from a super-linear increase in computational and
memory demands with the problem size. In addition, they provide limited room
for parallelism, and as a result, they cannot utilize the computational resources of
massively parallel architectures.
The need for simulation methods with small memory footprint and efficient

parallel execution has led many researchers to deviate from the standard practice of
direct factorization methods and present more suitable iterative methods. Research
works [11] and [33] have proposed iterative solvers for efficient simulation of power
delivery networks. Power grid analysis was first formulated as a symmetric positive

51
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

definite system to be solved by PCG in [11], but the preconditioner used was the
general-purpose (and inefficient for specialized applications) incomplete Cholesky.
A different pattern-based preconditioner was proposed in [33], but it is very simple
and heuristic and does not appear to reduce the number of iterations significantly.
Recently, parallel architectures have been utilized to accelerate power grid ana-

lysis. Authors in [34] have proposed domain decomposition as a parallel technique
for analysis on multi-core architectures. GPUs are used in research approaches [32],
[16], and [17] as parallel platforms that enable tackling power analysis of large-scale
power networks. Authors in [17] propose multi-grid as a solution method for power
grid analysis and they use multi-core and massively parallel Single Instruction Multi-
ple Thread (SIMT) platforms to tackle power grid analysis, while authors in [32]
formulate the traditional linear system as a special two-dimension Poisson equation
and solve it using analytical expressions based on the FFT algorithm, with GPUs
being used to further speed up the algorithm. However, both [32] and [17] only
solve very regular grid structures with specialized techniques, which can limit their
effectiveness for irregular power delivery networks that are found in late design
stages. Instead, we propose to use such a regular structure as preconditioner in
order to solve any practical (and possibly irregular) power delivery network.
Preconditioning has lately drawn attention as a method for efficiently tackling

the analysis of large-scale and irregular power grid designs. Such a possibility is the
topic of research works [16], [42], [25], and [41] for power grid analysis, and [29]
in the context of IC thermal simulation. In [16] and [42], the preconditioning has
been carried out by multigrid techniques. However, when used as preconditioner for
iterative methods, multigrid is not very efficient because it is an iterative method
by itself, and also solves a system approximately which can hinder the convergence
of PCG. Moreover, some operations of multigrid are not always well-defined (e.g.
mapping by interpolation from coarser to finer grids and back, and correction
of solutions), and the construction of approximate matrices for all coarser grids
is an expensive setup phase which has to be repeated every time the system is
reconstructed in each time-step change during transient analysis. Our approaches

52
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

for preconditioning, based on the application of a Fast Transform, involves a much
more straightforward and inexpensive implementation and reconstruction phase for
transient simulation, while it also provides analytical solution of the preconditio-
ned system (since it is actually a fast direct method). On the other hand, research
work [25] formulates the problem of power grid analysis as a non-SPD problem and
utilizes the GMRES iterative solution algorithm with an Incomplete LU precondi-
tioner. The drawbacks of the method is the increased complexity as the GMRES
algorithm exhibits a higher computational complexity than the PCG algorithm
and the limited parallelism in the preconditioner solve step, due to the solution
of the triangular factors that form the preconditioner, which render our proposed
algorithms more efficient.
The approach in [41] is the one closest to ours, in the sense that it uses a Fast

Poisson-based preconditioner to accelerate the convergence rate of CG. However,
the proposed technique is based on the presumed existence of special areas in
the grid with zero voltage drop as boundary condition, in order to formulate so-
called ”Poisson blocks” with Toeplitz matrix structure, while our approach does not
necessitate such an assumption.
In the same context, authors in [46] and [38] present a support graph-based

and a Random Walk-based preconditioner respectively that can provide a signifi-
cant acceleration to the convergence rate of an iterative method. However, applying
these preconditioners requires the solution of a triangular system which can hinder
preconditioner’s applicability on parallel architectures due to the limited parallelism
of triangular solution algorithms (where the obtained speedup cannot be larger than
2X, as is reported in [40]. On the contrary, applying our Fast Transform precondi-
tioners has greater potential for parallelism than both multigrid and triangular
solution algorithms, especially on GPUs [21] [3].

53
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

4.3 Fast Transform Solvers for Networks with

Special Structure
Fast Transform solvers originate from the solution of the Poisson equation and

are a special category of direct methods for the solution of linear systems of the
form Mz = r, where the system matrix M has a special structure. Their main
characteristics are the optimal (near-linear) complexity and the large degree of
multi-level parallelism. This section describes two Fast Transform solver algorithms
for 2D and 3D networks with special structure.

4.3.1 Fast Transform Solvers for 2D Networks

Let M be a N × N block-tridiagonal matrix with m blocks of size n × n each
(overall N = mn), which has the following form:

M =

T1 γ1I
γ1I T2 γ2I

· · ·

γm−2I Tm−1 γm−1I
γm−1I Tm

(4.6)

where I is the n × n identity matrix and Ti, i = 1, . . . ,m, are n × n tridiagonal
matrices of the form:

54
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Ti =

αi + βi −αi

−αi 2αi + βi −αi

· · ·

−αi 2αi + βi −αi

−αi αi + βi

= αi

1 −1

−1 2 −1

· · ·

−1 2 −1

−1 1

+ βiI

(4.7)

We will describe an algorithm for the solution of a linear system Mz = r with
matrixM of the form (4.6), by the use of a Fast Transform solver in O(mn logn) =
O(N logn) operations. Such a solution is based on the fact that the eigendecompo-
sition of the tridiagonal matrices Ti is known beforehand, and that the matrices of
eigenvectors that diagonalize Ti are matrices that correspond to a Fast Transform.
More specifically, it can be shown (see Appendix A) that each Ti has n distinct
eigenvalues λi,j, j = 1, . . . , n, which are given by:

λi,j = βi + 4αi sin2
(j − 1)π

2n
= βi + αi(2− 2 cos (j − 1)π

n
) (4.8)

as well as a set of n orthonormal eigenvectors qj, j = 1, . . . , n, with elements:

qj,k =

√

1
n
cos (2k−1)(j−1)π

2n
j = 1, k = 1, . . . , n√

2
n
cos (2k−1)(j−1)π

2n
j = 2, . . . , n, k = 1, . . . , n

(4.9)

Note that the qj do not depend on the values of αi and βi, and are the same
for every matrix Ti. If Q = [q1, . . . ,qn] denotes the matrix whose columns are the
eigenvectors qj, then due to the eigen-decomposition of Ti we have QTTiQ = Λi =

diag(λi,1, . . . , λi,n). By exploiting this diagonalization of the matrices Ti, the system

55
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Mz = r with M of the form (4.6) is equivalent to the following system (due to
QTQ = I):

QT

. . .

QT

M

Q

. . .

Q

QT

. . .

QT

 z

=

QT

. . .

QT

r⇔

Λ1 γ1I
γ1I Λ2 γ2I

· · ·

γm−2I Λm−1 γm−1I
γm−1I Λm

z̃ = r̃ (4.10)

where

z̃ =

QT

. . .

QT

 z, r̃ =

QT

. . .

QT

 r
If the N × 1 vectors r, z, r̃, z̃ are also partitioned into m blocks of size n× 1 each,
i.e.

r =

r1
...
rm

 , z =

z1
...
zm

 , r̃ =

r̃1
...
r̃m

 , z̃ =

z̃1
...
z̃m

then we have: r̃i = QTri and z̃i = QTzi ⇔ zi = Qz̃i, i = 1, . . . ,m.
However, it can be shown [36] that each product QTri = r̃i corresponds to

a Discrete Cosine Transform (DCT) of type-II (DCT-II) on ri, and each product

56
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Qz̃i = zi corresponds to an Inverse Discrete Cosine Transform (IDCT) of type-
II (IDCT-II) on z̃i. This means that the computation of the whole vector r̃ from r
amounts to m independent DCT-II transforms of size n, and the computation of the
whole vector z from z̃ amounts to m independent IDCT-II transforms of size n. A
modification of FFT can be employed for each of the m independent DCT-II/IDCT-
II transforms [36], giving a total operation count of O(mn logn) = O(N logn).
If now P is a permutation matrix that reorders the elements of a vector or the

rows of a matrix as 1, n+1, 2n+1, . . . , (m− 1)n+1, 2, n+2, 2n+2, . . . , (m− 1)n+

2, . . . , n, n+n, 2n+n, . . . , (m−1)n+n, and PT is the inverse permutation matrix,
then the system (4.10) is further equivalent to:

P

Λ1 γ1I
γ1I Λ2 γ2I

· · ·

γm−2I Λm−1 γm−1I
γm−1I Λm

PTPz̃ = Pr̃⇔

T̃1

T̃2

. . .

T̃n

 z̃
P = r̃P (4.11)

where

T̃j =

λ1,j γ1

γ1 λ2,j γ2

· · ·

γm−2 λm−1,j γm−1

γm−1 λm,j

(4.12)

and z̃P = Pz̃, r̃P = Pr̃. If the N × 1 vectors z̃P , r̃P are partitioned into n blocks

57
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

z̃Pj , r̃Pj of size m×1 each, then the system (4.11) effectively represents n independent
tridiagonal systems Tj z̃Pj = r̃Pj of size m which can be solved with respect to the
blocks z̃Pj , j = 1, . . . , n (to produce the whole vector z̃P) in a total ofO(mn) = O(N)

operations. For each such system the coefficient matrix (4.12) is known beforehand
and is determined exclusively by the eigenvalues (4.8) and the values γi of matrix
M, while the right-hand side (RHS) vector r̃Pj is composed of specific components
of (DCT-II)-transformed blocks of vector r. The equivalence of the systemMz = r,
withM as in (4.6), to the system (4.11) gives a procedure for fast solution ofMz = r
which is described in Algorithm 6.

4.3.2 Fast Transform Solvers for 3D Networks

The methodology described in Section 4.3.1 can be extended and applied for the
solution of 3D networks. LetM be a N ×N block-tridiagonal matrix with l blocks
of size mn×mn each (overall N = lmn), where l is very small (typically between 2
and 8), since for power grid matrices it corresponds to the number of metal layers.
For ease of presentation we will assume l = 4 in the following, but the development
is perfectly generalizable to an arbitrary number l. In particular, matrixM has the
following form:

Algorithm 6 Fast Transform algorithm for the preconditioner solve step Mz = r,
where M is of the form (4.6)
1: Partition the RHS vector r into m blocks ri of size n, and perform DCT-II
transform (QTri) on each block to obtain transformed vector r̃

2: Permute vector r̃ by permutation P, which orders elements as 1, n+1, . . . , (m−
1)n + 1, 2, n + 2, . . . , (m− 1)n + 2, . . . , n, n + n, . . . , (m− 1)n + n, in order to
obtain vector r̃P

3: Solve the n tridiagonal systems (4.11) with known coefficient matrices (4.12),
in order to obtain vector z̃P .

4: Apply inverse permutation PT on vector z̃P so as to obtain vector z̃.
5: Partition vector z̃ into m blocks z̃i of size n, and perform IDCT-II transform
(Qz̃i) on each block to obtain final solution vector z

58
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

M =

M1 γ1Imn

γ1Imn M2 γ2Imn

γ2Imn M3 γ3Imn

γ3Imn M4

 (4.13)

where Imn is the mn × mn identity matrix, and Mi, i = 1, 2, 3, 4, are alternating
block-diagonal and block-tridiagonal mn×mn matrices with m blocks of size n×n

which have the forms:

Mi = diag(Ti, . . . ,Ti), i = 1, 3 (4.14)

Mi =

(αi+βi)In −αiIn
−αiIn (2αi+βi)In −αiIn

· · ·

(2αi+βi)In −αiIn
−αiIn (αi+βi)In

, i = 2, 4 (4.15)

where In is the n × n identity matrix, and Ti, i = 1, 3 have the form (4.7). Thus,
the eigenvalues and eigenvectors of the diagonal blocks ofMi, i = 1, 3 are the same
as those of Ti, and are given by (4.8) and (4.9) respectively. By a similar reasoning
as in (4.10), the linear system Mz = r with M of the form (4.13) is equivalent to
the following:

QT

n

. . .

QT
n

M

Qn

. . .

Qn

QT

n

. . .

QT
n

 z

=

QT

n

. . .

QT
n

r⇔

59
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

M̃1 γ1Imn

γ1Imn M2 γ2Imn

γ2Imn M̃3 γ3Imn

γ3Imn M4

 z̃ = r̃ (4.16)

where M̃i = diag(Λi, . . . ,Λi), i = 1, 3, and

z̃ =

QT

n

. . .

QT
n

 z, r̃ =

QT

n

. . .

QT
n

 r

If the N×1 vectors r, z, r̃, z̃ are themselves partitioned into lm sub-vectors (blocks)
of size n× 1 each, i.e.

r =

r1
...
rlm

 , z =

z1
...
zlm

 , r̃ =

r̃1
...
r̃lm

 , z̃ =

z̃1
...
z̃lm

then we have r̃i = QT

nri, and z̃i = QT
nzi ⇔ zi = Qnz̃i, i = 1, . . . , lm.

If P is again the permutation matrix of size mn×mn that reorders the elements
of a vector or the rows of a matrix as 1, n+ 1, . . . , (m− 1)n+ 1, 2, n+ 2, . . . , (m−

1)n+2, . . . , n, n+n, . . . , (m−1)n+n, and P1, PT
1 denote the block-diagonal N×N

permutation matrices P1 = diag(P,P,P,P) and PT
1 = diag(PT ,PT ,PT ,PT) then

the system (4.16) is further equivalent to:

P1

M̃1 γ1Imn

γ1Imn M2 γ2Imn

γ2Imn M̃3 γ3Imn

γ3Imn M4

P
T
1P1z̃ = P1r̃⇔

60
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

D1 γ1Imn

γ1Imn D2 γ2Imn

γ2Imn D3 γ3Imn

γ3Imn D4

 z̃
P1 = r̃P1 (4.17)

where

Di = diag(λi,1Im, . . . , λi,nIm), i = 1, 3

Di = diag(Ti, . . . ,Ti), i = 2, 4

and z̃P1 = P1z̃, r̃P1 = P1r̃. In the above, Ti, i = 2, 4, are m × m tridiagonal
matrices of the form (4.7), each having m distinct eigenvalues as in (4.8) (with m

in place of n), and m orthonormal eigenvectors as in (4.9) (with m in place of n).
If Qm = [q1, . . . ,qm] is the common matrix of eigenvectors for Ti, i = 2, 4, and
QT

mTiQm = Λi = diag(λi,1, . . . , λi,m) is the corresponding diagonalization, then the
system (4.17) is further equivalent to:

QT

m

. . .

