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Περίληψη 

 

Το κίνητρο της διδακτορικής διατριβής προήλθε από την ανάγκη βελτιστοποίησης του 

προγραμματισμού παραγωγής σε μια πραγματική χημική βιομηχανία παραγωγής ρητίνης PET. Η 

ανάγκη αυτή οδήγησε στην ανάπτυξη δύο διαφορετικών μαθηματικών μοντέλων που 

αντιμετωπίζουν το πρόβλημα του προγραμματισμού παραγωγής στη συγκεκριμένη βιομηχανία 

αλλά και σε άλλες με παρεμφερή χαρακτηριστικά, σε δύο διαφορετικά επίπεδα. Ο βασικός κορμός 

της διδακτορικής διατριβής αποτελείται από δύο βασικές ενότητες, στις οποίες παρουσιάζεται η 

μορφοποίηση, ανάλυση και επίλυση των δύο αυτών μοντέλων, αντίστοιχα. 

Στην πρώτη ενότητα που καταλαμβάνει το Κεφάλαιο 2, αναπτύσσεται ένα μοντέλο Μεικτού 

Ακέραιου Γραμμικού Προγραμματισμού (Mixed Integer Linear Programming ή MILP) για τον 

χρονικό προγραμματισμό της παραγωγής μιας μονάδας συνεχούς ροής που παράγει διαφορετικές 

ποιότητες (grades) ρητίνης PET. Ο χρόνος στο μοντέλο είναι διακριτοποιημένος. Ο αντικειμενικός 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 15:50:34 EEST - 3.146.37.111



vi 

στόχος είναι να ελαχιστοποιηθεί το κόστος που σχετίζεται με τις αλλαγές ρύθμισης (setup 

changeovers) της παραγωγής από μία ποιότητα προϊόντος σε μια άλλη, ούτως ώστε να 

αποφευχθούν ανεπιθύμητες μεταβολές στις ιδιότητες του παραγόμενου προϊόντος που λαμβάνουν 

χώρα κατά την διάρκεια τέτοιων αλλαγών. Οι περιορισμοί του μοντέλου αφορούν, μεταξύ άλλων, 

την σειρά των αλλαγών ρύθμισης παραγωγής, την σειριακή παραγωγή με περιορισμένη 

παραγωγική δυναμικότητα και περιορισμένη χωρητικότητα, την μικτή και ευέλικτη πεπερασμένη 

χωρητικότητα αποθηκών ενδιάμεσων και τελικών προϊόντων, τις απαιτήσεις ικανοποίησης της 

ζήτησης σε ενδιάμεσες ημερομηνίες (και όχι μόνον στο τέλος του ορίζοντα προγραμματισμού), κ.α. 

Παρουσιάζεται μια μελέτη περίπτωσης που καταδεικνύει πώς μπορεί να εφαρμοστεί το μοντέλο σε 

ένα πραγματικό σενάριο και οδηγεί στην εξαγωγή χρήσιμων συμπερασμάτων και ενόρασης όσον 

αφορά στην συμπεριφορά του μοντέλου. Η εμπειρία από τα αριθμητικά παραδείγματα δείχνει ότι οι 

υπολογιστικές απαιτήσεις για την επίλυση του μοντέλου είναι λογικές για μεγέθη προβλημάτων 

που απαντώνται σε πρακτικές εφαρμογές. 

Το μοντέλο βελτιστοποίησης του προγραμματισμού της παραγωγής που παρουσιάζεται 

στην πρώτη ενότητας της διατριβής είναι ένα κλασικό καθοριστικό μοντέλο διακριτού χρόνου και 

πεπερασμένου χρονικού ορίζοντα. Περιγράφει με μεγάλη ακρίβεια το πραγματικό πρόβλημα 

προγραμματισμού παραγωγής σε έναν βραχύ χρονικό ορίζοντα (τυπικά, μια εβδομάδα), όπου η 

ζήτηση των διαφορετικών ποιοτήτων θεωρείται γνωστή. Όμως, επειδή στο πραγματικό σύστημα, η 

παραγωγή και η ζήτηση συνεχίζονται και μετά το πέρας του ορίζοντα προγραμματισμού, το 

πρόγραμμα παραγωγής είναι λογικό να μην επιτρέπει στο απόθεμα των προϊόντων να πέσει κάτω 

από κάποιο απόθεμα ασφαλείας, ούτως ώστε να μπορεί να αντιμετωπισθεί η αβέβαιη ζήτηση και 

μετά το πέρας του χρονικού ορίζοντα προγραμματισμού. Για τον αποτελεσματικό σχεδιασμό των 

αποθεμάτων ασφαλείας απαιτείται μια πιο μακροσκοπική ανάλυση που να περιγράφει το σύστημα 
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με λιγότερη λεπτομέρεια, αλλά να λαμβάνει ρητά υπόψη την στοχαστική φύση της ζήτησης. Μια 

τέτοια ανάλυση αποτελεί το αντικείμενο της δεύτερης ενότητας της διδακτορικής διατριβής. 

Συγκεκριμένα, στη δεύτερη ενότητα που καταλαμβάνει το Κεφάλαιο 3, αναπτύσσεται ένα 

μαθηματικό μοντέλο μιας παραλλαγής του Στοχαστικού Προβλήματος του Βέλτιστου Χρονικού 

Προγραμματισμού Παρτίδων Παραγωγής (Stochastic Economic Lot Scheduling Problem ή 

SELSP), στο οποίο μια μονάδα συνεχούς παραγωγής πρέπει να παράγει διαφορετικές ποιότητες 

μιας οικογένειας προϊόντων για να ικανοποιήσει τυχαία αλλά στάσιμα κατανεμημένη ζήτηση για 

κάθε ποιότητα από μια κοινή αποθήκη τελικών προϊόντων με περιορισμένη χωρητικότητα. Η 

ζήτηση που δεν μπορεί να ικανοποιηθεί από το απόθεμα, χάνεται. Η πρώτη ύλη είναι πάντα 

διαθέσιμη, και η μονάδα παραγωγής παράγει συνεχώς και με σταθερό ρυθμό. Όταν η μονάδα είναι 

ρυθμισμένη να παράγει μια συγκεκριμένη ποιότητα, οι μόνες επιτρεπτές αλλαγές είναι από αυτή 

την ποιότητα στην αμέσως χαμηλότερη ή υψηλότερη ποιότητα. Όλοι οι χρόνοι αλλαγών είναι 

σταθεροί και ίδιοι. Υπάρχει ένα κόστος αλλαγής ανά περίσταση αλλαγής, ένα κόστος υπερχείλισης 

ανά μονάδα πλεονασματικού προϊόντος οποτεδήποτε δεν υπάρχει αρκετός χώρος στην αποθήκη 

τελικών προϊόντων για να αποθηκευτεί το παραγόμενο προϊόν, και ένα κόστος χαμένων πωλήσεων 

ανά μονάδα ελλειμματικού προϊόντος οποτεδήποτε δεν υπάρχει αρκετό απόθεμα τελικών 

προϊόντων για να ικανοποιηθεί η ζήτηση. Μοντελοποιούμε το SELSP ως μια Μαρκοβιανή 

Διαδικασία Αποφάσεων (Markov Decision Process ή MDP) διακριτού χρόνου, όπου σε κάθε περίοδο η 

απόφαση είναι αν θα ξεκινήσει μια αλλαγή ρύθμισης προς μια γειτονική ποιότητα προϊόντος ή αν θα 

παραμείνει η ρύθμιση της μονάδας παραγωγής ως έχει, βάσει της τρέχουσας κατάστασης του συστήματος 

που ορίζεται από την τρέχουσα ρύθμιση της μονάδας και τα επίπεδα αποθεμάτων τελικών προϊόντων όλων 

των ποιοτήτων. Ο στόχος είναι να ελαχιστοποιηθεί το μακροχρόνιο (απείρου ορίζοντα) προσδοκώμενο μέσο 

κόστος ανά περίοδο. Για προβλήματα 2 και 3 ποιοτήτων προϊόντος επιλύουμε αριθμητικά το ακριβές 

πρόβλημα MDP χρησιμοποιώντας την μέθοδο των διαδοχικών προσεγγίσεων του διαφορικού κόστους. Για 

προβλήματα με περισσότερες από 3 ποιότητες προϊόντος αναπτύσσουμε μια ευρετική διαδικασία επίλυσης 
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που βασίζεται στην προσέγγιση του αρχικού προβλήματος των πολλαπλών ποιοτήτων από πολλά 

υποπροβλήματα 3 ποιοτήτων που επιλύονται με την μέθοδο των διαδοχικών προσεγγίσεων. Παρουσιάζουμε 

αριθμητικά αποτελέσματα για παραδείγματα προβλημάτων 2-5 ποιοτήτων. Για τα παραδείγματα των 2 και 3 

ποιοτήτων χρησιμοποιούμε την ακριβή μέθοδο επίλυσης για να αποκτήσουμε ενόραση όσον αφορά στη 

δομή της βέλτιστης πολιτικής αλλαγών ρύθμισης. Για τα παραδείγματα των 4 και 5 ποιοτήτων συγκρίνουμε 

την απόδοση της ευρετικής διαδικασίας επίλυσης σε σχέση με αυτήν της ακριβούς μεθόδου. 
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Abstract 

The motivation for this dissertation originated form the need to optimize the scheduling of 

production in a real PET resin plant. This need led to the development of two different 

mathematical models that address the production scheduling problem in the particular industry that 

motivated this study as well as in similar industries at two different levels. The main body of the 

dissertation is divided into two parts in which we present the formulation, analysis and solution of 

each of the two models, respectively. 

In the first part, which occupies  Chapter 2, we develop a discrete-time, Mixed Integer Linear 

Programming (MILP) model for the production scheduling of a continuous-process multi-grade 

PET resin plant. The objective is to minimize the cost associated with grade changeovers in order to 

avoid undesirable variations in base resin properties and process conditions that occur during such 

changes. The constraints of the model include requirements related to sequence-dependent 

changeovers, sequential processing with production and space capacity, mixed and flexible finite 

intermediate storage, and intermediate demand due-dates. We present a case study that illustrates 

the application of the model on a real problem scenario and provides insight into its behavior. The 
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numerical experience demonstrates that the computational requirements of the model are quite 

reasonable for problem sizes that typically arise in practical applications.  

The production scheduling optimization model that is presented in the first part of this 

dissertation, is a typical deterministic, discrete-time, finite-horizon optimization model. It describes 

in great detail and accuracy the real production scheduling problem in the short term (typically one 

week), where the demand for the different grades is considered to be known. In real life, however, 

production and demand continue after the end of the scheduling horizon. With this in mind, it is 

reasonable to design the production schedule in such a way that the finished goods inventory at the 

end of the scheduling horizon does not fall below a certain safety stock level, so that the unknown 

random demand after the end of the scheduling horizon can be met. To effectively design such 

safety stock levels for each grade, it is necessary to perform a more macroscopic analysis which 

describes the system in less detail but takes into account the stochastic nature of demand. Such an 

analysis is performed in the second part of this dissertation. 

More specifically, in the second part, which occupies  Chapter 3, we study a variant of the 

Stochastic Economic Lot Scheduling Problem (SELSP) in which a single production facility must 

produce several different grades of a family of products to meet random stationary demand for each 

grade from a common Finished-Goods (FG) inventory buffer with limited storage capacity. 

Demand that can not be satisfied directly from inventory is lost. Raw material is always available, 

and the production facility continuously produces at a constant rate. When the facility is set up to 

produce a particular grade, the only allowable changeovers are from that grade to the next lower or 

higher grade. All changeover times are constant and equal to each other. There is a changeover cost 

per changeover occasion, a spill-over cost per unit of product in excess whenever there is not 

enough space in the FG buffer to store the produced grade, and a lost-sales cost per unit short 

whenever there is not enough FG inventory to satisfy the demand. We model the SELSP as a 
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discrete-time Markov Decision Process (MDP), where in each time period the decision is whether 

to initiate a changeover to a neighboring grade or keep the set up of the production facility 

unchanged, based on the current state of the system which is defined by the current set up of the 

facility and the FG inventory levels of all the grades. The goal is to minimize the (long-run) 

expected average cost per period. For 2- and 3-grade problems, we numerically solve the exact 

MDP problem using the value iteration method. For problems with more than three grades, we 

develop a heuristic solution procedure which is based on approximating the original multi-grade 

problem by several 3-grade sub-problems and numerically solving each sub-problem using value 

iteration. We present numerical results for problem examples with 2-5 grades. For the 2- and 3-

grade examples, we use the exact solution procedure to obtain insights into the structure of the 

optimal changeover policy. For the 4- and 5-grade examples, we compare the performance of the 

heuristic solution procedure against that of the exact procedure. 
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Chapter 1  Introduction 

In this chapter, we provide some background information which supports the motivation behind this 

dissertation. We also review the relevant literature, and we give a brief description of the two main 

parts of the dissertation, which occupy Chapters 2 and 3, respectively. 

1.1 Motivation and background 

Chemicals and plastics production is based on the processing of oil, natural gas and coal. It starts 

from a few main organic monomer chemical groupings, such as ethylene and propylene, from 

which various polymers are produced. A handful of these polymers form the inputs into 

manufactured intermediate and final plastic products. Although polymerization occurs via a variety 

of reaction mechanisms with different degrees of complexity, the industrial production of most 

polymers is more or less the same, from an operations management point of view. More 

specifically, it is common for polymerization plants to operate in a continuous manner in which 

several grades are produced using the same equipment. In this context, grades are understood as 

products made from the same polymer but with different end use properties, such as brightness, 

color, mechanical strength, etc. These end use properties of grades are dependent on molecular 

weight distribution and monomer conversion, which in turn are determined by operating conditions. 

Transition times in grade polymerization plants can be long, resulting in a considerable amount of 

off-specifications production. As such, the number of transitions to be made during a production 
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sequence is an important aspect to consider when determining a production schedule for 

polymerization plants (Terrazas-Moreno et al. 2007). 

One of the most important classes of polymers in use today is polyesters, which contain the 

ester functional group in their main chain. The widespread uses of polyesters range from bottles for 

carbonated soft drinks and water to fibers for shirts and other apparel. Polyesters also form the basis 

for photographic film and recording tape. Although there are many polyesters, the term “polyester” 

as a specific material most commonly refers to Polyethylene Terephthalate (PET), which is the 

workhorse polyester used for packaging, stretch-blown bottles and for the production of fiber of 

textile products. In this thisis, we focus on the production scheduling of bottle-grade PET. The 

scheduling paradigm that we develop for PET, however, is representative of the entire polymer 

production industry, because it has similar characteristics from an operations management point of 

view, as was mentioned above. 

PET is an inert plastic that does not leach harmful materials into its contents, when used as a 

container. For this reason, it has been the main solution for the production of packaging containers 

for over 20 years. The US Food and Drug Administration (FDA) has done rigorous testing to ensure 

that PET containers are safe and suitable for food and beverage storage and use. As a result, PET 

has been widely used for the production of food and beverage containers. An additional advantage 

of PET containers is that they are 100% recyclable and extremely light. Thus, they help diminish 

the formation of packaging waste and reduce the emission of contaminants during their transport. 

Furthermore, since they require less fuel during transportation, they also help saving energy. 

According to McGehee et al. (2004), the key factors that increase the cost of production in a 

PET plant are: 1) insufficient equipment utilization, 2) unscheduled down-time and upsets, 3) 

variations in grade quality/waste and 4) transitions during grade changes. The first three factors can 

be dealt with by using good engineering and operational practices and by adopting process changes 
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and revamps, such as implementing effective hardware modifications, carefully scheduling 

preventive maintenance, instituting rational quality management programs, and minimizing the 

effect of systematic sources of variability to the plant. The fourth factor can be dealt with by 

implementing careful and intelligent production scheduling. McGehee et al. (2004), expect that the 

practice of managing solid state polymerization plants by predictive scheduling will become more 

crucial in the upcoming years, since this is the most effective way to quickly respond to customer 

requirements with grade campaigns without large storage volumes or waste. 

In  Chapter 2 of this dissertation, we present a discrete-time Mixed Integer Linear 

Programming (MILP) model for the detailed production scheduling of a continuous-process plant 

that produces several grades of PET resin that is to be used for making beverage bottles. An 

important set of parameters of the MILP model is the set of safety stock levels of the finished goods 

inventories of the different grades at the end of the scheduling horizon. To design these parameters, 

in  Chapter 3, we develop and analyze a more macroscopic model of the plant, where we view the 

plant as a single production facility that must produce several different grades of a family of 

products to meet random stationary demand for each grade from a common finished goods 

inventory buffer with limited storage capacity. This gives rise to a variant of the Stochastic 

Economic Lot Sizing Problem (SELSP) which we model as a discrete-time Markov Decision 

Process (MDP), and solve using exact and heuristic solution procedures. 

1.2 Literature review 

The literature on chemical process scheduling is vast and rapidly growing, as indicated by the 

existence of numerous published reviews that bring to light a wealth of general-purpose modeling 

approaches and solution techniques. A common theme in many of these reviews (e.g., Kallrath, 

2002 and Méndez et al., 2006) is the classification of process scheduling models and solution 
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approaches in terms of plant topology, process representation, time representation, operation modes, 

demand pattern, changeover and storage characteristics, and other features that are involved in most 

process scheduling problems.  

An important differentiation is made between batch processes and continuous processes, 

with most of the published works addressing batch processes. Reklaitis (1992) overviews the 

scheduling and planning of batch process operations, focusing on the basic elements of chemical 

process scheduling problems and the available solution methods, while Kondili et al. (1993) present 

a general framework for handling a wide range of scheduling problems arising in batch chemical 

plants. There are numerous other more recent works on batch process scheduling. Typical examples 

are the work of Grünow et al. (2002), who present a hierarchical modeling approach to coordinate 

various plant operations in a multi-stage batch process chemical industry, and the works of Janak et 

al. (2006a, 2006b), who present efficient MILP formulations for scheduling large-scale industrial 

batch plants. In the context of continuous processes, a very recent work by Shaik et al. (2009) 

presents a framework for short-term and medium-term scheduling of large-scale industrial 

continuous plants. 

 Another important differentiation in the process scheduling literature is between discrete-

time and continuous-time models. Ierapetritou and Floudas (1998a,1998b) propose effective 

continuous-time formulations for both batch and continuous processes. Janak et al. (2004) extend 

these formulations to incorporate several additional features, such as different storage policies, 

resource constraints, variable batch sizes and processing times, batch mixing and splitting, and 

sequence-dependent changeover times, while Shaik and Floudas (2007) further extend them to 

rigorously treat storage requirements. Lin and Floudas (2001) propose a continuous-time 

formulation for design, synthesis and scheduling of multipurpose batch plants, and test it on both 
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linear and nonlinear cases, and Shaik et al. (2006) present a performance comparison and evaluation 

of several continuous-time models for short-term scheduling of multipurpose batch plants.  

Mockus and Reklaitis (1999) address the problem of decision timing in the context of batch 

and continuous process scheduling, Neumann et al. (2002) develop a batch scheduling problem that 

is modeled as a resource-constrained problem and is solved by an efficient truncated branch-and-

bound algorithm, and Giannelos and Georgiadis (2002) propose a formulation for short-term 

scheduling of multipurpose continuous processes. A relatively recent overview and comparison of 

discrete-time and continuous-time approaches for the scheduling of chemical processes can be 

found in Floudas and Lin (2004). The focus there is on a class of processes called sequential, which 

exhibit a linear structure in the production recipe, without material merging/splitting or recycle. The 

model that we study in this dissertation falls into that class. Finally, in a recent monograph, Suerie 

(2005) addresses the issue of time-continuity in discrete time models. 

Chemical process scheduling models can be efficiently formulated using mixed integer 

optimization techniques. Grossmann et al. (1996) provide an overview of such techniques for the 

design and scheduling of batch processes, emphasizing on general-purpose methods for MILP and 

Mixed Integer Non Linear Programming (MINLP) problems. Pinto and Grossmann (1998) present 

an overview of assignment and sequencing models used in the scheduling of process operations 

with mathematical programming techniques. The authors identify two major categories of 

scheduling models, single-unit and multiple-unit assignment models, and discuss the critical 

modeling issues of time domain representation and network structure. Méndez and Cerdá (2002) 

propose a MILP mathematical formulation for scheduling resource-constrained multigrade 

continuous chemical plants that uses a continuous-time domain representation. Janak and Floudas 

(2008) suggest preprocessing techniques for closing the integrality gap of MILP continuous-time 

formulations for batch processing scheduling. Other MILP models for production scheduling of 
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chemical processes have been proposed by Pinto and Grossmann (1995), Lee et al. (1996), Pinto 

(1997), Hui et al., (2000) and Castro and Grossmann (2006), to name a few. A recent review of 

several MILP based approaches for the scheduling of chemical process facilities which focuses on 

short-term scheduling of processes that can be represented as general networks can be found in 

Floudas and Lin (2005). 

Besides the general-purpose modeling approaches for the scheduling of generic chemical 

process industries, there have also been several works that are specific to the scheduling of different 

types of polymerization processes. One such example is the work by Qiu and Burch (1997), who 

develop a hierarchical production planning and scheduling model to solve a real-world problem in 

fiber manufacturing scheduling. The model requires determining production sequences in the 

presence of variable setup costs in a multi-machine and multi-grade environment. The emphasis is 

on the integration of the different levels of the hierarchy and on the development of the concept of 

the expected setup cost to circumvent the difficulty that until the production sequences are known, 

the exact setup costs can not be determined. Another example is the work of Wang et al. (2000), 

who develop a MINLP model for the batch scheduling of a polymer plant producing expandable 

polystyrene. None of the different products can be produced separately and only their relative 

proportion can be influenced by the choice of the recipes of the polymerizations. An augmented 

genetic algorithm is used to solve the model. 

Recently, there have also been some works on the joint optimization of scheduling and 

process control during changeover transitions in polymerization processes. Mahadevan et al. (2002) 

analyze the schedule of grade transitions for a polymerization reactor (isothermal free radical 

polymerization of methyl methacrylate (MMA) with azobis-isobutyronitrile as initiator and toluene 

as the solvent) that is controlled by a simple linear controller. The dominant factor determining the 

schedule of grade transitions is the transition cost related to the off-specification product. Nyström 
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at al. (2005) present a method for solving the problem of grade transition sequencing and dynamic 

optimization in polymerization processes. The method is based on decomposing the problem into 

two separate sub-problems – dynamic optimization (called primal problem) and scheduling (called 

master problem) – and solving them in an iterative manner. Terrazas-Moreno et al. (2007) present a 

Mixed Integer Dynamic Optimization (MIDO) model for the simultaneous optimal scheduling and 

control during transitions of a multi-grade polymerization continuous stirred-tank reactor. The 

schedules sought are strictly cyclic (each grade is produced once in each cycle), and the storage 

requirements downstream of the reactor are treated simplistically. The emphasis is on the behavior 

of the process during transitions. In a somewhat related work, Prata et al. (2008) present a MIDO 

modeling and numerical solution method for an integrated grade transition and production 

scheduling problem for a continuous polymerization reactor typically used for the production of 

homo- and copolymers of olefins. The emphasis is on modeling the nonlinear dynamics of the 

polymerization process in the reactor during transitions, but the downstream process units following 

the reactor are neglected. All the above works focus on different aspects of polymerization process 

scheduling (e.g., on the integration of planning and scheduling, on the use of genetic algorithms to 

solve the scheduling problem, on the combination of optimal scheduling and process control during 

transitions), but none is directly related to our work, as none includes in detail aspects such as 

inventory management and market demand for different grades. 

Finally, there are many production scheduling models for continuous chemical processes 

that are similar to the one that we address in this work. For example, Bok and Park (1998) present 

an efficient short-term scheduling mixed integer programming model for a multipurpose pipeless 

plant over a continuous-time domain. Doganis et al. (2005) develop a MILP model for determining 

the optimal production schedule in a lubricant production plant, and Tousain and Bosgra (2006) 
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propose an approach for flexible production scheduling in continuous multi-grade chemical 

processes. 

To the best of our knowledge, the development of an optimization model for production 

scheduling in a PET production facility has not been addressed in the past. Moreover, as was 

mentioned earlier, the PET plant that we consider in this dissertation has several features that make 

it unbefitting the general-purpose models discussed above. For this reason, in  Chapter 2, we 

develop a specific MILP model for it that is general enough, however, to be applicable to other 

similar applications, particularly in the polymer production industry. 

In  Chapter 3, we view the production scheduling problem as a variant of the SELSP. The 

SELSP has received considerable attention in the literature because of its theoretical and practical 

importance. A comprehensive review of related works can be found in Sox et al. (1999) and 

Winands et al. (2005). From these reviews, it is apparent that there have been two approaches for 

tackling the SELSP. One approach is to develop a cyclic schedule, i.e., a fixed production sequence, 

usually using a deterministic approximation of the stochastic problem, and then develop a control 

rule for the stochastic problem to pursue that schedule. The literature on this approach is relatively 

rich, as it has grown naturally from the abundant deterministic ELSP literature. Representative 

works based on cyclic scheduling are Gallego (1990, 1994), Bourland and Yano (1994), Fransoo et 

al. (1995), Federgruen and Katalan (1996), Leachman and Gascon (1998), Anupindi and Tayur 

(1998), Markowitz et al. (2000) and Markowitz and Wein (2001). The attractiveness of the fixed-

sequence approach lies on its ability to provide a practical solution for problems with a large 

number of products, as it breaks up the difficult dynamic scheduling problem into two easier sub-

problems, namely, sequencing and lot sizing, which are solved sequentially. A drawback of this 

approach, however, is that it may not respond effectively to random changes in demand, as was 

mentioned earlier. 
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The other approach, which we follow in this dissertation, is to develop a dynamic scheduling 

rule that determines which product to produce based on the current state of the system. Such a rule 

may be a simple heuristic or may be derived from an optimal control analysis of the problem. It 

may rely on only part of the current state of the system, e.g. on the inventory level of the product 

that the facility is set up for (local rule), or on the entire state of the system (global rule). Zipkin 

(1986) is an indicative example of a dynamic sequencing approach that uses a local (s, Q)-type lot 

sizing policy. The literature on dynamic sequencing approaches, particularly the track that adopts an 

optimal control perspective, is quite scarce, because of the insurmountable difficulty of obtaining an 

analytical solution even for problems of small size, and the computational challenge of numerically 

solving problems of realistic size. 

One of the first exploratory works on the SELSP is Vergin and Lee (1978). They examine 

simple dynamic sequencing heuristics for the SELSP with changeover costs but no changeover 

times. The heuristic that outperforms all others is one where in each period, production switches to 

the product with the fewest expected remaining days of stock or most days of backorder, if that 

product has fewer days than a certain critical number of days of stock on hand. Else, if the product 

being produced does not exceed its maximum inventory level (absolute and relative), then its 

production continuous in the next period; otherwise, the production facility is idled for the next 

period. 

