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Evyoprotieg

Koatapyds, 8élo va guyapiomom tov emiAémovto g ddakTopikng datppng pov, Kabnynm «.
I'eopyro Avumepdmovro, yio v moAvTiun kKabodnynon kot enipreyn g dwatppng pov. Emiong,
ELYOPIOTA TO LIWOAOWmA UEAN NG €EETAOTIKNG emtponng TG owTping pov, Kabnyntég k.
ABavéolo Zniookomovro, T'ewpyro Toayoapd, Anuntpro IMoviedn, 'eopylo Kolavidn, Miyomi
F'ewpyddn kot Ayudio Kovodin, yuo tv TPOGEKTIKY avAyvmdoT TNG £PYOCIOG LOV KOl Yo TIG
ypNoes vodeilels tovg. Idaitepeg evyapiotiec opeidw otovg Kabdnyntég k. Kolavion kot k.
[Tovtedn yuo v onuoavtikn kafodnynon tovg otig 000 Pacikég evotnteg ™G dtpPng Hov mov
nmapovoralovror ota Kepdioo 2 ko 3, avtiotoyyo. Akouo, guyoptotd Oeppd dAovg Toug @pilovg
Kol cuvepydteg Lov kot wwitepa Tov Evotpdtio ABavaciov mov pe foridncav kot pe vrootpiéov
KaTd TV dtdpKeLn TNG ekTdvnong g oatpPng pov. Ildve and Ola, gipot E0YVOU®Y GTOVS YOVEIS
pov, Anuntpn kot Apiotéa Xotlnkovotoviivov kot oty adeper] pov Mapia, yio tnv oAdyLYN
VooTNPIEY TOVG LA TO, XPOVIOL TOV GTTOVO®V Hov. Tovg aplepdve ™ ddaKTOpIKn dTtpPn Hov.

H exmovnon ¢ mapovoag dtatpiPng vrootnpiydnke otkovoukd amd to €pyo «03EA913 —
Beltiotonoinon mpoypapplaticpod mopaym®yng Kot Olvoung mpoidviov oe ynuikn Propnyovia
napaymyns pntivng PET» mov cuyypnuatodotinke amd mopovg tov dnpociov (85%) kat dimtikod
topéa (15%) oto mhaicio g Ilpdéng TTENEA 2003 tov Métpov 8.3 tov Emiyeipnoiokod
[Tpoypaupatog «Avtayoviotikomrta» tov 7 Kowotwkod ITAaiciov XmpiEng. To 75% g
dnuoctog damdvng tponibe amd v Evporaikny ‘Eveon (Evporoikdo Kowotikd Tapeio) kot to
25% omd to EAMAnvikd Anpocio (Ymouvpysio Avamtoéng: Tevikiy Ipoppoteio ‘Epgvvog xot
Teyvoroyiag). H wbimtikn damdvn mponkbe €& olokinpov amd v Prounyovia Artenius Hellas,
S.A., PET Industry, uéhovg tov opilov Bropunyovidv cvokevaciov PET, La Seda de Barcelona.
OéLo vo evyapiotiom Tov Atevbuvn tov gpyoctaciov g Artenius Hellas, k. Anuntpro ®idinmov,
KOl TOVG GUVEPYATEG TOV, YloL TNV TOAVTIUN KaBOONYNoN TOLS, WWiTEPA OTA OPYKO GTASLOL TNG
olTpIPng, mov e POMoE OTIG AEMTOUEPELES €VOC TpayuaTikoD TTpoPfAnuatog g Prounyoviog to
omoio ameTéAece KiviTpo Yo TNV avamTtuén Twv TpotHimmy kot peBodoroyimdv mov mapovotdlovtal

otV dwtpipn).

Olvpurio Xatlnkovotaviivov
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OAYMIIIA XATZHKQEXTANTINOY

[Mavemotio Oescariag, [Tolvteyvikn XxoAn, Tuqpe Mnyavoloywv Mnyavikav, 2009

Emiprénov Kabnynmg: Ap. I'eowpyrog Avurepomovroc, Kabnynrtig Xroyactikdv Meboddwv ot

Aoiknon Iapaywyng

HNepiinyn

To xivmtpo g Owaktopkng owtpipng mponAbe amd v avaykn PeAticronoinong Tov
TPOYPOUUOTIGHOD TOPAYMOYNG GE L0 TPAYUOTIKY ynkn Bropnyavia mapaywyng pntivnig PET. H
avlykn ovt) odNynoce otnv  ovamtvEn 000  OPOPETIKAOV  HOONUATIKOV HOVIEA®V OV
avTILETOTILOVY TO TPOPANUO TOL TPOYPUUUATIGHOD TOPAYWYNG OTI CLYKEKPWEVN Propmyovia
OAAG Kol 6€ GAAAEG LLE TIOPEUPEPT] YOPOKTNPLOTIKE, o€ dVO0 dropopeTikd enineda. O Pacikdg KOpHOG
™G SOKTOPIKNG STpPng amotereitan amd dVO PaciKES EVOTNTEG, OTIC OMOiEg TOPOLGLAlETON M
HOp@OTOiNoT, avaivon Kot EmiAvon Twv 600 QVTOV LOVIEA®DYV, AVTIGTOTYO.

2V Tpd ™ evotnTa Tov Katodlapupdvel 1o Kepdlato 2, avantocoetal évo povtéAo Metkton
Axépatov I'pappukov TIpoypappatiopod (Mixed Integer Linear Programming v MILP) yw tov
YPOVIKO TPOYPOUUOTIGUO TNG TOPAYOYNG MG LOVADOG GUVEXOVS PONG OV TOPAYEL OLPOPETIKEG

rototnteg (grades) pntivng PET. O ypovoc oto poviédo givol Stokpttomompuévoc. O avTIKEIEVIKOG
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oT10Y0C €ivol vo gloyiotomombel to kO0TOC MOV OYetTileTon pe TIg odhayég pOOuong (setup
changeovers) tg mopoaywyng amd pic wOWOTNTO TPOIOVTOC G€ oL GAAN, 0VT®MG ®OTE Vo
amoPevyBovv avemBOunteg LETAPOAES OTIC 1O1OTNTEG TOL TOPAYOUEVOL TPOIOVTOG TOV AapPdvouv
YOPO KATA TNV SLApKELR TETOIOV aAAaydv. Ot mePLopiool TOL HOVIEAOL aPopoLV, HETAED AALMYV,
mv cepd TV oAAaydv pOORIoNG Topoy®yng, TNV GEPLOKY TOPOY®YY] UE TEPLOPICUEVN
TOPAYOYIKT) SUVAUIKOTNTO KOl TEPLOPIGUEVT] YOPNTIKOTNTO, TNV HKTH] KOl EVEAKT TEMEPACUEVT
YOPNTIKOTNTO AmoONK®OV EVOLAUECS®OV KOl TEMK®OV TPOIOVIMV, TIS OTAITNCELS KOVOTOINGNS TNG
{tnong oe evdtdpeoeg nuepounvieg (kat 0yl LOVOV 6To TELOG TOL 0pilovTa TPOYPOUUUATIOHOD), K.O.
[Tapovcraletor po HEAETN TEPIMTOONG TOV KATOOEIKVVEL TMOG LITOPEL VO EQOPUOCTEL TO LOVTEAD GE
€Vl TPOYHOTIKO GEVAPLO KoL 00Nyl TNV £50Y®YT| XPNOUYL®V CUUTEPACUATMOV Kol EVOPAONG OGOV
aQopd otnv cuurePPopd Tov povtédov. H gumepio amd ta apBuntikd mopadeiypota deiyvel 4t o
VTOAOYIOTIKEG OOUTIOELS Yo TNV E€MAVGN TOL HOVTEAOL givon Aoykég Yia peyédn mpoPfAnudtov
OV OTTAVTMOVTOL GE TPOUKTIKES EQOPUOYES.

To povtédo PeAtioTomoinong Tov TPOYPOUUOTICHOD TNG TOPAYWYNG TOL TAPOVCLALETOL
GTNV TPATN EVOTNTAG TNG OTPIPNg eivan £va KAAo1KO KaBoploTikd HOVTELO dtokpitod YpOvoL Kot
nenepacpuévov ypovikov opilovta. Ileprypdper pe peydin oxpifeio to mpoaypoatikd mpoPinua
TPOYPAULOTIGHOD Topoy®yNg o€ évay Ppoyd ypovikd opilovto (tumikd, pio efdoudda), 6moL 1M
on tev S1popeTik®V TooTnTeVv Bewpeitat yvootr]. Ouwg, eneldn 610 Tpaypatikd chHoTnUa, M
mopaywyn kKot n {nmon ovveyilovror Ko petd 1o méPoc tov opilovia TPOYPAUUOTIGHOD, TO
TPOYPOLLO TOPOY®YNS Elval AOYIKO va. unv emTpEnel 6To amoOfepo TV TPOIdVTOV Vo TEGEL KATM
and Kdmowo andbepa acpareiog, ovT®G Mote va pumopetl va avtipetomodel n aféfomn (non Ko
HETG TO TTEPOG TOL YPOVIKOV opilovta Tpoypappaticpov. ' Tov amoTeAesHaTIKO GYEOOGUO TV

amofEATOV ACPAAEING OTOLTEITOL 1O TTO POKPOGKOTIKT] OVAALGT TTOV VO TEPTYPAPEL TO GVOTN LA
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ne Alyotepn Aemtopépela, oAl vo Aappaverl pntd veoOy”n TV GTOYUCTIKY eVoN ¢ {fnong. M
TETO10. AVAAVOT) OTOTEAEL TO OVTIKEIHEVO TNG 0£VTEPNS EVOTNTOG TNG OOAKTOPIKNG OLoTPIPNS.
YVuyKekpéva, otn devTeEPT evOTNTA OV KortaAapPavel to Kepdiaio 3, avantocoetal éva
poOnuotikd povtélo pog mapoiloyns tov Xroyaotikol [IpofAnuatog tov Bértiotov Xpovikol
[Mpoypappatiopod Iaptidwv IMapayoyng (Stochastic Economic Lot Scheduling Problem 7
SELSP), 610 0moi0 po povado cuveyoic Topay®yng TPETEL VO TAPAYEL OLOLPOPETIKEG TOLOTNTEG
HL0G OTKOYEVELONS TPOIOVTMV Y10l VO IKAVOTTOUOEL TUYOi0 OAAL oTdoo Kataveunuévn {nmmon yu
KéBe modTa amd o Kowr omofnKn TEAKAOV TPolOVI®MV HE TEPOPIGUEVN yopnTiKotnTo. H
{mon mov dev umopel va wkavoromBel and to amdBepa, yavetor. H mpotn OAn elvor mavta
oBéoun, Kot 1 povdda Tapaymyng topdyel cuveymg kot pe otafepd pvlud. Otav n povaoda ivat
pLOCUEVT VO TAPAYEL 0L GUYKEKPIUEVT] TTOOTNTA, Ol HOVEG EMITPENTEG aAlayEG elval amd avTn|
™V TowdTTo OTNV OUEC®S YounAdtepn M vymidtepn moidtnta. Olot ot ypdvolr aAlaymv eival
otaBepoi ko i010t. Ymapyetl éva K66tog aAlayng avd mepiotaon aAlayng, Eva KOGTog vepyeilong
vl LOVAOO TAEOVOCUOTIKOD TTPOIOVTOS OTOTESNTOTE OEV VIAPYEL OPKETOC YDPOG GTNV oK™
TEMKOV TPOIOVTOV Y10 VO armodnKevTel T0 TAPAyOUEVO TPOTOV, Kol £V KOGTOG YOUEVOV TOANCEDV
avé HovAdo EAAEUUHOTIKOV TPOTOVIOS OMOTEONMOTE OV VLMWAPYEL OPKETO amoOBepo TEMKAOV
Tpoiovtewv Y vo tkavoromBel n (ntmon. Moviehonowovpe 1o SELSP w¢ po MapkoBiovn
Awdikooio Atopdacewy (Markov Decision Process i MDP) Siaxpitod xpovov, émov og kde mepiodo 1
amoeacn sivar av o Eekvioel por aAloyn pOOUIONG TPOG HLoL YELTOVIKY TOdTNTO TPOIOVIOC N av Oa
mapopeivel 1 pHOon g povadag mopaywyng wg £xel, PAcEL TG TPEXOVGUS KATAGTOONG TOV GLUGTILOTOC
mov opiletal and TV TpEYovoa pLOULOT TNG LOVASNG Kal Ta EMIMESD amOBEUATOV TEAMKOV TPOiOVIQOV OA®V
v moot)tev. O 610Y0¢ givan va ghayiotonomdei 1o pokpoypovio (ameipov opifovta) TPocdOKOUEVO HEGO
k60TOC avd mepiodo. o mwpofAnuata 2 kot 3 TOTATOV TPOIOVTOG EMADOVUE OplOUNTIKG TO akpPBég
mpépfAnua MDP ypnoyomotmvtog v pEB0do Twv dadoyKdv Tpoceyyicemv Tov dlapopikol KO6oTovG. [

TPOPANUTO e TEPIOTOTEPEG OO 3 TOLOTNTEG TPOIOVTOG ALVOTTOGGOVE L0 EVPETIKY O1adIKOTIN ETIAVONG
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mov PacileTor otV TPOGEYYIOT TOL APYIKOL TPOPANUOTOS TOV TOAAUTAMV TOOTATOV Omd TOAAL
vrompoPAnuate 3 TolTTOV Tov eXAvovVToL PE TNV PEB0dO TV dradoyikav tpoceyyicemv. [lapovcialovpe
apOuNTIKd aroteAéspata Yio Topadeiypoata tpofAnudtoy 2-5 motot)tov. ' ta mopadeiyparta tov 2 kot 3
TOLOTNTOV YPNCILOTOOVUE TNV akpPn HEB0d0 EMIALONG YO VO OTOKTNGOVUE EVOPACT OGOV aPOPaE TN
doun g PéATIOTNG TOALTIKNG 0AAay®@V pVButong. T To mapadeiypota tov 4 kot 5 Tolottev cuykpivovus

TNV amddoo NG VPETIKNG Sladikaciog enilvong o€ oyEomn Le aVTRY TNG aKPLPovg uebddov.
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RESIN CHEMICAL INDUSTRY
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Dissertation Supervisor: Dr. George Liberopoulos, Professor of Production Management

Abstract
The motivation for this dissertation originated form the need to optimize the scheduling of
production in a real PET resin plant. This need led to the development of two different
mathematical models that address the production scheduling problem in the particular industry that
motivated this study as well as in similar industries at two different levels. The main body of the
dissertation is divided into two parts in which we present the formulation, analysis and solution of
each of the two models, respectively.

In the first part, which occupies Chapter 2, we develop a discrete-time, Mixed Integer Linear
Programming (MILP) model for the production scheduling of a continuous-process multi-grade
PET resin plant. The objective is to minimize the cost associated with grade changeovers in order to
avoid undesirable variations in base resin properties and process conditions that occur during such
changes. The constraints of the model include requirements related to sequence-dependent
changeovers, sequential processing with production and space capacity, mixed and flexible finite
intermediate storage, and intermediate demand due-dates. We present a case study that illustrates

the application of the model on a real problem scenario and provides insight into its behavior. The
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numerical experience demonstrates that the computational requirements of the model are quite
reasonable for problem sizes that typically arise in practical applications.

The production scheduling optimization model that is presented in the first part of this
dissertation, is a typical deterministic, discrete-time, finite-horizon optimization model. It describes
in great detail and accuracy the real production scheduling problem in the short term (typically one
week), where the demand for the different grades is considered to be known. In real life, however,
production and demand continue after the end of the scheduling horizon. With this in mind, it is
reasonable to design the production schedule in such a way that the finished goods inventory at the
end of the scheduling horizon does not fall below a certain safety stock level, so that the unknown
random demand after the end of the scheduling horizon can be met. To effectively design such
safety stock levels for each grade, it is necessary to perform a more macroscopic analysis which
describes the system in less detail but takes into account the stochastic nature of demand. Such an
analysis is performed in the second part of this dissertation.

More specifically, in the second part, which occupies Chapter 3, we study a variant of the
Stochastic Economic Lot Scheduling Problem (SELSP) in which a single production facility must
produce several different grades of a family of products to meet random stationary demand for each
grade from a common Finished-Goods (FG) inventory buffer with limited storage capacity.
Demand that can not be satisfied directly from inventory is lost. Raw material is always available,
and the production facility continuously produces at a constant rate. When the facility is set up to
produce a particular grade, the only allowable changeovers are from that grade to the next lower or
higher grade. All changeover times are constant and equal to each other. There is a changeover cost
per changeover occasion, a spill-over cost per unit of product in excess whenever there is not
enough space in the FG buffer to store the produced grade, and a lost-sales cost per unit short

whenever there is not enough FG inventory to satisfy the demand. We model the SELSP as a
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discrete-time Markov Decision Process (MDP), where in each time period the decision is whether
to initiate a changeover to a neighboring grade or keep the set up of the production facility
unchanged, based on the current state of the system which is defined by the current set up of the
facility and the FG inventory levels of all the grades. The goal is to minimize the (long-run)
expected average cost per period. For 2- and 3-grade problems, we numerically solve the exact
MDP problem using the value iteration method. For problems with more than three grades, we
develop a heuristic solution procedure which is based on approximating the original multi-grade
problem by several 3-grade sub-problems and numerically solving each sub-problem using value
iteration. We present numerical results for problem examples with 2-5 grades. For the 2- and 3-
grade examples, we use the exact solution procedure to obtain insights into the structure of the
optimal changeover policy. For the 4- and 5-grade examples, we compare the performance of the

heuristic solution procedure against that of the exact procedure.
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Chapter 1  Introduction

In this chapter, we provide some background information which supports the motivation behind this
dissertation. We also review the relevant literature, and we give a brief description of the two main

parts of the dissertation, which occupy Chapters 2 and 3, respectively.

1.1 Motivation and background

Chemicals and plastics production is based on the processing of oil, natural gas and coal. It starts
from a few main organic monomer chemical groupings, such as ethylene and propylene, from
which various polymers are produced. A handful of these polymers form the inputs into
manufactured intermediate and final plastic products. Although polymerization occurs via a variety
of reaction mechanisms with different degrees of complexity, the industrial production of most
polymers is more or less the same, from an operations management point of view. More
specifically, it is common for polymerization plants to operate in a continuous manner in which
several grades are produced using the same equipment. In this context, grades are understood as
products made from the same polymer but with different end use properties, such as brightness,
color, mechanical strength, etc. These end use properties of grades are dependent on molecular
weight distribution and monomer conversion, which in turn are determined by operating conditions.
Transition times in grade polymerization plants can be long, resulting in a considerable amount of

off-specifications production. As such, the number of transitions to be made during a production
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sequence is an important aspect to consider when determining a production schedule for
polymerization plants (Terrazas-Moreno et al. 2007).

One of the most important classes of polymers in use today is polyesters, which contain the
ester functional group in their main chain. The widespread uses of polyesters range from bottles for
carbonated soft drinks and water to fibers for shirts and other apparel. Polyesters also form the basis
for photographic film and recording tape. Although there are many polyesters, the term “polyester”
as a specific material most commonly refers to Polyethylene Terephthalate (PET), which is the
workhorse polyester used for packaging, stretch-blown bottles and for the production of fiber of
textile products. In this thisis, we focus on the production scheduling of bottle-grade PET. The
scheduling paradigm that we develop for PET, however, is representative of the entire polymer
production industry, because it has similar characteristics from an operations management point of
view, as was mentioned above.

PET is an inert plastic that does not leach harmful materials into its contents, when used as a
container. For this reason, it has been the main solution for the production of packaging containers
for over 20 years. The US Food and Drug Administration (FDA) has done rigorous testing to ensure
that PET containers are safe and suitable for food and beverage storage and use. As a result, PET
has been widely used for the production of food and beverage containers. An additional advantage
of PET containers is that they are 100% recyclable and extremely light. Thus, they help diminish
the formation of packaging waste and reduce the emission of contaminants during their transport.
Furthermore, since they require less fuel during transportation, they also help saving energy.

According to McGehee et al. (2004), the key factors that increase the cost of production in a
PET plant are: 1) insufficient equipment utilization, 2) unscheduled down-time and upsets, 3)
variations in grade quality/waste and 4) transitions during grade changes. The first three factors can

be dealt with by using good engineering and operational practices and by adopting process changes
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and revamps, such as implementing effective hardware modifications, carefully scheduling
preventive maintenance, instituting rational quality management programs, and minimizing the
effect of systematic sources of variability to the plant. The fourth factor can be dealt with by
implementing careful and intelligent production scheduling. McGehee et al. (2004), expect that the
practice of managing solid state polymerization plants by predictive scheduling will become more
crucial in the upcoming years, since this is the most effective way to quickly respond to customer
requirements with grade campaigns without large storage volumes or waste.

In Chapter 2 of this dissertation, we present a discrete-time Mixed Integer Linear
Programming (MILP) model for the detailed production scheduling of a continuous-process plant
that produces several grades of PET resin that is to be used for making beverage bottles. An
important set of parameters of the MILP model is the set of safety stock levels of the finished goods
inventories of the different grades at the end of the scheduling horizon. To design these parameters,
in Chapter 3, we develop and analyze a more macroscopic model of the plant, where we view the
plant as a single production facility that must produce several different grades of a family of
products to meet random stationary demand for each grade from a common finished goods
inventory buffer with limited storage capacity. This gives rise to a variant of the Stochastic
Economic Lot Sizing Problem (SELSP) which we model as a discrete-time Markov Decision

Process (MDP), and solve using exact and heuristic solution procedures.

1.2 Literature review

The literature on chemical process scheduling is vast and rapidly growing, as indicated by the
existence of numerous published reviews that bring to light a wealth of general-purpose modeling
approaches and solution techniques. A common theme in many of these reviews (e.g., Kallrath,

2002 and Méndez et al., 2006) is the classification of process scheduling models and solution
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approaches in terms of plant topology, process representation, time representation, operation modes,
demand pattern, changeover and storage characteristics, and other features that are involved in most
process scheduling problems.

An important differentiation is made between batch processes and continuous processes,
with most of the published works addressing batch processes. Reklaitis (1992) overviews the
scheduling and planning of batch process operations, focusing on the basic elements of chemical
process scheduling problems and the available solution methods, while Kondili et al. (1993) present
a general framework for handling a wide range of scheduling problems arising in batch chemical
plants. There are numerous other more recent works on batch process scheduling. Typical examples
are the work of Griinow et al. (2002), who present a hierarchical modeling approach to coordinate
various plant operations in a multi-stage batch process chemical industry, and the works of Janak et
al. (2006a, 2006b), who present efficient MILP formulations for scheduling large-scale industrial
batch plants. In the context of continuous processes, a very recent work by Shaik et al. (2009)
presents a framework for short-term and medium-term scheduling of large-scale industrial
continuous plants.

Another important differentiation in the process scheduling literature is between discrete-
time and continuous-time models. lerapetritou and Floudas (1998a,1998b) propose effective
continuous-time formulations for both batch and continuous processes. Janak et al. (2004) extend
these formulations to incorporate several additional features, such as different storage policies,
resource constraints, variable batch sizes and processing times, batch mixing and splitting, and
sequence-dependent changeover times, while Shaik and Floudas (2007) further extend them to
rigorously treat storage requirements. Lin and Floudas (2001) propose a continuous-time

formulation for design, synthesis and scheduling of multipurpose batch plants, and test it on both
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linear and nonlinear cases, and Shaik et al. (2006) present a performance comparison and evaluation
of several continuous-time models for short-term scheduling of multipurpose batch plants.

Mockus and Reklaitis (1999) address the problem of decision timing in the context of batch
and continuous process scheduling, Neumann et al. (2002) develop a batch scheduling problem that
is modeled as a resource-constrained problem and is solved by an efficient truncated branch-and-
bound algorithm, and Giannelos and Georgiadis (2002) propose a formulation for short-term
scheduling of multipurpose continuous processes. A relatively recent overview and comparison of
discrete-time and continuous-time approaches for the scheduling of chemical processes can be
found in Floudas and Lin (2004). The focus there is on a class of processes called sequential, which
exhibit a linear structure in the production recipe, without material merging/splitting or recycle. The
model that we study in this dissertation falls into that class. Finally, in a recent monograph, Suerie
(2005) addresses the issue of time-continuity in discrete time models.

Chemical process scheduling models can be efficiently formulated using mixed integer
optimization techniques. Grossmann et al. (1996) provide an overview of such techniques for the
design and scheduling of batch processes, emphasizing on general-purpose methods for MILP and
Mixed Integer Non Linear Programming (MINLP) problems. Pinto and Grossmann (1998) present
an overview of assignment and sequencing models used in the scheduling of process operations
with mathematical programming techniques. The authors identify two major categories of
scheduling models, single-unit and multiple-unit assignment models, and discuss the critical
modeling issues of time domain representation and network structure. Méndez and Cerda (2002)
propose a MILP mathematical formulation for scheduling resource-constrained multigrade
continuous chemical plants that uses a continuous-time domain representation. Janak and Floudas
(2008) suggest preprocessing techniques for closing the integrality gap of MILP continuous-time

formulations for batch processing scheduling. Other MILP models for production scheduling of
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chemical processes have been proposed by Pinto and Grossmann (1995), Lee et al. (1996), Pinto
(1997), Hui et al., (2000) and Castro and Grossmann (2006), to name a few. A recent review of
several MILP based approaches for the scheduling of chemical process facilities which focuses on
short-term scheduling of processes that can be represented as general networks can be found in
Floudas and Lin (2005).