QT
m

D1 γ1Imn

γ1Imn D2 γ2Imn

γ2Imn D3 γ3Imn

γ3Imn D4

Qm

Qm

 ·

·

QT

m

. . .

QT
m

 z̃P1 =

QT

m

. . .

QT
m

 r̃P1 ⇔

D1 γ1Imn

γ1Imn D̃2 γ2Imn

γ2Imn D3 γ3Imn

γ3Imn D̃4

 ˜̃z = ˜̃r (4.18)

61
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

where D̃i = diag(Λi, . . . ,Λi), i = 2, 4, and

˜̃z =

QT

m

. . .

QT
m

 z̃P1 , ˜̃r =

QT

m

. . .

QT
m

 r̃P1

In a similar fashion as previously, the N ×1 vectors r̃P1 , z̃P1, ˜̃r, ˜̃z can be partitioned
into ln sub-vectors of size m × 1 each, and then the computation of ˜̃r from r̃P1

amounts to ln independent DCT-II transforms of size m, and the computation of
z̃P1 from ˜̃z amounts to ln independent IDCT-II transforms of size m, leading to a
serial operation count of O(lnm logm) = O(N logm).
If we now denote by P2 the N×N permutation matrix that reorders the elements

of a vector or the rows of a matrix as 1,mn+1, . . . , (l−1)mn+1, 2,mn+2, . . . , (l−

1)mn+2, . . . , mn,mn+mn, . . . , (l−1)mn+mn, and by PT
2 the inverse permutation

matrix, then the system (4.18) is eventually equivalent to:

P2

D1 γ1Imn

γ1Imn D̃2 γ2Imn

γ2Imn D3 γ3Imn

γ3Imn D̃4

P
T
2P2

˜̃z = P2
˜̃r⇔

diag(T̃1,1, T̃1,2, . . . , T̃1,m, T̃2,1, . . . , T̃2,m, . . . , T̃n,m)˜̃zP2 = ˜̃rP2 (4.19)

where

T̃i,j =

λ1,i γ1

γ1 λ2,j γ2

γ2 λ3,i γ3

γ3 λ4,j

 , i = 1, . . . , n, j = 1, . . . ,m (4.20)

and ˜̃zP2 = P2
˜̃z, ˜̃rP2 = P2

˜̃r. If the N × 1 vectors ˜̃zP2 , ˜̃rP2 are partitioned into
mn sub-vectors ˜̃zP2

(i−1)m+j,
˜̃rP2

(i−1)m+j of size l × 1 each (i = 1, . . . , n, j = 1, . . . ,m),
then the system (4.19) effectively represents mn independent tridiagonal systems

62
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Algorithm 7 Fast Transform algorithm for the preconditioner solve step Mz = r,
where M is of the form (4.13)
1: Partition the RHS vector r into lm sub-vectors ri of size n, and perform DCT-II
transform (QT

nri) on each sub-vector to obtain transformed vector r̃.
2: Partition vector r̃ into l sub-vectors r̃i of size mn, and permute each sub-vector
by permutation P, which orders elements as 1, n + 1, . . . , (m − 1)n + 1, 2, n +
2, . . . , (m − 1)n + 2, . . . , n, n + n, . . . , (m − 1)n + n, in order to obtain vector
r̃P1.

3: Partition vector r̃P1 into ln sub-vectors r̃P1
i of size m, and perform DCT-II

transform (QT
mr̃iP1) on each sub-vector to obtain transformed vector ˜̃r.

4: Permute vector ˜̃r by applying permutation P2, which orders elements as 1,mn+
1, 2mn+1, . . . , (l−1)mn+1, 2,mn+2, 2mn+2, . . . , (l−1)mn+2, . . . , mn,mn+
mn, 2mn+mn, . . . , (l − 1)mn+mn, in order to obtain vector ˜̃rP2.

5: Solve the mn tridiagonal systems (4.19) with known coefficient matrices (4.20),
in order to obtain vector ˜̃zP2.

6: Apply inverse permutation PT
2 on vector ˜̃zP2 so as to obtain vector ˜̃z.

7: Partition vector ˜̃z into ln sub-vectors ˜̃zi of size m, and perform IDCT-II
transform (Qm

˜̃zi) on each sub-vector to obtain vector z̃P1.
8: Partition vector z̃P1 into l sub-vectors z̃iP1 of size mn, and apply inverse
permutation PT on each sub-vector to obtain vector z̃.

9: Partition vector z̃ into lm sub-vectors z̃i of size n, and perform IDCT-II
transform (Qnz̃i) on each sub-vector to obtain final solution vector z.

T̃i,j
˜̃zP2

(i−1)m+j =
˜̃rP2

(i−1)m+j of size l which can be solved with respect to the sub-vectors
˜̃zP2

(i−1)m+j (to produce the whole vector ˜̃zP2) in a total of O(lmn) = O(N) serial
operations. For each such system, the coefficient matrix (4.20) is known beforehand
and is determined exclusively by the eigenvalues (4.8) and the values γi of the matrix
M.
The equivalence of the systemMz = r, withM as in (4.13), to the system (4.19),

gives a procedure for solution of Mz = r in a near-optimal number of O(N) +

O(N(logn+ logm)) = O(N log (nm)) operations, which is described in Algorithm 7.
Note that apart from the near-optimal serial complexity, both algorithms entail a
great amount of task-level parallelism. The m DCT-II/IDCT-II transforms and the
n tridiagonal systems of Algorithm 6, as well as the lm first-level DCT-II/IDCT-II
transforms respectively, the ln second-level DCT-II/IDCT-II transforms, and the
mn tridiagonal systems of Algorithm 7 are completely independent to each other
and can be executed in parallel. Furthermore, FFT is a highly-parallel algorithm by

63
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

itself, allowing for further acceleration of the individual transforms when executed
on parallel platforms. These issues are further examined in Section 4.4.2, in the
context of our proposed approach for power grid analysis.

4.4 Proposed Methodology for Power Grid

Analysis

4.4.1 Preconditioner Construction and Storage

As mentioned in Section 3.2.2, the intuition behind preconditioner’s formulation
is to create a matrixM that will approximate the system matrix A as faithfully as
possible, while at the same time enable the utilization of efficient algorithms for the
solution of systemsMz = r. This section will describe the construction of two classes
of preconditioners with special structure from a given power grid by exploiting its
spatial geometry. The first preconditioner (2D Fast Transform preconditioner) is
perfectly applicable to power delivery networks with negligible via resistances, while
the second preconditioner (3D Fast Transform preconditioner) is proposed in order
to handle 3D power delivery networks with significant via resistances.
Both preconditioners are based on the following observations:

• Practical power grids are created as orthogonal wire meshes with very regular
spatial geometries, with possibly some irregularities imposed by design con-
straints (e.g. some missing connections between adjacent nodes), and arranged
in a few - typically 2 to 10 - metal layers of alternating routing directions
(horizontal and vertical). Due to the presence of vias between successive metal
layers, the actual grid has the structure of a 3D mesh, with very few planes
along the third dimension.

• Almost all circuit elements (mainly resistances) in each metal layer have the
same values, with few differences due to grid irregularities, as it is shown from
data in [33].

64
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

(i) Geometry structure of a 3D power
grid with 3 layers. Vias represent
connections between adjacent metal
layers while the blue circle respresents
the solder bump.

1 2 3

4 5 6

7 8 9g3
h

g3
h

g2
h

g2
h

g1
h

g1
h

g2
v

g2
v

g2
v

g1
v

g1
v

g1
v

c1 c1 c1

c2 c2
c2

c3 c3
+

-

g
p

(ii) Regular grid obtained after
the 2D regularization process.

1 2 3

19 20

23 24

10

22

12

25 26 27

11

21g3 g3

g3 g3

g2,3 g2,3 g2,3

g1,2g1,2g1,2

g2 g2

g1
g1

c1 c1 c1

+

-

g
 p

v

v v v

vv

g3 g3

c2

c3

6

9

...

c1

c1

g2

g1

g1

15

18

g2,3

v

g2,3

v

...

...

...

...

g2

g1,2
v

g1,2
v

...

(iii) Regular grid obtained after
the 3D regularization process.

Figure 4-2: Example of a power delivery network with 3 horizontal and 3 vertical
rails, along with the regular 2D and 3D grids used for preconditioning. The figure
depicts only the VDD rails.

2D Fast Transform Preconditioner

The 2D Fast Transform preconditioner matrix that approximates the system
matrix of the power grid by a process of regularization of the 3D power grid to a
regular 2D grid, consisting of the following steps:

1. Determine the distinct x- and y-coordinates of all nodes in the different layers
of the 3D grid, and take their Cartesian product to specify the location of the
nodes in the regular 2D grid.

2. By disregarding via resistances between layers, collapse the 3D grid onto the
regular 2D grid by adding together all horizontal branch conductances gh ≡

65
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

1

rh+ lh

hk

connected in parallel between adjacent nodes in the x-direction of the

2D grid, and all vertical branch conductances gv ≡ 1

rv+ lv

hk

connected in parallel
between adjacent nodes in the y-direction of the 2D grid (where rh, lh denote
the resistance and inductance of horizontal branches, and rv, lv denote the
resistance and inductance of vertical branches - the inductances might not be
present in the model). If a conductance of the 3D grid occupies multiple nodes
of the regular 2D grid, it is decomposed into a corresponding number of pieces.
The node capacitances corresponding to the same regular grid nodes are also
added together during the collapsing.

3. In the regular 2D grid, substitute horizontal branch conductances by their
average value in each horizontal rail, and vertical branch conductances by
their average value in each horizontal slice (enclosed between two adjacent
horizontal rails). Substitute node capacitances in each horizontal rail by their
average value as well.

Fig. 4-2(i) depicts a 3D 3-layer power delivery network with m = 3 horizontal
rails and n = 3 vertical rails in likewise-routed layers, while Fig 4-2(ii) shows
the 2D regular grid that results from the previous regularization process used to
construct the preconditioner matrix. If we use the depicted natural node numbering
(proceeding horizontally, since this is always the routing direction of the lowest-level
metal layer), the matrix Arl(Rb+

Lb

hk
)−1AT

rl+
Cn

hk
that corresponds to the regular 2D

grid will be the following block-tridiagonal matrix:
T1 −gv1I
−gv1I T2 −gv2I

−gv2I T3 −gv3I
−gv3I T4

where T1,T2,T3,T4 are 3 × 3 tridiagonal matrices (each one corresponding to a
horizontal rail of the 2D grid) which have the form:

66
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

T1 =

gh1+gv1+gp+ c1

hk
−gh1

−gh1 2gh1+gv1+
c1
hk

−gh1

−gh1 gh1+gv1+
c1
hk

T2 =

gh2+gv1+gv2+

c2
hk

−gh2

−gh2 2gh2+gv1+gv2+
c2
hk

−gh2

−gh2 gh2+gv1+gv2+
c2
hk

T3 =

gh3+gv2+gv3+

c3
hk

−gh3

−gh3 2gh3+gv2+gv3+
c3
hk

−gh3

−gh3 gh3+gv2+gv3+
c3
hk

T4 =

gh4 + gv3 +

c4
hk

−gh4

−gh4 2gh4 + gv3 +
c4
hk

−gh4

−gh4 gh4 + gv3 +
c4
hk

In the above, ghi is the average horizontal conductance in the i-th horizontal rail, gvi
is the average vertical conductance in the i-th horizontal slice, and ci is the average
node capacitance in the i-th horizontal rail. Also hk is the current analysis time-step
(possibly variable), and gp ≡ 1

rp+ lp

hk

is the parasitic conductance of the supply pads
(rp and lp denote the resistance and inductance of the supply pads respectively).
We observe that the form of the above matrix is almost identical to (4.6), with

the exception of the pad parasitic conductance gp in few places along the diagonal
(considering that the number of voltage pads is much smaller than the number of
nodes N). In order to obtain a preconditioner M with an exact form that can be
efficiently solved by the application of a Fast Transform, we can just omit entirely
those pad parasitics. However, we have found that in practice it is usually better
to amortize the total sum of pad conductances of a specific horizontal rail (in the
regular 2D grid) to all nodes of this rail, i.e. assume that all nodes of the i-th
horizontal rail have pad conductance ḡpi = (

∑
gp)i
n
, where (

∑
gp)i is the sum of the

actual pad conductances attached to nodes of the i-th horizontal rail. This also has

67
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

the beneficial effect of making the preconditionerM non-singular in the case of DC
analysis (where capacitances and inductances are absent). In the above example,
the block T1 would become:

T1 =

gh1+gv1+ḡp1+

c1
hk

−gh1

−gh1 2gh1+gv1+ḡp1+
c1
hk

−gh1

−gh1 gh1+gv1+ḡp1+
c1
hk

where ḡp1 = gp

3
. It is not difficult to generalize the procedure to an arbitrary m× n

power grid. In that case, the preconditioner will comprise m blocks of size n × n

and have the form (4.6), where αi = ghi , βi = gvi + gvi−1 + ḡpi + ci
hk
, γi = −gvi ,

i = 1, . . . ,m (with gv0 = gvm = 0).

3D Fast Transform Preconditioner

The above methodology for construction of a preconditioner neglects via resi-
stances and approximates the 3D irregular power delivery network by a 2D regular
structure. Neglecting via resistances in the preconditioner does not appear to be a
very big problem in the analysis of moderately large designs (up to 1M nodes), since
as it was reported in [17], they account for less than 1mV voltage drop in all the
standard industrial power grid benchmarks [27]. However, after getting access to
some even larger industrial grids, it became apparent that in those designs via resi-
stances can be very significant and at least comparable to normal layer resistances.
To illustrate this fact, Table 4.1 presents the maximum and average differences in
voltage drop (or ground bounce) from the correct values when vias are neglected in
those designs. The maximum error in voltage drop ranges from 0.5244V to 3.1626V
for these particular grids (provided that sufficient supply voltage is available). As
expected, neglecting via resistances in the construction of the preconditioner for
those grids can considerably hinder the convergence of CG (and in fact, it has been
observed that it can lead to divergence in some cases).
Based on the above observations, we extend the methodology presented in

Section 4.4.1 to be applicable to large multi-layer power grid designs with signi-

68
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Table 4.1: Maximum and average voltage drop error when neglecting via resistances
in the analysis of a set of large-scale industrial power grid benchmarks.