Graves (1980) looks at the SELSP as a discrete-time stochastic control problem with 

dynamic sequencing. He first solves a one-product problem with inventory-backorder costs and 

changeover costs, but no changeover times, where the decision in each period is to produce or idle 

the facility. He then uses the solution of the one-product problem as the basis for a heuristic 

procedure to solve the multi-product problem. In that heuristic, scheduling conflicts among different 

products are solved by comparing the value functions derived for each individual and “composite” 
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product from the one-product analysis. The composite product is a concept that Graves introduces 

to help anticipate possible scheduling conflicts in the multi-product problem. The idea is that the 

composite inventory of several products should indicate the need for current production, in case the 

individual product inventories are deemed just adequate when viewed in isolation. 

Qiu and Loulou (1995) look at a problem with Poisson demand, deterministic processing 

and changeover times, and changeover and inventory-backlog costs. They model the problem as a 

semi-MDP, where the objective is to decide in each “review” epoch which product, if any, to set up 

the facility to produce, in order to minimize the infinite-horizon, discounted cost. The review 

epochs are those points in time when either the production facility is idle and some demand arrives, 

or when a part has just been processed and the production facility is free. They use successive 

approximation to generate near-optimal control policies by solving the problem on a truncated 

inventory space, and compute error bounds caused by the truncation. They present numerical results 

for 2-product problems, and conclude that systems with more than two products are limited by the 

curse of dimensionality. 

Finally, Karmarkar and Yoo (1994) and Sox and Muckstadt (1997) develop finite-horizon 

stochastic mathematical programming models for the SELSP, that can also be classified as SCLSP, 

with deterministic production and changeover times, and use Lagrangian relaxation for finding 

optimal or near-optimal solutions for problems of small sizes. 

There has also been a stream of works on the dynamic scheduling of failure-prone flexible 

manufacturing systems that are based on a flow control approach. In much of that literature, it is 

assumed that the production capacity changes randomly due to machine failures and repairs, while 

the demand rate remains constant. 

Kimemia and Gershwin (1983) are among the first to show that the optimal control policy 

for such systems is a “hedging point” policy, according to which a positive surplus of products is 
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maintained during times of excess capacity availability to hedge against future capacity shortages 

that are brought about by machine failures. 

When the manufacturing system is not perfectly flexible but requires setups, Sharifnia et al. 

(1991) propose a setup scheduling policy that uses “corridors” in the product surplus/backlog space 

to determine the timing of the setup changeovers in order to guide the trajectory in the desired 

direction. They investigate in detail the case where the desired trajectory leads to a hedging point, 

and show that in this case, the surplus/backlog trajectory at the setup level can lead to a limit cycle. 

In a related work, Liberopoulos and Caramanis (1997) use an MDP approximation to find 

the optimal production rate and changeover policy of a single unreliable production facility with 

negligible or random changeover times to meet constant demand for two products, under various 

assumptions about the inventory holding and backorder cost rates. Their numerical results reveal 

that the optimal setup changeover policy is a corridor-type policy, where setup changeovers are 

initiated to keep the surplus/backlog state within a cone-type corridor, pointing towards an 

appropriately positioned hedging limit cycle.  

In a parallel work, Elhafsi and Bai (1997) follow a similar approach for a similar 2-product 

system to show that the structure of the optimal setup changeover policy is a corridor-type policy 

too. In their case, the corridor is orthogonal or parallel, depending on the parameters of the system. 

Our work in  Chapter 3 follows the stream of papers that view the SELSP as a discrete-time, 

periodic-review control problem with dynamic production sequencing and global lot sizing, and as 

such is more closely related to Graves (1980) and Qiu and Loulou (1995). It is also very closely 

related to Sharifnia et al. (1991), Liberopoulos and Caramanis (1997), and Elhafsi and Bai (1997), 

as we use a qualitatively similar approach and obtain a similar corridor-type setup changeover 

policy, as we will see in Section  3.4. Our work differs from previous works in that it considers a 

new variant of the SELSP, where the FG inventory buffer has finite storage capacity and the only 
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allowable changeovers are from one grade to the next lower or higher grade. The latter feature 

renders problems with a large number of grades amenable to heuristic solution procedures that are 

based on approximating the original problem by several smaller (i.e., with fewer grades) sub-

problems which are computationally easier to solve. We develop one such procedure in Section  3.3. 

1.3 Dissertation organization 

The remainder of this dissertation is organized into two main parts which occupy Chapters 2 and 3, 

respectively. 

In  Chapter 2, we develop a discrete-time, MILP model for the production scheduling of a 

continuous-process multi-grade PET resin plant. The objective is to minimize the cost associated 

with grade changeovers in order to avoid undesirable variations in base resin properties and process 

conditions that occur during such changes. The constraints of the model include requirements 

related to sequence-dependent changeovers, sequential processing with production and space 

capacity, mixed and flexible finite intermediate storage, and intermediate demand due-dates. We 

present a case study that illustrates the application of the model on a real problem scenario and 

provides insight into its behavior. The numerical experience demonstrates that the computational 

requirements of the model are quite reasonable for problem sizes that typically arise in practical 

applications.  

In  Chapter 3, we study a variant of the SELSP in which a single production facility must 

produce several different grades of a family of products to meet random stationary demand for each 

grade from a common Finished-Goods (FG) inventory buffer with limited storage capacity. 

Demand that can not be satisfied directly from inventory is lost. Raw material is always available, 

and the production facility continuously produces at a constant rate. When the facility is set up to 

produce a particular grade, the only allowable changeovers are from that grade to the next lower or 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 15:50:34 EEST - 3.146.37.111



 

13 

higher grade. All changeover times are constant and equal to each other. There is a changeover cost 

per changeover occasion, a spill-over cost per unit of product in excess whenever there is not 

enough space in the FG buffer to store the produced grade, and a lost-sales cost per unit short 

whenever there is not enough FG inventory to satisfy demand. We model the SELSP as a discrete-

time MDP, where in each time period the decision is whether to initiate a changeover to a 

neighboring grade or keep the set up of the production facility unchanged, based on the current state 

of the system which is defined by the current set up of the facility and the FG inventory levels of all 

the grades. The goal is to minimize the (long-run) expected average cost per period. For 2- and 3-

grade problems, we numerically solve the exact MDP problem using the value iteration method. For 

problems with more than three grades, we develop a heuristic solution procedure which is based on 

approximating the original multi-grade problem by several 3-grade sub-problems and numerically 

solving each sub-problem using value iteration. We present numerical results for problem examples 

with 2-5 grades. For the 2- and 3-grade examples, we use the exact solution procedure to obtain 

insights into the structure of the optimal changeover policy. For the 4- and 5-grade examples, we 

compare the performance of the heuristic solution procedure against that of the exact procedure. 

Finally, we summarize our findings in  Chapter 4. 
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Chapter 2 Production scheduling of a multi-

grade PET resin plant 

In this chapter, we develop a discrete-time, Mixed Integer Linear Programming (MILP) model for 

the production scheduling of a continuous-process multi-grade PET resin plant. The objective is to 

minimize the cost associated with grade changeovers in order to avoid undesirable variations in 

base resin properties and process conditions that occur during such changes. The constraints of the 

model include requirements related to sequence-dependent changeovers, sequential processing with 

production and space capacity, mixed and flexible finite intermediate storage, and intermediate 

demand due-dates. We present a case study that illustrates the application of the model on a real 

problem scenario and provides insight into its behavior. The numerical experience demonstrates 

that the computational requirements of the model are quite reasonable for problem sizes that 

typically arise in practical applications.  

The rest of this chapter is organized as follows. In Section  2.1, we describe the operation of 

the PET resin plant that motivated this work. In Section  2.2, we present the MILP formulation that 

we developed for the scheduling problem under consideration. Section  2.3 illustrates the application 

of the model on a real problem scenario. Finally, we draw our conclusions in Section  2.4. 
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2.1 Operation of a PET plant 

PET production is relatively simple in that yields are practically fixed and bygrade waste is 

minimal. The production process is non-stop and continuous, and consists of two stages in series: 

Liquid State (or Melt) Polymerization (POLY) and Solid State Polymerization (or 

Polycondensation) (SSP) which raises the molecular weight and hence the tensile properties of the 

fibers obtained by melt polymerization. Feed rate changes are possible but highly undesirable, 

because they cause variations in the production process and grade characteristics. A common 

industrial practice is to set the production rates of POLY and SSP equal to each other so that the 

material flow in the two stages is synchronized; if this were not the case, the storage area between 

them would eventually become either full (if POLY produced faster than SSP) or empty (if POLY 

produced at a lower rate than SSP), at which point one or both rates would have to change to avoid 

violating the buffer capacity constraint (typically, the two rates would be set equal to each other). 

Asynchronous material flow between consecutive production stages, which causes the material 

level in the storage space between the stages to change dynamically, has been studied quite 

extensively in the context of unreliable discrete-parts manufacturing (e.g., see the review paper by 

Dallery and Gershwin (1992)). In the continuous-flow setting that we consider in this dissertation, 

which is typical in the process industries, however, the material flow between the two processing 

stages is synchronized and the common production rate of the two stages may be tuned once in a 

while in the long run so as to match the total expected demand for all grades, in case the demand 

has seasonal or other long-run variations. For the purposes of short-term scheduling that we 

consider in this dissertation, however, the common production rate is assumed to be constant and 

equal to (or close to) the total expected demand for all grades. This assumption holds true in most 

real PET plants, including the one that inspired this study.  
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The final product or grade coming out of SSP is characterized by two key properties: Color 

and Intrinsic Viscosity (IV). IV is related to the length of the polymer chains; the higher the IV, the 

stiffer the material. The color is determined in the first production stage (POLY), while the IV is 

determined in the second stage (SSP). In the bottle-grade PET plant that inspired this work, there 

are four acceptable combinations of color and IV. These combinations lead to four final products, 

respectively, as shown in Table  2-1. A dash (-) denotes a color and IV combination that is not 

produced, because there is no demand for it. The abbreviations WG, SD, G and FH correspond to 

the grades Water Grade, Soft Drink, Gray, and Fast Heat, respectively. 

 

Table  2-1. Grade of final product based on color and IV combination 

 Color 
IV Light (L) Gray (G) Dark (D)

Low ( < 0.8) WG - - 
High (> 0.8) SD G FH 

 

WG is primarily used for water bottles. It is light-colored, because consumers are known to 

prefer clear and transparent water bottles. Moreover, it has low IV, because water bottles need not 

be as stiff as bottles for carbonated soft-drinks, which are under higher pressure. Carbonated soft 

drinks, on the other hand, are stored in high-IV bottles and can be either light-colored (SD), usually 

for light-colored soft drinks, or dark-colored (FH), usually for dark-colored soft drinks. From a 

production process viewpoint, dark-colored PET is preferable to light-colored PET, because it can 

produce bottles with more uniformly distributed mass density – hence, higher quality – faster, in the 

fast-heat and inflation molding stage of bottle making. 

Grade changeovers are necessary in order to meet dynamic customer demand on time but 

are undesirable, because they last a significant amount of time and cause variations in base resin 

properties and processing conditions during the transition period. The only allowable grade 
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changeovers are from WG to SD to G to FH and backwards (always in this order). G is an 

intermediate off-specification grade produced inevitably during the color changeover transition 

from SD to FH and vice versa. Typically, there is no regular demand for it in the primary market for 

PET, but it can be sold in a secondary market at a lower price. Another type of intermediate grade is 

produced during the IV changeover transition from WG to SD and backwards. A common industrial 

practice, which is also employed by the plant that inspired this work, is to divide this intermediate 

grade into two halves and classify the first half as WG and the second half as SD. The opposite is 

done in a changeover transition from SD to WG. Therefore, the entire quantity of the intermediate 

grade is mixed in with the pure WG and SD grades and is sold in the primary market. In effect, 

however, this mixing lowers the overall on-specification grade percentage, and is therefore highly 

undesirable. 

The two production stages, POLY and SSP, are separated by an intermediate storage area, 

which we refer to as Temporary Storage Stage (TSS) and typically consists of 2-3 silos (see Figure 

 2-1). One possible way of using these silos would be to dedicate them to the different color grades 

coming out of POLY. For example, if there were three TSS silos, then the first silo would be used 

for storing Light-colored (L) PET, the second for storing gray (G) PET, and the third for storing 

Dark-colored (D) PET. This way, if production were to change over, say, from light- to dark-

colored PET, the material coming out of POLY would have to be redirected from silo L to silo G, 

during the color changeover transition period, and then to silo D upon the end of the transition. 

Similarly, if the final grade production were to change over from SD to FH, then the silo feeding the 

SSP reactor would have to be switched from L to D. 

In effect, however, redirecting the feeds in and out of the TSS is not instantaneous but takes 

a small transition time during which the grades before and after the changeover are mixed, because 

the pipes in and out of the TSS must be emptied from one grade before they can be filled with the 
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next. To avoid this extra mixing, the plant that inspired this work actually uses only one of the silos 

in the TSS area, and reserves the other silos for special situations, such as for storing the product 

produced from POLY during an interruption of the SSP process caused by an unforeseen equipment 

failure or a scheduled maintenance. Thus, at any given time, the actively used silo in TSS has 

different layers of light-colored, gray, and dark-colored material stashed on top of each other.  

 

 

Figure  2-1. Material flow in a PET resin production plant 

 
With this in mind, henceforth, we will assume that only one silo is actively used in TSS. 

This assumption eliminates the dilemma of which silo to feed POLY into, and which silo to feed 

SSP from; hence, it simplifies the scheduling problem. At the same time, however, it complicates 

the model, because one must keep track of the different layers of color present in the TSS silo. It is 

also worth mentioning that the SSP reactor is itself a silo with non-negligible space capacity, in 

which clean inert gas moves upward and chips downward. This means that material needs a 

…
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significant time to travel through the reactor, and therefore what goes in SSP comes out from it with 

a time delay. This adds another factor of complication to the model. 

The grade coming out of SSP is loaded into one of several silos at the so-called Loading or 

Final Storage Stage (LFSS). Unlike the silos in the TSS, which allow the cohabitation of different 

colors, the silos in the LFSS do not. Thus, each silo can only contain a single final grade at any 

given time. There is a degree of flexibility, however, in that it is possible to switch the grade that a 

silo contains. In order for this to happen, though, the silo must first be completely emptied from one 

grade, before it starts being filled with another. 

The grade coming out of the silos in LFSS is either filled into big bags with the use of a 

bagging machine and stored in a finished-goods warehouse, or is directly loaded into silo trucks or 

bulk containers to be shipped to customers. A different unloading rate applies for each of these 

three distinct unloading modes of the LFSS silos. Additionally, customers may also demand PET in 

big bags directly from the warehouse. In this case, the big bags are loaded onto regular trucks. 

The scheduling model that we develop in this chapter minimizes the cost associated with the 

number of grade changeovers in a fixed time horizon, while also satisfying several constraints 

related to sequence-dependent changeovers, sequential processing with production and space 

capacity, mixed and flexible finite intermediate storage, and intermediate demand due-dates at both 

the LFSS and the warehouse. We adopt a discrete-time representation, which keeps the model 

relatively simple, enhances its flexibility and facilitates the introduction of additional constraints. 

Furthermore, our computational results demonstrate that our model can handle practical problem 

cases in quite reasonable times. Given the complexity of our model, which stems from the 

complexity of the real system that it represents, we doubt that a continuous-time representation 

would offer significant computational benefits. 
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The main input for the scheduling model is the initial setup state of POLY and SSP, the 

initial inventory level and grade-type in TSS, LFSS and the warehouse, and the demand forecast for 

each grade and transportation mode, in each period of the scheduling horizon. Given that the sales 

department of the plant that motivated the development of our model can forecast the demand quite 

accurately for a week ahead of time, a typical length of the scheduling horizon is one week. Within 

this horizon, several scheduling decisions must be addressed, such as which grade to produce and 

when to initiate a color or IV changeover transition, which LFSS silo to pour the grade coming out 

of SSP into, which LFSS silo to sack big bags from, if any, and which LFSS silo to load trucks or 

bulk containers from, to meet the demand. 

The research presented in this chapter was conducted as part of a project entitled 

“Optimization of production scheduling and product distribution of a PET resin chemical plant,” as 

was mentioned in the acknowledgments section at the beginning of the dissertation. Having been 

developed for a real Operations Research (OR) application, our model is tailor-made, because it 

includes several features that are specific to this application and can not be incorporated into any of 

the general-purpose, discrete-time or continuous-time model formulations that have been proposed 

in the literature. These special features will become apparent in the following paragraphs, where we 

describe in detail the operation of the PET plant that motivated this work. At the same time, 

however, our model is general enough to be suitable for use in other similar applications, 

particularly those in the polymer production industry, after performing the appropriate adjustments.  

There are several features of our model which we have not encountered in the literature on 

general-purpose MILP modeling in process scheduling. One such feature is that the changeover 

sequence in one stage depends on the setup state of the other stage. More specifically, according to 

Table 1, the changeover from low to high IV in SSP is not allowed, if the color setting of the 

material currently being processed in SSP is G or D. This complicates things considerably, since the 
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color of the material being processed in SSP in a particular time period has been determined several 

periods earlier when this material was processed in POLY. Moreover, as was also mentioned 

earlier, even though the changeover transition time from low to high IV (and reversely) is 

significant, in practice, the transition itself is conventionally considered to take place 

instantaneously in the middle of the transition time, as far as the classification of the grade produced 

by SSP is concerned. What complicates the model even more is that the SSP reactor has itself a 

finite space capacity which introduces a delay between what goes in and out of SSP. 

Another special feature of our model is that layers of different color grades are allowed to be 

stored on top of each other in the active silo in TSS, making it necessary to keep track of these 

layers. Consequently, the storage requirements of that silo do not fall in any of the usual types of 

intermediate storage requirements encountered in the literature on MILP modeling in process 

scheduling, namely, unlimited, finite dedicated or flexible (but with no mixing allowed), zero-wait, 

and no storage requirements (e.g., see Shaik and Floudas (2007)). For this reason, we refer to these 

requirements as mixed finite intermediate storage requirements. 

Additionally, the demand for final products does not only occur at different intermediate 

dates, but also at two different storage stages, namely, at the LFSS and at the warehouse. This 

makes the LFSS both an intermediate and a final storage area, raising the question “to sack or not to 

sack big bags,” because sacking big bags serves to increase the service level of customers 

requesting big bags from the warehouse but at the same time lowers the service level of customers 

requesting bulk material from the silos at the LFSS. 

The above features complicate the mathematical formulation of our model but also make it 

more interesting and challenging. The real motivation for developing our model, however, stems 

from the fact that it is built for a real OR application. We present a case study that illustrates the 

application of the model on a real problem scenario and provides insight into its behavior. The 
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numerical experience that we provide demonstrates that the computational requirements of the 

model are quite reasonable for problem sizes that typically arise in practical applications. 

2.2 MILP model development 

For the needs of our model, we discretize time by dividing the scheduling horizon, typically one 

week, into a finite number of identical time periods. The length of each period must be no bigger 

than the length of the shortest nonstop event that takes place in the entire process. This could be the 

transition time of a grade changeover, the time of a shift, if different shifts have different 

characteristics, etc. 

The production facility operates on a 24-hour basis, so in each period, POLY produces an 

amount of material which is equal to the constant production rate of the plant, denoted by P, 

multiplied by the length of the period; therefore, POLY is considered as a source of material (we 

assume that it is never starved of raw material), and the material that it produces in each period is 

referred to as a lot. 

The next step is to discretize space at the TSS and SSP stages by dividing their capacities 

into an integer number of slots, where each slot accommodates exactly one lot. At the beginning of 

the scheduling horizon, the active silo in the TSS has some initial material in it that occupies several 

slots – say N slots – and the SSP reactor is filled with material up to its capacity, which is equal to, 

say, M slots. The SSP reactor has the same production rate as POLY, as was mentioned in Section 

 2.1; therefore, in each period, the TSS and the SSP stages consume from their upstream stage and 

release into their downstream stage exactly one lot. This implies that in every period of the 

scheduling horizon, the number of lots in TSS and SSP is constant and equal to N and M, 

respectively. 
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Note that if the production rates of POLY and SSP were allowed to be different, then we 

would have to keep track of the dynamically changing level of material (number of non-empty 

slots) in the TSS, as well as the type of material in each slot. In fact, this is more or less what we do 

in the case of the LFSS, where the input rate is constant but the output rate is partly variable and 

uncontrollable, due to the varying demand, and partly controllable, as the rate of bagging bulk 

material from the LFSS into big bags is a decision variable. 

The color (L, G or D) of the lot in the nth slot of the N + M slots of the TSS and the SSP 

reactor taken together depends on the setup state (L, G or D) of POLY n periods before the 

beginning of the time horizon. Therefore, in order to characterize the color in the N + M slots of the 

TSS and the SSP reactor, we need to know the setup state of POLY during the last N + M periods 

before the beginning of the scheduling horizon. With this in mind, we shift the time axis by N + M 

periods so that the first period of the scheduling horizon is N + M + 1, and therefore periods 1 to N 

+ M refer to the past. 

Next, we present the MILP formulation that we developed for the problem under 

consideration. The following notation is used: 

Sets: 

I : set of colors produced by POLY, indexed by i, I = {1, 2, 3} ≡ {L, G, D} 

J : set of final grades, indexed by j, J = {1, 2, 3, 4} ≡ {WG, SD, G, FH} 

Q : set of silos in LFSS, indexed by q 

Parameters: 

T : index of the last period of the scheduling horizon 

P : production quantity of the process in one period 

N : number of slots in TSS 

M : number of slots in SSP 
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d : cost incurred per color changeover at POLY 

c : cost incurred per IV changeover at SSP 

B : duration of a color changeover transition at POLY (in number of periods) 

F : duration of an IV changeover transition at SSP (in number of periods) 

X01t : binary parameter that takes the value 1 if the lot produced by POLY in period t has color L, 

and 0 otherwise, t = 1,…, N + M 

X02t : binary parameter that takes the value 1 if the lot produced by POLY in period t has color G, 

and 0 otherwise, t = 1,…, N + M 

X03t : binary parameter that takes the value 1 if the lot produced by POLY in period t has color D, 

and 0 otherwise, t = 1,…, N + M 

A0t : binary parameter that takes the value 1 if an IV change is initiated at the beginning of period 

t, and 0 otherwise, t = N + M – F + 2,…, N + M 

Z0: binary parameter that takes the value 1 if the IV of the lot stored in the last slot of SSP at the 

beginning of the scheduling horizon is high, and 0 otherwise 

W0qj : binary parameter that takes the value 1 if grade j is stored in silo q of LFSS at the beginning 

of the scheduling horizon, and 0 otherwise 

S0qj : quantity of grade j contained in silo q of LFSS at the beginning of the scheduling horizon 

Smax : capacity of a silo in LFSS 

Smin : minimum quantity of a nonempty silo in LFSS 

SSmin j : safety stock of grade j in LFSS at the end of the scheduling horizon 

uST : maximum quantity of material that can be loaded from LFSS into a silo truck in one period 

uBC : maximum quantity of material that can be loaded from LFSS into a bulk container in one 

period 

uBΒ : maximum quantity of material that can be sacked from LFSS into big bags in one period 
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R0j : grade j inventory in the warehouse at the beginning of the scheduling horizon  

Rmax : warehouse capacity 

Rmin j : safety stock of grade j in the warehouse at the end of the scheduling horizon 

dSTjt: silo trucks demand of grade j in period t, t = N + M + 1,…, T 

dBCjt: bulk containers demand of grade j in period t, t = N + M + 1,…, T 

dBBjt: big bags demand of grade j in period t, t = N + M + 1,…, T 

Decision Variables: 

xit : binary decision variable that takes the value 1 if the lot produced by POLY in period t has 

color i, and 0 otherwise, t = 1,…, T 

yjt : binary decision variable that takes the value 1 if final grade j is produced by SSP in time 

period t, and 0 otherwise, t = N + M + 1,…, T + (F/2) 

at : binary decision variable that takes the value 1 if an IV changeover is initiated at the 

beginning of period t, and 0 otherwise, t = N + M – F + 2,…, T 

zt : binary decision variable that takes the value 1 if the IV of the grade produced in period t is 

high, and 0 otherwise, t = N + M,…, T + (F/2) 

Sqjt : quantity of grade j in silo q of LFSS at the end of period t, t = N + M,…, T 

Wqjt : binary decision variable that takes the value 1 if grade j is contained in silo q of LFSS in 

period t, and 0 otherwise, t = N + M,…, T 

gqjt : binary decision variable that takes the value 1 if grade j is loaded from SSP into silo q of 

LFSS in period t, and 0 otherwise, t = N + M + 1,…, T 

Gqjt : quantity of grade j that is unloaded from silo q of LFSS in period t, t = N + M + 1,…, T 

bqjt: quantity of grade j that is loaded from silo q of LFSS into big bags in period t, t = N + M + 

1,…, T 

fqjt : quantity of grade j that is loaded from silo q of LFSS into silo trucks in period t, t = N + M + 
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1,…, T 

hqjt : quantity of grade j that is loaded from silo q of LFSS into bulk containers in period t, t = N + 

M + 1,…, T 

Rjt : quantity of grade j in the warehouse at the end of period t, t = N + M,…, T 

The formulation that we develop next also assumes that the following inequalities hold: F < 

N + M, B < N + M, N + M < T – (N + M). These restrictions hold in practice. 

The objective function of our model is expressed as 

 2
1 1

1Minimize   
T T

t t
t N M t N M

c a d x
B= + + = + +

⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑  (2.1) 

The above expression minimizes the weighted sum of the number of IV and color 

changeovers during the scheduling horizon, i.e., from period N + M + 1 to period T. The first 

summation in the objective function represents the number of IV changeovers. The second 

summation represents the total number of color changeover transition periods. It is divided by B, 

i.e., by the duration of a color changeover transition, to give the number of color changeovers. 

Next, we present the constraints of our model. Constraints (2.2)-(2.11) are related to the 

processing part of the plant, which comprises POLY, TSS and SSP.  

 1it
i I

x
∈

=∑ , t = 1, …, T (2.2) 

 1 3

3 1

1

1
t t p

t t p

x x

x x
+

+

+ ≤ ⎫⎪
⎬+ ≤ ⎪⎭

, t = 1,…, T – 1, p = 1, …, min(T – t, B) (2.3) 

 1 3 1

3 1 1

1
1

t t

t t

y y
y y

+

+

+ ≤ ⎫
⎬+ ≤ ⎭

, t = N + M + 1,…, T + (F/2) – 1 (2.4) 

Constraint set (2.2) states that POLY can only produce a single color in each period. Since 

the color of the final grade exiting SSP in any period was determined in POLY N + M periods 

earlier, at the beginning of the scheduling horizon, the color in slots 1,…, N + M has already been 
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predetermined; therefore, in effect, constraint (2.2) must really be imposed from period N + M + 1 

and on only. Its application to periods 1,…, N + M is merely a routine check that serves to verify 

that the initial status of the system, as decided in the previous scheduling horizon, results in feasible 

production settings during the present horizon, too. This modeling technique is also adopted in 

several of the other model constraints which follow.  