Besides the general-purpose modeling approaches for the scheduling of generic chemical
process industries, there have also been several works that are specific to the scheduling of different
types of polymerization processes. One such example is the work by Qiu and Burch (1997), who
develop a hierarchical production planning and scheduling model to solve a real-world problem in
fiber manufacturing scheduling. The model requires determining production sequences in the
presence of variable setup costs in a multi-machine and multi-grade environment. The emphasis is
on the integration of the different levels of the hierarchy and on the development of the concept of
the expected setup cost to circumvent the difficulty that until the production sequences are known,
the exact setup costs can not be determined. Another example is the work of Wang et al. (2000),
who develop a MINLP model for the batch scheduling of a polymer plant producing expandable
polystyrene. None of the different products can be produced separately and only their relative
proportion can be influenced by the choice of the recipes of the polymerizations. An augmented
genetic algorithm is used to solve the model.

Recently, there have also been some works on the joint optimization of scheduling and
process control during changeover transitions in polymerization processes. Mahadevan et al. (2002)
analyze the schedule of grade transitions for a polymerization reactor (isothermal free radical
polymerization of methyl methacrylate (MMA) with azobis-isobutyronitrile as initiator and toluene
as the solvent) that is controlled by a simple linear controller. The dominant factor determining the

schedule of grade transitions is the transition cost related to the off-specification product. Nystrom
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at al. (2005) present a method for solving the problem of grade transition sequencing and dynamic
optimization in polymerization processes. The method is based on decomposing the problem into
two separate sub-problems — dynamic optimization (called primal problem) and scheduling (called
master problem) — and solving them in an iterative manner. Terrazas-Moreno et al. (2007) present a
Mixed Integer Dynamic Optimization (MIDO) model for the simultaneous optimal scheduling and
control during transitions of a multi-grade polymerization continuous stirred-tank reactor. The
schedules sought are strictly cyclic (each grade is produced once in each cycle), and the storage
requirements downstream of the reactor are treated simplistically. The emphasis is on the behavior
of the process during transitions. In a somewhat related work, Prata et al. (2008) present a MIDO
modeling and numerical solution method for an integrated grade transition and production
scheduling problem for a continuous polymerization reactor typically used for the production of
homo- and copolymers of olefins. The emphasis is on modeling the nonlinear dynamics of the
polymerization process in the reactor during transitions, but the downstream process units following
the reactor are neglected. All the above works focus on different aspects of polymerization process
scheduling (e.g., on the integration of planning and scheduling, on the use of genetic algorithms to
solve the scheduling problem, on the combination of optimal scheduling and process control during
transitions), but none is directly related to our work, as none includes in detail aspects such as
inventory management and market demand for different grades.

Finally, there are many production scheduling models for continuous chemical processes
that are similar to the one that we address in this work. For example, Bok and Park (1998) present
an efficient short-term scheduling mixed integer programming model for a multipurpose pipeless
plant over a continuous-time domain. Doganis et al. (2005) develop a MILP model for determining

the optimal production schedule in a lubricant production plant, and Tousain and Bosgra (2006)
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propose an approach for flexible production scheduling in continuous multi-grade chemical
processes.

To the best of our knowledge, the development of an optimization model for production
scheduling in a PET production facility has not been addressed in the past. Moreover, as was
mentioned earlier, the PET plant that we consider in this dissertation has several features that make
it unbefitting the general-purpose models discussed above. For this reason, in Chapter 2, we
develop a specific MILP model for it that is general enough, however, to be applicable to other
similar applications, particularly in the polymer production industry.

In Chapter 3, we view the production scheduling problem as a variant of the SELSP. The
SELSP has received considerable attention in the literature because of its theoretical and practical
importance. A comprehensive review of related works can be found in Sox et al. (1999) and
Winands et al. (2005). From these reviews, it is apparent that there have been two approaches for
tackling the SELSP. One approach is to develop a cyclic schedule, i.e., a fixed production sequence,
usually using a deterministic approximation of the stochastic problem, and then develop a control
rule for the stochastic problem to pursue that schedule. The literature on this approach is relatively
rich, as it has grown naturally from the abundant deterministic ELSP literature. Representative
works based on cyclic scheduling are Gallego (1990, 1994), Bourland and Yano (1994), Fransoo et
al. (1995), Federgruen and Katalan (1996), Leachman and Gascon (1998), Anupindi and Tayur
(1998), Markowitz et al. (2000) and Markowitz and Wein (2001). The attractiveness of the fixed-
sequence approach lies on its ability to provide a practical solution for problems with a large
number of products, as it breaks up the difficult dynamic scheduling problem into two easier sub-
problems, namely, sequencing and lot sizing, which are solved sequentially. A drawback of this
approach, however, is that it may not respond effectively to random changes in demand, as was

mentioned earlier.
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The other approach, which we follow in this dissertation, is to develop a dynamic scheduling
rule that determines which product to produce based on the current state of the system. Such a rule
may be a simple heuristic or may be derived from an optimal control analysis of the problem. It
may rely on only part of the current state of the system, e.g. on the inventory level of the product
that the facility is set up for (local rule), or on the entire state of the system (global rule). Zipkin
(1986) is an indicative example of a dynamic sequencing approach that uses a local (s, Q)-type lot
sizing policy. The literature on dynamic sequencing approaches, particularly the track that adopts an
optimal control perspective, is quite scarce, because of the insurmountable difficulty of obtaining an
analytical solution even for problems of small size, and the computational challenge of numerically
solving problems of realistic size.

One of the first exploratory works on the SELSP is Vergin and Lee (1978). They examine
simple dynamic sequencing heuristics for the SELSP with changeover costs but no changeover
times. The heuristic that outperforms all others is one where in each period, production switches to
the product with the fewest expected remaining days of stock or most days of backorder, if that
product has fewer days than a certain critical number of days of stock on hand. Else, if the product
being produced does not exceed its maximum inventory level (absolute and relative), then its
production continuous in the next period; otherwise, the production facility is idled for the next
period.

Graves (1980) looks at the SELSP as a discrete-time stochastic control problem with
dynamic sequencing. He first solves a one-product problem with inventory-backorder costs and
changeover costs, but no changeover times, where the decision in each period is to produce or idle
the facility. He then uses the solution of the one-product problem as the basis for a heuristic
procedure to solve the multi-product problem. In that heuristic, scheduling conflicts among different

products are solved by comparing the value functions derived for each individual and “composite”
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product from the one-product analysis. The composite product is a concept that Graves introduces
to help anticipate possible scheduling conflicts in the multi-product problem. The idea is that the
composite inventory of several products should indicate the need for current production, in case the
individual product inventories are deemed just adequate when viewed in isolation.

Qiu and Loulou (1995) look at a problem with Poisson demand, deterministic processing
and changeover times, and changeover and inventory-backlog costs. They model the problem as a
semi-MDP, where the objective is to decide in each “review” epoch which product, if any, to set up
the facility to produce, in order to minimize the infinite-horizon, discounted cost. The review
epochs are those points in time when either the production facility is idle and some demand arrives,
or when a part has just been processed and the production facility is free. They use successive
approximation to generate near-optimal control policies by solving the problem on a truncated
inventory space, and compute error bounds caused by the truncation. They present numerical results
for 2-product problems, and conclude that systems with more than two products are limited by the
curse of dimensionality.

Finally, Karmarkar and Yoo (1994) and Sox and Muckstadt (1997) develop finite-horizon
stochastic mathematical programming models for the SELSP, that can also be classified as SCLSP,
with deterministic production and changeover times, and use Lagrangian relaxation for finding
optimal or near-optimal solutions for problems of small sizes.

There has also been a stream of works on the dynamic scheduling of failure-prone flexible
manufacturing systems that are based on a flow control approach. In much of that literature, it is
assumed that the production capacity changes randomly due to machine failures and repairs, while
the demand rate remains constant.

Kimemia and Gershwin (1983) are among the first to show that the optimal control policy

for such systems is a “hedging point” policy, according to which a positive surplus of products is
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maintained during times of excess capacity availability to hedge against future capacity shortages
that are brought about by machine failures.

When the manufacturing system is not perfectly flexible but requires setups, Sharifnia et al.
(1991) propose a setup scheduling policy that uses *“corridors” in the product surplus/backlog space
to determine the timing of the setup changeovers in order to guide the trajectory in the desired
direction. They investigate in detail the case where the desired trajectory leads to a hedging point,
and show that in this case, the surplus/backlog trajectory at the setup level can lead to a limit cycle.

In a related work, Liberopoulos and Caramanis (1997) use an MDP approximation to find
the optimal production rate and changeover policy of a single unreliable production facility with
negligible or random changeover times to meet constant demand for two products, under various
assumptions about the inventory holding and backorder cost rates. Their numerical results reveal
that the optimal setup changeover policy is a corridor-type policy, where setup changeovers are
initiated to keep the surplus/backlog state within a cone-type corridor, pointing towards an
appropriately positioned hedging limit cycle.

In a parallel work, Elhafsi and Bai (1997) follow a similar approach for a similar 2-product
system to show that the structure of the optimal setup changeover policy is a corridor-type policy
too. In their case, the corridor is orthogonal or parallel, depending on the parameters of the system.

Our work in Chapter 3 follows the stream of papers that view the SELSP as a discrete-time,
periodic-review control problem with dynamic production sequencing and global lot sizing, and as
such is more closely related to Graves (1980) and Qiu and Loulou (1995). It is also very closely
related to Sharifnia et al. (1991), Liberopoulos and Caramanis (1997), and Elhafsi and Bai (1997),
as we use a qualitatively similar approach and obtain a similar corridor-type setup changeover
policy, as we will see in Section 3.4. Our work differs from previous works in that it considers a

new variant of the SELSP, where the FG inventory buffer has finite storage capacity and the only
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allowable changeovers are from one grade to the next lower or higher grade. The latter feature
renders problems with a large number of grades amenable to heuristic solution procedures that are
based on approximating the original problem by several smaller (i.e., with fewer grades) sub-

problems which are computationally easier to solve. We develop one such procedure in Section 3.3.

1.3 Dissertation organization

The remainder of this dissertation is organized into two main parts which occupy Chapters 2 and 3,
respectively.

In Chapter 2, we develop a discrete-time, MILP model for the production scheduling of a
continuous-process multi-grade PET resin plant. The objective is to minimize the cost associated
with grade changeovers in order to avoid undesirable variations in base resin properties and process
conditions that occur during such changes. The constraints of the model include requirements
related to sequence-dependent changeovers, sequential processing with production and space
capacity, mixed and flexible finite intermediate storage, and intermediate demand due-dates. We
present a case study that illustrates the application of the model on a real problem scenario and
provides insight into its behavior. The numerical experience demonstrates that the computational
requirements of the model are quite reasonable for problem sizes that typically arise in practical
applications.

In Chapter 3, we study a variant of the SELSP in which a single production facility must
produce several different grades of a family of products to meet random stationary demand for each
grade from a common Finished-Goods (FG) inventory buffer with limited storage capacity.
Demand that can not be satisfied directly from inventory is lost. Raw material is always available,
and the production facility continuously produces at a constant rate. When the facility is set up to

produce a particular grade, the only allowable changeovers are from that grade to the next lower or
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higher grade. All changeover times are constant and equal to each other. There is a changeover cost
per changeover occasion, a spill-over cost per unit of product in excess whenever there is not
enough space in the FG buffer to store the produced grade, and a lost-sales cost per unit short
whenever there is not enough FG inventory to satisfy demand. We model the SELSP as a discrete-
time MDP, where in each time period the decision is whether to initiate a changeover to a
neighboring grade or keep the set up of the production facility unchanged, based on the current state
of the system which is defined by the current set up of the facility and the FG inventory levels of all
the grades. The goal is to minimize the (long-run) expected average cost per period. For 2- and 3-
grade problems, we numerically solve the exact MDP problem using the value iteration method. For
problems with more than three grades, we develop a heuristic solution procedure which is based on
approximating the original multi-grade problem by several 3-grade sub-problems and numerically
solving each sub-problem using value iteration. We present numerical results for problem examples
with 2-5 grades. For the 2- and 3-grade examples, we use the exact solution procedure to obtain
insights into the structure of the optimal changeover policy. For the 4- and 5-grade examples, we
compare the performance of the heuristic solution procedure against that of the exact procedure.

Finally, we summarize our findings in Chapter 4.
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Chapter 2  Production scheduling of a multi-

grade PET resin plant

In this chapter, we develop a discrete-time, Mixed Integer Linear Programming (MILP) model for
the production scheduling of a continuous-process multi-grade PET resin plant. The objective is to
minimize the cost associated with grade changeovers in order to avoid undesirable variations in
base resin properties and process conditions that occur during such changes. The constraints of the
model include requirements related to sequence-dependent changeovers, sequential processing with
production and space capacity, mixed and flexible finite intermediate storage, and intermediate
demand due-dates. We present a case study that illustrates the application of the model on a real
problem scenario and provides insight into its behavior. The numerical experience demonstrates
that the computational requirements of the model are quite reasonable for problem sizes that
typically arise in practical applications.

The rest of this chapter is organized as follows. In Section 2.1, we describe the operation of
the PET resin plant that motivated this work. In Section 2.2, we present the MILP formulation that
we developed for the scheduling problem under consideration. Section 2.3 illustrates the application

of the model on a real problem scenario. Finally, we draw our conclusions in Section 2.4.
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2.1 Operation of a PET plant

PET production is relatively simple in that yields are practically fixed and bygrade waste is
minimal. The production process is non-stop and continuous, and consists of two stages in series:
Liquid State (or Melt) Polymerization (POLY) and Solid State Polymerization (or
Polycondensation) (SSP) which raises the molecular weight and hence the tensile properties of the
fibers obtained by melt polymerization. Feed rate changes are possible but highly undesirable,
because they cause variations in the production process and grade characteristics. A common
industrial practice is to set the production rates of POLY and SSP equal to each other so that the
material flow in the two stages is synchronized; if this were not the case, the storage area between
them would eventually become either full (if POLY produced faster than SSP) or empty (if POLY
produced at a lower rate than SSP), at which point one or both rates would have to change to avoid
violating the buffer capacity constraint (typically, the two rates would be set equal to each other).
Asynchronous material flow between consecutive production stages, which causes the material
level in the storage space between the stages to change dynamically, has been studied quite
extensively in the context of unreliable discrete-parts manufacturing (e.g., see the review paper by
Dallery and Gershwin (1992)). In the continuous-flow setting that we consider in this dissertation,
which is typical in the process industries, however, the material flow between the two processing
stages is synchronized and the common production rate of the two stages may be tuned once in a
while in the long run so as to match the total expected demand for all grades, in case the demand
has seasonal or other long-run variations. For the purposes of short-term scheduling that we
consider in this dissertation, however, the common production rate is assumed to be constant and
equal to (or close to) the total expected demand for all grades. This assumption holds true in most

real PET plants, including the one that inspired this study.
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The final product or grade coming out of SSP is characterized by two key properties: Color
and Intrinsic Viscosity (IV). 1V is related to the length of the polymer chains; the higher the 1V, the
stiffer the material. The color is determined in the first production stage (POLY), while the IV is
determined in the second stage (SSP). In the bottle-grade PET plant that inspired this work, there
are four acceptable combinations of color and IV. These combinations lead to four final products,
respectively, as shown in Table 2-1. A dash (-) denotes a color and IV combination that is not
produced, because there is no demand for it. The abbreviations WG, SD, G and FH correspond to

the grades Water Grade, Soft Drink, Gray, and Fast Heat, respectively.

Table 2-1. Grade of final product based on color and 1V combination

Color
v Light (L) Gray (G) Dark (D)
Low (<0.8) WG - -
High(>0.8) SD G FH

WG is primarily used for water bottles. It is light-colored, because consumers are known to
prefer clear and transparent water bottles. Moreover, it has low 1V, because water bottles need not
be as stiff as bottles for carbonated soft-drinks, which are under higher pressure. Carbonated soft
drinks, on the other hand, are stored in high-1V bottles and can be either light-colored (SD), usually
for light-colored soft drinks, or dark-colored (FH), usually for dark-colored soft drinks. From a
production process viewpoint, dark-colored PET is preferable to light-colored PET, because it can
produce bottles with more uniformly distributed mass density — hence, higher quality — faster, in the
fast-heat and inflation molding stage of bottle making.

Grade changeovers are necessary in order to meet dynamic customer demand on time but
are undesirable, because they last a significant amount of time and cause variations in base resin

properties and processing conditions during the transition period. The only allowable grade
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changeovers are from WG to SD to G to FH and backwards (always in this order). G is an
intermediate off-specification grade produced inevitably during the color changeover transition
from SD to FH and vice versa. Typically, there is no regular demand for it in the primary market for
PET, but it can be sold in a secondary market at a lower price. Another type of intermediate grade is
produced during the IV changeover transition from WG to SD and backwards. A common industrial
practice, which is also employed by the plant that inspired this work, is to divide this intermediate
grade into two halves and classify the first half as WG and the second half as SD. The opposite is
done in a changeover transition from SD to WG. Therefore, the entire quantity of the intermediate
grade is mixed in with the pure WG and SD grades and is sold in the primary market. In effect,
however, this mixing lowers the overall on-specification grade percentage, and is therefore highly
undesirable.

The two production stages, POLY and SSP, are separated by an intermediate storage area,
which we refer to as Temporary Storage Stage (TSS) and typically consists of 2-3 silos (see Figure
2-1). One possible way of using these silos would be to dedicate them to the different color grades
coming out of POLY. For example, if there were three TSS silos, then the first silo would be used
for storing Light-colored (L) PET, the second for storing gray (G) PET, and the third for storing
Dark-colored (D) PET. This way, if production were to change over, say, from light- to dark-
colored PET, the material coming out of POLY would have to be redirected from silo L to silo G,
during the color changeover transition period, and then to silo D upon the end of the transition.
Similarly, if the final grade production were to change over from SD to FH, then the silo feeding the
SSP reactor would have to be switched from L to D.

In effect, however, redirecting the feeds in and out of the TSS is not instantaneous but takes
a small transition time during which the grades before and after the changeover are mixed, because

the pipes in and out of the TSS must be emptied from one grade before they can be filled with the
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next. To avoid this extra mixing, the plant that inspired this work actually uses only one of the silos
in the TSS area, and reserves the other silos for special situations, such as for storing the product
produced from POLY during an interruption of the SSP process caused by an unforeseen equipment
failure or a scheduled maintenance. Thus, at any given time, the actively used silo in TSS has

different layers of light-colored, gray, and dark-colored material stashed on top of each other.

SSP
POLY_ IV setting
Color setting
A \ 4 \ 4 A 4 A 4 vV
TSS LFSS

l

Baggin
gging Demand in silo trucks

Machine

Warehouse i .
Demand in bulk containers

Demand in big bags

Figure 2-1. Material flow in a PET resin production plant

With this in mind, henceforth, we will assume that only one silo is actively used in TSS.
This assumption eliminates the dilemma of which silo to feed POLY into, and which silo to feed
SSP from; hence, it simplifies the scheduling problem. At the same time, however, it complicates
the model, because one must keep track of the different layers of color present in the TSS silo. It is
also worth mentioning that the SSP reactor is itself a silo with non-negligible space capacity, in

which clean inert gas moves upward and chips downward. This means that material needs a
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significant time to travel through the reactor, and therefore what goes in SSP comes out from it with
a time delay. This adds another factor of complication to the model.

The grade coming out of SSP is loaded into one of several silos at the so-called Loading or
Final Storage Stage (LFSS). Unlike the silos in the TSS, which allow the cohabitation of different
colors, the silos in the LFSS do not. Thus, each silo can only contain a single final grade at any
given time. There is a degree of flexibility, however, in that it is possible to switch the grade that a
silo contains. In order for this to happen, though, the silo must first be completely emptied from one
grade, before it starts being filled with another.

The grade coming out of the silos in LFSS is either filled into big bags with the use of a
bagging machine and stored in a finished-goods warehouse, or is directly loaded into silo trucks or
bulk containers to be shipped to customers. A different unloading rate applies for each of these
three distinct unloading modes of the LFSS silos. Additionally, customers may also demand PET in
big bags directly from the warehouse. In this case, the big bags are loaded onto regular trucks.

The scheduling model that we develop in this chapter minimizes the cost associated with the
number of grade changeovers in a fixed time horizon, while also satisfying several constraints
related to sequence-dependent changeovers, sequential processing with production and space
capacity, mixed and flexible finite intermediate storage, and intermediate demand due-dates at both
the LFSS and the warehouse. We adopt a discrete-time representation, which keeps the model
relatively simple, enhances its flexibility and facilitates the introduction of additional constraints.
Furthermore, our computational results demonstrate that our model can handle practical problem
cases in quite reasonable times. Given the complexity of our model, which stems from the
complexity of the real system that it represents, we doubt that a continuous-time representation

would offer significant computational benefits.
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The main input for the scheduling model is the initial setup state of POLY and SSP, the
initial inventory level and grade-type in TSS, LFSS and the warehouse, and the demand forecast for
each grade and transportation mode, in each period of the scheduling horizon. Given that the sales
department of the plant that motivated the development of our model can forecast the demand quite
accurately for a week ahead of time, a typical length of the scheduling horizon is one week. Within
this horizon, several scheduling decisions must be addressed, such as which grade to produce and
when to initiate a color or IV changeover transition, which LFSS silo to pour the grade coming out
of SSP into, which LFSS silo to sack big bags from, if any, and which LFSS silo to load trucks or
bulk containers from, to meet the demand.

The research presented in this chapter was conducted as part of a project entitled
“Optimization of production scheduling and product distribution of a PET resin chemical plant,” as
was mentioned in the acknowledgments section at the beginning of the dissertation. Having been
developed for a real Operations Research (OR) application, our model is tailor-made, because it
includes several features that are specific to this application and can not be incorporated into any of
the general-purpose, discrete-time or continuous-time model formulations that have been proposed
in the literature. These special features will become apparent in the following paragraphs, where we
describe in detail the operation of the PET plant that motivated this work. At the same time,
however, our model is general enough to be suitable for use in other similar applications,
particularly those in the polymer production industry, after performing the appropriate adjustments.

There are several features of our model which we have not encountered in the literature on
general-purpose MILP modeling in process scheduling. One such feature is that the changeover
sequence in one stage depends on the setup state of the other stage. More specifically, according to
Table 1, the changeover from low to high IV in SSP is not allowed, if the color setting of the

material currently being processed in SSP is G or D. This complicates things considerably, since the
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color of the material being processed in SSP in a particular time period has been determined several
periods earlier when this material was processed in POLY. Moreover, as was also mentioned
earlier, even though the changeover transition time from low to high IV (and reversely) is
significant, in practice, the transition itself is conventionally considered to take place
instantaneously in the middle of the transition time, as far as the classification of the grade produced
by SSP is concerned. What complicates the model even more is that the SSP reactor has itself a
finite space capacity which introduces a delay between what goes in and out of SSP.

Another special feature of our model is that layers of different color grades are allowed to be
stored on top of each other in the active silo in TSS, making it necessary to keep track of these
layers. Consequently, the storage requirements of that silo do not fall in any of the usual types of
intermediate storage requirements encountered in the literature on MILP modeling in process
scheduling, namely, unlimited, finite dedicated or flexible (but with no mixing allowed), zero-wait,
and no storage requirements (e.g., see Shaik and Floudas (2007)). For this reason, we refer to these
requirements as mixed finite intermediate storage requirements.

Additionally, the demand for final products does not only occur at different intermediate
dates, but also at two different storage stages, namely, at the LFSS and at the warehouse. This
makes the LFSS both an intermediate and a final storage area, raising the question “to sack or not to
sack big bags,” because sacking big bags serves to increase the service level of customers
requesting big bags from the warehouse but at the same time lowers the service level of customers
requesting bulk material from the silos at the LFSS.

The above features complicate the mathematical formulation of our model but also make it
more interesting and challenging. The real motivation for developing our model, however, stems
from the fact that it is built for a real OR application. We present a case study that illustrates the

application of the model on a real problem scenario and provides insight into its behavior. The
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numerical experience that we provide demonstrates that the computational requirements of the

model are quite reasonable for problem sizes that typically arise in practical applications.

2.2 MILP model development

For the needs of our model, we discretize time by dividing the scheduling horizon, typically one
week, into a finite number of identical time periods. The length of each period must be no bigger
than the length of the shortest nonstop event that takes place in the entire process. This could be the
transition time of a grade changeover, the time of a shift, if different shifts have different
characteristics, etc.

The production facility operates on a 24-hour basis, so in each period, POLY produces an
amount of material which is equal to the constant production rate of the plant, denoted by P,
multiplied by the length of the period; therefore, POLY is considered as a source of material (we
assume that it is never starved of raw material), and the material that it produces in each period is
referred to as a lot.

The next step is to discretize space at the TSS and SSP stages by dividing their capacities
into an integer number of slots, where each slot accommodates exactly one lot. At the beginning of
the scheduling horizon, the active silo in the TSS has some initial material in it that occupies several
slots — say N slots — and the SSP reactor is filled with material up to its capacity, which is equal to,
say, M slots. The SSP reactor has the same production rate as POLY, as was mentioned in Section
2.1; therefore, in each period, the TSS and the SSP stages consume from their upstream stage and
release into their downstream stage exactly one lot. This implies that in every period of the
scheduling horizon, the number of lots in TSS and SSP is constant and equal to N and M,

respectively.
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Note that if the production rates of POLY and SSP were allowed to be different, then we
would have to keep track of the dynamically changing level of material (number of non-empty
slots) in the TSS, as well as the type of material in each slot. In fact, this is more or less what we do
in the case of the LFSS, where the input rate is constant but the output rate is partly variable and
uncontrollable, due to the varying demand, and partly controllable, as the rate of bagging bulk
material from the LFSS into big bags is a decision variable.