Benchmark Size (# of nodes) Max. Err. (V) Avg. Err. (V)
ibm_y1000 0.42M 0.5244 0.0246
ibm_y800 0.65M 0.8000 0.0337
ibm_y600 1.17M 0.9315 0.0480
ibm_y500 1.68M 1.2194 0.0536
ibm_y400 2.62M 1.4904 0.0815
ibm_y300 4.69M 2.7567 0.1068
ibm_y250 6.72M 2.5914 0.1244
ibm_y200 10.51M 3.1626 0.2013

ficant via resistances, which cannot be handled by the 2D preconditioner. Given
an irregular 3D power delivery network, we apply the following steps in order to
formulate the 3D Fast Transform preconditioner:

1. Determine the distinct x- and y-coordinates of all nodes in the different layers
of the given power grid, and take their Cartesian product to specify the
location of the nodes in each layer of the regular 3D grid.

2. Substitute all branch conductances gi ≡ 1

ri+
li
hk

in each metal layer by their
average value within this layer (the inductances li might not be present in the
model). Substitute node capacitances ci in each layer by their average value as
well. Finally, substitute the average value in all via conductances connecting
two successive metal layers.

Fig 4-2(iii) shows the regular 3D grid that results from the aforementioned regula-
rization process used to construct the preconditioner matrix when applied on the
power delivery network of Fig. 4-1(i). If we use the depicted natural node numbering
(proceeding horizontally in each layer, since this is always the routing direction of
the lowest-level metal layer), the matrix Anb(Rb +

Lb

hk
)−1AT

nb +
Cn

hk
that corresponds

to the regular 3D grid will be the following block-tridiagonal matrix:

M =

M1 −gv1,2Imn

−gv1,2Imn M2 −gv2,3Imn

−gv2,3Imn M3

69

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

where

M1 = diag(T1,T1,T1), M3 = diag(T3,T3,T3)

M2 =

(g2+gv1,2+gv2,3+

c2
hk
)In −g2In

−g2In (2g2+gv1,2+gv2,3+
c2
hk
)In −g2In

−g2In (g2+gv1,2+gv2,3+
c2
hk
)In

T1 =

g1+gv1,2+

c1
hk

−g1

−g1 2g1+gv1,2+
c1
hk

−g1

−g1 g1+gv1,2+
c1
hk

T3 =

g3+gv2,3+gp+ c3

hk
−g3

−g3 2g3+gv2,3+
c3
hk

−g3

−g3 g3+gv2,3+
c3
hk

In the above, gi and ci denote the average branch conductance and the average
node capacitance in the i-th metal layer. Also hk is the current analysis time-step
(possibly variable), gvi,i+1 is the average via conductance connecting the i-th and
(i+1)-th metal layers, and gp ≡ 1

rp+ lp

hk

is the parasitic conductance of the supply
pads.
We observe that the form of the above matrix is almost identical to (4.13), with

the exception of the pad parasitic conductance gp in few places along the diagonal
of the M3 block that corresponds to the uppermost metal layer. As in the 2D
preconditioner construction, we obtain a preconditionerM with an exact form that
can be efficiently solved by a 3D Fast Transform solver by amortizing the total sum
of pad conductances of the uppermost metal layer (in the regular 3D grid) to all
nodes of this layer, which also has the beneficial effect of making the preconditioner
M non-singular in the case of DC analysis (where capacitances are absent). More
specifically, we assume that all nodes of the uppermost layer have pad conductance
ḡp =

∑
gp

nm
, where

∑
gp is the sum of the actual pad conductances attached to nodes

of the uppermost layer. In the above example, the blocks T3 of M3 would become:

70
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

T3 =

g3+gv2,3+ḡp+ c3

hk
−g3

−g3 2g3+gv2,3+ḡp+ c3
hk

−g3

−g3 g3+gv2,3+ḡp+ c3
hk

where ḡp = gp

9
. It is not difficult to generalize the procedure to an arbitrary power

grid with m horizontal rails, n vertical rails and l layers. In that case, the pre-
conditioner will comprise l blocks of size mn×mn and have the form (4.13), where
αi = gi, (i = 1, . . . , l), βi = gvi−1,i + gvi,i+1 +

ci
hk
, (i = 1, . . . , l − 1, with gv0,1 = 0),

βl = gvl−1,l + ḡp + cl
hk
, and γi = gvi,i+1 (i = 1, . . . , l − 1).

Both the 2D and the 3D preconditioner construction requires only one parsing of
the netlist of the electrical circuit representing the power grid, and is of complexity
O(N) (considering that the number of electrical elements is of the same order as
the number of nodes N), which is very inexpensive since it represents a one-time
cost, roughly comparable to one iteration (and amortized over multiple iterations)
of the PCG method. During transient analysis with variable time-step (which is
almost always used in practical simulation scenarios - and completely rules out
direct methods), the construction has to be repeated at every change of time-step
in the same O(N) operations (this is also necessary for all other known precondi-
tioners, and is in fact very expensive for some of them e.g. multigrid preconditio-
ners). However, a considerable simplification is possible in the very common case
of resistive or RC-only electrical models (i.e. when inductances are absent from the
model) since the change of time-step does not affect any actions in the construction
procedure, and thus there is no need for a full reconstruction (but only, actually,
an update in the eigenvalues (4.8) of the preconditioner matrix).
Apart from the near-optimal complexity of solving the systems Mz = r, one

other salient feature of the proposed preconditioners is that there is no need for
explicit storage of the preconditioner matrix M from (4.6) or (4.13). As it is easily
observed, only the eigenvalues (4.8) and the values γi of M are necessary in the
execution of Algorithms 6 and 7. These are the only necessary values for formulation
of the tridiagonal system (4.11) with coefficient matrix (4.12) and the tridiagonal

71
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

PCG routine

(either on CPU or GPU)
.

.

.
Preconditioner Solve Step

(Mz = r)
.

.

.

GPU memory contents:

· Eigenvalues λi,j from Eq. (7)

· Average rail resistances γi

· Multiple, independent DCT-II/IDCT-II

transforms via FFT

(highly-tuned FFT libraries like cuFFT)

· Small number of large independent

tridiagonal systems (highly-tuned tridiagonal

solvers)

· Each system is assigned to one GPU

Algorithm 2 (GPU)

Key Steps

GPU 1 GPU N. . .

Multiple FFTs

`

GPU Main MemoryGPU Main Memory

GPU

(i) Key steps for the application of the pre-
conditioner for 2D power grids.

PCG routine

(either on CPU or GPU)
.

.

.
Preconditioner Solve Step

(Mz = r)
.

.

.

GPU memory contents:

· Eigenvalues λi,j from Eq. (7)

· Average via resistances γi

· Multiple, independent DCT-II/IDCT-II

transforms via FFT

(highly-tuned FFT libraries like cuFFT)

· Large number of small independent

tridiagonal systems (each system assigned

to a GPU streaming processor - SP)

GPU Main Memory

GPU

Algorithm 3 (GPU)

Key Steps

GPU 1 GPU N. . .

Multiple FFTs

`

SP

...

SP

SP

SP

...

..
.

(ii) Key steps for the application of the pre-
conditioner for 3D power grids.

Figure 4-3: The key steps for the application of the proposed preconditioners and
their mapping onto the available GPUs.

system (4.19) with coefficient matrix (4.20) that correspond to the 2D and the 3D
preconditioning approaches respectively. Thus, only storage for those mn+ (m− 1)

values for the 2D algorithm and lmn+(l−1) values for the 3D algorithm needs to be
allocated. A small memory footprint is very important for mapping the algorithm
onto architectures with limited available memory space such as GPUs.

4.4.2 Procedure Implementation and Opportunities for Para-
llelism

After the preconditioner construction and storage, the whole procedure involves
execution of Algorithm 5 with Algorithm 6 for the 2D case or Algorithm 7 for the 3D
case in place of the preconditioner solve stepMz = r. Every part of this procedure
offers ample multi-grain parallelism, both data- and task-level, thus enabling highly
parallel computing efficiency. This comes in contrast with most standard precondi-
tioning methods, such as incomplete factorizations, which have limited parallelism,
either data-level or task-level. The details for each major part of the procedure, as
well as the opportunities for introducing parallelism are presented below.

72
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Main CG Algorithm

As seen in Algorithm 5, apart from the preconditioner solve step, the PCG
method involves 2 inner products and 1 sparse matrix-vector product per iteration,
which can be implemented efficiently by available BLAS-1 and BLAS-2 (Basic
Linear Algebra Subroutines) kernels. The algorithm also has 3 scalar-vector products
with vector updates per iteration which can be fully parallelized.

DCT-II & IDCT-II Transforms

As already mentioned in Section 4.3.1, in order to apply the independent DCT-II
and IDCT-II transforms of size n of Algorithm 6 (in steps 1 and 5) and of size n and
m of Algorithm 7 (steps 1, 7 and 3, and 9 respectively) we can use a modification
of the one-dimensional FFT algorithm [36], which gives a near-optimal sequential
complexity (O(n logn) for transforms of size n) for each of these transforms. FFT
is also a highly parallel algorithm and an ideal candidate for mapping onto a multi-
core processor or a GPU, with a parallel complexity of O((n logn)/p), where p is the
number of available processors [15]. This parallelization gain is especially evident
on GPUs which offer a large amount of processing cores and can greatly reduce the
cost of applying the one-dimensional FFT.

Solution of Tridiagonal Systems

One of the most time-consuming operations in the proposed algorithms is the
solution of tridiagonal systems, either a small number of large ones (Algorithm 6)
or a large number of small ones (Algorithm 7). However, the solution of tridiagonal
systems offers abundant data-level parallelism as well, and various algorithms have
been proposed in the literature for its implementation on parallel architectures.
These can be classified to algorithms that target coarse-grain parallelism (and are
appropriate for multi-core processors) such as two-way Gaussian elimination or
Bondelli’s algorithm [30], and to algorithms that exploit fine-grain parallelism (and
are appropriate for GPUs) such as Parallel Cyclic Reduction [44] for systems with
large dimensions or even the naive Thomas algorithm [35] for small tridiagonal

73
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

systems, where the latter two algorithms can offer the greatest speedup, as was
naturally expected.

Task-Level Parallelism

The proposed algorithms entail a large number of one-dimensional DCT-II and
IDCT-II transforms, and solution of tridiagonal linear systems. In each step, the
operations are totally independent and thus each one can be solved separately from
the others. This translates to additional task-level parallelism, which can lead to
further acceleration of the whole preconditioner solve step in multi-GPU systems,
where all independent transforms and tridiagonal solvers can be executed in paral-
lel without requiring any data communication between different GPUs. Figure 4-
3 depicts the main steps for mapping the proposed algorithms on a single- or
multi-GPU system. As we can observe, the DCT-II/IDCT-II transforms can be
executed in parallel either on a single or on multiple GPUs, without requiring any
communication between the individual GPUs. In addition, the proposed algorithms
can greatly benefit from the existence of multiple GPUs for the solution of the
independent tridiagonal systems. In the 2D algorithm (Figure 4-3(i)) each tridiagonal
system is mapped onto one of the available GPUs and solved independently by
employing an off-the-shelf tridiagonal solution routine which exploits data-level
parallelism within the algorithm. In the case of the 3D algorithm (Figure 4-3(ii)),
the mapping onto a GPU can be made much more efficient by assigning each SP
of the available GPU the task of solving one small tridiagonal system. Especially
for l = 2, 3, analytical solutions can be provided for these systems, while for l =
4, . . . , 8, we can utilize simple but effective tridiagonal solution algorithms such as
the Thomas algorithm [35].

74
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

4.5 Experimental Results

4.5.1 Experimental Setup

To evaluate the performance of our methodology for power grid analysis, we
compared four methods for solving the linear system (4.4i): CHOLMOD [12] which
is a state-of-the-art CPU-based direct solver for sparse SPD linear systems, the
PCG method with zero-fill Incomplete Cholesky preconditioner (ICCG), the PCG
method with a support graph-based preconditioner (SPGCG) similar to the one
presented in [46], and the proposed methods of using PCG with the Fast Transform
preconditioners (FTCG-2D and FTCG-3D). We have ported CHOLMOD, ICCG,
and FTCG on both a multi-core and a GPU architecture, while SPGCG was ported
only on a multi-core architecture. For the GPU implementation of FTCG-2D and
FTCG-3D, we have ported the entire CG iterative method (Algorithm 5) and
the preconditioner solve step (Algorithm 6 and Algorithm 7) on the GPU. This
eliminates the need for additional memory transfers between the host and the GPU
and reduces the communication overhead, provided that the GPU has sufficient
memory to accommodate the algorithm’s working set (especially the system matrix
A in sparse form). The only part of our algorithm that is implemented on the CPU
for the GPU implementation is the preconditioner’s initial construction and recon-
struction procedure (during a time-step change). This procedure effectively results
in the computation of the eigenvalues (4.8) and the values γi of the preconditio-
ner matrix M, which is the only information needed to store the preconditioner.
Afterwards, the CPU is responsible for transferring these values to the main memory
of the GPU (to update the elements of the preconditioner).
We have used Intel Math Kernel Library (MKL) [1] for implementing the CPU

versions of the ICCG and FTCG-CPU algorithms, and CUDA library [2] (version
5.5, along with CUBLAS, CUSPARSE and CUFFT libraries) for mapping the
FTCG algorithm on the GPU. Both the multi-core and the GPU implementation of
FTCG involve the whole PCG method described in Algorithm 5, with Algorithm 6

75
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

or Algorithm 7 in place of the preconditioner solve step of line 6. We note that
both MKL and CUDA libraries contain implementations of BLAS-1 and BLAS-2
kernels, FFT routines and tridiagonal solvers, all especially optimized for execution
on multi-core and GPU architectures respectively. We executed all experiments on
a Linux workstation, comprising an Intel Core i7 processor running at 2.4GHz (6
cores and 24GB main memory) and an NVIDIA Tesla C2075 GPU with 5GB of
main memory. We used Intel and NVIDIA compilers for compiling our source code
for the CPU and the GPU respectively, with the optimizations flags that resulted
to the lowest execution time.
We have employed a set of industrial power grid designs [27] and a set of

synthetic benchmarks, ranging from simple to more complicated designs, for the
experimental validation of the proposed approach. The set of benchmarks include
both benchmarks with negligible via resistances (ibmpg* and bench*_2D) as well
as benchmarks with significant via resistances (ibm_y* - also used in research
works [43] [13] - and bench*_3D). Table 4.2 and Table 4.3 present the details of each
benchmark. The industrial (IBM) benchmarks are typical representatives of quite
irregular designs from custom microprocessors, while the synthetic benchmarks are
representatives of regular power delivery networks that are produced from most
industrial automated routing tools. The synthetic benchmarks were full-RLC and
had typical layer parameters (e.g. average resistance) taken from the industrial
benchmarks and real designs. To compare the five different methods for power grid
analysis, we have conducted transient simulation with variable time-step over a total
of 1000 time-steps.