Constraint set (2.3) states that between two periods in which POLY produces colors L and D 

(in either order), B periods in which POLY produces G must always intervene. Note that the actual 

number of constraints of this set depends not only on the length of the scheduling horizon but also 

on the value of B. More specifically, if B = 1, then POLY can not produce colors D and L in two 

adjacent periods. If B > 1, this restriction is imposed not only to adjacent periods, but also to periods 

that are spaced i periods apart, for i = 2,…, B. 

Similarly, constraint set (2.4) states that final grades WG and G can not be produced in two 

adjacent periods, because at least one period in which grade SD is produced must always intervene. 

Since the color is determined in POLY and any IV change in SSP becomes effective F/2 periods 

after it is initiated, the final grade that will be produced in the first F/2 periods of the scheduling 

horizon, i.e., in periods N + M + 1,…, N + M + (F/2), is predetermined by the initial state of the 

system. Therefore, constraint set (4) must really be imposed from period N + M + (F/2) and on only. 

Its application to periods N + M,…, N + M + (F/2) – 1 serves to verify that the initial conditions are 

feasible. To ensure that the current production schedule will also remain feasible in the next 

scheduling horizon, this set of constraints also extends to periods T + 1,…, T + (F/2) – 1. Combined 

together, constraint sets (2.3) and (2.4) ensure that the only allowable grade changeovers are from 

WG to SD to G to FH and backwards, always in this exact sequence. 

 
1

1
t F

s
s t

a
+ −

=

≤∑ , t = N + M – F + 2, …, T – F + 1 (2.5) 
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 1t t N Ma x − −≤ , t = N + M + 1, …, T (2.6) 

 ( / 2) ( / 2) 1

( / 2) ( / 2) 1

t F t F t

t F t F t

z z a

z z a
+ + −

+ + −

− ≤ ⎫⎪
⎬− ≥ − ⎪⎭

, t = N + M + 1 – (F/2), …, T  (2.7) 

 ( / 2) ( / 2) 1

( / 2) ( / 2) 1 2
t F t F t

t F t F t

z z a

z z a
+ + −

+ + −

+ ≥ ⎫⎪
⎬+ ≤ − ⎪⎭

, t = N + M + 1 – (F/2), …, T  (2.8) 

Constraint set (2.5) states that only one IV change can be initiated at SSP within F 

consecutive periods. This constraint stems from the fact that an IV change in the SSP reactor lasts F 

periods in total, and can not be interrupted before it is fully completed. The grade produced by SSP 

during the first F/2 periods after an IV changeover is initiated is considered to have the 

characteristics of the grade that was produced before the beginning of the changeover transition, 

while the grade being produced during the last F/2 periods is considered to have the characteristics 

of the grade that will be produced after the end of the transition. Therefore, F is only limited to even 

integers. 

Constraint set (2.6) states that an IV changeover can only be initiated if the color of the 

grade currently being produced is L, because, as can been seen from Table  2-1, no IV changeover is 

possible when the color setting is G or D. Constraint sets (2.7) and (2.8) ensure that if an IV 

changeover is initiated at the beginning of period t, then this change becomes effective in period t + 

(F/2) and onward. If at = 0, constraint set (2.8) is redundant, and constraint set (2.7) reduces to zt + 

(F/2) = zt + (F/2) – 1, ensuring that the IV remains unchanged. On the other hand, if at = 1, constraint set 

(2.7) is redundant, and constraint set (2.8) reduces to zt + (F/2) + zt + (F/2) – 1 = 1, ensuring that the IV 

changes at the beginning of period t + (F/2). 

To help clarify matters, a pictorial representation of the relationship between variables xit, yjt 

and zt is shown in Figure  2-2. The top part of that figure is a snapshot of the contents of POLY, TSS 

and SSP at the end of the last period before the beginning of the scheduling horizon, i.e., at the end 
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of period N + M. As shown in this snapshot, the color of the lots occupying slots 1 to N + M has 

already been predetermined. For example, the color of the lot in slot N + M was determined in 

period 1 and is given by vector x1 ≡ (x11, x21, x31). The bottom part of Figure  2-2 shows the contents 

of POLY, TSS and SSP at the end of the first period of the scheduling horizon, i.e., period N + M + 

1. As shown in this schematic representation, each lot has advanced by one slot. As a result, the lot 

that occupied the last slot of SSP has exited SSP. Its grade, which is given by vector yN+M+1 ≡ 

(y1N+M+1, y2N+M+1, y3N+M+1, y4N+M+1), is a combination of its color, which was determined in period 1 

by the value of x1, and its IV, which is determined in period N + M + 1 by the value of zN+M+1. 

 

 

Figure  2-2. Time shift representation in the production process 

 

 2 

3 

t N M t

t N M t

x z
x z

− −

− −

≤ ⎫
⎬≤ ⎭

, t = N + M + 1,…, T + (F/2) (2.9) 

 

1 1 

2 1 

3 2 

4 3 

1
1
1

t t N M t

t t t N M

t t t N M

t t t N M

y x z
y z x
y z x
y z x

− −

− −

− −

− −

≥ − ⎫
⎪≥ + − ⎪
⎬≥ + − ⎪
⎪≥ + − ⎭

, t = N + M + 1,…, T + (F/2) (2.10) 

 1jt
j J

y
∈

=∑ , t = N + M + 1,…, T + (F/2) (2.11) 

Constraint set (2.9) is introduced to ensure that colors G and D can only be combined with 

yN + M + 1 =  
      combination (x1, zN + M + 1)

POLY TSS SSP

xM + 2xM + 1xM + 3 ……xN + M + 1 x3 x2 x1

xN + M xM + 2 xM + 1 xM x1x2… …
t = N + M 

t = N + M + 1

1 N–
1 

N N+1 N+MSlot: … …
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high IV. Constraint set (2.10) determines the final grade based on the combination of color and IV, 

while constraints (2.11) state that only a single grade can be produced in any period of the 

scheduling horizon. If status verification is not necessary, constraints (2.9)-(2.11) can be applied 

from period N + M + (F/2) + 1 and on. 

Constraint sets (2.12)-(2.29) are related to the storage part of the plant, which comprises 

LFSS and the warehouse.  

 qjt qjtg W≤ , q ∈ Q, j ∈ J, t = N + M + 1,…, T (2.12) 

 qjt jt
q

g y≤∑ , j ∈ J, t = N + M + 1,…, T (2.13) 

 1qjt
q Q j J

g
∈ ∈

=∑∑ , t = N + M + 1,…, T (2.14) 

 1qjt
j J

W
∈

≤∑ , q ∈ Q, t = N + M + 1,…, T (2.15) 

 ∑
∈

+ −≤−
Jr

qrtqjtqjt WWW 11 , q ∈ Q, j ∈ J, t = N + M,…, T – 1 (2.16) 

Constraint set (2.12) ensures that in each period, grade j can not be loaded from SSP into 

silo q of the LFSS, unless this silo already has grade j in it at the beginning of this period. 

Constraint (2.13) ensures that in each period, the grade loaded into any silo of the LFSS is the same 

with the grade that is being produced by SSP in the same period. Constraint set (2.14) ensures that 

in each period, a single grade will be loaded from SSP into a single silo of LFSS. Constraint set 

(2.15) states that in each period, each silo of the LFSS can store at most one grade.  

Constraint set (2.16) states that the grade stored in a silo of the LFSS can not change unless 

a period in which this silo is empty intervenes. The summation qrtr J
W

∈∑ is equal to 1 when silo q 

contains some final grade in period t, and 0 if it is empty. Thus, a difference equal to 0 in the right-

hand side forces the difference in the left-hand side to be 0, ensuring that any grade j which is 

different from the one that was contained in the silo in the previous period, can not be poured in this 
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silo before it is completely emptied. Note that index j is used in both terms of the left-hand side to 

disclose whether a particular grade j can be poured into silo q in period t + 1, while r is used in the 

right-hand side to disclose whether silo q contained any final grade r in the previous period.  

 maxqjt qjtS S W≤ , q ∈ Q, j ∈ J, t = N + M + 1,…, T (2.17) 

 minqjt qjtS S W≥ , q ∈ Q, j ∈ J, t = N + M + 1,…, T (2.18) 

 max( , , )qjt qjt ST BC BBG W u u u≤ , q ∈ Q, j ∈ J, t = N + M + 1,…, T (2.19) 

 1qjt qjt qjt qjtS S g P G−= + − , q ∈ Q, j ∈ J, t = N + M + 1,…, T (2.20) 

 ∑
∈

≥
Qq

jnmqjT SSS  i , j ∈ J (2.21) 

Constraint set (2.17) states that the grade quantity stored in a silo can not exceed the silo’s 

capacity, and ensures that it will be zero whenever the corresponding variable W determines that 

this silo is empty. Constraint set (2.18) imposes a lower bound on the quantity of a nonempty silo. It 

is introduced to eliminate the situation in which a silo stores a negligible but positive grade 

quantity. Constraint set (2.19) states that no grade can be unloaded from an empty silo and imposes 

the maximum rate in which a silo can be unloaded, based on the values of variables u. Constraint set 

(2.20) ensures flow continuity, by updating the quantity stored in each silo, based on the quantity 

that it contained in the previous period, and the quantities loaded into and out of it in the next 

period. Note that the quantity produced by POLY and SSP in one period and all the quantities that 

can be unloaded or sacked from the LFSS depend on the period length. Constraint set (2.21) ensures 

that the total inventory of each grade in the LFSS is at or above the specified safety stock for that 

grade at the end of the scheduling horizon.  

 qjt qjt qjt qjtG f h b= + + , q ∈ Q, j ∈ J, t = N + M + 1,…, T (2.22) 

 1
1 1 1

qjt qjt qjt
ST BC BB

bf h
u u u

+ + ≤ , q ∈ Q, j ∈ J, t = N + M + 1,…, T (2.23) 
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 jt qjt
q Q

dST f
∈

= ∑ , j ∈ J, t = N + M + 1,…, T (2.24) 

 jt qjt
q Q

dBC h
∈

= ∑ , j ∈ J, t = N + M + 1,…, T (2.25) 

 ∑∑
∈ ∈

≤
Qq

BB
Jj

qjt ub , t = N + M + 1,…, T (2.26) 

 1jt jt qjt jt
q Q

R R b dBB−
∈

= + −∑ , j ∈ J, t = N + M + 1,…, T (2.27) 

 maxjt
j J

R R
∈

≤∑ , t = N + M + 1,…, T (2.28) 

 jnmjT RR i≥ , j ∈ J (2.29) 

Constraint set (2.22) states that, in each period, the total quantity of grade j unloaded from 

any silo of the LFSS is equal to the quantity that is loaded into silo trucks or bulk containers, or 

sacked into big bags and stored in the warehouse. Constraint set (2.23) defines the maximum 

unloading rate of any silo, based on the exact unloading mode. Constraint sets (2.24) and (2.25) 

ensure that the demand for silo trucks and bulk containers is satisfied for each period of the 

scheduling horizon. Constraint set (2.26) ensures that the maximum sacking rate is not exceeded. 

Note that, while several silos can be used simultaneously for loading silo trucks or bulk containers, 

bagging can only take place in one silo, because only one bagging machine is available. Constraint 

set (2.27) updates the inventory stored in the warehouse, and constraint set (2.28) ensures that the 

total grade quantity stored in the warehouse does not exceed its capacity. Finally, constraint set 

(2.29) ensures that the inventory of each grade in the warehouse is at or above the specified safety 

stock at the end of the scheduling horizon. 

Constraints (2.30)-(2.35) initialize the state of the system at the beginning of the scheduling 

horizon. 

 itit Xx 0= , i ∈ I, t = 1,…, N + M (2.30) 
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 0Zz MN =+  (2.31) 

 tt Aa 0= , t = N + M – F + 2,…, N + M (2.32) 

 qjqjt SS 0= , q ∈ Q, j ∈ J, t = N + M (2.33) 

 qjqjt WW 0= , q ∈ Q, j ∈ J, t = N + M (2.34) 

 jjt RR 0= , j ∈ J, t = N + M (2.35) 

More specifically, constraint sets (2.30)-(2.32) initialize the state of the production system at 

the beginning of the scheduling horizon. Note that, at the beginning of the scheduling horizon, the 

color has already been predetermined for all the in-process lots in TSS and SSP. Therefore, one 

needs to initialize the values of variables xit, i∈I, for t = 1 to N + M. Also, the initialization of 

variables at for the last F – 1 periods is required, since at most one IV change can be initiated within 

F consecutive periods. Note, however, that at the beginning of the scheduling horizon, the IV has 

already been predetermined for the last F/2 slots of the SSP reactor only, since it takes F/2 periods 

for an IV changeover to take place. Yet, only the value of variable zt, for t = N + M needs to be 

initialized, since the remaining (F/2) – 1 values are determined through constraint sets (2.7)-(2.8) 

and variables at. As a consequence, the final grade that will be produced in the first F/2 periods of 

the scheduling horizon is already predetermined, too. Constraint sets (2.33)-(2.35) initialize the 

inventories in the LFSS silos and the warehouse at the beginning of the scheduling horizon. 

 xit binary; i ∈ I, t = 1,…, T (2.36) 

 yjt binary; j ∈ J, t = N + M + 1,…, T + (F/2) (2.37) 

 at binary; t = N + M-F + 2,…, T (2.38) 

 zt binary; t = N + M,…, T + (F/2) (2.39) 

 wqit binary; q ∈ Q, j ∈ J, t = N + M,…, T (2.40) 

 gqit binary; q ∈ Q, j ∈ J, t = N + M + 1,…, T (2.41) 
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 0qjtG ≥ , q ∈ Q, j ∈ J, t = N + M + 1,…, T (2.42) 

 0jtR ≥ , j ∈ J, t = N + M, …, T (2.43) 

 0qjtS ≥ , q ∈ Q, j ∈ J, t = N + M,…, T (2.44) 

 0qjtb ≥ , q ∈ Q, j ∈ J, t = N + M + 1,…, T (2.45) 

 0qjtf ≥ , q ∈ Q, j ∈ J, t = N + M + 1,…, T (2.46) 

 0qjth ≥ , q ∈ Q, j ∈ J, t = N + M + 1,…, T (2.47) 

Finally, constraint sets (2.36)-(2.41) and (2.42)-(2.47) impose the integrality and the 

nonnegativity of the decision variables, respectively. Note that the indexing of variables yjt begins 

from t = N + M + 1 instead of t = N + M + (F/2) + 1, in order to keep record of the final grade 

produced during the first F/2 periods, too, which was actually determined by the production 

schedule of the previous horizon. 

Note that in the above formulation we have assumed that at the beginning of the scheduling 

horizon, the plant is in the state that it was left off at the end of the previous horizon, because this is 

the usual situation encountered in practice. There also exists the situation where the plant is just 

beginning its operations after a long shutdown, in which case, all the slots of TSS and SSP are 

empty and possibly the silos and the warehouse are at very low or even zero levels. This situation is 

very rare in practice and is typically encountered after a major breakdown or after the yearly 

maintenance of the plant. When the plant is starting up after a long shutdown, the main concern is to 

stabilize the process and get the production going, rather than solving the scheduling problem. In 

principle, however, our model can still address the scheduling problem during the startup (or warm 

up) period, by letting period 1 (instead of period N + M + 1) be the first period of the scheduling 

horizon and appropriately adjusting the sets of time indices for which the constraints hold. 
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Also note that constraint sets (2.24), (2.25) and (2.27) ensure that the demand for silo trucks, 

bulk containers and big bags is satisfied for each period of the scheduling horizon. The strict 

requirement for on-time satisfaction of the demand stems from the current practice of the plant that 

motivated this work. Specifically, the customers of the plant schedule to send their own (or third 

party) trucks or containers to pick up their orders on specific periods, and can not afford to wait. 

This requirement may seem restrictive, because it may lead to infeasibilities, but in practice, it does 

not pose a problem, because the capacities of the LFSS and the warehouse are big enough to absorb 

any reasonable variations in the demand. Moreover, the careful choice of safety stock levels for 

each grade and inventory stage (LFSS and warehouse) can help minimize the number of 

changeovers in the long run, while preventing stockouts and production process blocking due to the 

lack of storage space. In the following section, we present an application in which we set the 

scheduling horizon equal to one week that is discretized into 42 4-hour periods, and solved our 

model sequentially 24 times (weeks), i.e., for a total of 6 months, where at the beginning of each 

week, the state of the system was set equal to the state that it ended up in the previous week. We 

used real demand data for each week, and we did not encounter any infeasibility problems. The 

safety stock levels were carefully chosen by modeling and solving the continuous-process 

scheduling problem as a Stochastic Economic Lot Scheduling Problem (SELSP), as described in 

 Chapter 3. 

Still, in applications where the on-time satisfaction of demand is not a strict requirement, we 

can easily modify our model, by including in the objective function the following penalty cost term 

for not satisfying the demand on time: 

 ( )
1 {3} 1

T t

j qj j qj j j
t N M j J N M q Q q Q

e dST f dBC h dBB dbτ τ τ τ τ τ
τ= + + ∈ − = + + ∈ ∈

⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞
− + − + −⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

∑ ∑ ∑ ∑ ∑ , 
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where e denotes the stockout penalty cost coefficient, and dbjt denotes the quantity of product j that 

is used to satisfy the demand for big bags in period t. In this case, constraints (2.24), (2.25) and 

(2.27) need to be modified, as follows: 

 
1 1

t t

j qj
N M N M q Q

dST fτ τ
τ τ= + + = + + ∈

≥∑ ∑ ∑ , j ∈ J, t = N + M + 1,…, T 

 
1 1

t t

j qj
N M N M q Q

dBC hτ τ
τ τ= + + = + + ∈

≥∑ ∑ ∑ , j ∈ J, t = N + M + 1,…, T 

 1jt jt qjt jt
q Q

R R b db−
∈

= + −∑ , j ∈ J, t = N + M + 1,…, T 

and the following constraint must be added to the model: 

 
1 1

t t

j qj
N M N M q Q

dBB dbτ τ
τ τ= + + = + + ∈

≥∑ ∑ ∑ , j ∈ J, t = N + M + 1,…, T. 

Finally, we may further modify our model in a similar manner, by replacing the hard 

constraints (2.21) and (2.29), which require that the inventory levels at the end of the horizon be no 

less than the safety stock levels, with an extra term in the objective function, that penalizes any 

negative deviations of the inventory levels at the end of the horizon from the safety stock levels. 

2.3 Application of the model 

In this section, we illustrate the application of the MILP model that we developed in the previous 

section on a problem instance drawn from the operation of the plant that inspired this work. The 

production rate of the facility is 200 tons/day, which is what the plant uses most of the time, 

although in the long run it can vary between 180 and 220 tons/day. The color changeover transition 

time between L and D in POLY is 4 hours, while the IV changeover transition between low and 

high IV in SSP is 24 hours. Both transition times are divisible by 4; hence, for the purposes of time 

discretization, we use a 4-hour time period. This makes B = 1, F = 6, and the production rate equal 
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to 33.3 tons/period. Note that a 4-hour period is also convenient because it is a divisor of a 24-hour 

day and of a typical 8-hour work-shift. 

The active silo at the TSS has a capacity of 430 tons but is usually less than half full. With 

this in mind, we assume that at the beginning of the scheduling horizon it has 200 tons of material 

in it. This initial quantity can be divided into N = 6 identical slots, each with a capacity of 33.33 

tons (the amount produced in a period). Similarly, the SSP reactor, which has a capacity of 200 

tons, can be divided into M = 6 identical slots, each with a capacity of 33.33 tons. 

In the actual operation of the plant, production is scheduled on a weekly basis, because at 

the end of each week, the demand during the following week is known with certainty. With this in 

mind, we use a scheduling horizon of one week, i.e., 42 time periods. Given that N = M = 6, the first 

period of the scheduling horizon is period 13 (= N + M + 1), and the last period, T, is period 54 (= N 

+ M + 42). The values of the other problem parameters are Z0 = 1, Smax = 430 tons, Smin = 1 ton, 

Rmax = 3500 tons, uST = 224 tons, uBC = 69.2 tons, uBB = 40 tons, c = 1, d = 1. 

We solved the MILP model sequentially, for 24 weeks, i.e., 6 months, using real demand 

data. For space consideration, the demand values for each period are shown in Appendix A. In 

Table  2-2, we show the sample mean and standard deviation of the daily demand, for each grade 

and demand type. Note that the total mean daily demand for all grades and types is ~195 tons, 

which is slightly below the production rate of 200 tons per day. This small difference between 

production capacity and demand is due to the unavoidable production of grade 3 (G), which takes 

away some of the production capacity. As was mentioned earlier, there is no scheduled demand for 

grade G; in reality, however, the plant occasionally removes the accumulated inventory of grade G 

by selling it at a lower price to interested buyers. Also, note that grade 2 (SD) is only demanded in 

big bags.  
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Table  2-2. Sample mean and standard deviation of the daily demand for each grade and demand 

type 

Grade j  1 2 4  Sum of
  mean std. dev. mean std. dev. mean std. dev.  means
Demand in silo trucks  25.82 41.00 0 0 17.67 29.52  43.49
Demand in bulk containers  29.96 41.52 0 0 16.13 19.63  46.09
Demand in big bags  25.27 32.15 45.43 58.45 34.37 46.77  105.07
Total  81.05  45.43  68.17   194.65

 

In each week (run), the state of the system at the beginning of the scheduling horizon was 

set equal to the state of the system at the end of the previous run. The system at the beginning of the 

scheduling horizon of the first run was set to some reasonable initial state, which we do not show 

here for space considerations. 

To obtain reasonable values for the safety stock levels, we modeled the scheduling problem 

as an SELSP, as in  Chapter 3, and solved it numerically. We then used the results of the SELSP 

solution to compute the safety stock levels. The details of these computations are shown in the next 

section. 

2.3.1 Computation of safety stock levels 

In this section, we present a methodology for computing the safety stock levels for the LFSS silos 

and the warehouse. This methodology is based on modeling the continuous-process scheduling 

problem as a simple SELSP (see  Chapter 3), solving that problem, and using its solution.  

More specifically, in  Chapter 3, we study a variant of the SELSP in which a single 

production facility must produce several grades to meet random stationary demand for each grade 

from a common FG inventory buffer with limited storage capacity. Demand that can not be satisfied 

directly from inventory is lost. Raw material is always available, and the production facility 

produces at a constant rate. When the facility is set up to produce a particular grade, the only 
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allowable changeovers are from that grade to the next lower or higher grade. All changeover times 

are deterministic and equal to each other. There is a changeover cost per changeover occasion, a 

spill-over cost per unit of product in excess, whenever there is not enough space in the FG buffer to 

store the produced grade, and a lost-sales cost per unit short, whenever there is not enough FG 

inventory to satisfy demand. We model the SELSP as a discrete-time Markov Decision Process 

(MDP), where in each time period it must be decided whether to initiate a changeover to a 

neighboring grade or keep the setup of the production facility unchanged, based on the current state 

of the system, which is determined by the current setup of the facility and the FG inventory levels 

of all the grades. The goal is to minimize the infinite-horizon expected average cost. For 2-grade 

and 3-grade problems we numerically solve the resulting MDP problem using successive 

approximations. The solution includes the optimal state-dependent policy and the optimal 

differential cost (value function) for each state of the system. The optimal policy partitions the state 

space into different regions, each characterized by a different optimal changeover action. The FG 

inventory levels at which the value function is minimized for a given setup state are the “ideal” 

target inventory levels for that setup state and in that sense can be thought of as the optimal safety 

stock levels for that state. In other words, the optimal safety stock levels really depend on the setup 

state of the facility. 

We used the above methodology to find the optimal safety stock levels for a 3-grade system, 

where the three grades are WG, SD, and FH. To this end, we discretized the inventory space and 

time, and we used a demand distribution for each grade based on the real demand data for 6 months 

that we had available, without differentiating between the individual types of demand (silo trucks, 

bulk containers and big bags). The optimal safety stock level of grade j, when the facility is set up 

to produce grade i, denoted by Imin,i,j, is shown in Table  2-3. Note that the safety stock levels 

strongly depend on the setup of the facility. For example, the safety stock level for WG is only 60 
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tons, if the facility is setup to produce WG, but goes up all the way to 1410 tons, if the facility is 

setup to produce FH. 

 

Table  2-3. Optimal safety stock level of grade j, when the facility is set up to produce grade i, Imin,i,j 

Grade j WG SD FH
Imin,WG,j 60 660 1410
Imin,SD,j 660 90 930
Imin,FH,j 1410 1680 90

 

In the MILP formulation that we developed in this chapter, we assumed for simplicity that 

the safety stock levels do not depend on the setup state of the system. With this in mind, we used 

the results of Table  2-3 to compute a weighted average safety stock level for each grade j over all 

setup states, denoted by Imin,j, where as weight for each setup state we used the percentage of time 

that the facility is set up in that state, given by its market share. Thus, if we let E[dj] denote the 

mean daily demand (see Table  2-2) and pj denote the market share of grade j, we have 

 min, min, ,{WG,SD,FH}j j i ji
I p I

∈
=∑ , j ∈ {WG, SD, FH} 

where 

 
{WG,SD,FH}

[ ] [ ]j j kk
p E d E d

∈
= ∑ , j ∈ {WG, SD, FH} 

 E[dj] = Et[dSTjt] + Et[dBCjt] + Et[dBBjt], j ∈ {WG, SD, FH} 

The results of the above computations are shown in Table  2-4. 

 

Table  2-4. Mean daily demand, E[dj], market share, pj, and safety stock level, Imin,j, for each grade j 

Grade j WG SD FH 
E[dj] 81.05 45.43 68.17

pj 0.4164 0.2334 0.3502
Imin,j 672.83 884.17 835.69
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Finally, in the MILP formulation that we developed in this chapter, we assumed that the 

safety stock levels depend on the FH inventory stage (LFSS or warehouse) of the system, whereas 

in the SELSP formulation and solution it was assumed that there is a single FG inventory stage. 

With this in mind, we allocated the safety stock level, Imin,j, shown in Table  2-4, to the LFSS silos 

and to the warehouse in proportion to their demand share. Thus, if we let pLFSS,j and pW,j denote the 

fraction of the demand for grade j requested from the LFSS silos and the warehouse, respectively, 

we have 

 SSmin j = pLFSS,j Imin,j, j ∈ {WG, SD, FH} 

 Rmin j = pW,j Imin,j, j ∈ {WG, SD, FH} 

where 

 pLFSS,j = (Et[dSTjt] + Et[dBCjt])/E[dj], j ∈ {WG, SD, FH} 

 pW,j = Et[dBBjt]/E[dj], j ∈ {WG, SD, FH} 

The results of the above computations are shown in Table  2-5.  