The color (L, G or D) of the lot in the n™ slot of the N + M slots of the TSS and the SSP
reactor taken together depends on the setup state (L, G or D) of POLY n periods before the
beginning of the time horizon. Therefore, in order to characterize the color in the N + M slots of the
TSS and the SSP reactor, we need to know the setup state of POLY during the last N + M periods
before the beginning of the scheduling horizon. With this in mind, we shift the time axis by N + M
periods so that the first period of the scheduling horizon is N + M + 1, and therefore periods 1 to N
+ M refer to the past.

Next, we present the MILP formulation that we developed for the problem under
consideration. The following notation is used:

Sets:
l: set of colors produced by POLY, indexed by i, | = {1, 2, 3} ={L, G, D}
J: set of final grades, indexed by j, J ={1, 2, 3, 4} ={WG, SD, G, FH}

Q: setofsilosin LFSS, indexed by q

Parameters:

T: index of the last period of the scheduling horizon
P: production quantity of the process in one period
N : number of slots in TSS

M : number of slots in SSP
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XOlt .

XOzt .

XOgt .

AOt .

Z0:

Smax :

Smin :

cost incurred per color changeover at POLY

cost incurred per IV changeover at SSP

duration of a color changeover transition at POLY (in number of periods)

duration of an IV changeover transition at SSP (in number of periods)

binary parameter that takes the value 1 if the lot produced by POLY in period t has color L,
and O otherwise, t=1,...,N+M

binary parameter that takes the value 1 if the lot produced by POLY in period t has color G,
and O otherwise, t=1,...,N+ M

binary parameter that takes the value 1 if the lot produced by POLY in period t has color D,
and O otherwise, t=1,...,N+M

binary parameter that takes the value 1 if an IV change is initiated at the beginning of period
t, and O otherwise, t=N+M-F+2,..., N+ M

binary parameter that takes the value 1 if the IV of the lot stored in the last slot of SSP at the
beginning of the scheduling horizon is high, and 0 otherwise

binary parameter that takes the value 1 if grade j is stored in silo g of LFSS at the beginning
of the scheduling horizon, and 0 otherwise

quantity of grade j contained in silo q of LFSS at the beginning of the scheduling horizon
capacity of a silo in LFSS

minimum quantity of a nonempty silo in LFSS

SSmin j : safety stock of grade j in LFSS at the end of the scheduling horizon

UsT -

Ugpc -

Ugp -

maximum quantity of material that can be loaded from LFSS into a silo truck in one period
maximum quantity of material that can be loaded from LFSS into a bulk container in one
period

maximum quantity of material that can be sacked from LFSS into big bags in one period
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RO;: grade j inventory in the warehouse at the beginning of the scheduling horizon

Rmax: Warehouse capacity

Rminj : Safety stock of grade j in the warehouse at the end of the scheduling horizon

dSTj: silo trucks demand of grade j in periodt, t=N+M+1,..., T

dBCji: bulk containers demand of grade j in period t,t=N+M+1,..., T

dBBj:: big bags demand of grade j in periodt, t=N+M+1,..., T

Decision Variables:

Xit:  binary decision variable that takes the value 1 if the lot produced by POLY in period t has
color i, and O otherwise, t=1,..., T

yit:  binary decision variable that takes the value 1 if final grade j is produced by SSP in time
period t, and O otherwise, t=N+M +1,..., T + (F/2)

ar: binary decision variable that takes the value 1 if an IV changeover is initiated at the
beginning of period t, and 0 otherwise, t=N+M-F+2,..., T

Zt: binary decision variable that takes the value 1 if the IV of the grade produced in period t is
high, and 0 otherwise, t=N+ M,..., T + (F/2)

Seit:  quantity of grade j in silo g of LFSS at the end of period t, t=N+M,..., T

Wqit:  binary decision variable that takes the value 1 if grade j is contained in silo g of LFSS in
period t, and O otherwise, t=N+M,..., T

ggit:  binary decision variable that takes the value 1 if grade j is loaded from SSP into silo q of
LFSS in period t, and O otherwise,t=N+M+1,..., T

Ggjt: quantity of grade j that is unloaded from silo g of LFSS in periodt, t=N+M+1,..., T

bgit:  quantity of grade j that is loaded from silo g of LFSS into big bags in periodt,t=N+ M +
1,...,T

fgit : quantity of grade j that is loaded from silo g of LFSS into silo trucks in period t, t=N+ M +
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1,...,T
het:  quantity of grade j that is loaded from silo g of LFSS into bulk containers in period t, t = N +

M+1,...,T
Rji:  quantity of grade j in the warehouse at the end of period t,t=N+ M,..., T

The formulation that we develop next also assumes that the following inequalities hold: F <
N+M,B<N+M,N+M<T-(N+ M). These restrictions hold in practice.

The objective function of our model is expressed as

L T 1 <
Minimize C(Z atj+d[gz XZtJ (2.1)
t=N+M+1 t=N+M+1

The above expression minimizes the weighted sum of the number of IV and color
changeovers during the scheduling horizon, i.e., from period N + M + 1 to period T. The first
summation in the objective function represents the number of IV changeovers. The second
summation represents the total number of color changeover transition periods. It is divided by B,
i.e., by the duration of a color changeover transition, to give the number of color changeovers.

Next, we present the constraints of our model. Constraints (2.2)-(2.11) are related to the

processing part of the plant, which comprises POLY, TSS and SSP.

>x, =1,t=1,...,T (2.2)
iel
+ Xq, o <1
X Xaep },t:1,__,T-1,p:1,...,min(T—t,B) (2.3)
X31+X1t+pS1
+ <1
it Yo },t:N+|\/|+1,...,T+(F/2)—1 (2.4)
y3t+ylt+lS1

Constraint set (2.2) states that POLY can only produce a single color in each period. Since
the color of the final grade exiting SSP in any period was determined in POLY N + M periods

earlier, at the beginning of the scheduling horizon, the color in slots 1,..., N + M has already been
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predetermined; therefore, in effect, constraint (2.2) must really be imposed from period N + M + 1
and on only. Its application to periods 1,..., N + M is merely a routine check that serves to verify
that the initial status of the system, as decided in the previous scheduling horizon, results in feasible
production settings during the present horizon, too. This modeling technique is also adopted in
several of the other model constraints which follow.

Constraint set (2.3) states that between two periods in which POLY produces colors L and D
(in either order), B periods in which POLY produces G must always intervene. Note that the actual
number of constraints of this set depends not only on the length of the scheduling horizon but also
on the value of B. More specifically, if B = 1, then POLY can not produce colors D and L in two
adjacent periods. If B > 1, this restriction is imposed not only to adjacent periods, but also to periods
that are spaced i periods apart, fori=2,..., B.

Similarly, constraint set (2.4) states that final grades WG and G can not be produced in two
adjacent periods, because at least one period in which grade SD is produced must always intervene.
Since the color is determined in POLY and any IV change in SSP becomes effective F/2 periods
after it is initiated, the final grade that will be produced in the first F/2 periods of the scheduling
horizon, i.e., in periods N + M + 1,..., N + M + (F/2), is predetermined by the initial state of the
system. Therefore, constraint set (4) must really be imposed from period N + M + (F/2) and on only.
Its application to periods N + M,..., N + M + (F/2) — 1 serves to verify that the initial conditions are
feasible. To ensure that the current production schedule will also remain feasible in the next
scheduling horizon, this set of constraints also extends to periods T + 1,..., T + (F/2) — 1. Combined
together, constraint sets (2.3) and (2.4) ensure that the only allowable grade changeovers are from

WG to SD to G to FH and backwards, always in this exact sequence.

t+F-1
> a,<1,t=N+M-F+2,... . T-F+1 (2.5)

s=t
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8, <X,y t=N+M+1, ... T (2.6)

VA Z

t+(F/2)-1 <a

Zirr2) ~ Zuria 2 S

t+(F/2)

},t:N+M+1—(F/2),...,T (2.7)

Zikray T Livera 2 a,

},t:N+M+1—(F/2),...,T (2.8)
Zikrn F lurrn e S2-8,

Constraint set (2.5) states that only one IV change can be initiated at SSP within F
consecutive periods. This constraint stems from the fact that an IV change in the SSP reactor lasts F
periods in total, and can not be interrupted before it is fully completed. The grade produced by SSP
during the first F/2 periods after an IV changeover is initiated is considered to have the
characteristics of the grade that was produced before the beginning of the changeover transition,
while the grade being produced during the last F/2 periods is considered to have the characteristics
of the grade that will be produced after the end of the transition. Therefore, F is only limited to even
integers.

Constraint set (2.6) states that an IV changeover can only be initiated if the color of the
grade currently being produced is L, because, as can been seen from Table 2-1, no IV changeover is
possible when the color setting is G or D. Constraint sets (2.7) and (2.8) ensure that if an 1V
changeover is initiated at the beginning of period t, then this change becomes effective in period t +
(F/2) and onward. If a; = 0, constraint set (2.8) is redundant, and constraint set (2.7) reduces to z +
(F2) = Zt+ (FI2) - 1, €nsuring that the 1V remains unchanged. On the other hand, if a; = 1, constraint set
(2.7) is redundant, and constraint set (2.8) reduces to z; + ri2) + Zt+ (Fr2) - 1 = 1, ensuring that the IV
changes at the beginning of period t + (F/2).

To help clarify matters, a pictorial representation of the relationship between variables xi, Vit
and z; is shown in Figure 2-2. The top part of that figure is a snapshot of the contents of POLY, TSS

and SSP at the end of the last period before the beginning of the scheduling horizon, i.e., at the end
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of period N + M. As shown in this snapshot, the color of the lots occupying slots 1 to N + M has
already been predetermined. For example, the color of the lot in slot N + M was determined in
period 1 and is given by vector X3 = (X11, X1, X31). The bottom part of Figure 2-2 shows the contents
of POLY, TSS and SSP at the end of the first period of the scheduling horizon, i.e., period N + M +
1. As shown in this schematic representation, each lot has advanced by one slot. As a result, the lot
that occupied the last slot of SSP has exited SSP. Its grade, which is given by vector yn«w+1 =
(Yin+m+1, Yon+m+1, Yan+m+1, Yan+m+1), 1S @ combination of its color, which was determined in period 1

by the value of x;, and its 1V, which is determined in period N + M + 1 by the value of zy+m+1.

Slot: 1 X, N- N N+1-,-\-/ N+M
t=N+M
(o] [T 1eTe] (o] Tols|
XN+M - XM+2XM+1 XM ... X2 X1
POLY TSS SSp YN+M+1=

combination (X1, Zy+m+1)
4y, N/
t=N+M+1 (0] [o] ' [ofe] [o] ' [o]e]s

XN+M+1 +» XM+3XM+2XM+1... X3 X2 X1

Figure 2-2. Time shift representation in the production process

X3 t-N-M < Zt

X <z
ZEN-M t},t:N+M+1,...,T+(F/2) (2.9)

Y2 X nem 4

Yar 2 L+ XNnwm ~
Yar 22+ X nom —
Yae 24+ X5 nem -1

1
A=N+M+1,..., T+ (F2) (2.10)

Sy, =L t=N+M+1..,T+(F2) (2.11)

jed

Constraint set (2.9) is introduced to ensure that colors G and D can only be combined with
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high IV. Constraint set (2.10) determines the final grade based on the combination of color and 1V,
while constraints (2.11) state that only a single grade can be produced in any period of the
scheduling horizon. If status verification is not necessary, constraints (2.9)-(2.11) can be applied
from period N + M + (F/2) + 1 and on.

Constraint sets (2.12)-(2.29) are related to the storage part of the plant, which comprises

LFSS and the warehouse.

Oy Wy . 0€Q jed t=N+M+1,...,T (2.12)
39SV ied t=N+M+1,..,T (2.13)

a
DY gy =l t=N+M+1..T (2.14)

qeQ jeJ

dDW,<1,9eQt=N+M+1,..,T (2.15)

jed
Wy —W, <1->W,., e Q,jeJ t=N+M,.., T-1 (2.16)

Constraint set (2.12) ensures that in each period, grade j can not be loaded from SSP into
silo g of the LFSS, unless this silo already has grade j in it at the beginning of this period.
Constraint (2.13) ensures that in each period, the grade loaded into any silo of the LFSS is the same
with the grade that is being produced by SSP in the same period. Constraint set (2.14) ensures that
in each period, a single grade will be loaded from SSP into a single silo of LFSS. Constraint set
(2.15) states that in each period, each silo of the LFSS can store at most one grade.

Constraint set (2.16) states that the grade stored in a silo of the LFSS can not change unless

a period in which this silo is empty intervenes. The summation ZreJqut is equal to 1 when silo q

contains some final grade in period t, and O if it is empty. Thus, a difference equal to 0 in the right-
hand side forces the difference in the left-hand side to be 0, ensuring that any grade j which is

different from the one that was contained in the silo in the previous period, can not be poured in this
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silo before it is completely emptied. Note that index j is used in both terms of the left-hand side to
disclose whether a particular grade j can be poured into silo g in period t + 1, while r is used in the

right-hand side to disclose whether silo g contained any final grade r in the previous period.

St <SmaWgi 4 €Qjed t=N+M+1..T (2.17)

St ZSminWy, d€Q,jed, t=N+M+1...,T (2.18)

Gyt Wy MaX(Ugy ,Upc,Ugg), 4 € Q€ J,t=N+M+ 1., T (2.19)
Syt =Sqrs + 0P -Gy G €Qjed t=N+M+1,..,T (2.20)
D Sy 288, j€ld (2.21)

qeQ

Constraint set (2.17) states that the grade quantity stored in a silo can not exceed the silo’s
capacity, and ensures that it will be zero whenever the corresponding variable W determines that
this silo is empty. Constraint set (2.18) imposes a lower bound on the quantity of a nonempty silo. It
is introduced to eliminate the situation in which a silo stores a negligible but positive grade
guantity. Constraint set (2.19) states that no grade can be unloaded from an empty silo and imposes
the maximum rate in which a silo can be unloaded, based on the values of variables u. Constraint set
(2.20) ensures flow continuity, by updating the quantity stored in each silo, based on the quantity
that it contained in the previous period, and the quantities loaded into and out of it in the next
period. Note that the quantity produced by POLY and SSP in one period and all the quantities that
can be unloaded or sacked from the LFSS depend on the period length. Constraint set (2.21) ensures
that the total inventory of each grade in the LFSS is at or above the specified safety stock for that

grade at the end of the scheduling horizon.

Gy =fithyth;, e Qjed t=N+M+1,..T (2.22)
1 1 1 . a
— fp+—hy+—Db; <1,9eQjeJt=N+M+1..T (2.23)
uST BC BB
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dST, => fy.je t=N+M+1,..,T (2.24)

qeQ
dBCjt:thjt1jE‘J1t:N+M+1|"'1T (225)
qeQ
ZzbqjtSuBB'tZN+M+l,---,T (2.26)
qeQ jeld
Ry=Ry,+> b, —dBB, ,jeJ t=N+M+1,..,T (2.27)
qeQ
D RySRu t=N+M+1,...,T (2.28)
jed
Ry 2Ry €J (2.29)

Constraint set (2.22) states that, in each period, the total quantity of grade j unloaded from
any silo of the LFSS is equal to the quantity that is loaded into silo trucks or bulk containers, or
sacked into big bags and stored in the warehouse. Constraint set (2.23) defines the maximum
unloading rate of any silo, based on the exact unloading mode. Constraint sets (2.24) and (2.25)
ensure that the demand for silo trucks and bulk containers is satisfied for each period of the
scheduling horizon. Constraint set (2.26) ensures that the maximum sacking rate is not exceeded.
Note that, while several silos can be used simultaneously for loading silo trucks or bulk containers,
bagging can only take place in one silo, because only one bagging machine is available. Constraint
set (2.27) updates the inventory stored in the warehouse, and constraint set (2.28) ensures that the
total grade quantity stored in the warehouse does not exceed its capacity. Finally, constraint set
(2.29) ensures that the inventory of each grade in the warehouse is at or above the specified safety
stock at the end of the scheduling horizon.

Constraints (2.30)-(2.35) initialize the state of the system at the beginning of the scheduling

horizon.

x,=X0,,ielt=1...,N+M (2.30)
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Zym =20 (2.31)

a,=A0,t=N+M-F+2,...,N+M (2.32)
S4=50,,0€Q,jedt=N+M (2.33)
W, =W0,,qe€Q,jeJ t=N+M (2.34)

R,=R0,,jeJt=N+M (2.35)

More specifically, constraint sets (2.30)-(2.32) initialize the state of the production system at
the beginning of the scheduling horizon. Note that, at the beginning of the scheduling horizon, the
color has already been predetermined for all the in-process lots in TSS and SSP. Therefore, one
needs to initialize the values of variables xi, i€l, for t = 1 to N + M. Also, the initialization of
variables a; for the last F — 1 periods is required, since at most one IV change can be initiated within
F consecutive periods. Note, however, that at the beginning of the scheduling horizon, the 1V has
already been predetermined for the last F/2 slots of the SSP reactor only, since it takes F/2 periods
for an IV changeover to take place. Yet, only the value of variable z, for t = N + M needs to be
initialized, since the remaining (F/2) — 1 values are determined through constraint sets (2.7)-(2.8)
and variables a;. As a consequence, the final grade that will be produced in the first F/2 periods of
the scheduling horizon is already predetermined, too. Constraint sets (2.33)-(2.35) initialize the

inventories in the LFSS silos and the warehouse at the beginning of the scheduling horizon.

Xit binary;ie I, t=1,..., T (2.36)

yibinary;je J;t=N+M+1,..., T+ (F/2) (2.37)

arbinary;t=N+M-F+2,..., T (2.38)

Zibinary; t=N+M,..., T+ (F/2) (2.39)

wWgithinary; g € Q,je J,t=N+M,..., T (2.40)

ggitbinary;q e Q,je J,t=N+M+1,..., T (2.41)
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G;i20,9e€Q,jed t=N+M+1,..,T (2.42)

R,20,jed, t=N+M, .., T (2.43)
S:20,0eQjelt=N+M,...,T (2.44)
by >20,0eQjedt=N+M+1..,T (2.45)
f120,0€eQ,jed,t=N+M+1,....T (2.46)
hy20,geQjed t=N+M+1,..T (2.47)

Finally, constraint sets (2.36)-(2.41) and (2.42)-(2.47) impose the integrality and the
nonnegativity of the decision variables, respectively. Note that the indexing of variables y;; begins
fromt=N+ M + 1instead of t =N + M + (F/2) + 1, in order to keep record of the final grade
produced during the first F/2 periods, too, which was actually determined by the production
schedule of the previous horizon.

Note that in the above formulation we have assumed that at the beginning of the scheduling
horizon, the plant is in the state that it was left off at the end of the previous horizon, because this is
the usual situation encountered in practice. There also exists the situation where the plant is just
beginning its operations after a long shutdown, in which case, all the slots of TSS and SSP are
empty and possibly the silos and the warehouse are at very low or even zero levels. This situation is
very rare in practice and is typically encountered after a major breakdown or after the yearly
maintenance of the plant. When the plant is starting up after a long shutdown, the main concern is to
stabilize the process and get the production going, rather than solving the scheduling problem. In
principle, however, our model can still address the scheduling problem during the startup (or warm
up) period, by letting period 1 (instead of period N + M + 1) be the first period of the scheduling

horizon and appropriately adjusting the sets of time indices for which the constraints hold.
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Also note that constraint sets (2.24), (2.25) and (2.27) ensure that the demand for silo trucks,
bulk containers and big bags is satisfied for each period of the scheduling horizon. The strict
requirement for on-time satisfaction of the demand stems from the current practice of the plant that
motivated this work. Specifically, the customers of the plant schedule to send their own (or third
party) trucks or containers to pick up their orders on specific periods, and can not afford to wait.
This requirement may seem restrictive, because it may lead to infeasibilities, but in practice, it does
not pose a problem, because the capacities of the LFSS and the warehouse are big enough to absorb
any reasonable variations in the demand. Moreover, the careful choice of safety stock levels for
each grade and inventory stage (LFSS and warehouse) can help minimize the number of
changeovers in the long run, while preventing stockouts and production process blocking due to the
lack of storage space. In the following section, we present an application in which we set the
scheduling horizon equal to one week that is discretized into 42 4-hour periods, and solved our
model sequentially 24 times (weeks), i.e., for a total of 6 months, where at the beginning of each
week, the state of the system was set equal to the state that it ended up in the previous week. We
used real demand data for each week, and we did not encounter any infeasibility problems. The
safety stock levels were carefully chosen by modeling and solving the continuous-process
scheduling problem as a Stochastic Economic Lot Scheduling Problem (SELSP), as described in
Chapter 3.

Still, in applications where the on-time satisfaction of demand is not a strict requirement, we
can easily modify our model, by including in the objective function the following penalty cost term
for not satisfying the demand on time:

e{ i > i HdSTJ.,—Zqu,j+(dBcj,—thj,}(dBBjT—dbj,)D,

t=N+M+1 jeJ {3} r=N+M +1 qeQ qeQ
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where e denotes the stockout penalty cost coefficient, and dbj; denotes the quantity of product j that
is used to satisfy the demand for big bags in period t. In this case, constraints (2.24), (2.25) and

(2.27) need to be modified, as follows:

t
L2 ) D f . jedt=N+M+1,.., T
=N+M+1 7=N+M+19eQ

M-
o
@
_|

t

Zt“ dBC,,> > D h,,jedt=N+M+1,.,T

7=N+M+1 7=N+M+1qeQ

Rjt = Rjt—l+zbqjt_dbj1!j € \];t: N + M + 1,...,T
qeQ

and the following constraint must be added to the model:

Zt“ dBB;, > Zt“ ddoy ,jelt=N+M+1,..T

r=NTM+1 r=NTM+1q2Q

Finally, we may further modify our model in a similar manner, by replacing the hard
constraints (2.21) and (2.29), which require that the inventory levels at the end of the horizon be no
less than the safety stock levels, with an extra term in the objective function, that penalizes any

negative deviations of the inventory levels at the end of the horizon from the safety stock levels.

2.3 Application of the model

In this section, we illustrate the application of the MILP model that we developed in the previous
section on a problem instance drawn from the operation of the plant that inspired this work. The
production rate of the facility is 200 tons/day, which is what the plant uses most of the time,
although in the long run it can vary between 180 and 220 tons/day. The color changeover transition
time between L and D in POLY is 4 hours, while the IV changeover transition between low and
high IV in SSP is 24 hours. Both transition times are divisible by 4; hence, for the purposes of time

discretization, we use a 4-hour time period. This makes B = 1, F = 6, and the production rate equal
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to 33.3 tons/period. Note that a 4-hour period is also convenient because it is a divisor of a 24-hour
day and of a typical 8-hour work-shift.

The active silo at the TSS has a capacity of 430 tons but is usually less than half full. With
this in mind, we assume that at the beginning of the scheduling horizon it has 200 tons of material
in it. This initial quantity can be divided into N = 6 identical slots, each with a capacity of 33.33
tons (the amount produced in a period). Similarly, the SSP reactor, which has a capacity of 200
tons, can be divided into M = 6 identical slots, each with a capacity of 33.33 tons.

In the actual operation of the plant, production is scheduled on a weekly basis, because at
the end of each week, the demand during the following week is known with certainty. With this in
mind, we use a scheduling horizon of one week, i.e., 42 time periods. Given that N = M = 6, the first
period of the scheduling horizon is period 13 (=N + M + 1), and the last period, T, is period 54 (=N
+ M + 42). The values of the other problem parameters are Z0 = 1, Syax = 430 tons, Spin = 1 ton,
Rmax = 3500 tons, ust = 224 tons, ugc = 69.2 tons, ugg =40 tons,c=1,d =1.

We solved the MILP model sequentially, for 24 weeks, i.e., 6 months, using real demand
data. For space consideration, the demand values for each period are shown in Appendix A. In
Table 2-2, we show the sample mean and standard deviation of the daily demand, for each grade
and demand type. Note that the total mean daily demand for all grades and types is ~195 tons,
which is slightly below the production rate of 200 tons per day. This small difference between
production capacity and demand is due to the unavoidable production of grade 3 (G), which takes
away some of the production capacity. As was mentioned earlier, there is no scheduled demand for
grade G; in reality, however, the plant occasionally removes the accumulated inventory of grade G
by selling it at a lower price to interested buyers. Also, note that grade 2 (SD) is only demanded in

big bags.
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Table 2-2. Sample mean and standard deviation of the daily demand for each grade and demand

type

Grade j 1 2 4 Sum of

mean std. dev. mean std. dev. mean std. dev. means

Demand in silo trucks 25.82 41.00 0 0 17.67 29.52 43.49
Demand in bulk containers 29.96 41.52 0 0 16.13 19.63 46.09
Demand in big bags 25.27 32.15 45.43 5845 34.37 46.77 105.07
Total 81.05 45.43 68.17 194.65

In each week (run), the state of the system at the beginning of the scheduling horizon was
set equal to the state of the system at the end of the previous run. The system at the beginning of the
scheduling horizon of the first run was set to some reasonable initial state, which we do not show
here for space considerations.

To obtain reasonable values for the safety stock levels, we modeled the scheduling problem
as an SELSP, as in Chapter 3, and solved it numerically. We then used the results of the SELSP
solution to compute the safety stock levels. The details of these computations are shown in the next

section.

2.3.1 Computation of safety stock levels

In this section, we present a methodology for computing the safety stock levels for the LFSS silos
and the warehouse. This methodology is based on modeling the continuous-process scheduling
problem as a simple SELSP (see Chapter 3), solving that problem, and using its solution.