4.5.2 Transient Analysis Results for the Industrial
Benchmarks

The simulation results for the power grid benchmarks with negligible and signifi-
cant via resistances are presented in Table 4.4 and Table 4.5 respectively. Execution
time (T) refers to the average time required for solution at each time-step, including

76
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Table 4.2: Circuit details and average number of iterations required for convergence
of each iterative method over all simulation time-steps for the set of power grid 2D
benchmarks with negligible via resistances. N is the total number of nodes, Nr is
the number of resistors, Nl is the number of metal layers, and It denotes the number
of iterations required for convergence by the corresponding method.

Benchmark N Nr Nl ItICCG ItSPGCG ItFTCG

ibmpg2 127K 208K 5 207 80 38
ibmpg3 851K 1.40M 5 1457 128 306
ibmpg4 953K 1.56M 6 405 96 59
ibmpg5 1.07M 1.07M 3 1334 116 192
ibmpg6 1.67M 1.64M 3 1479 220 261

ibmpgnew1 1.46M 1.42M N/A 1059 108 237
ibmpgnew2 1.46M 2.35M N/A 1657 112 354
ibmX400 2.62M 2.62M N/A 1657 112 354
bench1_2D 525K 1.04M 2 541 22 18
bench2_2D 4.05M 8.38M 4 1404 26 25
bench3_2D 6.29M 12.57M 5 1743 25 24

any overhead for matrix re-factorization (in CHOLMOD) and preconditioner recon-
struction (in iterative methods) whenever the time-step changes. We have employed
double-precision arithmetic for the benchmarks, while the iterative solvers were
terminated when the solution residual was below 10−6. This threshold is typically
sufficient for ensuring a maximum error less than 1mV (and effectively results in
perfect accuracy that is indistinguishable from direct methods).
As we can observe, CHOLMOD (the direct solver) suffers from a super-linear

increase in execution time as the size of the power grid increases. In fact, the analysis
of the largest designs was infeasible due to excessive memory requirements. On the
other hand, ICCG, SPGCG, and PCG using the proposed Fast Transform-based
preconditioners (FTCG) achieved lower execution times when implemented on a
multi-core CPU (where CHOLMOD was also executed). In particular, the multi-
core implementation of the FTCG method (FTCG-CPU) showed a speedup ranging
from 12.79X to 77.85X in comparison to CHOLMOD.
Restricting now the comparison to the iterative methods, we observe a significant

acceleration of the convergence rate (or reduction in the number of iterations) of

77
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Table 4.3: Circuit details and average number of iterations required for convergence
of each iterative method over all simulation time-steps for the set of power grid 3D
benchmarks with significant via resistances. N is the total number of nodes, Nr is
the number of resistors, Nl is the number of metal layers, and It denotes the number
of iterations required for convergence by the corresponding method.

Benchmark N Nr Nl ItICCG ItSPGCG ItFTCG−3D

ibm_y1000 419K 601K 8 272 15 14
ibm_y800 655.8K 940.6K 8 302 17 14
ibm_y600 1.17M 1.68M 8 346 86 13
ibm_y500 1.68M 2.41M 8 369 470 13
ibm_y400 2.62M 3.77M 8 404 229 14
ibm_y300 4.68M 6.73M 8 436 373 16
ibm_y250 6.72M 9.66M 8 466 531 20
ibm_y200 10.5M 15.1M 8 466 372 18
bench1_3D 3.1M 6.0M 3 951 48 75
bench2_3D 16.8M 33.4M 8 1575 76 52
bench3_3D 18.9M 37.5M 6 1551 76 57
bench4_3D 22.2M 44.0M 7 1379 83 54

PCG when our Fast Transform preconditioner is applied. In particular, the proposed
preconditioner was able to reduce the number of iterations by a factor ranging from
4.4X to 6.8X compared to the incomplete Cholesky preconditioner for the industrial
benchmarks. This is a testament to the capability of the proposed preconditioner
to provide an extremely good approximation of matrices of actual power grids.
In addition, the number of iterations appears fairly constant with the increase of
the problem size, while it exhibits a linear increase for the incomplete Cholesky
preconditioner (which is a well-known theoretical fact [4]). In fact, for very regular
problems (like the synthetic benchmarks) the constant number of iterations of Fast
Transform preconditioners can be proven theoretically [10] [14]. Moreover, FTCG
is able to greatly reduce the iteration count for the 3D industrial benchmarks when
compared to SPGCG by a factor ranging from 1.07X to 36.15X. The 3D industrial
benchmarks are quite dense designs which can tax the efficiency of the support-graph
based preconditioner. This is not the case for the 2D industrial designs, where the
SPGCG preconditioner outperforms FTCG in terms of iterations count. However,

78
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Table 4.4: Runtime results for the four solvers on the 2D benchmarks. Iter.
is the average number of iterations required for convergence of each iterative
method over all simulation time-steps. T denotes the average time required for the
solution at each time-step. SpdCHLMD, SpdICCG, and SpdSPGCG denote the speedup
of FTCGCPU and FTCGGPU over CHLMDCPU , ICCGCPU , and SPGCGCPU

respectively.
Benchmark CHLMDCPU ICCGCPU SPGCGCPU FTCGCPU FTCGGPU

T (s) T (s) T (s) T (s) SpdCHLMD SpdICCG SpdSPGCG T (s) SpdCHLMD SpdICCG SpdSPGCG

ibmpg2 4.9 1.73 1.08 0.33 14.96X 5.32X 3.3X 0.04 139.71X 49.66X 30.79X
ibmpg3 130.2 83.58 7.79 6.92 18.82X 12.09X 1.12X 0.57 226.35X 145.43X 13.53X
ibmpg4 221.9 21.36 10.2 2.85 77.85X 7.53X 3.57X 0.23 986.22X 95.45X 45.33X
ibmpg5 110.9 82.36 11.29 8.67 12.79X 9.51X 1.30X 0.58 189.32X 140.79X 19.27X
ibmpg6 235.1 143.56 23.65 11.96 19.65X 12.01X 1.97X 0.85 275.17X 168.27X 27.68X

ibmpgnew1 353.0 82.43 12.45 7.89 44.7X 10.46X 1.57X 0.53 661.56X 154.88X 23.33X
ibmpgnew2 339.9 172.38 18.80 15.39 22.08X 11.21X 1.22X 1.03 329.78X 167.47X 18.24X
ibmX400 553.3 1876 357.82 375 20.65 26.7X 17.3X 375 2.58 214.3X 138.7X
bench1_2D 67.3 26.7 3.66 1.8 37.61X 14.83X 2.03X 0.08 846.5X 333.7X 45.74X
bench2_2D 1523.7 542 28.99 21.4 71.34X 25.32X 1.35X 0.72 2119.7X 752.5X 40.25X
bench3_2D 1631.1 1002 41.83 30.8 52.96X 32.53X 1.36X 1.11 1469.45 899.7X 37.55X

Table 4.5: Runtime results for the four solvers on the 3D benchmarks. SpdCHLMD,
SpdICCG, and SpdSPGCG denote the speedup of FTCG−3DCPU and FTCG−3DGPU

over CHLMDGPU , ICCGGPU , and SPGCGCPU respectively.
Benchmark CHLMDGPU ICCGGPU SPGCGCPU FTCG− 3DCPU FTCG− 3DGPU

T (s) T (s) T (s) T (s) SpdCHLMD SpdICCG SpdSPGCG T (s) SpdCHLMD SpdICCG SpdSPGCG

ibm_y1000 15.85 2.87 0.46 0.55 28.72X 5.20X 0.82X 0.10 157.73X 28.60X 4.54X
ibm_y800 25.95 5.60 1.47 0.71 36.65X 7.90X 2.07X 0.15 176.51X 38.06X 9.98X
ibm_y600 50.94 11.52 8.47 1.20 42.45X 9.6X 7.05X 0.20 249.70X 56.47X 41.5X
ibm_y500 81.45 17.61 109.434 2.39 34.07X 7.37X 45.77X 0.34 240.26X 51.94X 322.81X
ibm_y400 123.615 30.99 61.40 3.15 39.24X 9.84X 19.5X 0.43 290.17X 72.74X 144.14X
ibm_y300 No mem. 61.50 259.16 6.60 N/A 9.33X 39.26X 0.85 N/A 72.18X 304.17X
ibm_y250 No mem. 95.91 525.34 12.45 N/A 7.70X 42.19X 1.94 N/A 49.33X 270.23X
ibm_y200 No mem. 151.71 583.26 15.72 N/A 9.65X 37.10X 2.01 N/A 75.47X 290.18X
bench1_3D 3476 168.84 49. 35 39.6 87.78X 4.26X 1.24X 2.1 551.74X 26.8X 23.5X
bench2_3D No mem. 1463.98 221.45 124.56 N/A 11.75X 1.77X 9.57 N/A 50.99X 23.14X
bench3_3D No mem. 1607.87 249.4 158.08 N/A 10.17X 1.57X 12.45 N/A 43.04X 20.03X
bench4_3D No mem. 1686.16 304.79 172.06 N/A 9.79X 1.77X 14.49 N/A 38.78X 21.03X

as will be discussed, this is not depicted in the execution time, mainly due to the
limited parallelism in the preconditioner solve step that SPGCG exhibits.
The reduced iteration count is the major factor for the speedup of the multi-core

implementation of FTCG with respect to ICCG, which ranges from 5.32X to 12.09X
and from 5.2X to 9.84X for the 2D and the 3D industrial benchmarks respecti-
vely. On the other hand, the inherent parallelism is the main acceleration factor
of FTCG when compared with SPGCG. FTCG is able to achieve an acceleration
factor ranging from 1.12X to 3.57X and from 2.07X to 45.77X for the 2-D and
the 3D industrial benchmarks respectively. In addition, due to the complexity of

79
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

benchmark ibmX400, SPGCG was not able to simulate the corresponding power
delivery network. The only benchmark where SPGCG outperforms FTCG is ibm_y1000,
which is a rather small design and the direct solver that is employed in the pre-
conditioner solve step of SPGCG is faster than the solution procedure of FTCG.
Additional acceleration is gained when GPUs are utilized. GPUs can take advan-

tage of the inherent parallelism of FFT and the tridiagonal solution algorithm by
employing their vast amount of computational resources. Our algorithms achieve
an average speedup of 131.7X over ICCG for the 2D and an average speedup
of 55X for the 3D industrial benchmarks. The acceleration becomes even more
pronounced as the size of the power grid increases. FTCG achieves a speedup
equal to 167.47X and 75.47X for a 1.46M-node 2D and a 10.5M-node 3D industrial
benchmark respectively. FTCG also outperforms SPGCG when GPUs are employed.
It achieves an average speedup of 22.85X and of 173.4X over SPGCG for the 2D and
3D industrial benchmarks respectively, while it achieves a speedup of 18.24X and
of 290.18X for the largest 2D and 3D benchmark respectively. Although SPGCG
has not been ported on a GPU, the direct solution algorithm that is employed in
the corresponding preconditioner solve step entails limited parallelism. Even on a
GPUs, the maximum speedup would be 2X-3X, which still renders our algorithm
superior.

4.5.3 Transient Analysis Results for the Synthetic
Benchmarks

In order to further exemplify the robustness and efficiency of the proposed pre-
conditioning algorithms, we have employed a set of synthetic benchmarks, with sizes
ranging from 525K-nodes to 6.29M-nodes for the 2D case and from 3.1M-nodes to
22.2M-nodes for the 3D case. The corresponding simulation results are presented in
Table 4.4 and Table 4.5.
CHOLMOD (the direct solver) suffers from a super-linear increase in memory

consumption as the size of the power grid increases. As a result, it was not able to

80
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

simulate the largest 2D synthetic power grid and it was able to simulate only the
smallest of the 3D designs. In terms of execution time, the multi-core implementation
of FTCG achieved a speedup of 52.96X and 87.78X over the largest 2D and 3D
power delivery network that CHOLMOD was able to simulate, while the GPU
implementation of FTCG achieved a speedup of 1469.45X and 551.74X respecti-
vely.
As shown in Table 4.4 and Table 4.5, the multi-core implementation of FTCG

outperforms both the multi-core and the GPU implementation of ICCG. FTCG
achieves a speedup ranging from 14.83X to 32.53X for the 2D designs and a speedup
ranging from 4.26X to 11.75X for the 3D designs. The efficiency of our algorithms
is further increased when ported on a GPU, where they achieve a speedup ranging
from 26.8X to 899.7X compared to ICCG. On the other hand, the multi-core
implementation of SPGCG was able to achieve comparable number of iterations
and execution time with FTCG both on the 2D and the 3D synthetic benchmarks.
However, the GPU implementations of the proposed algorithms were able to achieve
speedups ranging from 37.55X to 55.21X for the 2D synthetic benchmarks and from
16.37X to 29.83X for the 3D synthetic benchmarks. This is a testament for the high
degree of parallelism that the proposed algorithms entail, which allows harnessing
the computational capabilities of massively parallel architectures. Moreover, owing
to the task-level parallelism further acceleration can be achieved by porting the
proposed algorithms on a multi-GPU system (although this has not implemented
in this work). This comes in contrast to the majority of power delivery simulation
algorithms that provide limited parallelism.
It is noted that both for the 2D and the 3D benchmarks the GPU execution time

includes the communication overhead for transferring the updated eigenvalues (4.8)
and the values γi of the preconditioner matrix after every reconstruction from the
host to the GPU. However, the bandwidth of the PCI-Express bus was able to
effectively hide this additional overhead. As a result, the time required for these data
transfers was smaller than 1% of the execution time for each time-step. Moreover,
the reconstruction step can be executed asynchronously with the execution of the

81
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

algorithm on the GPU and practically eliminate this communication overhead.