 

Table  2-5. Fraction of the demand requested from the LFSS silos and the warehouse, and safety 

stock level in the LFSS silos and the warehouse, for each grade j 

Grade j WG SD FH 
pLFSS,j 0.6882 0 0.4958
pW,j 0.3118 1 0.5042

SSmin j 463.05 0 414.35
Rmin j 209.78 884.17 421.34

 

The safety stock levels that we used in the numerical example were set approximately equal 

(with some rounding) to the values shown in Table  2-5. More specifically, the exact values of the 

safety stock levels that we used are shown in Table  2-6. 
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Table  2-6. Safety stocks at the LFSS and the warehouse, and initial quantities in the warehouse 

Grade j 1 2 3 4 
Safety stock SSmin j 450 0 0 450
Safety stock Rmin j 250 880 0 450

 

2.3.2 Numerical results 

The results of the 24 sequential runs of the MILP solution are shown in Figures 2-3 to 2-6. More 

specifically, Figure  2-3 shows the trajectory of the final grade produced in each period. Throughout 

the entire 6-month period, there were 45 grade changeovers (20 color and 25 IV changeovers), 

which amounts to approximately 1.875 changeovers per week. As seen from Table  2-2, the mean 

demand for SD was relatively low, accounting for approximately 23 percent of the total mean 

demand. For this reason, most of the changeovers were between WG and FH, producing some SD 

and G along the way. 
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Figure  2-3. Evolution of the final grade produced in each period 
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Figures 2-4, 2-5 and 2-6 show the evolution of the inventory levels in the LFSS silos and the 

warehouse at the end of each week. From Figures 4 and 5, it can be seen that the LFSS silos were 

used as dedicated storage buffers throughout the entire 6-month period. More specifically, three 

silos (1, 3 and 5) contained WG throughout the entire 6-month period, three silos (4, 6 and 7) 

contained FH, one silo (8) contained SD, and one silo (2) contained G. In all but one week (week 

5), grade G was emptied from silo 2 and filled in big bags which were then stored in the warehouse. 

There, its inventory kept increasing, because we had assumed that there is no demand for it, as was 

mentioned above. In fact, the amount of grade G produced was close to 4 tons per day on average 

(= 20 color changeovers/24 weeks × 1 period/changeover × 33.33 tons/period ÷ 7 days/ week), 

which approximately covers the difference between average daily demand and production capacity. 
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Figure  2-4. Evolution of inventory level in silos 1-4 of the LFSS at the end of each week 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 15:50:34 EEST - 3.146.37.111



 

45 

0
50

100
150
200
250
300
350
400
450

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Week

In
ve

nt
or

y

silo 5 (WG) silo 6 (FH)
silo 7 (FH) silo 8 (SD)

 

Figure  2-5. Evolution of inventory level in silos 5-8 of the LFSS at the end of each week 
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Figure  2-6. Evolution of inventory level in the warehouse at the end of each week 
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In Figures 2-4, 2-5 and 2-6, the inventory levels at the end of each week are connected with 

a straight line to help visualize their weekly evolution. The variation of the inventory levels from 

period to period within each week, however, was far from linear, at least for the LFSS silos. Figures 

2-7, 2-8 and 2-9 show the evolution of inventory levels in the LFSS silos and the warehouse at the 

end of each period, during week 5 (periods 180-222). For example, from Figure  2-7, it can be seen 

that the inventory level of WG in silo 3 started and ended at zero in week 5, but went up to 

approximately 240 tons in the middle of that week. The inventory levels in the warehouse, however, 

were kept more or less stable during that week, as seen from Figure  2-8. 
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Figure  2-7. Evolution of inventory level in silos 1-4 of the LFSS at the end of each period in week 5 
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Figure  2-8. Evolution of inventory level in silos 5-8 of the LFSS at the end of each period in week 5 
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Figure  2-9. Evolution of inventory level in the warehouse at the end of each period in week 5 

 

For the completeness of presentation, Figure  2-10 shows the demands per grade and type for 

each period of week 5. Also, Figure  2-11 shows in detail the optimal color setting at POLY, the 
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optimal IV setting at SSP, and the final grade coming out of SSP, based on the optimal color and IV 

combination, in each period of week 5. From Figure  2-11, note that during the changeover transition 

from high to low IV, which was initiated at the beginning of period 181 and lasted through period 

186, the intermediate grade produced was divided into two halves, where the first half (periods 181-

183) was characterized as SD and the second half (periods 184-186) as WG. Also note that the color 

changeover that was initiated at the beginning of period 194 resulted in the production of grade G in 

period 206, i.e., 12 periods later. 
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Figure  2-10. Scheduled demand per grade and type for each period in week 5 
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Figure  2-11. Color setting at POLY, IV setting at SSP and final grade produced in each period of 

week 5 

 

2.3.3 Computational experience 

In this section, we discuss some issues that are related to the computational effort to reach an 

optimal solution. 

First, we need to determine the problem size of the MILP problem developed in Section  2.2. 

Table  2-7 shows the number of binary decision variables of the MILP problem, in general (column 

2), and specifically for the problem instance presented in this section, where “|A|” denotes the 

cardinality (number of elements) of a set A. Similarly, Table  2-8 shows the number of continuous 

decision variables. Finally, Table  2-9 shows the number of constraints included in constraint sets 

(2.2)-(2.35) in general (column 2), and specifically for the problem instance presented in this 

section. 
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Table  2-7. Number of binary decision variables 

Binary 
variable 

 
Number 

Problem-instance 
specific number 

xit |I|T 3⋅54=162 
yjt |J|(T + F/2 – N – M) 4⋅45=180 
αt T – N – M + F – 1 47 
zt T + F/2 – N – M + 1 46 

Wqjt |Q||J|(T – N – M + 1) 8⋅4⋅43=1376 
gqjt |Q||J|(T – N – M) 8⋅4⋅42=1344 

Total |I|T + |J|(T + F/2 – N – M + |Q|)  
+ 2(T – N – M + 3F/4) + 2|Q||J|( T – N – M) 3155 

 

Table  2-8. Number of continuous decision variables 

Binary 
Variable 

 
Number 

Problem-instance 
specific number 

Sqjt |Q||J|(T – N – M + 1) 8⋅4⋅43=1376 
Gqjt |Q||J|(T – N – M ) 8⋅4⋅42=1344 
bqjt |Q||J|(T – N – M ) 8⋅4⋅42=1344 
fqjt Q||J|(T – N – M ) 8⋅4⋅42=1344 
hqjt Q||J|(T – N – M ) 8⋅4⋅42=1344 
Rjt |J|(T – N – M + 1) 4⋅43=172 

Total 5|Q||J|[(T – N – M)  
+ |J|(|Q|+T – N – M + 1) 6924 

 

The results for the 24 runs of the MILP problem presented in Section  2.3.2 were obtained in 

17.5 seconds per run on average, with a standard deviation of 10.4 seconds, on a Pentium IV/1.8 

GHz dual core processor with 1 GB system memory, using AMPL/CPLEX (see Fourer et al., 2002) 

version 9.1, with default values as the optimization software. The AMPL codes for the MILP 

problem under consideration is shown in Appendix C. The variation of the run times was quite 

significant, and the minimum and maximum computation times were 4.1 and 40.1 seconds, 

respectively, suggesting that the actual values of the problem parameters have a strong influence on 

the total computational effort. The complete set of the optimal cost (number of changeovers) and 

CPU times for each of the 24 runs is shown in Table  2-10. 
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Table  2-9. Number of constraints 

Constraint set 
 

Number 
Problem-instance
specific number 

(2.2) T 54 
(2.3) 2[(T – B – 1)B + (B + 1)/2] 2⋅53 =106 
(2.4) 2(T + F/2 – N – M – 1) 2⋅44 = 88 

(2.7), (2.8), (2.9), (2.10), (2.11) 11(T + F/2 – N –M) 11⋅45 = 495 
(2.5), (2.6), (2.14),(2.26), (2.28) 5(T – N – M) 5⋅42 = 210 

(2.12), (2.16), (2.17), (2.18), 
(2.19), (2.20), (2.22), (2.23) 8|Q||J|(T – N – M) 8⋅8⋅4⋅42 = 10752

(2.15) |Q|(T – N – M) 8⋅42 = 336 
(2.21),(2.29),(2.35) 3|J| 3⋅4 = 12 

(2.13), (2.24), (2.25), (2.27) 4|J|(T – N – M) 4⋅4⋅42 = 672 
(2.30) |I|(N + M) 3⋅12 = 36 
(2.32) (F – 1) 5 

(2.33), (2.34) 2|Q||J| 2⋅8⋅4 = 64 
(2.31) 1 1 

Total 
(T – N – M) (18 + 4|J| + |Q| + 8|Q||J|) 

+ 3T +  15(F/2) + |J|(3 + 2|Q|)  
+ |I|(N + M) + (B + 1)(1 – 2B) – 2 

12831 

 

The last two columns of Table  2-10 show the optimal cost and CPU times of the Linear 

Programming (LP) relaxation of the original MILP problem. As is expected, the quality of the 

solution of the relaxed problem is better than that of the original MILP problem, because any MILP 

solution would also be a valid LP solution. More specifically, the optimal cost of the relaxed 

program is on average 25% of the cost of the original program, whereas the computational time of 

the relaxed problem is on average 36% of the computational time of the original problem. In all 

cases, the optimal cost of the LP problem is less than 1. Since the MILP problem has solution 

values that are integers (the numbers of changeovers), the optimal solution of the MILP problem 

must be at least as large as the next larger integer, namely, 1. In the 5 out of the 24 cases, the 

optimal MILP cost is 1; however, in 17 cases it is 2, and in 3 cases it is 3. This suggests that most 

cases, the LP relaxation does not provide a very tight lower bound on the solution quality of the 

original MILP problem. 
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Table  2-10. Optimal cost (number of changeovers) and CPU time for each of the 24 runs of the 

numerical example presented in Section  2.3 

 Original MILP problem
LP relaxation of 

original MILP problem 

Run 
Optimal 

cost CPU (sec) 
Optimal 

cost  
 

CPU (sec) 
1 1 35.47 0.033 2.57 
2 2 29.76 0.174 3.65 
3 2 7.51 0.235 1.65 
4 1 20.99 0.389 2.41 
5 3 20.02 0.804 3.62 
6 2 6.80 0.482 1.81 
7 2 33.10 0.741 5.68 
8 2 20.50 0.607 1.47 
9 2 30.74 0.526 8.635 
10 2 19.95 0.625 5.35 
11 2 16.34 0.529 5.77 
12 2 5.30 0.337 2.87 
13 2 7.71 0.464 5.47 
14 2 12.76 0.467 4.74 
15 1 16.81 0.261 11.01 
16 3 17.47 0.544 4.84 
17 2 5.41 0.518 2.87 
18 2 40 0.688 12.37 
19 2 4.07 0.581 2.58 
20 2 13.93 0.194 8.32 
21 2 5.30 0.478 4.06 
22 1 26.26 0.059 5.29 
23 1 16 0.489 5.84 
24 2 8.08 0.694 4.47 

 

An increase in the problem size is generally expected to increase the total computational 

effort. To explore the effect of problem size on the computational time, we solved several instances 

of the model, where in each instance we set the initial state of the system equal to the state of the 

system at the end of week 4, and gradually increased the scheduling horizon by one day (6 periods), 

starting with a horizon of 7 days (42 periods) and ending with a horizon of 14 days (84 periods). In 

other words, we solved the scheduling problem of week 5, then week 5 plus the first day of week 6, 
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then week 5 plus the first two days of week 6, and so on. The scheduling horizon of the last problem 

instance was exactly two weeks, corresponding to weeks 5 and 6.  

The results are shown in Table  2-11. As can be seen from that table, the computational time 

increases significantly with the size of the problem, although not in all cases, which reveals that the 

size of the problem alone is not indicative of the computational effort needed to reach an optimal 

solution; the actual values of the problem parameters have a strong influence on the total 

computational effort too, as was mentioned above. An interesting observation from Table  2-11 is 

that the objective function (number of changeovers) remains at 3 for all instances. This means that 3 

changeovers are optimal, whether we schedule production for week 5 alone or for weeks 5 and 6 

together, assuming that we know the demands for both weeks. Note that in the original solution 

shown in Figure  2-3, where we sequentially solved the MILP problem for each week, the optimal 

number of changeovers for weeks 5 and 6 (periods 180-221 and 222-263) was 3 and 2, respectively, 

yielding a total of 5 changeovers.  

 

Table  2-11. Effect of increasing the length of the scheduling horizon 

Scheduling Horizon
(periods) 

Time
(secs)

 Objective
Function

42 17.74 3 
48 50.62 3 
54 55.14 3 
60 41.37 3 
66 81.13 3 
72 62.49 3 
78 154.23 3 
84 161.55 3 

 

The example discussed in the previous paragraph reveals the potential benefits from 

extending the scheduling horizon for which demand information is available. To further explore 

these benefits, we solved 100 instances of our model, where in each instance we set the initial state 
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of the system equal to the state of the system at the end of week 4, the scheduling horizon equal to 2 

weeks, and the demand in the first week equal to the demand in week 5. In each instance, the 

demand in week 6 was randomly generated from a distribution which we constructed based on the 

demands over the 6-month period for which we had data. One of the things we wanted to examine 

by running this experiment was the sensitivity of the cost (number of changeovers) in the first week 

with respect to the demand realizations in the second week, when we choose to solve the scheduling 

problem for weeks 5 and 6 as a single 2-week problem instead of two 1-week problems. We also 

wanted to see how the solution of the 2-week problem compared to the sum of the solutions of the 

two sequential 1-week problems. 

The results are presented in Appendix B. They suggest that if demand data is available for 

two weeks instead of one week ahead of time, the chemical plant can be scheduled much more 

efficiently, i.e. with significantly fewer changeovers. This is because when the demand of the 

second week is known in advance, the scheduling procedure has the opportunity to merge the 

production of different quantities of the same grade, if possible, so as to decrease the total number 

of needed changeovers. As is expected, solving the single 2-week problem requires a longer 

computational time generally than solving the two 1-week problems. However, there exist some 

instances in which the required computational time for solving the scheduling problem of the 

second week as a single 1-week scheduling problem is longer than the required computational time 

for solving the respective 2-week problem. This is attributed to the fact that the required 

computational time strongly depends on the relevant position of initial final grades inventories and 

the emerging demand, because in case of a “tighter” respective situation, the optimization procedure 

has to search the optimal solution in a more rough solution space.  
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2.4 Conclusions 

We developed an MILP model for the production scheduling of a multi-grade PET processing 

chemical plant. We also presented an application of the model on a real case study, along with some 

discussion that provides insight into its behavior. The model minimizes the cost associated with the 

number of grade changeovers, while also ensuring that the capacity constraints of the problem are 

not violated and that the demand for final products is satisfied on time. The model incorporates all 

aspects of the problem under consideration and can be easily extended to address additional ones 

that may arise in different situations, because of the large number of decision variables that 

enhances its flexibility. We believe that the main contribution of this work is that it addresses 

efficiently an important practical application, whose solution exhibits high complexity. 
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Chapter 3 The stochastic economic lot sizing 

problem for continuous nonstop 

multi-grade production  

In this chapter, we study a variant of the Stochastic Economic Lot Scheduling problem (SELSP) in 

which a single production facility must produce several different grades of a family of products to 

meet random stationary demand for each grade from a common Finished-Goods (FG) inventory 

buffer with limited storage capacity. Demand that can not be satisfied directly from inventory is 

lost. Raw material is always available, and the production facility produces continuously at a 

constant rate. When the facility is set up to produce a particular grade, the only allowable 

changeovers are from that grade to the next lower or higher grade. All changeover times are 

constant and equal to each other. There is a changeover cost per changeover occasion, a spill-over 

cost per unit of product in excess whenever there is not enough space in the FG buffer to store the 

produced grade, and a lost-sales cost per unit short whenever there is not enough FG inventory to 

satisfy the demand. We model the SELSP as a discrete-time Markov Decision Process (MDP), 

where in each time period the decision is whether to initiate a changeover to a neighboring grade or 

keep the set up of the production facility unchanged, based on the current state of the system which 

is defined by the current set up of the facility and the FG inventory levels of all the grades. The goal 
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is to minimize the (long-run) expected average cost per period. For 2- and 3-grade problems, we 

numerically solve the exact MDP problem using the value iteration method. For problems with 

more than three grades, we develop a heuristic solution procedure which is based on approximating 

the original multi-grade problem with several 3-grade sub-problems and numerically solving each 

sub-problem using value iteration. We present numerical results for problem examples with 2-5 

grades. For the 2- and 3-grade examples, we use the exact solution procedure to obtain insights into 

the structure of the optimal changeover policy. For the 4- and 5-grade examples, we compare the 

performance of the heuristic solution procedure against that of the exact procedure. 

3.1 Introduction 

Scheduling production of multiple products, each with random demand, on a single facility with 

limited production capacity and significant changeover costs and times between products is a 

classic problem in production planning research that is often referred to as the Stochastic Lot 

Scheduling Problem (SLSP). Sox et al. (1999) distinguish between two versions of the SLSP, for 

consistency with the deterministic-demand literature: the Stochastic Capacitated Lot Sizing Problem 

(SCLSP) and the Stochastic Economic Lot Sizing Problem (SELSP). The SCLSP assumes a finite 

planning horizon and allows for non-stationary demand, while the SELSP assumes an infinite 

planning horizon and stationary demand. The SCLSP is more appropriate for discrete-parts 

manufacturing, whereas the SELSP is perhaps better suited for continuous-processing 

manufacturing. Discrete-parts manufacturing is characterized by individual parts that are clearly 

distinguishable, and is often encountered in the industries of computer and electronic products, 

electrical equipment and appliances, transport equipment, machinery, fabricated metal, wood, 

furniture products, etc. Process industries, on the other hand, operate on material that is 

continuously flowing, as is the case with petroleum and coal products, metallurgical products, 
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nonmetallic mineral products, basic chemicals, food and beverage products, paper products, etc. 

Generally, process industries are capital intensive and focus on high-volume, low-variety 

production. In a typical process industry, the production facility produces continuously, at a 

constant rate, and the different products are really variants of the same family that differ in one or 

more attributes, such as quality, color, consistency, weight, size, thickness, etc. These variants are 

frequently referred to as “grades”. Often, the different grades are related in such a way that the only 

allowable changeovers are from one grade to the next higher or lower grade in the chain. For 

example, if the facility produces three grades, A, B, and C (A being the lowest and C being the 

highest), the allowable changeovers are between A and B, between B and C, but not directly 

between A and C. To indicate this ordering in the chain of allowable changeovers, we use the 

notation “A-B-C”. Avoiding grade changeovers is often of primary managerial concern, because 

during a changeover transition, the process is difficult to control, and the grade produced is off-

specifications. 

The deterministic version of the SELSP, the so-called ELSP, has received considerable 

attention in the literature over the past decades (e.g., see the surveys of Elmaghraby, 1978 and 

Salomon, 1991). Both analytical and heuristic solutions for the ELSP derive rigid cyclic production 

plans, which in many multi-grade plants take the form of rigid product slates or wheels, whereby all 

grades are produced sequentially in a cycle, starting from the lowest grade, going up all the way to 

the highest grade, and returning down to the lowest grade. In the previous example with the three 

grades, a complete grade slate would be A→B→C→B→A. Interestingly, clearing policies, i.e., 

policies where the facility switches to the product whose inventory level reaches zero first, may lead 

to inventory trajectories that exhibit chaotic behavior, i.e., that are sensitive to initial conditions, are 

non-periodic, etc., as Chase et al. (1993) show, even for a 3-product system with no changeover 

times and no constraints on the order of allowable changeovers. 
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Unfortunately, cyclic plans do not work well for the stochastic problem, for two reasons. 

Firstly, they focus on lot-sizing and not on dynamic capacity allocation, which is necessary to 

respond to random changes in demand. Secondly, in the stochastic problem, finished-goods (FG) 

inventories serve not only to reduce the number of changeovers, as is the case in the deterministic 

problem, but also to hedge against stock-outs. In the stochastic problem, both lot-sizing and 

capacity allocation have to be considered simultaneously, and the dynamics have to be included in 

the plan (Graves, 1980).  

In this chapter, we study a variant of the SELSP in which a single production facility must 

produce several grades to meet random stationary demand for each grade from a common FG 

inventory buffer with limited storage capacity. Demand that can not be satisfied directly from stock 

is lost. Raw material is always available, and the production facility produces at a constant rate all 

the time. When the facility is set up to produce a particular grade, the only allowable changeovers 

are from that grade to the next lower or higher grade. In many industries, it is customary to divide 

the intermediate grade produced during a changeover, say from grade A to grade B, into two halves, 

and classify the first half as A and the second half as B, although in reality the grade of the product 

coming out of the production facility during the changeover transition is gradually changing from A 

to B. In this chapter, for simplicity, we assume that the grade produced during a changeover from A 

to B is classified as A, and that the grade produced during the reverse changeover is classified as B. 

Under this assumption, the amounts of grades A and B that will be produced in the long run will be 

the same as those that would have been produced had we divided the produced grade during a 

changeover into two halves. We also assume that all changeover times are deterministic and equal 

to each other. 

The cost structure of our model includes a changeover cost per changeover occasion, a spill-

over cost per unit of product in excess whenever there is not enough space in the FG buffer to store 
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the produced grade, and a lost-sales cost per unit short whenever there is not enough FG inventory 

to satisfy the demand. The assumptions presented above are realistic and are based on a real 

application of dynamic scheduling in a PET processing plant, presented in  Chapter 2. 

We model the SELSP problem described above as a discrete-time Markov Decision Process 

(MDP), where in each time period the decision is whether to initiate a changeover to a neighboring 

grade or keep the setup of the facility unchanged, based on the current state of the system, which is 

determined by the current setup and the FG inventory levels of all the grades. The goal is to 

minimize the (long-run) expected average cost per period. 

For 2- and 3-grade problems we are able to numerically solve the resulting MDP problem 

using the value iteration method, and obtain insight into the optimal control policy. We refer to this 

solution procedure as “exact”, because it solves the exact problem. For problems with N grades, N > 

3, we develop a heuristic solution procedure that is based on approximating the original N-grade 

problem by (N – 2) 3-grade sub-problems and numerically solving each sub-problem using value 

iteration. Each 3-grade sub-problem is an approximation of the original N-grade problem, where the 

middle grade in the sub-problem corresponds to one of the grades in the original problem, the low 

(left) grade in the sub-problem is the composite of all grades in the original problem that are lower 

than the middle grade, and the high (right) grade is the composite of all grades that are higher than 

the middle grade. For example, if the original problem consists of five grades, A-B-C-D-E, we 

formulate the following 3-grade sub-problems: A-B-(C+D+E), (A+B)-C-(D+E), and (A+B+C)-D-

E, where the notation “(A+B)” indicates the composite grade formed by grades A and B. After 

solving all the sub-problems, the heuristic control policy for the original N-grade problem is 

obtained by combining parts of the optimal policies of the sub-problems. 

The rest of this chapter is organized as follows. In Section  3.2, we present the stochastic 

dynamic programming formulation of the MDP model of the original N-grade problem, and we 
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outline the successive approximation method to solve it. The heuristic procedure for solving 

problems with more than three grades is presented in Section  3.3. In Section  3.4, we present 

numerical results for problem examples with 2-5 grades. For the 2- and 3-grade examples, we use 

the exact solution procedure to obtain insights into the structure of the optimal changeover policy. 

For the 4- and 5-grade examples, we compare the performance of the heuristic solution procedure 

against that of the exact procedure. Finally, we draw our conclusions in Section  3.5. 

3.2 Problem formulation and dynamic programming solution 

We consider a discrete-time model of a production facility that can produce N different grades, one 

at a time. Grade changeovers are only allowed between neighboring grades, n and n + 1, n = 1, …, 

N – 1. The changeover time is one period. In each time period, the production facility produces P 

units of the grade that it is set up for at the beginning of the period. The quantity produced is stored 

in a common FG inventory buffer which has a finite storage capacity of X units; any excess amount 

that does not fit in the buffer is spilled over, incurring a spill-over cost of CS dollars per unit of 

excess product. The FG buffer is flexible in that it can contain any quantity of any grade at the same 

time, as long as the total amount does not exceed X. After the quantity produced by the facility has 

been added to the FG buffer, a vector of random demands, D ≡ (D1, …, DN), must be met from FG 

inventory, where Dn, n = 1, …, N, is the demand for grade n. The demands Dn are discrete random 

variables with known stationary joint probability distribution. For each grade n, the part of the 

demand that can not be satisfied from FG inventory, if any, is lost, incurring a lost-sales cost of CLn 

dollars per unit of unsatisfied demand. In many real problems, especially in the process industries, 

changing P may cause instabilities in the production process; therefore, P is not considered to be a 

control variable for scheduling purposes, but is finely re-tuned once in a while so as to match the 

total expected demand for all grades, in case the demand has seasonal or other long-term variations. 
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For the purposes of short- to medium-term scheduling that we consider in this chapter, we assume 

that P is fixed and equal to the total expected demand for all grades. 

We formulate the dynamic scheduling problem of the production facility as a discrete-time 

MDP, where the state of the system at the beginning of each period is defined by the vector y ≡ (s, 

x1, …, xN), where s is the grade that the facility is set up for during that period (called the “setup” 

state) and xn, n = 1, …, N, is the FG inventory level of grade n at the beginning of the period. Note 

that s ∈ {1, …, N}, and the set of allowable inventory levels is determined by all integers xn, n = 1, 

…, N, such that 0 ≤ Σn xn ≤ X. It is easy to see that the size of the state space is (N⋅XN)/2. 

The decision, u, to be made at the beginning of each period is whether to initiate a 

changeover to a neighboring grade or leave the facility setup unchanged. Thus, if the current setup 

is s, the allowable decisions are given by the set U(s), where U(1) = {1, 2}, U(s) = {s – 1, s, s + 1}, 

s = 2, …, N – 1, and U(N) = {N – 1, N}. If the decision is to initiate a changeover, then the new 

setup of the facility, i.e., after the changeover is completed, will be in effect at the beginning of the 

next period, since the changeover time is one period. A decision to initiate a changeover at the 

beginning of a period incurs a changeover cost of CC dollars in that period. 