More specifically, in Chapter 3, we study a variant of the SELSP in which a single
production facility must produce several grades to meet random stationary demand for each grade
from a common FG inventory buffer with limited storage capacity. Demand that can not be satisfied
directly from inventory is lost. Raw material is always available, and the production facility

produces at a constant rate. When the facility is set up to produce a particular grade, the only
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allowable changeovers are from that grade to the next lower or higher grade. All changeover times
are deterministic and equal to each other. There is a changeover cost per changeover occasion, a
spill-over cost per unit of product in excess, whenever there is not enough space in the FG buffer to
store the produced grade, and a lost-sales cost per unit short, whenever there is not enough FG
inventory to satisfy demand. We model the SELSP as a discrete-time Markov Decision Process
(MDP), where in each time period it must be decided whether to initiate a changeover to a
neighboring grade or keep the setup of the production facility unchanged, based on the current state
of the system, which is determined by the current setup of the facility and the FG inventory levels
of all the grades. The goal is to minimize the infinite-horizon expected average cost. For 2-grade
and 3-grade problems we numerically solve the resulting MDP problem using successive
approximations. The solution includes the optimal state-dependent policy and the optimal
differential cost (value function) for each state of the system. The optimal policy partitions the state
space into different regions, each characterized by a different optimal changeover action. The FG
inventory levels at which the value function is minimized for a given setup state are the “ideal”
target inventory levels for that setup state and in that sense can be thought of as the optimal safety
stock levels for that state. In other words, the optimal safety stock levels really depend on the setup
state of the facility.

We used the above methodology to find the optimal safety stock levels for a 3-grade system,
where the three grades are WG, SD, and FH. To this end, we discretized the inventory space and
time, and we used a demand distribution for each grade based on the real demand data for 6 months
that we had available, without differentiating between the individual types of demand (silo trucks,
bulk containers and big bags). The optimal safety stock level of grade j, when the facility is set up
to produce grade i, denoted by Iminij, IS shown in Table 2-3. Note that the safety stock levels

strongly depend on the setup of the facility. For example, the safety stock level for WG is only 60

40

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 15:50:34 EEST - 3.146.37.111



tons, if the facility is setup to produce WG, but goes up all the way to 1410 tons, if the facility is

setup to produce FH.

Table 2-3. Optimal safety stock level of grade j, when the facility is set up to produce grade i, Imin,i;

Gradej WG SD FH
Iminwej 60 660 1410
Iminspj 660 90 930
IminFuj 14101680 90

In the MILP formulation that we developed in this chapter, we assumed for simplicity that
the safety stock levels do not depend on the setup state of the system. With this in mind, we used
the results of Table 2-3 to compute a weighted average safety stock level for each grade j over all
setup states, denoted by Iminj, Where as weight for each setup state we used the percentage of time
that the facility is set up in that state, given by its market share. Thus, if we let E[d;] denote the
mean daily demand (see Table 2-2) and p; denote the market share of grade j, we have

s = -cwosos Pilminis 1 € WG, SD, FH}
where
P, =Eld,)/Y, wosory EI0] . ] € {WG, SD, FH}
E[d;] = E[dSTj] + E[dBC;{] + E{[dBBy], j € {WG, SD, FH}

The results of the above computations are shown in Table 2-4.

Table 2-4. Mean daily demand, E[d;], market share, p;, and safety stock level, Ininj, for each grade j

Gradej WG SD FH
E[d] 81.05 4543 68.17
p;  0.4164 0.2334 0.3502
Iminj 672.83884.17 835.69
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Finally, in the MILP formulation that we developed in this chapter, we assumed that the
safety stock levels depend on the FH inventory stage (LFSS or warehouse) of the system, whereas
in the SELSP formulation and solution it was assumed that there is a single FG inventory stage.
With this in mind, we allocated the safety stock level, Ininj, Shown in Table 2-4, to the LFSS silos
and to the warehouse in proportion to their demand share. Thus, if we let p_rss,j and pw,j denote the
fraction of the demand for grade j requested from the LFSS silos and the warehouse, respectively,
we have

SSminj = PLFssyj Iminjs | € {WG, SD, FH}
Rminj = Pw,j Iminj, ] € {WG, SD, FH}
where
PLrss,j = (Ed[dST;] + E{[dBCi])/E[d]], j € {WG, SD, FH}
pw,j = E{[dBBJ/E[d]], j € {WG, SD, FH}

The results of the above computations are shown in Table 2-5.

Table 2-5. Fraction of the demand requested from the LFSS silos and the warehouse, and safety

stock level in the LFSS silos and the warehouse, for each grade j

Gradej] WG SD FH
Purss; 0.6882 0  0.4958
pw,j 0.3118 1 0.5042
SSminj 463.05 0 414.35
Rminj 209.78 884.17 421.34

The safety stock levels that we used in the numerical example were set approximately equal
(with some rounding) to the values shown in Table 2-5. More specifically, the exact values of the

safety stock levels that we used are shown in Table 2-6.
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Table 2-6. Safety stocks at the LFSS and the warehouse, and initial quantities in the warehouse

Grade | 1 2 34
Safety stock SSminj 450 0 0450
Safety stock Rminj 250 880 0 450

2.3.2 Numerical results

The results of the 24 sequential runs of the MILP solution are shown in Figures 2-3 to 2-6. More
specifically, Figure 2-3 shows the trajectory of the final grade produced in each period. Throughout
the entire 6-month period, there were 45 grade changeovers (20 color and 25 IV changeovers),
which amounts to approximately 1.875 changeovers per week. As seen from Table 2-2, the mean
demand for SD was relatively low, accounting for approximately 23 percent of the total mean
demand. For this reason, most of the changeovers were between WG and FH, producing some SD

and G along the way.

IRIRIRIRIEREREN]

Final Grade
=

1
WG
0
SR SRR N RIS IR oo D
VEFEPELPFTLRS P TR FFAES S PG

Period

Figure 2-3. Evolution of the final grade produced in each period
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Figures 2-4, 2-5 and 2-6 show the evolution of the inventory levels in the LFSS silos and the
warehouse at the end of each week. From Figures 4 and 5, it can be seen that the LFSS silos were
used as dedicated storage buffers throughout the entire 6-month period. More specifically, three
silos (1, 3 and 5) contained WG throughout the entire 6-month period, three silos (4, 6 and 7)
contained FH, one silo (8) contained SD, and one silo (2) contained G. In all but one week (week
5), grade G was emptied from silo 2 and filled in big bags which were then stored in the warehouse.
There, its inventory kept increasing, because we had assumed that there is no demand for it, as was
mentioned above. In fact, the amount of grade G produced was close to 4 tons per day on average
(= 20 color changeovers/24 weeks x 1 period/changeover x 33.33 tons/period + 7 days/ week),

which approximately covers the difference between average daily demand and production capacity.

------- silo 1 (WG) silo 2 (G)
silo 3 (WG) = - = -silo 4 (FH)

450 |
350 -

)

S 250 -

[

2

2 150 -
50 -

0012345678 9101112131415161718192021 222324
Week

Figure 2-4. Evolution of inventory level in silos 1-4 of the LFSS at the end of each week
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silo 5 (WG) - - - -silo 6 (FH)
------- silo 7 (FH) silo 8 (SD)

Inventory

01234567 89101112131415161718192021222324
Week

Figure 2-5. Evolution of inventory level in silos 5-8 of the LFSS at the end of each week
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Figure 2-6. Evolution of inventory level in the warehouse at the end of each week
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In Figures 2-4, 2-5 and 2-6, the inventory levels at the end of each week are connected with
a straight line to help visualize their weekly evolution. The variation of the inventory levels from
period to period within each week, however, was far from linear, at least for the LFSS silos. Figures
2-7, 2-8 and 2-9 show the evolution of inventory levels in the LFSS silos and the warehouse at the
end of each period, during week 5 (periods 180-222). For example, from Figure 2-7, it can be seen
that the inventory level of WG in silo 3 started and ended at zero in week 5, but went up to
approximately 240 tons in the middle of that week. The inventory levels in the warehouse, however,

were kept more or less stable during that week, as seen from Figure 2-8.

------- silo 1 (WG)

silo 2 (G)

silo 3 (WG) - - - -silo 4 (FH)

450
400
350 - .
300 | °
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200 -
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100 -
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180 186 192 198 204 210 216 222
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Figure 2-7. Evolution of inventory level in silos 1-4 of the LFSS at the end of each period in week 5
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Figure 2-9. Evolution of inventory level in the warehouse at the end of each period in week 5

For the complete

each period of week 5.

ness of presentation, Figure 2-10 shows the demands per grade and type for

Also, Figure 2-11 shows in detail the optimal color setting at POLY, the
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optimal IV setting at SSP, and the final grade coming out of SSP, based on the optimal color and 1V
combination, in each period of week 5. From Figure 2-11, note that during the changeover transition
from high to low IV, which was initiated at the beginning of period 181 and lasted through period
186, the intermediate grade produced was divided into two halves, where the first half (periods 181-
183) was characterized as SD and the second half (periods 184-186) as WG. Also note that the color
changeover that was initiated at the beginning of period 194 resulted in the production of grade G in

period 206, i.e., 12 periods later.

BdST1 BdST4 BdBCl
MdBC4 0OdBB1 EdBB2
200 NdBB4

150 +

100 +

Demand

50 ~

o IS

180 186 192 198 204 210 216 222

Figure 2-10. Scheduled demand per grade and type for each period in week 5
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G
SD W SD/
N\
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Figure 2-11. Color setting at POLY, IV setting at SSP and final grade produced in each period of

week 5

2.3.3 Computational experience

In this section, we discuss some issues that are related to the computational effort to reach an
optimal solution.

First, we need to determine the problem size of the MILP problem developed in Section 2.2.
Table 2-7 shows the number of binary decision variables of the MILP problem, in general (column
2), and specifically for the problem instance presented in this section, where “|A|” denotes the
cardinality (number of elements) of a set A. Similarly, Table 2-8 shows the number of continuous
decision variables. Finally, Table 2-9 shows the number of constraints included in constraint sets
(2.2)-(2.35) in general (column 2), and specifically for the problem instance presented in this

section.
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Table 2-7. Number of binary decision variables

Binary Problem-instance
variable Number specific number
Xit T 3-54=162
it NI(T+ F/2-N-M) 4.45=180

ot T-N-M+F-1 47

Zt T+F2-N-M+1 46
Wit IQIJIT-N-M+1) 8-4-43=1376
Gait [QIMI(T - N - M) 8-4-42=1344

T+ I(T+F2-N-M+|Q|)

Total 4 o(r — N =M+ 3F/4) + 2QUII( T~ N-M) 3155
Table 2-8. Number of continuous decision variables
Binary Problem-instance
Variable Number specific number

Sqit IQINI(T-N-M +1) 8-4-43=1376

Gajt IQINI(T-N-M) 8-4.42=1344

byt IQINI(T-N-M) 8-4-42=1344

fojt QINIT-N-M) 8-4-42=1344

hgjt QIUIT-N-M) 8-4-42=1344

Rit NIT-N-M+1) 4-43=172

SIQIIII(T — N — M)

Torl QM T=N-M+1)

6924

The results for the 24 runs of the MILP problem presented in Section 2.3.2 were obtained in

17.5 seconds per run on average, with a standard deviation of 10.4 seconds, on a Pentium 1V/1.8

GHz dual core processor with 1 GB system memory, using AMPL/CPLEX (see Fourer et al., 2002)

version 9.1, with default values as the optimization software. The AMPL codes for the MILP

problem under consideration is shown in Appendix C. The variation of the run times was quite

significant, and the minimum and maximum computation times were 4.1 and 40.1 seconds,

respectively, suggesting that the actual values of the problem parameters have a strong influence on

the total computational effort. The complete set of the optimal cost (number of changeovers) and

CPU times for each of the 24 runs is shown in Table 2-10.
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Table 2-9. Number of constraints

Problem-instance

Constraint set Number specific number
(2.2) T 54
(2.3) 2[(T-B-1)B + (B + 1)/2] 2-:53 =106
(2.4) 2(T+F2-N-M-1) 2-44 = 88
(2.7), (2.8), (2.9), (2.10), (2.11) 11(T + F/2-N-M) 11.45 = 495
(2.5), (2.6), (2.14),(2.26), (2.28) 5(T-N-M) 5.42 =210

(2.12), (2.16), (2.17), (2.18),

(2.19) (2.20) (2.22). (2.23) 8QII|(T =N - M) 8-8-4-42 = 10752
(2.15) IQIT-N-M) 8-42 = 336
(2.21),(2.29),(2.35) 39| 34=12
(2.13), (2.24), (2.25), (2.27) 43T =N = M) 4.4.42 = 672
(2.30) (N + M) 3-12=36
(2.32) (F-1) 5
(2.33), (2.34) 21QI| 2-8-4 =64
(2.31) 1 1

(T—N-M) (18 + 4[| +|Q[ + 8|Q[[J])
Total + 3T + 15(F/2) + J|(3 + 2|Q|) 12831
+]I[(N + M) + (B + 1)(1 — 2B) — 2

The last two columns of Table 2-10 show the optimal cost and CPU times of the Linear
Programming (LP) relaxation of the original MILP problem. As is expected, the quality of the
solution of the relaxed problem is better than that of the original MILP problem, because any MILP
solution would also be a valid LP solution. More specifically, the optimal cost of the relaxed
program is on average 25% of the cost of the original program, whereas the computational time of
the relaxed problem is on average 36% of the computational time of the original problem. In all
cases, the optimal cost of the LP problem is less than 1. Since the MILP problem has solution
values that are integers (the numbers of changeovers), the optimal solution of the MILP problem
must be at least as large as the next larger integer, namely, 1. In the 5 out of the 24 cases, the
optimal MILP cost is 1; however, in 17 cases it is 2, and in 3 cases it is 3. This suggests that most
cases, the LP relaxation does not provide a very tight lower bound on the solution quality of the

original MILP problem.
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Table 2-10. Optimal cost (number of changeovers) and CPU time for each of the 24 runs of the

numerical example presented in Section 2.3

LP relaxation of
Original MILP problem  original MILP problem

Optimal Optimal
Run cost CPU (sec) cost CPU (sec)
1 1 35.47 0.033 2.57
2 2 29.76 0.174 3.65
3 2 7.51 0.235 1.65
4 1 20.99 0.389 2.41
5 3 20.02 0.804 3.62
6 2 6.80 0.482 1.81
7 2 33.10 0.741 5.68
8 2 20.50 0.607 1.47
9 2 30.74 0.526 8.635
10 2 19.95 0.625 5.35
11 2 16.34 0.529 5.77
12 2 5.30 0.337 2.87
13 2 7.71 0.464 5.47
14 2 12.76 0.467 4.74
15 1 16.81 0.261 11.01
16 3 17.47 0.544 4.84
17 2 541 0.518 2.87
18 2 40 0.688 12.37
19 2 4.07 0.581 2.58
20 2 13.93 0.194 8.32
21 2 5.30 0.478 4.06
22 1 26.26 0.059 5.29
23 1 16 0.489 5.84
24 2 8.08 0.694 4.47

An increase in the problem size is generally expected to increase the total computational
effort. To explore the effect of problem size on the computational time, we solved several instances
of the model, where in each instance we set the initial state of the system equal to the state of the
system at the end of week 4, and gradually increased the scheduling horizon by one day (6 periods),
starting with a horizon of 7 days (42 periods) and ending with a horizon of 14 days (84 periods). In

other words, we solved the scheduling problem of week 5, then week 5 plus the first day of week 6,
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then week 5 plus the first two days of week 6, and so on. The scheduling horizon of the last problem
instance was exactly two weeks, corresponding to weeks 5 and 6.

The results are shown in Table 2-11. As can be seen from that table, the computational time
increases significantly with the size of the problem, although not in all cases, which reveals that the
size of the problem alone is not indicative of the computational effort needed to reach an optimal
solution; the actual values of the problem parameters have a strong influence on the total
computational effort too, as was mentioned above. An interesting observation from Table 2-11 is
that the objective function (number of changeovers) remains at 3 for all instances. This means that 3
changeovers are optimal, whether we schedule production for week 5 alone or for weeks 5 and 6
together, assuming that we know the demands for both weeks. Note that in the original solution
shown in Figure 2-3, where we sequentially solved the MILP problem for each week, the optimal
number of changeovers for weeks 5 and 6 (periods 180-221 and 222-263) was 3 and 2, respectively,

yielding a total of 5 changeovers.

Table 2-11. Effect of increasing the length of the scheduling horizon

Scheduling Horizon Time Objective

(periods) (secs) Function
42 17.74 3
48 50.62 3
54 55.14 3
60 41.37 3
66 81.13 3
72 62.49 3
78 154.23 3
84 161.55 3

The example discussed in the previous paragraph reveals the potential benefits from
extending the scheduling horizon for which demand information is available. To further explore

these benefits, we solved 100 instances of our model, where in each instance we set the initial state
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of the system equal to the state of the system at the end of week 4, the scheduling horizon equal to 2
weeks, and the demand in the first week equal to the demand in week 5. In each instance, the
demand in week 6 was randomly generated from a distribution which we constructed based on the
demands over the 6-month period for which we had data. One of the things we wanted to examine
by running this experiment was the sensitivity of the cost (number of changeovers) in the first week
with respect to the demand realizations in the second week, when we choose to solve the scheduling
problem for weeks 5 and 6 as a single 2-week problem instead of two 1-week problems. We also
wanted to see how the solution of the 2-week problem compared to the sum of the solutions of the
two sequential 1-week problems.

The results are presented in Appendix B. They suggest that if demand data is available for
two weeks instead of one week ahead of time, the chemical plant can be scheduled much more
efficiently, i.e. with significantly fewer changeovers. This is because when the demand of the
second week is known in advance, the scheduling procedure has the opportunity to merge the
production of different quantities of the same grade, if possible, so as to decrease the total number
of needed changeovers. As is expected, solving the single 2-week problem requires a longer
computational time generally than solving the two 1-week problems. However, there exist some
instances in which the required computational time for solving the scheduling problem of the
second week as a single 1-week scheduling problem is longer than the required computational time
for solving the respective 2-week problem. This is attributed to the fact that the required
computational time strongly depends on the relevant position of initial final grades inventories and
the emerging demand, because in case of a “tighter” respective situation, the optimization procedure

has to search the optimal solution in a more rough solution space.
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2.4 Conclusions

We developed an MILP model for the production scheduling of a multi-grade PET processing
chemical plant. We also presented an application of the model on a real case study, along with some
discussion that provides insight into its behavior. The model minimizes the cost associated with the
number of grade changeovers, while also ensuring that the capacity constraints of the problem are
not violated and that the demand for final products is satisfied on time. The model incorporates all
aspects of the problem under consideration and can be easily extended to address additional ones
that may arise in different situations, because of the large number of decision variables that
enhances its flexibility. We believe that the main contribution of this work is that it addresses

efficiently an important practical application, whose solution exhibits high complexity.
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Chapter 3  The stochastic economic lot sizing
problem for continuous nonstop

multi-grade production

In this chapter, we study a variant of the Stochastic Economic Lot Scheduling problem (SELSP) in
which a single production facility must produce several different grades of a family of products to
meet random stationary demand for each grade from a common Finished-Goods (FG) inventory
buffer with limited storage capacity. Demand that can not be satisfied directly from inventory is
lost. Raw material is always available, and the production facility produces continuously at a
constant rate. When the facility is set up to produce a particular grade, the only allowable
changeovers are from that grade to the next lower or higher grade. All changeover times are
constant and equal to each other. There is a changeover cost per changeover occasion, a spill-over
cost per unit of product in excess whenever there is not enough space in the FG buffer to store the
produced grade, and a lost-sales cost per unit short whenever there is not enough FG inventory to
satisfy the demand. We model the SELSP as a discrete-time Markov Decision Process (MDP),
where in each time period the decision is whether to initiate a changeover to a neighboring grade or
keep the set up of the production facility unchanged, based on the current state of the system which

is defined by the current set up of the facility and the FG inventory levels of all the grades. The goal

57

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 15:50:34 EEST - 3.146.37.111



is to minimize the (long-run) expected average cost per period. For 2- and 3-grade problems, we
numerically solve the exact MDP problem using the value iteration method. For problems with
more than three grades, we develop a heuristic solution procedure which is based on approximating
the original multi-grade problem with several 3-grade sub-problems and numerically solving each
sub-problem using value iteration. We present numerical results for problem examples with 2-5
grades. For the 2- and 3-grade examples, we use the exact solution procedure to obtain insights into
the structure of the optimal changeover policy. For the 4- and 5-grade examples, we compare the

performance of the heuristic solution procedure against that of the exact procedure.

3.1 Introduction

Scheduling production of multiple products, each with random demand, on a single facility with
limited production capacity and significant changeover costs and times between products is a
classic problem in production planning research that is often referred to as the Stochastic Lot
Scheduling Problem (SLSP). Sox et al. (1999) distinguish between two versions of the SLSP, for
consistency with the deterministic-demand literature: the Stochastic Capacitated Lot Sizing Problem
(SCLSP) and the Stochastic Economic Lot Sizing Problem (SELSP). The SCLSP assumes a finite
planning horizon and allows for non-stationary demand, while the SELSP assumes an infinite
planning horizon and stationary demand. The SCLSP is more appropriate for discrete-parts
manufacturing, whereas the SELSP is perhaps better suited for continuous-processing
manufacturing. Discrete-parts manufacturing is characterized by individual parts that are clearly
distinguishable, and is often encountered in the industries of computer and electronic products,
electrical equipment and appliances, transport equipment, machinery, fabricated metal, wood,
furniture products, etc. Process industries, on the other hand, operate on material that is

continuously flowing, as is the case with petroleum and coal products, metallurgical products,
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nonmetallic mineral products, basic chemicals, food and beverage products, paper products, etc.
Generally, process industries are capital intensive and focus on high-volume, low-variety
production. In a typical process industry, the production facility produces continuously, at a
constant rate, and the different products are really variants of the same family that differ in one or
more attributes, such as quality, color, consistency, weight, size, thickness, etc. These variants are
frequently referred to as “grades”. Often, the different grades are related in such a way that the only
allowable changeovers are from one grade to the next higher or lower grade in the chain. For
example, if the facility produces three grades, A, B, and C (A being the lowest and C being the
highest), the allowable changeovers are between A and B, between B and C, but not directly
between A and C. To indicate this ordering in the chain of allowable changeovers, we use the
notation “A-B-C”. Avoiding grade changeovers is often of primary managerial concern, because
during a changeover transition, the process is difficult to control, and the grade produced is off-
specifications.

The deterministic version of the SELSP, the so-called ELSP, has received considerable
attention in the literature over the past decades (e.g., see the surveys of Elmaghraby, 1978 and
Salomon, 1991). Both analytical and heuristic solutions for the ELSP derive rigid cyclic production
plans, which in many multi-grade plants take the form of rigid product slates or wheels, whereby all
grades are produced sequentially in a cycle, starting from the lowest grade, going up all the way to
the highest grade, and returning down to the lowest grade. In the previous example with the three
grades, a complete grade slate would be A—>B—C—B—A. Interestingly, clearing policies, i.e.,
policies where the facility switches to the product whose inventory level reaches zero first, may lead
to inventory trajectories that exhibit chaotic behavior, i.e., that are sensitive to initial conditions, are
non-periodic, etc., as Chase et al. (1993) show, even for a 3-product system with no changeover

times and no constraints on the order of allowable changeovers.
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Unfortunately, cyclic plans do not work well for the stochastic problem, for two reasons.
Firstly, they focus on lot-sizing and not on dynamic capacity allocation, which is necessary to
respond to random changes in demand. Secondly, in the stochastic problem, finished-goods (FG)
inventories serve not only to reduce the number of changeovers, as is the case in the deterministic
problem, but also to hedge against stock-outs. In the stochastic problem, both lot-sizing and
capacity allocation have to be considered simultaneously, and the dynamics have to be included in
the plan (Graves, 1980).

In this chapter, we study a variant of the SELSP in which a single production facility must
produce several grades to meet random stationary demand for each grade from a common FG
inventory buffer with limited storage capacity. Demand that can not be satisfied directly from stock
is lost. Raw material is always available, and the production facility produces at a constant rate all
the time. When the facility is set up to produce a particular grade, the only allowable changeovers
are from that grade to the next lower or higher grade. In many industries, it is customary to divide
the intermediate grade produced during a changeover, say from grade A to grade B, into two halves,
and classify the first half as A and the second half as B, although in reality the grade of the product
coming out of the production facility during the changeover transition is gradually changing from A
to B. In this chapter, for simplicity, we assume that the grade produced during a changeover from A
to B is classified as A, and that the grade produced during the reverse changeover is classified as B.
Under this assumption, the amounts of grades A and B that will be produced in the long run will be
the same as those that would have been produced had we divided the produced grade during a
changeover into two halves. We also assume that all changeover times are deterministic and equal
to each other.

The cost structure of our model includes a changeover cost per changeover occasion, a spill-

over cost per unit of product in excess whenever there is not enough space in the FG buffer to store
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the produced grade, and a lost-sales cost per unit short whenever there is not enough FG inventory
to satisfy the demand. The assumptions presented above are realistic and are based on a real
application of dynamic scheduling in a PET processing plant, presented in Chapter 2.

We model the SELSP problem described above as a discrete-time Markov Decision Process
(MDP), where in each time period the decision is whether to initiate a changeover to a neighboring
grade or keep the setup of the facility unchanged, based on the current state of the system, which is
determined by the current setup and the FG inventory levels of all the grades. The goal is to
minimize the (long-run) expected average cost per period.