4.5.4 Scalability of FTCG and FTCG-3D

Fig. 4-4(i) and Fig. 4-4(ii) shows the runtime of the four solution algorithms
under comparison for the 2D and the 3D industrial benchmarks respectively. Owing
to the efficiency of their preconditioning mechanisms, both FTCG and FTCG-3D
are able to achieve a favorable scaling with the size of the power delivery network.
This is not the case for the other algorithms under comparison, and especially for the
3D case that exhibits a greater complexity, CHOLMOD, ICCG, and SPGCG exhibit
a super-linear scaling. This is mainly due to the inefficiency of the preconditioning
mechanisms that are use in these methods. The Incomplete Cholesky preconditioner
used in the ICCG method is a general one and is not able to reduce the iteration
count to a great extent, while the preconditioner of SPGCG is not able to handle
dense graphs with increased complexity, thus increasing the time required for the
solution of the preconditioner solve step.

(i) Runtime scalability of FTCG

(ii) Runtime scalability of FTCG-3D

Figure 4-4: Runtime scalability of FTCG and FTCG-3D on the set of the industrial
benchmarks.

In addition, the second important feature of FTCG and FTCG-3D is that they
entail a large degree of parallelism, which allows for efficient harnessing of the
computational resources of multi-core and massively parallel architectures. As shown
in Fig. 4-5(i) and Fig. 4-5(ii) that depict the scalability for 1 and 6 threads as well as
the GPU implementation of FTCG and FTCG-3D respectively, we can observe that

82
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

the proposed algorithms achieve a linear acceleration with the increasing number
of threads. Additional speedup can be achieved with porting the algorithms on the
GPU that offers a larger amount of computational resources. The speedup that is
achieved in the parallel implementations for the largest 2D benchmark compared to
the multi-core implementation using 1 thread is 5.3X and 84.8X for the multi-core
implementation using 6 threads and the GPU implementation respectively, while
the speedup that is achieved for the largest 3D benchmarks is 5.5X and 43.01X

for the multi-core implementation using 6 threads and the GPU implementation
respectively.

(i) Thread scalability of FTCG

(ii) Thread scalability of FTCG-3D

Figure 4-5: Thread scalability of the 1-thread, 6-thread, and the GPU
implementations of FTCG and FTCG-3D on the set of the industrial benchmarks.

4.5.5 Memory Efficiency

A salient feature of the proposed Fast Transform preconditioners is the elimination
of the need for explicit storage of the preconditioner matrices M, since only the
eigenvalues from (4.8) and the values γi (that correspond to the average via resistance)
need to be kept in memory. This matrix-less formulation of the proposed pre-
conditioning approaches contributes significantly in the reduction of their memory
requirements. We studied the memory efficiency of the proposed approaches by
measuring the amount of memory required by FTCG, CHOLMOD, and ICCG for
the analysis of the three largest benchmarks (including both industrial and synthetic
ones). The corresponding results are presented in Table 4.6.

83
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

We can observe that there is a dramatic increase in memory usage for the
CHOLMOD algorithm with the increase of the grid size, where for the largest
design CHOLMOD required 14.5GB of main memory. On the other hand, our
algorithm provides scalable memory performance. The total amount of required
memory increased linearly with the increase in the number of power grid nodes, while
the algorithm consumed less memory by an average factor of 17.7X and 1.33X than
CHOLMOD and ICCG respectively. Compared with ICCG, our method requires
limited additional storage for the preconditioner matrix, thus memory requirements
are further reduced. Even for our largest benchmark, the algorithm consumed less
than 690MB of memory, which renders feasible the analysis of large-scale power
grids on GPUs (which are characterized by the limited amount of main memory).
In addition, limited memory consumption can have beneficial effects on the actual
execution of our algorithm when it is mapped onto a GPU. In that case, the available
memory can accommodate the algorithm’s working set, thus eliminating the need
for additional data transfers between the GPU and the host.

Table 4.6: Memory requirements (MB) for the largest 2D benchmarks of FTCG,
CHOLMOD, and ICCG. MFTCG−GPU is the cumulative memory on the GPU and
the CPU required by the FTCG-GPU implementation.

Benchmark MCHOLMOD MICCG MFTCG−CPU MFTCG−GPU

ibmX400 3350 311 239 239
bench2_2D 7700 615 471 471
bench3_2D 14500 919 685 685

4.5.6 Efficiency Under Grid Irregularity

Another aspect that must be considered during the application of the proposed
approaches is the degree to which the given power grid can deviate from regularity,
since the proposed preconditioners are constructed by averaging branch resistan-
ces and node capacitances. In order to study the effect of grid irregularity on
the preconditioners’ behavior, we modified the 3.1M-node 3D synthetic benchmark

84
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

bench1_3D to have random values of branch conductances with varying degrees of
randomness around their nominal values. Table 4.7 presents the average number of
iterations required for convergence of FTCG-3D over multiple time-steps of transient
analysis, after applying successively higher degree of irregularity ranging from 0.1%
to 100%. As we can observe, FTCG-3D was extremely insensitive to the irregularity
of the power grid, since even for an irregularity degree as high as ±75.0%, the
number of iterations has increased very slightly compared to the regular grid. On
the other hand, the number of iterations increases dramatically after an irregularity
degree of ±85.0%. Although power delivery networks are usually highly regular and
we do not expect such degrees of irregularity, these observations are a testament to
the efficiency of the proposed preconditioning mechanisms for power grid analysis.

Table 4.7: Results of FTCG-3D under varying grid irregularity for the bench1_3D
benchmark.

Branch conductance irregularity Iterations Execution Time (s)
0.0 % 75 2.1

± 0.1 % 78 2.2
± 0.5 % 80 2.2
± 1.0 % 82 2.3
± 1.5 % 84 2.4
± 2.0 % 84 2.4
± 5.0 % 88 2.5
± 10.0 % 90 2.5
± 20.0 % 93 2.6
± 50.0 % 95 2.6
± 75.0 % 98 2.6
± 85.0 % 196 5.5
± 100.0 % 679 19.1

85
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

86
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Chapter 5

Power Grid Electro-Thermal
Simulation

The increased power density combined with the lower power supply voltages
due to shrinking sizes, has led to a significant increase in current density. Larger
current densities result in greater IR drop, while Joule heating (self-heating) effect
becomes of critical importance and should be seriously taken into account [5] as it
contributes to temperature rise and affects reliability. As the electrical resistivity
is temperature-dependent, temperature variations on the power delivery network
substantially modify the interconnect resistances contributing to the IR drop in
the power grid. However, such effects are usually neglected during IR drop analy-
sis due to the immense growing size of modern power delivery networks and the
corresponding demands in computational resources for their analysis. Power grids
can be extremely large, demanding abundant computational resources, while at the
same time, thermal analysis requires even more resources in terms of speed and
memory.
As IR drop on the power grid and temperature rise on the interconnects constitute

undesirable issues with respect to the performance, reliability and functionality of
nano-scale technology, extensive research has been performed to separately analyze
each of these issues. However, few approaches have been suggested for a thermal-
aware IR drop analysis, despite the fact that IR drop and temperature are directly

87
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

interdependent. Authors in [39] present an electrical-thermal co-simulation method,
including Joule heating, air convection and fluidic cooling effects using the finite
volume method with non-uniform rectangular grid. In the same context, a thermal-
aware IR drop analysis for power grids is proposed in [47]. Both methods present the
idea of iterative electrical-thermal simulations, updating the electrical resistivities
in each iteration, including this way the thermal effects on each new electrical simu-
lation. However, they focus on modeling aspects rather on simulation approaches.
The sheer size of power delivery networks forced researchers to focus on paral-

lel architectures as a promising alternative for accelerating simulation algorithms,
owing to their vast computational resources. Approach [24] presents a method for
full-chip thermal analysis on GPUs. It formulates the problem of thermal analysis
as a non-SPD problem and combines the GMRES method with an approximate
inverse preconditioner for its solution. However, the proposed methodology does
not consider a combined electro-thermal analysis approach. Furthermore, it contains
limited potential for parallelism and the maximum achieved speedup is 2.24X when
GPUs are utilized.
In this chapter, we present a new efficient and highly-parallel algorithm for

electrical-thermal co-simulation for large-scale power grids, found in most contempo-
rary nano-scale ICs. Our method combines the methodology for electrical analysis
presented in Sec. 4.4.1 and a new preconditioning methodology for thermal simula-
tion. In contrast to all previous approaches, it takes into account the basic thermal
factors that contribute to temperature rises on the power grid such as Joule heating
and heat from both the substrate and interconnects, while at the same time exhibits
great potential of parallelism. We propose an efficient and highly-parallel precondi-
tioning mechanism based on the application of a Fast Transform solver, which can
be used in conjunction with a state-of-the-art iterative solution method in order
to accelerate electrical-thermal analysis of power delivery networks. The benefits
of the proposed method are twofold: i) the proposed preconditioning mechanism
can accelerate the convergence rate of the iterative solution method by greatly
reducing the required number of iterations, and ii) from a computational point of

88
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

view, it exhibits near-optimal computational complexity, low memory requirements,
and great potential for parallelism, which can harness the computational power of
parallel architectures, such as multi-core processors or GPUs, thus further reducing
the amount of time required for simulation.

5.1 Methodology Overview
Due to the temperature dependence of resistance and Joule self-heating of the

conductors, the electrical and thermal characteristics of the power delivery network
form a nonlinear system of equations. In order to capture the effect of the thermal
profile of the power delivery network, we follow a combined electrical-thermal si-
mulation for the power delivery network. Having set the initial input as well as the
boundary conditions for the thermal simulation, the first step is the electrical analy-
sis of the power grid. The power model provides the current and power distribution
profiles to the thermal model. Subsequently, the thermal model estimates the tempe-
rature profile and once electrical resistivities have been updated, they are forwarded
as a new input to the power model. After a number of iterations, power and tempera-
ture calculations converge and the thermal-aware power grid analysis is terminated.
Fig. 5-1 depicts the flow diagram of the proposed approach.
Electrical modeling of the power grid is performed as was described in Section 4.1.

On the other hand, thermal modeling requires a different approach. Without loss
of generality, we focus on steady-state thermal analysis. Steady-state thermal ana-
lysis aims at determining the temperature distribution within a chip given a power
density distribution that does not change with time and amounts to solving Poisson’s
equation:

q(r) = −kt∇2T (r) (5.1)

where r is the spatial coordinate of the point at which temperature is being deter-
mined, q(r) is the rate of heat flow, T is the temperature, and kt the thermal
conductivity of the material.
By discretizing (5.1) using the Finite Difference Method (FDM), we obtain the

89
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Power Grid Simulation

(solve with proposed method)

Current & Power

distribution profiles

Joule heating & Thermal Simulation

(solve with proposed method)

Power – Thermal

convergence?

Temperature profiles
Update of temperature

dependent resistivities

YES

NO
END OF

PROCEDURE

Figure 5-1: Electrical-Thermal positive feedback simulation loop.

following system of linear equations:

Gt = p (5.2)

where t is the temperature vector at each point and p is the vector containing the
total power generated within each element. Due to the electrical-thermal duality,
each node in the discretization corresponds to a node in the circuit. Using the MNA
formulation, matrix G contains the thermal resistors Gx, Gy, and Gz in the x, y,
and z direction respectively, which can be computed as follows:

Gx =
kt(∆y ·∆z)

∆x

, Gy =
kt(∆x ·∆z)

∆y

, Gz =
kt(∆x ·∆y)

∆z

where ∆{x,y,z} is the length of the rectangle in each dimension. As we can observe,
steps 1 and 2 respectively of the combined electro-thermal approach require the
solution of a linear system. In order to accelerate the analysis procedure and enable
analysis of large-scale power delivery networks, we utilize the PCG method (as both
matrices can be shown to be symmetric and positive definite) for the solution of
both systems. For the electrical analysis step, we apply the methodology presented

90
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

in Chapter 4. On the other hand, for thermal analysis we extend the 3D Fast
Transform methodology presented in Section 4.3.2 in order to be applicable to full
3D networks that are produced from (5.2), and we apply the full 3D Fast Transform
solver as a preconditioner inside an iterative method.

91
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

5.2 Fast Transform Solvers for Full 3D Networks
LetM be a N ×N block-tridiagonal matrix with l blocks of size mn×mn each

(overall N = lmn) with the following form:

M =

M1 −δ1Imn

−δ1Imn M2 −δ2Imn

· · ·

−δl−2Imn Ml−1 −δl−1Imn

−δl−1Imn Ml

(5.3)

where Imn is the mn×mn identity matrix,Mi, i = 1, . . . , l, are themselves mn×mn

block-tridiagonal matrices of the form:

Mi =

Ti + γiIn −γiIn
−γiIn Ti + 2γiIn −γiIn

· · ·

−γiIn Ti + 2γiIn −γiIn
−γiIn Ti + γiIn

where In is the n× n identity matrix and Ti have the form (4.7). Thus, the eigen-
vectors of the diagonal blocks of Mi are the same as those of Ti, with values
given by (4.9). If Qn = [q1, . . . ,qn] denotes the matrix whose columns are the
eigenvectors qj, then due to the eigen-decomposition of Ti, i = 1, 3, ..., n we have
QT

nTiQn = Λi = diag(λi,1, . . . , λi,n), where Λi is the diagonal matrix with the
eigenvalues of each Ti in its main diagonal. By exploiting this diagonalization of
matrices Ti, systemMz = r withM of the form (5.3) is equivalent to the following
system (due to QT

nQn = I):

92
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

QT

n

. . .

QT
n

M

Qn

. . .

Qn

QT

n

. . .

QT
n

 z

=

QT

n

. . .

QT
n

r⇔

M̃1 −δ1Imn

−δ1Imn M̃2 −δ2Imn

· · ·

−δl−2Imn M̃l−1 −δl−1Imn

−δl−1Imn M̃l

z̃ = r̃ (5.4)

where:

M̃i =

Λ
(1)
i −γiIn

−γiIn Λ
(2)
i −γiIn
· · ·

−γiIn Λ
(2)
i −γiIn

−γiIn Λ
(1)
i

z̃ =

QT

n

. . .