Suppose that the state of the system at the beginning of a period is y, decision u is taken, and 

demand D is realized. Let g(y,u,D) be the cost incurred during that period and let y′ ≡ (s′, x1′, …, 

xN′) = f(y,u,D) be the state of the system at the beginning of the next period. From the above 

discussion, it is clear that  

 s′ = u 

 xn′ = (xn + p(y)⋅In=s – Dn)+, n = 1, …, N 

where p(y) is the amount added to the FG buffer after the facility produces P units and before the 

demand is satisfied and is given by p(y) ≡ min(P, X – Σn xn), Ia is the indicator function which takes 

the value of 1 if a is true, and 0 otherwise, and (x)+ ≡ max(0, x). Moreover,  
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 g(y,u,D) = CC⋅Iu≠s + CS⋅(P – p(y)) + Σn CLn⋅(Dn – xn – p(y)⋅In=s)+ 

The objective is to find a state dependent policy, u = μ(y), that minimizes the (long-run) 

expected average cost per period. To find such a policy, we need to solve Bellman’s dynamic 

programming equation, which for our problem can be written as 

 J + V(y) = minu∈U(s)Tu(V(y)) (3.1) 

where J is the optimal (minimum) expected average cost per period, V(y) is the optimal differential 

cost starting from state y, and Tu(⋅) is a mapping defined as Tu(V(y)) ≡ ED{g(y,u,D) + V(y′)}. The 

minimizer of the Bellman equation determines the optimal policy when the system is in state y, 

denoted by μ*(y). 

To solve Bellman’s equation, we use the method of successive approximations of the 

optimal differential cost functions, which is known as the value iteration method. We denote by 

Vk(y) the value of the optimal differential cost function at the kth iteration. Initially, we set V0(y) = 

0, ∀ y. The values at the (k + 1)th iteration are obtained from the previous iteration by the recursion 

 Vk+1(y) = T(Vk(y)) – T(Vk(ŷ)) (3.2) 

where T(Vk(y)) = minu∈U(s)Tu(Vk(y)) and ŷ is an arbitrarily chosen special state. Note that in each 

iteration the optimal differential cost of the special state is reset to zero. Assuming that the iteration 

scheme converges to some values V(y), then from recursion (3.2), these values must satisfy T(V(ŷ)) 

+ V(y) = T(V(y)). A comparison of this equation and the Bellman equation (3.1) reveals that J = 

T(V(ŷ)).  

To implement the successive approximation method, at each iteration k = 1, 2, … we 

compute the maximum and minimum differences, Vk
U = maxy{Vk(y) – Vk–1(y)} and Vk

L = 

miny{Vk(y) – Vk–1(y)}. The procedure is terminated when |Vk
U – Vk

L| < ε⋅T(Vk(ŷ)), where ε is some 

small positive scalar. 
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3.3 Heuristic solution procedure 

Although the exact method presented in the preceding section can in principle determine the 

optimal policy for any number of grades, it becomes computationally intractable for more than three 

grades. In this section, we propose a heuristic procedure that approximates any N-grade problem, N 

> 3, by several 3-grade sub-problems and then uses the sub-problem solutions (determined by the 

exact method) to construct a heuristic policy for the original problem. 

The heuristic procedure that we propose works as follows. Let S denote the original N-grade 

problem. For each grade n, n = 2, …, N – 1, we formulate a 3-grade sub-problem, denoted by Sn, in 

which the middle grade is grade n, the low grade is the composite of all grades that are lower than n, 

i.e., grades 1, …, n – 1, and the high grade is the composite of all grades that are higher than n, i.e., 

grades n + 1, …, N; hence Sn is an approximation of the original problem S. For each sub-problem 

Sn, we define the state of the system by the vector yn = (sn, wn, xn, zn), where sn ∈ {1, 2, 3} and wn 

and zn are the inventory levels of the low and high composite grades, respectively, and are given by 

the sums: wn ≡ x1 + … + xn–1 and zn ≡ xn+1 + … + xN. In each sub-problem Sn, the demand 

distribution of the middle grade is the same as the demand distribution of grade n in the original 

problem, the demand distribution of the low grade is the convolution of the demand distributions of 

grades 1, …, n – 1 in the original problem, and the demand distribution of the high grade is the 

convolution of the demand distributions of grades n + 1, …, N in the original problem. 

We use the exact method presented in the previous section to obtain the optimal policy of 

sub-problem Sn, denoted by μn
*(yn). The heuristic policy for the original N-grade problem, denoted 

by μh(y), is then constructed by using parts of the optimal policies of the sub-problems, as follows: 

 μh(1, x1, …, xN) = μ2
*(1, ŵ2, x2, ž2) 

 μh(n, x1, …, xN) = μn
*(2, ŵn, xn, žn) + n – 2, n = 2, …, N – 1 
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 μh(N, x1, …, xN) = μN–1
*(3, ŵN–1, xN–1, žN–1) + N – 3 

where ŵn and žn are the “aggregate” inventory levels of the low and high composite grades, 

respectively, in sub-problem Sn, which represent in some aggregate way the total of their individual 

components through some function h, i.e., ŵn = h(x1, …, xn–1) and žn = h(xn+1, …, xn). The terms “n 

– 2” and “N – 3” on the right-hand side of two of the above expressions are correction terms that 

account for the fact that setup states 1, 2, and 3 in sub-problem Sn, n = 2, …, N – 1, correspond to 

setup states n – 1, n, and n + 1, respectively, in the original problem. Next, we discuss how to 

determine an appropriate form for function h. 

First, note that ŵ2 = h(x1), i.e., ŵ2 is the aggregate inventory level of a single grade, namely 

grade 1; therefore, it is reasonable to simply set h(x1) ≡ x1 so that ŵ2 = h(x1) = x1. Similarly, we set 

h(xN) ≡ xN, so that žN–1 = h(xN) = xN. Let us next focus on ŵn, n > 2, as žn is obtained in exactly the 

same way. 

An obvious choice for the aggregate inventory level of the composite of grades 1, …, n – 1 

is to set it equal to the sum of the inventory levels of the individual grades, i.e., set ŵn = wn. This is 

a reasonable choice, especially with respect to estimating potential spill-over costs, but fails to 

detect the situation where the sum wn is high, implying that the composite grade has a low risk of 

stock-out, but one (or more) of its individual components, x1, …, xn–1, is (are) low, implying that the 

corresponding individual grade(s) has(ve) a high risk of stock-out, which may lead to significant 

lost-sales costs. We refer to this situation as the “imbalance problem,” because one or more of the 

individual inventory levels are much lower than the average. 

To illustrate the imbalance problem, suppose that the facility is currently set up to produce 

grade 4, and that the inventory levels of grades 1-4 are (x1, x2, x3, x4) = (15, 15, 0, 6). Then, in sub-

problem S4, the inventory level of the middle grade would be x4 = 6, and the total inventory level of 

the low composite grade would be w4 = x1 + x2 + x3 = 30. In this case, the optimal policy obtained 
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from solving S4 might indicate that it is optimal for the facility not to change over to the low 

composite grade, because there is plenty of it (30 units) in storage compared to the inventory level 

of the middle grade 4, which is much lower (6 units). What the heuristic fails to see here is that 

although w4 is relatively high, its individual components are quite imbalanced – in fact, one of 

them, namely x3, is zero. In this case, unless the facility changes over to grade 3, a heavy lost-sales 

cost is likely to be incurred in the current and in the following period. 

To tackle the imbalance problem, we seek an aggregate inventory level, ŵn, for the 

composite of grades 1, …, n – 1, that would somehow reflect the imbalance, if any, among the 

individual inventory levels x1, …, xn–1. A natural measure of the imbalance of the individual 

inventory levels is the sum of their expected lost sales, denoted by ILSn, given by 

 ILSn ≡ E[(D1 – x1)+] + … + E[(Dn–1 – xn–1)+] 

The expected lost sales for any given aggregate inventory level, w, of the composite grade, on the 

other hand, denoted by CLSn(w), is given by  

 CLSn(w) ≡ E[(D1 + … + Dn–1 – w)+] 

With the above definitions in mind, in order to capture the imbalance, if any, among the 

individual inventory levels x1, …, xn–1, we propose the following expression for the aggregate 

inventory level, ŵn: 

 
, if 0

ˆ
, if 0

n n
n

n n

w ILS
w

v ILS
=⎧

= ⎨ >⎩
 (3.3) 

where vn ≡ w: CLSn(w) = ILSn, i.e., vn is that value of the aggregate inventory level which makes the 

expected lost sales of the composite grade equal to the sum of the expected lost sales of the 

individual grades. 

To compute vn we need to derive the probability distribution of the demand of the composite 

grade by convolving the probability distributions of the demands of the individual grades. In case 
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this is not computationally convenient, we propose a faster alternative in which we approximate 

ILSn by the expression 

 ILSn ≈ (E[D1] – x1)+ + … + (E[Dn–1] – xn–1)+ 

This then allows us to compute vn by the following expression: 

 vn = E[D1] + … + E[Dn–1] – ILSn (3.4) 

Expression (3.3) prescribes that the aggregate inventory level, ŵn, be set equal to either wn, 

if ILSn = 0, or vn, if ILSn > 0. It can be easily shown that vn ≤ wn. Given that vn may be significantly 

smaller than wn, where wn is the natural candidate for the aggregate inventory level of the composite 

grade, we propose to use a “smoother”, more general rule than the one prescribed by expression 

(3.3). According to the more general rule, ŵn is set equal to a linear combination of wn and vn 

(rounded to the nearest integer), if ILSn > 0, namely 

 
, if 0

ˆ
(1 ) , if 0

n n
n

n n n

w ILS
w

v w ILSα α
=⎧

= ⎨ + − >⎩
  (3.5) 

for some coefficient α, such that 0 ≤ α ≤ 1, where vn is given by (3.4). Note that if α = 0, the rule 

prescribed by (3.5) becomes ŵn = wn, whereas if α = 1, the rule becomes identical to that prescribed 

by expression (3.3). Clearly, the smaller the imbalance problem, the smaller the optimal value of α, 

and the better the performance of the heuristic. In Section  3.4.3, we investigate the performance of 

the heuristic as a function of coefficient α. 

The heuristic policy that we described above, as any feedback policy, satisfies an expression 

similar to Bellman’s equation (3.1), without the minimization, i.e., it satisfies 

 ( ) ( ( ))h
h h h

u
J V T V+ =y y  (3.6) 

where Jh is the expected average cost per period and Vh(y) is the differential cost starting from state 

y, when the heuristic policy uh = μh(y) is used. Note that Jh, Vh(y), and μh(y) also depend on α, but 

we omitted this dependence here for notational simplicity. 
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One way to evaluate the heuristic policy is to use the method of successive approximations 

of the differential cost functions Vh(y). More specifically, if we denote by ( )h
kV y the values of the 

differential cost function at the kth iteration, then the values at the (k + 1)th iteration are obtained 

from the previous iteration by a recursion similar to (3.2), without the minimization, i.e., 

 1 ˆ( ) ( ( )) ( ( ))h h
h h h

k k ku u
V T V T V+ = −y y y  (3.7) 

Note that as in (3.2), at each step of iteration (3.7), the differential cost of the special state ŷ is reset 

to zero. Assuming that the iteration scheme converges to some values V(y), for all y, then the 

expected average cost per period of the heuristic policy is given by ˆ( ( ))h
h h

u
J T V= y . 

An alternative way to evaluate the heuristic policy is to use simulation. Our numerical 

experience for 4-grade and 5-grade problems showed that the simulation is faster than the method 

of successive approximations by as much as 100 times. 

3.4 Numerical results 

In this section, we present numerical results for problem examples with 2-5 grades. First, we solve a 

2-grade example using the exact solution procedure. For that example, we discuss the optimal 

changeover policy, and we explore the effect of problem parameters on the optimal expected 

average cost per period and on the computational time of the successive approximation procedure. 

Then, we solve a 3-grade example originating from a real application presented in  Chapter 2, for 

which we also discuss the optimal changeover policy. Finally, we solve 4-grade and 5-grade 

examples using both the exact and the heuristic solution procedures. We discuss the performance 

and computational efficiency of the heuristic procedure, and we explore how they are affected by 

the distribution of the relative market size of the different grades and the size of weight α in 
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expression (3.5). The programming codes for implementing the exact and heuristic solution 

procedures are shown in Appendix D. 

3.4.1 2-grade example 

First, we consider a 2-grade example (N = 2), where P = 5, and the demand distribution for the two 

grades is given in Table  3-1. 

 

Table  3-1. Probability distribution of demand, Pr(Dn=i), for the 2-grade example 

  i  
n  0 1 2 3 4 5 6 E[Dn]
1  0.1 0.15 0.15 0.2 0.15 0.15 0.1 3 
2  0.15 0.15 0.4 0.15 0.15 0 0 2 

 

We run the successive approximation procedure outlined in Section  3.2 for various 

combinations of storage capacity, X, and cost rate parameters, CC, CS, CL1 and CL2. In each case, 

we assumed that both grades have the same lost-sales cost rate, i.e., CL1 = CL2 = CL. The results are 

shown in Table  3-2. Note that case 1 represents the situation where there is no changeover cost. For 

each case shown in Table  3-2, the results are spread in three rows. The first row shows the number 

of iterations of the successive approximation procedure until convergence, denoted by kc, for 

convergence tolerance criterion ε = 0.001, the total CPU time in hours on an Intel Pentium PC at 

2.99 GHz with 1 GB RAM, and the resulting optimal expected average cost per period, J. The 

second row shows the per period expected average number of changeovers, units spilled over, and 

lost sales for each grade, denoted by E[C], E[S], E[L1] and E[L2], respectively. These quantities are 

related to J by the expression 

 J = CC⋅E[C] + CS⋅E[S] + CL⋅E[L1] + CL⋅E[L2]  (3.8) 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 15:50:34 EEST - 3.146.37.111



 

71 

The third row includes the components of the inventory level vector that minimizes the 

optimal differential cost function V(s, x1, x2), denoted by (x1
*(s), x2

*(s)), for s = 1, 2. This vector 

represents the optimal (or ideal) inventory level vector for setup state s, and is equivalent to the 

optimal hedging point in the manufacturing flow control literature (e.g., see Kimemia and Gershwin 

(1983)) or the optimal order-up-to level in classical inventory theory. 

 

Table  3-2. Results for the 2-grade example 

      X = 40    X = 60    X = 80   
Case CC CS CL  kc CPU J - kc CPU J - kc CPU J - 

     Ε[C] E[S] E[L1] E[L2] Ε[C] E[S] E[L1] E[L2] Ε[C] E[S] E[L1] E[L2]
     x1

*(1) x2
*(1) x1

*(2) x2
*(2) x1

*(1) x2
*(1) x1

*(2) x2
*(2) x1

*(1) x2
*(1) x1

*(2) x2
*(2)

1 0 5 5  105 0.1693 0.7181 - 258 0.9027 0.4493 - 480 2.9438 0.3270 - 
     0.6843 0.0550 0.0606 0.0281 0.6874 0.0340 0.0380 0.0178 0.6898 0.0246 0.0277 0.0130
     8 12 13 7 14 16 19 11 15 25 20 20 

2 1 5 5  253 0.4045 0.9804 - 642 2.2917 0.6168 - 1210 7.5323 0.4494 - 
     0.1991 0.0777 0.0412 0.0374 0.1285 0.0486 0.0248 0.0243 0.0943 0.0353 0.0180 0.0177
     1 21 22 0 2 32 34 0 2 44 46 0 

3 10 1 1  448 0.7059 1.1433 - 489 1.7415 0.7522 - 502 3.1532 0.5592 - 
     0.0772 0.1854 0.0774 0.1084 0.0530 0.1111 0.0442 0.0673 0.0399 0.0804 0.0318 0.0483
     0 31 31 0 0 48 48 0 0 65 65 0 

4 2 5 5  240 0.3808 1.1616 - 599 2.0880 0.7327 - 1125 7.2427 0.5343 - 
     0.1662 0.0825 0.0419 0.0415 0.1067 0.0517 0.0252 0.0270 0.0781 0.0377 0.0174 0.0206
     1 22 23 0 1 35 36 0 1 48 49 0 

5 1 10 5  295 0.4660 1.3638 - 730 2.5438 0.8567 - 1361 8.6798 0.6241 - 
     0.2258 0.0757 0.0397 0.0365 0.1434 0.0475 0.0260 0.0218 0.1047 0.0346 0.0170 0.0177
     1 15 16 0 1 24 25 0 2 32 34 0 

6 1 5 10  323 0.5166 1.3652 - 807 2.8111 0.8570 - 1513 9.8512 0.6247 - 
     0.2253 0.0758 0.0397 0.0364 0.1429 0.0476 0.0258 0.0219 0.1044 0.0346 0.0170 0.0177
     2 25 27 0 2 39 41 0 2 54 56 0 

7 5 10 1  232 0.3676 1.6879 - 561 1.9624 1.0705 - 1037 6.6267 0.7823 - 
     0.1330 0.0930 0.0440 0.0492 0.0869 0.0578 0.0275 0.0304 0.0641 0.0420 0.0184 0.0236
     0 12 12 0 0 19 19 0 0 27 27 0 

8 5 1 10  262 0.4145 1.6897 - 640 2.2517 1.0717 - 1188 7.4947 0.7831  
     0.1320 0.0934 0.0438 0.0498 0.0866 0.0580 0.0276 0.0305 0.0639 0.0421 0.0185 0.0236
     1 34 35 0 1 53 54 0 2 71 72 0 

9 1 10 10  259 0.4121 1.7419 - 652 2.2822 1.0943 - 1227 7.7948 0.7969 - 
     0.2426 0.0744 0.0391 0.0364 0.1546 0.0467 0.0257 0.0216 0.1116 0.0341 0.0176 0.0168
     1 20 21 0 2 31 33 0 2 42 44 0 

10 10 5 10  213 0.3374 2.7081 - 521 1.8811 1.7239 - 965 5.9797 1.2617 - 
     0.1203 0.1001 0.0451 0.0554 0.0790 0.0621 0.0290 0.0334 0.0582 0.0452 0.0197 0.0257
     1 29 30 0 1 45 46 0 1 62 63 0 
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From the results, it can be seen that the values of kc and CPU range from 105 iterations in 

0.1693 hours (∼10 min), in case 1 (X = 40), to 1513 iterations in 9.8512 hours, in case 6 (X = 80). 

As X increases, kc and CPU increase significantly, whereas E[C], E[S] E[L1], E[L2] and J decrease, 

as would be expected. Note that kc and CPU are significantly lower in case 1 than in any other case, 

since CC = 0 in case 1. As would also be expected, J increases as the cost rate parameters increase. 

From the results, it can also be seen that as one of the cost rate parameters, say CS, increases, the 

respective quantity that it multiplies in the objective function (3.8), i.e., E[C], decreases, but the 

overall optimal expected average cost per period, J, increases. 

In all cases, except case 1, the optimal inventory level of the grade that the facility is set up 

for is close to or equal to zero, whereas the optimal inventory level of the other grade is quite 

significant. The reason for this is that when the facility is set up for a particular grade, say grade 1, 

ideally one would like to have low inventory of grade 1 and high inventory of grade 2, so that the 

facility can continue producing grade 1 for as many periods as possible without having to change 

over to grade 2 and pay the changeover cost. This is no longer true for case 1, where changeovers 

cost nothing. 

Also, the optimal inventory levels seem to be more or less symmetric for the two grades, 

i.e., x1
*(1) ≈ x2

*(2) and x2
*(1) ≈ x1

*(2), except that the inventory level of grade 1 is slightly higher 

than that of grade 2, because grade 1 has higher expected demand than grade 2.  

In addition, the optimal inventory level of the grade not being produced appears to be 

increasing with CL (e.g., compare cases 2 and 6) and decreasing with CS (e.g., compare cases 2 and 

5). The reason for this is that the higher the cost rate of stock-outs, CL, the higher the optimal 

inventory level to better hedge against stock-out occurrences. Similarly, the higher the cost rate of 
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material spill-over, CS, the lower the optimal inventory level to better hedge against spill-over 

occurrences. 

Finally, the optimal inventory level of the grade not being produced appears to be quite 

insensitive to CC (e.g., compare cases 2, 4 and 9, as well as cases 6 and 10). The reason for this is 

that the optimal inventory level vector primarily serves to hedge against stock-out and spill-over 

occurrences and is therefore affected by CL and CS, as was mentioned above. CC primarily affects 

the lot-size of each grade that should be produced in a single run, which in turn affects the cycle 

stock and changeover frequency. In other words it affects the width of the “changeover corridor”, 

which we will discuss in detail in the figures that follow. 

Figure  3-1 shows the optimal changeover policy as a function of inventories x1 and x2, for 

cases 2 and 4 of Table  3-2, for X = 40, and is representative of all other cases, except case 1, which 

will be discussed later. From Figure  3-1, it can be seen that in both cases, the optimal policy 

partitions the inventory space in several regions, where each region is characterized by a different 

optimal changeover action. The optimal changeover policy when the facility is set up to produce 

grade s and the inventory level vector (x1, x2) is in region R, denoted by μ*(s, R), is shown in Table 

 3-3, where “changeover to grade 1” is understood to mean “changeover to grade 1 if the facility is 

set up for grade 2, otherwise remain set up for grade 1”. 

 

Table  3-3. Optimal policy μ*(s, R) for the 2-grade example 

  s   
R  1 2  Description 
a  1 1  Changeover to grade 1 
b  1 2  Do not changeover 
c  2 1  Changeover to the other grade
d  2 2  Changeover to grade 2 
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Figure  3-1. Optimal changeover policy for cases 2 (left) and 4 (right) of Table  3-2, for X = 40 

 

If the inventory level vector is in region c, the facility changes over from one grade to the 

other in each period. This behavior is sometimes referred to as “chattering”. If the inventory level 

vector is in region b and the facility is set up for grade 1, then the facility will keep producing grade 

1 in successive periods, until the inventory level vector crosses the border between regions b and d. 

At that point, the facility will change over to grade 2. The facility will then keep producing grade 2 

in successive periods, until the inventory level vector crosses the border between regions b and a. 

At that point, it will change over to grade 1, and the cycle will be repeated. Note that region b is 

wider in case 4 than in case 2, indicating that in case 4, the facility produces longer runs 

(campaigns) of each grade with less frequent changeovers. This is because the changeover cost in 

case 4 is twice as big as in case 2. In fact, the widening of region b in case 4 is so big that it has 

caused region c to disappear. Also note that the inventory space partition is more or less symmetric 

for the two grades, with regions c and b forming a more or less diagonal corridor bounded by 

regions a and d. This corridor has a slight displacement in favor of grade 1, due to the fact that 

grade 1 has a higher expected demand than grade 2, and a slope which is approximately equal to the 

ratio E[D2]/E[D1] = 2/3. In addition, it is funnel-shaped, with its narrow end towards the origin and 
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its wide end towards the inventory state space outer facet, indicating that more frequent 

changeovers take place when the inventory levels of both grades are low and the risk of a stock-out 

is high, and less frequent changeovers take place when the inventory levels are high. The borders of 

the corridor towards its wider end tend to align themselves to the orthogonal lines x1 = c1 and x2 = 

c2, respectively, where c1 and c2 are some constants. This means that when the facility is set up for 

grade 2, it should change over to grade 1, if x1 drops below c1, irrespectively of x2, as long as x2 is 

high. Thus, the optimal changeover policy, which is generally “global” in that changeover decisions 

depend on both x1 and x2, becomes “local” in one grade when the inventory level of the other grade 

is high. 

Note that when s = 1, x1 increases by 2 units and x2 decreases by 2 units per period on 

average, while when s = 2, x1 decreases by 3 units and x2 increases by 3 units per period on average. 

This implies that on average, the inventory level vector tracks the line x1 + x2 = X′, for some X′ < X. 

This line is parallel to the outer facet of the inventory state space, x1 + x2 = X. Under the optimal 

changeover policy, the line x1 + x2 = X′ should connect the optimal target inventory level points 

(x1
*(1), x2

*(1)) and (x1
*(2), x2

*(2)). This means that X′ should satisfy: x1
*(1) + x2

*(1) = X′ and x1
*(2) 

+ x2
*(2) = X′. Indeed, in all cases shown in Table  3-2, there exists a value of X′ that satisfies the 

above two equations. For example, in case 2, X = 40, x1
*(1) + x2

*(1) = 1 + 21, x1
*(2) + x2

*(2) = 22 + 

0, and therefore, X′ = 22, suggesting that under the optimal changeover policy, the FG inventory 

buffer should be kept a little over half full. The line connecting the optimal target inventory levels 

of the two setup states for this case is shown as a dotted line in Figure  3-1 (left). Under the optimal 

changeover policy, the inventory level vector on average moves back and forth along the segment 

of that dotted line that falls in region b, as the facility changes over from one grade to the other, 

whenever the inventory level vector enters region a or d. Such a trajectory is on average parallel to 

the optimal inventory level trajectory of the deterministic version of the problem (where the demand 
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for each grade in each period is constant and equal to its expected value) which follows the line 

connecting the two corners of the inventory state space, (X, 0) and (0, X), because that trajectory 

minimizes the changeover frequency without incurring any lost-sales or spill-over cost. 

Figure  3-2 shows the optimal changeover policy for cases 3 and 1 of Table  3-2, for X = 80. 

Note that the inventory space partition in case 3, shown in Figure  3-2 (left), is similar to that in case 

4, shown in Figure  3-1 (right), except that region b is much wider. This is because in case 3, the 

changeover cost rate is much higher than the other cost rates, compared to case 4. 

 

0 20 40 60 800

20

40

60

80

x1

x2

d

a

b

0 20 40 60 800

20

40

60

80

x1

x2

a

dc

  

Figure  3-2. Optimal changeover policy for case 3 (left) and case 1 (right) of Table  3-2, for X = 80 

 

The structure of the inventory space partition in case 1, shown in Figure  3-2 (right), is 

different than the partitions shown in the other figures. First, region b is absent, which means that 

the facility need not produce long campaigns of each grade with infrequent changeovers. This is 

because the changeover cost is zero. If the inventory level vector is in region c, the facility changes 

over from one grade to the other in each period, as in case 2, shown in Figure  3-1 (left). Also, as in 

case 2, the corridor defined by region c is diagonal for low inventory vector levels, with a slope 

which is approximately equal to ratio E[D2]/E[D1] = 2/3. The difference with case 2 and all the 
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other cases as well is that region c turns into a narrow constant-width corridor which is parallel to 

the x1-axis at the level of x2 = 5 ± 2, for values of x1 larger than approximately 10. This means that 

unless the inventory level of grade 2 is extremely low, priority is always given to the production of 

grade 1. This can be explained as follows. As was mentioned earlier, when the facility is set up for 

grade 1, x1 advances by 2 units and x2 drops by 2 units per period on average, whereas when the 

facility is set up for grade 2, x2 drops by 3 units and x2 advances by 3 units per period on average. 

Given that there is no changeover or inventory holding cost, if the inventory level vector is not too 

low, the former state (i.e., the state where the facility is set up for grade 1) is preferable to the latter 

state, because on average it results in smaller jumps per period of the inventory level vector, and 

hence prolongs the time that the inventory level vector approaches the orthogonal boundaries of the 

triangular inventory state space, where the risk of incurring a lost-sales cost is high. 