For 2- and 3-grade problems we are able to numerically solve the resulting MDP problem
using the value iteration method, and obtain insight into the optimal control policy. We refer to this
solution procedure as “exact”, because it solves the exact problem. For problems with N grades, N >
3, we develop a heuristic solution procedure that is based on approximating the original N-grade
problem by (N — 2) 3-grade sub-problems and numerically solving each sub-problem using value
iteration. Each 3-grade sub-problem is an approximation of the original N-grade problem, where the
middle grade in the sub-problem corresponds to one of the grades in the original problem, the low
(left) grade in the sub-problem is the composite of all grades in the original problem that are lower
than the middle grade, and the high (right) grade is the composite of all grades that are higher than
the middle grade. For example, if the original problem consists of five grades, A-B-C-D-E, we
formulate the following 3-grade sub-problems: A-B-(C+D+E), (A+B)-C-(D+E), and (A+B+C)-D-
E, where the notation “(A+B)” indicates the composite grade formed by grades A and B. After
solving all the sub-problems, the heuristic control policy for the original N-grade problem is
obtained by combining parts of the optimal policies of the sub-problems.

The rest of this chapter is organized as follows. In Section 3.2, we present the stochastic

dynamic programming formulation of the MDP model of the original N-grade problem, and we
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outline the successive approximation method to solve it. The heuristic procedure for solving
problems with more than three grades is presented in Section 3.3. In Section 3.4, we present
numerical results for problem examples with 2-5 grades. For the 2- and 3-grade examples, we use
the exact solution procedure to obtain insights into the structure of the optimal changeover policy.
For the 4- and 5-grade examples, we compare the performance of the heuristic solution procedure

against that of the exact procedure. Finally, we draw our conclusions in Section 3.5.

3.2 Problem formulation and dynamic programming solution

We consider a discrete-time model of a production facility that can produce N different grades, one
at a time. Grade changeovers are only allowed between neighboring grades, nandn+ 1, n=1, ...,
N — 1. The changeover time is one period. In each time period, the production facility produces P
units of the grade that it is set up for at the beginning of the period. The quantity produced is stored
in a common FG inventory buffer which has a finite storage capacity of X units; any excess amount
that does not fit in the buffer is spilled over, incurring a spill-over cost of CS dollars per unit of
excess product. The FG buffer is flexible in that it can contain any quantity of any grade at the same
time, as long as the total amount does not exceed X. After the quantity produced by the facility has
been added to the FG buffer, a vector of random demands, D = (Dy, ..., Dy), must be met from FG
inventory, where D,, n =1, ..., N, is the demand for grade n. The demands D, are discrete random
variables with known stationary joint probability distribution. For each grade n, the part of the
demand that can not be satisfied from FG inventory, if any, is lost, incurring a lost-sales cost of CL,
dollars per unit of unsatisfied demand. In many real problems, especially in the process industries,
changing P may cause instabilities in the production process; therefore, P is not considered to be a
control variable for scheduling purposes, but is finely re-tuned once in a while so as to match the

total expected demand for all grades, in case the demand has seasonal or other long-term variations.
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For the purposes of short- to medium-term scheduling that we consider in this chapter, we assume
that P is fixed and equal to the total expected demand for all grades.

We formulate the dynamic scheduling problem of the production facility as a discrete-time
MDP, where the state of the system at the beginning of each period is defined by the vector y = (s,
X1, ..., Xn), Where s is the grade that the facility is set up for during that period (called the “setup”
state) and x,, n = 1, ..., N, is the FG inventory level of grade n at the beginning of the period. Note
that s € {1, ..., N}, and the set of allowable inventory levels is determined by all integers x,, n = 1,
..., N, such that 0 < I, x, < X. It is easy to see that the size of the state space is (N-X")/2.

The decision, u, to be made at the beginning of each period is whether to initiate a
changeover to a neighboring grade or leave the facility setup unchanged. Thus, if the current setup
is s, the allowable decisions are given by the set U(s), where U(1) = {1, 2}, U(s) ={s -1, s,s + 1},
s=2,...,N-1 and UNN) = {N — 1, N}. If the decision is to initiate a changeover, then the new
setup of the facility, i.e., after the changeover is completed, will be in effect at the beginning of the
next period, since the changeover time is one period. A decision to initiate a changeover at the
beginning of a period incurs a changeover cost of CC dollars in that period.

Suppose that the state of the system at the beginning of a period is y, decision u is taken, and
demand D is realized. Let g(y,u,D) be the cost incurred during that period and let y’ = (s', x¢/, ...,
xn') = f(y,u,D) be the state of the system at the beginning of the next period. From the above
discussion, it is clear that

s'=u
Xy' = (X0 + p(Y)-lh=s—Dn)",n=1, ...,N
where p(y) is the amount added to the FG buffer after the facility produces P units and before the
demand is satisfied and is given by p(y) = min(P, X — X, X,), |4 is the indicator function which takes

the value of 1 if a is true, and O otherwise, and (x)* = max(0, x). Moreover,
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g(y,u,D) = CC-lyss + CS-(P = p(y)) + Zn CLy(Dn = Xn = P(Y)-In=s) "

The objective is to find a state dependent policy, u = u(y), that minimizes the (long-run)
expected average cost per period. To find such a policy, we need to solve Bellman’s dynamic
programming equation, which for our problem can be written as

J+V(y) = minueus Tu(V(Y)) 3.1)
where J is the optimal (minimum) expected average cost per period, V(y) is the optimal differential
cost starting from state y, and T,(-) is a mapping defined as T,(V(y)) = Ep{g(y,u,D) + V(y’)}. The
minimizer of the Bellman equation determines the optimal policy when the system is in state y,
denoted by «"(y).

To solve Bellman’s equation, we use the method of successive approximations of the
optimal differential cost functions, which is known as the value iteration method. We denote by
Vi(y) the value of the optimal differential cost function at the kth iteration. Initially, we set Vo(y) =
0, V' y. The values at the (k + 1)th iteration are obtained from the previous iteration by the recursion

Viea(y) = T(Vi(y)) - T(V($)) (3.2)
where T(Vi(y)) = mingeueTu(Vi(y)) and § is an arbitrarily chosen special state. Note that in each
iteration the optimal differential cost of the special state is reset to zero. Assuming that the iteration
scheme converges to some values V(y), then from recursion (3.2), these values must satisfy T(V(¥))
+ V(y) = T(V(y)). A comparison of this equation and the Bellman equation (3.1) reveals that J =
T(V(®))

To implement the successive approximation method, at each iteration k = 1, 2, ... we
compute the maximum and minimum differences, V,” = maxy{Vi(y) — Via(y)} and Vit =
miny{Vi(y) — Vica(y)}. The procedure is terminated when VY = Vit < e T(Vi($)), where ¢ is some

small positive scalar.
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3.3 Heuristic solution procedure

Although the exact method presented in the preceding section can in principle determine the
optimal policy for any number of grades, it becomes computationally intractable for more than three
grades. In this section, we propose a heuristic procedure that approximates any N-grade problem, N
> 3, by several 3-grade sub-problems and then uses the sub-problem solutions (determined by the
exact method) to construct a heuristic policy for the original problem.

The heuristic procedure that we propose works as follows. Let S denote the original N-grade
problem. For each grade n, n = 2, ..., N — 1, we formulate a 3-grade sub-problem, denoted by Sy, in
which the middle grade is grade n, the low grade is the composite of all grades that are lower than n,
i.e.,, grades 1, ..., n—1, and the high grade is the composite of all grades that are higher than n, i.e.,
grades n + 1, ..., N; hence S, is an approximation of the original problem S. For each sub-problem
Sn, we define the state of the system by the vector y, = (Sn, Wn, Xn, Z1), Where s, € {1, 2, 3} and w,
and z, are the inventory levels of the low and high composite grades, respectively, and are given by
the sums: w, = X3 + ... + X1 and z, = Xpe1 + ... + Xn. In each sub-problem S,, the demand
distribution of the middle grade is the same as the demand distribution of grade n in the original
problem, the demand distribution of the low grade is the convolution of the demand distributions of
grades 1, ..., n — 1 in the original problem, and the demand distribution of the high grade is the
convolution of the demand distributions of grades n + 1, ..., N in the original problem.

We use the exact method presented in the previous section to obtain the optimal policy of
sub-problem S, denoted by u, (yn). The heuristic policy for the original N-grade problem, denoted
by «"(y), is then constructed by using parts of the optimal policies of the sub-problems, as follows:

11 Xy ey X0) = 22 (1,90, X, Z2)

M0 Xay ooy XN) = i (2, W X Zn) +N=2,n=2, ...,N-1
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(N X, o Xn) = e (3, Wner, X, 2ne1) + N =3

where w, and Z, are the “aggregate” inventory levels of the low and high composite grades,
respectively, in sub-problem S, which represent in some aggregate way the total of their individual
components through some function h, i.e., w, = h(xy, ..., Xn-1) and z, = h(Xp+1, ..., Xn). The terms *“n
—2” and “N - 3” on the right-hand side of two of the above expressions are correction terms that
account for the fact that setup states 1, 2, and 3 in sub-problem S,, n =2, ..., N =1, correspond to
setup states n — 1, n, and n + 1, respectively, in the original problem. Next, we discuss how to
determine an appropriate form for function h.

First, note that v, = h(xy), i.e., w; is the aggregate inventory level of a single grade, namely
grade 1; therefore, it is reasonable to simply set h(x;) = x; so that w, = h(x;) = 3. Similarly, we set
h(xn) = Xn, SO that Zy_; = h(xn) = xn. Let us next focus on wn, n > 2, as Z, is obtained in exactly the
same way.

An obvious choice for the aggregate inventory level of the composite of grades 1, ..., n -1
is to set it equal to the sum of the inventory levels of the individual grades, i.e., set v, = w,. This is
a reasonable choice, especially with respect to estimating potential spill-over costs, but fails to
detect the situation where the sum wj, is high, implying that the composite grade has a low risk of
stock-out, but one (or more) of its individual components, Xi, ..., X,-1, IS (are) low, implying that the
corresponding individual grade(s) has(ve) a high risk of stock-out, which may lead to significant
lost-sales costs. We refer to this situation as the “imbalance problem,” because one or more of the
individual inventory levels are much lower than the average.

To illustrate the imbalance problem, suppose that the facility is currently set up to produce
grade 4, and that the inventory levels of grades 1-4 are (X1, X2, X3, X4) = (15, 15, 0, 6). Then, in sub-
problem S, the inventory level of the middle grade would be x4 = 6, and the total inventory level of

the low composite grade would be wy = X3 + X2 + x3 = 30. In this case, the optimal policy obtained
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from solving S; might indicate that it is optimal for the facility not to change over to the low
composite grade, because there is plenty of it (30 units) in storage compared to the inventory level
of the middle grade 4, which is much lower (6 units). What the heuristic fails to see here is that
although w, is relatively high, its individual components are quite imbalanced — in fact, one of
them, namely X, is zero. In this case, unless the facility changes over to grade 3, a heavy lost-sales
cost is likely to be incurred in the current and in the following period.

To tackle the imbalance problem, we seek an aggregate inventory level, w,, for the
composite of grades 1, ..., n — 1, that would somehow reflect the imbalance, if any, among the
individual inventory levels xi, ..., X,-2. A natural measure of the imbalance of the individual
inventory levels is the sum of their expected lost sales, denoted by ILS,, given by

ILS, =E[(D1—%1)"] + ... + E[(Dn-1 — Xn-1)']
The expected lost sales for any given aggregate inventory level, w, of the composite grade, on the
other hand, denoted by CLS,(w), is given by
CLSy(W) = E[(D1 + ... + D1 —W)']

With the above definitions in mind, in order to capture the imbalance, if any, among the

individual inventory levels xi, ..., Xn-1, We propose the following expression for the aggregate

inventory level, wy:

n

v, ifILS, >0

n

, IfILS, =0
wn—{w M (3:3)

where v, = w: CLS,(w) = ILS,, i.e., v, is that value of the aggregate inventory level which makes the
expected lost sales of the composite grade equal to the sum of the expected lost sales of the
individual grades.

To compute v, we need to derive the probability distribution of the demand of the composite

grade by convolving the probability distributions of the demands of the individual grades. In case
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this is not computationally convenient, we propose a faster alternative in which we approximate
ILS, by the expression
ILS, ~ (E[D1] = x1)" + ... + (E[Dn-1] = Xn-1)"
This then allows us to compute v, by the following expression:
Vn = E[D4] + ... + E[Dya] - ILS, (3.4)

Expression (3.3) prescribes that the aggregate inventory level, wy, be set equal to either wy,
if ILS, =0, or vy, if ILS, > 0. It can be easily shown that v, < w,. Given that v, may be significantly
smaller than wy,, where w, is the natural candidate for the aggregate inventory level of the composite
grade, we propose to use a “smoother”, more general rule than the one prescribed by expression
(3.3). According to the more general rule, w, is set equal to a linear combination of w, and v,
(rounded to the nearest integer), if ILS, > 0, namely

, if ILS, =0
v‘vn={w” M (35)

av, +(1-a)w,, ifILS >0

for some coefficient o, such that 0 < a < 1, where v, is given by (3.4). Note that if o = 0, the rule
prescribed by (3.5) becomes w, = wy, whereas if a = 1, the rule becomes identical to that prescribed
by expression (3.3). Clearly, the smaller the imbalance problem, the smaller the optimal value of «,
and the better the performance of the heuristic. In Section 3.4.3, we investigate the performance of
the heuristic as a function of coefficient a.

The heuristic policy that we described above, as any feedback policy, satisfies an expression

similar to Bellman’s equation (3.1), without the minimization, i.e., it satisfies
I"+VIy) =T, (V"(y)) (3.6)
where J" is the expected average cost per period and V"(y) is the differential cost starting from state

y, when the heuristic policy u" = 4"(y) is used. Note that J", V(y), and 4"(y) also depend on «, but

we omitted this dependence here for notational simplicity.
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One way to evaluate the heuristic policy is to use the method of successive approximations

of the differential cost functions V"(y). More specifically, if we denote by V" (y) the values of the

differential cost function at the k™ iteration, then the values at the (k + 1)th iteration are obtained

from the previous iteration by a recursion similar to (3.2), without the minimization, i.e.,
Ve ) =T, V' () -T, (V' () (3.7)
Note that as in (3.2), at each step of iteration (3.7), the differential cost of the special state ¥ is reset

to zero. Assuming that the iteration scheme converges to some values V(y), for all y, then the
expected average cost per period of the heuristic policy is given by J" =T, V().

An alternative way to evaluate the heuristic policy is to use simulation. Our numerical
experience for 4-grade and 5-grade problems showed that the simulation is faster than the method

of successive approximations by as much as 100 times.

3.4 Numerical results

In this section, we present numerical results for problem examples with 2-5 grades. First, we solve a
2-grade example using the exact solution procedure. For that example, we discuss the optimal
changeover policy, and we explore the effect of problem parameters on the optimal expected
average cost per period and on the computational time of the successive approximation procedure.
Then, we solve a 3-grade example originating from a real application presented in Chapter 2, for
which we also discuss the optimal changeover policy. Finally, we solve 4-grade and 5-grade
examples using both the exact and the heuristic solution procedures. We discuss the performance
and computational efficiency of the heuristic procedure, and we explore how they are affected by

the distribution of the relative market size of the different grades and the size of weight o in
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expression (3.5). The programming codes for implementing the exact and heuristic solution

procedures are shown in Appendix D.

3.4.1 2-grade example

First, we consider a 2-grade example (N = 2), where P = 5, and the demand distribution for the two

grades is given in Table 3-1.

Table 3-1. Probability distribution of demand, Pr(D,=i), for the 2-grade example

i
n 0 1 2 3 4 5 6 E[D]
101 01501502 0.150.150.1 3
2 0.150.150.4 0150150 0 2

We run the successive approximation procedure outlined in Section 3.2 for various
combinations of storage capacity, X, and cost rate parameters, CC, CS, CL; and CL,. In each case,
we assumed that both grades have the same lost-sales cost rate, i.e., CL; = CL, = CL. The results are
shown in Table 3-2. Note that case 1 represents the situation where there is no changeover cost. For
each case shown in Table 3-2, the results are spread in three rows. The first row shows the number
of iterations of the successive approximation procedure until convergence, denoted by k., for
convergence tolerance criterion ¢ = 0.001, the total CPU time in hours on an Intel Pentium PC at
2.99 GHz with 1 GB RAM, and the resulting optimal expected average cost per period, J. The
second row shows the per period expected average number of changeovers, units spilled over, and
lost sales for each grade, denoted by E[C], E[S], E[L.] and E[L;], respectively. These quantities are
related to J by the expression

J = CC-E[C] + CS-E[S] + CL-E[L4] + CL-E[L,] (3.8)
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The third row includes the components of the inventory level vector that minimizes the

optimal differential cost function V(s, X1, X,), denoted by (X1 (s), X2 (5)), for s = 1, 2. This vector

represents the optimal (or ideal) inventory level vector for setup state s, and is equivalent to the

optimal hedging point in the manufacturing flow control literature (e.g., see Kimemia and Gershwin

(1983)) or the optimal order-up-to level in classical inventory theory.

Table 3-2. Results for the 2-grade example

Case CCCSCL

X = 40 X =60 X =80
k. CPU J - k. CPU J - k. CPU J -
E[C] E[S] E[L] E[L:] E[C] E[S] E[Ld E[L] E[C] E[S] E[Li] E[L.]

x (1) % (1) x'(2) % (2)

Xl*(l) Xz*(l) Xl*(z) Xz*(z)

Xl*(l) Xz*(l) Xl*(z) Xz*(z)

1 0 5 5 105 0.16930.7181 - 258 0.9027 0.4493 - 480 2.94380.3270 -
0.6843 0.0550 0.0606 0.0281 0.6874 0.0340 0.0380 0.0178 0.6898 0.0246 0.0277 0.0130
8 12 13 7 14 16 19 11 15 25 20 20
2 1 5 5 253 0.40450.9804 - 642 2.2917 0.6168 - 1210 7.5323 0.4494 -
0.1991 0.0777 0.0412 0.0374 0.1285 0.0486 0.0248 0.0243 0.0943 0.0353 0.0180 0.0177
1 21 22 0 2 32 34 0 2 44 46 0
3 10 1 1 448 0.70591.1433 - 489 1.74150.7522 - 502 3.15320.5592 -
0.0772 0.1854 0.0774 0.1084 0.0530 0.1111 0.0442 0.0673 0.0399 0.0804 0.0318 0.0483
0 31 31 0 0 48 48 0 0 65 65 0
4 2 5 5 240 0.38081.1616 - 599 2.08800.7327 - 1125 7.2427 0.5343 -
0.1662 0.0825 0.0419 0.0415 0.1067 0.0517 0.0252 0.0270 0.0781 0.0377 0.0174 0.0206
1 22 23 0 1 35 36 0 1 48 49 0
5 1 105 295 0.46601.3638 - 730 2.54380.8567 - 1361 8.6798 0.6241 -
0.2258 0.0757 0.0397 0.0365 0.1434 0.0475 0.0260 0.0218 0.1047 0.0346 0.0170 0.0177
1 15 16 0 1 24 25 0 2 32 34 0
6 1 5 10 323 0.51661.3652 - 807 2.81110.8570 - 1513 9.8512 0.6247 -
0.2253 0.0758 0.0397 0.0364 0.1429 0.0476 0.0258 0.0219 0.1044 0.0346 0.0170 0.0177
2 25 27 0 2 39 41 0 2 54 56 0
7 510 1 232 0.36761.6879 - 561 1.96241.0705 - 1037 6.6267 0.7823 -
0.1330 0.0930 0.0440 0.0492 0.0869 0.0578 0.0275 0.0304 0.0641 0.0420 0.0184 0.0236
0 12 12 0 0 19 19 0 0 27 27 0
8 5 110 262 0414516897 - 640 2.2517 1.0717 - 1188 7.4947 0.7831
0.1320 0.0934 0.0438 0.0498 0.0866 0.0580 0.0276 0.0305 0.0639 0.0421 0.0185 0.0236
1 34 35 0 1 53 54 0 2 71 72 0
9 1 1010 259 0412117419 - 652 2.28221.0943 - 1227 7.7948 0.7969 -
0.2426 0.0744 0.0391 0.0364 0.1546 0.0467 0.0257 0.0216 0.1116 0.0341 0.0176 0.0168
1 20 21 0 2 31 33 0 2 42 44 0
10 10 5 10 213 0.33742.7081 - 521 1.88111.7239 - 965 5.97971.2617 -
0.1203 0.1001 0.0451 0.0554 0.0790 0.0621 0.0290 0.0334 0.0582 0.0452 0.0197 0.0257
1 29 30 0 1 45 46 0 1 62 63 0
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From the results, it can be seen that the values of k. and CPU range from 105 iterations in
0.1693 hours (~10 min), in case 1 (X = 40), to 1513 iterations in 9.8512 hours, in case 6 (X = 80).
As X increases, k. and CPU increase significantly, whereas E[C], E[S] E[L1], E[L2] and J decrease,
as would be expected. Note that k. and CPU are significantly lower in case 1 than in any other case,
since CC =0 in case 1. As would also be expected, J increases as the cost rate parameters increase.
From the results, it can also be seen that as one of the cost rate parameters, say CS, increases, the
respective quantity that it multiplies in the objective function (3.8), i.e., E[C], decreases, but the
overall optimal expected average cost per period, J, increases.

In all cases, except case 1, the optimal inventory level of the grade that the facility is set up
for is close to or equal to zero, whereas the optimal inventory level of the other grade is quite
significant. The reason for this is that when the facility is set up for a particular grade, say grade 1,
ideally one would like to have low inventory of grade 1 and high inventory of grade 2, so that the
facility can continue producing grade 1 for as many periods as possible without having to change
over to grade 2 and pay the changeover cost. This is no longer true for case 1, where changeovers
cost nothing.

Also, the optimal inventory levels seem to be more or less symmetric for the two grades,
i.e., X1 (1) = X2 (2) and x2 (1) ~ x1 (2), except that the inventory level of grade 1 is slightly higher
than that of grade 2, because grade 1 has higher expected demand than grade 2.

In addition, the optimal inventory level of the grade not being produced appears to be
increasing with CL (e.g., compare cases 2 and 6) and decreasing with CS (e.g., compare cases 2 and
5). The reason for this is that the higher the cost rate of stock-outs, CL, the higher the optimal

inventory level to better hedge against stock-out occurrences. Similarly, the higher the cost rate of
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material spill-over, CS, the lower the optimal inventory level to better hedge against spill-over
occurrences.

Finally, the optimal inventory level of the grade not being produced appears to be quite
insensitive to CC (e.g., compare cases 2, 4 and 9, as well as cases 6 and 10). The reason for this is
that the optimal inventory level vector primarily serves to hedge against stock-out and spill-over
occurrences and is therefore affected by CL and CS, as was mentioned above. CC primarily affects
the lot-size of each grade that should be produced in a single run, which in turn affects the cycle
stock and changeover frequency. In other words it affects the width of the “changeover corridor”,
which we will discuss in detail in the figures that follow.

Figure 3-1 shows the optimal changeover policy as a function of inventories x; and x,, for
cases 2 and 4 of Table 3-2, for X = 40, and is representative of all other cases, except case 1, which
will be discussed later. From Figure 3-1, it can be seen that in both cases, the optimal policy
partitions the inventory space in several regions, where each region is characterized by a different
optimal changeover action. The optimal changeover policy when the facility is set up to produce
grade s and the inventory level vector (x;, X2) is in region R, denoted by x'(s, R), is shown in Table
3-3, where “changeover to grade 1” is understood to mean “changeover to grade 1 if the facility is

set up for grade 2, otherwise remain set up for grade 1”.

Table 3-3. Optimal policy «'(s, R) for the 2-grade example

S
R 12 Description

a 11 Changeover to grade 1
b 12 Do not changeover
c 2
d 2

1 Changeover to the other grade
2 Changeover to grade 2
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Figure 3-1. Optimal changeover policy for cases 2 (left) and 4 (right) of Table 3-2, for X =40

If the inventory level vector is in region c, the facility changes over from one grade to the
other in each period. This behavior is sometimes referred to as “chattering”. If the inventory level
vector is in region b and the facility is set up for grade 1, then the facility will keep producing grade
1 in successive periods, until the inventory level vector crosses the border between regions b and d.
At that point, the facility will change over to grade 2. The facility will then keep producing grade 2
in successive periods, until the inventory level vector crosses the border between regions b and a.
At that point, it will change over to grade 1, and the cycle will be repeated. Note that region b is
wider in case 4 than in case 2, indicating that in case 4, the facility produces longer runs
(campaigns) of each grade with less frequent changeovers. This is because the changeover cost in
case 4 is twice as big as in case 2. In fact, the widening of region b in case 4 is so big that it has
caused region c to disappear. Also note that the inventory space partition is more or less symmetric
for the two grades, with regions ¢ and b forming a more or less diagonal corridor bounded by
regions a and d. This corridor has a slight displacement in favor of grade 1, due to the fact that
grade 1 has a higher expected demand than grade 2, and a slope which is approximately equal to the

ratio E[D,]/E[D;] = 2/3. In addition, it is funnel-shaped, with its narrow end towards the origin and
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its wide end towards the inventory state space outer facet, indicating that more frequent
changeovers take place when the inventory levels of both grades are low and the risk of a stock-out
is high, and less frequent changeovers take place when the inventory levels are high. The borders of
the corridor towards its wider end tend to align themselves to the orthogonal lines x; = ¢; and x; =
Cy, respectively, where c; and c, are some constants. This means that when the facility is set up for
grade 2, it should change over to grade 1, if x; drops below c;, irrespectively of x,, as long as X, is
high. Thus, the optimal changeover policy, which is generally “global” in that changeover decisions
depend on both x; and x,, becomes “local” in one grade when the inventory level of the other grade
is high.