QT
n

 z, r̃ =

QT

n

. . .

QT
n

 r,
and Λ

(1)
i = diag(λ

(1)
i,1 , . . . , λ

(1)
i,n), Λ

(2)
i = diag(λ

(2)
i,1 , . . . , λ

(2)
i,n) are diagonal matrices with

the eigenvalues of Ti + γiIn, Ti + 2γiIn, which are the following:

λ
(1)
i,j = γi + βi + αi(2 cos

(j − 1)π

n
− 2), j = 1, . . . , n

λ
(2)
i,j = 2γi + βi + αi(2 cos

(j − 1)π

n
− 2), j = 1, . . . , n

93
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

If P is again the mn × mn permutation matrix that reorders the elements of a
vector or the rows of a matrix as 1, n + 1, . . . , (m − 1)n + 1, 2, n + 2, . . . , (m −

1)n + 2, . . . , n, n + n, . . . , (m − 1)n + n, and P1, PT1 denote the block-diagonal
lmn × lmn permutation matrices P1 = diag(P, . . . ,P), PT1 = diag(PT , . . . ,PT),
then the system (5.4) is further equivalent to:

D1 −δ1Imn

−δ1Imn D2 −δ2Imn

· · ·

−δl−2Imn Dl−1 −δl−1Imn

−δl−1Imn Dl

z̃P1 = r̃P1 (5.5)

where Di = diag(T̃i,1, . . . , T̃i,n), i = 1, . . . , l, with T̃i,j, j = 1, . . . , n being m × m

tridiagonal matrices of the form:

T̃i,j =

λ
(1)
i,j −γi

−γi λ
(2)
i,j −γi

· · ·

−γi λ
(2)
i,j −γi

−γi λ
(1)
i,j

= γi

1 −1

−1 2 −1

· · ·

−1 2 −1

−1 1

+ (αi(2 cos

(j − 1)π

n
− 2) + βi)Im

and z̃P1 = P1z̃, r̃P1 = P1r̃. If Λ̃i,j = diag(λ̃i,j,1, . . . , λ̃i,j,m) is the diagonal matrix
with the eigenvalues of T̃i,j, which are:

λ̃i,j,k = γi(2 cos
(k − 1)π

m
− 2) + αi(2 cos

(j − 1)π

n
− 2) + βi, k = 1, . . . ,m (5.6)

94
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

and Qm is the common matrix of eigenvectors for all T̃i,j, then again by similar
reasoning as in (5.4), the system (5.5) is equivalent to:

D̃1 −δ1Imn

−δ1Imn D̃2 −δ2Imn

· · ·

−δl−2Imn D̃l−1 −δl−1Imn

−δl−1Imn D̃l

˜̃z = ˜̃r (5.7)

where D̃i = diag(Λ̃i,1, . . . , Λ̃i,n) and

˜̃z =

QT

m

. . .

QT
m

 z̃P1 , ˜̃r =

QT

m

. . .

QT
m

 r̃P1

If now P2 is a permutation matrix of size N × N that reorders the elements of a
vector or the rows of a matrix as 1,mn + 1, 2mn + 1, . . . , (l − 1)mn + 1, 2,mn +

2, 2mn + 2, . . . , (l − 1)mn + 2, . . . , mn,mn +mn, 2mn +mn, . . . , (l − 1)mn +mn,
and PT

2 is the inverse permutation matrix, then system (5.7) is equivalent to:

˜̃M˜̃zP2 = ˜̃rP2 (5.8)

where ˜̃M = diag(˜̃T1,1,
˜̃T1,2 . . . ,

˜̃T1,m,
˜̃T2,1, . . . ,

˜̃T2,m, . . . ,
˜̃Tn,m), with ˜̃Tj,k, j = 1, . . . , n, k =

1, . . . ,m being l × l tridiagonal matrices of the form:

˜̃Tj,k =

λ̃1,j,k −δ1

−δ1 λ̃2,j,k −δ2

· · ·

−δl−1 λ̃l−1,j,k −δl

−δl λ̃l,j,k

(5.9)

95
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Algorithm 8 Fast Transform algorithm for the preconditioner solve step Mz = r
where M is of the form (5.3)
1: Partition the RHS vector r into lm sub-vectors ri of size n, and perform DCT-II
transform (QT

nri) on each sub-vector to obtain transformed vector r̃.
2: Partition vector r̃ into l sub-vectors r̃i of size mn, and permute each sub-vector
by permutation P, which orders elements as 1, n + 1, . . . , (m − 1)n + 1, 2, n +
2, . . . , (m − 1)n + 2, . . . , n, n + n, . . . , (m − 1)n + n, in order to obtain vector
r̃P1.

3: Partition vector r̃P1 into ln sub-vectors r̃iP1 of size m, and perform DCT-II
transform (QT

mr̃iP1) on each sub-vector to obtain transformed vector ˜̃r.
4: Permute vector ˜̃r by applying permutation P2, which orders elements as 1,mn+

1, 2mn+1, . . . , (l−1)mn+1, 2,mn+2, 2mn+2, . . . , (l−1)mn+2, . . . , mn,mn+
mn, 2mn+mn, . . . , (l − 1)mn+mn, in order to obtain vector ˜̃rP2.

5: Solve the mn tridiagonal systems (5.8) with known coefficient matrices (5.9), in
order to obtain vector ˜̃zP2.

6: Apply inverse permutation PT
2 on vector ˜̃zP2 so as to obtain vector ˜̃z.

7: Partition vector ˜̃z into ln sub-vectors ˜̃zi of size m, and perform IDCT-II
transform (Qm

˜̃zi) on each sub-vector to obtain vector z̃P1.
8: Partition vector z̃P1 into l sub-vectors z̃iP1 of size mn, and apply inverse
permutation PT

1 on each sub-vector to obtain vector z̃.
9: Partition vector z̃ into lm sub-vectors z̃i of size n, and perform IDCT-II
transform (Qnz̃i) on each sub-vector to obtain final solution vector z.

and ˜̃zP2 = P2
˜̃z, ˜̃rP2 = P2

˜̃r. The equivalence of the system Mz = r, with M as
in (5.3), to the system (5.8), gives a procedure for fast solution ofMz = r which is
described in Algorithm 8.

5.3 Proposed Approach for Electro-Thermal Ana-

lysis
Our proposed methodology combines the PCG iterative solution method with

two highly-efficient preconditioning mechanisms, one for electrical and one for thermal
power grid analysis. The 2D Fast Transform-based preconditioner described in
Section 4.4.1 is applied for power grid electrical analysis. On the other hand, due
to the structure of the thermal equivalent of the power grid, a novel preconditio-
ning mechanism is required. Typically, to model the thermal profile of the power
grid, a chip is considered as comprising n layers, where each layer contains metal

96
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

lines and inter-layer insulator. The topmost layer is covered by a thermal insulation
layer and the heat generated in the power grid is conducted away by the substrate
(usually attached to a heat sink). By modeling each layer as was described in
Section 5.1, the thermal grid is equivalent to a highly regular resistive network, with
resistive branches connecting nodes in the x, y, and z axis. To create a preconditio-
ner that will approximate the grid matrix, we substitute each horizontal and vertical
thermal conductance with its average value in the corresponding layer. Moreover,
we substitute each thermal conductance gi,i+1 connecting nodes in adjacent layers
(z axis) with their average value between the two layers. Fig. 5-2 is an example
of a thermal grid with n = 3, m = 3 nodes in the x and y axis respectively and
l = 3 layers and corresponds to the physical model of the power grid depicted
in Fig. 4-1(i). Using the depicted numbering, the matrix that corresponds to the
aforementioned grid is the following block-tridiagonal matrix:

M =

M1 −g1,2Imn

−g1,2Imn M2 −g2,3Imn

−g2,3Imn M3

where

Mi =

Ti + gvi In −gvi In
−gvi In Ti + 2gvi In −gvi In

−gvi In Ti + gvi In

 , i = 1, 2, 3

T1 =

gh1 + g1,2 −gh1

−gh1 2gh1 + g1,2 −gh1

−gh1 gh2 + g1,2

T2 =

gh2 + g1,2 + g2,3 −gh2

−gh2 2gh2 + g1,2 + g2,3 −gh2

−gh2 gh2 + g1,2 + g2,3

97
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

19 20 21

1 2

24

5 6

27
10

4

12

7 8 9

11

3 ...

...

...

g1
v

g1
v g1

v

g1
h

g1
h

g1
h

g1
h

g1,2 g1,2 g1,2

g2,3g2,3g2,3

g2
h

g2
h

g2
v

g2
v

g3
h

g3
h

g3
v g3

v

g1
v

g1
v

g1
v

Figure 5-2: Example of the thermal equivalent of the 3D power grid from Fig. 4-1(i)
that is used for preconditioning.

T3 =

gh3 + g2,3 −gh3

−gh3 2gh3 + g2,3 −gh3

−gh3 gh3 + g2,3

Similarly to the power grid preconditioner, the form of the above matrix is identical
to matrix (5.3). As a result, if such a matrix is used as the preconditioner M for
the thermal analysis procedure, it can be efficiently solved through utilization of a
Fast Transform solver, as was described in Section 5.2.

5.3.1 Procedure Implementation

Once the preconditioners for the power and the thermal grid have been created,
the proposed approach executes the electro-thermal loop in Fig. 5-1. At each step
this requires the solution of the power grid at step 1 and the solution of the thermal
grid at step 3. An off-the-self implementation of the PCG method can be used
for both steps, with an external call for the preconditioner-solve step Mz = r. The
latter corresponds to Algorithm 6 for power grid electrical simulation and algorithm
in Algorithm 8 for power grid thermal simulation.
As in the case of FTCG and FTCG-3D, the proposed preconditioning algorithm

for electro-thermal offers a number of significant advantages. Owing the special

98
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

construction that allow utilization of Fast Transform solvers, solution of the pre-
conditioned systems of the power and the thermal grid offer ample parallelism, both
at data- and task-level. Both FFT and the tridiagonal system solution are highly-
parallel algorithms that offer abundant level of data-level parallelism [15] [44]. Thus,
the proposed method can efficiently utilize the computational resources found in
massively parallel architectures, thus greatly accelerating the simulation process.
This comes in contrast with most widely-used preconditioning methods, such as
incomplete factorizations, which have limited parallelism.
As far as task-level parallelism is concerned, Algorithm 6 and Algorithm 8 entail

a number of independent one-dimensional DCT-II and IDCT-II transforms as well
as the solution of a large number of independent tridiagonal systems. This translates
to additional task-level parallelism, which can result to further acceleration on multi-
PCG systems for the preconditioner solve step as the independent transforms and
tridiagonal solvers can be executed in parallel, requiring limited communication
between different GPUs.
One other salient feature of the proposed preconditioners (apart from the near-

optimal complexity of solving the systems Mz = r and the parallelization oppor-
tunities) is that there is no need for explicit storage of the preconditioner matrixM,
which comes in contrast with most standard preconditioners. As it is easily observed,
only the eigenvalues and the values γi and δi of M matrices in (4.6) and (5.3)
respectively are necessary in the execution of Algorithm 6 and Algorithm 8. Thus,
only limited storage is required for the preconditioners. A small memory footprint is
very important for mapping the algorithm onto architectures with limited available
memory space such as GPUs.

5.4 Experimental Evaluation
To evaluate the efficiency of the proposed methodology for combined electro-

thermal simulation, we compared three methods for solving the linear systems for
the power and the thermal grid (steps 1 and 3 in Fig. 5-1): the PCG method with

99
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

zero-fill Incomplete Cholesky preconditioner (ICCG), the proposed method of using
PCG with the Fast Transform preconditioners (ET-FTCG), and CHOLMOD [12]
which is a state-of-the-art direct solver for sparse SPD linear systems. Each method
was ported on a GPU platform and the only part that is executed on the CPU
is the construction of the power and thermal grid preconditioners for ET-FTCG
and ICCG. Subsequently, the CPU is responsible for transferring the appropriate
data to the GPU. We have used the CUDA library [2] (version 4.2, along with
CUBLAS, CUSPARSE and CUFFT libraries) for mapping the ICCG and the ET-
FTCG algorithm on the GPU.
Due to the lack of a set of available benchmarks for electro-thermal analysis,

we have created a set of synthetic benchmarks, based on the modeling described
in [27] (namely 10% of the wiring resources are used for the power grid), with size
ranging from 3.1M to 20.9M-nodes. For the thermal grid, the length ∆z of the
grid rectangle was selected equal to the layer thickness (which can be variable),
while the lengths ∆x and ∆y were chosen equal to the smallest routing width/pitch
within a layer. We executed all experiments on a Linux workstation, comprising an
Intel Core i7 processor running at 2.4GHz (6 cores and 24GB main memory) and
an NVIDIA Tesla C2075 GPU with 5GB of main memory. Table 5.1 presents the
results from the evaluation of the aforementioned methods on the set of benchmark
circuits. The number of nodes in each circuit (Nodes) refers to the total number
of nodes in the power grid, while execution time (Time) refers to the average
time required for solution at each electro-thermal loop iteration, including any
overhead for matrix factorization (in CHOLMOD) and preconditioner construction
(in iterative methods).
As we can observe, CHOLMOD (the direct solution method) was able to simulate

only the smaller benchmark circuit. Due to its excessive memory requirements,
analysis of larger benchmarks was infeasible. On the other hand, both ICCG and
ET-FTCG owing to the limited memory requirements were able to simulate the
complete set of benchmarks. Moreover, they achieved a speed-up of 7X and 66.1X

respectively.

100
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Table 5.1: Runtime results for the three solvers for electro-thermal analysis. Iter.
is the average number of iterations (total number of iterations in each iteration
over the number of iterations required for convergence of the electro-thermal loop)
required for convergence of each iterative method. Time denotes the average time
required for the solution at each iteration, while SpdCHOL and SpdICCG denote the
speedup of ET-FTCG over CHOLMOD and ICCG respectively. The convergence
tolerance for iterative solvers was 10−6 and convergence was achieved in all cases.