3.4.2 3-grade example 

Next, we consider a 3-grade (N = 3) example that originated from a real dynamic scheduling 

application of a continuous-flow processing plant that produces three grades of Polyethylene 

Terephthalate (PET) resin, presented in  Chapter 2. PET is the workhorse polyester used for making 

stretch-blown beverage bottles. The three grades differ from each other in the combination of two 

key properties: Color and Intrinsic Viscosity (IV), as shown in Table  3-4. The chain of allowable 

changeovers is 1-2-3. 

 

Table  3-4. Description of bottle-grade PET resin final products 

Grade Name Description IV color
1 Water Grade (WG) PET for water bottles low light
2 Soft Drink (SD) PET for carbonated soft-drink bottles high light
3 Fast Heat (FH) PET for dark-colored carbonated soft-drink bottles high dark
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The plant produces 180 tons/day and has a FG storage capacity of 3440 tons. We discretize 

material and time so that each unit of material produced, stored, or demanded in each time period of 

the MDP equals 30 tons, and each time period equals 48 minutes. This makes P = 6 and X = 115. 

The distribution of the discretized demand for the three grades is given in Table  3-5. Note that the 

total expected demand rate is 6.0291 units per period, which is very close to the production rate P. 

The cost rate parameters that we used are CC = 1, CS = CL1 = CL2 = 2, to reflect the fact that the 

plant manager wishes to avoid frequent changeovers, but is even more wary about material spill-

over and lost sales. 

 

Table  3-5. Probability distribution of demand, Pr(Dn=i), for the 3-grade example 

  I   
n  0 1 2 3 4 5 6 7 8 9 10  E[Dn]
1  0.1676 0.1429 0.3214 0.1538 0.1016 0.0604 0.0247 0.0110 0.0137 0.0027 0.0000  2.3159
2  0.5000 0.1648 0.1071 0.0824 0.0604 0.0302 0.0220 0.0137 0.0027 0.0110 0.0055  1.4231
3  0.1519 0.2652 0.2956 0.0718 0.0663 0.0525 0.0442 0.0138 0.0276 0.0028 0.0083  2.2901

 

We solved the problem optimally using the successive approximation method outlined in 

Section  3.2. The method converged after 533 iterations that took 269 hours on an Intel Pentium PC 

at 2.99 GHz with 1 GB RAM, for convergence tolerance criterion ε = 0.01. The resulting optimal 

expected average cost per period, J, is 0.4522. As in the 2-grade example, the optimal policy 

partitions the inventory space in several regions, each characterized by a different optimal 

changeover action. The optimal changeover policy μ*(s, R) is given in Table  3-6. 

Figures 3-3 and 3-4 show the optimal changeover policy as a function of inventory levels x1 

and x3, for given values of inventory level x2. More specifically, Figure  3-3 (left), shows the optimal 

changeover policy when x2 (= 90) >> x1 + x3. From that figure, it can be seen that if (x1, x3) ∈ a, in 

which case x2 >> x3 >> x1, then the production facility must change over to the next lower grade so 
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that it is eventually set up for grade 1, because x1 is significantly lower than x2 and x3. If (x1, x3) ∈ b, 

in which case x2 >> x3 > x1, then the facility must change over to grade 1, if it is set up for grade 2. 

If it is set up for grade 3, however, it need not change over to grade 2 (to eventually change over to 

grade 1), because x1 is not that much lower than x3 to justify the cost of such a changeover. The 

optimal changeover policies in regions l and f are symmetric to those in regions a and b, 

respectively, with the roles of x1 and x3 being reversed. 

 

Table  3-6. Optimal policy μ*(s, R) for the 3-grade example 

  s   
R  1 2 3  Description 
a  1 1 2  Changeover to the next lower grade 
b  1 1 3  If set up for grade 2, changeover to grade 1 
c  1 2 2  If set up for grade 3, changeover to grade 2 
d  1 2 3  Do not changeover 
e  1 3 2  If set up for grade 2 or 3, changeover to grade 3 and 2, respectively 
f  1 3 3  If set up for grade 2, changeover to grade 3 

g  2 1 2  If set up for grade 1 or 3, changeover to grade 2; if set up for grade 2, changeover to grade 
1 

h  2 1 3  If set up for grade 1 or 2, changeover to grade 2 and 1, respectively 
i  2 2 2  Changeover to grade 2 
j  2 2 3  If set up for grade 1, changeover to grade 2 

k  2 3 2  If set up for grade 1 or 3, changeover to grade 2; if set up for grade 2, changeover to grade 
3 

l  2 3 3  Changeover to the next higher grade 
 

The structure of the optimal changeover policy, described above, which holds for very high 

values of x2, also holds for smaller values of x2, as seen by Figure  3-3 (right), where x2 (= 70) > x1 + 

x3. 

Figure  3-4 (left), shows the optimal changeover policy when x2 (= 30) < x1 + x3. As can be 

seen from that figure, in addition to regions a, b, f and l, three new regions enter the picture, 

namely, regions c, d and j. If (x1, x3) ∈ c, in which case x3 >> x2 > x1, then the facility must change 

over to grade 2, if it is set up for grade 3. If it is set up for grade 2, however, it need not change over 
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to grade 1, because x1 is not that much lower than x2 to justify the cost of such a changeover. If (x1, 

x3) ∈ d, in which case the inventory levels of the three grades are not that different from each other, 

then the facility need not change over at all, no matter what grade it is set up for. The optimal 

changeover policy in region j is symmetric to that in region c, with the roles of x1 and x3 being 

reversed. 
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Figure  3-3. Optimal changeover policy for x2 = 90 (left) and x2 = 70 (right), for the 3-grade 

example 
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Figure  3-4. Optimal changeover policy for x2 = 30 (left) and x2 = 10 (right), for the 3-grade 

example 
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Finally, Figure  3-4 (right), shows the optimal changeover policy when x2 (= 10) << x1 + x3. 

As can be seen from that figure, in addition to the regions that appear in Figure  3-4 (left), four new 

regions enter the picture, namely, regions i (top-left), j (top), c (right), and i (bottom-right). If (x1, 

x3) ∈ i (top-left), in which case x3 >> x1 > x2, then the facility must change over to grade 2. More 

specifically, if the facility is set up for grade 1, then it must change over to grade 2, simply because 

x2 < x1. If the facility is set up for grade 3, on the other hand, then it must change over to grade 2 

mostly to be in a better position to change over to grade 1, if needed, given that x1 is also low and is 

being depleted at a faster rate than x2. If (x1, x3) ∈ j (top-left), in which case x3 > x1 >> x2, then the 

facility must change over to grade 2, if it is set up for grade 1, because x2 << x1. If it is set up for 

grade 3, however, it need not change over to grade 2, because it is no longer necessary to be in a 

better position to change over to grade 1, if needed, given that x1 in region j is not as low as it is in 

region i (top-left). The optimal changeover policies in regions c (right) and i (bottom-right) are 

symmetric to those in regions j (top) and i (top-left), respectively, with the roles of x1 and x3 being 

reversed. 

Table  3-7 shows the elements of the optimal target inventory level vector for each set up 

state s. As in the 2-grade example, the optimal target inventory level of the grade being produced is 

close to zero, whereas the optimal target inventory level of the grades not being produced are 

positive and quite big. In fact, the further away (in terms of number of changeovers) a grade is from 

the grade produced, the higher its optimal target inventory level. 

 

Table  3-7. Optimal target inventory level, xn
*(s), for the 3-grade example 

 n  
s 1 2 3
1 2 22 47
2 22 3 56
3 47 31 3
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3.4.3 4-grade and 5-grade examples 

Finally, we consider a 4-grade (N = 4) and a 5-grade (N = 5) example. In each example, we assume 

that the demand for each grade is identically distributed to one of the random variables Dj, j = A, B, 

C, D, whose distributions are given in Table  3-8. 

 

Table  3-8. Probability distribution of demand, Pr(Dj = i), for the 4-grade and 5-grade examples 

  i  
j   0 1 2 3 E[Dj]
A  0.4 0.5 0.05 0.05 0.75 
B  0.25 0.5 0.25 0 1 
C  0.25 0.25 0.5 0 1.25 
D  0.05 0.2 0.45 0.3 2 

 

For each example, we consider four different cases. In each case, the set of the probability 

distributions of the demands of the different grades is the same and such that the total expected 

demand is equal to the production rate. The difference between the cases is in the order in which 

these distributions appear in the chain of allowable changeovers. For instance, in all cases of the 4-

grade example, we assume that the demands of two of the grades are identically distributed to 

random variable DB, which has an expected value of 1, and the demands of the other two grades are 

identically distributed to random variable DD, which has an expected value of 2. In other words, two 

grades have low demand and two grades have high demand. In case 1, the grades with the low 

demand are the end grades, 1 and 4, whereas the grades with the high demand are the middle 

grades, 2 and 3. To indicate this order we use the notation “B,D,D,B”. In case 2, the order is 

D,D,B,B, which means that grades 1 and 2 have high demand and grades 3 and 4 have low demand, 

and so on. Hence, each case represents a different way that total expected demand is distributed 

among the individual grades.  

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 15:50:34 EEST - 3.146.37.111



 

83 

First, we solved each case optimally using the successive approximation procedure 

described in Section  3.2, for convergence tolerance criterion ε = 0.001. Then, we solved each case 

using the heuristic procedure described in Section  3.3. In the implementation of the heuristic 

procedure we employed the faster alternative to approximate the sum of the expected lost sales of 

the individual grades, described at the end of Section  3.3, which uses expression (3.5) to estimate 

the aggregate inventory levels of the composite grades, for values of α ranging from 0 to 1 with a 

step size of 0.1. In all cases, we assumed that CC = CS = CLn = 1, n = 1, …, 5, and P = 6. 

The results for the 4-grade example, for X = 30, are shown in Table  3-9. The CPU times 

reported are in hours on an Intel Core i7 PC at 2.67 GHz with 3 GB RAM. For the heuristic, we 

show the total CPU time in hours that it took to solve the (N – 2) 3-grade sub-problems and 

generate the heuristic policy, but not the time it took to evaluate the heuristic policy. As was 

mentioned at the end of Section  3.3, the time it takes to evaluate the heuristic policy using the value 

iteration method is significant, whereas the alternative of using discrete-time system simulation is 

much faster. In all cases of the 4-grade problem, we used the value iteration method. The optimal 

value of α in the heuristic procedure is denoted by α*, and the corresponding expected average cost 

per period is denoted by Jh(α*). The last column of Table  3-9 shows the percent cost increase 

between the heuristic and the optimal policy. The complete set of the results of the heuristic policy 

evaluated both with the value iteration method and simulation, for different values of α, are shown 

in Appendix E. 

In case 1, the grades with the highest expected demands are in the middle of the chain of 

allowable changeovers, whereas in case 4, they are at the two ends of the chain. Hence, case 1 

represents a situation where the dispersion of the total expected demand among the individual 

grades is relatively low, because most of the time the production facility will be changing over 

between the highly demanded grades, 2 and 3, which are adjacent. Case 4, on the other hand, 
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represents a situation where the dispersion of the total expected demand is relatively high, because 

most of the time the production facility will be changing over between the highly demanded grades, 

1 and 4, which are spaced 3 grades apart. Cases 2 and 3 are intermediate cases. 

 

Table  3-9. Results for the 4-grade example 

 Demand  Exact Heuristic % cost 
Case pattern  kc CPU J CPU α* Jh(α*) difference 

1 B,D,D,B  55 8.57 1.0034 0.0461 0.7 1.2442 24.00 
2 D,D,B,B  156 24.29 1.0927 0.0574 0.5 1.2253 12.13 
3 D,B,D,B  187 29.12 1.1835 0.0748 0.1 1.3207 11.59 
4 D,B,B,D  110 17.13 1.2881 0.1040 0.1 1.3139 1.96 

 

From the results, it can be seen that as we move from case 1 to case 4, i.e., as the dispersion 

of the total demand among the individual grades increases, the expected average cost per period 

increases, because the number of changeovers needed to effectively meet the demands for all the 

grades increases. To see this, note that in case 1, every time the facility must change over between 

the highly demanded grades, 2 and 3, one changeover is needed, namely, 2→3. In case 4, however, 

when the facility must change between the highly demanded grades, 1 and 4, three costly but 

inevitable changeovers are needed, namely 1→2, 2→3, and 3→4. During the latter two 

changeovers, the lowly demanded grades, 2 and 3, are each produced for one period. These 

inevitable single-period production runs result in preventing the inventory levels of grades 2 and 3 

from dropping too much on average, which would cause a significant imbalance among the 

inventory levels of all the grades. This then suggests that the bigger the dispersion of the total 

demand among the individual grades, the smaller the imbalance problem. Moreover, as was 

mentioned in Section  3.3, the smaller the imbalance problem, the smaller the optimal value of α, 

and the better the performance of the heuristic. This explains why, as we move from case 1 to case 

4, α* and the percent cost increase between the heuristic and the optimal policy decrease. Actually, 
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in all cases, except case 1, Jh(α) is relatively insensitive to parameter α, as can be seen from Figure 

 3-5. Case 1 tends to have lower cost for α between 0.5 and 0.7 and significantly higher cost for α 

between 0.8 and 1. 

 

1.2
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1.35

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

J h (α )

Case 1
Case 2
Case 3
Case 4

α  

Figure  3-5. Expected average cost per period of the heuristic, Jh(α), vs. α, for the 4-grade example 

 

Finally, the cost increase when using the heuristic instead of the exact method is 12.42% on 

average and ranges between 1.96% for case 4 and 24% for case 1. Note, however, that the heuristic 

method is between 160 and 420 times faster than the exact method. 

The results for the 5-grade example, for X = 20, are shown in Table  3-10. In all cases, we 

used discrete-time system simulation to evaluate the heuristic policy. To obtain each estimate Jh(α) 

and its 95% confidence interval, denoted by “c.i.”, we run 60 simulations, each with a time horizon 

of 100,000 time units. The complete set of the results of the heuristic policy evaluated with 

simulation, for different values of α, are shown in Appendix E. 

The results are qualitatively similar to those obtained for the 4-grade example. Namely, the 

smaller the imbalance problem, the smaller the optimal value of α, and the better the performance of 

the heuristic. In all cases of this example, α* is quite small and Jh(α) is slightly increasing and 
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relatively insensitive to parameter α, at least for values of α smaller that 0.5, as can be seen from 

Figure  3-6. The cost increase when using the heuristic instead of the exact method ranges between 

7.59% for case 4 and 14.46% for case 1 and is 12.75% on average, which is practically the same as 

the average cost difference in the 4-grade example. The heuristic method, however, is between 600 

and 1700 times faster than the exact method, which is quite significant. 

 

Table  3-10. Results for the 5-grade example 

 Demand  Exact Heuristic  % cost 
Case pattern  kc CPU J CPU α* Jh(α*) (95% c.i.)  increase 

1 A,C,D,C,A  35 38.05 2.6520 0.0223v 0.1 3.0355 ± 0.0016  14.46 
2 D,C,C,A,A  71 78.70 3.0016 0.1293v 0.1 3.4512 ± 0.0015   14.98 
3 D,C,A,A,C  129 141.21 3.4916 0.1761v 0 3.8759 ± 0.0020  11.00 
4 D,A,C,A,C  129 140.39 3.6572 0.1758v 0 3.9348 ± 0.0020  7.59 
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Figure  3-6. Expected average cost per period of the heuristic, Jh(α), vs. α, for the 5-grade example 

3.5 Conclusions 

We studied a new version of the SELSP, for which we developed a MDP model. For problems with 

2 and 3 grades, we numerically solved the MDP problem and obtained useful insight into the 

influence of the problem parameters and structure of the optimal changeover policy, which 
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partitions the state space into different regions, each characterized by different optimal changeover 

actions. 

For problems with N grades, N > 3, we developed a heuristic solution procedure which is 

based on approximating the original multi-grade problem by (N – 2) 3-grade sub-problems and 

numerically solving each sub-problem. We tested the heuristic for problems with 4 and 5 grades. 

For the 4-grade examples, the heuristic procedure was 160-420 times faster than the numerical 

procedure for solving the exact problem and the heuristic solution performed on average 12.42% 

worse that the exact solution. For the 5-grade examples, the heuristic procedure was 600-1700 times 

faster than the numerical procedure for solving the exact problem and the heuristic solution 

performed on average 12.75% worse that the exact solution. The fact that the performance of the 

heuristic solution is more or less the same for the 4-grade and 5-grade problems is an encouraging 

sign for problems with more than 5 grades. The numerical results showed that the bigger the 

dispersion of the total expected demand among the individual grades, the better the performance of 

the heuristic. 

We can easily solve problems with more than 5 grades using the heuristic; however, it is 

impossible to compare the performance of the changeover policy that the heuristic generates to that 

of the optimal changeover policy, because it is impossible to even start the value iteration method to 

find the optimal policy, as the state space grows dramatically with the number of grades and simply 

there is not enough computer memory to store it. For example, for a problem with N = 6 and X = 20, 

the state space contains (6⋅206)/2 = 192×106 points. 
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Chapter 4 Dissertation summary 

In  Chapter 2, we developed an MILP model for the production scheduling of a multi-grade PET 

processing chemical plant. We also presented an application of the model on a real case study, 

along with some discussion that provides insight into its behavior. The model minimizes the cost 

associated with the number of grade changeovers, while also ensuring that the capacity constraints 

of the problem are not violated and that the demand for final products is satisfied on time. The 

model incorporates all aspects of the problem under consideration and can be easily extended to 

address additional ones that may arise in different situations, because of the large number of 

decision variables that enhances its flexibility. We believe that the main contribution of this work is 

that it addresses efficiently an important practical application, whose solution exhibits high 

complexity. 

A number of possible directions for future research arise from this work. Firstly, one could 

try to develop a continuous-time model formulation for this problem and compare its results to 

those of the discrete-time model that we present here. Our guess is that the development of such a 

model would be demanding and would not necessarily be computationally more efficient than the 

present discrete-time model. It would, however, represent more accurately the real production and 

storage process, which is continuous in nature. A second possible direction would be to relax some 

of the hard constraints, e.g. the on-time delivery of demand constraints (2.24), (2.25) and (2.27) 

and/or the safety stock constraints (2.21) and (2.29), as was discussed at the end of Section 3, and 
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see if this leads to significant benefits. Another possible direction would be to develop a more 

accurate SELSP formulation than the one presented in  Chapter 3 to better design the safety stock 

levels, or resort to some stochastic integer programming technique to solve the scheduling problem 

under uncertainties. A recent work relevant to this subject is due to Sand and Engell (2004), who 

utilize two-stage stochastic integer programming techniques to solve scheduling problems of 

flexible chemical batch processes that exhibit uncertainties. Finally, one could try to fit the 

scheduling model developed in this dissertation within a broader planning and supply chain 

framework, e.g., as discussed in Kallrath (2002). 

In  Chapter 3, we studied a new version of the SELSP, for which we developed a MDP 

model. For problems with 2 and 3 grades, we numerically solved the MDP problem and obtained 

useful insight into the influence of the problem parameters and structure of the optimal changeover 

policy, which partitions the state space into different regions, each characterized by different 

optimal changeover actions. 

For problems with N grades, N > 3, we developed a heuristic solution procedure which is 

based on approximating the original multi-grade problem by (N – 2) 3-grade sub-problems and 

numerically solving each sub-problem. We tested the heuristic for problems with 4 and 5 grades. 

For the 4-grade examples, the heuristic procedure was 160-420 times faster than the numerical 

procedure for solving the exact problem and the heuristic solution performed on average 12.42% 

worse that the exact solution. For the 5-grade examples, the heuristic procedure was 600-1700 times 

faster than the numerical procedure for solving the exact problem and the heuristic solution 

performed on average 12.75% worse that the exact solution. The fact that the performance of the 

heuristic solution is more or less the same for the 4-grade and 5-grade problems is an encouraging 

sign for problems with more than 5 grades. The numerical results showed that the bigger the 
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dispersion of the total expected demand among the individual grades, the better the performance of 

the heuristic. 

We can easily solve problems with more than 5 grades using the heuristic; however, it is 

impossible to compare the performance of the changeover policy that the heuristic generates to that 

of the optimal changeover policy, because it is impossible to even start the value iteration method to 

find the optimal policy, as the state space grows dramatically with the number of grades and simply 

there is not enough computer memory to store it. For example, for a problem with N = 6 and X = 20, 

the state space contains (6⋅206)/2 = 192×106 points. 

A possible direction for future research would be to try to develop a better heuristic that 

somehow uses the optimal value functions of the sub-problems, although we should point out that 

our initial experimentation with this possibility has not been encouraging. Another direction would 

be to extend the model so as to accommodate other types of FG storage than the common FG buffer 

that we assumed in our model. For example, one could consider multiple parallel FG buffers (e.g., 

industrial silos) that can store only one grade at a time, or two serial FG buffers, e.g., one for storing 

bulk FGs and the second for storing packaged FGs, as is the case in the real application described in 

 Chapter 2. 
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Appendix A: Demand data used in the MILP model 

application presented in Section  2.3 

Table A-1. Daily demand values for 6 months used in the example solved in Section  2.3 

t dST1t + dBC1t dST4t + dBC4t dBB1t dBB2t dBB4t 
1/6/2005 48 25 38.5 55 144.1 
2/6/2005 50 25 1.7 90.2 72.6 
3/6/2005 50 23 46.2 42.9 24.2 
4/6/2005 23 23 0 0 0 
5/6/2005 0 0 0 0 0 
6/6/2005 73 71 5.5 22 24.2 
7/6/2005 73 48 26.4 70.4 96.8 
8/6/2005 25 46 80.3 100.1 96.8 
9/6/2005 73 23 0 67.1 94.6 
10/6/2005 25 71 11 13.1 48.4 
11/6/2005 23 23 0 0 0 
12/6/2005 25 48 0 0 0 
13/6/2005 48 23 25.3 29.7 72.6 
14/6/2005 50 46 30.8 38.5 72.6 
15/6/2005 73 23 28.6 37.4 23.1 
16/6/2005 73 23 36.3 14.3 72.6 
17/6/2005 25 46 27.5 48.4 57.2 
18/6/2005 46 46 0 0 0 
19/6/2005 0 0 0 0 0 
20/6/2005 73 23 0 0 0 
21/6/2005 75 46 48.4 114.4 71.5 
22/6/2005 73 23 0 185.9 95.7 
23/6/2005 50 69.38 18.7 51.7 48.4 
24/6/2005 71 46 0 0 0 
25/6/2005 98 0 0 0 0 
26/6/2005 0 0 0 0 0 
27/6/2005 0 23 68.2 138.6 121 
28/6/2005 75 46 23.1 136.4 143 
29/6/2005 73 46 35.2 221.1 0 
30/6/2005 98 23 11 107.8 23.1 
1/7/2005 73 23 23.1 46.2 163.9 
2/7/2005 50 23 0 0 0 
3/7/2005 0 23 0 0 0 
4/7/2005 97.8 46 47.3 69.3 72.6 
5/7/2005 50 23 24.2 113.3 95.7 
6/7/2005 98 23 24.2 68.2 119.9 
7/7/2005 50 46 5.5 26.4 70.4 
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8/7/2005 73 23 5.5 63.8 211.2 
9/7/2005 48 46 0 0 0 
10/7/2005 0 0 0 0 0 
11/7/2005 73 23 53.9 105.6 118.8 
12/7/2005 50 50 27.5 90.2 116.6 
13/7/2005 73 23 34.1 99 9 
14/7/2005 50 73 16.5 94.6 40 
15/7/2005 48 46 0 23.1 126.2 
16/7/2005 23 0 0 0 0 
17/7/2005 0 23 0 0 0 
18/7/2005 73 23 53.9 77 94.6 
19/7/2005 73 23 28.6 0 139.7 
20/7/2005 75 46 55 93.5 60.5 
21/7/2005 73 23 0 107.8 35.2 
22/7/2005 73 46 35.2 93.5 119.9 
23/7/2005 25 46 0 0 0 
24/7/2005 0 0 0 0 0 
25/7/2005 73 23 48.4 23.1 46.2 
26/7/2005 73 46 0 0 0 
27/7/2005 73 23 94.6 91.3 45.1 
28/7/2005 50 71 92.4 22 90.2 
29/7/2005 98 25 61.6 111.1 0 
30/7/2005 0 23 0 0 0 
31/7/2005 124.17 23 0 0 0 
1/8/2005 50 46 52.8 115.5 0 
2/8/2005 96 23 113.3 20.9 66 
3/8/2005 50 48 91.3 45.1 92.4 
4/8/2005 48 23 20.4 96.8 38.5 
5/8/2005 50 46 23.1 68.2 44 
6/8/2005 23 23 0 0 0 
7/8/2005 23 23 0 0 0 
8/8/2005 50 46 23.1 89.1 47.3 
9/8/2005 73 23 67.1 90.2 47.3 
10/8/2005 73 23 44 46.2 0 
11/8/2005 0 71 90.2 166.1 48.4 
12/8/2005 73 23 23.1 136.4 47.3 
13/8/2005 23 23 0 0 0 
14/8/2005 0 0 0 0 0 
15/8/2005 0 23 0 0 0 
16/8/2005 48 46 23.1 90.2 0 
17/8/2005 48 71 89.1 0 69.3 
18/8/2005 75 48 0 92.4 23.1 
19/8/2005 48 221 23.1 46.2 46.2 
20/8/2005 23 23 0 0 0 
21/8/2005 0 23 0 0 0 
22/8/2005 48 23 23.1 22 47.3 
23/8/2005 50 71 48.4 66 46.2 
24/8/2005 23 46 23.1 110 0 
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25/8/2005 46 202 47.3 66 23.1 
26/8/2005 50 23 49.5 0 46.2 
27/8/2005 0 48 0 0 0 
28/8/2005 0 23 0 0 0 
29/8/2005 48 23 89.1 121 70.4 
30/8/2005 25 71 45.1 89.1 23.1 
31/8/2005 23 46 24.2 63.8 0 
1/9/2005 50 48 45.1 44.01 0 
2/9/2005 46 46 23.11 86.91 24.21 
3/9/2005 23 23 0 0 0 
4/9/2005 0 25 0 0 0 
5/9/2005 73 23 91.3 0 0 
6/9/2005 25 46 24.2 23.1 0 
7/9/2005 73 23 58.3 24.2 13.2 
8/9/2005 48 48 0 0 0 
9/9/2005 48 46 47.3 20.9 92.4 
10/9/2005 23 23 0 0 0 
11/9/2005 100 0 0 0 0 
12/9/2005 0 48 13.2 260.4 17.6 
13/9/2005 74 49 47.3 69.3 24.2 
14/9/2005 50 48 0 67.1 0 
15/9/2005 49 24 15.4 181.5 0 
16/9/2005 25 49 23.1 23.1 116.6 
17/9/2005 24 24 0 0 0 
18/9/2005 75 24 0 0 0 
19/9/2005 99 24 47.3 20.9 0 
20/9/2005 74 24 47.3 23.1 34.1 
21/9/2005 110.2 48 35.2 128.7 2.2 
22/9/2005 194.7 24 95.7 69.3 2.2 
23/9/2005 103.7 48 29.7 116.6 24.2 
24/9/2005 0 0 0 0 0 
25/9/2005 75 48 0 0 0 
26/9/2005 74 0 0 48.4 71.5 
27/9/2005 147.1 0 23.1 117.7 24.2 
28/9/2005 271.7 24 172.7 300.3 0 
29/9/2005 144.9 48 20.9 165 24.2 
30/9/2005 50 48 0 276.1 39.6 
1/10/2005 24 48 0 0 0 
2/10/2005 0 24 0 0 0 
3/10/2005 50 24 0 23.1 24.2 
4/10/2005 97.3 48 47.3 22 2.2 
5/10/2005 97.1 48 23.1 0 17.6 
6/10/2005 49 24 0 24.2 92.4 
7/10/2005 98.2 0 24.2 0 0 
8/10/2005 24 24 0 0 0 
9/10/2005 49 24 0 0 0 
10/10/2005 72.3 48 47.3 0 0 
11/10/2005 97.7 24 23.7 20.9 24.2 
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12/10/2005 48.1 24 23.1 0 0 
13/10/2005 99 24 0 27.5 24.2 
14/10/2005 25.3 48 25.3 39.6 92.4 
15/10/2005 0 0 0 0 0 
16/10/2005 49 24 0 0 0 
17/10/2005 73.2 24 24.2 0 0 
18/10/2005 131.1 24 56.1 59.4 40.7 
19/10/2005 49 0 0 42.9 0 
20/10/2005 50 24 0 0 0 
21/10/2005 48.4 72 0 0 69.3 
22/10/2005 0 24 0 0 0 
23/10/2005 24 24 0 0 0 
24/10/2005 78.4 48 4.4 0 0 
25/10/2005 95.4 24 70.4 23.1 46.2 
26/10/2005 98 48 0 26.4 0 
27/10/2005 46.2 24 46.2 0 24.2 
28/10/2005 0 0 0 0 0 
29/10/2005 24 48 0 0 0 
30/10/2005 0 24 0 25 0 
31/10/2005 222.5 48 148.5 44 165 
1/11/2005 49.2 24 24.2 23.1 48.4 
2/11/2005 142.5 24 93.5 23.1 48.4 
3/11/2005 49 48 0 96.8 0 
4/11/2005 45.1 24 45.1 0 0 
5/11/2005 0 0 0 0 0 
6/11/2005 24 24 0 0 0 
7/11/2005 73.4 48 48.4 49.2 199.1 
8/11/2005 49 24 0 3.3 0 
9/11/2005 213.7 24 139.7 213.4 0 
10/11/2005 83.4 24 59.4 24.2 46.2 
11/11/2005 72.4 48 48.4 80.3 0 
12/11/2005 0 24 0 0 0 
13/11/2005 25 24 0 0 0 
14/11/2005 133.2 24 35.2 0 179.3 
15/11/2005 25 24 0 29.7 115.5 
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Appendix B: Single 2-week MILP problem results vs. two 1-

week MILP problem results for the MILP model application 

presented in Section  2.3 

Table A-2. Optimal cost (number of changeovers) and CPU time for each of the 100 instances of 

the numerical example presented in Section  2.3, where we solved the scheduling problem for weeks 