Note that when s = 1, x; increases by 2 units and x, decreases by 2 units per period on
average, while when s = 2, x; decreases by 3 units and x; increases by 3 units per period on average.
This implies that on average, the inventory level vector tracks the line x; + x, = X", for some X’< X.
This line is parallel to the outer facet of the inventory state space, x; + X, = X. Under the optimal
changeover policy, the line x; + X, = X”should connect the optimal target inventory level points
(x1"(1), x2'(1)) and (x1"(2), X2 (2)). This means that X “should satisfy: x; (1) + X2 (1) = X”and x; (2)
+ X, (2) = X’ Indeed, in all cases shown in Table 3-2, there exists a value of X”that satisfies the
above two equations. For example, in case 2, X =40, x; (1) + X2 (1) = 1 + 21, 1 (2) + X, (2) = 22 +
0, and therefore, X" = 22, suggesting that under the optimal changeover policy, the FG inventory
buffer should be kept a little over half full. The line connecting the optimal target inventory levels
of the two setup states for this case is shown as a dotted line in Figure 3-1 (left). Under the optimal
changeover policy, the inventory level vector on average moves back and forth along the segment
of that dotted line that falls in region b, as the facility changes over from one grade to the other,
whenever the inventory level vector enters region a or d. Such a trajectory is on average parallel to

the optimal inventory level trajectory of the deterministic version of the problem (where the demand
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for each grade in each period is constant and equal to its expected value) which follows the line
connecting the two corners of the inventory state space, (X, 0) and (0, X), because that trajectory
minimizes the changeover frequency without incurring any lost-sales or spill-over cost.

Figure 3-2 shows the optimal changeover policy for cases 3 and 1 of Table 3-2, for X = 80.
Note that the inventory space partition in case 3, shown in Figure 3-2 (left), is similar to that in case
4, shown in Figure 3-1 (right), except that region b is much wider. This is because in case 3, the

changeover cost rate is much higher than the other cost rates, compared to case 4.

805
60j
40¢

20¢

60 80

Figure 3-2. Optimal changeover policy for case 3 (left) and case 1 (right) of Table 3-2, for X = 80

The structure of the inventory space partition in case 1, shown in Figure 3-2 (right), is
different than the partitions shown in the other figures. First, region b is absent, which means that
the facility need not produce long campaigns of each grade with infrequent changeovers. This is
because the changeover cost is zero. If the inventory level vector is in region c, the facility changes
over from one grade to the other in each period, as in case 2, shown in Figure 3-1 (left). Also, as in
case 2, the corridor defined by region c is diagonal for low inventory vector levels, with a slope

which is approximately equal to ratio E[D,]/E[D,] = 2/3. The difference with case 2 and all the
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other cases as well is that region c turns into a narrow constant-width corridor which is parallel to
the x;-axis at the level of x, = 5 + 2, for values of x; larger than approximately 10. This means that
unless the inventory level of grade 2 is extremely low, priority is always given to the production of
grade 1. This can be explained as follows. As was mentioned earlier, when the facility is set up for
grade 1, x; advances by 2 units and x, drops by 2 units per period on average, whereas when the
facility is set up for grade 2, x, drops by 3 units and x, advances by 3 units per period on average.
Given that there is no changeover or inventory holding cost, if the inventory level vector is not too
low, the former state (i.e., the state where the facility is set up for grade 1) is preferable to the latter
state, because on average it results in smaller jumps per period of the inventory level vector, and
hence prolongs the time that the inventory level vector approaches the orthogonal boundaries of the

triangular inventory state space, where the risk of incurring a lost-sales cost is high.

3.4.2 3-grade example

Next, we consider a 3-grade (N = 3) example that originated from a real dynamic scheduling
application of a continuous-flow processing plant that produces three grades of Polyethylene
Terephthalate (PET) resin, presented in Chapter 2. PET is the workhorse polyester used for making
stretch-blown beverage bottles. The three grades differ from each other in the combination of two
key properties: Color and Intrinsic Viscosity (IV), as shown in Table 3-4. The chain of allowable

changeovers is 1-2-3.

Table 3-4. Description of bottle-grade PET resin final products

Grade Name Description IV color
1 Water Grade (WG) PET for water bottles low light
2 Soft Drink (SD)  PET for carbonated soft-drink bottles high light

3 Fast Heat (FH) PET for dark-colored carbonated soft-drink bottles high dark

77

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 15:50:34 EEST - 3.146.37.111



The plant produces 180 tons/day and has a FG storage capacity of 3440 tons. We discretize
material and time so that each unit of material produced, stored, or demanded in each time period of
the MDP equals 30 tons, and each time period equals 48 minutes. This makes P = 6 and X = 115.
The distribution of the discretized demand for the three grades is given in Table 3-5. Note that the
total expected demand rate is 6.0291 units per period, which is very close to the production rate P.
The cost rate parameters that we used are CC = 1, CS = CL; = CL;, = 2, to reflect the fact that the
plant manager wishes to avoid frequent changeovers, but is even more wary about material spill-

over and lost sales.

Table 3-5. Probability distribution of demand, Pr(Dn=i), for the 3-grade example

I
n O 1 2 3 4 5 6 7 8 9 10 E[Dn]
1 0.1676 0.1429 0.3214 0.1538 0.1016 0.0604 0.0247 0.0110 0.0137 0.0027 0.0000 2.3159
2 0.50000.1648 0.1071 0.0824 0.0604 0.0302 0.0220 0.0137 0.0027 0.0110 0.0055 1.4231
3 0.1519 0.2652 0.2956 0.0718 0.0663 0.0525 0.0442 0.0138 0.0276 0.0028 0.0083 2.2901

We solved the problem optimally using the successive approximation method outlined in
Section 3.2. The method converged after 533 iterations that took 269 hours on an Intel Pentium PC
at 2.99 GHz with 1 GB RAM, for convergence tolerance criterion ¢ = 0.01. The resulting optimal
expected average cost per period, J, is 0.4522. As in the 2-grade example, the optimal policy
partitions the inventory space in several regions, each characterized by a different optimal
changeover action. The optimal changeover policy 4 (s, R) is given in Table 3-6.

Figures 3-3 and 3-4 show the optimal changeover policy as a function of inventory levels x;
and xs, for given values of inventory level x,. More specifically, Figure 3-3 (left), shows the optimal
changeover policy when x, (= 90) >> x; + x3. From that figure, it can be seen that if (X3, x3) € a, in

which case x, >> X3 >> X, then the production facility must change over to the next lower grade so
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that it is eventually set up for grade 1, because x; is significantly lower than x, and xs. If (x4, X3) € b,
in which case X, >> x3 > X3, then the facility must change over to grade 1, if it is set up for grade 2.
If it is set up for grade 3, however, it need not change over to grade 2 (to eventually change over to
grade 1), because x; is not that much lower than x3 to justify the cost of such a changeover. The
optimal changeover policies in regions | and f are symmetric to those in regions a and b,

respectively, with the roles of x; and x3 being reversed.

Table 3-6. Optimal policy « (s, R) for the 3-grade example

s
12 3 Description

112 Changeover to the next lower grade

113 If setup for grade 2, changeover to grade 1

122 If setup for grade 3, changeover to grade 2

12 3 Do not changeover

132 If setup for grade 2 or 3, changeover to grade 3 and 2, respectively

133 If set up for grade 2, changeover to grade 3

219 If set up for grade 1 or 3, changeover to grade 2; if set up for grade 2, changeover to grade
1

2 13 Ifsetup for grade 1 or 2, changeover to grade 2 and 1, respectively

2 2 2 Changeover to grade 2

223 If set up for grade 1, changeover to grade 2

939 I3f set up for grade 1 or 3, changeover to grade 2; if set up for grade 2, changeover to grade

2 33 Changeover to the next higher grade

- D o0 oo

x — - «

The structure of the optimal changeover policy, described above, which holds for very high
values of x,, also holds for smaller values of x,, as seen by Figure 3-3 (right), where x, (= 70) > x; +
X3.

Figure 3-4 (left), shows the optimal changeover policy when x, (= 30) < Xx; + X3. As can be
seen from that figure, in addition to regions a, b, f and I, three new regions enter the picture,
namely, regions c, d and j. If (X1, X3) € ¢, in which case x3 >> X, > X3, then the facility must change

over to grade 2, if it is set up for grade 3. If it is set up for grade 2, however, it need not change over
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to grade 1, because x; is not that much lower than x; to justify the cost of such a changeover. If (x,
X3) € d, in which case the inventory levels of the three grades are not that different from each other,
then the facility need not change over at all, no matter what grade it is set up for. The optimal

changeover policy in region j is symmetric to that in region c, with the roles of x; and xs being

reversed.

0 5 10 X, 15 20 25
Figure 3-3. Optimal changeover policy for x, = 90 (left) and x, = 70 (right), for the 3-grade

example

0 20 40, 60 80 100

Figure 3-4. Optimal changeover policy for x, = 30 (left) and x, = 10 (right), for the 3-grade

example
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Finally, Figure 3-4 (right), shows the optimal changeover policy when x; (= 10) << x; + Xs.
As can be seen from that figure, in addition to the regions that appear in Figure 3-4 (left), four new
regions enter the picture, namely, regions i (top-left), j (top), ¢ (right), and i (bottom-right). If (xy,
X3) € i (top-left), in which case X3 >> x; > Xy, then the facility must change over to grade 2. More
specifically, if the facility is set up for grade 1, then it must change over to grade 2, simply because
X2 < X1. If the facility is set up for grade 3, on the other hand, then it must change over to grade 2
mostly to be in a better position to change over to grade 1, if needed, given that x; is also low and is
being depleted at a faster rate than x,. If (X1, x3) € j (top-left), in which case X3 > X3 >> X5, then the
facility must change over to grade 2, if it is set up for grade 1, because x, << xy. If it is set up for
grade 3, however, it need not change over to grade 2, because it is no longer necessary to be in a
better position to change over to grade 1, if needed, given that x; in region j is not as low as it is in
region i (top-left). The optimal changeover policies in regions c (right) and i (bottom-right) are
symmetric to those in regions j (top) and i (top-left), respectively, with the roles of x; and x3 being
reversed.

Table 3-7 shows the elements of the optimal target inventory level vector for each set up
state s. As in the 2-grade example, the optimal target inventory level of the grade being produced is
close to zero, whereas the optimal target inventory level of the grades not being produced are
positive and quite big. In fact, the further away (in terms of number of changeovers) a grade is from

the grade produced, the higher its optimal target inventory level.

Table 3-7. Optimal target inventory level, x,"(s), for the 3-grade example

123
22247
22 356
4731 3

WN R O»
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3.4.3 4-grade and 5-grade examples

Finally, we consider a 4-grade (N = 4) and a 5-grade (N = 5) example. In each example, we assume
that the demand for each grade is identically distributed to one of the random variables D;, j = A, B,

C, D, whose distributions are given in Table 3-8.

Table 3-8. Probability distribution of demand, Pr(D; = i), for the 4-grade and 5-grade examples

|
i 0 1 2 3 ED]
A 04 05 0.050.05 0.75
B 02505 0250 1
C 02502505 0 1.25
D 00502 04503 2

For each example, we consider four different cases. In each case, the set of the probability
distributions of the demands of the different grades is the same and such that the total expected
demand is equal to the production rate. The difference between the cases is in the order in which
these distributions appear in the chain of allowable changeovers. For instance, in all cases of the 4-
grade example, we assume that the demands of two of the grades are identically distributed to
random variable Dg, which has an expected value of 1, and the demands of the other two grades are
identically distributed to random variable Dp, which has an expected value of 2. In other words, two
grades have low demand and two grades have high demand. In case 1, the grades with the low
demand are the end grades, 1 and 4, whereas the grades with the high demand are the middle
grades, 2 and 3. To indicate this order we use the notation “B,D,D,B”. In case 2, the order is
D,D,B,B, which means that grades 1 and 2 have high demand and grades 3 and 4 have low demand,
and so on. Hence, each case represents a different way that total expected demand is distributed

among the individual grades.
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First, we solved each case optimally using the successive approximation procedure
described in Section 3.2, for convergence tolerance criterion & = 0.001. Then, we solved each case
using the heuristic procedure described in Section 3.3. In the implementation of the heuristic
procedure we employed the faster alternative to approximate the sum of the expected lost sales of
the individual grades, described at the end of Section 3.3, which uses expression (3.5) to estimate
the aggregate inventory levels of the composite grades, for values of a ranging from 0 to 1 with a
step size of 0.1. In all cases, we assumed that CC=CS=CL,=1,n=1,...,5 and P =6.

The results for the 4-grade example, for X = 30, are shown in Table 3-9. The CPU times
reported are in hours on an Intel Core i7 PC at 2.67 GHz with 3 GB RAM. For the heuristic, we
show the total CPU time in hours that it took to solve the (N — 2) 3-grade sub-problems and
generate the heuristic policy, but not the time it took to evaluate the heuristic policy. As was
mentioned at the end of Section 3.3, the time it takes to evaluate the heuristic policy using the value
iteration method is significant, whereas the alternative of using discrete-time system simulation is
much faster. In all cases of the 4-grade problem, we used the value iteration method. The optimal
value of o in the heuristic procedure is denoted by o, and the corresponding expected average cost
per period is denoted by J"(a”). The last column of Table 3-9 shows the percent cost increase
between the heuristic and the optimal policy. The complete set of the results of the heuristic policy
evaluated both with the value iteration method and simulation, for different values of o, are shown
in Appendix E.

In case 1, the grades with the highest expected demands are in the middle of the chain of
allowable changeovers, whereas in case 4, they are at the two ends of the chain. Hence, case 1
represents a situation where the dispersion of the total expected demand among the individual
grades is relatively low, because most of the time the production facility will be changing over

between the highly demanded grades, 2 and 3, which are adjacent. Case 4, on the other hand,
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represents a situation where the dispersion of the total expected demand is relatively high, because
most of the time the production facility will be changing over between the highly demanded grades,

1 and 4, which are spaced 3 grades apart. Cases 2 and 3 are intermediate cases.

Table 3-9. Results for the 4-grade example

Demand Exact Heuristic % cost
Case pattern k. CPU J CPU o J"«) difference
1 B,DDB 55 857 1.0034 0.0461 0.7 1.2442 24.00
2 D,D,BB 156 24.29 1.0927 0.0574 0.5 1.2253 12.13
3 D,B,D,B 187 29.12 1.1835 0.0748 0.1 1.3207 11.59
4 D,BB,D 110 17.13 1.2881 0.1040 0.1 1.3139 1.96

From the results, it can be seen that as we move from case 1 to case 4, i.e., as the dispersion
of the total demand among the individual grades increases, the expected average cost per period
increases, because the number of changeovers needed to effectively meet the demands for all the
grades increases. To see this, note that in case 1, every time the facility must change over between
the highly demanded grades, 2 and 3, one changeover is needed, namely, 2—3. In case 4, however,
when the facility must change between the highly demanded grades, 1 and 4, three costly but
inevitable changeovers are needed, namely 1—2, 2—3, and 3—4. During the latter two
changeovers, the lowly demanded grades, 2 and 3, are each produced for one period. These
inevitable single-period production runs result in preventing the inventory levels of grades 2 and 3
from dropping too much on average, which would cause a significant imbalance among the
inventory levels of all the grades. This then suggests that the bigger the dispersion of the total
demand among the individual grades, the smaller the imbalance problem. Moreover, as was
mentioned in Section 3.3, the smaller the imbalance problem, the smaller the optimal value of «,
and the better the performance of the heuristic. This explains why, as we move from case 1 to case

4, o and the percent cost increase between the heuristic and the optimal policy decrease. Actually,
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in all cases, except case 1, J"(«) is relatively insensitive to parameter «, as can be seen from Figure
3-5. Case 1 tends to have lower cost for a between 0.5 and 0.7 and significantly higher cost for «

between 0.8 and 1.

1.4
135 —e—Case 1
T
1.25 ---X-- Case 4

0 010203040506070809 1
a

Figure 3-5. Expected average cost per period of the heuristic, J"(c), vs. , for the 4-grade example

Finally, the cost increase when using the heuristic instead of the exact method is 12.42% on
average and ranges between 1.96% for case 4 and 24% for case 1. Note, however, that the heuristic
method is between 160 and 420 times faster than the exact method.

The results for the 5-grade example, for X = 20, are shown in Table 3-10. In all cases, we
used discrete-time system simulation to evaluate the heuristic policy. To obtain each estimate J"()
and its 95% confidence interval, denoted by “c.i.”, we run 60 simulations, each with a time horizon
of 100,000 time units. The complete set of the results of the heuristic policy evaluated with
simulation, for different values of «, are shown in Appendix E.

The results are qualitatively similar to those obtained for the 4-grade example. Namely, the
smaller the imbalance problem, the smaller the optimal value of «, and the better the performance of

the heuristic. In all cases of this example, o is quite small and J"() is slightly increasing and
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relatively insensitive to parameter o, at least for values of o smaller that 0.5, as can be seen from
Figure 3-6. The cost increase when using the heuristic instead of the exact method ranges between
7.59% for case 4 and 14.46% for case 1 and is 12.75% on average, which is practically the same as
the average cost difference in the 4-grade example. The heuristic method, however, is between 600

and 1700 times faster than the exact method, which is quite significant.

Table 3-10. Results for the 5-grade example

Demand Exact Heuristic % cost

Case pattern k. CPU J CPU o J(a’)(95%c.i) increase
1 ACD,CA 35 38.052.6520 0.0223v 0.1 3.0355+0.0016 14.46
2 DCCAA 71 78.70 3.0016 0.1293v 0.1 3.4512 +0.0015 14.98
3 DCAAC 129 141.21 3.4916 0.1761v 0 3.8759 +0.0020 11.00
4

DACAC 129 140.39 3.6572 0.1758v 0 3.9348 + 0.0020 7.59

—o—Case 1
-- 4 --Case 2
—4a—Case 3
--X--Case 4

0 0102 03 04 0506 07 08 09 1
a

Figure 3-6. Expected average cost per period of the heuristic, J"(a), vs. a, for the 5-grade example

3.5 Conclusions

We studied a new version of the SELSP, for which we developed a MDP model. For problems with
2 and 3 grades, we numerically solved the MDP problem and obtained useful insight into the

influence of the problem parameters and structure of the optimal changeover policy, which
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partitions the state space into different regions, each characterized by different optimal changeover
actions.

For problems with N grades, N > 3, we developed a heuristic solution procedure which is
based on approximating the original multi-grade problem by (N — 2) 3-grade sub-problems and
numerically solving each sub-problem. We tested the heuristic for problems with 4 and 5 grades.
For the 4-grade examples, the heuristic procedure was 160-420 times faster than the numerical
procedure for solving the exact problem and the heuristic solution performed on average 12.42%
worse that the exact solution. For the 5-grade examples, the heuristic procedure was 600-1700 times
faster than the numerical procedure for solving the exact problem and the heuristic solution
performed on average 12.75% worse that the exact solution. The fact that the performance of the
heuristic solution is more or less the same for the 4-grade and 5-grade problems is an encouraging
sign for problems with more than 5 grades. The numerical results showed that the bigger the
dispersion of the total expected demand among the individual grades, the better the performance of
the heuristic.

We can easily solve problems with more than 5 grades using the heuristic; however, it is
impossible to compare the performance of the changeover policy that the heuristic generates to that
of the optimal changeover policy, because it is impossible to even start the value iteration method to
find the optimal policy, as the state space grows dramatically with the number of grades and simply
there is not enough computer memory to store it. For example, for a problem with N = 6 and X = 20,

the state space contains (6-20°)/2 = 192x10° points.
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Chapter 4 Dissertation summary

In Chapter 2, we developed an MILP model for the production scheduling of a multi-grade PET
processing chemical plant. We also presented an application of the model on a real case study,
along with some discussion that provides insight into its behavior. The model minimizes the cost
associated with the number of grade changeovers, while also ensuring that the capacity constraints
of the problem are not violated and that the demand for final products is satisfied on time. The
model incorporates all aspects of the problem under consideration and can be easily extended to
address additional ones that may arise in different situations, because of the large number of
decision variables that enhances its flexibility. We believe that the main contribution of this work is
that it addresses efficiently an important practical application, whose solution exhibits high
complexity.

A number of possible directions for future research arise from this work. Firstly, one could
try to develop a continuous-time model formulation for this problem and compare its results to
those of the discrete-time model that we present here. Our guess is that the development of such a
model would be demanding and would not necessarily be computationally more efficient than the
present discrete-time model. It would, however, represent more accurately the real production and
storage process, which is continuous in nature. A second possible direction would be to relax some
of the hard constraints, e.g. the on-time delivery of demand constraints (2.24), (2.25) and (2.27)

and/or the safety stock constraints (2.21) and (2.29), as was discussed at the end of Section 3, and
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see if this leads to significant benefits. Another possible direction would be to develop a more
accurate SELSP formulation than the one presented in Chapter 3 to better design the safety stock
levels, or resort to some stochastic integer programming technique to solve the scheduling problem
under uncertainties. A recent work relevant to this subject is due to Sand and Engell (2004), who
utilize two-stage stochastic integer programming techniques to solve scheduling problems of
flexible chemical batch processes that exhibit uncertainties. Finally, one could try to fit the
scheduling model developed in this dissertation within a broader planning and supply chain
framework, e.g., as discussed in Kallrath (2002).

In Chapter 3, we studied a new version of the SELSP, for which we developed a MDP
model. For problems with 2 and 3 grades, we numerically solved the MDP problem and obtained
useful insight into the influence of the problem parameters and structure of the optimal changeover
policy, which partitions the state space into different regions, each characterized by different
optimal changeover actions.

For problems with N grades, N > 3, we developed a heuristic solution procedure which is
based on approximating the original multi-grade problem by (N — 2) 3-grade sub-problems and
numerically solving each sub-problem. We tested the heuristic for problems with 4 and 5 grades.
For the 4-grade examples, the heuristic procedure was 160-420 times faster than the numerical
procedure for solving the exact problem and the heuristic solution performed on average 12.42%
worse that the exact solution. For the 5-grade examples, the heuristic procedure was 600-1700 times
faster than the numerical procedure for solving the exact problem and the heuristic solution
performed on average 12.75% worse that the exact solution. The fact that the performance of the
heuristic solution is more or less the same for the 4-grade and 5-grade problems is an encouraging

sign for problems with more than 5 grades. The numerical results showed that the bigger the
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dispersion of the total expected demand among the individual grades, the better the performance of
the heuristic.

We can easily solve problems with more than 5 grades using the heuristic; however, it is
impossible to compare the performance of the changeover policy that the heuristic generates to that
of the optimal changeover policy, because it is impossible to even start the value iteration method to
find the optimal policy, as the state space grows dramatically with the number of grades and simply
there is not enough computer memory to store it. For example, for a problem with N = 6 and X = 20,
the state space contains (6-20°)/2 = 192x10° points.