Benchmark CHOLMOD ICCG ET-FTCG
Nodes T ime (s) Iter. T ime (s) Iter. T ime (s) SpdCHOL SpdICCG

ckt1 3.1M 105.8 201 15.1 62 1.6 66.1X 9.4X
ckt2 6.3M N/A 296 58.1 63 3.7 N/A 15.7X
ckt3 14.6M N/A 465 214.1 62 10.6 N/A 20.1X
ckt4 16.7M N/A 495 259.4 62 12.5 N/A 20.8X
ckt5 18.8M N/A 536 314.2 62 14.6 N/A 21.5X
ckt6 19.9M N/A 540 331.6 59 15.2 N/A 21.8X
ckt7 20.9M N/A 551 359.5 61 16.2 N/A 22.2X

If we restrict our comparison to the iterative methods, we can observe that
the proposed method was able to greatly reduce the number of iterations required
for convergence. Compared with general purpose preconditioning methods such as
Incomplete Cholesky factorization, the proposed preconditioners take into account
the topology characteristics of the power and the thermal grid. As a result, they
are able to approximate them faithfully enough and reduce the required number of
iterations. Actually, the number of iterations remains constant (there is only a slight
variation) as the size of the power delivery network increases, which is a testament
to the efficiency of the proposed preconditioning mechanism.
Moreover, owing to their inherent parallelism, the proposed preconditioners can

utilize the vast amount of computational resources found in massively parallel
architectures, such as GPUs. Thus, their efficacy is increased with the increasing
circuit size. ET-FTCG was able to achieve a speed-up ranging between 9.4X and
22.2X over ICCG for our benchmark circuits. On the contrary, ICCG was not able to
fully utilize the GPU resources due to the limited parallelism found in the triangular
solution algorithm.

101
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

102
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Chapter 6

Conclusions and Future Directions

6.1 Conclusions
This dissertation presented new methodologies for electrical and electro-thermal

analysis of large-scale power delivery networks found in contemporary ICs. Its
contributions are the following three highly parallel and efficient algorithms for
power grid analysis:

• FTCG and FTCG-3D for electrical analysis of power delivery networks with
negligible and significant via resistances respectively. The proposed algorithms
combine an iterative linear system solution method with two problem-specific
preconditioners that take into account the geometry structure of the power
grid in order to accelerate the convergence of the iterative method. In addition,
owing to their special structure that is based on a Fast Transform solver, they
entail a large degree of multi-level parallelism. As a result, mapping onto
parallel architectures is very efficient and can provide additional acceleration.
FTCG and FTCG-3D are able to achieve up to three orders of magnitude
acceleration in simulation time when compared to CHOLMOD (the state-of-
the-art direct solver) and up to two orders of magnitude compared with the
PCG method with either an Incomplete Cholesky or a support graph-based
preconditioner.

103
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

• ET-FTCG for combined electro-thermal analysis of the power delivery network.
ET-FTCG combines the FTCGmethod with a novel preconditioning algorithm
for thermal analysis of the power grid. Again, we utilize a Fast Transform-
based preconditioner that allows for acceleration of the convergence rate and
high parallel efficiency. As a result, the proposed algorithm is able to simulate
power delivery networks with up to 22M nodes and achieve an execution time
that is one order of magnitude lower than the time required for analysis with
a state-of-the-art algorithm.

6.2 Future Directions
In the future, we plan to extend the research presented in this dissertation

towards the following directions:

• 3D ICs: Three-dimensional chip design emerges as a promising technology,
able to reduce interconnect issues found in modern ICs. In this technology,
Through Silicon Vias (TSVs) are used in order to connect several layers,
thus reducing interconnection length between vertically stacked integrated
circuits. As a result, TSV-based 3D ICs appear as a better alternative for
the design of high-speed IC systems with smaller form factors and enhanced
performance. The power delivery network in such circuits form a vertical stack
as it comprises a number of local power delivery networks, with TSVs providing
the connections between adjacent layers. Essentially, this corresponds to a 3D
grid, with some irregularities due to missing connections. We plan to extend
FTCG-3D in order to provide a highly efficient yet accurate GPU-accelerated
power delivery network simulation methodology with promising reduction in
simulation time for power grid analysis of large-scale 3D TSV-based ICs.

• Full-chip thermal analysis: Due to the ever increasing chip complexity and
the subsequent power density, contemporary ICs experience big temperature
variations across the chip. Full-chip thermal analysis is an indispensable part

104
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

for the analysis of an IC as it provides useful insights for revealing hotspots,
selecting the appropriate cooling technology, and avoiding excessive tempera-
ture variations. Furthermore, full-chip thermal simulation results can be used
for more accurate power, timing and electromigration simulations. However,
full-chip thermal analysis down to the device and interconnect levels is very
computational expensive as it requires the solution of a 3D dense and fine-
grained mesh structure (comprising up to hundreds of millions nodes), which
has excessive computational and memory requirements. Based on ET-FTCG,
we plan to develop efficient GPU-accelerated algorithms that will be able
to handle the heterogeneous multi-layer full-chip structure and will enable
efficient full-chip thermal analysis on parallel architectures.

• Mapping onto heterogeneous systems: Owing to the diverse nature of parallel
computing architectures (such as multi-core processors, GPUs, or even Field-
Programmable Gate Arrayss (FPGAs)) it is very appealing to have hetero-
geneous systems that comprise dissimilar processors, each one incorporating
its own parallel capabilities. Each one of these processors will be programmed
with its own programming model and hybrid programming languages and
libraries will be required in order to orchestrate execution of an algorithm
on such architectures. We plan to investigate efficient ways for mapping the
proposed algorithms on heterogeneous architectures using a variety of program-
ming models and languages. The proposed algorithms entail a large degree of
both data- and task-level parallelism and we anticipate that mapping onto
heterogeneous architectures will provide additional acceleration, thus making
analysis of even larger power delivery networks extremely fast.

105
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

106
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Mathematical Proofs

In this section we provide a detailed proof regarding the eigenvalues and the
eigenvectors of the matrix from (4.7), which are given in (4.8) and (4.9) respectively.
If A is a n × n square matrix with eigenvalues λj, j = 1, . . . , n (not necessarily
distinct) and eigenvectors qj, j = 1, . . . , n, then for the matrix B = αA + βI it
holds:

Bqj = (αA+ βI)qj = αλjqj + βqj = (αλj + β)qj

which means that the eigenvalues of B are equal to αλj + β, j = 1, . . . , n, and
the corresponding eigenvectors are qj, j = 1, . . . , n. Thus, in order to prove (4.8)
and (4.9), it is sufficient to show that for the n× n tridiagonal matrix:

T =

1 −1

−1 2 −1

· · ·

−1 2 −1

−1 1

the eigenvalues are equal to:

λj = 2− 2 cos (j − 1)π

n
, j = 1, . . . , n (6.1)

and the eigenvectors are given by (4.9).
By definition, if λ is an eigenvalue and q is an eigenvector of T then it holds:

107
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Tq = λq

or:
q1 − q2 = λq1

−qk−1 + 2qk − qk+1, k = 2, . . . , n− 1

−qn−1 + qn = λqn

which can be written as:

qk+1 + (λ− 2)qk + qk+1 = 0, k = 1, . . . , n (6.2)

where q0 = q1 and qn+1 = qn.
The latter is a sequence for qk, k = 1, . . . , n which is defined recursively. This
recursive sequence or recurrence is effectively a second-order linear difference equation [6]
with characteristic equation:

ρ2 + (λ− 2)ρ+ 1 = 0 (6.3)

Let ρ1, ρ2 denote the roots of (6.3), which are assumed to be distinct (ρ1 ̸= ρ2), i.e.:

ρ1,2 =
2− λ±

√
(λ− 2)2 − 4

2
(6.4)

with λ ̸= 0 and λ ̸= 4 [we will consider the cases λ = 0 (⇒ ρ1 = ρ2 = 1) and
λ = 0 (⇒ ρ1 = ρ2 = −1) in the end]. An explicit formula for qk can be found by the
general solution of (6.3):

qk = c1ρ
k
1 + c2ρ

k
2, k = 1, . . . , n (6.5)

where c1, c2 are constants (to be determined by the end conditions). Now, the
eigenvectors of a matrix are always defined up to a multiplicative constant [since
if q is an eigenvector corresponding to eigenvalue λ then cq (∀c ̸= 0) is also an
eigenvector corresponding to λ]. Thus, in order to determine c1, c2 and calculate

108
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

the eigenvectors q from (6.4), we can arbitrarily pick their first component to be
q1 = 1 and additionally use the left-end condition q0 = q1 = 1. From (6.5) we have
for k = 0 and k = 1:
c1 + c2 = 1 and c1ρ1 + c2ρ2 = 1

which by solving w.r.t. c1, c2 (and considering that ρ2 − ρ1 ̸= 0) gives:
c1 =

ρ2−1
ρ2−ρ1

and c2 =
1−ρ1
ρ2−ρ1

and therefore:

qk =
ρ2 − 1

ρ2 − ρ1
ρk1 +

1− ρ1
ρ2 − ρ1

ρk2, k = 1, . . . , n (6.6)

The right-end condition qn+1 = qn can be used to determine the eigenvalues λj, j =

1, . . . , n, since the recurrence (6.2) is specified up to parameter λ. From (6.6) we
have:

qn+1 = qn ⇒ ρ2 − 1

ρ2 − ρ1
ρn1ρ1 +

1− ρ1
ρ2 − ρ1

ρn2ρ2 =
ρ2 − 1

ρ2 − ρ1
ρn1 +

1− ρ1
ρ2 − ρ1

ρn2

⇒ ρ2 − 1

ρ2 − ρ1
ρn1 (ρ1 − 1) +

ρ1 − 1

ρ2 − ρ1
ρn2 (ρ2 − 1)

and since ρ1 ̸= ρ2 and ρ2 ̸= 1, ρ2 ̸= 1, it is:

(
ρ1
ρ2

)n = 1 (6.7)

which means that the ratio ρ1
ρ2
is equal to the n complex roots of unity, without

the root ρ1
ρ2

= 1 (which gives ρ1 = ρ2), i.e. ρ1
ρ2

= exp(i2jπ
n
) = cos 2jπ

n
+ i sin 2jπ

n
,

j = 1, . . . , n− 1 [i is the imaginary unit (i2 = −1]. Instead, now, of using the actual
expressions of ρ1, ρ2 from (6.4) into (6.7), it is easier to use their equivalent sum
and product from the quadratic equation (6.3), i.e.

ρ1 + ρ2 = 2− λ (6.8i)

ρ1ρ2 = 1 (6.8ii)

From (6.7) and (6.8ii) we have:

109
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

(
ρ1
ρ2

)n = 1 ⇒ (ρ1)
2n = 1 ⇒ ρ1 = exp (i

jπ

n
), j = 1, . . . , n− 1

or:

ρ1 = exp (i
(j − 1)π

n
), j = 2, . . . , n (6.9i)

ρ2 =
1

ρ1
= exp (−i

(j − 1)π

n
), j = 2, . . . , n (6.9ii)

and from the latter and (6.8i):

exp (i(j − 1)π

n
) + exp (−i

(j − 1)π

n
) = 2− λ

⇒ 2 cos (j − 1)π

n
= 2− λ, j = 2, . . . , n

from which we obtain (6.1) (without the case j = 1).
Also, by substituting (6.9i) and (6.9ii) into (6.6), we have:

qk =
[exp (−i(j − 1)π/n)− 1] exp (ik(j − 1)π/n)

exp (−i(j − 1)π/n)− exp (i(j − 1)π/n)

+
[1− exp (i(j − 1)π/n)] exp (−ik(j − 1)π/n)

exp (−i(j − 1)π/n)− exp (i(j − 1)π/n)

=
2i sin ((k − 1)(j − 1)π/n)− 2i sin (k(j − 1)π/n)

−2i sin ((j − 1)π/n)

=
2 cos ((2k − 1)(j − 1) π

2n
) sin ((j − 1) π

2n
)

2 sin ((j − 1) π
2n
) cos ((j − 1) π

2n
)

or:

qk = [
1

cos ((j − 1) π
2n
)
] cos (2k − 1)(j − 1)π

2n
, k = 1, . . . , n (6.10)

The above gives the k-th component of the j-th eigenvector qj of T for which q1 = 1

(according to our initial arbitrary choice). In order to get the normalized eigenvector
(with unit length ∥qj∥2 = 1), we notice that:

110
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

∥qj∥2 =

√√√√ 1

cos2 ((j − 1) π
2n
)

n∑
k=1

cos2 (2k − 1)(j − 1)π

2n

=
1

cos ((j − 1) π
2n
)

√
n

2

and thus by multiplying (6.10) by
√

2
n
cos ((j − 1) π

2n
), we obtain (4.9) (without the

case j = 1).
The case of identical roots ρ1 = ρ2 ≡ ρ of (6.3) must be treated separately, since

then the general solution of the recurrence of (6.2) is:

qk = c1ρ
k + c2kρ

k, k = 1, . . . , n (6.11)

As mentioned previously, we have two possibilities for identical roots:

• λ = 0: In this case, ρ1 = ρ2 ≡ ρ = 1 and the solution of (6.11) becomes
qk = c1+c2k, k = 1, . . . , n. By choosing q1 = 1 and using the left-end condition
q0 = q1 = 1, we have for k = 0 and k = 1:

c1 = 1

c1 + c2 = 1

 ⇒
c1 = 1

c2 = 0

and thus qk = 1, k = 1, . . . , n, i.e. the vector q = [1, . . . , 1]T . This solution also
satisfies the right-end condition qn+1 = qn, which means that the pair λ = 0

and q = [1, . . . , 1]T is a valid eigenvalue-eigenvector pair for the matrix T (the
fact that λ = 0 actually means that T is singular). This pair can be obtained
from (6.1) and (4.9) for j = 1 (the vector [1, . . . , 1]T is normalized by

√
1
n
since√∑n

k=1 1 =
√
n), as is easily observed.

• λ = 4: In this case, ρ1 = ρ2 ≡ ρ = −1 and the solution of (6.11) becomes
qk = c1(−1)k + c2k, k = 1, . . . , n. By choosing q1 = 1 and using the left-end
condition q0 = q1 = 1, we have for k = 0 and k = 1:

111
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

c1 = 1

−c1 − c2 = 1

 ⇒
c1 = 1

c2 = −2

and thus qk = (−1)k − 2k(−1)k, k = 1, . . . , n. This solution does not satisfy
the right-end condition qn+1 = qn, which means that the pair λ = 4 and q
with qk as above is not a valid eigenvalue-eigenvector pair for the matrix T.