5 and 6 as a single 2-week MILP problem and as two sequential 1-week MILP problems, 

respectively 

 
 Single 2-week  

MILP problem Two 1-week MILP problems 

Instance  

CPU(sec) 
week 5  

+ week 6 

Optimal Cost
week 5  

+ week 6 
CPU(sec)

week 6 

CPU(sec) 
week 5 (= 20.02)

+ week 6 

Optimal Cost 
week 5 (= 3)  

+ week 6 
1  179.28 3 202.4 222.42 5 
2  127.31 3 3.21 23.23 5 
3  135.04 3 2.99 23.01 5 
4  189.95 3 56.79 76.81 5 
5  738.3 3 587 607.02 INF 
6  189.8 3 2.49 22.51 5 
7  121.3 3 4.01 24.03 5 
8  155.5 3 3.17 23.19 5 
9  198.3 3 6.33 26.35 5 
10  141.3 3 5.44 25.46 5 
11  111.4 3 250.36 270.38 5 
12  1210.9 3 407 427.02 INF 
13  144.3 3 4.01 24.03 5 
14  99.98 INF 0.22 20.24 INF 
15  158.41 3 94.34 114.36 5 
16  148.56 3 6.46 26.48 5 
17  268.66 3 250.86 270.88 5 
18  138.39 3 121.24 141.26 5 
19  137.41 3 5.93 25.95 5 
20  118.88 3 5.49 25.51 5 
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21  226.54 3 1.29 21.31 5 
22  156.59 3 5.99 26.01 5 
23  204.75 3 4.67 24.69 5 
24  200.52 3 12.98 33 5 
25  216.71 3 48.45 68.47 5 
26  142.29 3 5.34 25.36 5 
27  266.48 3 201.35 221.37 5 
28  296.78 3 200.64 220.66 5 
29  218.37 3 0.42 20.44 INF 
30  187.51 3 104.03 124.05 5 
31  119.41 3 0.92 20.94 INF 
32  158.06 3 499.56 519.58 5 
33  112.16 INF 0.21 20.23 INF 
34  216.4 3 46.65 66.67 5 
35  182.61 3 4.13 24.15 5 
36  152.77 3 5.03 25.05 5 
37  183.51 3 1.42 21.44 INF 
38  151.94 3 99.65 119.67 5 
39  207.92 3 4.09 24.11 5 
40  130.38 3 1.86 21.88 INF 
41  115.82 3 0.18 20.2 INF 
42  109.77 3 30.47 50.49 5 
43  142.81 3 10.46 30.48 5 
44  157.61 3 5.02 25.04 5 
45  124.11 3 23.62 43.64 5 
46  183.66 3 4.47 24.49 5 
47  145.49 3 3.53 23.55 5 
48  131.75 3 3.33 23.35 5 
49  137.27 3 503.62 523.64 5 
50  131.76 3 57.36 77.38 5 
51  437.94 3 1.2 21.22 5 
52  102.41 3 35.03 55.05 5 
53  430.61 3 29.6 49.62 5 
54  200.77 3 273.2 293.22 5 
55  219.12 3 69.33 89.35 5 
56  130.44 3 161.98 182 5 
57  163.76 3 52.2 72.22 5 
58  159.11 3 51.4 71.42 5 
59  177.42 3 173.9 193.92 5 
60  152.49 3 163.26 183.28 5 
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61  163.03 3 1.88 21.9 5 
62  156.66 3 5.22 25.24 5 
63  112.38 INF 0.24 20.26 INF 
64  218.07 3 46.01 66.03 5 
65  183.01 3 390.63 410.65 5 
66  150.34 3 157.71 177.73 5 
67  183.84 3 464.11 484.13 5 
68  152.08 3 4.81 24.83 5 
69  204.85 3 137.9 157.92 5 
70  131.61 3 143.15 163.17 5 
71  114.78 3 4.71 24.73 5 
72  109.13 3 68.9 88.92 5 
73  142.85 3 32.9 52.92 5 
74  156.07 3 3.29 23.31 5 
75  123.44 3 5.98 26 5 
76  183.85 3 31.35 51.37 5 
77  146.31 3 48.62 68.64 5 
78  131.57 3 119.8 139.82 5 
79  136.55 3 139.11 159.13 5 
80  131.43 3 54.03 74.05 5 
81  435.12 3 2.53 22.55 5 
82  101.27 3 5.22 25.24 5 
83  426.44 3 4.37 24.39 5 
84  202.55 3 3.32 23.34 5 
85  221.36 3 4.31 24.33 5 
86  131.39 3 6.73 26.75 5 
87  163.82 3 3.91 23.93 5 
88  159.19 3 321.16 341.18 5 
89  175.32 3 2.72 22.74 5 
90  151.38 3 387.8 407.82 5 
91  163.8 3 158.36 178.38 5 
92  234.86 3 363.72 383.74 5 
93  113.78 3 20.18 40.2 5 
94  200.03 3 257.8 277.82 5 
95  149.38 INF 1.92 21.94 INF 
96  66.81 INF 1.66 21.68 INF 
97  136.98 3 433.7 453.72 5 
98  143.39 3 50.47 70.49 5 
99  68.08 INF 1.68 21.7 INF 
100  114.87 3 117.65 137.67 5 
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Appendix C: AMPL codes for the MILP problem developed 

in Section  2.2 

AMPL code for the MILP formulation presented in Section  2.2: VPI6months.txt 
 
set I;   # set of colors 
set J;   # set of final grades 
set Q;   # set of silos 
set V;   #number of loops 
param T; # time 
param P; # amount produced in one period 
param M; # number of slots in SSP 
param N; # number of slots in TSS 
param C; # cost coefficient 1 
param D; # cost coefficient 2 
param B; # duration of a color transition 
param F; # duration of a viscosity transition (always even) 
param dST{j in J,t in N+M+1..T}; 
param dBC{j in J,t in N+M+1..T}; 
param dBB{j in J,t in N+M+1..T}; 
param uST; 
param uBC; 
param uBB; 
param Rmax; 
param R0{J}; 
param Rmin{J}; 
param Smax; 
param Smin; 
param S0{q in Q,j in J}; 
param SS{j in J};  
param Z0; 
param X0{I,1..N+M}; 
param A0{N+M-F+2..N+M}; 
param W0{Q,J}; 
 
var x{I,1..T} binary; 
var y{J,N+M+1..T+(F/2)} binary; 
var a{N+M-F+2..T} binary; 
var z{N+M..T+(F/2)} binary; 
var S{Q,J,N+M..T}>=0;  
var W{Q,J,N+M..T} binary; 
var g{Q,J,N+M+1..T}binary; 
var G{Q,J,N+M+1..T}>=0 ; 
var R{J,N+M..T}>=0; 
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var b{Q,J,N+M+1..T}>=0; 
var f{Q,J,N+M+1..T}>=0; 
var h{Q,J,N+M+1..T}>=0; 
 
#Objective Function 
minimize objective: C*sum{t in N+M+1..T} a[t] + (D/B)*sum{t in N+M+1..T}x[2,t]; 
 
subject to one_color {t in 1..T}: sum{i in I} x[i,t] = 1; 
subject to color_transition1 {t in 1..T-1}: x[1,t] + x[3,t+1] <= 1; 
subject to color_transition2 {t in 1..T-1}: x[3,t] + x[1,t+1] <= 1; 
subject to grade_transition1 {t in N+M+1..T+(F/2)-1}: y[1,t] + y[3,t+1] <= 1; 
subject to grade_transition2 {t in N+M+1..T+(F/2)-1}: y[3,t] + y[1,t+1] <= 1; 
subject to a_within_F {t in N+M-4..T-5}: sum{s in t..t+F-1} a[s] <= 1; 
subject to light_for_a {t in N+M+1..T}: a[t] <= x[1,t-N-M]; 
subject to change_a1 {t in N+M+1-(F/2)..T}: z[t+(F/2)] - z[t+(F/2)-1] <= a[t]; 
subject to change_a2 {t in N+M+1-(F/2)..T}: z[t+(F/2)] - z[t+(F/2)-1] >= - a[t] ; 
subject to change_a3 {t in N+M+1-(F/2)..T}: z[t+(F/2)] + z[t+(F/2)-1] >= a[t]; 
subject to change_a4 {t in N+M+1-(F/2)..T}: z[t+(F/2)] + z[t+(F/2)-1] <= 2-a[t]; 
subject to gray_with_high_z {t in N+M+1..T+(F/2)}: x[2,t-N-M] <= z[t]; 
subject to dark_with_high_z {t in N+M+1..T+(F/2)}: x[3,t-N-M] <= z[t]; 
subject to grade1_combination {t in M+N+1..T+(F/2)}: y[1,t] >= x[1,t-N-M] -z[t]; 
subject to grade2_combination {t in M+N+1..T+(F/2)}: y[2,t] >= z[t] + x[1,t-N-M] -1; 
subject to grade3_combination {t in M+N+1..T+(F/2)}: y[3,t] >= z[t] + x[2,t-N-M] -1; 
subject to grade4_combination {t in M+N+1..T+(F/2)}: y[4,t] >= z[t] + x[3,t-N-M] -1; 
subject to one_grade {t in M+N+1..T+(F/2)}: sum{j in J} y[j,t] = 1; 
subject to pour_in_one {t in N+M+1..T}: sum{q in Q,j in J} g[q,j,t] = 1; 
subject to g_W {q in Q,j in J,t in N+M+1..T}: g[q,j,t] <= W[q,j,t]; 
subject to g_Y {j in J,t in N+M+1..T}: sum{q in Q}g[q,j,t] <= y[j,t]; 
subject to one_grade_in_silo {q in Q,t in N+M+1..T}: sum{j in J} W[q,j,t] <= 1; 
subject to empty_for_change {q in Q,j in J,t in N+M..T-1}: W[q,j,t+1]-W[q,j,t] <= 1-sum{k in 
J}W[q,k,t]; 
subject to silo_max_capacity {q in Q,j in J,t in N+M+1..T}: S[q,j,t] <= Smax*W[q,j,t]; 
subject to silo_min_capacity {q in Q,j in J,t in N+M+1..T}: S[q,j,t] >= Smin*W[q,j,t]; 
subject to unloading_rate {q in Q,j in J,t in N+M+1..T}: G[q,j,t] <= uST*W[q,j,t]; 
subject to continuity {q in Q,j in J,t in N+M+1..T}: S[q,j,t] = S[q,j,t-1] + P*g[q,j,t] - G[q,j,t]; 
subject to safety_stock {j in J}: sum{q in Q} S[q,j,T] >= SS[j]; 
subject to unloading{q in Q, j in J,t in N+M+1..T}: G[q,j,t] = f[q,j,t] + h[q,j,t] + b[q,j,t] ; 
subject to rates {q in Q,j in J,t in N+M+1..T}: (1/uST)*f[q,j,t] + (1/uBC)*h[q,j,t] + (1/uBB)*b[q,j,t] 
<= 1; 
subject to demand_silo_trucks {j in J,t in N+M+1..T}: dST[j,t] = sum{q in Q}f[q,j,t]; 
subject to demand_bulk_containers {j in J,t in N+M+1..T}: dBC[j,t] = sum {q in Q}h[q,j,t]; 
subject to max_sack_rate {t in N+M+1..T}:sum{q in Q,j in J}b[q,j,t] <= uBB; 
subject to update_warehouse {j in J,t in N+M+1..T}: R[j,t] = R[j,t-1] + sum{q in Q}b[q,j,t]-
dBB[j,t]; 
subject to warehouse_capacity {t in N+M+1..T}: sum{j in J} R[j,t] <= Rmax; 
subject to safety_stock_warehouse {j in J}: R[j,T] >= Rmin[j]; 
subject to initial_color {i in I,t in 1..N+M}: x[i,t] = X0[i,t]; 
subject to initial_viscosity: z[N+M] = Z0; 
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subject to initial_a {t in N+M-F+2..N+M}: a[t] = A0[t]; 
subject to initial_silo {q in Q,j in J}: S[q,j,N+M] = S0[q,j]; 
subject to initial_W {q in Q,j in J}: W[q,j,N+M] = W0[q,j]; 
subject to initial_warehouse {j in J}: R[j,N+M] = R0[j]; 
 
Input data: 6MONTHS.txt 
 
set I := 1 2 3; 
set J := 1 2 3 4; 
set Q := 1 2 3 4 5 6 7 8; 
set V := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23; 
 
param T := 54; 
param M := 6; 
param N := 6; 
param P := 33.33; 
param uST := 224; 
param uBC := 69.2; 
param uBB := 40; 
param Smax := 430; 
param Smin := 1; 
param Rmax := 3500; 
param C := 1; 
param D := 1; 
param F := 6; 
param B := 1; 
param Z0 := 1; 
 
param A0 := 
8  0 
9  1 
10  0 
11  0 
12  0; 
 
param X0: 
 1 2 3 4 5 6 7 8 9 10 11 12 := 
1 0 0 0 0 0 0 0 1 1 1 1 1  
2 0 0 0 0 0 0 1 0 0 0 0 0 
3 1 1 1 1 1 1 0 0 0 0 0 0; 
 
param S0: 
  1  2  3  4 := 
1  400 0  0  0 
2  0  0  0  0 
3  400 0  0  0 
4  0  0  0  400 
5  0  0  0  0 
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6  0  0  0  400 
7  0  0  0  350 
8  0   150 0  0; 
 
param SS:= 
1  450 
2  0  
3  0 
4  450; 
 
param R0 := 
1  300 
2  1100 
3  0 
4  500; 
 
param Rmin := 
1  250 
2  880 
3  0 
4   450; 
 
param W0 : 
 1 2 3 4 := 
1 1 0 0 0 
2 0 0 0 0 
3 1 0 0 0 
4 0 0 0 1 
5 0 0 0 0 
6 0 0 0 1 
7 0 0 0 1  
8 0 1 0 0; 
 
#demands of the first week 
param dST: 
  13  14  …  53  54 := 
1  0  0  …  0  0 
2  0  0  …  0  0 
3  0  0  …  0  0 
4  0  25  …  0  0; 
 
param dBC: 
  13  14  …  53  54 := 
1  0  0  …  0  0 
2  0  0  …  0  0 
3  0  0  …  0  0 
4  0  0  …  0  0; 
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param dBB: 
  13  14  …  53  54 := 
1  0  38.5 …  0  0 
2  0  0  …  0  0 
3  0  0  …  0  0 
4  30  30  …  0  0; 
 
#demands of the other weeks 
param dSTa:= 
[1,*,*]: 13  14  …  53  54 := 
1   0  25  …  0  0 
2   0  0  …  0  0 
3   0  0  …  0  0 
4   0  0  …  0  0; 
 
[2,*,*]: 13  14  …  53  54 := 
1   0  0  …  0  0 
2   0  0  …  0  0 
3   0  0  …  0  0 
4   0  0  …  0  0; 
 
 

 
[23,*,*]: 13  14  …  53  54 := 
1   0  0  …  0  0 
2   0  0  …  0  0 
3   0  0  …  0  0 
4   0  0  …  0  0; 
 
param dBBa:=  
[1,*,*]: 13  14  …  53  54 := 
1   0  50  …  0  0 
2   50  50.1 …  0  0 
3   0  0  …  0  0 
4   0  50  …  37.6 0;  
 
[2,*,*]: 13  14  …  53  54 := 
1   0  0  …  0  0 
2   37.4 0  …  0  0 
3   0  0  …  0  0 
4   0  0  …  0  0;   
 
 

 
[23,*,*]: 13  14  …  53  54 := 
1   0  50  …  0  0 
2   0  0  …  0  29.7 
3   0  0  …  0  0 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 15:50:34 EEST - 3.146.37.111



 

114 

4   0  0  …  0  0; 
 
param dSTa:= 
[1,*,*]: 13  14  …  53  54 := 
1   0  0  …  0  0 
2   0  0  …  0  0 
3   0  0  …  0  0 
4   0  0  …  0  0; 
 
[2,*,*]: 13  14  …  53  54 := 
1   0  0  …  0  0 
2   0  0  …  0  0 
3   0  0  …  0  0 
4   0  23  …  0  0; 
 
 

  
[23,*,*]: 13  14  …  53  54 := 
1   0  0  …  0  0 
2   0  0  …  0  0 
3   0  0  …  0  0 
4   0  0  …  0  0; 
 
AMPL code for solving repeatedly the MILP presented in Section  2.2, where in each 
repetition (week) the initial state is set equal to the final state of the previous repetition (week) 
 
model VPI6months.txt; 
data 6MONTHS.txt; 
solve; 
 
display {j in J, t in N+M+1..T+3} y[j,t] > test1.txt; 
display {i in I, t in 1..T} x[i,t] > test2.txt; 
display {t in N+M-4..T} a[t] > test3.txt; 
display {t in N+M..T+3} z[t] > test4.txt; 
display {q in Q, j in J} S[q,j,T] > test5.txt; 
display {q in Q, j in J} W[q,j,T] > test6.txt; 
display {j in J} R[j,T] > test7.txt; 
display {q in Q, j in J,t in N+M+1..T} S[q,j,t] > test8.txt; 
display {j in J,t in N+M+1..T} R[j,t] > test9.txt; 
 
for {v in 1..23} { 
let {q in Q, j in J} S0[q,j]:=S[q,j,T]; 
let {q in Q, j in J} W0[q,j]:=W[q,j,T]; 
let {j in J} R0[j]:=R[j,T]; 
let {i in I, tt in 1..12, t in T-11..T} X0[i,tt]:=x[i,t]; 
let  Z0:=z[T]; 
let {t in T-4..T, tt in 8..12} A0[tt]:=a[t]; 
let {j in J, t in N+M+1..T} dST[j,t]:=dSTa[v,j,t]; 
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let {j in J, t in N+M+1..T} dBC[j,t]:=dBCa[v,j,t]; 
let {j in J, t in N+M+1..T} dBB[j,t]:=dBBa[v,j,t]; 
 
solve; 
 
display {j in J, t in N+M+1..T+3} y[j,t] > test1.txt; 
display {i in I, t in 1..T} x[i,t] > test2.txt; 
display {t in N+M-4..T} a[t] > test3.txt; 
display {t in N+M..T+3} z[t] > test4.txt; 
display {q in Q, j in J} S[q,j,T] > test5.txt; 
display {q in Q, j in J}  W[q,j,T] > test6.txt; 
display {j in J} R[j,T] > test7.txt; 
display {q in Q, j in J,t in N+M+1..T} S[q,j,t] > test8.txt; 
display {j in J,t in N+M+1..T} R[j,t] > test9.txt; 
} 
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Appendix D: Matlab codes for implementing the exact and 

heuristic solution procedures developed in Sections  3.2 and  3.3 

In this appendix, we present the programming codes (in Matlab) for implementing the exact and 

heuristic solution procedures for problems with 4 and 5 grades. We also give the codes that we used 

to obtain the 2D graphs showing the optimal changeover presented in Section  2.3. 

 

Codes for 4-grade problems 
 
 
Program DP_4D_EXACT 
Program that solves the SELSP problem for 4 grades using the exact solution procedure 

Input 
N = number of grades 
X = FGI storage capacity 
PMAX = production rate 
CC = changeover cost 
CS = spillover cost 
LS(1) = lost sales cost for grade 1 
LS(2) = lost sales cost for grade 2 
e = small positive number 
DD = table of demand values for grades 1-4 
PP = table of probabilities of demands for grades 1-4 
DIM = dimension of tables DD and PP 
n1 = special setup state 
BIG = vey large number 
X11 = special inventory level of grade 1 
X21 = special inventory level of grade 2 
X31 = special inventory level of grade 3 
X41 = special inventory level of grade 4 
 
Output 
U(n,x1,x2,x3,x4) = optimal changeover policy for each setup state n and inventory level vector (x1, 

x2, x3, x4) 
V(n,x1,x2,x3,x4) = optimal value function for each setup state n and inventory level vector (x1, x2, 

x3, x4) 
W(n1,X11,X21,X31,X41) = optimal expected average cost 
count = number of iterations (kc) of the successive approximation method until convergence 
tt = CPU time until convergence 
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Code 
for n=1:4 

for x1=0:X 
for x2=0:X-x1 

for x3=0:X-x1-x2 
for x4=0:X-x1-x2-x3 

V(n,x1+1,x2+1,x3+1,x4+1)=0; 
end 

end 
end 

end 
end 
%MAIN LOOP 
cont=1; 
count=0; 
tic 
while cont==1 

count=count+1 
for n=1:4 

for x1=0:X 
for x2=0:X-x1 

for x3=0:X-x1-x2 
for x4=0:X-x1-x2-x3 

C=BIG; 
for m=max(1,n-1):min(n+1,N) 

if m~=n 
C1=CC; 

else 
C1=0; 

end 
PROD=PMAX; 
if x1+x2+x3+x4+PMAX>X 

PROD=X-x1-x2-x3-x4; 
C1=C1+CS*(PMAX-PROD); 

end 
xx=[x1,x2,x3,x4]; 
for d1=1:DIM(1) 

for d2=1:DIM(2) 
for d3=1:DIM(3) 

for d4=1:DIM(4) 
dd(1)=DD(1,d1); 
dd(2)=DD(2,d2); 
dd(3)=DD(3,d3); 
dd(4)=DD(4,d4); 
for j=1:4 

if j==n 
p=PROD; 
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else 
p=0; 

end 
if xx(j)+p>dd(j) 

y(j)=xx(j)+p-dd(j); 
else 

y(j)=0; 
C1=C1+LS*(dd(j)-xx(j)-
p)*PP(1,d1)*PP(2,d2)*PP(3,d3)*PP(4,d4); 

end 
end 
C1=C1+V(m,y(1)+1,y(2)+1,y(3)+1,y(4)+1)*PP(1,d1)*PP(2,d2)*P

P(3,d3)*PP(4,d4); 
end 

end 
end 

end 
if C1<C 

C=C1; 
W(n,x1+1,x2+1,x3+1,x4+1)=C; 
U(n,x1+1,x2+1,x3+1,x4+1)=m; 

end 
end 

end 
end 

end 
end 

end 
VMIN=BIG; 
VMAX=-BIG; 
for n=1:4 

for x1=1:X+1 
for x2=1:X+2-x1 

for x3=1:X+3-x1-x2 
for x4=1:X+4-x1-x2-x3 

temp=V(n,x1,x2,x3,x4); 
V(n,x1,x2,x3,x4)=W(n,x1,x2,x3,x4)-W(n1,X11,X21,X31,X41); 
VDIFF=V(n,x1,x2,x3,x4)-temp; 
if VDIFF<VMIN 

VMIN=VDIFF; 
end 
if VDIFF>VMAX 

VMAX=VDIFF; 
end 

end 
end 

end 
end 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 15:50:34 EEST - 3.146.37.111



 

120 

end  
if abs(VMAX-VMIN)>e*W(n1,X11,X21,X31,X41) 

cont=1; 
else 

cont=0; 
end 

end 
tt=toc 
 
 
Function GEN_U_SUB 
Function that finds the optimal changeover policies of the 3-grade sub-problems 
 
Input 
N, X, PMAX, CC, CS, LS, e, DD, PP, DIM 
 
Output 
UH(i, n, x1, x2, x3) = heuristic changeover policy for each setup state n and inventory level vector 

(x1, x2, x3), for sub-problem i 
countH = number of iterations (kc) of the successive approximation method until convergence for 

sub-problem i 
ttH(i) = CPU times until convergence for sub-problem i 
 
Code 
for i=2:N-1 

[DEML,PL,DL]=CONVOLVENdem(i-1,DD(1:i-1,:),PP(1:i-1,:),DIM(1:i-1)); 
DEMM= DD(i,:); 
PM= PP(i,:); 
DM=DIM(i); 
[DEMR,PR,DR]=CONVOLVENdem(N-i,DD(i+1:N,:),PP(i+1:N,:),DIM(i+1:N)); 
[U,W,count,tt]=solve3dem(X,PMAX,DEML,DEMM,DEMR,PL,PM,PR,DL,DM,DR,CC,CS,LS,
e); 
UH(i,:,:,:,:)=U; 
countH(i) = count; 
ttH(i)= tt; 

end 
 
 
Function CONVOLVENdem 
Function that finds the convolution of demands of N products 
 