A possible direction for future research would be to try to develop a better heuristic that
somehow uses the optimal value functions of the sub-problems, although we should point out that
our initial experimentation with this possibility has not been encouraging. Another direction would
be to extend the model so as to accommodate other types of FG storage than the common FG buffer
that we assumed in our model. For example, one could consider multiple parallel FG buffers (e.g.,
industrial silos) that can store only one grade at a time, or two serial FG buffers, e.g., one for storing
bulk FGs and the second for storing packaged FGs, as is the case in the real application described in

Chapter 2.
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Appendix A: Demand data used in the MILP model
application presented in Section 2.3

Table A-1. Daily demand values for 6 months used in the example solved in Section 2.3

t dST;; + dBCyy dST4 + dBCs dBB1; dBB,; dBBg4

1/6/2005 48 25 385 55 1441
2/6/2005 50 25 1.7 902 72.6
3/6/2005 50 23 46.2 429 2472
4/6/2005 23 23 0 0 0
5/6/2005 0 0 0 0 0
6/6/2005 73 71 55 22 242
7/6/2005 73 48 264 704 96.8
8/6/2005 25 46 80.3 100.1 96.8
9/6/2005 73 23 0 671 946
10/6/2005 25 71 11 131 484
11/6/2005 23 23 0 0 0
12/6/2005 25 48 0 0 0
13/6/2005 48 23 253 29.7 726
14/6/2005 50 46 30.8 385 72.6
15/6/2005 73 23 286 374 231
16/6/2005 73 23 36.3 143 72.6
17/6/2005 25 46 275 484 57.2
18/6/2005 46 46 0 0 0
19/6/2005 0 0 0 0 0
20/6/2005 73 23 0 0 0
21/6/2005 75 46 48.4 1144 715
22/6/2005 73 23 0 1859 95.7
23/6/2005 50 69.38 18.7 51.7 484
24/6/2005 71 46 0 0 0
25/6/2005 98 0 0 0 0
26/6/2005 0 0 0 0 0
27/6/2005 0 23 68.2 138.6 121
28/6/2005 75 46 23.1 136.4 143
29/6/2005 73 46 352 2211 O
30/6/2005 98 23 11 1078 23.1
1/7/2005 73 23 23.1 46.2 163.9
2/7/2005 50 23 0 0 0
3/7/2005 0 23 0 0 0
4/7/2005 97.8 46 473 693 726
5/7/2005 50 23 242 1133 95.7
6/7/2005 98 23 242 68.2 119.9
7/7/2005 50 46 55 264 704
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8/7/2005 73 23 55 638 211.2

9/7/2005 48 46 0 0 0
10/7/2005 0 0 0 0 0
11/7/2005 73 23 53.9 105.6 118.8
12/7/2005 50 50 275 90.2 116.6
13/7/2005 73 23 341 99 9
14/7/2005 50 73 16.5 946 40
15/7/2005 48 46 0 231 126.2
16/7/2005 23 0 0 0 0
17/7/2005 0 23 0 0 0
18/7/2005 73 23 53.9 77 946
19/7/2005 73 23 286 0 139.7
20/7/2005 75 46 55 935 60.5
21/7/2005 73 23 0 107.8 352
22/7/2005 73 46 35.2 935 1199
23/7/2005 25 46 0 0 0
24/7/2005 0 0 0 0 0
25/7/2005 73 23 48.4 23.1 46.2
26/7/2005 73 46 0 0 0
27/7/2005 73 23 946 913 451
28/7/2005 50 71 924 22 90.2
29/7/2005 98 25 61.6 111.1 O
30/7/2005 0 23 0 0 0
31/7/2005 124.17 23 0 0 0
1/8/2005 50 46 52.8 1155 0
2/8/2005 96 23 113.3 209 66
3/8/2005 50 48 913 451 924
4/8/2005 48 23 204 96.8 38.5
5/8/2005 50 46 231 682 44
6/8/2005 23 23 0 0 0
7/8/2005 23 23 0 0 0
8/8/2005 50 46 23.1 89.1 473
9/8/2005 73 23 67.1 90.2 473
10/8/2005 73 23 4 462 O
11/8/2005 0 71 90.2 166.1 48.4
12/8/2005 73 23 23.1 136.4 47.3
13/8/2005 23 23 0 0 0
14/8/2005 0 0 0 0 0
15/8/2005 0 23 0 0 0
16/8/2005 48 46 231 902 O
17/8/2005 48 71 89.1 0 693
18/8/2005 75 48 0 924 231
19/8/2005 48 221 231 46.2 46.2
20/8/2005 23 23 0 0 0
21/8/2005 0 23 0 0 0
22/8/2005 48 23 231 22 473
23/8/2005 50 71 484 66 46.2
24/8/2005 23 46 231 110 O
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25/8/2005 46 202 473 66 231

26/8/2005 50 23 495 0 462
27/8/2005 0 48 0 0 0
28/8/2005 0 23 0 0 0
29/8/2005 48 23 89.1 121 704
30/8/2005 25 71 45.1 89.1 231
31/8/2005 23 46 242 638 O
1/9/2005 50 48 45.1 4401 O
2/9/2005 46 46 23.11 86.91 24.21
3/9/2005 23 23 0 0 0
4/9/2005 0 25 0 0 0
5/9/2005 73 23 913 O 0
6/9/2005 25 46 242 231 O
7/9/2005 73 23 58.3 242 13.2
8/9/2005 48 48 0 0 0
9/9/2005 48 46 473 209 924
10/9/2005 23 23 0 0 0
11/9/2005 100 0 0 0 0
12/9/2005 0 48 13.2 260.4 17.6
13/9/2005 74 49 473 693 242
14/9/2005 50 48 0 671 O
15/9/2005 49 24 154 1815 O
16/9/2005 25 49 231 231 116.6
17/9/2005 24 24 0 0 0
18/9/2005 75 24 0 0 0
19/9/2005 99 24 473 209 O
20/9/2005 74 24 473 231 341
21/9/2005 110.2 48 35.2 1287 2.2
22/9/2005 194.7 24 95.7 693 22
23/9/2005 103.7 48 29.7 116.6 24.2
24/9/2005 0 0 0 0 0
25/9/2005 75 48 0 0 0
26/9/2005 74 0 0 484 715
27/9/2005 147.1 0 23.1 117.7 24.2
28/9/2005 271.7 24 172.7 3003 O
29/9/2005 144.9 48 209 165 24.2
30/9/2005 50 48 0 276.1 39.6
1/10/2005 24 48 0 0 0
2/10/2005 0 24 0 0 0
3/10/2005 50 24 0 231 242
4/10/2005 97.3 48 473 22 22
5/10/2005 97.1 48 231 0 176
6/10/2005 49 24 0 242 924
7/10/2005 98.2 0 242 O 0
8/10/2005 24 24 0 0 0
9/10/2005 49 24 0 0 0
10/10/2005 72.3 48 473 0 0
11/10/2005 97.7 24 23.7 209 24.2
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12/10/2005 48.1 24 231 0 0

13/10/2005 99 24 0 275 242
14/10/2005 25.3 48 253 396 924
15/10/2005 0 0 0 0 0
16/10/2005 49 24 0 0 0
17/10/2005 73.2 24 242 O 0
18/10/2005 1311 24 56.1 59.4 40.7
19/10/2005 49 0 0 429 O
20/10/2005 50 24 0 0 0
21/10/2005 48.4 72 0 0 693
22/10/2005 0 24 0 0 0
23/10/2005 24 24 0 0 0
24/10/2005 78.4 48 44 0 0
25/10/2005 95.4 24 704 231 46.2
26/10/2005 98 48 0 264 O
27/10/2005 46.2 24 46.2 0 242
28/10/2005 0 0 0 0 0
29/10/2005 24 48 0 0 0
30/10/2005 0 24 0 25 0
31/10/2005 222.5 48 1485 44 165
1/11/2005 49.2 24 242 231 484
2/11/2005 142.5 24 935 231 484
3/11/2005 49 48 0 98 O
4/11/2005 45.1 24 451 O 0
5/11/2005 0 0 0 0 0
6/11/2005 24 24 0 0 0
7/11/2005 73.4 48 48.4 49.2 199.1
8/11/2005 49 24 0 3.3 0
9/11/2005 213.7 24 139.7 2134 O
10/11/2005 83.4 24 99.4 242 46.2
11/11/2005 72.4 48 484 803 O
12/11/2005 0 24 0 0 0
13/11/2005 25 24 0 0 0
14/11/2005 133.2 24 352 0 1793
15/11/2005 25 24 0 29.7 1155
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Appendix B: Single 2-week MILP problem results vs. two 1-
week MILP problem results for the MILP model application
presented in Section 2.3

Table A-2. Optimal cost (number of changeovers) and CPU time for each of the 100 instances of
the numerical example presented in Section 2.3, where we solved the scheduling problem for weeks
5 and 6 as a single 2-week MILP problem and as two sequential 1-week MILP problems,

respectively

Single 2-week
MILP problem Two 1-week MILP problems
CPU(sec) Optimal Cost CPU(sec) Optimal Cost
week 5 week 5 CPU(sec) week 5 (=20.02) week 5 (=3)
Instance +week 6 + week 6 week 6 + week 6 + week 6
1 179.28 3 202.4 222.42 5
2 127.31 3 3.21 23.23 5
3 135.04 3 2.99 23.01 5
4 189.95 3 56.79 76.81 5
5 738.3 3 587 607.02 INF
6 189.8 3 2.49 22.51 5
7 121.3 3 4.01 24.03 5
8 155.5 3 3.17 23.19 5
9 198.3 3 6.33 26.35 5
10 141.3 3 5.44 25.46 5
11 111.4 3 250.36 270.38 5)
12 1210.9 3 407 427.02 INF
13 144.3 3 4.01 24.03 5
14 99.98 INF 0.22 20.24 INF
15 158.41 3 94.34 114.36 5
16 148.56 3 6.46 26.48 5
17 268.66 3 250.86 270.88 5
18 138.39 3 121.24 141.26 5
19 137.41 3 5.93 25.95 5
20 118.88 3 5.49 25.51 5
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21 226.54 3 1.29 21.31 5
22 156.59 3 5.99 26.01 5
23 204.75 3 4.67 24.69 5
24 200.52 3 12.98 33 5
25 216.71 3 48.45 68.47 5
26 142.29 3 5.34 25.36 5
27 266.48 3 201.35 221.37 5
28 296.78 3 200.64 220.66 5
29 218.37 3 0.42 20.44 INF
30 187.51 3 104.03 124.05 5
31 119.41 3 0.92 20.94 INF
32 158.06 3 499.56 519.58 5
33 112.16 INF 0.21 20.23 INF
34 216.4 3 46.65 66.67 5
35 182.61 3 4.13 24.15 5
36 152.77 3 5.03 25.05 5
37 183.51 3 1.42 21.44 INF
38 151.94 3 99.65 119.67 5
39 207.92 3 4.09 2411 5
40 130.38 3 1.86 21.88 INF
41 115.82 3 0.18 20.2 INF
42 109.77 3 30.47 50.49 5
43 142.81 3 10.46 30.48 5
44 157.61 3 5.02 25.04 5
45 124.11 3 23.62 43.64 5
46 183.66 3 4.47 24.49 5
47 145.49 3 3.53 23.55 5
48 131.75 3 3.33 23.35 5
49 137.27 3 503.62 523.64 5
50 131.76 3 57.36 77.38 5
o1 437.94 3 1.2 21.22 5
52 102.41 3 35.03 55.05 5
53 430.61 3 29.6 49.62 5
54 200.77 3 273.2 293.22 5
55 219.12 3 69.33 89.35 5
56 130.44 3 161.98 182 5
57 163.76 3 52.2 72.22 5
58 159.11 3 51.4 71.42 5
59 177.42 3 173.9 193.92 5
60 152.49 3 163.26 183.28 5
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61 163.03 3 1.88 21.9 5
62 156.66 3 5.22 25.24 5
63 112.38 INF 0.24 20.26 INF
64 218.07 3 46.01 66.03 5
65 183.01 3 390.63 410.65 5
66 150.34 3 157.71 177.73 5
67 183.84 3 464.11 484.13 5
68 152.08 3 4.81 24.83 5
69 204.85 3 137.9 157.92 5
70 131.61 3 143.15 163.17 5
71 114.78 3 4.71 24.73 5
72 109.13 3 68.9 88.92 5
73 142.85 3 32.9 52.92 5
74 156.07 3 3.29 23.31 5
75 123.44 3 5.98 26 5
76 183.85 3 31.35 51.37 5
7 146.31 3 48.62 68.64 5
78 131.57 3 119.8 139.82 5
79 136.55 3 139.11 159.13 5
80 131.43 3 54.03 74.05 5
81 435.12 3 2.53 22.55 5
82 101.27 3 5.22 25.24 5
83 426.44 3 4.37 24.39 5
84 202.55 3 3.32 23.34 5
85 221.36 3 431 24.33 5
86 131.39 3 6.73 26.75 5
87 163.82 3 3.91 23.93 5
88 159.19 3 321.16 341.18 5
89 175.32 3 2.72 22.74 5
90 151.38 3 387.8 407.82 5
91 163.8 3 158.36 178.38 5
92 234.86 3 363.72 383.74 5
93 113.78 3 20.18 40.2 5
94 200.03 3 257.8 277.82 5
95 149.38 INF 1.92 21.94 INF
96 66.81 INF 1.66 21.68 INF
97 136.98 3 433.7 453.72 5
98 143.39 3 50.47 70.49 5
99 68.08 INF 1.68 21.7 INF
100 114.87 3 117.65 137.67 5
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Appendix C: AMPL codes for the MILP problem developed
In Section 2.2

AMPL code for the MILP formulation presented in Section 2.2: VPI6months.txt

set I; # set of colors

set J; # set of final grades
set Q; # set of silos

set 'V, #number of loops

param T; #time

param P;  # amount produced in one period
param M; # number of slots in SSP
param N; # number of slots in TSS
param C; # cost coefficient 1

param D; # cost coefficient 2

param B; # duration of a color transition
param F;  # duration of a viscosity transition (always even)
param dST{j in J,t in N+M+1..T};

param dBC{j in J,t in N+M+1..T};

param dBB{j in J,t in N+M+1..T},

param uST,;

param uBC;

param uBB;

param Rmax;

param RO{J};

param Rmin{J};

param Smax;

param Smin;

param SO{q in Q,j in J};

param SS{j in J};

param ZO0;

param X0{l,1..N+M},

param AO{N+M-F+2..N+M};

param WO0{Q,J};

var x{I,1..T} binary;

var y{J,N+M+1..T+(F/2)} binary;
var a{N+M-F+2..T} binary;

var zZ{N+M..T+(F/2)} binary;

var S{Q,J,N+M..T}>=0;

var W{Q,J,N+M..T} binary;

var g{Q,J,N+M+1..T}binary;

var G{Q,J,N+M+1..T}>=0;

var R{J,N+M..T}>=0;
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var b{Q,J,N+M+1..T}>=0;
var f{Q,J,N+M+1..T}>=0;
var h{Q,J,N+M+1..T}>=0;

#Objective Function
minimize objective: C*sum{t in N+M+1..T} a[t] + (D/B)*sum{t in N+M+1..T}x[2,t];

subject to one_color {tin 1..T}: sum{i in 1} x[i,t] = 1;

subject to color_transitionl {t in 1..T-1}: x[1,t] + X[3,t+1] <=1;

subject to color_transition2 {t in 1..T-1}: x[3,t] + x[1,t+1] <= 1;

subject to grade_transitionl {t in N+M+1..T+(F/2)-1}: y[1,1] + y[3t+1] <=1,
subject to grade_transition2 {t in N+M+1..T+(F/2)-1}: y[3,t] + y[1,t+1] <=1,
subject to a_within_F {t in N+M-4..T-5}: sum{s in t..t+F-1} a[s] <= 1;

subject to light_for_a {t in N+M+1..T}: a[t] <= x[1,t-N-M];

subject to change_al {t in N+M+1-(F/2)..T}: z[t+(F/2)] - z[t+(F/2)-1] <= a[t];
subject to change_a2 {t in N+M+1-(F/2)..T}: z[t+(F/2)] - z[t+(F/2)-1] >=- &[] ;
subject to change_a3 {t in N+M+1-(F/2)..T}: z[t+(F/2)] + z[t+(F/2)-1] >= a[t];
subject to change_a4 {t in N+M+1-(F/2)..T}: z[t+(F/2)] + z[t+(F/2)-1] <= 2-a][t];
subject to gray_with_high_z {t in N+M+1..T+(F/2)}: x[2,t-N-M] <= z[t];

subject to dark_with_high_z {t in N+M+1..T+(F/2)}: x[3,t-N-M] <= z[t];

subject to gradel combination {t in M+N+1..T+(F/2)}: y[1,t] >= x[1,t-N-M] -z[t];
subject to grade2_combination {t in M+N+1..T+(F/2)}: y[2,t] >= z[t] + x[1,t-N-M] -1;
subject to grade3_combination {t in M+N+1..T+(F/2)}: y[3,t] >= z[t] + x[2,t-N-M] -1;
subject to grade4_combination {t in M+N+1..T+(F/2)}: y[4,t] >= z[t] + x[3,t-N-M] -1
subject to one_grade {t in M+N+1..T+(F/2)}: sum{j in J} y[jt] = 1,

subject to pour_in_one {t in N+M+1..T}: sum{q in Q,j in J} g[q.j,t] = 1;
subjecttog W {qin Q,j inJ;tin N+M+1..T}: g[q,j,t] <= W[q,j,t];

subjecttog_Y {jin J,tin N+M+1..T}: sum{q in Q}g[a.j,t] <=YIj.t];

subject to one_grade_in_silo {g in Q,t in N+M+1..T}: sum{j in J} W[q,j,t] <= 1;
subject to empty_for_change {q in Q,j in J,;tin N+M..T-1}: W[q,j,t+1]-W[q,j,t] <= 1-sum{k in
JIWIa.k.t];

subject to silo_max_capacity {q in Q,j in J,tin N+M+1..T}: S[q,],t] <= Smax*W][q,j,t];

subject to silo_min_capacity {q in Q,j in J,t in N+M+1..T}: S[q,j,t] >= Smin*W[q,j,t];

subject to unloading_rate {q in Q,j in J,t in N+M+1..T}: G[q,j,t] <= uST*W][q,j,t];

subject to continuity {g in Q,j in J,t in N+M+1..T}: S[q,j,t] = S[q.j,t-1] + P*g[q.j.t] - G[q,j.t];
subject to safety_stock {j in J}: sum{q in Q} S[q,j,T] >= SS[j];

subject to unloading{q in Q, j in J,t in N+M+1..T}: G[q.j,t] = f[a.j.t] + h[q.j,t] + b[q.j.t] ;
subject to rates {q in Q,j in J,;tin N+M+1..T}: (1/uST)*f[q,j,t] + (1/uBC)*h[q,j,t] + (L/uBB)*b[q,j 1]
<=1;

subject to demand_silo_trucks {j in J,t in N+M+1..T}: dST[j,t] = sum{q in Q}q,j.t];

subject to demand_bulk_containers {j in J,t in N+M+1..T}: dBCJj,t] = sum {q in Q}h[q,j,t];
subject to max_sack_rate {t in N+M+1..T}:sum{q in Q,j in J}b[q,},t] <= uBB;

subject to update_warehouse {j in J,t in N+M+1..T}: R[j,t] = R[j,t-1] + sum{q in Q}b[q,j.t]-
dBB]j,t];

subject to warehouse_capacity {t in N+M+1..T}: sum{j in J} R[j,t] <= Rmax;

subject to safety_stock_warehouse {j in J}: R[},T] >= Rmin[j];

subject to initial_color {i in I,t in 1..N+M}: x[i,t] = XO[i,t];

subject to initial_viscosity: z[N+M] = Z0;
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subject to initial_a {t in N+M-F+2..N+M}: a[t] = AO[t];
subject to initial_silo {q in Q,j in J}: S[q,j,N+M] = S0[q,j];
subject to initial_W {q in Q,j in J}: WI[q,j,N+M] = WO0I[q,j];
subject to initial_warehouse {j in J}: R[j,N+M] = RO[j];

Input data: 6MONTHS.txt

setl:=123;

setJ:=1234,

setQ:=12345678;
setV:=1234567891011121314151617 18192021 22 23,

param T := 54;
param M = 6;
param N := 6;

param P := 33.33;
param uST := 224;
param uBC := 69.2;
param uBB := 40;
param Smax := 430;
param Smin := 1,
param Rmax := 3500;

param C := 1;
param D =1,
param F := 6;
param B :=1;
param Z0 := 1,
param AQ :=
8 0
9 1
10 O
11 0
12 0
param XO:
123456789 101112:=
1000000011111
2000000100000
311111100000 0;
param SO:
1 2 3 4:=
1 400 O 0 0
2 0 0 0 0
3 400 O 0 0
4 0 0 0 400
5 0 0 0 0
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\‘
o O o

param SS:=
1 450

2 0

3 0

4 450;
param RO :=
1 300

2 1100

3 0

4 500;
param Rmin :=
1 250

2 880
3 0

4 450;

Ee]
QD
2
3
=
o

OO OO OO OO W

O~NOUAWN R
CoocOoCOoORrORrE
POOOOOOON
ORrPrORrROOOAN

#demands of the first week

param dST:
13 14 53 54:=
1 0 0 0 O
2 0 O 0 o0
3 0 O 0 O
4 0 25 0 0
param dBC:
13 14 53 b54:=
1 0 0 0 o0
2 0 O 0 O
3 0 O 0 O
4 0 O 0 O
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param dBB:

13 14 ... 53 b54:=
1 0 385 .. 0 0
2 0 0 0 0
3 0 0 0 0
4 30 30 0 0;
#demands of the other weeks
param dSTa:=
[1,**]: 13 14 53 54:=
1 0 25 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0;
[2,**]: 13 14 53 54:=
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0;
[23,**]:13 14 53 54:=
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0;
param dBBa:=
[1**]: 13 14 ... 53 b54:=
1 0 50 ... 0 0
2 50 501 ... O 0
3 0 0 .. 0 0
4 0 50 ... 376 0;
[2,**]: 13 14 53 54:=
1 0 0 .. 0 0
2 374 0 .. 0 0
3 0 0 0 0
4 0 0 0 0;
[23,**]:13 14 53 54:=
1 0 50 ... O 0
2 0 0 .. 0 29.7
3 0 0 0 0
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4 0 0 .. O 0;

param dSTa:=

[1,**]: 13 14 53 b54:=
1 0 O 0 O

2 0 O 0 O

3 0 O 0 O

4 0 O 0 0
[2,**]: 13 14 53 b54:=
1 0 O 0 0

2 0 O 0 O

3 0 O 0 O

4 0 23 0 0O
[23,**]:13 14 53 b54:=
1 0 O 0 O

2 0 O 0 O

3 0 O 0 O

4 0 O 0 0

AMPL code for solving repeatedly the MILP presented in Section 2.2, where in each
repetition (week) the initial state is set equal to the final state of the previous repetition (week)

model VPI6months.txt;
data 6BMONTHS.txt;
solve;

display {j in J, t in N+M+1..T+3} y[j,t] > testl.txt;
display {iin I, tin 1..T} x[i,t] > test2.txt;

display {t in N+M-4..T} a[t] > test3.txt;

display {t in N+M..T+3} z[t] > test4.txt;

display {q in Q, j in J} S[q,j,T] > test5.txt;

display {q in Q, j in J} W[qj, T] > test6.txt;

display {j in J} R[j,T] > test7.txt;

display {qin Q, jin J,tin N+M+1..T} S[q,j,t] > test8.txt;
display {j in J,t in N+M+1..T} R][j,t] > test9.txt;

for {vin1..23} {

let {qin Q.  in J} S0[q,]:=S[q, T1;

let{qin Q, j in J} WO[q,j]:=W[q,j, T];

let {j in J} RO[j]:=R[},T];

let{iinl, ttin1..12, tin T-11..T} XO[i,tt]:=x[it];
let Z0:=z[T];

let {tin T-4..T, ttin 8..12} AO[tt]:=a[t];

let {jinJ, tin N+M+1..T} dST[j t]:=dSTa[v,j,t];
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let {j inJ, tin N+M+1..T} dBC[j,t]:=dBCa]v,j,t;
let {j inJ, tin N+M+1..T} dBB[j,t]:=dBBa[v,j,t];

solve;

display {j in J, t in N+M+1..T+3} y[j,t] > testl.txt;
display {iin I, tin 1.T} x[i,t] > test2.txt;

display {t in N+M-4..T} a[t] > test3.txt;

display {t in N+M..T+3} z[t] > test4.txt;

display {q in Q, j in J} S[q,j,T] > test5.txt;

display {q in Q, j in J} WI[q,j,T] > test6.txt;

display {j in J} R[j,T] > test7.txt;

display {gin Q, jin J,tin N+M+1..T} S[q,j,t] > test8.txt;
display {j in J,t in N+M+1..T} R[j,t] > test9.txt;

¥
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Appendix D: Matlab codes for implementing the exact and
heuristic solution procedures developed in Sections 3.2 and 3.3

In this appendix, we present the programming codes (in Matlab) for implementing the exact and
heuristic solution procedures for problems with 4 and 5 grades. We also give the codes that we used

to obtain the 2D graphs showing the optimal changeover presented in Section 2.3.