112
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Publications

The research conducted for this Ph.D. dissertation resulted to the following
patent application and publications:
Pattent:

• Konstantis Daloukas, Nestoras Evmorfopoulos, Panagiota Tsompanopoulou,
and Georgios Stamoulis. ”Large-scale power grid analysis on parallel architectures”,
October 17 2013. US Patent App. 14/056,667

Journal Publications:

• Konstantis Daloukas, Nestor Evmorfopoulos, Panagiota Tsompanopoulou, and
George I. Stamoulis. ”Fast Transform-Based Preconditioning Approaches for
Large-Scale Power Grid Analysis on Massively Parallel Architectures”. IEEE
Transactions on COMPUTER-AIDED DESIGN of Integrated Circuits and
Systems (TCAD). (Under review)

Peer-Reviewed Conference Publications:

• Konstantis Daloukas, Nestor Evmorfopoulos, Panagiota Tsompanopoulou, and
George I. Stamoulis. ”A 3-D Fast Transform-Based Preconditioner for Large-
Scale Power Grid Analysis on Massively Parallel Architectures”. International
Symposium on Quality Electronic Design (ISQED). Santa Clara, CA, March
2014

• Konstantis Daloukas, Alexia Marnari, Nestor Evmorfopoulos, Panagiota Tso-
mpanopoulou, and George I. Stamoulis. ”A Parallel Fast Transform-Based Pre-
conditioning Approach for Electrical-Thermal Co-Simulation of Power Delivery

113
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

Networks”. Proceedings of Design Automation and Test In Europe Conference
(DATE). Grenoble, France, March 2013.

• Konstantis Daloukas, Nestor Evmorfopoulos, George Drasidis, Michalis Tsiam-
pas, Panagiota Tsompanopoulou, and George I. Stamoulis. ”Fast Transform-
Based Preconditioners for Large-Scale Power Grid Analysis on Massively Paral-
lel Architectures”. Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). San Jose, CA, U.S.A., November 2012.
(Best Paper Award Nominee)

Posters:

• Konstantis Daloukas, Nestoras Evmorfopoulos, Panagiota Tsompanopoulou,
George Stamoulis. ”Fast Transform-Based Solvers as Parallel Preconditioners
for Large-Scale Power Grid Analysis on Massively Parallel Architectures”.
Poster presented in the ACM Student Research Competition, held in conjuction
with the 49th International Design Automation Conference (DAC), San Francisco,
CA, U.S.A., June 2012.

Also, our research led to the following publication that is not related with the
content of this dissertation:

• Ifigeneia Apostolopoulou, Konstantis Daloukas, Nestor Evmorfopoulos, and
George I. Stamoulis. ”Selective Inversion of Inductance Matrix for Large-Scale
Sparse RLC Simulation”. Design Automation Conference (DAC 2014). San
Francisco, CA, U.S.A., June 2014.

114
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

References

[1] Intel Math Kernel Library.

[2] NVIDIA CUDA Programming Guide, CUSPARSE, CUBLAS, and CUFFT
Library User Guides.

[3] Marco Ament, Gunter Knittel, Daniel Weiskopf, and Wolfgang Strasser. A
Parallel Preconditioned Conjugate Gradient Solver for the Poisson Problem on
a Multi-GPU Platform. In Euromicro Conference on Parallel, Distributed and
Network-based Processing, 2010.

[4] O. Axelsson and A. Barker. Finite Element Solution of Boundary Value
Problems. Theory and Computation. Academic Press, 1984.

[5] K. Banerjee and A. Mehrotra. Global (interconnect) warming. Circuits and
Devices Magazine, IEEE, 17(5):16–32, 2001.

[6] Paul Mason Batchelder. An Introduction to Linear Difference Equations. New
York, 1967.

[7] Michele Benzi. Preconditioning Techniques for Large Linear Systems: A Survey.
Journal of Computational Physics, 182(2):418–477, 2002.

[8] Michele Benzi, Carl D. Meyer, and Miroslav Tuma. A Sparse Approximate
Inverse Preconditioner for the Conjugate Gradient Method. SIAM Journal on
Scientific Computing, 17(5):1135–1149, 1996.

[9] John C. Butcher. Numerical Methods for Ordinary Differential Equations.
Wiley, 2008.

[10] Raymond H. Chan and C. K. Wong. Sine Transform Based Preconditioners for
Elliptic Problems. Numerical Linear Algebra with Applications, 4(5):351–368,
1997.

[11] Tsung-Hao Chen and Charlie Chung-Ping Chen. Efficient Large-Scale Power
Grid Analysis Based on Preconditioned Krylov-Subspace Iterative Methods. In
ACM/IEEE Design Automation Conf., 2001.

115
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

[12] Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran
Rajamanickam. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky
Factorization and Update/Downdate. ACM Transactions on Mathematical
Software (TOMS), 35(3):22:1–22:14, 2008.

[13] Chung-Han Chou, Nien-Yu Tsai, Hao Yu, Che-Rung Lee, Yiyu Shi, and Shih-
Chieh Chang. On the Preconditioner of Conjugate Gradient Method - A
Power Grid Simulation Perspective. In Computer-Aided Design (ICCAD), 2011
IEEE/ACM International Conference on, 2011.

[14] Christina C. Christara and Kit Sun Ng. Fast Fourier Transform Solvers and
Preconditioners for Quadratic Spline Collocation. BIT Numerical Mathematics,
42(4):702–739, 2002.

[15] Zhong Cui-xiang, Han Guo-qiang, and Huang Ming-he. Some New Parallel
Fast Fourier Transform Algorithms. In Int. Conf. on Parallel and Distributed
Computing, Applications and Technologies, 2005.

[16] Zhuo Feng and Zhiyu Zeng. Parallel Multigrid Preconditioning on Graphics
Processing Units (GPUs) for Robust Power Grid Analysis. In ACM/IEEE
Design Automation Conf., 2010.

[17] Zhuo Feng, Zhiyu Zeng, and Peng Li. Parallel On-Chip Power Distribution
Network Analysis on Multi-Core-Multi-GPU Platforms. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 19(10):1823–1836, 2011.

[18] Nico Galoppo, Naga K. Govindaraju, Michael Henson, and Dinesh Manocha.
LU-GPU: Efficient Algorithms for Solving Dense Linear Systems on
Graphics Hardware. In Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, IEEE Computer Society, page 3, 2005.

[19] Xiang Hu, Wenbo Zhao, Peng Du, A. Shayan, and Chung-Kuan Cheng. An
Adaptive Parallel Flow for Power Distribution Network Simulation Using
Discrete Fourier Transform. In Design Automation Conference (ASP-DAC),
2010 15th Asia and South Pacific, 2010.

[20] J.N. Kozhaya, S.R. Nassif, and F.N. Najm. A Multigrid-Like Technique for
Power Grid Analysis. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 21(10):1148–1160, 2002.

[21] M. Krotkiewski and M. Dabrowski. Efficient Solution of Poisson’s Equation on
Modern GPUs Using Structured Grids.

[22] Duo Li, Sheldon X-D Tan, and Bruce McGaughy. ETBR: Extended Truncated
Balanced Realization Method for On-Chip Power Grid Network Analysis. In
Proceedings of the conference on Design, automation and test in Europe, 2008.

116
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

[23] R. Li and Y. Saad. GPU-Accelerated Preconditioned Iterative Linear Solvers.
Technical report, Minnesota Supercomputer Institute, University of Minnesota,
2010.

[24] Xue-Xin Liu, Zao Liu, S.X.-D. Tan, and J. Gordon. Full-chip Thermal Ana-
lysis of 3D ICs with Liquid Cooling by GPU-accelerated GMRES Method. In
Quality Electronic Design (ISQED), 2012.

[25] Xue-Xin Liu, Hai Wang, and Sheldon X.-D. Tan. Parallel Power Grid Analysis
Using Preconditioned GMRES Solver on CPU-GPU Platforms. In Computer-
Aided Design (ICCAD), 2013 IEEE/ACM International Conference on, 2013.

[26] S. R. Nassif and J. N. Kozhaya. Fast Power Grid Simulation. In Proceedings
of the 37th Annual Design Automation Conference, 2000.

[27] S.R. Nassif. Power Grid Analysis Benchmarks. In Asia and South Pacific
Design Automation Conf., 2008.

[28] Haifeng Qian, Sani R. Nassif, and Sachin S. Sapatnekar. Power Grid Analysis
Using Random Walks. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 24(8), 2005.

[29] Haifeng Qian and S.S. Sapatnekar. Fast Poisson Solvers for Thermal Ana-
lysis. In Computer-Aided Design (ICCAD), 2010 IEEE/ACM International
Conference on, 2010.

[30] Pablo Quesada-Barriuso, Julián Lamas-Rodríguez, Dora B. Heras, Montserrat
Bóo1, and Francisco Argüello. Selecting the Best Tridiagonal System Solver
Projected on Multi-Core CPU and GPU Platforms. In Int. Conf. on Paral-
lel and Distributed Processing Techniques and Applications (as part of
WorldComp’2011 Conference), 2011.

[31] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

[32] Jin Shi, Yici Cai, Wenting Hou, Liwei Ma, Sheldon X.-D. Tan, Pei-Hsin Ho,
and Xiaoyi Wang. GPU friendly Fast Poisson Solver for Structured Power Grid
Network Analysis. In ACM/IEEE Design Automation Conf., 2009.

[33] Jin Shi, Yici Cai, Sheldon X.-D. Tan, Jeffrey Fan, and Xianlong Hong. Pattern-
Based Iterative Method for Extreme Large Power/Ground Analysis. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
26(4):680–692, 2007.

[34] Kai Sun, Quming Zhou, Kartik Mohanram, and Danny C. Sorensen. Paral-
lel Domain Decomposition for Simulation of Large-Scale Power Grids. In
ACM/IEEE Design Automation Conf., 2007.

117
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

[35] Llewellyn Hilleth Thomas. Elliptic Problems in Linear Difference Equations
Over a Network. Watson Sci. Comput. Lab. Rept., Columbia University, New
York, 1949.

[36] Charles Van Loan. Computational Frameworks for the Fast Fourier Transform.
SIAM, 1992.

[37] Janet M. Wang and Tuyen V. Nguyen. Extended Krylov Subspace Method
for Reduced Order Analysis of Linear Circuits with Multiple Sources. In
Proceedings of the 37th Annual Design Automation Conference, 2000.

[38] Jia Wang. Deterministic Random Walk Preconditioning for Power Grid Ana-
lysis. In Computer-Aided Design (ICCAD), 2012 IEEE/ACM International
Conference on, 2012.

[39] Jianyong Xie and M. Swaminathan. Electrical-Thermal Co-Simulation of 3D
Integrated Systems With Micro-Fluidic Cooling and Joule Heating Effects.
Components, Packaging and Manufacturing Technology, IEEE Transactions
on, 1(2):234–246, 2011.

[40] Xuanxing Xiong and Jia Wang. Parallel Forward and Back Substitution for
Efficient Power Grid Simulation. In Computer-Aided Design (ICCAD), 2012
IEEE/ACM International Conference on, 2012.

[41] Jianlei Yang, Yici Cai, Qiang Zhou, and Jin Shi. Fast Poisson Solver Precondi-
tioned Method for Robust Power Grid Analysis. In Computer-Aided Design
(ICCAD), 2011 IEEE/ACM International Conference on, 2011.

[42] Jianlei Yang, Zuowei Li, Yici Cai, and Qiang Zhou. PowerRush: A Linear
Simulator for Power Grid. In Computer-Aided Design (ICCAD), 2011
IEEE/ACM International Conference on, 2011.

[43] Ting Yu, Zigang Xiao, and M.D.F. Wong. Efficient parallel power grid analysis
via Additive Schwarz Method. In Computer-Aided Design (ICCAD), 2012
IEEE/ACM International Conference on, 2012.

[44] Yao Zhang, Jonathan Cohen, and John D. Owens. Fast Tridiagonal Solvers
on the GPU. In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2010.

[45] Min Zhao, Rajendran V. Panda, Sachin S. Sapatnekar, and David Blaauw.
Hierarchical Analysis of Power Distribution Networks. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 21(2), 2002.

[46] Xueqian Zhao, Jia Wang, Zhuo Feng, and Shiyan Hu. Power Grid Analysis
with Hierarchical Support Graphs. In Computer-Aided Design (ICCAD), 2011
IEEE/ACM International Conference on, 2011.

118
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

[47] Yu Zhong and Martin D. F. Wong. Thermal-Aware IR Drop Analysis in Large
Power Grid. In ISQED’08, 2008.

[48] Cheng Zhuo, Jiang Hu, Min Zhao, and Kangsheng Chen. Power Grid Analy-
sis and Optimization Using Algebraic Multigrid. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 27(4):738–751, 2008.

[49] Dan Zou, Yong Dou, Song Guo, Rongchun Li, and Lin Deng. Supernodal
Sparse Cholesky Factorization on Graphics Processing Units. Concurrency
and Computation: Practice and Experience, 2013.

119
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 21:54:28 EEST - 44.192.75.148

	Abstract
	Περίληψη
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background and Motivation
	Contributions
	Outline

	Parallel Computing Architectures
	Introduction
	Differences between CPUs and GPUs
	Concurrency in GPUs

	GPU Programming - The CUDA Programming Model

	Linear System Solution Methods
	Direct Methods
	Iterative Methods
	Conjugate Gradient Algorithm
	Preconditioning

	Solution of Linear Systems on Parallel Architectures

	Power Grid Electrical Simulation
	Power Grid Modeling
	Related Work
	Fast Transform Solvers for Networks with Special Structure
	Fast Transform Solvers for 2D Networks
	Fast Transform Solvers for 3D Networks

	Proposed Methodology for Power Grid Analysis
	Preconditioner Construction and Storage
	Procedure Implementation and Opportunities for Parallelism

	Experimental Results
	Experimental Setup
	Transient Analysis Results for the Industrial Benchmarks
	Transient Analysis Results for the Synthetic Benchmarks
	Scalability of FTCG and FTCG-3D
	Memory Efficiency
	Efficiency Under Grid Irregularity

	Power Grid Electro-Thermal Simulation
	Methodology Overview
	Fast Transform Solvers for Full 3D Networks
	Proposed Approach for Electro-Thermal Analysis
	Procedure Implementation

	Experimental Evaluation

	Conclusions and Future Directions
	Conclusions
	Future Directions

	Appendix A: Mathematical Proofs
	Publications
	References