Input 
NUM = number of products (N) 
DDSUB = table of demand values for the N products 
PPSUB = table of probabilities of the demand values of the N products 
DIMSUB = dimension of the table of demand values 
 
Output 
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DOLD = table of the summation of the demand values of the N products 
POLD  = table of probabilities of the summation of the demand values of the N products 
DIMOLD = dimension of DOLD 
 
Code 
function [DOLD,POLD,DIMOLD]=CONVOLVENdem(NUM,DDSUB,PPSUB,DIMSUB)  
if NUM==1 

DOLD=DDSUB; 
POLD=PPSUB; 
DIMOLD=DIMSUB; 

else 
DOLD=DDSUB(1,:); 
POLD=PPSUB(1,:); 
DIMOLD=DIMSUB(1); 
for i=2:NUM 

[DNEW,PNEW,DIMNEW]=CONVOLVE2dem(DOLD,POLD,DIMOLD,DDSUB(i,:),PPSU
B(i,:),DIMSUB(i)); 
DOLD=DNEW; 
POLD=PNEW; 
DIMOLD=DIMNEW; 

end 
end 
 
 
Function CONVOLVE2dem 
Function that finds the convolution of demands of 2 products 
 
Input 
D1 = table of demand values of 1st product 
P1 = table of probabilities of demand values of 1st product 
DIM1 = dimension of table of demand values of 1st product 
D2 = table of demand values of 2nd product 
P2 = table of probabilities of demand values of 2nd product 
DIM2 = dimension of table of demand values of 2nd product 
 
Output 
DSUM = table of the summation of the demand values of the 2 products 
PSUM = table of probabilities of the summation of the demand values of the 2 products 
DIMSUM = dimension of DSUM 
 
Code 
function [DSUM,PSUM,DIMSUM]=CONVOLVE2dem(D1,P1,DIM1,D2,P2,DIM2) 
count=1; 
for i=1:DIM1 

for j=1:DIM2 
Dtot(count) = D1(i) + D2(j); 
Ptot(count) = P1(i)*P2(j); 
count = count + 1; 
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end 
end 
[Dfin,i1]=sort(Dtot); 
Pfin=Ptot(i1); 
DSUM(1) = Dfin(1); 
PSUM(1) = Pfin(1); 
DIMSUM = 1; 
for i=2:DIM1*DIM2 

if Dfin(i) ~= DSUM(DIMSUM) 
DIMSUM = DIMSUM + 1; 
DSUM(DIMSUM) = Dfin(i); 
PSUM(DIMSUM) = Pfin(i); 

else 
PSUM(DIMSUM) = PSUM(DIMSUM) + Pfin(i); 

end 
end 
 
 
Function solve3dem 
Function that finds the optimal changeover policy for a 3-grade problem 
 
Input 
X, PMAX, DEM1, DEM2, DEM3, P1, P2, P3, D1, D2, D3, CC, CS, LS, e, BIG, n1, X11, X21, 
X31, N 
 
Output 
U(n,x1,x2,x3,x4) = optimal changeover policy for each setup state n and inventory level vector (x1, 

x2, x3) 
V(n,x1,x2,x3,x4) = optimal value function for each setup state n and inventory level vector (x1, x2, 

x3, x4) 
W(n1,X11,X21,X31) = optimal expected average cost 
count = number of iterations (kc) of the successive approximation method until convergence 
tt = CPU time until convergence 
 
Code 
Function [U,W,count1,tt]=solve3dem(X,PMAX,DEM1,DEM2,DEM3,P1,P2,P3,D1,D2,D3,CC,CS, 
LS,e) 
 
BIG=100000; 
n1=1; 
X11=1; 
X21=1; 
X31=1; 
N = 3; 
for n=1:3 

for x1=0:X 
for x2=0:X-x1 

for x3=0:X-x1-x2 
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V(n,x1+1,x2+1,x3+1)=0; 
end 

end 
end 

end 
  
%MAIN LOOP 
cont=1; 
count1=0; 
tic 
while cont==1 

% while count1<=5 
count1=count1+1 
for n=1:3 

for x1=0:X 
for x2=0:X-x1 

for x3=0:X-x1-x2 
C=BIG; 
for m=max(1,n-1):min(n+1,N) 

if m~=n 
C1=CC; 

else 
C1=0; 

end 
PROD=PMAX; 
if x1+x2+x3+PMAX>X 

PROD=X-x1-x2-x3; 
C1=C1+CS*(PMAX-PROD); 

end 
xx(1)=x1; 
xx(2)=x2; 
xx(3)=x3; 
for d1=0:D1-1 

for d2=0:D2-1 
for d3=0:D3-1 

dd(1)=DEM1(d1+1); 
dd(2)=DEM2(d2+1); 
dd(3)=DEM3(d3+1); 
for j=1:3 

if j==n 
p=PROD; 

else 
p=0; 

end 
if xx(j)+p>dd(j) 

y(j)=xx(j)+p-dd(j); 
else 

y(j)=0; 
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C1=C1+LS*(dd(j)-xx(j)-p)*P1(d1+1)*P2(d2+1)*P3(d3+1); 
end 

end 
C1=C1+V(m,y(1)+1,y(2)+1,y(3)+1)*P1(d1+1)*P2(d2+1)*P3(d3+1); 

end 
end 

end 
if C1<C 
C=C1; 
W(n,x1+1,x2+1,x3+1)=C; 
U(n,x1+1,x2+1,x3+1)=m; 
end 

end 
end 

end 
end 

end 
VMIN=BIG; 
VMAX=-BIG; 
for n=1:3 

for x1=1:X+1 
for x2=1:X+2-x1 

for x3=1:X+3-x1-x2 
Y(n,x1,x2,x3)=V(n,x1,x2,x3); 
V(n,x1,x2,x3)=W(n,x1,x2,x3)-W(n1,X11,X21,X31); 
VDIFF=V(n,x1,x2,x3)-Y(n,x1,x2,x3); 
if VDIFF<VMIN 

VMIN=VDIFF; 
end 
if VDIFF>VMAX 

VMAX=VDIFF; 
end 

end 
end 

end 
end 
if abs(VMAX-VMIN)>e*W(n1,X11,X21,X31) 

cont=1; 
else 

cont=0; 
end 

end 
toc 
tt=toc; 
 
 
Program DP_4D_HEUR: 
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Program that solves the 4-grade problem using the heuristic solution procedure for different values 
of the coefficient α used in equation (3.5) 
 
Input 
aa = coefficient α used in equation (3.5) 
astep = step by which coefficient α is incremented 
counta = number of different values of coefficient α tested 
ED = expected demand vector (equal to sum(DD.*PP)') 
 
Output 
bbb = minimum excepted average cost equal to W(n’, xi’) 
W(n1,X11,X21,X31,X41) = expected average cost obtained by the heuristic solution procedure 
count = number of iterations (kc) of the successive approximation method until convergence 
tt = CPU time until convergence 
 
Code 
while aa <= 1 

counta=counta+1; 
[UFINAL]=GEN_U_HEUR_4D(UH,N,X,aa,ED); 
[aaa,bbb,ccc,W,count,tt]=DP_4D_EXACT_NoOPT(X,PMAX,UFINAL,DD,PP,DIM,CC,CS,LS,

e); 
ResultsTBL(counta,:)=[bbb,count,tt]; 
aa = aa + astep; 

end 
 
 
Function GEN_U_HEUR_4D 
Function that constructs the heuristic changeover policy of the 4-grade problem using parts of the 
optimal changeover policies of the 3-grade sub-problems 
 
Input 
UH, N, X, aa, ED 
 
Output 
UFINAL = heuristic changeover policy of original 4-grade problem 
 
Code 
function [UFINAL]=GEN_U_HEUR_4D(UH, N, X, aa, ED) 
  
for x1=0:X 

for x2=0:X-x1 
for x3=0:X-x1-x2 

for x4=0:X-x1-x2-x3 
xvec=[x1,x2,x3,x4]; 
UFINAL(1,x1+1,x2+1,x3+1,x4+1)=UH(2,1,x1+1,x2+1,GEN_X_SUB(xvec(3:4),ED(3:

4),aa)+1); 
UFINAL(2,x1+1,x2+1,x3+1,x4+1)=UH(2,2,x1+1,x2+1,GEN_X_SUB(xvec(3:4),ED(3:

4),aa)+1); 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 15:50:34 EEST - 3.146.37.111



 

126 

UFINAL(3,x1+1,x2+1,x3+1,x4+1)=UH(3,2,GEN_X_SUB(xvec(1:2),ED(1:2),aa)+1,x3
+1,x4+1)+1; 

UFINAL(4,x1+1,x2+1,x3+1,x4+1)=UH(3,3,GEN_X_SUB(xvec(1:2),ED(1:2),aa)+1,x3
+1,x4+1)+1; 

end 
end 

end 
end 
 
 
Function GEN_X_SUB 
Function that calculates the inventory level of the aggregate product according to equation (3.5) 
 
Input 
x, ED, aa 
 
Output 
xnew = inventory level of the aggregate product 
 
Code 
function [xnew]=GEN_X_SUB(x,ED,aa) 
LS=sum(max(ED-x,0)); 
xnew=round((LS==0)*sum(x)+(LS>0)*(aa*(sum(ED)-LS)+(1-aa)*sum(x))); 
 
 
Function DP_4D_EXACT_NoOPT 
Function that evaluates the heuristic changeover policy of the 4-grade problem 
 
Input 
X, PMAX, U, DD, PP, CC, CS, LS, e, BIG, n1, X11, X21, X31, X41,DIM 
 
Output 
aaa = (VMAX-VMIN) 
bbb = W(n1,X11,X21,X31,X41) 
ccc = e* W(n1,X11,X21,X31,X41) 
W(n,x1,x2,x3,x4) = optimal value function mapping for each setup state n and inventory level 

vector (x1, x2, x3, x4), given by equation (3.7) 
count = number of iterations (kc) of the successive approximation method until convergence 
tt = CPU time until convergence 
 
Code 
function 
[aaa,bbb,ccc,W,count,tt]=DP_4D_EXACT_NoOPT(X,PMAX,U,DD,PP,DIM,CC,CS,LS,e); 
for n=1:4 

for x1=0:X 
for x2=0:X-x1 

for x3=0:X-x1-x2 
for x4=0:X-x1-x2-x3 
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V(n,x1+1,x2+1,x3+1,x4+1)=0; 
end 

end 
end 

end 
end 
  
%MAIN LOOP 
cont=1; 
count=0; 
tic 
while cont==1 

% while count==0 
count=count+1 
for n=1:4 

for x1=0:X 
for x2=0:X-x1 

for x3=0:X-x1-x2 
for x4=0:X-x1-x2-x3 

m=U(n,x1+1,x2+1,x3+1,x4+1); 
if m~=n 

C1=CC; 
else 

C1=0; 
end 
PROD=PMAX; 
if x1+x2+x3+x4+PMAX>X 

PROD=X-x1-x2-x3-x4; 
C1=C1+CS*(PMAX-PROD); 

end 
xx=[x1,x2,x3,x4]; 
for d1=1:DIM(1) 

for d2=1:DIM(2) 
for d3=1:DIM(3) 

for d4=1:DIM(4) 
dd(1)=DD(1,d1); 
dd(2)=DD(2,d2); 
dd(3)=DD(3,d3); 
dd(4)=DD(4,d4); 
for j=1:4 

if j==n 
p=PROD; 

else 
p=0; 

end 
if xx(j)+p>dd(j) 

y(j)=xx(j)+p-dd(j); 
else 
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y(j)=0; 
C1=C1+LS*(dd(j)-xx(j)-p)*PP(1,d1)*PP(2,d2)*PP(3,d3)* 

PP(4,d4); 
end 

end 
C1=C1+V(m,y(1)+1,y(2)+1,y(3)+1,y(4)+1)*PP(1,d1)*PP(2,d2)*PP(3,

d3)*PP(4,d4); 
end 

end 
end 

end 
W(n,x1+1,x2+1,x3+1,x4+1)=C1; 

end 
end 

end 
end 

end 
VMIN=BIG; 
VMAX=-BIG; 
for n=1:4 

for x1=1:X+1 
for x2=1:X+2-x1 

for x3=1:X+3-x1-x2 
for x4=1:X+4-x1-x2-x3 

temp=V(n,x1,x2,x3,x4); 
V(n,x1,x2,x3,x4)=W(n,x1,x2,x3,x4)-W(n1,X11,X21,X31,X41); 
VDIFF=V(n,x1,x2,x3,x4)-temp; 
if VDIFF<VMIN 

VMIN=VDIFF; 
end 
if VDIFF>VMAX 

VMAX=VDIFF; 
end 

end 
end 

end 
end 

end 
if abs(VMAX-VMIN)>e*W(n1,X11,X21,X31,X41) 
cont=1; 
else 
cont=0; 
end 

end 
tt=toc 
 
 
Program SIM_4D_EXACT 
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Program that evaluates the optimal changeover policy of the 4-grade problem using simulation 
 
Input 
Ν, X, PMAX, CC, CS, LS, e, DD, PP, DIM,U 
 
Output 
CTOT = total cost 
tsim = simulation time 
 
Code 
load('DP_4D_1_EXACT.mat','U'); 
load('DATA_4D_1.mat'); 
R = 60; 
T = 100000; 
Ccum=0; 
Csqcum=0; 
tcum=0; 
CCI=0; 
for i=1:R 

[CTOT,tsim]=SIM_4D(X,PMAX,U,DD,PP,DIM,CC,CS,LS,N,T); 
CTOTMAT(i)=CTOT; 
TSIMMAT(i)=tsim; 
Ccum=Ccum+CTOT; 
Csqcum = Csqcum + CTOT^2; 
tcum=tcum+tsim; 

end 
 
 
Program SIM_4D_HEUR 
Program that evaluates the heuristic changeover policy of the 4-grade problem for different values 
of the coefficient α used in equation (3.5), using simulation 
 
Input 
X, PMAX, UFINAL, DD, PP, DIM, CC, CS, LS, N, astep, aa, counta, ED 
T = total number of counts in simulation 
R = demand width 
U_SUB = sub-problem policies 
 
Output 
Caver = average total cost 
CConfInter = confidence interval of average total cost 
taver = average total CPU time until a solution is reached through simulation 
 
Code 
while aa <=1 

counta=counta+1; 
[UFINAL]=GEN_U_HEUR_4D(UH,N,X,aa,ED); 
Ccum=0; 
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Csqcum=0; 
tcum=0; 
CCI=0; 
for i=1:R 

[CTOT,tsim]=SIM_4D(X,PMAX,UFINAL,DD,PP,DIM,CC,CS,LS,N,T); 
CTOTMAT(counta,i)=CTOT; 
TSIMMAT(counta,i)=tsim; 
Ccum=Ccum+CTOT; 
Csqcum = Csqcum + CTOT^2; 
tcum=tcum+tsim; 

end 
Caver = Ccum/R 
CConfInter = 2*sqrt((Csqcum - R*Caver^2)/(R*(R-1))); 
taver = tcum/R; 
ResultsTBL(counta,:)=[aa,Caver,CConfInter,taver]; 
aa = aa + astep; 

end 
 
 
Function SIM_4D 
Function that performs a single simulation run of the 4-grades problem for a given changeover 
policy U 
 
Input 
X, PMAX, U, DD, PP, DIM, CC, CS, LS, N, T 
 
Output 
CTOT  
tsim 
 
Code 
function [CTOT,tsim]=SIM_4D(X,PMAX,U,DD,PP,DIM,CC,CS,LS,N,T); 
CP = [zeros(N,1) cumsum(PP,2)]; 
C1 = 0; 
C2 = 0; 
CC3(1:N) = 0; 
CTOT = 0; 
% Initial state 
n = 2; 
x(1:N) = 2; 
A = [n x]; 
tic 
for t=1:T 

m = U(n,x(1)+1,x(2)+1,x(3)+1,x(4)+1); 
C1 = C1 + CC*(m~=n); 
PROD = min(PMAX, X - sum(x)); 
C2 = C2 + CS*(PMAX - PROD); 
TT=sum(bsxfun(@gt,rand(N,1),CP),2); 
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for i=1:N 
D(i)=DD(i,TT(i)); 

end 
y = x + PROD*([1:N]==n) - D; 
CC3 = CC3 - LS*bsxfun(@times,y<0,y); 
x = bsxfun(@times,y > 0, y); 
n = m; 

end 
CTOT = (C1 + C2 + sum(CC3))/t; 
tsim=toc; 
 
 
Codes for 5-grade problems 
 
All the codes for solving 5-grade problems are similar to those for solving the 4-grade problem, and 
are therefore omitted. The only code, which slighty differes is the following: 
 
 
Function GEN_U_HEUR_5D 
Function that constructs the heuristic changeover policy of the 5-grade problem using parts of the 
optimal changeover policies of the 3-grade sub-problems 
 
Input 
UH, N, X , aa , ED  
 
Output 
UFINAL 
 
Code 
function [UFINAL]=GEN_U_HEUR_5D(UH, N, X, aa, ED) 
for x1=0:X 

for x2=0:X-x1 
for x3=0:X-x1-x2 

for x4=0:X-x1-x2-x3 
for x5=0:X-x1-x2-x3-x4 

xvec=[x1,x2,x3,x4,x5]; 
UFINAL(1,x1+1,x2+1,x3+1,x4+1,x5+1)=UH(2,1,x1+1,x2+1,GEN_X_SUB(xvec(3:

5),ED(3:5),aa)+1); 
UFINAL(2,x1+1,x2+1,x3+1,x4+1,x5+1)=UH(2,2,x1+1,x2+1,GEN_X_SUB(xvec(3:

5),ED(3:5),aa)+1); 
UFINAL(3,x1+1,x2+1,x3+1,x4+1,x5+1)=UH(3,2,GEN_X_SUB(xvec(1:2),ED(1:2),

aa)+1,x3+1,GEN_X_SUB(xvec(4:5),ED(4:5),aa)+1)+1; 
UFINAL(4,x1+1,x2+1,x3+1,x4+1,x5+1)=UH(4,2,GEN_X_SUB(xvec(1:3),ED(1:3),

aa)+1,x4+1,x5+1)+5-3; 
UFINAL(5,x1+1,x2+1,x3+1,x4+1,x5+1)=UH(4,3,GEN_X_SUB(xvec(1:3),ED(1:3),

aa)+1,x4+1,x5+1)+5-3; 
end 

end 
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end 
end 

end 
 
 
Code for drawing the optimal changeover policy graphs 
 
 
Program GRAPHK 
Program that draws in 2D the optimal changeover policy of a 3-grade problem for a given value k 
of the inventory level of grade 3 
 
Input 
U=changeover policy 
 
Output 
Graphs 
 
Code 
k=input('give value for k, k=') 
for i=1:X-k+2 

for j=1:X-k+3-i 
tst1(j,i)=U(1,i,j,k+1); 
tst2(j,i)=U(2,i,j,k+1); 
tst3(j,i)=U(3,i,j,k+1);     
for ia=1:3 

for ja=1:3 
for ka=1:3 

if tst1(j,i)==ia & tst2(j,i)==ja & tst3(j,i)==ka 
tst4(j,i)=ia*9+ja*3+ka-12; 

end 
end 

end 
end 

end 
end 
                            
figure(1);hold on; 
title('graphU (n=1)') 
xlabel('X_1') 
ylabel('X_2') 
surf(tst1) 
 
figure(2);hold on; 
title('graphU (n=2)') 
xlabel('X_1') 
ylabel('X_2') 
surf(tst2) 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 15:50:34 EEST - 3.146.37.111



 

133 

 
figure(3);hold on; 
title('graphU (n=3)') 
xlabel('X_1') 
ylabel('X_2') 
surf(tst3) 
 
figure(4);hold on; 
title('graphU') 
xlabel('X_1') 
ylabel('X_2') 
surf(tst4) 
 
Code for finding optimal safety stocks 
 
 
Program optimum _x1_x2 
Program that finds the optimal stock levels to be used in the procedure outlined in Section  2.3.1. 
 
Input 
U , Χ 
 
Output 
Optimal stock levels of x1 and x2 that minimizes the differential cost V(n, xi) 
 
Code 
for n=1:2 

VMIN=100000; 
for x1=0:X 

for x2=0:X-x1 
if V(n,x1+1,x2+1)<VMIN 

VMIN=V(n,x1+1,x2+1); 
K(n,:,:,:)=[n,VMIN,x1+1 x2+1]; 

end 
end 

end 
end 
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Appendix E: Results of the heuristic policy evaluated in 

Section  3.4.3 for different values of parameter α 

Table A-3. Complete set of results of the heuristic policy evaluated using the value iteration method 

for the 4-grade example presented in Section  3.4.3 

Case 
Demand
pattern 

CPU 
(sec) a kc Jh(a) 

44308 0 70 1.3891
42126 0.1 69 1.3751
25188 0.2 68 1.3867
31836 0.3 60 1.3642
30887 0.4 57 1.3171
29465 0.5 56 1.2904
19948 0.6 55 1.2566

1 B,D,D,B

69925 0.7 130 1.2442
35192 0 146 1.2367
31127 0.1 156 1.2305
33289 0.2 166 1.2285
34647 0.3 172 1.2269
34960 0.4 175 1.2263
35096 0.5 175 1.2253
34571 0.6 173 1.2267

2 D,D,B,B

33754 0.7 169 1.2271
40549 0 203 1.2312
71143 0.1 355 1.2328
76778 0.2 215 1.3262
126720 0.3 211 1.331
120180 0.4 206 1.3291
74241 0.5 202 1.3314
103620 0.6 195 1.3376

3 D,B,D,B

67907 0.7 191 1.3388
60305 0 115 1.3141
41770 0.1 118 1.3139
88204 0.2 118 1.3142
41296 0.3 117 1.3156
61512 0.4 117 1.3159
69141 0.5 116 1.3164
71163 0.6 115 1.3168

4 D,B,B,D

40356 0.7 115 1.3172
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Table A-4. Complete set of results of the heuristic policy evaluated using simulation for the 4-grade 

example presented in Section  3.4.3 

Case 
Demand
pattern 

CPU 
(sec) a Jh(a) (95% c.i.)

12.617 0 1.3359±0.0014
12.593 0.1 1.3206±0.0019
12.788 0.2 1.3272±0.0019
12.639 0.3 1.3253±0.0021
12.797 0.4 1.3303±0.0017
12.835 0.5 1.3321±0.0017
13.096 0.6 1.3367±0.0016
12.832 0.7 1.3384±0.0021
12.632 0.8 1.3385±0.0018
12.582 0.9 1.3421±0.0016

1 B,D,D,B

12.443 1 1.3416±0.0021
11.182 0 1.3140±0.0021
11.117 0.1 1.3135±0.0018
11.047 0.2 1.3144±0.0013
11.031 0.3 1.3157±0.0016
11.033 0.4 1.3159±0.0020
11.031 0.5 1.3170±0.0017
11.030 0.6 1.3172±0.0018
11.026 0.7 1.3179±0.0018
11.032 0.8 1.3183±0.0020
11.038 0.9 1.3174±0.0017

2 D,D,B,B

11.035 1 1.3181±0.0021
6.475 0 1.3898±0.0022
6.482 0.1 1.3761±0.0021
6.484 0.2 1.3867±0.0024
6.547 0.3 1.3599±0.0022
6.475 0.4 1.3178±0.0014
6.503 0.5 1.2894±0.0021
6.529 0.6 1.2564±0.0015
6.484 0.7 1.2445±0.0019
6.476 0.8 1.2719±0.0153
6.489 0.9 2.7741±0.5626

3 D,B,D,B

6.483 1 2.8880±0.5244
8.6171 0 1.2356±0.0011
8.5913 0.1 1.2308±0.0010
8.6226 0.2 1.2288±0.0011
8.5926 0.3 1.2265±0.0011
8.4072 0.4 1.2263±0.0010

4 D,B,B,D

8.3407 0.5 1.2253±0.0011
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8.3839 0.6 1.2276±0.0010
8.3947 0.7 1.2268±0.0010
8.3795 0.8 1.2305±0.0010
8.3666 0.9 1.2328±0.0009
8.3711 1 1.3153±0.0296

 

Table A-5. Complete set of results of the heuristic policy evaluated using simulation for the 5-grade 

example presented in Section  3.4.3 

Case 
Demand 
pattern 

CPU 
(sec) a Jh(a) (95% c.i.) 

3.8711 0 3.1001±0.0016
3.8590 0.1 3.0355±0.0016
3.8558 0.2 3.0800±0.0020
3.8533 0.3 3.1530±0.0020
3.8600 0.4 3.2087±0.0025
3.8538 0.5 3.3301±0.0025
3.8432 0.6 3.6575±0.0029
3.8422 0.7 5.4469±0.0036
3.8425 0.8 5.4512±0.0033
3.8420 0.9 5.4227±0.0034

1 A,C,D,C,A

3.8428 1 5.4595±0.0031
3.8840 0 3.4926±0.0017
3.8500 0.1 3.4512±0.0015
3.8622 0.2 3.4644±0.0020
3.8242 0.3 3.4641±0.0018
3.8852 0.4 3.4578±0.0016
3.8335 0.5 3.4852±0.0019
3.8244 0.6 3.5318±0.0030
4.1222 0.7 3.8665±0.0128
4.0414 0.8 5.6717±0.0291
3.8489 0.9 8.2742±0.0027

2 D,C,C,A,A

3.8103 1 8.2735±0.0029
3.6524 0 3.8759±0.0020
3.1777 0.1 3.9863±0.0018
2.7754 0.2 4.0763±0.0028
2.2716 0.3 4.2347±0.0027
2.2910 0.4 4.3579±0.0031
2.2859 0.5 4.5680±0.0045
2.3008 0.6 4.8012±0.0049
2.2945 0.7 5.2577±0.0058
2.2896 0.8 7.3457±0.0055
2.2916 0.9 10.3628±0.0030

3 D,C,A,A,C

2.2757 1 10.3631±0.0026
4 D,A,C,A,C 3.7605 0 3.9348±0.0020
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3.7307 0.1 3.9473±0.0023
3.7384 0.2 3.9805±0.0024
3.7392 0.3 4.0324±0.0022
3.7412 0.4 4.1035±0.0031
3.7335 0.5 4.2739±0.0046
3.7333 0.6 6.2144±0.0294
3.7319 0.7 8.2519±0.0041
3.7332 0.8 10.0704±0.0028
3.7339 0.9 10.3622±0.0023
3.7337 1 10.3614±0.0027
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