Codes for 4-grade problems

Program DP_4D_EXACT
Program that solves the SELSP problem for 4 grades using the exact solution procedure

Input

N = number of grades

X = FGI storage capacity

PMAX = production rate

CC = changeover cost

CS = spillover cost

LS(1) = lost sales cost for grade 1

LS(2) = lost sales cost for grade 2

e = small positive number

DD = table of demand values for grades 1-4
PP = table of probabilities of demands for grades 1-4
DIM = dimension of tables DD and PP

nl = special setup state

BIG = vey large number

X11 = special inventory level of grade 1
X21 = special inventory level of grade 2
X31 = special inventory level of grade 3
X41 = special inventory level of grade 4

Output

U(n,x1,x2,x3,x4) = optimal changeover policy for each setup state n and inventory level vector (x1,
X2, X3, xX4)

V(n,x1,x2,x3,x4) = optimal value function for each setup state n and inventory level vector (x1, X2,
X3, x4)

W(n1,X11,X21,X31,X41) = optimal expected average cost
count = number of iterations (k;) of the successive approximation method until convergence
tt = CPU time until convergence
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Code
forn=1:4
for x1=0:X
for x2=0:X-x1
for x3=0:X-x1-x2
for x4=0:X-x1-x2-x3
V(n,x1+1,x2+1,x3+1,x4+1)=0;
end
end
end
end
end
%MAIN LOOP
cont=1;
count=0;
tic
while cont==1
count=count+1
for n=1:4
for x1=0:X
for x2=0:X-x1
for x3=0:X-x1-x2
for x4=0:X-x1-x2-x3
C=BIG;
for m=max(1,n-1):min(n+1,N)
if m~=n
C1=CC;

else
C1=0;

end

PROD=PMAX;

If X1+Xx2+Xx3+x4+PMAX>X
PROD=X-x1-x2-x3-x4;
C1=C1+CS*(PMAX-PROD);

end

XX=[x1,x2,x3,x4];

for d1=1:DIM(1)
for d2=1:DIM(2)

for d3=1:DIM(3)
for d4=1:DIM(4)

dd(1)=DD(1,d1);
dd(2)=DD(2,d2);
dd(3)=DD(3,d3);
dd(4)=DD(4,d4);
for j=1:4

if j==

p=PROD;
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else
p=0;
end
if xx(j)+p>dd(j)
y(§)=xx(j)+p-dd(j);
else
y(4)=0;
C1=C1+LS*(dd(j)-xx(j)-
p)*PP(1,d1)*PP(2,d2)*PP(3,d3)*PP(4,d4);
end
end
C1=C1+V(m,y(1)+1,y(2)+1,y(3)+1,y(4)+1)*PP(1,d1)*PP(2,d2)*P
P(3,d3)*PP(4,d4);
end
end
end
end
if C1<C
C=C1,;
W(n,x1+1,x2+1,x3+1,x4+1)=C;
U(n,x1+1,x2+1,x3+1,x4+1)=m;
end
end
end
end
end
end
end
VMIN=BIG;
VMAX=-BIG;
forn=1:4
for x1=1:X+1
for x2=1:X+2-x1
for x3=1:X+3-x1-x2
for x4=1:X+4-x1-x2-x3
temp=V(n,x1,x2,x3,x4);
V(n,x1,x2,x3,x4)=W(n,x1,x2,x3,x4)-W(n1,X11,X21,X31,X41);
VDIFF=V(n,x1,x2,x3,x4)-temp;
if VDIFF<VMIN
VMIN=VDIFF;
end
if VDIFF>VMAX
VMAX=VDIFF;
end
end
end
end
end
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end
if abs(VMAX-VMIN)>e*W(n1,X11,X21,X31,X41)
cont=1;
else
cont=0;
end
end
tt=toc

Function GEN_U_SUB
Function that finds the optimal changeover policies of the 3-grade sub-problems

Input
N, X, PMAX, CC, CS, LS, e, DD, PP, DIM

Output

UH(i, n, x1, x2, x3) = heuristic changeover policy for each setup state n and inventory level vector
(x1, x2, x3), for sub-problem i

countH = number of iterations (k;) of the successive approximation method until convergence for
sub-problem i

ttH(i) = CPU times until convergence for sub-problem i

Code

for i=2:N-1
[DEML,PL,DL]=CONVOLVENdem(i-1,DD(1:i-1,:),PP(1:i-1,:),DIM(1:i-1));
DEMM=DD(i,);
PM=PP(i,:);
DM=DIM(i);
[DEMR,PR,DR]=CONVOLVENdem(N-i,DD(i+1:N,:),PP(i+1:N,:),DIM(i+1:N));
[U,W,count,tt]=solve3dem(X,PMAX,DEML,DEMM,DEMR,PL,PM,PR,DL,DM,DR,CC,CS,LS,
e);
UH(i,:,:,:,0)=U;
countH(i) = count;
ttH(i)= tt;

end

Function CONVOLVENdem
Function that finds the convolution of demands of N products

Input

NUM = number of products (N)

DDSUB = table of demand values for the N products

PPSUB = table of probabilities of the demand values of the N products
DIMSUB = dimension of the table of demand values

Output
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DOLD = table of the summation of the demand values of the N products
POLD = table of probabilities of the summation of the demand values of the N products
DIMOLD = dimension of DOLD

Code
function [DOLD,POLD,DIMOLD]=CONVOLVENdem(NUM,DDSUB,PPSUB,DIMSUB)
if NUM==
DOLD=DDSUB;
POLD=PPSUB;
DIMOLD=DIMSUB;
else
DOLD=DDSUB(1,:);
POLD=PPSUB(1,);
DIMOLD=DIMSUB(1);
for i=2:NUM
[DNEW,PNEW,DIMNEW]=CONVOLVE2dem(DOLD,POLD,DIMOLD,DDSUB(i,:),PPSU
B(i,:),DIMSUB(i));
DOLD=DNEW;
POLD=PNEW;
DIMOLD=DIMNEW,
end
end

Function CONVOLVE2dem
Function that finds the convolution of demands of 2 products

Input

D1 = table of demand values of 1* product

P1 = table of probabilities of demand values of 1* product
DIM1 = dimension of table of demand values of 1* product
D2 = table of demand values of 2" product

P2 = table of probabilities of demand values of 2" product
DIM2 = dimension of table of demand values of 2" product

Output

DSUM = table of the summation of the demand values of the 2 products

PSUM = table of probabilities of the summation of the demand values of the 2 products
DIMSUM = dimension of DSUM

Code
function [DSUM,PSUM,DIMSUM]=CONVOLVE2dem(D1,P1,DIM1,D2,P2,DIM2)
count=1;
for i=1:DIM1
for j=1:DIM2
Dtot(count) = D1(i) + D2(j);
Ptot(count) = P1(i)*P2(j);
count =count + 1;
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end
end
[Dfin,il]=sort(Dtot);
Pfin=Ptot(il1);
DSUM(1) = Dfin(1);
PSUM(1) = Pfin(1);
DIMSUM =1;
for i=2:DIM1*DIM?2
if Dfin(i) ~= DSUM(DIMSUM)
DIMSUM = DIMSUM + 1;
DSUM(DIMSUM) = Dfin(i);
PSUM(DIMSUM) = Pfin(i);
else
PSUM(DIMSUM) = PSUM(DIMSUM) + Pfin(i);
end
end

Function solve3dem
Function that finds the optimal changeover policy for a 3-grade problem

Input
X, PMAX, DEM1, DEM2, DEM3, P1, P2, P3, D1, D2, D3, CC, CS, LS, ¢, BIG, n1, X11, X21,
X31,N

Output

U(n,x1,x2,x3,x4) = optimal changeover policy for each setup state n and inventory level vector (x1,
X2, X3)

V(n,x1,x2,x3,x4) = optimal value function for each setup state n and inventory level vector (x1, X2,
X3, x4)

W(n1,X11,X21,X31) = optimal expected average cost

count = number of iterations (k) of the successive approximation method until convergence

tt = CPU time until convergence

Code
Function [U,W,countl,tt]=solve3dem(X,PMAX,DEM1,DEM2,DEM3,P1,P2,P3,D1,D2,D3,CC,CS,
LS,e)

BIG=100000;
nl=1;
X11=1;
X21=1;
X31=1;
N =3;
for n=1:3

for x1=0:X

for x2=0:X-x1
for x3=0:X-x1-x2
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V(n,x1+1,x2+1,x3+1)=0;
end
end
end
end

%MAIN LOOP
cont=1,
count1=0;
tic
while cont==1
% while countl<=5
countl=countl+1
for n=1:3
for x1=0:X
for x2=0:X-x1
for x3=0:X-x1-x2
C=BIG;
for m=max(1,n-1):min(n+1,N)
if m~=n
C1=CC;
else
C1=0;
end
PROD=PMAX;
if X1+x2+x3+PMAX>X
PROD=X-x1-x2-x3;
C1=C1+CS*(PMAX-PROD);
end
xX(1)=x1;
xXX(2)=x2;
xX(3)=x3;
for d1=0:D1-1
for d2=0:D2-1
for d3=0:D3-1
dd(1)=DEM1(d1+1);
dd(2)=DEM2(d2+1);
dd(3)=DEM3(d3+1);
for j=1:3
if j==n
p=PROD,;
else
p=0;
end
if xx(j)+p>dd(j)
y(§)=xx()+p-dd(j);
else
y()=0;
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C1=C1+LS*(dd(j)-xx(j)-p)*P1(d1+1)*P2(d2+1)*P3(d3+1);
end
end
C1=C1+V(m,y(1)+1,y(2)+1,y(3)+1)*P1(d1+1)*P2(d2+1)*P3(d3+1);
end
end
end
if C1<C
C=C1;
W(n,x1+1,x2+1,x3+1)=C;
U(n,x1+1,x2+1,x3+1)=m;
end
end
end
end
end
end
VMIN=BIG;
VMAX=-BIG;
for n=1:3
for x1=1:X+1
for x2=1:X+2-x1
for x3=1:X+3-x1-x2
Y (n,x1,x2,x3)=V(n,x1,x2,x3);
V(n,x1,x2,x3)=W(n,x1,x2,x3)-W(n1,X11,X21,X31);
VDIFF=V(n,x1,x2,x3)-Y(n,x1,x2,x3);
if VDIFF<VMIN
VMIN=VDIFF;
end
if VDIFF>VMAX
VMAX=VDIFF;
end
end
end
end
end
if abs(VMAX-VMIN)>e*W(n1,X11,X21,X31)
cont=1;
else
cont=0;
end
end
toc
tt=toc;

Program DP_4D_HEUR:
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Program that solves the 4-grade problem using the heuristic solution procedure for different values
of the coefficient o used in equation (3.5)

Input

aa = coefficient o used in equation (3.5)

astep = step by which coefficient « is incremented

counta = number of different values of coefficient « tested
ED = expected demand vector (equal to sum(DD.*PP)")

Output

bbb = minimum excepted average cost equal to W(n’, x;’)

W(n1,X11,X21,X31,X41) = expected average cost obtained by the heuristic solution procedure
count = number of iterations (k;) of the successive approximation method until convergence

tt = CPU time until convergence

Code
whileaa<=1
counta=counta+1;
[UFINAL]=GEN_U_HEUR_4D(UH,N,X,aa,ED);
[aaa,bbb,ccc,W,count,tt]=DP_4D EXACT_NoOPT(X,PMAX,UFINAL,DD,PP,DIM,CC,CS,LS,
e);
ResultsTBL(counta,:)=[bbb,count,tt];
aa = aa + astep;
end

Function GEN_U_HEUR_4D
Function that constructs the heuristic changeover policy of the 4-grade problem using parts of the
optimal changeover policies of the 3-grade sub-problems

Input
UH, N, X, aa, ED

Output
UFINAL = heuristic changeover policy of original 4-grade problem

Code
function [UFINAL]=GEN_U_HEUR_4D(UH, N, X, aa, ED)

for x1=0:X
for x2=0:X-x1
for x3=0:X-x1-x2
for x4=0:X-x1-x2-x3

xvec=[x1,x2,x3,x4];

UFINAL(1,x1+1,x2+1,x3+1,x4+1)=UH(2,1,x1+1,x2+1,GEN_X_ SUB(xvec(3:4),ED(3:
4),aa)+1);

UFINAL(2,x1+1,x2+1,x3+1,x4+1)=UH(2,2,x1+1,x2+1,GEN_X SUB(xvec(3:4),ED(3:
4),aa)+1);
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UFINAL(3,x1+1,x2+1,x3+1,x4+1)=UH(3,2,GEN_X_SUB(xvec(1:2),ED(1:2),aa)+1,x3
+1,x4+1)+1;

UFINAL(4,x1+1,x2+1,x3+1,x4+1)=UH(3,3,GEN_X_SUB(xvec(1:2),ED(1:2),aa)+1,x3
+1,x4+1)+1;

end
end
end
end

Function GEN_X_SUB
Function that calculates the inventory level of the aggregate product according to equation (3.5)

Input
X, ED, aa

Output
xnew = inventory level of the aggregate product

Code

function [xnew]=GEN_X_ SUB(x,ED,aa)

LS=sum(max(ED-x,0));
xnew=round((LS==0)*sum(x)+(LS>0)*(aa*(sum(ED)-LS)+(1-aa)*sum(x)));

Function DP_4D_EXACT_NoOPT
Function that evaluates the heuristic changeover policy of the 4-grade problem

Input
X, PMAX, U, DD, PP, CC, CS, LS, e, BIG, n1, X11, X21, X31, X41,DIM

Output

aaa = (VMAX-VMIN)

bbb = W(n1,X11,X21,X31,X41)

cce = e* W(n1,X11,X21,X31,X41)

W(n,x1,x2,x3,x4) = optimal value function mapping for each setup state n and inventory level
vector (x1, x2, X3, x4), given by equation (3.7)

count = number of iterations (k;) of the successive approximation method until convergence

tt = CPU time until convergence

Code
function
[aaa,bbb,ccc,W,count,tt]=DP_4D_EXACT_NoOPT(X,PMAX,U,DD,PP,DIM,CC,CS,LS,e);
for n=1:4
for x1=0:X
for x2=0:X-x1
for x3=0:X-x1-x2
for x4=0:X-x1-x2-x3
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V(n,x1+1,x2+1,x3+1,x4+1)=0;
end
end
end
end
end

%MAIN LOOP
cont=1;
count=0;
tic
while cont==1
% while count==0
count=count+1
forn=1:4
for x1=0:X
for x2=0:X-x1
for x3=0:X-x1-x2
for x4=0:X-x1-x2-x3
m=U(n,x1+1,x2+1,x3+1,x4+1);
if m~=n
C1=CC;
else
C1=0;
end
PROD=PMAX;
if X1+x2+x3+x4+PMAX>X
PROD=X-x1-x2-x3-x4;
C1=C1+CS*(PMAX-PROD);
end
xX=[x1,x2,x3,x4];
for d1=1:DIM(1)
for d2=1:DIM(2)
for d3=1:DIM(3)
for d4=1:DIM(4)
dd(1)=DD(1,d1);
dd(2)=DD(2,d2);
dd(3)=DD(3,d3);
dd(4)=DD(4,d4);
for j=1:4
if j==n
p=PROD;
else
p=0;
end
if xx(j)+p>dd(j)
y(§)=xx(j)+p-dd(j);
else
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y()=0;
C1=C1+LS*(dd(j)-xx(j)-p)*PP(1,d1)*PP(2,d2)*PP(3,d3)*
PP(4,d4);
end
end
C1=C1+V(m,y(1)+1,y(2)+1,y(3)+1,y(4)+1)*PP(1,d1)*PP(2,d2)*PP(3,
d3)*PP(4,d4);
end
end
end
end
W(n,x1+1,x2+1,x3+1,x4+1)=C1,;
end
end
end
end
end
VMIN=BIG;
VMAX=-BIG;
for n=1:4
for x1=1:X+1
for x2=1:X+2-x1
for x3=1:X+3-x1-x2
for x4=1:X+4-x1-x2-x3

temp=V(n,x1,x2,x3,x4);

V(n,x1,x2,x3,x4)=W(n,x1,x2,x3,x4)-W(n1,X11,X21,X31,X41);

VDIFF=V(n,x1,x2,x3,x4)-temp;

if VDIFF<VMIN
VMIN=VDIFF;
end
if VDIFF>VMAX
VMAX=VDIFF;
end
end
end
end
end
end
if abs(VMAX-VMIN)>e*W(n1,X11,X21,X31,X41)
cont=1;
else
cont=0;
end
end
tt=toc

Program SIM_4D _EXACT
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Program that evaluates the optimal changeover policy of the 4-grade problem using simulation

Input
N, X, PMAX, CC, CS, LS, e, DD, PP, DIM,U

Output
CTOT = total cost
tsim = simulation time

Code

load('DP_4D_1 EXACT.mat','U";

load('DATA 4D _1.mat);

R =60;

T =100000;

Ccum=0;

Csqcum=0;

tcum=0;

CCI=0;

for i=1:R
[CTOT,tsim]=SIM_4D(X,PMAX,U,DD,PP,DIM,CC,CS,LS,N,T);
CTOTMAT(i)=CTOT;
TSIMMAT (i)=tsim;
Ccum=Ccum+CTOT,;
Csqcum = Csqcum + CTOT"2;
tcum=tcum-+tsim;

end

Program SIM_4D HEUR
Program that evaluates the heuristic changeover policy of the 4-grade problem for different values
of the coefficient o used in equation (3.5), using simulation

Input

X, PMAX, UFINAL, DD, PP, DIM, CC, CS, LS, N, astep, aa, counta, ED
T = total number of counts in simulation

R = demand width

U_SUB = sub-problem policies

Output

Caver = average total cost

CConflInter = confidence interval of average total cost

taver = average total CPU time until a solution is reached through simulation

Code

while aa <=1
counta=counta+1;
[UFINAL]=GEN_U_HEUR_4D(UH,N,X,aa,ED);
Ccum=0;
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Csqcum=0;
tcum=0;
CCI=0;
fori=1:R
[CTOT, tsim]=SIM_4D(X,PMAX,UFINAL,DD,PP,DIM,CC,CS,LS,N,T);
CTOTMAT(counta,i)=CTOT;
TSIMMAT (counta,i)=tsim;
Ccum=Ccum+CTOT;
Csqcum = Csqcum + CTOT"2;
tcum=tcum-+tsim;
end
Caver = Ccum/R
CConfinter = 2*sqrt((Csgcum - R*Caver”2)/(R*(R-1)));
taver = tcum/R;
ResultsTBL(counta,:)=[aa,Caver,CConfinter,taver];
aa = aa + astep;
end

Function SIM_4D
Function that performs a single simulation run of the 4-grades problem for a given changeover

policy U

Input
X, PMAX, U, DD, PP, DIM, CC, CS,LS,N, T

Output
CTOT
tsim

Code

function [CTOT,tsim]=SIM_4D(X,PMAX,U,DD,PP,DIM,CC,CS,LS,N,T);

CP =[zeros(N,1) cumsum(PP,2)];

Cl=0;

C2=0;

CC3(1:N) =0;

CTOT =0;

% Initial state

n=2;

X(1:N) = 2;

A=[nx];

tic

fort=1:T
m = U(n,x(1)+1,x(2)+1,x(3)+1,x(4)+1);
C1l=C1+ CC*(m~=n);
PROD = min(PMAX, X - sum(X));
C2 = C2 + CS*(PMAX - PROD);
TT=sum(bsxfun(@gt,rand(N,1),CP),2);
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for i=1:N
D(i)=DD(i,TT(i));

end

y = x + PROD*([1:N]==n) - D;

CC3 = CC3 - LS*bsxfun(@times,y<0,y);

X = bsxfun(@times,y > 0, y);

n=m;
end
CTOT = (C1 + C2 + sum(CC3))/t;
tsim=toc;

Codes for 5-grade problems

All the codes for solving 5-grade problems are similar to those for solving the 4-grade problem, and
are therefore omitted. The only code, which slighty differes is the following:

Function GEN_U_HEUR _5D
Function that constructs the heuristic changeover policy of the 5-grade problem using parts of the
optimal changeover policies of the 3-grade sub-problems

Input
UH, N, X ,aa, ED

Output
UFINAL

Code
function [UFINAL]=GEN_U_HEUR_5D(UH, N, X, aa, ED)
for x1=0:X
for x2=0:X-x1
for x3=0:X-x1-x2
for x4=0:X-x1-x2-x3
for x5=0:X-x1-x2-x3-x4
xvec=[x1,x2,x3,x4,x5];
UFINAL(1,x1+1,x2+1,x3+1,x4+1,x5+1)=UH(2,1,x1+1,x2+1,GEN_X_SUB(xvec(3:
5),ED(3:5),aa)+1);
UFINAL(2,x1+1,x2+1,x3+1,x4+1,x5+1)=UH(2,2,x1+1,x2+1,GEN_X_SUB(xvec(3:
5),ED(3:5),aa)+1);
UFINAL(3,x1+1,x2+1,x3+1,x4+1,x5+1)=UH(3,2,GEN_X_SUB(xvec(1:2),ED(1:2),
aa)+1,x3+1,GEN_X SUB(xvec(4:5),ED(4:5),aa)+1)+1;
UFINAL(4,x1+1,x2+1,x3+1,x4+1,x5+1)=UH(4,2,GEN_X_SUB(xvec(1:3),ED(1:3),
aa)+1,x4+1,x5+1)+5-3;
UFINAL(5,x1+1,x2+1,x3+1,x4+1,x5+1)=UH(4,3,GEN_X_SUB(xvec(1:3),ED(1:3),
aa)+1,x4+1,x5+1)+5-3;
end
end
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end
end
end

Code for drawing the optimal changeover policy graphs

Program GRAPHK
Program that draws in 2D the optimal changeover policy of a 3-grade problem for a given value k
of the inventory level of grade 3

Input
U=changeover policy

Output
Graphs

Code
k=input(‘give value for k, k=")
for i=1:X-k+2
for j=1:X-k+3-i
tst1(j,i)=U(1,i,j,k+1);
tst2(j,1)=U(2,i,j,k+1);
tst3(j,1)=U(3,i,j,k+1);
for ia=1:3
for ja=1:3
for ka=1:3
if tstl(j,i)==la & tst2(j,i)==ja & tst3(j,i)==ka
tst4(j,i)=1a*9+ja*3+ka-12;
end
end
end
end
end
end

figure(1);hold on;
title('graphU (n=1)")
xlabel("X_1")
ylabel("X_2")
surf(tstl)

figure(2);hold on;
title('graphU (n=2)")
xlabel("X 1"
ylabel("X_2")
surf(tst2)
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figure(3);hold on;
title('graphU (n=3)")
xlabel("X 1"
ylabel("X_2")
surf(tst3)

figure(4);hold on;
title('graphU’)
xlabel("X 1"
ylabel("X_2")
surf(tst4)

Code for finding optimal safety stocks

Program optimum _x1_x2
Program that finds the optimal stock levels to be used in the procedure outlined in Section 2.3.1.

Input
U,X

Output
Optimal stock levels of x1 and x2 that minimizes the differential cost V/(n, x;)

Code
for n=1:2
VMIN=100000;
for x1=0:X
for x2=0:X-x1
if V(n,x1+1,x2+1)<VMIN
VMIN=V(n,x1+1,x2+1);
K(n,:,:,:)=[n,VMIN,x1+1 x2+1];
end
end
end
end
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Appendix E: Results of the heuristic policy evaluated in
Section 3.4.3 for different values of parameter a

Table A-3. Complete set of results of the heuristic policy evaluated using the value iteration method

for the 4-grade example presented in Section 3.4.3

Demand CPU
Case pattern (sec) a k. J"(a)
44308 0 70 1.3891
42126 0.1 69 1.3751
25188 0.2 68 1.3867
31836 0.3 60 1.3642
30887 0.4 57 1.3171
29465 0.5 56 1.2904
19948 0.6 55 1.2566
69925 0.7 130 1.2442
35192 0 146 1.2367
31127 0.1 156 1.2305
33289 0.2 166 1.2285
34647 0.3 172 1.2269
34960 0.4 175 1.2263
35096 0.5 175 1.2253
34571 0.6 173 1.2267
33754 0.7 169 1.2271
40549 0 203 1.2312
71143 0.1 355 1.2328
76778 0.2 215 1.3262
126720 0.3 211 1.331
120180 0.4 206 1.3291
74241 0.5 202 1.3314
103620 0.6 195 1.3376
67907 0.7 191 1.3388
60305 0 115 1.3141
41770 0.1 118 1.3139
88204 0.2 118 1.3142
41296 0.3 117 1.3156
61512 0.4 117 1.3159
69141 0.5 116 1.3164
71163 0.6 115 1.3168
40356 0.7 115 1.3172

1 B.D,DB

2 D,D,BB

3 DBDB

4 D,B,BD
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Table A-4. Complete set of results of the heuristic policy evaluated using simulation for the 4-grade

example presented in Section 3.4.3

Demand CPU

Case pattern (sec) a J"(a) (95%c.i)
12.617 0 1.3359+0.0014

12.593 0.1 1.3206+0.0019

12.788 0.2 1.3272+0.0019

12.639 0.3 1.3253+0.0021

12.797 0.4 1.3303+0.0017

1 B,D,D,B 12.835 0.5 1.3321+0.0017
13.096 0.6 1.3367+0.0016

12.832 0.7 1.3384+0.0021

12.632 0.8 1.3385+0.0018

12.582 0.9 1.3421+0.0016

12.443 1 1.3416+0.0021

11.182 0 1.3140+0.0021

11.117 0.1 1.3135+0.0018

11.047 0.2 1.3144+0.0013

11.031 0.3 1.3157+0.0016

11.033 0.4 1.3159+0.0020

2 D,D,BB 11.031 0.5 1.3170+0.0017
11.030 0.6 1.3172+0.0018

11.026 0.7 1.3179+0.0018

11.032 0.8 1.3183+0.0020

11.038 0.9 1.3174+0.0017

11.035 1 1.3181+0.0021

6.475 0 1.3898+0.0022

6.482 0.1 1.3761+0.0021

6.484 0.2 1.3867+0.0024

6.547 0.3 1.3599+0.0022

6.475 0.4 1.3178+0.0014

3 D,BD,B 6503 0.5 1.2894+0.0021
6.529 0.6 1.2564+0.0015

6.484 0.7 1.2445+0.0019

6.476 0.8 1.2719+0.0153

6.489 0.9 2.7741+0.5626

6.483 1 2.8880+0.5244

4 D,BB,D 86171 0 1.2356+0.0011
8.5913 0.1 1.2308+0.0010

8.6226 0.2 1.2288+0.0011

8.5926 0.3 1.2265+0.0011

8.4072 0.4 1.2263+0.0010

8.3407 0.5 1.2253+0.0011
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8.3839 0.6 1.2276+0.0010
8.3947 0.7 1.2268+0.0010
8.3795 0.8 1.2305+0.0010
8.3666 0.9 1.2328+0.0009
8.3711 1 1.3153+0.0296

Table A-5. Complete set of results of the heuristic policy evaluated using simulation for the 5-grade

example presented in Section 3.4.3

Demand CPU

Case pattern (sec) a J"(a) (95%c.i.)
3.8711 0 3.1001+0.0016

3.8590 0.1 3.0355+0.0016

3.8558 0.2 3.0800+0.0020

3.8533 0.3 3.1530+0.0020

3.8600 0.4 3.2087+0.0025

1 ACDCA 38538 05 3.3301+0.0025
3.8432 0.6 3.6575+0.0029

3.8422 0.7 5.4469+0.0036

3.8425 0.8 5.4512+0.0033

3.8420 0.9 5.4227+0.0034

3.8428 1 5.4595+0.0031

3.8840 0 3.4926+0.0017

3.8500 0.1 3.4512+0.0015

3.8622 0.2 3.4644+0.0020

3.8242 0.3 3.4641+0.0018

3.8852 0.4 3.4578+0.0016

2 D,C,CAA 38335 0.5 3.4852+0.0019
3.8244 0.6 3.5318+0.0030

41222 0.7 3.8665+0.0128

4,0414 0.8 5.6717+0.0291

3.8489 0.9 8.2742+0.0027

3.8103 1 8.2735+0.0029

3.6524 0 3.8759+0.0020

3.1777 0.1 3.9863+0.0018

2.7754 0.2 4.0763+£0.0028

2.2716 0.3 4.2347+0.0027

2.2910 0.4 4.3579+0.0031

3 D,CAAC 2.2859 0.5 4.5680+0.0045
2.3008 0.6 4.8012+0.0049

2.2945 0.7 5.2577+0.0058

2.2896 0.8 7.3457+0.0055

2.2916 0.9 10.3628+0.0030

2.2757 1 10.3631+0.0026

4 D,ACAC 37605 0 3.9348+0.0020

137

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 15:50:34 EEST - 3.146.37.111



3.7307 0.1 3.9473+0.0023
3.7384 0.2 3.9805+0.0024
3.7392 0.3 4.0324+0.0022
3.7412 0.4 4.1035+0.0031
3.7335 0.5 4.2739+0.0046
3.7333 0.6 6.2144+0.0294
3.7319 0.7 8.2519+0.0041
3.7332 0.8 10.0704+0.0028
3.7339 0.9 10.3622+0.0023
3.7337 1 10.3614+0.0027
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